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Abstract

Abstract

Digital control systems are always preferable where precision and flexibility matter.
This thesis describes the construction and implementation of a radio frequency high-
speed interface for use in a variety of applications in the heavy ion accelerator facility
at Geselschaft fiir Schwerionenforschung mbH in Darmstadt. In this work, the author
tries to shed light on some considerations concerning the design of such an interface.

Hardware design has been detailed along with problems and achievements during
the construction phase. Using a hardware description language, the author imple-
ments and explains the steps needed to build a communication link between the
design and the host system.

The last chapters portray the outcomes and contemplations for improvements and
corrections of the design for the future revisions.
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1 Thesis Overview

1.1 About GSI

GSI operates a large, in many aspects worldwide unique accelerator facility for heavy-
ion beams. Researchers from around the world use the facility for experiments in basic
research!. GSI is federally funded and is a member of the Helmholz Association with
more than 1000 employees. The chief tools in GSI are the Universal Linear Accelerator
(UNILAC), the heavy-ion Synchrotron SIS18 and the Experimental Storage Ring
(ESR)%.

Currently researchers are planning the new international accelerator facility, FAIR,
with a circumference of about 1.1 km. This new facility has many advantages over

the existing one®.

1.2 About this Thesis

1.2.1 History of the Design

In 2003, Martin Kumm at GSI provided a solution for an interface for analogue
to digital conversion with a more specific application in an automatic gain control
system using a micro-controller [22]. This solution is still used. Later, more and more
use-cases have been found that would profit from a faster and more general board.
This led to the idea of using programmable logic devices and accomplish the task in
a hardware description language.

In 2006 Johannes Jost started his Diploma Thesis on designing an interface board
with 10 MSPS ADCs and 30 MSPS DACs controlled by a CPLD [20]. His work has
been an underlying basis for the following thesis.

1Source: www.gsi.de
2Source: www.wikipedia.org
3Please refer to www.gsi.de for more information on the FAIR project.



1 Thesis Overview

1.2.2 Thesis Scope

This thesis continues these efforts and extends the design to a much faster system.
The analogue to digital and digital to analogue conversion rates has been enhanced
to support up to the state of the art 125 MSPS and 210 MSPS respectively. The
dimensions of the board have been changed to allow better temperature characteristics
and proper placement of components. Efforts have been made to lessen the inter-
channel interference and reduce noise and signal crosstalk specially that of the main
clock signal.

During this thesis following tasks have been undertaken.
e Testing the existing ADC/DAC board and writing some routines to get familiar
with the design environment.
e Fully redesigning the libraries and the schematics of the next revision.
e Learning new techniques on designing high-speed boards.
e Routing and production of the new PCB revision.
e Writing routines in VHDL for testing the prototype.

e Implementing the first fully functioning version of the CPLD-side code for the
communication protocol.

e Writing routines in VHDL for testing the communication link with the host
system.

1.2.3 Use Cases

Some of the use cases of the design include but are not limited to:

e Fast replacement of the ADC/DAC board [20].
e Digital Amplitude Control [10].
e Digital Eigenfrequency Control [10].

e Synthesizer for Barrier-Bucket System [25]
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Figure 1.1: Top View of the Final Populated Board



2 Hardware design

2.1 Introduction

The board is designed to meet several requirements for application in different control
systems. Signals applied to the board range from some ten millivolts up to 2 volts
peak to peak. The design allows DC as well as AC coupled signals. It features two
channels each with an ADC input, a monitor output and a DAC output. The design
which is called FAB (FIB Application Board) will be used as a sort of daughter board
connected via a digital interface to a main board named FIB for FPGA Interface
Board. The FIB board in turn implements different buses and interfaces and acts as
a central data management and signal processing unit and a bridge to other units in
the digital control system such as the DSP unit!.

Several 0€) resistors have been used in the circuit to allow the change of configura-
tion at the time of manufacturing simply by using a different pick and place data set
for the mounting machine.

2.1.1 Modes of Operation

In the AC operation mode, signals go through variable gain amplifiers (VGA). Due
to the relatively high offset of the VGAs in the DC operation mode, the VGAs are
deactivated so that the signals are connected directly to the ADCs after passing
through the input stages. The VGAs could have a fixed gain, or be controlled by the
output of the DACs (for use with future automatic gain control algorithms).

'Please refer to [21] for more information on the digital cavity synchronisation project in GSI, or
refer to section 1.2.3 for other use cases.



2 Hardware design
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Figure 2.1: System Block Diagram Showing one Channel.

The system block diagram is depicted in figure 2.1. Different elements are shown as
interconnected blocks. The difference between a board configured for AC operation
and a board configured for DC operation is apparent in this figure.

2.1.2 External Connectivity

The FAB board is connected to the FIB board using two connectors. Clock, an
address bus and a 16-bit data bus as well as some control signals are provided on the
connectors. BNC connectors have been chosen for the RF side. In applications such as
AGC where the signal applied to the board is nearly DC, 2 pole Molex? connectors are
used. Another connector and some test pins is reserved for programming/debugging
purposes.

2www.molex.com



2.2 The Power Supply and Reference Voltage

2.2 The Power Supply and Reference Voltage

Due to different supply requirements on the board, it was necessary to study the
application field. FAB is designed to be used in 19” racks as well as cased stand alone
in aluminium housings. The rack system provides regulated supply voltages for the
cards.

2.2.1 Power Zones

As it could be seen in figure 2.2, internal power planes have been sliced to allow sepa-
ration between the channels as well as allowing enough copper to keep the conductor
impedance as low as possible.

RF Side Digital Side

fwon Tooo 1 Tuss | Tooo b Twss | G
hemee e meas ] [ [ S [
' vss i i i X i i i I X i '
essonoasennnnae IV Bt AN St SO CLEh! SR AR
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R RRRGRLEEEELEEEELLLL IO SRt AR SECE U St SN RERRE
S P i Lod i e
5 ves S T TV R R A VO S
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Lo Vs A !
: ] " o P i~
SR % Leeedd = el [
E vss i I O P x i

Legend: Layer on top: — . — Underlying Layer: s e sssss===

Figure 2.2: Arrangement of Power Polygons on the middle layers of the PCB.

The planes that carry £15V and +5V" have this form. The effective connection has
been made possible by the vertical stripes which act as bridge connections between
the slices.



2 Hardware design

For the purpose of providing a reference voltage, we have used an ADR431 from
Analog Devices®. This is a low noise, low temperature coefficient 2.5V voltage refer-
ence with a wide operating range. The voltage reference contributes to the converters
as an external reference as well as the calibration circuitry of each channel (see section
2.5).

2.3 Grounding Issues

The position of the system star point has always been a concern when designing
high speed circuits. After several meetings we decided to slice the ground plane and
allow connections only where it is suitable. As always, compromises had to be made,
since the front panel serves as an unwanted secondary star point. Making the central
connection as low impedance as possible, we could nearly ignore the effect of the front
panel (See figure 2.3. Nonetheless, the ground plane island which has been isolated
for the CPLD and it’s digital interface to the converters had to be treated specially.

H I +5Vvd +3.3vd + a - a H
|
M e e 0
L |j .
#L
15V-0.6A 15V-0.6A
.II 0 Ohm

5

Digital Side

Figure 2.3: Overview of the Board Signals, Backplane and Target Connections.

3www.analog.com



2.4 The CPLD

A stripe of copper on the bottom layer defines the main star point directly beneath
the converters (see figure 2.4). This is very desirable as stated in many data sheets
and application notes* since the difference between the voltage levels on either side of
the converters remains low. Care has been taken to keep a constant distance between
channels themselves and the ground plane used for the digital part in order to reduce
inductive noise.

PemmmmmmmmmmmmEEm .- | Prmmmmmmemmmmm - —-—-——— .
1 AGND - AGND 1
1 | I | 1
1 Internal Plane B Internal Plane '
1 11 1
1 LI} 1
1 | B | 1
1 - 1
: X .
[ ra [
] LI ] ]
1 L B | 1
1 LI ] 1
] LI ] ]
' L S N '
: ‘ [
' ] S : '
1 LI | 1
] LI | ]
1 LI ] 1
] LI | ]
1 [ ] 1
: AGND X '
] ok ]
] ' ] ]
: = :
L] ' ] L]
] "B ]
B Bottom Layer b B
] B ]
I L L L L L L L L L L L L L L L L L L L]
Digital Side RF Side

Figure 2.4: Ground Plane Topology.

For the return path of the digital signals connected to the CPLD, there is an extra
connection parallel to the main system star point to allow transfer of higher current
peaks. These would otherwise appear as fluctuations and would distort the signal
passing through the converters.

2.4 The CPLD

The chosen CPLD is from the MAXII (®) family of CPLDs from ALTERA®. It operates
off an almost dedicated 3V voltage regulator. It contains 1270 macro cells and is
packaged in a 144-QFP case. The CPLD is clocked directly from the FPGA board.
The clock signal is grounded over a 1k resistor so that the rise and fall times remain

4Please refer to [6], [5], [29] and [9] for more information on grounding.
Swww.altera.com



2 Hardware design

short. Depending on the specific application, CPLDs with different speed grades
could be mounted on the board. On the prototype boards, the fastest CPLDs with
3nS propagation delay are used. Important signals are accessible via test pins.

2.4.1 Clock Distribution

Distributing clock signal between the components on the board needed a well planned
strategy. Clock traces should have a low impedance and be as short as possible.
Special care has been taken so that these signals have a larger distance to other
traces, otherwise they would easily influence the quality of signals in the main path.
As An Example, According to the data sheet of the AD9744 DAC [14], any noise or
jitter in the clock will transfer directly into the DAC output.

2.5 Calibration Circuitry

A series of applications need precise, absolute signals. All analogue components
have tolerances so that for obtaining absolute signals, calibration must be performed.
Since the era of potentiometers is over, in a digital control system, this task has to be
accomplished digitally. For this purpose, each channel is provided with an analogue
switch. This switch is in turn controllable by the CPLD. The idea is to perform a
linear approximation on the output signal under the influence of existing physical
restraints, which could nonetheless be almost considered as linear. Additionally a
simple passive network of reactance/resistance has been place on the signal path to
compensate for the non linearities of the switch itself.

During a calibration process, ground and the reference voltage are switched sequen-
tially into the ADCs, the values are saved in special registers. Then linear regression
will be performed, i.e. the slope and the axis intercepts are calculated. After calibra-
tion is done, if the CPLD is asked to deliver calibrated data, it divides the value into
the already calculated slope and subtracts the axis intercept before sending the data
to the main FPGA board, FIB.

The calibration algorithm is not implemented in the prototyping stage of the project
though, until further developments and study of each specific application has been
carried out. It should be mentioned that the calibration operation is limited to the
DC operation mode. For calibration in the AC operation mode it is possible to feed
the DAC output into the switch.

10



2.6 Signal Flow and Filtering

2.6 Signal Flow and Filtering

The scheme used for the overall signal flow follows the 5082 circuit technique used
in many radio frequency designs. Signals have been terminated with precision 49.9(2
resistors where needed. The gain of the amplifiers is trimmed to keep the signal
unamplified throughout the signal path so that the gains are solely controlled by the
VGA or not at all in case of DC-coupled connection. For the latter, the gain of the
input stage might be trimmed to a fixed value. These settings are strongly application
dependant.

2.6.1 Connectors and the Origin of the Signals

As stated in the introduction, BNC connectors are used at the RF side. The signals
applied to the board could have a frequency of up to 10 MHz and an amplitude of
up to 2 Vpp in AC and up to 10 Vpp in DC operation mode. Each channel has a
monitor output. Upon correct choice of configuration resistors, this output could be
used to get an analogue signal which has already been amplified by the VGA, in case
digital values are not intended in that specific application.

The DAC outputs are capable of both DC and AC coupled operation. The latter
is achieved using a wide band RF transformer, T1-6T from Mini-Circuits® which
contributes to hight-quality signal transmission.

2.6.2 High-speed Op Amps

The operational amplifiers used in input and output stages are THS4001 from TEXAS
Instruments’. These are wide band voltage-feedback amplifiers with ideal character-
istics in both inverting and non-inverting configurations. This amplifier has been
chosen because of it’s good performance in 502 systems. The common mode rejec-
tion ratio (CMRR) is also good in the desired operation frequency. Figure 2.5 shows
the closed loop gain of the op amp versus operation frequency.

6www.minicircuits.com
"www.ti.com

11
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Figure 2.5: THS4001: Closed Loop Gain vs. Frequency [16]

2.6.3 The Differential Amplifier

The quality of performance of modern ADCs is much better if the signal applied to
them is differential in nature. Usually the signal has to be levelled up to a certain
bias voltage. This is best achieved using the so called differential amplifiers. The
differential amplifier used in the circuit is AD8131 from Analog Devices. It is a dif-
ferential or single-ended input to differential output driver that needs no external
components for a fixed gain of 2 [13]. It could be considered as an impedance con-
verter, in many applications a better replacement for transformers (specially in the
DC operation mode where use of transformers is impossible), being less susceptible
to magnetic interference. It’s -3 dB Bandwidth of 400 MHz is more than acceptable
for our application.

2.6.4 Noise Elimination and the Filters

Throughout the design it has been tried to use as many decoupling capacitors as
needed to bypass glitches at the components’ supply pins. Polyester film capacitors
have been used abundantly to block unwanted RF frequencies. Digital signals have
been provided with a small series resistance to reduce noise due to possible reflections.
CPLD signals which control the analogue switch have low pass filters on them.

Keeping an eye on the sampling theorem and the Nyquist frequency, the filters
chosen for the channels are each 7th order low pass filters with -3 dB corner frequency

12



2.7 The Variable Gain Amplifier

of 100 MHz for the DACs and 50 MHz for the ADCs respectively. The filters are of
type PLP-100 and PLP-50 from Mini-Circuits. These settings are also application
dependant.

2.7 The Variable Gain Amplifier

Variable gain amplifiers (VGA) play a central role in applications involving automatic
gain control. The chosen VGA is from Analog Devices [11]. It has a moderately
low distortion from DC to 150 MHz, it could therefore be considered a wide band
amplifier. The peak differential input it £2V which allows sine wave operation at
1 Vras with enough headroom. These could even be driven from a single ended
source, but in this design they are driven differentially to improve signal quality on
the board. It’s outputs have the same features. The output impedance is 15052.

] L1 1 [ 1
ENBLl OFST VPOS CNTR
D VPSI | BIAS AND cMMmoDE AND  VPSO :l
VRer OFFSET CONTROL
D INHI  AD8330 OPHI :l
ouTPUT
STAGES
— — —
D INLO  VGA CORE OPLO :l
MODE ouTPUT
[_ GAIN INTERFACE = co\moo)  ciop
VDBS f |CMGN |COMM fVMAG 3

Figure 2.6: Block Schematic of the AD8330 [11]

2.7.1 Transfer Function

The basic gain function is linear-in-dB, controlled by the voltage applied to the VDBS
pin. The gain may be changed ranging from 0 dB to 50 dB for control voltages between
0V and 1.5V with a slope of 30mV per dB. Figure 2.7 illustrates this feature. The
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2 Hardware design

voltage on the MODE pin changes the polarity of the slope of the transfer function,
so the amplifier could do without an inverting stage in case of need.

50 \ /
45

e
w0 \\LO MODE HI MODE /

. N /
- N |

25

GAIN (dB)

20

s A N
. / AN
L N
7 N

0 0.25 0.50 0.75 1.00 1.25 1.50
Vpss (V)

0

03217-005

Figure 2.7: AD8330 Gain vs. Vppg [11]

A second gain control port is provided on chip at pin VMAG, which allows the user
to vary the numeric gain from 0.03 to 10 as shown in figure 2.8. Using this feature,
the basic gain set by the VDBS pin could be repositioned to any value from 20 dB
higher to 30 dB lower.

14



2.8 Analogue to Digital Conversion
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Figure 2.8: AD8330 Gain vs. Visag [11]

The output voltage may then be approximated as follows:

Vour =2 x Viy X Vyag X 10CHR)

Analog Devices has published an on-line simulator for this transfer function on their
web site. By default the output voltage is placed half-way through the power supply.
It may also be trimmed using the CNTR pin. This is particularly useful in case
following stages such as ADCs require a certain input voltage offset.

Although ADS8330 is capable of operation in DC-coupled mode, we have decided to
use it on the board only for the the ac-coupled signal path. On the prototype board
[20], the chip had not shown a desirable output DC offset.

2.8 Analogue to Digital Conversion

Speed of data conversion had been of primary importance in the design. The chosen
converter is from Linear Technology’s family of LTC22XX converters®. This product

8www.linear.com
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2 Hardware design

family features pin compatible devices each having different conversion speeds, reso-
lutions and of course costs. This allows application specific choice of devices without
changing the board layout. Table 2.1 lists possible alternatives.

125Msps | LTC2253
105Msps | LTC2252 (12-Bit) | LTC2254 (14-Bit
80Msps | LTC2229 (12-Bit) | LTC2249 (14-Bit

(12-Bit) ( )
( ) ( )
( ) ( )
65Msps | LTC2228 (12-Bit) | LTC2248 (14-Bit)
( ) ( )
( ) ( )
( ) ( )

LTC2255 (14-Bit

40Msps | LTC2227 (12-Bit) | LTC2247 (14-Bit
25Msps | LTC2226 (12-Bit) | LTC2246 (14-Bit
10Msps | LTC2225 (12-Bit) | LTC2245 (14-Bit

Table 2.1: Pin Compatible family of LTC22XX ADCs.

2.8.1 Structure

For the prototype boards LTC2255 and LTC2249 with 125 MSPS and 80 MSPS
respectively were used. Each have a 14-bit data bus. They run off a single 3V power
supply. An internal clock stabilisation feature could be turned on in which case the
ADC generates a 50% duty cycle pulse on the rising edge of the single ended clock
signal. This is desired on boards with sensitive clock distribution, since the accuracy
of conversion depends on both rising and falling edges of the clock.

The ADCs are capable of straight binary or 2’s complement output. Poor matching
can result in higher order harmonics, so it has been tried to keep the output impedance
of the previous stage near 100§2. For the sake of reducing power consumption, the
chip’s power saving NAP mode have been used. This is faster than it’s SLEEP mode
in exchange for a couple of milliwatts more power consumption. In this mode, it takes
only 100 clock cycles for the ADC to wake up and provide valid data on the outputs,
which otherwise have been in the Hi-Z state. A central ground pad on the bottom of
the ADC’s lead-less package allows an effective heat transfer to the board.

2.9 Digital to Analogue Conversion

According to the desired specifications, we decided to choose from the TxDAC ([®)
family of Analog Devices’s DACs. AD9744 has a single supply 14-bit interface also
capable of straight binary or 2’s complement input. It could be clocked up to 210 MHz.
The DAC has been a simple to use component. More details on power connections
and noise is provided in the related sections (see section 2.6.4).
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2.10 Mechanical Aspects

2.10 Mechanical Aspects

2.10.1 External Dimensions

As stated before, the board is designed to be placed in 19” racks. The board measures
160mm by 100mm which corresponds to a standard Euro format board. It is provided
with M3 holes for connection to the main board. The contour has been milled to free
the area above the IDC connectors of the main board.

2.10.2 Board Layout

Care has been taken that the placement of the elements are optimal in the sense of
shortest distance to the corresponding power source. As it might be seen from the
figure 2.9 polygon planes have been stretched to ensure this feature.

i VDD B i
' _|_ ] '
: A el B :
5 +F A P c P oreeeens
RRRRREbk RREEEE S R o Lo - E E
i g— S | S R
: o—
E vss E

Figure 2.9: Orientation of the Components to the Differential Supply Polygons.

Experience confirms that a good placement is the most important factor affecting
the routing phase of a layout job. Apart from that, good placement reduces inter-
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2 Hardware design

channel interference and unwanted signal crosstalk. Also, power components have
been placed far from the sensitive elements.

2.11 Production

Production is the most time consuming phase of a design. The choice of used elements
had been an iterative process since some of them were not available in the desired
quantities, package forms or at all. In the case of the AG8330 VGA, for example,
the board had to be reconfigured almost in last days before sending the job to the
fabrication house, since the required package was not at deliverable any more through
the distribution network in Germany. Many components had long delivery times.
Some very expensive parts, such as the ADCs, have been ordered as samples, until
after the verification, buying them in larger quantities becomes more plausible.

2.11.1 PCB Fabrication

The PCB job was sent to CONTAG? fabrication house. The board consists of 6-
Layers, containing no blind or buried vias. Following are the physical specifications
of the board:

Layers 6
Material FR4
Copper 35um
Finish HAL lead free
Track/Distance 150pm
Drill/Annular Ring 300um /170um
Number of Drills 620
Electrical Check Flying Probe
Solder Mask Top and Bottom, Green
Silkscreen Top and Bottom, White

Table 2.2: Physical Specifications of the Board.

Ywww.contag.de
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Figure 2.10: Top View of the Unpopulated Board.

The fabrication of the boards took 5 working days. They were sent promptly and
the boards had a good quality.

GERBER Data

The CAM job has been exported in the newer RS247-X format. This is sometimes
called extended GERBER! or X-GERBER. These files contain the coordinates for
the photo plotter and other manufacturing information. Unlike the older version

where the aperture information are stored separately, in the newer version, these are
located in the CAM files.

10www.gerberscientific.com
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Drill Data

EXCELLON!! file format has been chosen for the drill data. ”In electronics man-
ufacturing, an Excellon file is a text-based file format which is used to control the
actions of a CNC drilling machine, commonly used in the drilling of printed circuit
boards (PCB). The Excellon file format is a variant of standard RS-274C. It consists
of commands to instruct a CNC drilling machine to drill holes of specific diameters
at specific locations on a PCB.”!2

2.11.2 Component Mounting

After the PCBs and the last parts arrived the boards were ready to be populated.
The paste mask which has been specially ordered according to the needs of GSI’s
internal automatic mounting facility arrived a couple of days later. The mask was
made of 100um steel sheet. Both top and bottom sides of the PCB were placed on
the same mask mirrored in respect to each other, so that the solder cream could be
applied on the PCBs using only one side of the mask, therefore eliminating the need
to turn and cleanse the mask after application on each side.

Now the component coordinates and orientation had to be exported into a space-
separated and column-oriented text file. This format was suitable for the GSI’s
internal automatic mounting facility. For the prototyping purposes at GSI, usually
the PCB is populated only with the SMD parts. The rest of the elements had to be
mounted by the author. As it has always been, this too had been a time consuming
task.

2.12 PC Link: The UDL Board

For future expansion and testing purposes, a fast connection to personal computers
was needed. Soon it became obvious that USB connection is most appropriate for
such an application. The card will be inserted into the DSP-Link connector of the
FIB board, so that the FAB/FIB combination could be connected to the computer
and tested separately without being in the main control system. This adds to the
flexibility and has the advantage of ease in localisation of possible programming errors.

It should be remarked the production of the UDL board was outside the scope of
the thesis. At the time of completion of this thesis, the schematics, board outline,
connections and functionalities had been agreed upon.

Hywww.excellon.com

28ource: www.wikipedia.org
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2.12 PC Link: The UDL Board

2.12.1 Circuit Description
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As it may be seen from figure 2.11, the USB FIFO chip FTD254RL from FTDI! has
been used. It provides a parallel FIFO bidirectional data transfer interface with the
entire USB protocol being handled on the chip. The interface is easy-to-implement
on both computer and circuit side. The chip has been wired according to the data
sheet [24] for a self powered configuration. The rest is pretty straight forward. In
time, the existing library in GSI for an older version of the USB chip will be adapted
for use with the newer chip.

Bwww.ftdichip.com
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2 Hardware design

Power Supply and Bus Drivers

The signals on the DSP Link of FIB have 2202 pull up and 3302 pull down resistors
each. The choice of the drivers was limited to those who are capable of delivering the
current needed to drive these signals. In consequence, the voltage regulator had to
provide all the current needed for the drivers and the FIFO chip. SN74LVT245B [15]
from TEXAS Instruments fulfilled our needs. It is an octal bus transceiver supporting
3.3V and 5V inputs, and it outputs to a 3.3V system.

LMS1587 from National Semiconductor Corporation'* in TO-263 package provides
the required current [8].

Mywww.national.com
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3 Software Design

3.1 Introduction

The notion of software is usually interpreted differently in the literature. Since VHDL
is defined as a hardware description language, many do not consider the code written
in VHDL as software. Nevertheless, throughout this thesis the coding part has been
much softer than constructing the board itself. Herein, the term software is used to
represent the routines that were written for the programmable logic devices.

3.2 Behavioural Description

According to the plan, to the host system, FAB should look like a black box with
address, data and control bus. The different functionalities should then be accessible
via registers that are implemented inside the CPLD. This means for instance that
each ADC channel has it’s own value register. When the host system needs to read a
value from one of the ADCs, it puts the address of the register which corresponds to
the actual ADC value. The value is then made ready by the CPLD on the data bus.

R/W | Adr. Name Description Default Val.
W | 0x00 CTRL Control Register 0x4400
R | 0x01 STAT Status Register Not Set
R | 0x02 ADC1-VAL Value of the ADC on channel 1 Not Set
R | 0x03 ADC2-VAL Value of the ADC on channel 2 Not Set
W | 0x04 DAC1-VAL Value of the DAC on channel 1 0x0000
W | 0x05 DAC2-VAL Value of the DAC on channel 2 0x0000
W | 0x06 | ADC1-CLKDIV | Clock div. const. on ADC ch. 1 0x0002
W | 0x07 | ADC2-CLKDIV | Clock div. const. on ADC ch. 2 0x0002
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W | 0x08 | DAC1-CLKDIV | Clock div. const. on DAC ch. 1 0x0001
W | 0x09 | DAC2-CLKDIV | Clock div. const. on DAC ch. 2 0x0001

Table 3.1: Registers implemented inside CPLD.

There are more such registers programmed into the CPLD. Please refer to table
3.1 for a list of implemented registers. Using such register based organisation, future
expansions are easy. As an example of a possible application, the automatic gain
control or the automatic calibration could be named. In case of automatic calibration,
some more registers are needed to handle the gain and offset values for each channel.
Even the control register will be reset to it’s default value and hence the global reset
bit. So there is no need that the user does this manually. Table 3.1 also shows the
default values of the registers used for the prototype boards which had 100MSPS
ADCs and 210MSPS DACs.

All registers are 16-bit wide. The two most significant bits of the value registers of
ADCs and DACs have been permanently set to zero, since these devices have a 14-bit
wide data bus. Some registers are read-only whereas others are not. The value of all
registers could nonetheless be read from the host system.

3.2.1 Special Registers

As shown in figure 3.1, the control register contains special purpose bits. Bit 2 is the
global reset. If the host system writes a 1 to this bit, FAB will restart, setting all
registers to their default values.
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3.2 Behavioural Description

Control Register
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Figure 3.1: Control and Status Registers Implemented Into the CPLD.

The eight most significant bits are assigned to the two analogue switches. Writing
to these bits changes the switching state of these ICs. The possible values are listed
in table 3.2.

Value Description

0x01 Connect ADC to 2.5V Reference

0x02 Connect ADC to GND

0x04 Default Signal Connection

0x08 | Connect ADC to DAC output of the opposite channel

Table 3.2: Possible Values for the Analogue Switches.

The first two switch values are used to start a calibration operation for each chan-
nel. The last value is reserved for future applications such as enhanced AC signal
calibration (see section 2.5). The default signal connection is achieved by writing
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0x04 to the respective nibble.

Bit 4 to 7 of the control register sets each ADC or DAC of each channel in it’s
power down mode (NAP Mode for ADC and SLEEP Mode for DAC respectively). In

these modes, each device consumes much less power than it’s normal operation state.

The status register on the other hand is designed for read only operation, i.e.
signalling purposes. Bit 2 and 3 are out of range indicators. CPLD sets these bits
when the ADC from the respective channel falls into an overflow state. This happens
when the signal applied to the ADC is greater than it’s allowed input range. The
first bit of this register is reserved for calibration operations.

3.2.2 Reset Generation

As stated before (see section 3.2.1) it is possible to reset FAB by writing a logic high in
the first register’s bit 3. But since the design is based on finite state machines (FSM),
there must be a way to reset the main FSM. This is done using a simple counter.
It counts some clock cycles before asserting an active high on the global reset signal
which is used throughout the project as the reference reset. In this project reset
signals are always active high.

3.2.3 Synchronisation

When two FSMs on both sides need to communicate, all delays throughout the paths
including those needed for the communication protocol and those caused by PCB
tracks need to be considered.
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Figure 3.2: Crossing clock domains.

Crossing clock domains is the magic phrase. Figure 3.2 demonstrates a cure. All
signals travelling from FIB reach the CPLD some time later because some of them
like the signals of the data bus are routed through an external buffer and some like
the signals of the address bus are not. Since the FPGA on the main board provides
the clock signal for the CPLD, the CPLD must synchronise the arrived data using
it’s local clock, which is in turn a delayed version of the original FPGA clock. The
reverse is also true. Signals travelling back to FPGA need to be synchronised with
the local clock of the FPGA. Usually one flip flop is enough to achieve the desired
behaviour. But in practical implementations of the code in the CPLD, two flip flops
are used. The reason behind this is that in case the first FF goes into metastability,
i.e. set-up and hold times are not met due to fast data transfer rate, the second flip
flop avoids the output of the first metastable FF to be carried forward into the circuit
and hence avoids the failure of the complete circuit.

3.2.4 The Bidirectional Bus Driver

The bus driver plays a central role in the project. Since one data bus is used as a
bidirectional link to connect FPGA and CPLD together, one of such entity is needed
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on either side of the bus.

DAT O <€

DAT | —> \

2>
1

DIRECTION

v

Figure 3.3: The Bus Driver.

The inout Data Type

The inout data type in VHDL is reserved for bidirectional signals or vectors. In
order to make use of such data types one should implement a conditional assignment.
This means that according to the state of a third control signal, the signal which is
defined as inout, is assigned to an in or an out source or sink respectively!. As it
may bee seen from figure 3.3 one end of the bus is put to high-Z state when the bus
is used in the read direction, otherwise it is driven with logic. The data travelling on
the bus, regardless of which direction it has, could be read from the bus. This is much
desirable in systems like this with slave configuration being set in an always-listening
mode, unless they are requested to send data.

3.3 CPLD Code Elements

Following are some code elements that are implemented inside the CPLD. Most of
these appear as a single VHDL entity in a separate file on disk. It has been tried to

'Please refer to [18] for more information on the bidirectional data type
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3.3 CPLD Code Elements

encapsulate functionalities in entities for use in future applications.

3.3.1 The Register File

The structure of the registers in CPLD has already been mentioned in section 3.2.
Figure 3.4 demonstrates the VHDL entity that contains the register file and provides
connectivity to other entities that make use of the registers. In this case, the top level
entity instantiates the register file entity.

REG O
<:| DAT_O REG 1
REG 2
> RnW
> STROBE
< (ACK)
> RESET REG n-1
> | CLK

Figure 3.4: Block Diagram of the Register File Entity .

3.3.2 Clock Dividers

Since the sampling clock rate of each ADC or DAC of each channel could be changed
upon request from the host system by writing to the respective register, the need for
clock division was apparent. The clock divider entity consists of an input, an output
and a counter. By setting the division constant, clock divider toggles it’s output each
time the counter overflows. Possible values are listed in table 3.3.
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Value Description

0 Output Always Set to GND

1 Route the Input directly to the Output
2 Divide Input Clock Freq. by 2

n Divide Input Clock Freq. by n

Table 3.3: Possible Count Constants for the Clock Divider Entity.

3.3.3 Top Level Entity

The CPLD top level entity is shown in block diagrams in figure 3.5. Here the actual
connections to the board signals are made. On one side, it has connections to the data
and address bus and control signals, and on the other side it associates the relevant
registers of the register file entity to ADCs and DACs of each channel.
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3.4 CPLD Test Routines and Simulation
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Figure 3.5: Block Diagram of the main Code in CPLD.

Also, the clock dividers, a bus driver and a reset generator are instantiated. It
should be noted that the acknowledge signal (ACK) has been reserved for future
extensions and is not used for the implemented communication protocol.

3.4 CPLD Test Routines and Simulation

Some routines have been written, to allow evaluation and test of the boards. Here is
a list:

3.4.1 CPLD Digital Short

As the name implies, this test implemented a direct connection between ADC and
DAC of each channel. Using this routine the signal is digitized by the ADC and then
converted back to analogue by the DAC. Clock dividers have been used to feed the
ADC with 100MHz. The DACs were fed with a direct connection of the main clock
(200MHz).
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This routine proved to be very useful for testing the radio frequency characteristics
of the board which are presented in chapter 4. A similar routine has been written for
the FPGA on the host board, which is thoroughly described in section 3.5.2.

3.4.2 CPLD Sawtooth Generator

DAC channels have been tested directly by counting a variable. After overflow the
signal begins counting from -0x2000 up to +0x1FFF again. This produces a sawtooth
shape on the output. Note that all numbers are in 2’s complement format.

3.4.3 Test Benches

Each entity has been tested using a dedicated test bench. Even the top level entity
has been instantiated as a component and has been routed to the so called test bench
signals which are needed for the simulation. As an example a simulation clock, a
simulation reset signal and data communication signals are often needed. Then the
behaviour of the entity could be simulated and the signal transitions and values of
vectors could be seen in the simulation window.

3.5 FPGA Code Elements

Code has been written to test the communication protocol on the FIB side i.e. on
the FPGA (see figure 3.6). Later this code could be adapted for use as a template
for future FIB applications. This is obvious since the FPGA board acts as a central
data highway and the link to the CPLD board is only one of it’s many interfaces.
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3.5 FPGA Code Elements

DIGITAL BUS DRIVER
SHORT

— > ADRO

—— > STROBE

ﬁ RnW
————>  EXT_DRV_EN

A

RST GEN PLL < CLK_I < IDI
200 MHz I I

i

50 MHz

Figure 3.6: Block Diagram of the main Code in FPGA for test purposes.

A similar reset generation scheme has been used for the FPGA (see section 3.2.2).

3.5.1 Internal Phase Locked Loop

The used FPGA on the FIB board is of type EP1C6Q240C8 form the Cyclone family
of ALTERA’s FPGAs. It features two internal phased lock loops (PLL) that could be
programmed to multiply the frequency of the clock source. The activation is usually
done using part dependant libraries. Generation of such a PLL entity is made simple
using ALTERA’s integrated development environment (IDE).

3.5.2 FPGA Digital Short

This routine is similar to the digital short circuit routine implemented in the CPLD
as described in section 3.4.1. The difference is that now the CPLD is programmed
to perform the full communication protocol, and the FPGA reads data and writes it
back to the CPLD board. This routine proved the successful bidirectional operation
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of the communication link. The block diagram of the digital short entity in the FPGA
is depicted in figure 3.7.

DAT | /\

Local Variable

\_/

DAT O

ADR_O

STROBE

RnW

EXT_DRV_EN

(ACK)

RESET

T

CLK_I

Figure 3.7: Block Diagram of the Digital Short Circuit Entity.

Figure 3.8 shows the state diagram of a complete cycle of reading from and writing
to the CPLD board. For a better view, signal transition names have been omitted
from the diagram.
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Figure 3.8: State Diagram of the Digital Short Circuit Entity.
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The reset state sets the CPLD board to listening mode. It should be remarked
that as in figure 3.9 the second bus driver is a real IC residing as a component on
the FPGA board. In the forthcoming states, the direction of the three bus drivers is
changed sequentially before the data is read in the READ state.

Change of directions should be made in that sequence since otherwise two outputs
will be shorted together and the circuit may get warm. By the time of writing data,
the same procedure must be followed, only backwards.

74LVTH16245
FPGA als . S b ¢ |- cerp
DIR J
_—

ADCT
| ADR Const.

STROBE >
RnW >
< (ACK)
CLK > <
ﬁ ADC2
SIM_CLK Const.

Figure 3.9: Overview of Overall System Components.

The external driver is of type T4LVTH16245 from TEXAS Instruments. The wait
states are needed for compensating the delays of this IC driver. In the actual imple-
mentation, only one wait state exists. The calling state stores the name of the next
state in a variable before calling the WAIT state. The state machine then jumps to
that specified sate after the waiting time is over.

Using a 200MHz clock, the maximum data transfer rate possible on the 16-bit wide
bus is 3.2 Gigabits per second. In practical applications, this data rate is limited by
delays caused by read and write operations i.e. changing address and control signals.
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3.6 Simulation Test bench

3.5.3 FPGA Sawtooth Generator

Again similar to the sawtooth generator which had been written in the CPLD before,
here the same routine has been initiated from within the FGPA, whereas the CPLD
was programmed with the full protocol implementation. The test was successful.

3.6 Simulation Test bench

One of the most difficult stages of programming has been the overall simulation of
FIB and FAB, i.e. FPGA and CPLD codes inside one single test bench entity. This
test bench consisted of the two top level entities one of them being the full protocol
implementation of the CPLD and the other the FPGA digital short top level entity.
A third entity was also implemented in this test bench. It was the simulation model
for the external 74LVTH16245 driver where it’s timing behaviour was simulated. This
made it possible to set delay parameters or operate the driver as ideal.

TEST BENCH BUS

< >
frmmmmmmmmmmmmmm=e——-- -- e .
1 1 1 1
1 1 1 1
' CPLD ' ' FPGA '
1 1 1 1
: : : :
1 1 1 1
1 1 1 1
1 1 1 1
1 TO_BUS ' ' TO_BUS '
1 é 1 1 I h 1
: : : :
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 WRITE_EN | B B ‘ WRITE_EN B
: : : :
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
' FROM_BUS ' ' FROM_BUS '
P <€ : : >
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
b m e e .. ... ------—————-a= L) b m e e .. ... ------—————-a= 1

Figure 3.10: IO Bus in the Simulation Test Bench.

The clue for success was assigning two simulation buses to the two sides of the
external driver, one being the connection to the FPGA and the other the connection
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3 Software Design

to the CPLD. Since the entities have used the bi-directional data type inout at
their interfaces, the simulation buses had to have the same switching characteristic
on all their four connection points to the FPGA, CPLD and both of the external
driver’s ports. After understanding this point, the author learned even more about
the structure of the VHDL language. Figure 3.11 shows a screen-shot of the overall
simulation.

Without this overall simulation, success of this thesis could not have been bro-
ken through; an important argument regarding the importance of the simulation in
modern digital designs.
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3.6 Simulation Test bench

SRR EE R L.
Somanl I ELERY, il
N Y -
11l 2L -

4 5 i | é

Figure 3.11: Overall System Simulation up to 500ns in Simulator.
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4 Measurements and Qutcomes

4.1 Introduction

After the production, measurements has to carried out to define the range of working
parameters and characteristics of the boards. For the test purposes, the digital short
program inside the CPLD has been used, since this together with a program on FPGA
which provided a 200MHz clock using its internal PLL, made it possible to drive the
components on the board at their highest speed. This routine causes the board to
sample the signal applied to its ADC input with 100MHz and return this sampled
data to the respective DAC channel, where it is converted back to an analogue signal.
Such configuration allowed the author to specify the radio frequency characteristics
of the design.

4.2 Thermal Issues

That electronic components get warm, is nothing new. But a sound operation is only
guaranteed when the components do not get warmer as is specified in their absolute
maximum ratings section of their data sheet. Yet it is better not get near these values
either and operate the component at a much less temperature.

The printed circuit board itself acts as a heat sink. This fact is even used inten-
tionally in some IC packages where a large ground pad exists at the bottom side.

Figure 4.1 shows the heat flow diagram of the LM7805 fixed voltage regulator used
on the board (IC2 on the schematics) and which is the warmest of all components.
It has a TO-220 housing. A maximum junction temperature of 150°C is specified for
this package. Also, according to the data sheet [7], the thermal resistance of junction
to case of the TO-220 package is typically 4°C/W junction to case and 50°C/W case
to ambient. Since the regulator is mounted on the PC-Board, the value of case to
ambient is not valid any more. This value was measured using a digital thermometer.
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4 Measurements and Qutcomes

357°K ~ 84°C 351°K ~ 7.8°C
\‘ 1
. 1
. 1
\‘ :
' deltaT = 6°K N deltaT = 51°K
| —_— ; —_—
N — 4 —
I I
4°K/W 34°K/W
N
v
150°C - 84°C = 66°C Max. Env. Temp.

300°K ~ 27°C
Figure 4.1: Heat Flux Diagram.

On the summer day where the measurement was carried out, the room tempera-
ture was 27°C. The digital thermometer showed a maximum value of 78°C on the
IC. So as shown in the figure 4.1, the case to ambient temperature resistance when

the IC was mounted was therefore 34°C/W. Calculating the results at the same op-
erating current, we have approximately 84°C for the junction temperature which is
much less than the allowed 150°C. Using this calculation the maximum environment

temperature can also be defined as 66°C (see figure 4.1).

Note that the operating current is important. In this example, the LM7805 is
supplied from a +15V source, at 150mA it dissipates (15V — 5V) x 0.15A = 1.5W
which is also shown in figure 4.1. So with a junction to case thermal resistance of
4°C/W, the change in temperature could be calculated as follows:

AT = 1.5W x 4°C/W = 6°C

The same calculation is done for other voltage regulators.

With:

Maximum Allowed Junction Temperature

Ty Max
Tic Thermal Resistance of Junction to Case
Tc Temperature of Case
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4.3 Component Value Adjustment

TE Mar | Maximum Allowed Environment Temperature

N/A Not available or unknown from Data Sheets

Similar measurements are summarized in table 4.2.

Designator Part T Max Tic Tc TE Max
I1C2 LM7805 150°C | 4°C/W 78°C 66°C
1C2 LM7905 150°C | 4°C/W 67°C 77°C
1C27 LM1587A 150°C | 0.24°C/W | 64.9°C | 85°C
1C28 LM1587A 150°C | 0.24°C/W | 55.4°C | 94.5°C
IC13 AD9744 150°C N/A 56.2°C | =~ 80°C
IC15 LTC2255 N/A N/A 55°C | = 80°C
IC1 EPM1270T144 | N/A | 10.5°C/W | 57.4°C | ~ 88°C

Table 4.2: Temperature Values of the Components.

4.3 Component Value Adjustment

The adjustment of the component values that control the signal amplitude throughout
the signal path is application dependant. This includes ADC and DAC output values.
At the moment these values are set to a default of approximately 1Vpp for the full
output span. More precise values will be set later after each application is studied
further.

4.4 Oscillography

As a test of the DAC outputs of the DC-Coupled board, the sawtooth generator
routine has been loaded into the CPLD. This implements a 200MHz 14-bit counter.
Figure 4.2 shows the sawtooth signal on the oscilloscope with 200mV and 10uS per
division.
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27-Sep-06
13:06:27
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1.2 v OC
EZJ.Z Y OC 500 MS/s
.2 WV AC I 3 AC 0.0BO W
4 .1 v OC STOPPED

Figure 4.2: DAC1 Output of the DC-Coupled Board as a Sawtooth Generator.

As stated in the introduction section, the digital short routine has been loaded onto
the CPLD to test different channels on the DC-Coupled and the AC-Coupled boards.

A single pulse of a 6MHz sine wave has been applied to the ADC connector. As
depicted in figure 4.3, an overall delay of about 135nS exists for the signal path. In
this diagram the signal from the generator is drawn in red, after passing all compo-
nents once in the signal path, it is available again as an analogue signal on the DAC
connector which is drawn in blue in this diagram on the oscilloscope with 200mV and
50nS per division.
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4.4 Oscillography
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Figure 4.3: DAC1 Output to 0dBm 6MHz Sine Wave Pulse Input at ADC1 of the

DC-Coupled Board (Top) and the AC-Coupled Board (Bottom).
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Figure 4.4: DAC1 Output to 0dBm 1MHz Sine Wave Input at ADC1 of the DC-
Coupled Board (Top) and the AC-Coupled Board (Bottom).

The same measurement has been carried out using a continuous 1MHz sine wave
instead of a single pulse. This is shown in figure 4.4. The oscilloscope is adjusted to
200mV and 100nS per division.
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4.4 Oscillography

Figure 4.5 shows the same measurement with a 10MHz sine wave as a comparison,
with 200mV and 20u.S per division.
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Figure 4.5: DAC1 Output to 0dBm 10MHz Sine Wave Input at ADC1 of the DC-
Coupled Board (Top), the AC-Coupled Board (Bottom).
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4 Measurements and Qutcomes

Other channels of other boards have also been tested. They almost had the same

quality.

4.5 Spectrography

Spectral characteristics of the boards have been tested using a spectrum analyser.

All signals form the generator have been set to 0dBm.

It was important to measure the output noise floor, since this it plays a significant
role in the overall system quality later in the digital control application. The output
of the DACs have been measured without any signal applied to their respective ADC

channel.

REW: 10kHz SWT: 36,005 | Ref: 40,0 dBm

VBW: 30 kHz Att: 0dB Center Al¥] 150MHz
Span AlW| 300MHz
Level alw| -40,0dBm
" < Qe swT vl 365 |[B]
dn max REW [ 10kHz @]
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-50
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o Start alvl OHz
- B Stop A¥| 300MHz
-63,5 dBm > |
= CF Step alwl 199,714286MHz

-70

-90

-100
-110

-120
Center 150 MHz Span 300 MHz

< o® >

Span
Full [ Zero [ Last
Zoom
Signal Tracking

aAmplitude

Offset AW 0dB|
Range | @0ds
unit [ dem

Attenuation
AutoMode [ NORMAL
Manual ods

Figure 4.6: DAC1 Output without Signal at ADC1 of the AC-Coupled Board, Indi-

cating the Output Noise Floor.

As it may bee seen from figure 4.6, many signal and noise components exist on
the output, specially that of the 200MHz clock, but all noise peaks reside under

approximately -63.5dB which is a very satisfactory result.
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4.5 Spectrography
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Figure 4.7: Signal Generator Output Alone at 1MHz (Top) and 20MHz (Bottom)
0dBm Sine Wave.

In order for the measurements to be judged correctly, the output of the signal
generator has been measured alone so that the effect of the board is easier to figure
out. Figure 4.7 shows this.
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Figure 4.8: DACI Output to 0dBm 1MHz (Top) and 20MHz (Bottom) Sine Wave
Input at ADC1 of the AC-Coupled Board.

Comparing this to figure 4.8 shows that at 20MHz, some noise is present, more
remarkable is the generator noise which is fed through the output. But all the levels
are still below -50.2dB. In more practical signal frequencies, like the figure on top,

the noise level could almost be ignored.
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Figure 4.9: MON2 Output to 0dBm (Top) and -10dBm (Bottom) 18MHz Sine Wave
Input at ADC2 of the DC-Coupled Board.

As an example of the quality of the monitor output of the board, MON connector
of the second channel on the DC-coupled board has been connected to the spectrum
analyser. The 0dBm signal at 18MHz could be seen on 18, 36, 54, 82 and 118 MHz

as small peaks.

A marker has been set on 100MHz for ease of measurement.

For
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a signal with a power level of 0dBm the peaks lie under 44.7dB. For more practical
signal power like -10dB, the peaks reside below -53.8dB. This is illustrated in figure
4.9. Other channels of other boards behave almost the same.

4.6 Signal analysis using a Vector Network Analyser

The vector network analyser (VNA) has been used to perform a transmission test on
the channels. The VNA has been set to sweep slower than the delay of the circuit, so
that the measurement is carried out correctly. The following graphs show magnitudes
versus frequency.
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4.6 Signal analysis using a Vector Network Analyser
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Figure 4.10: MON1 Output to ADCI Input up to 200MHz, 10dB/Div. (Top) and
up to 50 MHz, 3dB/Div. (Bottom) of the DC-Coupled Board.

Figure 4.10 shows the MON output of the first channel on the DC-coupled board.
The whole channel shows low-pass characteristics. In the range of the signals of
interest, only about 1dB attenuation is visible.
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Figure 4.11: DAC1 Output to ADC1 Input up to 100MHz, 10dB/Div. (Top) and up
to 10 MHz, 3dB/Div. (Bottom) of the DC-Coupled Board.

Figure 4.11 shows a repeated experiment, this time using the DAC output of the
channel.
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4.6 Signal analysis using a Vector Network Analyser
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Figure 4.12: MON1 Output to ADCI Input up to 100MHz, 10dB/Div. (Top) and
up to 50 MHz, 3dB/Div. (Bottom) of the AC-Coupled Board.

The same experiment is also done with the MON output of the first channel on the
AC-coupled board which is shown in figure 4.12.
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Figure 4.13: DAC1 Output to ADC1 Input up to 100MHz, 10dB/Div. (Top) and up
to 10 MHz, 3dB/Div. (Bottom) of the AC-Coupled Board.

Since the AC-coupled board has almost band-pass characteristics, the last experi-
ment defined a lower corner frequency for the channel. Figure 4.13 shows that signals
above approximately 500kHz could be used with this board.
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4.7 Technical Specifications of the Design

4.7 Technical Specifications of the Design

After the measurements, the following features could be summarized in table 4.3.

Parameter Condition Min. Typ. Max. | Unit
TCH 6MHz Single Pulse, DC-Coupled 135 nS
TCH 6MHz Single Pulse, AC-Coupled 130 nS
NDAC DC-Coupled -57.1 dBm
NpAC AC-Coupled -63.5 dBm

AGpac 0 — 10MHz, DC-Coupled ~ 1.5 dB
AGpac 0 — 10MHz, AC-Coupled ~ 0.5 dB
AGypoN 0 — 10MHz, DC-Coupled ~ 1 dB

AGyoN 0 — 10MHz, AC-Coupled ~1 dB

SFDRpac 20MHz Input Sine Signal 50 dB

SFDRyoON 18MHz Input Sine Signal 45 dB

fo AC-Coupled ~ 0.5 ~ 25 | MHz
Is t15v DAC at 200MHz, ADC at 100MHz | 140 150 160 | mA
Is _15v DAC at 200MHz, ADC at 100MHz | 90 100 110 | mA
Is i5v DAC at 200MHz, ADC at 100MHz | 505 510 515 | mA

o) 65 °C

Table 4.3: Technical Specifications of the Design.

With:
TCH End to End Channel Delay: ADC — DAC
NDAC DAC Output Noise Floor
AGpac Gain Variation: ADC — DAC
AG yon Gain Variation: ADC — MON

SFDRpac DAC Output Spurious Free Dynamic Range
SFDRyon | MON Output Spurious Free Dynamic Range

fe Corner Frequency of Band Pass Characteristics
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Ig Supply Current

Ok Allowed Environment Temperature
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5 Conclusion

In this thesis, the author tried to cover the most important steps towards designing a
radio frequency high-speed data conversion interface for use in digital control systems.
During this work, the author was introduced to numerous new concepts and methods
in high-speed circuit design.

The existing ADC/DAC board was tested using some routines in VHDL. The
author became familiar with the design environment and gained programming skills.

The libraries needed for a full redesign of the board were generated and checked.
Components’ data sheets have been studied thoroughly. The Schematics of the new
design have then been drawn iteratively to ensure best element configuration for a
well-thought circuit.

The Layout of the board has then been arranged according to the plans for ground-
ing and power supply schemes. Different layers have then been assigned to power
signals and sliced to form different power regions. The elements have been placed on
their final positions and the board has then been routed manually.

The author wrote some testing routines for the board itself and the communication
link to the host system. Also a first fully functioning version of the CPLD-side code for
the communication protocol was implemented. Using these routines the parameters
of the board could be measured. During these tests the characteristics of the board
have been figured out.

Following improvements might be needed:

e Design Aspects

— Placing the connectors for the AGC application on ADC inputs.

— Preparing the board for series production.
e Mechanical Aspects

— Increasing annular rings for some footprints.
— Better adjustment of the drill sizes of some footprints.

— More distance between some polygons.
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5 Conclusion

The author will take part in the future applications of this design in a continued
cooperation with GSI.
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A Used Abbreviations

ADC
AGC
BNC
CAD
CAM
CNC
CMRR
CPLD
CSS
DAC
DSP
EDA
EPS
FAB
FAIR
FF
FIB
FIFO
FPGA
FR4
FSM
GSI

Analogue to Digital Converter
Automatic Gain Control
Bayonet Neill Concelman
Computer Aided Design
Computer Aided Manufacturing
Computer Numerical Control
Common-Mode Rejection Ratio
Configurable Programmable Logic Device
Cascading Style Sheets

Digital to Analog Converter
Digital Signal Processor
Electronic Design Automation
Encapsulated Post Script

FIB Adapter Board

Facility for Antiproton and Ion Research
Flip Flop

FPGA Interface Board

First In First Out

Field Programmable Gate Array
Flame Resistant 4

Finite State Machine

Geselschaft fiir Schwerionenforschung mbH
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A Used Abbreviations

GNU GNU’s Not Unix (recursive acronym!)
HAL Hot Air Leveling
HPGL Hewlett-Packard Graphics Language

IDC Insulation-Displacement Connector
IDE Integrated Development Environment
IC Integrated Circuit

MSPS Mega Samples per Second
OTR Out of Range

PCB Printed Circuit Board
PLL Phased LockLoop

PP Peak to Peak

RF Radio Frequency

RMS Root Mean Square

RS-274C Recommended Standard -274C
SMD Surface-Mount Devices

SME Small and Medium-sized Enterprises
SFDR Spurious Free Dynamic Range

SVG Scalable Vector Graphics

TO-220  Transistor Outline -220

TO-263  Transistor Outline -263

TQFP Thin Quad Flat Package

UDL USB DSP Link

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language
VHSIC  Very-High-Speed Integrated Circuit
VGA Variable Gain Amplifier

VNA Vector Network Analyser

XML Extensible Markup Language

64



B Used PC Software

Following is a list of PC software which has been used to prepare this thesis. It
has been tried to use free/open source software wherever possible. This appendix
provides a small introduction with the purpose of promoting the use free software in
educational and industrial environments.

B.1 EDA

This section introduces the software used for preparation of the board, simulation or
programming.

B.1.1 Cadsoft EAGLE

According to the website of Cadsoft, EAGLE is ”an easy to use, powerful and afford-
able schematic capture and printed circuit board design package that gets the job
done”!. Tt includes solutions for PCB design, including Schematic Capture, Board
Layout, and an Autorouter.

EAGLE has a free light version for personal non-profit use limited to boards with
dimensions less than 100mm x 80mm. At GSI, the author used a full licensed version
without limitations. The author recommends EAGLE for small and medium-sized
enterprises (SME) and for research institutions. This software works also under Unix-
like operating systems.

B.1.2 GraphiCode GC-Prevue

Graphicode provides a free viewer for the production data. ”GC-Prevue is the in-
dustry standard software for viewing and printing electronic manufacturing data.
GC-Prevue reads all of the common CAD generated electronic manufacturing out-

1Source: www.cadsoft.de
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B Used PC Software

puts, including Gerber-X (RS-274X), Gerber-D (RS-274D), DPF (Barco), Excellon,
Sieb & Meyer, HPGL, and HPGL2.”?

B.1.3 ALTERA Quartus Il

Quartus II Web Edition Software is the free version of the Quartus II family of
design software provided by ALTERA for use with programmable logic made by
this manufacturer. It features different analysis modes, VHDL and Verilog editor,

compiler, simulator, fitter, optimizer and programmer?.

B.1.4 ModelSIM Xilinx Edition

Instead of using the internal simulator of Quartus II Web Edition software, the author
used ModelSIM Xilinx Edition which is a free version of the ModelSim family of
products from Mentor Graphics?. The free version is usually enough for small and
middle-sized projects. The only limitation is the lack of possibility to simulate part
specific libraries that are provided by the IC manufacturer. As an example, the
internal PLL of the FPGA could not be simulated using the free version. But in
this case this was really not needed. For simulation of more complex designs where
the user implements the specific libraries to activate special functions (also known as
mega-functions in ALTERA’s products) such as internal multipliers or flash memories,
the free version of ModelSim is not sufficient.

B.1.5 GNU Emacs

Almost all the code has been written in GNU Emacs®. When set to its vhdl-mode,
this editor is the ultimate solution for writing VHDL code. This editor is available
under today’s popular operating systems.

B.2 Text Processing: BTEX

The typesetting of this document has been done with ETEX, to be more precise the
TeTeX® distribution which is usually freely available under Linux and other Unix-like

2Source: www.graphicode.com

3More information on ALTERA’s products can be found at www.altera.com
4www.model.com

Swww.gnu.org/software/emacs/

Swww.tug.org/tetex/
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B.3 Graphic Software

operating systems or under CygWIN”.

B.3 Graphic Software

The preparation of diagrams and other graphics throughout this document wouldn’t
be possible without the correct tools. Following are a set of free software that has
been used. All of them are available under popular operating systems.

B.3.1 InkScape

"Inkscape is an Open Source vector graphics editor. The main goal is to create a
powerful and convenient drawing tool fully compliant with XML, SVG, and CSS
standards. It also aims to maintain a thriving user and developer community by
using open, community-oriented development.”®

B.3.2 Dia

"Dia can be used to draw many different kinds of diagrams.”® It is easy to use and
exports directly to EPS and SVGformat which is desired for embedding in a IXTEX
document or processing further in InkScape (See section B.3.1).

B.3.3 The GIMP

"GIMP is the GNU Image Manipulation Program. It is a freely distributed piece of
software for such tasks as photo retouching, image composition and image authoring.
It works on many operating systems, in many languages.”°

Twww.cygwin.com

8Source: www.inkscape.org
9Source: www.gnome.org/projects/dia/
0Source: www.gimp.org

67



C CPLD Code

The following is the code written for the CPLD. Please note that some entities have
been used also for the FPGA. Test benches to the respective code has been omitted

here.

-- 16-bit Bus driver with Tri State outputs
-- 20.07.2006/sh

library ieee;
use jeee.std_logic_1164.all;

entity busdriver is

port (
en_write_to_bus : in std_logic; -- enable the buffer
data_bus : inout std_logic_vector (15 downto 0); -- Bus connection
data_to_bus : in std_logic_vector (15 downto 0); -- data written into the bus
data_from_bus : out std_logic_vector (15 downto 0) -- data read from the bus
);

end busdriver;
architecture busdriver_arch of busdriver is
begin -- busdriver_arch

data_bus <= data_to_bus when en_write_to_bus = ’1’ else (others => ’Z’);
data_from_bus <= data_bus;

end busdriver_arch;

-- clock divider
-- 21.07.2006/sh

library ieee;

use ieee.std_logic_1164.all;

use jeee.std_logic_arith.all;
use jeee.std_logic_unsigned.all;

entity clk_divider is
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C CPLD Code

generic (
clk_divider_width : integer := 16); -- Bit Width of the clock divider

port (
clk_div : in std_logic_vector (clk_divider_width - 1 downto 0); \
-- clock division constant

rst_i : in std_logic; -- async reset in
clk_i : in std_logic; -- clk input
clk_o : out std_logic); -- clk out

end clk_divider;

architecture clk_divider_arch of clk_divider is

signal clk_cnt : integer range O to 2%xclk_divider_width - 1; \

-- clk counter variable

signal clk_o_local : std_logic; -- local clock for the operations
begin -- clk_divider_arch

clk_o <= clk_o_local; -- always connect these two

—-- purpose: divides clock input
-- type : sequential

-- inputs : clk_i

-- outputs: clk_o

p_clock : process (clk_i, rst_i, clk_div, clk_cnt)

begin -- process p_clock
if rst_i = ’1’ then -- asynchronous reset (active high)
clk_cnt <= conv_integer (clk_div); -- initialize with the constant
clk_o_local <= ’0’; -- initialize the output clock to zero

elsif clk_cnt = O then
clk_o_local <= ’0’;

elsif clk_cnt = 1 then
clk_o_local <= clk_i;

elsif clk_i’event and clk_i = ’1’ then -- rising clock edge
if clk_cnt = 2 then
clk_cnt <= conv_integer (clk_div);
clk_o_local <= not clk_o_local;
else
clk_cnt <= clk_cnt - 1;

end if;

end if;
end process p_clock;

end clk_divider_arch;

-- FAB ADC/DAC
-- Register File
-- Start 26.07.2006/sh

library ieee;
use ieee.std_logic_1164.all;
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use jeee.std_logic_arith.all;
use jeee.std_logic_unsigned.all;

entity register_file is

port (
clk_i : in std_logic; -- clock input
rst_i : in std_logic; -- reset input
row_i : in std_logic; -- read/write signal
strobe_i : in std_logic; -- Strobe Signal
adr_i : in std_logic_vector (5 downto 0); -- input adress bus

data_from_bus : in std_logic_vector (15 downto 0);
data_to_bus out std_logic_vector (15 downto 0);

register_00 : out std_logic_vector (15 downto 0);
register_01 : in std_logic_vector (15 downto 0);
register_02 : in std_logic_vector (15 downto 0);
register_03 : in std_logic_vector (15 downto 0);
register_04 : out std_logic_vector (15 downto 0);
register_05 : out std_logic_vector (15 downto 0);
register_06 : out std_logic_vector (15 downto 0);
register_07 : out std_logic_vector (15 downto 0);
register_08 : out std_logic_vector (15 downto 0);
register_09 : out std_logic_vector (15 downto 0)
)5

end register_file;
architecture register_file_arch of register_file is

-- local_registers

signal local_register_00 std_logic_vector (15 downto 0); -- Register
signal local_register_01 std_logic_vector (15 downto 0); -- Register
signal local_register_02 std_logic_vector (15 downto 0); -- Register
signal local_register_03 std_logic_vector (15 downto 0); -- Register
signal local_register_04 std_logic_vector (15 downto 0); -- Register
signal local_register_05 std_logic_vector (15 downto 0); -- Register
signal local_register_06 std_logic_vector (15 downto 0); -- Register
signal local_register_07 std_logic_vector (15 downto 0); -- Register
signal local_register_08 std_logic_vector (15 downto 0); -- Register
signal local_register_09 std_logic_vector (15 downto 0); -- Register
begin -- register_file_arch
—- inteconnections
-- register_04 <= local_register_04 when strobe_i = ’1’ and rnw_i = ’0’;
—-- processes

-- p_write_enable

-- Dbegin
-= if

—— process test

strobe_i = ’1’ and rnw_i = ’0’ then

-= register_04 <= local_register_04;

- end

if;

-- end process p_write_enable;

-- p_write_enable

local_register_09, strobe_i, row_i)

-- begin -- process test
- if not local_register_04 = "ZZZZZZZZZZZZ7Z7ZZZ" then
- if strobe_i = ’1’ and rnw_i = ’0’ then

: process (local_register_04, strobe_i, rnw_i)

: process (local_register_00, local_register_04, \
local_register_05, local_register_06, local_register_07, local_register_08, \
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C CPLD Code
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register_00 <
register_04 <
register_05 <
register_06 <
register_07 <
register_08 <
register_09 <

local_register_00;
local_register_04;
local_register_05;
local_register_06;
local_register_07;
local_register_08;
local_register_09;

end if;

end process p_write_enable;

p_read_enable
rnw_i)
begin
if strobe_i = ’1°
local_register_01 <=
local_register_02 <=
local_register_03 <=
end if;

-- process p_read_
and rnw_i =

enable
’1’ then
register_01;
register_02;
register_03;

end process p_read_enable;

p_write_local_registers
begin
if rst_i =

’1’ then

: process (register_01, register_02, register_03,

strobe_i,

: process (clk_i, rst_i, strobe_i, rnw_i)
-- process p_write_local_registers

-- asynchronous reset (active high)

-- reset all local_registers to the default values

local_register_00 <= "0100010000000000";

local_register_01 <= (others => ’Z’);
local_register_02 <= (others => ’Z’);

local_register_03 <= (others => ’Z’);
local_register_04 <= x"0000";
local_register_05 <= x"0000";
local_register_06 <= x"0002";
local_register_07 <= x"0002";
local_register_08 <= x"0001";
local_register_09 <= x"0001";

elsif clk_i’event and clk_i = ’1’ then
if strobe_i = ’1’ then

if rnw_i = ’0’ then

-— fib wants to write

-- the read-only local_registers 0x01, 0x02 and 0x03

be overwritten

case conv_integer (adr_i (5 downto

when 0O =>
when 4 =>
when 5 =>
when 6 =>
when 7 =>
when 8 =>
when 9 =>
when others =>
end case;
end if;
end if;

end if;

local_register_00
local_register_04
local_register_05
local_register_06
local_register_07
local_register_08
local_register_09
null;

end process p_write_local_registers;

p_read_local_registers

: process (clk_i,

0)) is

<= data_from_bus;
<= data_from_bus;
<= data_from_bus;
<= data_from_bus;
<= data_from_bus;
<= data_from_bus;
<= data_from_bus;

strobe_i, rnw_i)

-- rising clock edge

shouldn’t \

\



begin -- process p_read_local_registers
-- rising clock edge

if clk_i’event and clk_i = ’1’ then
if strobe_i = ’1’ then
if rnw_i = ’1’ then

-- fib wants to read

-- The value of all local_registers could be read by fib

case conv_integer (adr_i (5 downto 0)) is

when O => data_to_bus <= local_register_00;
when 1 => data_to_bus <= local_register_01;
when 2 => data_to_bus <= local_register_02;
when 3 => data_to_bus <= local_register_03;
when 4 => data_to_bus <= local_register_04;
when 5 => data_to_bus <= local_register_05;
when 6 => data_to_bus <= local_register_06;
when 7 => data_to_bus <= local_register_07;
when 8 => data_to_bus <= local_register_08;
when 9 => data_to_bus <= local_register_09;
when others => null;
end case;
end if;
end if;
end if;
end process p_read_local_registers;
end register_file_arch;
-- Saw tooth generator by counting
-- 25.07.2006/sh
library ieee;
use jeee.std_logic_1164.all;
use jeee.std_logic_arith.all;
use jeee.std_logic_unsigned.all;
entity sawtooth is
generic (
counter_width : integer := 14);
port (
dat_o : out std_logic_vector (counter_width - 1 downto 0); -- data output

rst_i : in std_logic;
clk_i : in std_logic);

end sawtooth;

architecture sawtooth_arch of sawtooth is

-- reset input
-- input clock

signal counter : integer range 0 to 2**counter_width -1; -- counter variable

begin -- sawtooth_arch

p_saw_tooth : process (clk_i, rst_i, counter)

begin -- process p_dacl_test

if rst_i = ’1’ then

-- reset active high
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C CPLD Code

counter <= 2x%*counter_width - 1;

elsif clk_i’event and clk_i =

if counter = 0 then

190

then -- rising clock edge

counter <= 2**xcounter_width - 1;

else
counter <= counter - 1;
end if;
dat_o <= conv_std_logic_vector

end if;

end process p_saw_tooth;

end sawtooth_arch;

(counter, counter_width);

-- FAB ADC/DAC
-- Top Level Entity for ALTERA MAXII
-- Start 17.07.2006/sh

library ieee;

use jeee.std_logic_1164.all;

use jeee.std_logic_arith.all;
use jeee.std_logic_unsigned.all;
library ieee;

use ieee.std_logic_1164.all;

use jeee.std_logic_arith.all;
use jeee.std_logic_unsigned.all;

entity fab_adcdac_appl_top_level is

74

generic (
clk_divider_width_toplevel
divider in bits
reset_clks_toplevel
clocks the POR takes

port (
-- common signals
fibclk

in std_logic;

-- fib signals

fibd :

fiba : in std_logic_vector (5
fibrnw in std_logic;
fibstrobe in std_logic;
fiback out std_logic;

-- board signals

adcld : in std_logic_vector (13
dacld : out std_logic_vector (13
adc2d in std_logic_vector (13

integer

integer :=

inout std_logic_vector (15 downto 0);

16; -- width of the \

2);

-- Tells how many \

-- main clock in

-- fib data bus
downto 0); -- fib address bus
-- read/write signal from fib:
-- 1 = read, 0 = write

-- strobe signal from fib

-- ack output to fib

downto 0); -- ADC1 data input
downto 0); -- DAC1 data output
downto 0); -- ADC2 data input



dac2d : out std_logic_vector (13 downto 0); -- DAC2 data output

adclsw : out std_logic_vector (3 downto 0); -- calibration switch for ADC1
adc2sw : out std_logic_vector (3 downto 0); -- calibration switch for ADC2

—-- clock signals

adclclk : out std_logic; -- clock for ADC1
adc2clk : out std_logic; -- clock for ADC2
daclclk : out std_logic; -- clock for DAC1
dac2clk : out std_logic; —-- clock for DAC2

-- static config signals

adclof : in  std_logic; -- overflow from ADC1
adc2of : in  std_logic; -- overflow from ADC2
adclshdn : out std_logic; -- shut down ADC1
adc2shdn : out std_logic; -- shut down ADC2
daclslp : out std_logic; —-- shut down DAC1
dac2slp : out std_logic; -- shut down DAC2

-- test pins

tpl_tiol : out std_logic; -- test pin 1
tp2_tiol : out std_logic; -- test pin 2
tp3_dev_clrn : in std_logic; -- test pin 3
tp4_gclkO : in  std_logic; -- test pin 4
tp5_gclkl : in std_logic; -- test pin 5
tp6_dev_oe : in  std_logic; -- test pin 6
tp7_gclk3 : in  std_logic -- test pin 7

)3

end fab_adcdac_appl_top_level;
architecture fab_adcdac_appl_top_level_arch of fab_adcdac_appl_top_level is
-- components declaration

component reset_gen
generic(
reset_clks : integer := 2
);
port
(
clk_i : in std_logic;
rst_o : out std_logic
);

end component;
component clk_divider

generic (
clk_divider_width : integer); —- Bit Width of the clock divider

port (
clk_div : in std_logic_vector (clk_divider_width - 1 downto 0); \
-— clock division constant

rst_i : in std_logic; -- async reset in
clk_i : in std_logic; -- clk input
clk_o : out std_logic); -- clk out

end component;
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component register_file

port (
clk_i
rst_i
row_i
strobe_i
adr_i

data_from_bus

data_to_bus
register_00
register_01
register_02
register_03
register_04
register_05
register_06
register_07
register_08
register_09
end component;

component busdriver

in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic_vector

in

: out
: out

in
in
in

: out
: out
: out
: out
: out
: out

std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector

(5 downto 0);

(15
(15
(15
(15
(15
(15
(15
(15
(15
(15
(15
(15

0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0);
0));

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

port

en_write_to_bus

(

data_bus

connection
data_to_bus
written into the bus
data_from_bus
read from the bus

);

end component;

—-- internal registers

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

register_00
register_01
register_02
register_03
register_04
register_05
register_06
register_07
register_08
register_09

-- test pins

signal testpins_vector_o

for the test pins

signal testpins_vector_i

for the test pins

--internal variables

signal

signal

signal fiba_pre_synched

global_rst

por_rst

in

in

out

: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector
: std_logic_vector

std_logic;

std_logic;

std_logic;

-- enable the buffer
inout std_logic_vector (15 downto 0);

(15
(15
(15
(15
(15
(15
(15
(15
(15
(15

std_logic_vector (15

std_logic_vector (15

downto
downto
downto
downto
downto
downto
downto
downto
downto
downto

downto 0);

downto 0)

0);
0);
0);
0);
0);
0);
0);
0);
0);
0);

std_logic_vector (1 downto 0);

std_logic_vector (4 downto 0);

-- Bus \

-- data \

-- data \

-- Vector \

-- Vector \

-- internal global reset signal

-- signal from the POR generator

: std_logic_vector (5 downto 0);

-- synched \



signal connected to FIBA

signal fibrnw_pre_synched : std_logic; -- synched signal \
connected to FIBRNW
signal fibstrobe_pre_synched : std_logic; -- synched signal \

connected to FIBSTROBE

signal fiba_synched

std_logic_vector (5 downto 0); \

-- synched signal connected to FIBA

signal fibrnw_synched
connected to FIBRNW
signal fibstrobe_synched
connected to FIBSTROBE

-- Bus Driver Signals

signal en_write_to_bus : std_logic;

to write to bus

std_logic; -- synched signal \

std_logic; -- synched signal \

signal data_to_bus : std_logic_vector (15 downto 0); \
-- internal vector interface to the bus
signal data_from_bus : std_logic_vector (15 downto 0); \

—- internal vector interface to the bus

begin -- fab_adcdac_appl_top_level_arch

-- component instances

reset_gen_inst : reset_gen
generic map (

reset_clks => reset_clks_toplevel)

port map (
clk_i => fibclk,
rst_o => por_rst);

adcl_clk_divider_inst : clk_divider

generic map (

clk_divider_width => clk_divider_width_toplevel)

port map (
clk_div => register_06,
rst_i => global_rst,

clk_i => fibclk,
clk_o => adclclk);

adc2_clk_divider_inst : clk_divider

generic map (

clk_divider_width => clk_divider_width_toplevel)

port map (
clk_div => register_07,
rst_i => global_rst,

clk_i => fibclk,
clk_o => adc2clk);

dacl_clk_divider_inst : clk_divider

generic map (

clk_divider_width => clk_divider_width_toplevel)

port map (
clk_div => register_08,

-- internal enable signal \

77
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rst_i
clk_i
clk_o

=> global_rst,

=>

fibclk,

=> daciclk);

dac2_clk_divider_inst

generic map (
clk_divider_width => clk_divider_width_toplevel)

: clk_divider

port map (
clk_div => register_09,
rst_i => global_rst,
clk_i => fibclk,
clk_o => dac2clk);
blinkerl clk_divider

generic map (
clk_divider_width => 4)

port map (
clk_div => "1010",
rst_i => global_rst,
clk_i => fibclk,
clk_o => testpins_vector_o(0));

register_file_1

. register_file

port map (
clk_i => fibclk,
rst_i => global_rst,
rnw_i => fibrnw_synched,
strobe_i => fibstrobe_synched,
adr_i => fiba_synched,
data_from_bus => data_from_bus,
data_to_bus => data_to_bus,
register_00 => register_00,
register_01 => register_01,
register_02 => register_02,
register_03 => register_03,
register_04 => register_04,
register_05 => register_05,
register_06 => register_06,
register_07 => register_07,
register_08 => register_08,
register_09  => register_09);

busdriver_inst : busdriver

port map (
en_write_to_bus => en_write_to_bus,
data_bus => fibd,
data_to_bus => data_to_bus,
data_from_bus => data_from_bus);

-- register assignments

global_rst <= por_rst or register_00(3);

adc2sw <= register_00 (15 downto 12);
adclsw <= register_00 (11 downto 8);

adc2shdn
adclshdn
dac2slp
daclslp

<=
<=
<=
<=

register_00 (7);
register_00 (6);
register_00 (5);
register_00 (4);

-— either of the reset

sources



register_01 (2) <= adclof;
register_01 (3) <= adc2of;

register_02 (13 downto 0) <= adcld;
register_02 (15 downto 14) <= (others => ’0’);

register_03 (13 downto 0) <= adc2d;
register_03 (15 downto 14) <= (others => ’0’);

dacid <= not(register_04 (13 downto 0)) \
+ conv_std_logic_vector (1, 14);
-- dacld <= not(register_04 (13 downto 0);

register_04 (15 downto 14) <= (others => ’0’);

dac2d <= not(register_05(13 downto 0)) + conv_std_logic_vector (1, 14);
-- dac2d <= not(register_05(13 downto 0);

register_05 (15 downto 14) <= (others => ’0’);
-- testpins_vector
tpl_tiol <= testpins_vector_o(0);

tp2_tiol <= testpins_vector_o(1);

-- testpins_vector_o(1) <= fibclk; -- test clock out \
on the first test pin2

fiback <= ’0’;

-- enable only when fib wants to read.
en_write_to_bus <= fibrnw_synched;

—— processes

process (fibclk, fiba, fibrnw, fibstrobe, fibstrobe_pre_synched, \
fibrnw_pre_synched, fiba_pre_synched)

begin
if fibclk’event and fibclk = ’1’ then -- rising clock edge
-- input signal mapping on each rising clock edge
fiba_pre_synched <= fiba;
fibrnw_pre_synched <= fibrnw;

fibstrobe_pre_synched <= fibstrobe;

fiba_synched <= fiba_pre_synched;
fibrnw_synched <= fibrnw_pre_synched;
fibstrobe_synched <= fibstrobe_pre_synched;

testpins_vector_i <= (
0 => tp3_dev_clrn,

1 => tp4_gclkO,
2 => tpb_gclkl,
3 => tp6_dev_oe,
4 => tp7_gclk3
);

end if;

end process;

end fab_adcdac_appl_top_level_arch;
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library ieee;

use jeee.std_logic_1164.all;

use jeee.std_logic_arith.all;
use jeee.std_logic_unsigned.all;
use ieee.math_real.all;

entity digital_short is
generic (

clk_freq_in_hz : real := 200000000.0; --system clock frequency
delay_in_ns : real := 25.0); -- 25.0
port (
rst_i : in std_logic; -- reset in
clk_i : in std_logic; -- clock in
rnw_o : out std_logic;
strobe_o : out std_logic;
ack_i : in  std_logic;

ext_driver_dir : out std_logic;
adr_o : out std_logic_vector (5 downto 0);

en_write_to_bus : out std_logic;

data_to_bus : out std_logic_vector (15 downto 0);
data_from_bus : in std_logic_vector (15 downto 0)
)s

end digital_short;
architecture digital_short_arch of digital_short is

--limits the integer to a minimal value of one (for timing counters)
function limit_to_minimal_value(x : integer; min : integer) return \
integer is
begin
if x > min then
return x;
else
return 1;
end if;
end limit_to_minimal_value;

signal delay_in_ticks : integer := limit_to_minimal_value(integer\
(clk_freq_in_hz * delay_in_ns / 1000000000.0) - 2, 0);

-= 3 clock cycles are needed for the state machine

constant FAB_ADC_ADR : std_logic_vector (5 downto 0) := "000010"; \
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—— Address of the ADC1 channel

constant FAB_DAC_ADR : std_

logic_vector (6 downto 0) := "000100"; \

—- Address of the DAC1 channel

signal delay_cnt : integer

range O to delay_in_ticks;

type state_type is (READ_PRE1_STATE, READ_PRE2_STATE, READ_PRE3_STATE, \
'\!9 READ_STATE, WRITE_PRE1_STATE, WRITE_PRE2_STATE, WRITE_PRE3_STATE, \

WRITE_STATE, WAIT_STATE); --

signal state : st
signal return_to_state : st

signal local_data : std_log
or written to fab

begin -- digital_short_arch

-- purpose: Read from ADC o

process (clk_i, rst_i, ack_

States

ate_type;
ate_type;

ic_vector (15 downto 0); -- data read from \

n FAB and write it back in FAB’s DAC

i, state)

begin -- process p_shorting

if rst_i = ’1’ then

—-- in reset case, all d
strobe_o <= ’0’;
rnw_o <= 717,
en_write_to_bus <= ’0’;
ext_driver_dir <= ’0’;

state <= READ
return_to_state <= READ
delay_cnt <= dela

-- asynchronous reset (active high)

rivers as input

_PRE1_STATE;
_PRE1_STATE;
y_in_ticks;

elsif clk_i’event and clk_i = ’1’ then -- rising clock edge

case state is

when READ_PRE1_STATE =>

strobe_o <= ’0’;

en_write_to_bus <= ’07;

adr_o <= FAB_ADC_ADR;

state <= READ_PRE2_STATE;
when READ_PRE2_STATE =>

ext_driver_dir <= ’0’;

state <= READ_PRE3_STATE;
when READ_PRE3_STATE =>

strobe_o <= 17,

rnw_o <= 1,

state <= WAIT_STATE;

return_to_state <= READ_STATE;
when READ_STATE =>

local_data <= data_from_bus;

state <= WRITE_PRE1_STATE;
when WRITE_PRE1_STATE =>

strobe_o <= ’0’;
rnw_o <= ’0’;



adr_o <= FAB_DAC_ADR;
state <= WRITE_PRE2_STATE;

when WRITE_PRE2_STATE =>
ext_driver_dir <= ’1’;
state <= WRITE_PRE3_STATE;

when WRITE_PRE3_STATE =>
en_write_to_bus <= ’1’;
- strobe_o <= 17,
state <= WRITE_STATE;

when WRITE_STATE =>

strobe_o <= 17,
data_to_bus <= local_data;
state <= WAIT_STATE;

return_to_state <= READ_PRE1_STATE;

when WAIT_STATE =>

strobe_o <= ’0’;
if delay_cnt = 0 then
state <= return_to_state;
delay_cnt <= delay_in_ticks;
else
delay_cnt <= delay_cnt - 1;
end if;

when others => null;
end case;

end if;
end process;

end digital_short_arch;

library ieee;

use jeee.std_logic_1164.all;

use jeee.std_logic_arith.all;
use jeee.std_logic_unsigned.all;

entity fib_adcdac_appl_top_level is

generic(
clk_freq_in_hz : integer := 50000000; --100 MHz system clock frequency
firmware_id : integer := 1; --ID of the firmware (is displayed first)
firmware_version : integer := 3 --Version of the firmware (is displayed after)
)3

port (
—--common signals
trigli_in : in std_logic; --rst
trig2_out : out std_logic;
clkO : in std_logic;
hf_in : in  std_logic;
--FAB signals
uC_Link_D : inout std_logic_vector(7 downto 0); -- FAB Lower Byte
uC_Link_A  : inout std_logic_vector(7 downto 0); -- FAB Upper Byte
Piggy_Clkl : out std_logic; -- FAB Clock
Piggy_RnW1l : out std_logic; --dds_wr
- Piggy RnW2 : in std_logic; --dds_vout_comp
-= Piggy_Strb2 : out std_logic; --dds_rst
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Piggy_Strbl
Piggy_Ackl

-= Piggy_Ack2

out std_logic;
in std_logic;
out std_logic;

--static dds-buffer signals

uC_Link_DIR_D, uC_Link_DIR_A

nuC_Link_EN_CTRL_A
uC_Link_EN_DA

--backplane signals

A2nSwW8
A3nSwW9
AOnSW10
AlnSWi1
Sub_A6nSW12
Sub_A7nSW13
Sub_A4nSWi4
Sub_A5nSW15
nResetnSWO
Swi

nDSnSW2
BClocknSW3
RnWnSw4

SwW5

A4nSWe

SW7

NEWDATA
FC_Str

FCO

FC1

FC2

FC3

FC4

FC5
VG_A3nFC6
FC7

SD

nDRQ2

--static backplane-buffer signals

BBA_DIR : out
BBB_DIR : out
BBC_DIR : out
BBD_DIR : out
BBE_DIR : out
BBG_DIR : out
BBH_DIR : out
nBB_EN : out

in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
in std_logic;
out std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;

--static backplane open-collector outputs

DRDY
SRQ3
DRQ
INTERL
DTACK
nDRDY2
SEND_EN
SEND_STR :

--dsp-link

DSP_CRDY_W :
DSP_CREQ_W :
DSP_CACK_R :

out

. out

out
out
out
out
out
out

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

signals (read)

out std_logic;
out std_logic;
in std_logic;

--dds_update_o
--dds_£fsk
--dds_sh_key



DSP_CSTR_R : in std_logic;

DSP_D_RO : in std_logic;
DSP_D_R1 : in std_logic;
DSP_D_R2 : in std_logic;
DSP_D_R3 : in std_logic;
DSP_D_R4 : in std_logic;
DSP_D_R5 : in std_logic;
DSP_D_R6 : in std_logic;
DSP_D_R7 : in std_logic;

--dsp-link signals (write)
DSP_CRDY_R : in std_logic;
DSP_CREQ_R : in std_logic;
DSP_CACK_W : out std_logic;
DSP_CSTR_W : out std_logic;

DSP_D_WO : out std_logic;
DSP_D_W1 : out std_logic;
DSP_D_W2 : out std_logic;
DSP_D_W3 : out std_logic;
DSP_D_W4 : out std_logic;
DSP_D_W5 : out std_logic;
DSP_D_W6 : out std_logic;
DSP_D_W7 : out std_logic;

-- leds

ledl : out std_logic;
led2 : out std_logic;
led3 : out std_logic;
led4 : out std_logic;

-- only for debug
piggy_io : out std_logic_vector(7 downto 0);

--adressing pins via FC

VG_A4 : in std_logic; --FC(0)
VG_A1 : in std_logic; --FC(1)
-- dsp-link buffer enable signals

DSP_DIR_D : out std_logic;
DSP_DIR_STRACK : out std_logic;
DSP_DIR_REQRDY : out std_logic

)s
end entity fib_adcdac_appl_top_level;

architecture fib_adcdac_appl_top_level_arch of fib_adcdac_appl_top_level

—-— components

component reset_gen is
generic (reset_clks : integer := 2);
port (

clk_i : in std_logic;
rst_o : out std_logic
);

end component;

component clk_divider
generic (
clk_divider_width : integer);
port (
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clk_div : in std_logic_vector (clk_divider_width - 1 downto 0);

rst_i : in std_logic;
clk_i : in std_logic;
clk_o : out std_logic);

end component;

-- component internal_pll

- port (

- areset : in std_logic;
- inclkO : in std_logic;
- c0 : out std_logic;
- el : out std_logic;
- locked : out std_logic);
-- end component;

component busdriver

port (
en_write_to_bus : in std_logic; -- enable the buffer
data_bus : inout std_logic_vector (15 downto 0); \
-- Bus connection
data_to_bus : in std_logic_vector (15 downto 0); \
-- data written into the bus
data_from_bus : out  std_logic_vector (15 downto 0) \

-- data read from the bus
);

end component;

component digital_short

generic (

clk_freq_in_hz : real := 200000000.0; --system clock frequency

delay_in_ns : real := 15.0); -- delay of the wait state
port (

rst_i : in std_logic; -- reset in

clk_i : in std_logic; -- clock in

rnw_o : out std_logic;

strobe_o : out std_logic;

ack_i : in  std_logic;

ext_driver_dir : out std_logic;
adr_o : out std_logic_vector (5 downto 0);

en_write_to_bus : out std_logic;

data_to_bus : out std_logic_vector (15 downto 0);
data_from_bus : in std_logic_vector (15 downto 0)
)s

end component;

—-- common signals
signal global_rst : std_logic;

-- FAB related signals

signal data_bus : std_logic_vector (15 downto 0); -- FAB Data bus \
mapped to uCLinuk Address and Databus

signal adr_o : std_logic_vector (5 downto 0); -- Address \

bus for FAB
signal ext_driver_dir : std_logic;

36



signal areset : std_logic;
signal inclkO : std_logic;
signal cO : std_logic;
signal e0 : std_logic;
signal locked : std_logic;

signal en_write_to_bus : std_logic;

signal data_to_bus : std_logic_vector (15 downto 0);
signal data_from_bus : std_logic_vector (15 downto 0);
begin

reset_gen_inst : reset_gen
port map (
clk_i => clkO,
rst_o => global_rst
);

blinkerl : clk_divider
generic map (
clk_divider_width => 24)
port map (
clk_div => x"EEFFFF",
rst_i => global_rst,
clk_i => clkO,
clk_o => led2);

-- internal_pll_inst : internal_pll
- port map (

- areset => areset,

- inclk0 => inclkO,

- c0 => cO0,

- e0 => e0,

- locked => locked);

busdriver_inst : busdriver

port map (
en_write_to_bus => en_write_to_bus,
data_bus => data_bus,
data_to_bus => data_to_bus,
data_from_bus => data_from_bus);

digital_short_inst : digital_short

port map (
rst_i => global_rst,
clk_i => clkO,
rnw_o => Piggy_RnWi,
strobe_o => Piggy_Strbil,
ack_i => Piggy_Ackl,
ext_driver_dir => ext_driver_dir,
adr_o => adr_o,
en_write_to_bus => en_write_to_bus,
data_to_bus => data_to_bus,
data_from_bus => data_from_bus
)s

--static backplane buffer settings
BBA_DIR <= ’0’;
BBB_DIR <= ’07;
BBC_DIR <= ’0’;
BBD_DIR <= ’0’;
BBE_DIR <= ’07;
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BBG_DIR <= ’0’;
BBH_DIR <= ’0’;
nBB_EN <= ’0’;

--static backplane open-collector output
DRDY <= 07;
SRQ3 <= ’07;
DRQ <= ’07;
INTERL <= ’0’;
DTACK <= ’07;
nDRDY2 <= ’0’;
SEND_EN <= ’0’;
SEND_STR <= ’0’;

--static uC-Link buffer settings

nuC_Link_EN_CTRL_A <= ’17;
uC_Link_EN_DA <= ’0’;

-- unused buffers get warm!
DSP_DIR_D <= ’1’;
DSP_DIR_REQRDY <= ’1’;
DSP_DIR_STRACK <= ’1’;
—-- Actual signal interconnection
uC_Link_D <= data_bus (7 downto 0) when
else (others => ’Z’);
uC_Link_A <= data_bus (15 downto 8) when
else (others => ’Z%);
data_bus (7 downto 0) <= uC_Link_D when
else (others => ’Z’);
data_bus (15 downto 8) <= uC_Link_A when
else (others => ’Z’);

-- data_bus <= test;

piggy_io (5 downto 0) <= adr_o;

uC_Link_DIR_A <= ext_driver_dir;
uC_Link_DIR_D <= ext_driver_dir;

-- PLL signals

-- areset <= ’0’;
--  1inclkO <= clkO;

Piggy_Clkl <= clkO;

-- process (clkO0)
-- Dbegin -- process

- if clkO’event and clkO = ’1’ then -- rising clock edge

- data_bus (7 downto 0) <= uC_Link_D;

-= end if;
-- end process;

settings

en_write_to_bus

en_write_to_bus

en_write_to_bus

en_write_to_bus

end architecture fib_adcdac_appl_top_level_arch;
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-- 16-bit Bus driver with Tri State outputs

-- Simulation code
-- 20.07.2006/sh

library ieee;
use ieee.std_logic_1164.all;

entity driver_7416245 is
port (

iobus_a : inout std_logic_vector (15 downto 0);
iobus_b : inout std_logic_vector (15 downto 0);

dir_i : in std_logic);
end driver_7416245;

architecture driver_7416245_arch of driver_7416245

begin -- driver_7416245_arch

iobus_a <= iobus_b when dir_i

iobus_b <= iobus_a when dir_i = ’1’ else (others
-- process
-- begin -- process
- loop

- wait on dir_i;

- if dir_i = ’0’ then

- wait for 5 ns;

- iobus_a <= iobus_b;

- else

- iobus_a <= (others => ’Z’);
- end if;

- if dir_i = ’1’ then

- wait for 5 ns;

- iobus_b <= iobus_a;

- else

- iobus_b <= (others => ’Z’);
- end if;

- end loop;

-- end process;

end driver_7416245_arch;

’0’ else (others

is

= ’72°);
= ’2°);

library ieee;
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entity mixed_tb is

end mixed_tb;

use ieee.std_logic_1164.all;
use jeee.std_logic_arith.all;
use jeee.std_logic_unsigned.all;

architecture mixed_tb_arch of mixed_tb is

component fab_adcdac_appl_top_level

generic (

clk_divider_width_toplevel

reset_clks_toplevel

port (

fibclk
fibd
fiba
fibrnw
fibstrobe
fiback
adcild
dacld
adc2d
dac2d
adclsw
adc2sw
adclclk
adc2clk
daclclk
dac2clk
adclof
adc2of
adclshdn
adc2shdn
daclslp
dac2slp
tpl_tiol
tp2_tiol
tp3_dev_clrn
tp4_gclkO
tp5_gclkl
tp6_dev_oe
tp7_gclk3

end component;

in
inout
in
in
in
out
in
out
in
out
out
out
out
out
out
out
in
in
out
out
out
out
out
out
in
in

in
in

integer;
integer)

std_logic;
std_logic_vector
std_logic_vector
std_logic;
std_logic;
std_logic;
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic);

component fib_adcdac_appl_top_level

generic (

clk_freq_in_hz

firmware_id

firmware_version

port (
trigl_in
trig2_out
clk0
hf_in
uC_Link_D
uC_Link_A
Piggy_Clk1
Piggy_RnW1l
Piggy_Strbl
Piggy_Ackl

uC_Link_DIR_D, uC_Link_DIR_A

integer;
integer;

integer) ;

in

: out
in
in

: inout
inout

: out

: out

: out

¢ in

: out

H

(15 downto 0);
(5 downto 0);

(13 downto
(13 downto
(13 downto 0);
(13 downto 0);
(3 downto 0);
(3 downto 0);

0);
0);

std_logic;
std_logic;
std_logic;
std_logic;
std_logic_vector(7 downto 0);
std_logic_vector(7 downto 0);
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;



nuC_Link_EN_CTRL_A
uC_Link_EN_DA
A2nSW8
A3nSw9
AOnSW10
AlnSWi11
Sub_A6nSW12
Sub_A7nSW13
Sub_A4nSwW14
Sub_A5nSW15
nResetnSWO
Swi
nDSnSW2
BClocknSW3
RnWnSw4
SwW5

A4nSW6

SwW7
NEWDATA
FC_Str

FCO

FC1

FC2

FC3

FC4

FC5
VG_A3nFC6
FC7

SD

nDRQ2
BBA_DIR
BBB_DIR
BBC_DIR
BBD_DIR
BBE_DIR
BBG_DIR
BBH_DIR
nBB_EN
DRDY

SRQ3

DRQ

INTERL
DTACK
nDRDY2
SEND_EN
SEND_STR
DSP_CRDY_W
DSP_CREQ_W
DSP_CACK_R
DSP_CSTR_R
DSP_D_RO
DSP_D_R1
DSP_D_R2
DSP_D_R3
DSP_D_R4
DSP_D_R5
DSP_D_R6
DSP_D_R7
DSP_CRDY_R
DSP_CREQ_R
DSP_CACK_W
DSP_CSTR_W
DSP_D_WO

out
out
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
out
out
out
out
out
out
out
out
out

. out

out

. out

out

. out

out
out
out
out
out
in
in
in
in
in
in
in
in
in
in
in
in
out
out
out

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
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DSP_D_W1 : out std_logic;
DSP_D_W2 : out std_logic;
DSP_D_W3 : out std_logic;
DSP_D_W4 : out std_logic;
DSP_D_W5 : out std_logic;
DSP_D_W6 : out std_logic;
DSP_D_W7 : out std_logic;
ledl : out std_logic;
led2 : out std_logic;
led3 : out std_logic;
led4 : out std_logic;
piggy_io : out  std_logic_vector(7 downto 0);
VG_A4 : in std_logic;
VG_A1 : in std_logic;
DSP_DIR_D : out std_logic;
DSP_DIR_STRACK : out std_logic;
DSP_DIR_REQRDY : out std_logic);

end component;

component driver_7416245

port (
iobus_a : inout std_logic_vector (15 downto 0);
iobus_b : inout std_logic_vector (15 downto 0);
dir_i : in std_logic);

end component;
-- fab signals

constant clk_divider_width_toplevel
constant reset_clks_toplevel

: integer := 16;
: integer := 2;

signal fibclk_tb std_logic;

signal fibd_tb
signal fiba_tb

signal fibrnw_tb
signal fibstrobe_tb
signal fiback_tb

signal adcld_tb
signal dacld_tb

std_logic_vector
std_logic_vector
std_logic;
std_logic;
std_logic;
std_logic_vector
std_logic_vector

(15 downto 0);
(5 downto 0);

(13 downto 0);
(13 downto 0);

signal adc2d_tb
signal dac2d_tb
signal adclsw_tb
signal adc2sw_tb

std_logic_vector (13 downto 0);
std_logic_vector (13 downto 0);
std_logic_vector (3 downto 0);
std_logic_vector (3 downto 0);

signal adclclk_tb std_logic;
signal adc2clk_tb std_logic;
signal daclclk_tb std_logic;
signal dac2clk_tb std_logic;
signal adclof_tb std_logic;
signal adc2of_tb std_logic;
signal adclshdn_tb std_logic;
signal adc2shdn_tb std_logic;
signal daclslp_tb std_logic;
signal dac2slp_tb std_logic;
signal tpl_tiol_tb std_logic;
signal tp2_tiol_tb std_logic;
signal tp3_dev_clrn_tb std_logic;
signal tp4_gclkO_tb std_logic;
signal tpb_gclkl_tb std_logic;
signal tp6_dev_oe_tb std_logic;
signal tp7_gclk3_tb std_logic;

-- fib signals
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constant clk_freq_in_hz : integer
constant firmware_id . integer
constant firmware_version : integer

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

trigl_in
trig2_out
clk0

hf_in
uC_Link_D_tb
uC_Link_A_tb
Piggy_Clk1l_tb
Piggy_RnWl_tb
Piggy_Strbl_tb
Piggy_Ackl_tb
uC_Link_DIR_D, uC_Link DIR_A
nuC_Link_EN_CTRL_A
uC_Link_EN_DA
A2nSW8

A3nSwW9
AOnSW10
AlnSWi11
Sub_A6nSW12
Sub_A7nSW13
Sub_A4nSWi4
Sub_A5nSW15
nResetnSWO
SWi

nDSnSW2
BClocknSW3
RnWnSw4

SW5

A4nSW6

SW7

NEWDATA
FC_Str

FCO

FC1

FC2

FC3

FC4

FC5

VG_A3nFC6

FC7

SD

nDRQ2

BBA_DIR
BBB_DIR
BBC_DIR
BBD_DIR
BBE_DIR
BBG_DIR
BBH_DIR
nBB_EN

DRDY

SRQ3

DRQ

INTERL

DTACK

nDRDY2
SEND_EN
SEND_STR
DSP_CRDY_W
DSP_CREQ_W

= 50000000
=1;

3;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic_vector(7 downto 0);
std_logic_vector(7 downto 0);
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
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signal DSP_CACK_R : std_logic;
signal DSP_CSTR_R : std_logic;
signal DSP_D_RO : std_logic;
signal DSP_D_R1 : std_logic;
signal DSP_D_R2 : std_logic;
signal DSP_D_R3 : std_logic;
signal DSP_D_R4 : std_logic;
signal DSP_D_R5 : std_logic;
signal DSP_D_R6 : std_logic;
signal DSP_D_R7 : std_logic;
signal DSP_CRDY_R : std_logic;
signal DSP_CREQ_R : std_logic;
signal DSP_CACK_W : std_logic;
signal DSP_CSTR_W : std_logic;
signal DSP_D_WO : std_logic;
signal DSP_D_W1 : std_logic;
signal DSP_D_W2 : std_logic;
signal DSP_D_W3 : std_logic;
signal DSP_D_W4 : std_logic;
signal DSP_D_W5 : std_logic;
signal DSP_D_W6 : std_logic;
signal DSP_D_W7 : std_logic;
signal ledl : std_logic;
signal led2 : std_logic;
signal led3 : std_logic;
signal led4 : std_logic;
signal piggy_io : std_logic_vector(7 downto 0);
signal VG_A4 : std_logic;
signal VG_A1 : std_logic;
signal DSP_DIR_D : std_logic;
signal DSP_DIR_STRACK : std_logic;
signal DSP_DIR_REQRDY : std_logic;

-- main clock
signal sim_clk
signal sim_io_bus

signal sim_io_bus2

: std_logic :=
: std_logic_ve
: std_logic_ve

’1’;
ctor (15 downto
ctor (15 downto

0);
0);

begin -- mixed_tb_arch
fab_adcdac_appl_top_level_inst
generic map (
clk_divider_width_toplevel => clk_divider_width_toplevel,
reset_clks_toplevel => reset_clks_toplevel)

: fab_adcdac_appl_top_level
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port map (

fibclk => fibclk_tb,
fibd => fibd_tb,
fiba => fiba_tb,
fibrnw => fibrnw_tb,
fibstrobe => fibstrobe_tb,
fiback => fiback_tb,
adcid => adcld_tb,
dacid => dacld_tb,
adc2d => adc2d_tb,
dac2d => dac2d_tb,
adclsw => adclsw_tb,
adc2sw => adc2sw_tb,
adcliclk => adclclk_tb,
adc2clk => adc2clk_tb,
dacliclk => daclclk_tb,
dac2clk => dac2clk_tb,



adclof =>
adc2of =>
adclshdn =>
adc2shdn =>
daclslp =>
dac2slp =>
tpl_tiol =>
tp2_tiol =>
tp3_dev_clrn =>
tp4_gclkO =>
tp5_gclkl =>

tp6_dev_oe =>
tp7_gclk3 =>

fib_adcdac_appl_top_
generic map (
clk_freq_in_hz
firmware_id

port map (
trigl_in
trig2_out
clkO0
hf_in
uC_Link_D
uC_Link_A
Piggy_Clk1
Piggy_RnW1l
Piggy_Strbl
Piggy_Ackl
uC_Link_DIR_D
uC_Link_DIR_A

adclof_tb,
adc2of_tb,
adclshdn_tb,
adc2shdn_tb,
daclslp_tb,
dac2slp_tb,
tpl_tiol_tb,
tp2_tiol_tb,
tp3_dev_clrn_tb,
tp4_gclkO_tb,
tp5_gclkl_tb,
tp6_dev_oe_tb,
tp7_gclk3_tb);

level_

inst : fib_adcdac_appl_top_level

=> clk_freq_in_hz,
=> firmware_id,
firmware_version => firmware_version)

=>

nuC_Link EN_CTRL_A =>

uC_Link_EN_DA
A2nSW8
A3nSw9
AOnSW10
AlnSWi11
Sub_A6nSW12
Sub_A7nSW13
Sub_A4nSwWi14
Sub_A5nSW15
nResetnSWO
Swi

nDSnSW2
BClocknSW3
RnWnSw4

SwW5

A4nSW6

SwW7

NEWDATA
FC_Str

FCO

FC1

FC2

FC3

FC4

FC5
VG_A3nFC6
FC7

SD

nDRQ2
BBA_DIR

=>

trigl_in,
trig2_out,
clkoO,

hf_in,
uC_Link_D_tb,
uC_Link_A_tb,
Piggy_Clki_tb,
Piggy_RnWi_tb,
Piggy_Strbl_tb,
Piggy_Ackl_tb,
uC_Link_DIR_D,
uC_Link_DIR_A,
nuC_Link_EN_CTRL_A,
uC_Link_EN_DA,
A2nSw8,
A3nSW9,
AOnSW10,
AlnSWi1,
Sub_A6nSW12,
Sub_A7nSW13,
Sub_A4nSW14,
Sub_AbnSW15,
nResetnSWO,
Swi,

nDSnSW2,
BClocknSW3,
RnWnSW4,

SW5,

A4nSWe,

SW7,

NEWDATA,
FC_Str,

FCo,

FC1,

FC2,

FC3,

FC4,

FC5,
VG_A3nFC6,
FC7,

SD,

nDRQ2,
BBA_DIR,
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BBB_DIR => BBB_DIR,
BBC_DIR => BBC_DIR,
BBD_DIR => BBD_DIR,
BBE_DIR => BBE_DIR,
BBG_DIR => BBG_DIR,
BBH_DIR => BBH_DIR,
nBB_EN => nBB_EN,
DRDY => DRDY,

SRQ3 => SRQ3,

DRQ => DRQ,

INTERL => INTERL,
DTACK => DTACK,
nDRDY2 => nDRDY2,
SEND_EN => SEND_EN,
SEND_STR => SEND_STR,
DSP_CRDY_W => DSP_CRDY_W,
DSP_CREQ_W => DSP_CREQ_W,
DSP_CACK_R => DSP_CACK_R,
DSP_CSTR_R => DSP_CSTR_R,
DSP_D_RO => DSP_D_RO,
DSP_D_R1 => DSP_D_R1,
DSP_D_R2 => DSP_D_R2,
DSP_D_R3 => DSP_D_R3,
DSP_D_R4 => DSP_D_R4,
DSP_D_R5 => DSP_D_R5,
DSP_D_R6 => DSP_D_RS6,
DSP_D_R7 => DSP_D_R7,
DSP_CRDY_R => DSP_CRDY_R,
DSP_CREQ_R => DSP_CREQ_R,
DSP_CACK_W => DSP_CACK_W,
DSP_CSTR_W => DSP_CSTR_W,
DSP_D_WO => DSP_D_WO,
DSP_D_W1 => DSP_D_W1,
DSP_D_W2 => DSP_D_W2,
DSP_D_W3 => DSP_D_W3,
DSP_D_W4 => DSP_D_W4,
DSP_D_W5 => DSP_D_W5,
DSP_D_W6 => DSP_D_W6,
DSP_D_W7 => DSP_D_W7,
led1 => ledl,

led2 => led?2,

led3 => led3,

led4d => led4,
piggy_io => piggy_io,
VG_A4 => VG_A4,
VG_A1 => VG_A1,
DSP_DIR_D => DSP_DIR_D,
DSP_DIR_STRACK => DSP_DIR_STRACK,
DSP_DIR_REQRDY => DSP_DIR_REQRDY) ;

driver_7416245_1 : driver_T7416245
port map (
iobus_a => sim_io_bus,
iobus_b => sim_io_bus2,
dir_i => uC_Link_DIR_A);

-- clock generation

sim_clk <= not sim_clk after 10 ns; -- 50 MHz simulation clock
clkO <= sim_clk;

-- component interconnections
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fibclk_tb <= Piggy_Clkl_tb;
Piggy_Ackl_tb <= fiback_tb;
fibstrobe_tb <= Piggy_Strbil_tb;
fibrnw_tb <= Piggy_RnW1_tb;

fiba_tb <= piggy_io (5 downto 0);

adcld_tb <= "10101010101010", "00011111111000" after 400 ns, \
"11111111111111" after 690 ns;

-- uC_Link D_tb <= sim_io_bus (7 downto 0) when Piggy RnWil_tb = \
’1’ else (others => ’Z’);
-- uC_Link_A_tb <= sim_io_bus (15 downto 8) when Piggy RnWl_tb = \
’1’ else (others => ’Z’);
-- sim_io_bus (7 downto 0) <= uC_Link D_tb when Piggy_RnWl_tb = \
’0’ else (others => ’Z’);
-- sim_io_bus (15 downto 8) <= uC_Link_A_tb when Piggy RnWl_tb = \

’0’ else (others => ’Z’);

-- sim_io_bus <= fibd_tb when Piggy_RnWi_tb = ’1’ else (others \
= 2°);
-- fibd_tb <= sim_io_bus when Piggy_RnWi_tb = ’0’ else (others \
= 2);

uC_Link D_tb <= sim_io_bus (7 downto 0) when Piggy RnWil_tb = ’1’
else (others => ’Z’);

uC_Link_A_tb <= sim_io_bus (15 downto 8) when Piggy_ RnWil_tb = ’1’°
else (others => ’Z7);

sim_io_bus (7 downto 0) <= uC_Link_D_tb when Piggy RnWi_tb = ’0’
else (others => ’Z’);

sim_io_bus (15 downto 8) <= uC_Link_A_tb when Piggy RnWi_tb = ’0’
else (others => ’Z’);

sim_io_bus2 <= fibd_tb when Piggy RnWi_tb = ’1’ else (others \
=> 7°);

fibd_tb <= sim_io_bus2 when Piggy RnWi_tb = ’0’ else (others \
=> 7°);

end mixed_tb_arch;




F Schemtatic Diagrams
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