
Darmstadt University of Technology

Department of Electrical Engineering and Information Technology

Institute of Microelectronic Systems

Prof. Dr. Dr. h.c. mult. Manfred Glesner

Hardware and Software Implementation of a
Radio Frequency High-Speed Data

Conversion Unit for Digital Control Systems

Submitted for the degree of Bachelor of Science in Information and
Communication Engineering

Author : Mohammad Shahab Sanjari
Advisors : Dr.-Ing. Peter Zipf (TU-Darmstadt), Dipl.-Ing. Martin Kumm (GSI)
Start : May 02, 2006
End : October 02, 2006

Published under CC-BY 4.0 International license
https://creativecommons.org/licenses/by/4.0/

Declaration

Herewith I declare, that I have made the presented paper myself and solely with
the aid of the means permitted by the examination regulations of the Darmstadt
University of Technology. The literature used is indicated in the bibliography. I have
indicated literally or correspondingly assumed contents as such.

Darmstadt, October 2006

Mohammad Shahab Sanjari

iii

In the Name of God, The Compassionate, The Merciful

Abstract

Abstract

Digital control systems are always preferable where precision and flexibility matter.
This thesis describes the construction and implementation of a radio frequency high-
speed interface for use in a variety of applications in the heavy ion accelerator facility
at Geselschaft für Schwerionenforschung mbH in Darmstadt. In this work, the author
tries to shed light on some considerations concerning the design of such an interface.

Hardware design has been detailed along with problems and achievements during
the construction phase. Using a hardware description language, the author imple-
ments and explains the steps needed to build a communication link between the
design and the host system.

The last chapters portray the outcomes and contemplations for improvements and
corrections of the design for the future revisions.

vii

Acknowledgments

Acknowledgments

I would like to dedicate this work to my dear mother and father, to whom my absence
during the studies had been most unpleasant.

I wish to express my sincerest gratitude to Dipl.-Ing. Martin Kumm at GSI, who
always had a generous answer to my questions and supported me patiently through
the work. Many thanks go to Dipl.-Ing. Peter Moritz and Dr. Harald Klingbeil at
GSI who with a deep insight provided the most practical advices at the moments
where they were most needed.

I would like to thank Dr.-Ing. Peter Zipf, my thesis advisor at Darmstadt University
of Technology, for his admirable concerns and practical information during the work.

I also thank Mr. Manoj Badkas, MSc., who helped me with useful advices in VHDL
programming.

I like to acknowledge my brother, Mr. Mohammad Ali Sanjari, PhD candidate
at Amirkabir University of Technology in Tehran, Iran, for his invaluable supports
during my studies in Darmstadt.

I wish to thank Prof. Dr. Dr. Manfred Glesner, for the lecture on Electronics and
beyond. Ever since I have never lost my passion for circuit design, and I hope I won’t
ever.

ix

Contents

1 Thesis Overview 1

1.1 About GSI . 1
1.2 About this Thesis . 1

1.2.1 History of the Design . 1
1.2.2 Thesis Scope . 2
1.2.3 Use Cases . 2

2 Hardware design 5

2.1 Introduction . 5
2.1.1 Modes of Operation . 5
2.1.2 External Connectivity . 6

2.2 The Power Supply and Reference Voltage 7
2.2.1 Power Zones . 7

2.3 Grounding Issues . 8
2.4 The CPLD . 9

2.4.1 Clock Distribution . 10
2.5 Calibration Circuitry . 10
2.6 Signal Flow and Filtering . 11

2.6.1 Connectors and the Origin of the Signals 11
2.6.2 High-speed Op Amps . 11
2.6.3 The Differential Amplifier . 12
2.6.4 Noise Elimination and the Filters 12

2.7 The Variable Gain Amplifier . 13
2.7.1 Transfer Function . 13

2.8 Analogue to Digital Conversion . 15
2.8.1 Structure . 16

2.9 Digital to Analogue Conversion . 16
2.10 Mechanical Aspects . 17

2.10.1 External Dimensions . 17
2.10.2 Board Layout . 17

2.11 Production . 18
2.11.1 PCB Fabrication . 18
2.11.2 Component Mounting . 20

xi

Contents

2.12 PC Link: The UDL Board . 20
2.12.1 Circuit Description . 21

3 Software Design 23
3.1 Introduction . 23
3.2 Behavioural Description . 23

3.2.1 Special Registers . 24
3.2.2 Reset Generation . 26
3.2.3 Synchronisation . 26
3.2.4 The Bidirectional Bus Driver 27

3.3 CPLD Code Elements . 28
3.3.1 The Register File . 29
3.3.2 Clock Dividers . 29
3.3.3 Top Level Entity . 30

3.4 CPLD Test Routines and Simulation 31
3.4.1 CPLD Digital Short . 31
3.4.2 CPLD Sawtooth Generator 32
3.4.3 Test Benches . 32

3.5 FPGA Code Elements . 32
3.5.1 Internal Phase Locked Loop 33
3.5.2 FPGA Digital Short . 33
3.5.3 FPGA Sawtooth Generator 37

3.6 Simulation Test bench . 37

4 Measurements and Outcomes 41
4.1 Introduction . 41
4.2 Thermal Issues . 41
4.3 Component Value Adjustment . 43
4.4 Oscillography . 43
4.5 Spectrography . 48
4.6 Signal analysis using a Vector Network Analyser 52
4.7 Technical Specifications of the Design 57

5 Conclusion 59

Bibliography 61

A Used Abbreviations 63

B Used PC Software 65
B.1 EDA . 65

B.1.1 Cadsoft EAGLE . 65
B.1.2 GraphiCode GC-Prevue . 65

xii

Contents

B.1.3 ALTERA Quartus II . 66
B.1.4 ModelSIM Xilinx Edition . 66
B.1.5 GNU Emacs . 66

B.2 Text Processing: LATEX . 66
B.3 Graphic Software . 67

B.3.1 InkScape . 67
B.3.2 Dia . 67
B.3.3 The GIMP . 67

C CPLD Code 69

D FPGA Code 81

E Simulation Code 91

F Schemtatic Diagrams 101

G GERBER Plots 103

xiii

List of Tables

2.1 Pin Compatible family of LTC22XX ADCs. 16
2.2 Physical Specifications of the Board. 18

3.1 Registers implemented inside CPLD. 24
3.2 Possible Values for the Analogue Switches. 25
3.3 Possible Count Constants for the Clock Divider Entity. 30

4.2 Temperature Values of the Components. 43
4.3 Technical Specifications of the Design. 57

xv

List of Figures

1.1 Top View of the Final Populated Board 3

2.1 System Block Diagram Showing one Channel. 6
2.2 Arrangement of Power Polygons on the middle layers of the PCB. . . 7
2.3 Overview of the Board Signals, Backplane and Target Connections. . 8
2.4 Ground Plane Topology. 9
2.5 THS4001: Closed Loop Gain vs. Frequency [16] 12
2.6 Block Schematic of the AD8330 [11] 13
2.7 AD8330 Gain vs. VDBS [11] . 14
2.8 AD8330 Gain vs. VMAG [11] . 15
2.9 Orientation of the Components to the Differential Supply Polygons. 17
2.10 Top View of the Unpopulated Board. 19
2.11 The Schematics of the UDL Board. 21

3.1 Control and Status Registers Implemented Into the CPLD. 25
3.2 Crossing clock domains. 27
3.3 The Bus Driver. 28
3.4 Block Diagram of the Register File Entity 29
3.5 Block Diagram of the main Code in CPLD. 31
3.6 Block Diagram of the main Code in FPGA for test purposes. 33
3.7 Block Diagram of the Digital Short Circuit Entity. 34
3.8 State Diagram of the Digital Short Circuit Entity. 35
3.9 Overview of Overall System Components. 36
3.10 IO Bus in the Simulation Test Bench. 37
3.11 Overall System Simulation up to 500ns in Simulator. 39

4.1 Heat Flux Diagram. 42
4.2 DAC1 Output of the DC-Coupled Board as a Sawtooth Generator. . 44
4.3 DAC1 Output to 0dBm 6MHz Sine Wave Pulse Input at ADC1 of the

DC-Coupled Board (Top) and the AC-Coupled Board (Bottom). . . 45
4.4 DAC1 Output to 0dBm 1MHz Sine Wave Input at ADC1 of the DC-

Coupled Board (Top) and the AC-Coupled Board (Bottom). 46
4.5 DAC1 Output to 0dBm 10MHz Sine Wave Input at ADC1 of the DC-

Coupled Board (Top), the AC-Coupled Board (Bottom). 47

xvii

List of Figures

4.6 DAC1 Output without Signal at ADC1 of the AC-Coupled Board,
Indicating the Output Noise Floor. 48

4.7 Signal Generator Output Alone at 1MHz (Top) and 20MHz (Bottom)
0dBm Sine Wave. 49

4.8 DAC1 Output to 0dBm 1MHz (Top) and 20MHz (Bottom) Sine Wave
Input at ADC1 of the AC-Coupled Board. 50

4.9 MON2 Output to 0dBm (Top) and -10dBm (Bottom) 18MHz Sine
Wave Input at ADC2 of the DC-Coupled Board. 51

4.10 MON1 Output to ADC1 Input up to 200MHz, 10dB/Div. (Top) and
up to 50 MHz, 3dB/Div. (Bottom) of the DC-Coupled Board. 53

4.11 DAC1 Output to ADC1 Input up to 100MHz, 10dB/Div. (Top) and
up to 10 MHz, 3dB/Div. (Bottom) of the DC-Coupled Board. 54

4.12 MON1 Output to ADC1 Input up to 100MHz, 10dB/Div. (Top) and
up to 50 MHz, 3dB/Div. (Bottom) of the AC-Coupled Board. 55

4.13 DAC1 Output to ADC1 Input up to 100MHz, 10dB/Div. (Top) and
up to 10 MHz, 3dB/Div. (Bottom) of the AC-Coupled Board. 56

xviii

1 Thesis Overview

1.1 About GSI

GSI operates a large, in many aspects worldwide unique accelerator facility for heavy-
ion beams. Researchers from around the world use the facility for experiments in basic
research1. GSI is federally funded and is a member of the Helmholz Association with
more than 1000 employees. The chief tools in GSI are the Universal Linear Accelerator
(UNILAC), the heavy-ion Synchrotron SIS18 and the Experimental Storage Ring
(ESR)2.

Currently researchers are planning the new international accelerator facility, FAIR,
with a circumference of about 1.1 km. This new facility has many advantages over
the existing one3.

1.2 About this Thesis

1.2.1 History of the Design

In 2003, Martin Kumm at GSI provided a solution for an interface for analogue
to digital conversion with a more specific application in an automatic gain control
system using a micro-controller [22]. This solution is still used. Later, more and more
use-cases have been found that would profit from a faster and more general board.
This led to the idea of using programmable logic devices and accomplish the task in
a hardware description language.

In 2006 Johannes Jöst started his Diploma Thesis on designing an interface board
with 10 MSPS ADCs and 30 MSPS DACs controlled by a CPLD [20]. His work has
been an underlying basis for the following thesis.

1Source: www.gsi.de
2Source: www.wikipedia.org
3Please refer to www.gsi.de for more information on the FAIR project.

1

1 Thesis Overview

1.2.2 Thesis Scope

This thesis continues these efforts and extends the design to a much faster system.
The analogue to digital and digital to analogue conversion rates has been enhanced
to support up to the state of the art 125 MSPS and 210 MSPS respectively. The
dimensions of the board have been changed to allow better temperature characteristics
and proper placement of components. Efforts have been made to lessen the inter-
channel interference and reduce noise and signal crosstalk specially that of the main
clock signal.

During this thesis following tasks have been undertaken.

Testing the existing ADC/DAC board and writing some routines to get familiar
with the design environment.

Fully redesigning the libraries and the schematics of the next revision.

Learning new techniques on designing high-speed boards.

Routing and production of the new PCB revision.

Writing routines in VHDL for testing the prototype.

Implementing the first fully functioning version of the CPLD-side code for the
communication protocol.

Writing routines in VHDL for testing the communication link with the host
system.

1.2.3 Use Cases

Some of the use cases of the design include but are not limited to:

Fast replacement of the ADC/DAC board [20].

Digital Amplitude Control [10].

Digital Eigenfrequency Control [10].

Synthesizer for Barrier-Bucket System [25]

2

1.2 About this Thesis

Figure 1.1: Top View of the Final Populated Board

3

2 Hardware design

2.1 Introduction

The board is designed to meet several requirements for application in different control
systems. Signals applied to the board range from some ten millivolts up to 2 volts
peak to peak. The design allows DC as well as AC coupled signals. It features two
channels each with an ADC input, a monitor output and a DAC output. The design
which is called FAB (FIB Application Board) will be used as a sort of daughter board
connected via a digital interface to a main board named FIB for FPGA Interface
Board. The FIB board in turn implements different buses and interfaces and acts as
a central data management and signal processing unit and a bridge to other units in
the digital control system such as the DSP unit1.

Several 0Ω resistors have been used in the circuit to allow the change of configura-
tion at the time of manufacturing simply by using a different pick and place data set
for the mounting machine.

2.1.1 Modes of Operation

In the AC operation mode, signals go through variable gain amplifiers (VGA). Due
to the relatively high offset of the VGAs in the DC operation mode, the VGAs are
deactivated so that the signals are connected directly to the ADCs after passing
through the input stages. The VGAs could have a fixed gain, or be controlled by the
output of the DACs (for use with future automatic gain control algorithms).

1Please refer to [21] for more information on the digital cavity synchronisation project in GSI, or
refer to section 1.2.3 for other use cases.

5

2 Hardware design

Non-Inverting

Amplifier

Low Pass Filter

Difference AmplifierTransformer

DAC

Static Analogue

Switch

Non-Inverting

Amplifier

Low Pass Filter

Differential Amplifier

Variable Gain

Amplifier

ADC

DAC Channel

Connector

ADC Channel

Connector

CPLD

FPGA

Monitor output

Connector

Difference Amplifier

Legend:

AC Mode Signal Path

DC Mode Signal Path

Digital Data

REF

FAB Side FIB Side

Figure 2.1: System Block Diagram Showing one Channel.

The system block diagram is depicted in figure 2.1. Different elements are shown as
interconnected blocks. The difference between a board configured for AC operation
and a board configured for DC operation is apparent in this figure.

2.1.2 External Connectivity

The FAB board is connected to the FIB board using two connectors. Clock, an
address bus and a 16-bit data bus as well as some control signals are provided on the
connectors. BNC connectors have been chosen for the RF side. In applications such as
AGC where the signal applied to the board is nearly DC, 2 pole Molex2 connectors are
used. Another connector and some test pins is reserved for programming/debugging
purposes.

2www.molex.com

6

2.2 The Power Supply and Reference Voltage

2.2 The Power Supply and Reference Voltage

Due to different supply requirements on the board, it was necessary to study the
application field. FAB is designed to be used in 19” racks as well as cased stand alone
in aluminium housings. The rack system provides regulated supply voltages for the
cards.

2.2.1 Power Zones

As it could be seen in figure 2.2, internal power planes have been sliced to allow sepa-
ration between the channels as well as allowing enough copper to keep the conductor
impedance as low as possible.

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VDD

VSS

VSS VDDVDD VSS

RF Side Digital Side

Underlying Layer:Layer on top:Legend:

Figure 2.2: Arrangement of Power Polygons on the middle layers of the PCB.

The planes that carry ±15V and ±5V have this form. The effective connection has
been made possible by the vertical stripes which act as bridge connections between
the slices.

7

2 Hardware design

For the purpose of providing a reference voltage, we have used an ADR431 from
Analog Devices3. This is a low noise, low temperature coefficient 2.5V voltage refer-
ence with a wide operating range. The voltage reference contributes to the converters
as an external reference as well as the calibration circuitry of each channel (see section
2.5).

2.3 Grounding Issues

The position of the system star point has always been a concern when designing
high speed circuits. After several meetings we decided to slice the ground plane and
allow connections only where it is suitable. As always, compromises had to be made,
since the front panel serves as an unwanted secondary star point. Making the central
connection as low impedance as possible, we could nearly ignore the effect of the front
panel (See figure 2.3. Nonetheless, the ground plane island which has been isolated
for the CPLD and it’s digital interface to the converters had to be treated specially.

3V3

5V-4A

15V-0.6A15V-0.6A

+3.3Vd+5Vd -15Va+15Va AGND DGND

AGNDDGND

AGNDDGND

+3.3Va+3.3Vd

CPLD

ADC

DAC

+3.3Va+3.3Vd

BNC

BNC

50 Ohm

RF Side

Digital Side

Figure 2.3: Overview of the Board Signals, Backplane and Target Connections.

3www.analog.com

8

2.4 The CPLD

A stripe of copper on the bottom layer defines the main star point directly beneath
the converters (see figure 2.4). This is very desirable as stated in many data sheets
and application notes4 since the difference between the voltage levels on either side of
the converters remains low. Care has been taken to keep a constant distance between
channels themselves and the ground plane used for the digital part in order to reduce
inductive noise.

AGND

AGND

AGND

Bottom Layer

Internal PlaneInternal Plane

Digital Side RF Side

Figure 2.4: Ground Plane Topology.

For the return path of the digital signals connected to the CPLD, there is an extra
connection parallel to the main system star point to allow transfer of higher current
peaks. These would otherwise appear as fluctuations and would distort the signal
passing through the converters.

2.4 The CPLD

The chosen CPLD is from the MAXII family of CPLDs from ALTERA5. It operates
off an almost dedicated 3V voltage regulator. It contains 1270 macro cells and is
packaged in a 144-QFP case. The CPLD is clocked directly from the FPGA board.
The clock signal is grounded over a 1kΩ resistor so that the rise and fall times remain

4Please refer to [6], [5], [29] and [9] for more information on grounding.
5www.altera.com

9

2 Hardware design

short. Depending on the specific application, CPLDs with different speed grades
could be mounted on the board. On the prototype boards, the fastest CPLDs with
3nS propagation delay are used. Important signals are accessible via test pins.

2.4.1 Clock Distribution

Distributing clock signal between the components on the board needed a well planned
strategy. Clock traces should have a low impedance and be as short as possible.
Special care has been taken so that these signals have a larger distance to other
traces, otherwise they would easily influence the quality of signals in the main path.
As An Example, According to the data sheet of the AD9744 DAC [14], any noise or
jitter in the clock will transfer directly into the DAC output.

2.5 Calibration Circuitry

A series of applications need precise, absolute signals. All analogue components
have tolerances so that for obtaining absolute signals, calibration must be performed.
Since the era of potentiometers is over, in a digital control system, this task has to be
accomplished digitally. For this purpose, each channel is provided with an analogue
switch. This switch is in turn controllable by the CPLD. The idea is to perform a
linear approximation on the output signal under the influence of existing physical
restraints, which could nonetheless be almost considered as linear. Additionally a
simple passive network of reactance/resistance has been place on the signal path to
compensate for the non linearities of the switch itself.

During a calibration process, ground and the reference voltage are switched sequen-
tially into the ADCs, the values are saved in special registers. Then linear regression
will be performed, i.e. the slope and the axis intercepts are calculated. After calibra-
tion is done, if the CPLD is asked to deliver calibrated data, it divides the value into
the already calculated slope and subtracts the axis intercept before sending the data
to the main FPGA board, FIB.

The calibration algorithm is not implemented in the prototyping stage of the project
though, until further developments and study of each specific application has been
carried out. It should be mentioned that the calibration operation is limited to the
DC operation mode. For calibration in the AC operation mode it is possible to feed
the DAC output into the switch.

10

2.6 Signal Flow and Filtering

2.6 Signal Flow and Filtering

The scheme used for the overall signal flow follows the 50Ω circuit technique used
in many radio frequency designs. Signals have been terminated with precision 49.9Ω
resistors where needed. The gain of the amplifiers is trimmed to keep the signal
unamplified throughout the signal path so that the gains are solely controlled by the
VGA or not at all in case of DC-coupled connection. For the latter, the gain of the
input stage might be trimmed to a fixed value. These settings are strongly application
dependant.

2.6.1 Connectors and the Origin of the Signals

As stated in the introduction, BNC connectors are used at the RF side. The signals
applied to the board could have a frequency of up to 10 MHz and an amplitude of
up to 2 VPP in AC and up to 10 VPP in DC operation mode. Each channel has a
monitor output. Upon correct choice of configuration resistors, this output could be
used to get an analogue signal which has already been amplified by the VGA, in case
digital values are not intended in that specific application.

The DAC outputs are capable of both DC and AC coupled operation. The latter
is achieved using a wide band RF transformer, T1-6T from Mini-Circuits6 which
contributes to hight-quality signal transmission.

2.6.2 High-speed Op Amps

The operational amplifiers used in input and output stages are THS4001 from TEXAS
Instruments7. These are wide band voltage-feedback amplifiers with ideal character-
istics in both inverting and non-inverting configurations. This amplifier has been
chosen because of it’s good performance in 50Ω systems. The common mode rejec-
tion ratio (CMRR) is also good in the desired operation frequency. Figure 2.5 shows
the closed loop gain of the op amp versus operation frequency.

6www.minicircuits.com
7www.ti.com

11

2 Hardware design

Figure 2.5: THS4001: Closed Loop Gain vs. Frequency [16]

2.6.3 The Differential Amplifier

The quality of performance of modern ADCs is much better if the signal applied to
them is differential in nature. Usually the signal has to be levelled up to a certain
bias voltage. This is best achieved using the so called differential amplifiers. The
differential amplifier used in the circuit is AD8131 from Analog Devices. It is a dif-
ferential or single-ended input to differential output driver that needs no external
components for a fixed gain of 2 [13]. It could be considered as an impedance con-
verter, in many applications a better replacement for transformers (specially in the
DC operation mode where use of transformers is impossible), being less susceptible
to magnetic interference. It’s -3 dB Bandwidth of 400 MHz is more than acceptable
for our application.

2.6.4 Noise Elimination and the Filters

Throughout the design it has been tried to use as many decoupling capacitors as
needed to bypass glitches at the components’ supply pins. Polyester film capacitors
have been used abundantly to block unwanted RF frequencies. Digital signals have
been provided with a small series resistance to reduce noise due to possible reflections.
CPLD signals which control the analogue switch have low pass filters on them.

Keeping an eye on the sampling theorem and the Nyquist frequency, the filters
chosen for the channels are each 7th order low pass filters with -3 dB corner frequency

12

2.7 The Variable Gain Amplifier

of 100 MHz for the DACs and 50 MHz for the ADCs respectively. The filters are of
type PLP-100 and PLP-50 from Mini-Circuits. These settings are also application
dependant.

2.7 The Variable Gain Amplifier

Variable gain amplifiers (VGA) play a central role in applications involving automatic
gain control. The chosen VGA is from Analog Devices [11]. It has a moderately
low distortion from DC to 150 MHz, it could therefore be considered a wide band
amplifier. The peak differential input it ±2V which allows sine wave operation at
1 VRMS with enough headroom. These could even be driven from a single ended
source, but in this design they are driven differentially to improve signal quality on
the board. It’s outputs have the same features. The output impedance is 150Ω.

Figure 2.6: Block Schematic of the AD8330 [11]

2.7.1 Transfer Function

The basic gain function is linear-in-dB, controlled by the voltage applied to the VDBS
pin. The gain may be changed ranging from 0 dB to 50 dB for control voltages between
0V and 1.5V with a slope of 30mV per dB. Figure 2.7 illustrates this feature. The

13

2 Hardware design

voltage on the MODE pin changes the polarity of the slope of the transfer function,
so the amplifier could do without an inverting stage in case of need.

Figure 2.7: AD8330 Gain vs. VDBS [11]

A second gain control port is provided on chip at pin VMAG, which allows the user
to vary the numeric gain from 0.03 to 10 as shown in figure 2.8. Using this feature,
the basic gain set by the VDBS pin could be repositioned to any value from 20 dB
higher to 30 dB lower.

14

2.8 Analogue to Digital Conversion

Figure 2.8: AD8330 Gain vs. VMAG [11]

The output voltage may then be approximated as follows:

VOUT = 2 × VIN × VMAG × 10(
VDBS
0.6V

)

Analog Devices has published an on-line simulator for this transfer function on their
web site. By default the output voltage is placed half-way through the power supply.
It may also be trimmed using the CNTR pin. This is particularly useful in case
following stages such as ADCs require a certain input voltage offset.

Although AD8330 is capable of operation in DC-coupled mode, we have decided to
use it on the board only for the the ac-coupled signal path. On the prototype board
[20], the chip had not shown a desirable output DC offset.

2.8 Analogue to Digital Conversion

Speed of data conversion had been of primary importance in the design. The chosen
converter is from Linear Technology’s family of LTC22XX converters8. This product

8www.linear.com

15

2 Hardware design

family features pin compatible devices each having different conversion speeds, reso-
lutions and of course costs. This allows application specific choice of devices without
changing the board layout. Table 2.1 lists possible alternatives.

125Msps LTC2253 (12-Bit) LTC2255 (14-Bit)

105Msps LTC2252 (12-Bit) LTC2254 (14-Bit)

80Msps LTC2229 (12-Bit) LTC2249 (14-Bit)

65Msps LTC2228 (12-Bit) LTC2248 (14-Bit)

40Msps LTC2227 (12-Bit) LTC2247 (14-Bit)

25Msps LTC2226 (12-Bit) LTC2246 (14-Bit)

10Msps LTC2225 (12-Bit) LTC2245 (14-Bit)

Table 2.1: Pin Compatible family of LTC22XX ADCs.

2.8.1 Structure

For the prototype boards LTC2255 and LTC2249 with 125 MSPS and 80 MSPS
respectively were used. Each have a 14-bit data bus. They run off a single 3V power
supply. An internal clock stabilisation feature could be turned on in which case the
ADC generates a 50% duty cycle pulse on the rising edge of the single ended clock
signal. This is desired on boards with sensitive clock distribution, since the accuracy
of conversion depends on both rising and falling edges of the clock.

The ADCs are capable of straight binary or 2’s complement output. Poor matching
can result in higher order harmonics, so it has been tried to keep the output impedance
of the previous stage near 100Ω. For the sake of reducing power consumption, the
chip’s power saving NAP mode have been used. This is faster than it’s SLEEP mode
in exchange for a couple of milliwatts more power consumption. In this mode, it takes
only 100 clock cycles for the ADC to wake up and provide valid data on the outputs,
which otherwise have been in the Hi-Z state. A central ground pad on the bottom of
the ADC’s lead-less package allows an effective heat transfer to the board.

2.9 Digital to Analogue Conversion

According to the desired specifications, we decided to choose from the TxDAC
family of Analog Devices’s DACs. AD9744 has a single supply 14-bit interface also
capable of straight binary or 2’s complement input. It could be clocked up to 210 MHz.
The DAC has been a simple to use component. More details on power connections
and noise is provided in the related sections (see section 2.6.4).

16

2.10 Mechanical Aspects

2.10 Mechanical Aspects

2.10.1 External Dimensions

As stated before, the board is designed to be placed in 19” racks. The board measures
160mm by 100mm which corresponds to a standard Euro format board. It is provided
with M3 holes for connection to the main board. The contour has been milled to free
the area above the IDC connectors of the main board.

2.10.2 Board Layout

Care has been taken that the placement of the elements are optimal in the sense of
shortest distance to the corresponding power source. As it might be seen from the
figure 2.9 polygon planes have been stretched to ensure this feature.

B

A

C

VDD

VSS

Figure 2.9: Orientation of the Components to the Differential Supply Polygons.

Experience confirms that a good placement is the most important factor affecting
the routing phase of a layout job. Apart from that, good placement reduces inter-

17

2 Hardware design

channel interference and unwanted signal crosstalk. Also, power components have
been placed far from the sensitive elements.

2.11 Production

Production is the most time consuming phase of a design. The choice of used elements
had been an iterative process since some of them were not available in the desired
quantities, package forms or at all. In the case of the AG8330 VGA, for example,
the board had to be reconfigured almost in last days before sending the job to the
fabrication house, since the required package was not at deliverable any more through
the distribution network in Germany. Many components had long delivery times.
Some very expensive parts, such as the ADCs, have been ordered as samples, until
after the verification, buying them in larger quantities becomes more plausible.

2.11.1 PCB Fabrication

The PCB job was sent to CONTAG9 fabrication house. The board consists of 6-
Layers, containing no blind or buried vias. Following are the physical specifications
of the board:

Layers 6

Material FR4

Copper 35µm

Finish HAL lead free

Track/Distance 150µm

Drill/Annular Ring 300µm/170µm

Number of Drills 620

Electrical Check Flying Probe

Solder Mask Top and Bottom, Green

Silkscreen Top and Bottom, White

Table 2.2: Physical Specifications of the Board.

9www.contag.de

18

2.11 Production

Figure 2.10: Top View of the Unpopulated Board.

The fabrication of the boards took 5 working days. They were sent promptly and
the boards had a good quality.

GERBER Data

The CAM job has been exported in the newer RS247-X format. This is sometimes
called extended GERBER10 or X-GERBER. These files contain the coordinates for
the photo plotter and other manufacturing information. Unlike the older version
where the aperture information are stored separately, in the newer version, these are
located in the CAM files.

10www.gerberscientific.com

19

2 Hardware design

Drill Data

EXCELLON11 file format has been chosen for the drill data. ”In electronics man-
ufacturing, an Excellon file is a text-based file format which is used to control the
actions of a CNC drilling machine, commonly used in the drilling of printed circuit
boards (PCB). The Excellon file format is a variant of standard RS-274C. It consists
of commands to instruct a CNC drilling machine to drill holes of specific diameters
at specific locations on a PCB.”12

2.11.2 Component Mounting

After the PCBs and the last parts arrived the boards were ready to be populated.
The paste mask which has been specially ordered according to the needs of GSI’s
internal automatic mounting facility arrived a couple of days later. The mask was
made of 100µm steel sheet. Both top and bottom sides of the PCB were placed on
the same mask mirrored in respect to each other, so that the solder cream could be
applied on the PCBs using only one side of the mask, therefore eliminating the need
to turn and cleanse the mask after application on each side.

Now the component coordinates and orientation had to be exported into a space-
separated and column-oriented text file. This format was suitable for the GSI’s
internal automatic mounting facility. For the prototyping purposes at GSI, usually
the PCB is populated only with the SMD parts. The rest of the elements had to be
mounted by the author. As it has always been, this too had been a time consuming
task.

2.12 PC Link: The UDL Board

For future expansion and testing purposes, a fast connection to personal computers
was needed. Soon it became obvious that USB connection is most appropriate for
such an application. The card will be inserted into the DSP-Link connector of the
FIB board, so that the FAB/FIB combination could be connected to the computer
and tested separately without being in the main control system. This adds to the
flexibility and has the advantage of ease in localisation of possible programming errors.

It should be remarked the production of the UDL board was outside the scope of
the thesis. At the time of completion of this thesis, the schematics, board outline,
connections and functionalities had been agreed upon.

11www.excellon.com
12Source: www.wikipedia.org

20

2.12 PC Link: The UDL Board

2.12.1 Circuit Description

Figure 2.11: The Schematics of the UDL Board.

USB FIFO

As it may be seen from figure 2.11, the USB FIFO chip FTD254RL from FTDI13 has
been used. It provides a parallel FIFO bidirectional data transfer interface with the
entire USB protocol being handled on the chip. The interface is easy-to-implement
on both computer and circuit side. The chip has been wired according to the data
sheet [24] for a self powered configuration. The rest is pretty straight forward. In
time, the existing library in GSI for an older version of the USB chip will be adapted
for use with the newer chip.

13www.ftdichip.com

21

2 Hardware design

Power Supply and Bus Drivers

The signals on the DSP Link of FIB have 220Ω pull up and 330Ω pull down resistors
each. The choice of the drivers was limited to those who are capable of delivering the
current needed to drive these signals. In consequence, the voltage regulator had to
provide all the current needed for the drivers and the FIFO chip. SN74LVT245B [15]
from TEXAS Instruments fulfilled our needs. It is an octal bus transceiver supporting
3.3V and 5V inputs, and it outputs to a 3.3V system.

LMS1587 from National Semiconductor Corporation14 in TO-263 package provides
the required current [8].

14www.national.com

22

3 Software Design

3.1 Introduction

The notion of software is usually interpreted differently in the literature. Since VHDL
is defined as a hardware description language, many do not consider the code written
in VHDL as software. Nevertheless, throughout this thesis the coding part has been
much softer than constructing the board itself. Herein, the term software is used to
represent the routines that were written for the programmable logic devices.

3.2 Behavioural Description

According to the plan, to the host system, FAB should look like a black box with
address, data and control bus. The different functionalities should then be accessible
via registers that are implemented inside the CPLD. This means for instance that
each ADC channel has it’s own value register. When the host system needs to read a
value from one of the ADCs, it puts the address of the register which corresponds to
the actual ADC value. The value is then made ready by the CPLD on the data bus.

R/W Adr. Name Description Default Val.

W 0x00 CTRL Control Register 0x4400

R 0x01 STAT Status Register Not Set

R 0x02 ADC1-VAL Value of the ADC on channel 1 Not Set

R 0x03 ADC2-VAL Value of the ADC on channel 2 Not Set

W 0x04 DAC1-VAL Value of the DAC on channel 1 0x0000

W 0x05 DAC2-VAL Value of the DAC on channel 2 0x0000

W 0x06 ADC1-CLKDIV Clock div. const. on ADC ch. 1 0x0002

W 0x07 ADC2-CLKDIV Clock div. const. on ADC ch. 2 0x0002

23

3 Software Design

W 0x08 DAC1-CLKDIV Clock div. const. on DAC ch. 1 0x0001

W 0x09 DAC2-CLKDIV Clock div. const. on DAC ch. 2 0x0001

Table 3.1: Registers implemented inside CPLD.

There are more such registers programmed into the CPLD. Please refer to table
3.1 for a list of implemented registers. Using such register based organisation, future
expansions are easy. As an example of a possible application, the automatic gain
control or the automatic calibration could be named. In case of automatic calibration,
some more registers are needed to handle the gain and offset values for each channel.
Even the control register will be reset to it’s default value and hence the global reset
bit. So there is no need that the user does this manually. Table 3.1 also shows the
default values of the registers used for the prototype boards which had 100MSPS
ADCs and 210MSPS DACs.

All registers are 16-bit wide. The two most significant bits of the value registers of
ADCs and DACs have been permanently set to zero, since these devices have a 14-bit
wide data bus. Some registers are read-only whereas others are not. The value of all
registers could nonetheless be read from the host system.

3.2.1 Special Registers

As shown in figure 3.1, the control register contains special purpose bits. Bit 2 is the
global reset. If the host system writes a 1 to this bit, FAB will restart, setting all
registers to their default values.

24

3.2 Behavioural Description

0

123

SW2 SW1

C

A

L

1

R

S

T

0 123 0

SHDN

123

C

A

L

2

456789101112131415

A

D

C

1

D

A

C

1

D

A

C

2

A

D

C

2

Control Register

0

C

A

L

3

O

T

R

1

123456789101112131415

Status Register

O

T

R

2

Figure 3.1: Control and Status Registers Implemented Into the CPLD.

The eight most significant bits are assigned to the two analogue switches. Writing
to these bits changes the switching state of these ICs. The possible values are listed
in table 3.2.

Value Description

0x01 Connect ADC to 2.5V Reference

0x02 Connect ADC to GND

0x04 Default Signal Connection

0x08 Connect ADC to DAC output of the opposite channel

Table 3.2: Possible Values for the Analogue Switches.

The first two switch values are used to start a calibration operation for each chan-
nel. The last value is reserved for future applications such as enhanced AC signal
calibration (see section 2.5). The default signal connection is achieved by writing

25

3 Software Design

0x04 to the respective nibble.

Bit 4 to 7 of the control register sets each ADC or DAC of each channel in it’s
power down mode (NAP Mode for ADC and SLEEP Mode for DAC respectively). In
these modes, each device consumes much less power than it’s normal operation state.

The status register on the other hand is designed for read only operation, i.e.
signalling purposes. Bit 2 and 3 are out of range indicators. CPLD sets these bits
when the ADC from the respective channel falls into an overflow state. This happens
when the signal applied to the ADC is greater than it’s allowed input range. The
first bit of this register is reserved for calibration operations.

3.2.2 Reset Generation

As stated before (see section 3.2.1) it is possible to reset FAB by writing a logic high in
the first register’s bit 3. But since the design is based on finite state machines (FSM),
there must be a way to reset the main FSM. This is done using a simple counter.
It counts some clock cycles before asserting an active high on the global reset signal
which is used throughout the project as the reference reset. In this project reset
signals are always active high.

3.2.3 Synchronisation

When two FSMs on both sides need to communicate, all delays throughout the paths
including those needed for the communication protocol and those caused by PCB
tracks need to be considered.

26

3.2 Behavioural Description

CPLD FPGA

CLK

CLK

MAIN CLK

FF

FF FF

FF

Figure 3.2: Crossing clock domains.

Crossing clock domains is the magic phrase. Figure 3.2 demonstrates a cure. All
signals travelling from FIB reach the CPLD some time later because some of them
like the signals of the data bus are routed through an external buffer and some like
the signals of the address bus are not. Since the FPGA on the main board provides
the clock signal for the CPLD, the CPLD must synchronise the arrived data using
it’s local clock, which is in turn a delayed version of the original FPGA clock. The
reverse is also true. Signals travelling back to FPGA need to be synchronised with
the local clock of the FPGA. Usually one flip flop is enough to achieve the desired
behaviour. But in practical implementations of the code in the CPLD, two flip flops
are used. The reason behind this is that in case the first FF goes into metastability,
i.e. set-up and hold times are not met due to fast data transfer rate, the second flip
flop avoids the output of the first metastable FF to be carried forward into the circuit
and hence avoids the failure of the complete circuit.

3.2.4 The Bidirectional Bus Driver

The bus driver plays a central role in the project. Since one data bus is used as a
bidirectional link to connect FPGA and CPLD together, one of such entity is needed

27

3 Software Design

on either side of the bus.

BUS_IO

DAT_I

DAT_O

Z
0

1

DIRECTION

Figure 3.3: The Bus Driver.

The inout Data Type

The inout data type in VHDL is reserved for bidirectional signals or vectors. In
order to make use of such data types one should implement a conditional assignment.
This means that according to the state of a third control signal, the signal which is
defined as inout, is assigned to an in or an out source or sink respectively1. As it
may bee seen from figure 3.3 one end of the bus is put to high-Z state when the bus
is used in the read direction, otherwise it is driven with logic. The data travelling on
the bus, regardless of which direction it has, could be read from the bus. This is much
desirable in systems like this with slave configuration being set in an always-listening
mode, unless they are requested to send data.

3.3 CPLD Code Elements

Following are some code elements that are implemented inside the CPLD. Most of
these appear as a single VHDL entity in a separate file on disk. It has been tried to

1Please refer to [18] for more information on the bidirectional data type

28

3.3 CPLD Code Elements

encapsulate functionalities in entities for use in future applications.

3.3.1 The Register File

The structure of the registers in CPLD has already been mentioned in section 3.2.
Figure 3.4 demonstrates the VHDL entity that contains the register file and provides
connectivity to other entities that make use of the registers. In this case, the top level
entity instantiates the register file entity.

REG_IO

RESET

RnW

STROBE

(ACK)

CLK_I

.

.

.

REG 0

REG 1

REG 2

REG n-1

ADR_I

DAT_O

DAT_I

Figure 3.4: Block Diagram of the Register File Entity .

3.3.2 Clock Dividers

Since the sampling clock rate of each ADC or DAC of each channel could be changed
upon request from the host system by writing to the respective register, the need for
clock division was apparent. The clock divider entity consists of an input, an output
and a counter. By setting the division constant, clock divider toggles it’s output each
time the counter overflows. Possible values are listed in table 3.3.

29

3 Software Design

Value Description

0 Output Always Set to GND

1 Route the Input directly to the Output

2 Divide Input Clock Freq. by 2
...

...

n Divide Input Clock Freq. by n

Table 3.3: Possible Count Constants for the Clock Divider Entity.

3.3.3 Top Level Entity

The CPLD top level entity is shown in block diagrams in figure 3.5. Here the actual
connections to the board signals are made. On one side, it has connections to the data
and address bus and control signals, and on the other side it associates the relevant
registers of the register file entity to ADCs and DACs of each channel.

30

3.4 CPLD Test Routines and Simulation

ADR_I

RnW

STROBE

(ACK)

CLK_I

BUS_IO
BUS

DRIVER

REGISTER

FILE

RST GEN

CLK_IRST_I

CLK-DIV

CLK-DIV

CLK-DIV

CLK-DIV

DAC1

DAC2

ADC1

ADC2

DAC1-CLK

DAC2-CLK

ADC1-CLK

ADC2-CLK

Figure 3.5: Block Diagram of the main Code in CPLD.

Also, the clock dividers, a bus driver and a reset generator are instantiated. It
should be noted that the acknowledge signal (ACK) has been reserved for future
extensions and is not used for the implemented communication protocol.

3.4 CPLD Test Routines and Simulation

Some routines have been written, to allow evaluation and test of the boards. Here is
a list:

3.4.1 CPLD Digital Short

As the name implies, this test implemented a direct connection between ADC and
DAC of each channel. Using this routine the signal is digitized by the ADC and then
converted back to analogue by the DAC. Clock dividers have been used to feed the
ADC with 100MHz. The DACs were fed with a direct connection of the main clock
(200MHz).

31

3 Software Design

This routine proved to be very useful for testing the radio frequency characteristics
of the board which are presented in chapter 4. A similar routine has been written for
the FPGA on the host board, which is thoroughly described in section 3.5.2.

3.4.2 CPLD Sawtooth Generator

DAC channels have been tested directly by counting a variable. After overflow the
signal begins counting from -0x2000 up to +0x1FFF again. This produces a sawtooth
shape on the output. Note that all numbers are in 2’s complement format.

3.4.3 Test Benches

Each entity has been tested using a dedicated test bench. Even the top level entity
has been instantiated as a component and has been routed to the so called test bench
signals which are needed for the simulation. As an example a simulation clock, a
simulation reset signal and data communication signals are often needed. Then the
behaviour of the entity could be simulated and the signal transitions and values of
vectors could be seen in the simulation window.

3.5 FPGA Code Elements

Code has been written to test the communication protocol on the FIB side i.e. on
the FPGA (see figure 3.6). Later this code could be adapted for use as a template
for future FIB applications. This is obvious since the FPGA board acts as a central
data highway and the link to the CPLD board is only one of it’s many interfaces.

32

3.5 FPGA Code Elements

ADR_O

RnW

STROBE

(ACK)

CLK_I

EXT_DRV_EN

BUS_IOBUS DRIVERDIGITAL

SHORT

RST GEN PLL

CLK_IRST_I

50 MHz

200 MHz

Figure 3.6: Block Diagram of the main Code in FPGA for test purposes.

A similar reset generation scheme has been used for the FPGA (see section 3.2.2).

3.5.1 Internal Phase Locked Loop

The used FPGA on the FIB board is of type EP1C6Q240C8 form the Cyclone family
of ALTERA’s FPGAs. It features two internal phased lock loops (PLL) that could be
programmed to multiply the frequency of the clock source. The activation is usually
done using part dependant libraries. Generation of such a PLL entity is made simple
using ALTERA’s integrated development environment (IDE).

3.5.2 FPGA Digital Short

This routine is similar to the digital short circuit routine implemented in the CPLD
as described in section 3.4.1. The difference is that now the CPLD is programmed
to perform the full communication protocol, and the FPGA reads data and writes it
back to the CPLD board. This routine proved the successful bidirectional operation

33

3 Software Design

of the communication link. The block diagram of the digital short entity in the FPGA
is depicted in figure 3.7.

ADR_O

RESET

RnW

STROBE

(ACK)

CLK_I

DAT_O

EXT_DRV_EN

DAT_I

Local Variable

Figure 3.7: Block Diagram of the Digital Short Circuit Entity.

Figure 3.8 shows the state diagram of a complete cycle of reading from and writing
to the CPLD board. For a better view, signal transition names have been omitted
from the diagram.

34

3.5 FPGA Code Elements

STROBE <= ’0’
RnW <= ’1’
ADR <= 0
DIR <= B to A
DIR <= D to C

STROBE <= ’0’

DIR <= B to A
ADR <= Some Value

DIR <= D to C

STROBE <= ’1’

(DIR <= F to E)
RnW <= ’1’

WAIT

local_var <= bus_io

STROBE <= ’0’

(DIR <= E to F)
ADR <= New Value

RnW <= ’1’

DIR <= C to D

STROBE <= ’1’

DIR <= A to B

bus_io <= local_var

WAIT

READ_PRE_1

READ_PRE_2

READ_PRE_3

READ

WAIT

WAIT

WRITE_PRE_1

WRITE_PRE_2

WRITE_PRE_3

WRITE

RESET

START

STROBE <= ’0’

Figure 3.8: State Diagram of the Digital Short Circuit Entity.

35

3 Software Design

The reset state sets the CPLD board to listening mode. It should be remarked
that as in figure 3.9 the second bus driver is a real IC residing as a component on
the FPGA board. In the forthcoming states, the direction of the three bus drivers is
changed sequentially before the data is read in the READ state.

Change of directions should be made in that sequence since otherwise two outputs
will be shorted together and the circuit may get warm. By the time of writing data,
the same procedure must be followed, only backwards.

RnW

STROBE

(ACK)

SIM_CLK

CLK

ADR

IO IO

ADC1

Const.

ADC2

Const.

DIR

FPGA CPLD

74LVTH16245

A FDCB E

Figure 3.9: Overview of Overall System Components.

The external driver is of type 74LVTH16245 from TEXAS Instruments. The wait
states are needed for compensating the delays of this IC driver. In the actual imple-
mentation, only one wait state exists. The calling state stores the name of the next
state in a variable before calling the WAIT state. The state machine then jumps to
that specified sate after the waiting time is over.

Using a 200MHz clock, the maximum data transfer rate possible on the 16-bit wide
bus is 3.2 Gigabits per second. In practical applications, this data rate is limited by
delays caused by read and write operations i.e. changing address and control signals.

36

3.6 Simulation Test bench

3.5.3 FPGA Sawtooth Generator

Again similar to the sawtooth generator which had been written in the CPLD before,
here the same routine has been initiated from within the FGPA, whereas the CPLD
was programmed with the full protocol implementation. The test was successful.

3.6 Simulation Test bench

One of the most difficult stages of programming has been the overall simulation of
FIB and FAB, i.e. FPGA and CPLD codes inside one single test bench entity. This
test bench consisted of the two top level entities one of them being the full protocol
implementation of the CPLD and the other the FPGA digital short top level entity.
A third entity was also implemented in this test bench. It was the simulation model
for the external 74LVTH16245 driver where it’s timing behaviour was simulated. This
made it possible to set delay parameters or operate the driver as ideal.

TEST BENCH BUS

FROM_BUSFROM_BUS

TO_BUS TO_BUS

WRITE_ENWRITE_EN

CPLD FPGA

Figure 3.10: IO Bus in the Simulation Test Bench.

The clue for success was assigning two simulation buses to the two sides of the
external driver, one being the connection to the FPGA and the other the connection

37

3 Software Design

to the CPLD. Since the entities have used the bi-directional data type inout at
their interfaces, the simulation buses had to have the same switching characteristic
on all their four connection points to the FPGA, CPLD and both of the external
driver’s ports. After understanding this point, the author learned even more about
the structure of the VHDL language. Figure 3.11 shows a screen-shot of the overall
simulation.

Without this overall simulation, success of this thesis could not have been bro-
ken through; an important argument regarding the importance of the simulation in
modern digital designs.

38

3.6 Simulation Test bench

Figure 3.11: Overall System Simulation up to 500ns in Simulator.

39

4 Measurements and Outcomes

4.1 Introduction

After the production, measurements has to carried out to define the range of working
parameters and characteristics of the boards. For the test purposes, the digital short
program inside the CPLD has been used, since this together with a program on FPGA
which provided a 200MHz clock using its internal PLL, made it possible to drive the
components on the board at their highest speed. This routine causes the board to
sample the signal applied to its ADC input with 100MHz and return this sampled
data to the respective DAC channel, where it is converted back to an analogue signal.
Such configuration allowed the author to specify the radio frequency characteristics
of the design.

4.2 Thermal Issues

That electronic components get warm, is nothing new. But a sound operation is only
guaranteed when the components do not get warmer as is specified in their absolute
maximum ratings section of their data sheet. Yet it is better not get near these values
either and operate the component at a much less temperature.

The printed circuit board itself acts as a heat sink. This fact is even used inten-
tionally in some IC packages where a large ground pad exists at the bottom side.

Figure 4.1 shows the heat flow diagram of the LM7805 fixed voltage regulator used
on the board (IC2 on the schematics) and which is the warmest of all components.
It has a TO-220 housing. A maximum junction temperature of 150◦C is specified for
this package. Also, according to the data sheet [7], the thermal resistance of junction
to case of the TO-220 package is typically 4◦C/W junction to case and 50◦C/W case
to ambient. Since the regulator is mounted on the PC-Board, the value of case to
ambient is not valid any more. This value was measured using a digital thermometer.

41

4 Measurements and Outcomes

4°K/W 34°K/W

300°K ~ 27°C

deltaT = 6°K deltaT = 51°K

1.5 W

351°K ~ 78°C357°K ~ 84°C

150°C - 84°C = 66°C Max. Env. Temp.

Figure 4.1: Heat Flux Diagram.

On the summer day where the measurement was carried out, the room tempera-
ture was 27◦C. The digital thermometer showed a maximum value of 78◦C on the
IC. So as shown in the figure 4.1, the case to ambient temperature resistance when
the IC was mounted was therefore 34◦C/W. Calculating the results at the same op-
erating current, we have approximately 84◦C for the junction temperature which is
much less than the allowed 150◦C. Using this calculation the maximum environment
temperature can also be defined as 66◦C (see figure 4.1).

Note that the operating current is important. In this example, the LM7805 is
supplied from a +15V source, at 150mA it dissipates (15V − 5V) × 0.15A = 1.5W
which is also shown in figure 4.1. So with a junction to case thermal resistance of
4◦C/W, the change in temperature could be calculated as follows:

∆T = 1.5W × 4◦C/W = 6◦C

The same calculation is done for other voltage regulators.

With:

TJ,Max Maximum Allowed Junction Temperature

TJC Thermal Resistance of Junction to Case

TC Temperature of Case

42

4.3 Component Value Adjustment

TE,Max Maximum Allowed Environment Temperature

N/A Not available or unknown from Data Sheets

Similar measurements are summarized in table 4.2.

Designator Part TJ,Max TJC TC TE,Max

IC2 LM7805 150◦C 4◦C/W 78◦C 66◦C

IC2 LM7905 150◦C 4◦C/W 67◦C 77◦C

IC27 LM1587A 150◦C 0.24◦C/W 64.9◦C 85◦C

IC28 LM1587A 150◦C 0.24◦C/W 55.4◦C 94.5◦C

IC13 AD9744 150◦C N/A 56.2◦C ≈ 80◦C

IC15 LTC2255 N/A N/A 55◦C ≈ 80◦C

IC1 EPM1270T144 N/A 10.5◦C/W 57.4◦C ≈ 88◦C

Table 4.2: Temperature Values of the Components.

4.3 Component Value Adjustment

The adjustment of the component values that control the signal amplitude throughout
the signal path is application dependant. This includes ADC and DAC output values.
At the moment these values are set to a default of approximately 1VPP for the full
output span. More precise values will be set later after each application is studied
further.

4.4 Oscillography

As a test of the DAC outputs of the DC-Coupled board, the sawtooth generator
routine has been loaded into the CPLD. This implements a 200MHz 14-bit counter.
Figure 4.2 shows the sawtooth signal on the oscilloscope with 200mV and 10µS per
division.

43

4 Measurements and Outcomes

Figure 4.2: DAC1 Output of the DC-Coupled Board as a Sawtooth Generator.

As stated in the introduction section, the digital short routine has been loaded onto
the CPLD to test different channels on the DC-Coupled and the AC-Coupled boards.

A single pulse of a 6MHz sine wave has been applied to the ADC connector. As
depicted in figure 4.3, an overall delay of about 135nS exists for the signal path. In
this diagram the signal from the generator is drawn in red, after passing all compo-
nents once in the signal path, it is available again as an analogue signal on the DAC
connector which is drawn in blue in this diagram on the oscilloscope with 200mV and
50nS per division.

44

4.4 Oscillography

Figure 4.3: DAC1 Output to 0dBm 6MHz Sine Wave Pulse Input at ADC1 of the
DC-Coupled Board (Top) and the AC-Coupled Board (Bottom).

45

4 Measurements and Outcomes

Figure 4.4: DAC1 Output to 0dBm 1MHz Sine Wave Input at ADC1 of the DC-
Coupled Board (Top) and the AC-Coupled Board (Bottom).

The same measurement has been carried out using a continuous 1MHz sine wave
instead of a single pulse. This is shown in figure 4.4. The oscilloscope is adjusted to
200mV and 100nS per division.

46

4.4 Oscillography

Figure 4.5 shows the same measurement with a 10MHz sine wave as a comparison,
with 200mV and 20µS per division.

Figure 4.5: DAC1 Output to 0dBm 10MHz Sine Wave Input at ADC1 of the DC-
Coupled Board (Top), the AC-Coupled Board (Bottom).

47

4 Measurements and Outcomes

Other channels of other boards have also been tested. They almost had the same
quality.

4.5 Spectrography

Spectral characteristics of the boards have been tested using a spectrum analyser.
All signals form the generator have been set to 0dBm.

It was important to measure the output noise floor, since this it plays a significant
role in the overall system quality later in the digital control application. The output
of the DACs have been measured without any signal applied to their respective ADC
channel.

Figure 4.6: DAC1 Output without Signal at ADC1 of the AC-Coupled Board, Indi-
cating the Output Noise Floor.

As it may bee seen from figure 4.6, many signal and noise components exist on
the output, specially that of the 200MHz clock, but all noise peaks reside under
approximately -63.5dB which is a very satisfactory result.

48

4.5 Spectrography

Figure 4.7: Signal Generator Output Alone at 1MHz (Top) and 20MHz (Bottom)
0dBm Sine Wave.

In order for the measurements to be judged correctly, the output of the signal
generator has been measured alone so that the effect of the board is easier to figure
out. Figure 4.7 shows this.

49

4 Measurements and Outcomes

Figure 4.8: DAC1 Output to 0dBm 1MHz (Top) and 20MHz (Bottom) Sine Wave
Input at ADC1 of the AC-Coupled Board.

Comparing this to figure 4.8 shows that at 20MHz, some noise is present, more
remarkable is the generator noise which is fed through the output. But all the levels
are still below -50.2dB. In more practical signal frequencies, like the figure on top,
the noise level could almost be ignored.

50

4.5 Spectrography

Figure 4.9: MON2 Output to 0dBm (Top) and -10dBm (Bottom) 18MHz Sine Wave
Input at ADC2 of the DC-Coupled Board.

As an example of the quality of the monitor output of the board, MON connector
of the second channel on the DC-coupled board has been connected to the spectrum
analyser. The 0dBm signal at 18MHz could be seen on 18, 36, 54, 82 and 118 MHz
as small peaks. A marker has been set on 100MHz for ease of measurement. For

51

4 Measurements and Outcomes

a signal with a power level of 0dBm the peaks lie under 44.7dB. For more practical
signal power like -10dB, the peaks reside below -53.8dB. This is illustrated in figure
4.9. Other channels of other boards behave almost the same.

4.6 Signal analysis using a Vector Network Analyser

The vector network analyser (VNA) has been used to perform a transmission test on
the channels. The VNA has been set to sweep slower than the delay of the circuit, so
that the measurement is carried out correctly. The following graphs show magnitudes
versus frequency.

52

4.6 Signal analysis using a Vector Network Analyser

Figure 4.10: MON1 Output to ADC1 Input up to 200MHz, 10dB/Div. (Top) and
up to 50 MHz, 3dB/Div. (Bottom) of the DC-Coupled Board.

Figure 4.10 shows the MON output of the first channel on the DC-coupled board.
The whole channel shows low-pass characteristics. In the range of the signals of
interest, only about 1dB attenuation is visible.

53

4 Measurements and Outcomes

Figure 4.11: DAC1 Output to ADC1 Input up to 100MHz, 10dB/Div. (Top) and up
to 10 MHz, 3dB/Div. (Bottom) of the DC-Coupled Board.

Figure 4.11 shows a repeated experiment, this time using the DAC output of the
channel.

54

4.6 Signal analysis using a Vector Network Analyser

Figure 4.12: MON1 Output to ADC1 Input up to 100MHz, 10dB/Div. (Top) and
up to 50 MHz, 3dB/Div. (Bottom) of the AC-Coupled Board.

The same experiment is also done with the MON output of the first channel on the
AC-coupled board which is shown in figure 4.12.

55

4 Measurements and Outcomes

Figure 4.13: DAC1 Output to ADC1 Input up to 100MHz, 10dB/Div. (Top) and up
to 10 MHz, 3dB/Div. (Bottom) of the AC-Coupled Board.

Since the AC-coupled board has almost band-pass characteristics, the last experi-
ment defined a lower corner frequency for the channel. Figure 4.13 shows that signals
above approximately 500kHz could be used with this board.

56

4.7 Technical Specifications of the Design

4.7 Technical Specifications of the Design

After the measurements, the following features could be summarized in table 4.3.

Parameter Condition Min. Typ. Max. Unit

τCH 6MHz Single Pulse, DC-Coupled 135 nS

τCH 6MHz Single Pulse, AC-Coupled 130 nS

ηDAC DC-Coupled -57.1 dBm

ηDAC AC-Coupled -63.5 dBm

∆GDAC 0 → 10MHz, DC-Coupled ≈ 1.5 dB

∆GDAC 0 → 10MHz, AC-Coupled ≈ 0.5 dB

∆GMON 0 → 10MHz, DC-Coupled ≈ 1 dB

∆GMON 0 → 10MHz, AC-Coupled ≈ 1 dB

SFDRDAC 20MHz Input Sine Signal 50 dB

SFDRMON 18MHz Input Sine Signal 45 dB

fC AC-Coupled ≈ 0.5 ≈ 25 MHz

IS,+15V DAC at 200MHz, ADC at 100MHz 140 150 160 mA

IS,−15V DAC at 200MHz, ADC at 100MHz 90 100 110 mA

IS,+5V DAC at 200MHz, ADC at 100MHz 505 510 515 mA

θE 65 ◦C

Table 4.3: Technical Specifications of the Design.

With:

τCH End to End Channel Delay: ADC → DAC

ηDAC DAC Output Noise Floor

∆GDAC Gain Variation: ADC → DAC

∆GMON Gain Variation: ADC → MON

SFDRDAC DAC Output Spurious Free Dynamic Range

SFDRMON MON Output Spurious Free Dynamic Range

fC Corner Frequency of Band Pass Characteristics

57

4 Measurements and Outcomes

IS Supply Current

θE Allowed Environment Temperature

58

5 Conclusion

In this thesis, the author tried to cover the most important steps towards designing a
radio frequency high-speed data conversion interface for use in digital control systems.
During this work, the author was introduced to numerous new concepts and methods
in high-speed circuit design.

The existing ADC/DAC board was tested using some routines in VHDL. The
author became familiar with the design environment and gained programming skills.

The libraries needed for a full redesign of the board were generated and checked.
Components’ data sheets have been studied thoroughly. The Schematics of the new
design have then been drawn iteratively to ensure best element configuration for a
well-thought circuit.

The Layout of the board has then been arranged according to the plans for ground-
ing and power supply schemes. Different layers have then been assigned to power
signals and sliced to form different power regions. The elements have been placed on
their final positions and the board has then been routed manually.

The author wrote some testing routines for the board itself and the communication
link to the host system. Also a first fully functioning version of the CPLD-side code for
the communication protocol was implemented. Using these routines the parameters
of the board could be measured. During these tests the characteristics of the board
have been figured out.

Following improvements might be needed:

Design Aspects

– Placing the connectors for the AGC application on ADC inputs.

– Preparing the board for series production.

Mechanical Aspects

– Increasing annular rings for some footprints.

– Better adjustment of the drill sizes of some footprints.

– More distance between some polygons.

59

5 Conclusion

The author will take part in the future applications of this design in a continued
cooperation with GSI.

60

Bibliography

[1] AN-280, Mixed Signal Circuit Techniques. Analog Devices Application Notes,
One Technology Way, P.O Box 9106, Norwood, MA 02062-9106.

[2] AN-282, Fundamentals of Sampled Data Systems. Analog Devices Application
Notes, One Technology Way, P.O Box 9106, Norwood, MA 02062-9106.

[3] AN-75, High-Speed Board Designs. ALTERA Corporation, Application Note,
101, Innovation Drive, San Jose, CA 95134, NOV 2001.

[4] J. Ardizzoni. A Practical Guide to High-Speed Printed-Circuit-Board Layout.
Analog Devices, Analog Dialogue, One Technology Way, P.O Box 9106, Nor-
wood, MA 02062-9106, SEP 2005.

[5] P. Brokaw. AN-202, An IC Amplifier User’s Guide to Decoupling, Grounding
and Making Things Go Right for a Change. Analog Devices Application Notes,
One Technology Way, P.O Box 9106, Norwood, MA 02062-9106.

[6] P. Brokaw. AN-342, Analog Signal-Handling for High Speed and Accuracy. Ana-
log Devices Application Notes, One Technology Way, P.O Box 9106, Norwood,
MA 02062-9106, NOV 1977.

[7] National Semiconductor Corporation. LM78XX Datasheet. MAY 2000.

[8] National Semiconductor Corporation. LMS1585A Datasheet. JUN 2005.

[9] N. Gray. The problem of ADC and mixed-signal grounding and layout for dy-
namic performance while minimizing RFI/EMI. National Semiconductor Corpo-
ration, Analog Edge Monthly, 2900 Semiconductor Dr., P.O. Box 58090, Santa
Clara, CA 95052-8090, NOV 2004.

[10] M. Kumm H. Klingbeil. SIS18 Regelsystemtopologie. Geselschaft für Schwerio-
nenforschung mbH, Darmstadt, FEB 2006.

[11] Analog Devices Inc. AD8330 Datasheet. 2004.

[12] Analog Devices Inc. ADR431 Datasheet. 2004.

[13] Analog Devices Inc. AD8131 Datasheet. 2005.

61

Bibliography

[14] Analog Devices Inc. AD9744 Datasheet. 2005.

[15] Texas Instruments Incorporated. SN74LVTH245B Datasheet. JAN 1995.

[16] Texas Instruments Incorporated. THS4001 Datasheet. MAR 1999.

[17] Texas Instruments Incorporated. SN74LVTH16245A Datasheet. OCT 2005.

[18] B. Schwartz J. Reichardt. VHDL-Systhese, Entwurf digitaler Schaltungen und
Systeme. Oldenbourg Wissenschaftsverlag GmbH, München, 2003.

[19] Dr. H. Johnson. Multiple ADC Grounding. Signal Consulting Inc.,
http://www.sigcon.com/, 2006.

[20] J. Jöst. Entwicklung eines ADC-DAC Boards für digitale Regelungssysteme in
einer DSP-Umgebung. Diplomarbeit, Fachhochschule Bielefeld, Bielefeld, MAY
2006.

[21] Dr. H. Klingbeil. Präsentation zu ”Digitale Kavitätensynchronisation” IAP UNI
Frankfurt. Geselschaft für Schwerionenforschung mbH, Darmstadt, NOV 2004.

[22] M. Kumm. Hardware- und Software-Entwicklung einer Mikrocontroller-
Leiterplatte für eine automatische Verstärkungsregelung. Diplomarbeit, Fach-
hochschule Fulda, Fulda, JUN 2003.

[23] K. Kundert. Power Supply Noise Reduction. The Designer’s Guide Community,
ken@designers-guide.org, MAR 2005.

[24] Future Technology Devices International Ltd. FT245R Datasheet. JAN 2006.

[25] G. Schreiber. Technical Concept Barrier Buckets. Geselschaft für Schwerionen-
forschung mbH, Darmstadt, SEP 2004.

[26] A. Sherry. AN-611, 50 Hz/60 Hz Rejection on Sigma-Delta ADCs. Analog
Devices Application Notes, One Technology Way, P.O Box 9106, Norwood, MA
02062-9106.

[27] Linear Technology. LTC2249 Datasheet. 2004.

[28] Inc. Vishay Siliconix, Vishay Intertechnology. DG641 Datasheet. SEP 2004.

[29] J. Bryant W. Kester and M. Byrne. MT-031: Grounding Data Converters and
Solving the Mystery of ”AGND” and ”DGND”. Analog Devices Technical Ar-
ticles, One Technology Way, P.O Box 9106, Norwood, MA 02062-9106, FEB
2006.

62

A Used Abbreviations

ADC Analogue to Digital Converter

AGC Automatic Gain Control

BNC Bayonet Neill Concelman

CAD Computer Aided Design

CAM Computer Aided Manufacturing

CNC Computer Numerical Control

CMRR Common-Mode Rejection Ratio

CPLD Configurable Programmable Logic Device

CSS Cascading Style Sheets

DAC Digital to Analog Converter

DSP Digital Signal Processor

EDA Electronic Design Automation

EPS Encapsulated Post Script

FAB FIB Adapter Board

FAIR Facility for Antiproton and Ion Research

FF Flip Flop

FIB FPGA Interface Board

FIFO First In First Out

FPGA Field Programmable Gate Array

FR4 Flame Resistant 4

FSM Finite State Machine

GSI Geselschaft für Schwerionenforschung mbH

63

A Used Abbreviations

GNU GNU’s Not Unix (recursive acronym!)

HAL Hot Air Leveling

HPGL Hewlett-Packard Graphics Language

IDC Insulation-Displacement Connector

IDE Integrated Development Environment

IC Integrated Circuit

MSPS Mega Samples per Second

OTR Out of Range

PCB Printed Circuit Board

PLL Phased LockLoop

PP Peak to Peak

RF Radio Frequency

RMS Root Mean Square

RS-274C Recommended Standard -274C

SMD Surface-Mount Devices

SME Small and Medium-sized Enterprises

SFDR Spurious Free Dynamic Range

SVG Scalable Vector Graphics

TO-220 Transistor Outline -220

TO-263 Transistor Outline -263

TQFP Thin Quad Flat Package

UDL USB DSP Link

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VHSIC Very-High-Speed Integrated Circuit

VGA Variable Gain Amplifier

VNA Vector Network Analyser

XML Extensible Markup Language

64

B Used PC Software

Following is a list of PC software which has been used to prepare this thesis. It
has been tried to use free/open source software wherever possible. This appendix
provides a small introduction with the purpose of promoting the use free software in
educational and industrial environments.

B.1 EDA

This section introduces the software used for preparation of the board, simulation or
programming.

B.1.1 Cadsoft EAGLE

According to the website of Cadsoft, EAGLE is ”an easy to use, powerful and afford-
able schematic capture and printed circuit board design package that gets the job
done”1. It includes solutions for PCB design, including Schematic Capture, Board
Layout, and an Autorouter.

EAGLE has a free light version for personal non-profit use limited to boards with
dimensions less than 100mm × 80mm. At GSI, the author used a full licensed version
without limitations. The author recommends EAGLE for small and medium-sized
enterprises (SME) and for research institutions. This software works also under Unix-
like operating systems.

B.1.2 GraphiCode GC-Prevue

Graphicode provides a free viewer for the production data. ”GC-Prevue is the in-
dustry standard software for viewing and printing electronic manufacturing data.
GC-Prevue reads all of the common CAD generated electronic manufacturing out-

1Source: www.cadsoft.de

65

B Used PC Software

puts, including Gerber-X (RS-274X), Gerber-D (RS-274D), DPF (Barco), Excellon,
Sieb & Meyer, HPGL, and HPGL2.”2

B.1.3 ALTERA Quartus II

Quartus II Web Edition Software is the free version of the Quartus II family of
design software provided by ALTERA for use with programmable logic made by
this manufacturer. It features different analysis modes, VHDL and Verilog editor,
compiler, simulator, fitter, optimizer and programmer3.

B.1.4 ModelSIM Xilinx Edition

Instead of using the internal simulator of Quartus II Web Edition software, the author
used ModelSIM Xilinx Edition which is a free version of the ModelSim family of
products from Mentor Graphics4. The free version is usually enough for small and
middle-sized projects. The only limitation is the lack of possibility to simulate part
specific libraries that are provided by the IC manufacturer. As an example, the
internal PLL of the FPGA could not be simulated using the free version. But in
this case this was really not needed. For simulation of more complex designs where
the user implements the specific libraries to activate special functions (also known as
mega-functions in ALTERA’s products) such as internal multipliers or flash memories,
the free version of ModelSim is not sufficient.

B.1.5 GNU Emacs

Almost all the code has been written in GNU Emacs5. When set to its vhdl-mode,
this editor is the ultimate solution for writing VHDL code. This editor is available
under today’s popular operating systems.

B.2 Text Processing: LATEX

The typesetting of this document has been done with LATEX, to be more precise the
TeTeX6 distribution which is usually freely available under Linux and other Unix-like

2Source: www.graphicode.com
3More information on ALTERA’s products can be found at www.altera.com
4www.model.com
5www.gnu.org/software/emacs/
6www.tug.org/tetex/

66

B.3 Graphic Software

operating systems or under CygWIN7.

B.3 Graphic Software

The preparation of diagrams and other graphics throughout this document wouldn’t
be possible without the correct tools. Following are a set of free software that has
been used. All of them are available under popular operating systems.

B.3.1 InkScape

”Inkscape is an Open Source vector graphics editor. The main goal is to create a
powerful and convenient drawing tool fully compliant with XML, SVG, and CSS
standards. It also aims to maintain a thriving user and developer community by
using open, community-oriented development.”8

B.3.2 Dia

”Dia can be used to draw many different kinds of diagrams.”9 It is easy to use and
exports directly to EPS and SVGformat which is desired for embedding in a LATEX
document or processing further in InkScape (See section B.3.1).

B.3.3 The GIMP

”GIMP is the GNU Image Manipulation Program. It is a freely distributed piece of
software for such tasks as photo retouching, image composition and image authoring.
It works on many operating systems, in many languages.”10

7www.cygwin.com
8Source: www.inkscape.org
9Source: www.gnome.org/projects/dia/

10Source: www.gimp.org

67

C CPLD Code

The following is the code written for the CPLD. Please note that some entities have
been used also for the FPGA. Test benches to the respective code has been omitted
here.

--
-- 16-bit Bus driver with Tri State outputs
-- 20.07.2006/sh
--

library ieee;
use ieee.std_logic_1164.all;

entity busdriver is

port (
en_write_to_bus : in std_logic; -- enable the buffer
data_bus : inout std_logic_vector (15 downto 0); -- Bus connection
data_to_bus : in std_logic_vector (15 downto 0); -- data written into the bus
data_from_bus : out std_logic_vector (15 downto 0) -- data read from the bus
);

end busdriver;

architecture busdriver_arch of busdriver is

begin -- busdriver_arch

data_bus <= data_to_bus when en_write_to_bus = ’1’ else (others => ’Z’);
data_from_bus <= data_bus;

end busdriver_arch;

--
-- clock divider
-- 21.07.2006/sh
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity clk_divider is

69

C CPLD Code

generic (
clk_divider_width : integer := 16); -- Bit Width of the clock divider

port (
clk_div : in std_logic_vector (clk_divider_width - 1 downto 0); \
-- clock division constant
rst_i : in std_logic; -- async reset in
clk_i : in std_logic; -- clk input
clk_o : out std_logic); -- clk out

end clk_divider;

architecture clk_divider_arch of clk_divider is

signal clk_cnt : integer range 0 to 2**clk_divider_width - 1; \
-- clk counter variable
signal clk_o_local : std_logic; -- local clock for the operations

begin -- clk_divider_arch

clk_o <= clk_o_local; -- always connect these two

-- purpose: divides clock input
-- type : sequential
-- inputs : clk_i
-- outputs: clk_o

p_clock : process (clk_i, rst_i, clk_div, clk_cnt)
begin -- process p_clock

if rst_i = ’1’ then -- asynchronous reset (active high)

clk_cnt <= conv_integer (clk_div); -- initialize with the constant
clk_o_local <= ’0’; -- initialize the output clock to zero

elsif clk_cnt = 0 then
clk_o_local <= ’0’;

elsif clk_cnt = 1 then
clk_o_local <= clk_i;

elsif clk_i’event and clk_i = ’1’ then -- rising clock edge

if clk_cnt = 2 then
clk_cnt <= conv_integer (clk_div);
clk_o_local <= not clk_o_local;

else
clk_cnt <= clk_cnt - 1;

end if;

end if;
end process p_clock;

end clk_divider_arch;

-- FAB ADC/DAC
-- Register File
-- Start 26.07.2006/sh

library ieee;
use ieee.std_logic_1164.all;

70

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity register_file is

port (
clk_i : in std_logic; -- clock input
rst_i : in std_logic; -- reset input
rnw_i : in std_logic; -- read/write signal
strobe_i : in std_logic; -- Strobe Signal

adr_i : in std_logic_vector (5 downto 0); -- input adress bus
data_from_bus : in std_logic_vector (15 downto 0);
data_to_bus : out std_logic_vector (15 downto 0);

register_00 : out std_logic_vector (15 downto 0);
register_01 : in std_logic_vector (15 downto 0);
register_02 : in std_logic_vector (15 downto 0);
register_03 : in std_logic_vector (15 downto 0);
register_04 : out std_logic_vector (15 downto 0);
register_05 : out std_logic_vector (15 downto 0);
register_06 : out std_logic_vector (15 downto 0);
register_07 : out std_logic_vector (15 downto 0);
register_08 : out std_logic_vector (15 downto 0);
register_09 : out std_logic_vector (15 downto 0)
);

end register_file;

architecture register_file_arch of register_file is

-- local_registers

signal local_register_00 : std_logic_vector (15 downto 0); -- Register
signal local_register_01 : std_logic_vector (15 downto 0); -- Register
signal local_register_02 : std_logic_vector (15 downto 0); -- Register
signal local_register_03 : std_logic_vector (15 downto 0); -- Register
signal local_register_04 : std_logic_vector (15 downto 0); -- Register
signal local_register_05 : std_logic_vector (15 downto 0); -- Register
signal local_register_06 : std_logic_vector (15 downto 0); -- Register
signal local_register_07 : std_logic_vector (15 downto 0); -- Register
signal local_register_08 : std_logic_vector (15 downto 0); -- Register
signal local_register_09 : std_logic_vector (15 downto 0); -- Register

begin -- register_file_arch

-- inteconnections
-- register_04 <= local_register_04 when strobe_i = ’1’ and rnw_i = ’0’;

-- processes

-- p_write_enable : process (local_register_04, strobe_i, rnw_i)
-- begin -- process test
-- if strobe_i = ’1’ and rnw_i = ’0’ then
-- register_04 <= local_register_04;
-- end if;
-- end process p_write_enable;

-- p_write_enable : process (local_register_00, local_register_04, \
local_register_05, local_register_06, local_register_07, local_register_08, \
local_register_09, strobe_i, rnw_i)
-- begin -- process test
-- if not local_register_04 = "ZZZZZZZZZZZZZZZZ" then
-- if strobe_i = ’1’ and rnw_i = ’0’ then

71

C CPLD Code

register_00 <= local_register_00;
register_04 <= local_register_04;
register_05 <= local_register_05;
register_06 <= local_register_06;
register_07 <= local_register_07;
register_08 <= local_register_08;
register_09 <= local_register_09;

-- end if;
-- end process p_write_enable;

p_read_enable : process (register_01, register_02, register_03, strobe_i, \
rnw_i)
begin -- process p_read_enable

if strobe_i = ’1’ and rnw_i = ’1’ then

local_register_01 <= register_01;
local_register_02 <= register_02;
local_register_03 <= register_03;

end if;
end process p_read_enable;

p_write_local_registers : process (clk_i, rst_i, strobe_i, rnw_i)
begin -- process p_write_local_registers

if rst_i = ’1’ then -- asynchronous reset (active high)

-- reset all local_registers to the default values

local_register_00 <= "0100010000000000";
-- local_register_01 <= (others => ’Z’);
-- local_register_02 <= (others => ’Z’);
-- local_register_03 <= (others => ’Z’);

local_register_04 <= x"0000";
local_register_05 <= x"0000";
local_register_06 <= x"0002";
local_register_07 <= x"0002";
local_register_08 <= x"0001";
local_register_09 <= x"0001";

elsif clk_i’event and clk_i = ’1’ then -- rising clock edge

if strobe_i = ’1’ then
if rnw_i = ’0’ then -- fib wants to write

-- the read-only local_registers 0x01, 0x02 and 0x03 shouldn’t \
be overwritten

case conv_integer (adr_i (5 downto 0)) is
when 0 => local_register_00 <= data_from_bus;
when 4 => local_register_04 <= data_from_bus;
when 5 => local_register_05 <= data_from_bus;
when 6 => local_register_06 <= data_from_bus;
when 7 => local_register_07 <= data_from_bus;
when 8 => local_register_08 <= data_from_bus;
when 9 => local_register_09 <= data_from_bus;
when others => null;

end case;

end if;
end if;

end if;
end process p_write_local_registers;

p_read_local_registers : process (clk_i, strobe_i, rnw_i)

72

begin -- process p_read_local_registers
if clk_i’event and clk_i = ’1’ then -- rising clock edge
if strobe_i = ’1’ then

if rnw_i = ’1’ then -- fib wants to read

-- The value of all local_registers could be read by fib

case conv_integer (adr_i (5 downto 0)) is
when 0 => data_to_bus <= local_register_00;
when 1 => data_to_bus <= local_register_01;
when 2 => data_to_bus <= local_register_02;
when 3 => data_to_bus <= local_register_03;
when 4 => data_to_bus <= local_register_04;
when 5 => data_to_bus <= local_register_05;
when 6 => data_to_bus <= local_register_06;
when 7 => data_to_bus <= local_register_07;
when 8 => data_to_bus <= local_register_08;
when 9 => data_to_bus <= local_register_09;
when others => null;

end case;

end if;
end if;

end if;
end process p_read_local_registers;

end register_file_arch;

--
-- Saw tooth generator by counting
-- 25.07.2006/sh
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity sawtooth is

generic (
counter_width : integer := 14);

port (
dat_o : out std_logic_vector (counter_width - 1 downto 0); -- data output
rst_i : in std_logic; -- reset input
clk_i : in std_logic); -- input clock

end sawtooth;

architecture sawtooth_arch of sawtooth is

signal counter : integer range 0 to 2**counter_width -1; -- counter variable

begin -- sawtooth_arch

p_saw_tooth : process (clk_i, rst_i, counter)

begin -- process p_dac1_test

if rst_i = ’1’ then -- reset active high

73

C CPLD Code

counter <= 2**counter_width - 1;

elsif clk_i’event and clk_i = ’1’ then -- rising clock edge

if counter = 0 then
counter <= 2**counter_width - 1;

else
counter <= counter - 1;

end if;

dat_o <= conv_std_logic_vector (counter, counter_width);

end if;

end process p_saw_tooth;

end sawtooth_arch;

-- FAB ADC/DAC
-- Top Level Entity for ALTERA MAXII
-- Start 17.07.2006/sh

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity fab_adcdac_app1_top_level is

generic (
clk_divider_width_toplevel : integer := 16; -- width of the \
divider in bits
reset_clks_toplevel : integer := 2); -- Tells how many \
clocks the POR takes

port (

-- common signals

fibclk : in std_logic; -- main clock in

-- fib signals

fibd : inout std_logic_vector (15 downto 0); -- fib data bus
fiba : in std_logic_vector (5 downto 0); -- fib address bus

fibrnw : in std_logic; -- read/write signal from fib:
-- 1 = read, 0 = write

fibstrobe : in std_logic; -- strobe signal from fib
fiback : out std_logic; -- ack output to fib

-- board signals

adc1d : in std_logic_vector (13 downto 0); -- ADC1 data input
dac1d : out std_logic_vector (13 downto 0); -- DAC1 data output
adc2d : in std_logic_vector (13 downto 0); -- ADC2 data input

74

dac2d : out std_logic_vector (13 downto 0); -- DAC2 data output

adc1sw : out std_logic_vector (3 downto 0); -- calibration switch for ADC1
adc2sw : out std_logic_vector (3 downto 0); -- calibration switch for ADC2

-- clock signals

adc1clk : out std_logic; -- clock for ADC1
adc2clk : out std_logic; -- clock for ADC2
dac1clk : out std_logic; -- clock for DAC1
dac2clk : out std_logic; -- clock for DAC2

-- static config signals

adc1of : in std_logic; -- overflow from ADC1
adc2of : in std_logic; -- overflow from ADC2
adc1shdn : out std_logic; -- shut down ADC1
adc2shdn : out std_logic; -- shut down ADC2
dac1slp : out std_logic; -- shut down DAC1
dac2slp : out std_logic; -- shut down DAC2

-- test pins

tp1_tio1 : out std_logic; -- test pin 1
tp2_tio1 : out std_logic; -- test pin 2
tp3_dev_clrn : in std_logic; -- test pin 3
tp4_gclk0 : in std_logic; -- test pin 4
tp5_gclk1 : in std_logic; -- test pin 5
tp6_dev_oe : in std_logic; -- test pin 6
tp7_gclk3 : in std_logic -- test pin 7

);

end fab_adcdac_app1_top_level;

architecture fab_adcdac_app1_top_level_arch of fab_adcdac_app1_top_level is

-- components declaration

component reset_gen
generic(
reset_clks : integer := 2
);

port
(

clk_i : in std_logic;
rst_o : out std_logic
);

end component;

component clk_divider

generic (
clk_divider_width : integer); -- Bit Width of the clock divider

port (
clk_div : in std_logic_vector (clk_divider_width - 1 downto 0); \
-- clock division constant
rst_i : in std_logic; -- async reset in
clk_i : in std_logic; -- clk input
clk_o : out std_logic); -- clk out

end component;

75

C CPLD Code

component register_file
port (
clk_i : in std_logic;
rst_i : in std_logic;
rnw_i : in std_logic;
strobe_i : in std_logic;
adr_i : in std_logic_vector (5 downto 0);
data_from_bus : in std_logic_vector (15 downto 0);
data_to_bus : out std_logic_vector (15 downto 0);
register_00 : out std_logic_vector (15 downto 0);
register_01 : in std_logic_vector (15 downto 0);
register_02 : in std_logic_vector (15 downto 0);
register_03 : in std_logic_vector (15 downto 0);
register_04 : out std_logic_vector (15 downto 0);
register_05 : out std_logic_vector (15 downto 0);
register_06 : out std_logic_vector (15 downto 0);
register_07 : out std_logic_vector (15 downto 0);
register_08 : out std_logic_vector (15 downto 0);
register_09 : out std_logic_vector (15 downto 0));

end component;

component busdriver

port (
en_write_to_bus : in std_logic; -- enable the buffer
data_bus : inout std_logic_vector (15 downto 0); -- Bus \
connection
data_to_bus : in std_logic_vector (15 downto 0); -- data \
written into the bus
data_from_bus : out std_logic_vector (15 downto 0) -- data \
read from the bus
);

end component;

-- internal registers

signal register_00 : std_logic_vector (15 downto 0);
signal register_01 : std_logic_vector (15 downto 0);
signal register_02 : std_logic_vector (15 downto 0);
signal register_03 : std_logic_vector (15 downto 0);
signal register_04 : std_logic_vector (15 downto 0);
signal register_05 : std_logic_vector (15 downto 0);
signal register_06 : std_logic_vector (15 downto 0);
signal register_07 : std_logic_vector (15 downto 0);
signal register_08 : std_logic_vector (15 downto 0);
signal register_09 : std_logic_vector (15 downto 0);

-- test pins

signal testpins_vector_o : std_logic_vector (1 downto 0); -- Vector \
for the test pins
signal testpins_vector_i : std_logic_vector (4 downto 0); -- Vector \
for the test pins

--internal variables

signal global_rst : std_logic; -- internal global reset signal

signal por_rst : std_logic; -- signal from the POR generator

signal fiba_pre_synched : std_logic_vector (5 downto 0); -- synched \

76

signal connected to FIBA
signal fibrnw_pre_synched : std_logic; -- synched signal \
connected to FIBRNW
signal fibstrobe_pre_synched : std_logic; -- synched signal \
connected to FIBSTROBE

signal fiba_synched : std_logic_vector (5 downto 0); \
-- synched signal connected to FIBA
signal fibrnw_synched : std_logic; -- synched signal \
connected to FIBRNW
signal fibstrobe_synched : std_logic; -- synched signal \
connected to FIBSTROBE

-- Bus Driver Signals

signal en_write_to_bus : std_logic; -- internal enable signal \
to write to bus
signal data_to_bus : std_logic_vector (15 downto 0); \
-- internal vector interface to the bus
signal data_from_bus : std_logic_vector (15 downto 0); \
-- internal vector interface to the bus

begin -- fab_adcdac_app1_top_level_arch

-- component instances

reset_gen_inst : reset_gen
generic map (
reset_clks => reset_clks_toplevel)

port map (
clk_i => fibclk,
rst_o => por_rst);

adc1_clk_divider_inst : clk_divider

generic map (
clk_divider_width => clk_divider_width_toplevel)

port map (
clk_div => register_06,
rst_i => global_rst,
clk_i => fibclk,
clk_o => adc1clk);

adc2_clk_divider_inst : clk_divider

generic map (
clk_divider_width => clk_divider_width_toplevel)

port map (
clk_div => register_07,
rst_i => global_rst,
clk_i => fibclk,
clk_o => adc2clk);

dac1_clk_divider_inst : clk_divider

generic map (
clk_divider_width => clk_divider_width_toplevel)

port map (
clk_div => register_08,

77

C CPLD Code

rst_i => global_rst,
clk_i => fibclk,
clk_o => dac1clk);

dac2_clk_divider_inst : clk_divider

generic map (
clk_divider_width => clk_divider_width_toplevel)

port map (
clk_div => register_09,
rst_i => global_rst,
clk_i => fibclk,
clk_o => dac2clk);

blinker1 : clk_divider
generic map (
clk_divider_width => 4)

port map (
clk_div => "1010",
rst_i => global_rst,
clk_i => fibclk,
clk_o => testpins_vector_o(0));

register_file_1 : register_file
port map (
clk_i => fibclk,
rst_i => global_rst,
rnw_i => fibrnw_synched,
strobe_i => fibstrobe_synched,
adr_i => fiba_synched,
data_from_bus => data_from_bus,
data_to_bus => data_to_bus,
register_00 => register_00,
register_01 => register_01,
register_02 => register_02,
register_03 => register_03,
register_04 => register_04,
register_05 => register_05,
register_06 => register_06,
register_07 => register_07,
register_08 => register_08,
register_09 => register_09);

busdriver_inst : busdriver
port map (
en_write_to_bus => en_write_to_bus,
data_bus => fibd,
data_to_bus => data_to_bus,
data_from_bus => data_from_bus);

-- register assignments

global_rst <= por_rst or register_00(3); -- either of the reset sources

adc2sw <= register_00 (15 downto 12);
adc1sw <= register_00 (11 downto 8);

adc2shdn <= register_00 (7);
adc1shdn <= register_00 (6);
dac2slp <= register_00 (5);
dac1slp <= register_00 (4);

78

register_01 (2) <= adc1of;
register_01 (3) <= adc2of;

register_02 (13 downto 0) <= adc1d;
register_02 (15 downto 14) <= (others => ’0’);

register_03 (13 downto 0) <= adc2d;
register_03 (15 downto 14) <= (others => ’0’);

dac1d <= not(register_04 (13 downto 0)) \
+ conv_std_logic_vector (1, 14);
-- dac1d <= not(register_04 (13 downto 0);
register_04 (15 downto 14) <= (others => ’0’);

dac2d <= not(register_05(13 downto 0)) + conv_std_logic_vector (1, 14);
-- dac2d <= not(register_05(13 downto 0);

register_05 (15 downto 14) <= (others => ’0’);

-- testpins_vector
tp1_tio1 <= testpins_vector_o(0);
tp2_tio1 <= testpins_vector_o(1);

-- testpins_vector_o(1) <= fibclk; -- test clock out \
on the first test pin2

fiback <= ’0’;

-- enable only when fib wants to read.
en_write_to_bus <= fibrnw_synched;

-- processes

process (fibclk, fiba, fibrnw, fibstrobe, fibstrobe_pre_synched, \
fibrnw_pre_synched, fiba_pre_synched)
begin

if fibclk’event and fibclk = ’1’ then -- rising clock edge

-- input signal mapping on each rising clock edge

fiba_pre_synched <= fiba;
fibrnw_pre_synched <= fibrnw;
fibstrobe_pre_synched <= fibstrobe;

fiba_synched <= fiba_pre_synched;
fibrnw_synched <= fibrnw_pre_synched;
fibstrobe_synched <= fibstrobe_pre_synched;

testpins_vector_i <= (
0 => tp3_dev_clrn,
1 => tp4_gclk0,
2 => tp5_gclk1,
3 => tp6_dev_oe,
4 => tp7_gclk3
);

end if;
end process;

end fab_adcdac_app1_top_level_arch;

79

D FPGA Code

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use ieee.math_real.all;

entity digital_short is
generic (

clk_freq_in_hz : real := 200000000.0; --system clock frequency
delay_in_ns : real := 25.0); -- 25.0

port (
rst_i : in std_logic; -- reset in
clk_i : in std_logic; -- clock in

rnw_o : out std_logic;
strobe_o : out std_logic;
ack_i : in std_logic;

ext_driver_dir : out std_logic;

adr_o : out std_logic_vector (5 downto 0);

en_write_to_bus : out std_logic;

data_to_bus : out std_logic_vector (15 downto 0);
data_from_bus : in std_logic_vector (15 downto 0)
);

end digital_short;

architecture digital_short_arch of digital_short is

--limits the integer to a minimal value of one (for timing counters)
function limit_to_minimal_value(x : integer; min : integer) return \
integer is
begin

if x > min then
return x;

else
return 1;

end if;
end limit_to_minimal_value;

signal delay_in_ticks : integer := limit_to_minimal_value(integer\
(clk_freq_in_hz * delay_in_ns / 1000000000.0) - 2, 0);

-- 3 clock cycles are needed for the state machine

constant FAB_ADC_ADR : std_logic_vector (5 downto 0) := "000010"; \

81

D FPGA Code

-- Address of the ADC1 channel
constant FAB_DAC_ADR : std_logic_vector (5 downto 0) := "000100"; \
-- Address of the DAC1 channel

signal delay_cnt : integer range 0 to delay_in_ticks;

type state_type is (READ_PRE1_STATE, READ_PRE2_STATE, READ_PRE3_STATE, \
!\!9 READ_STATE, WRITE_PRE1_STATE, WRITE_PRE2_STATE, WRITE_PRE3_STATE, \
WRITE_STATE, WAIT_STATE); -- States

signal state : state_type;
signal return_to_state : state_type;

signal local_data : std_logic_vector (15 downto 0); -- data read from \
or written to fab

begin -- digital_short_arch

-- purpose: Read from ADC on FAB and write it back in FAB’s DAC

process (clk_i, rst_i, ack_i, state)

begin -- process p_shorting

if rst_i = ’1’ then -- asynchronous reset (active high)

-- in reset case, all drivers as input
strobe_o <= ’0’;
rnw_o <= ’1’;
en_write_to_bus <= ’0’;
ext_driver_dir <= ’0’;
state <= READ_PRE1_STATE;
return_to_state <= READ_PRE1_STATE;
delay_cnt <= delay_in_ticks;

elsif clk_i’event and clk_i = ’1’ then -- rising clock edge

case state is

when READ_PRE1_STATE =>
strobe_o <= ’0’;
en_write_to_bus <= ’0’;
adr_o <= FAB_ADC_ADR;
state <= READ_PRE2_STATE;

when READ_PRE2_STATE =>
ext_driver_dir <= ’0’;
state <= READ_PRE3_STATE;

when READ_PRE3_STATE =>
strobe_o <= ’1’;
rnw_o <= ’1’;
state <= WAIT_STATE;
return_to_state <= READ_STATE;

when READ_STATE =>
local_data <= data_from_bus;
state <= WRITE_PRE1_STATE;

when WRITE_PRE1_STATE =>
strobe_o <= ’0’;
rnw_o <= ’0’;

82

adr_o <= FAB_DAC_ADR;
state <= WRITE_PRE2_STATE;

when WRITE_PRE2_STATE =>
ext_driver_dir <= ’1’;
state <= WRITE_PRE3_STATE;

when WRITE_PRE3_STATE =>
en_write_to_bus <= ’1’;

-- strobe_o <= ’1’;
state <= WRITE_STATE;

when WRITE_STATE =>
strobe_o <= ’1’;
data_to_bus <= local_data;
state <= WAIT_STATE;
return_to_state <= READ_PRE1_STATE;

when WAIT_STATE =>
strobe_o <= ’0’;
if delay_cnt = 0 then

state <= return_to_state;
delay_cnt <= delay_in_ticks;

else
delay_cnt <= delay_cnt - 1;

end if;

when others => null;
end case;

end if;
end process;

end digital_short_arch;

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity fib_adcdac_app1_top_level is
generic(

clk_freq_in_hz : integer := 50000000; --100 MHz system clock frequency
firmware_id : integer := 1; --ID of the firmware (is displayed first)
firmware_version : integer := 3 --Version of the firmware (is displayed after)
);

port (
--common signals
trig1_in : in std_logic; --rst
trig2_out : out std_logic;
clk0 : in std_logic;
hf_in : in std_logic;

--FAB signals
uC_Link_D : inout std_logic_vector(7 downto 0); -- FAB Lower Byte
uC_Link_A : inout std_logic_vector(7 downto 0); -- FAB Upper Byte
Piggy_Clk1 : out std_logic; -- FAB Clock
Piggy_RnW1 : out std_logic; --dds_wr
-- Piggy_RnW2 : in std_logic; --dds_vout_comp
-- Piggy_Strb2 : out std_logic; --dds_rst

83

D FPGA Code

Piggy_Strb1 : out std_logic; --dds_update_o
Piggy_Ack1 : in std_logic; --dds_fsk
-- Piggy_Ack2 : out std_logic; --dds_sh_key

--static dds-buffer signals
uC_Link_DIR_D, uC_Link_DIR_A : out std_logic;
nuC_Link_EN_CTRL_A : out std_logic;
uC_Link_EN_DA : out std_logic;

--backplane signals
A2nSW8 : in std_logic;
A3nSW9 : in std_logic;
A0nSW10 : in std_logic;
A1nSW11 : in std_logic;
Sub_A6nSW12 : in std_logic;
Sub_A7nSW13 : in std_logic;
Sub_A4nSW14 : in std_logic;
Sub_A5nSW15 : in std_logic;
nResetnSW0 : in std_logic;
SW1 : in std_logic;
nDSnSW2 : in std_logic;
BClocknSW3 : in std_logic;
RnWnSW4 : in std_logic;
SW5 : in std_logic;
A4nSW6 : in std_logic;
SW7 : in std_logic;
NEWDATA : in std_logic;
FC_Str : in std_logic;
FC0 : in std_logic;
FC1 : in std_logic;
FC2 : in std_logic;
FC3 : in std_logic;
FC4 : in std_logic;
FC5 : in std_logic;
VG_A3nFC6 : in std_logic;
FC7 : in std_logic;
SD : in std_logic;
nDRQ2 : out std_logic;

--static backplane-buffer signals
BBA_DIR : out std_logic;
BBB_DIR : out std_logic;
BBC_DIR : out std_logic;
BBD_DIR : out std_logic;
BBE_DIR : out std_logic;
BBG_DIR : out std_logic;
BBH_DIR : out std_logic;
nBB_EN : out std_logic;

--static backplane open-collector outputs
DRDY : out std_logic;
SRQ3 : out std_logic;
DRQ : out std_logic;
INTERL : out std_logic;
DTACK : out std_logic;
nDRDY2 : out std_logic;
SEND_EN : out std_logic;
SEND_STR : out std_logic;

--dsp-link signals (read)
DSP_CRDY_W : out std_logic;
DSP_CREQ_W : out std_logic;
DSP_CACK_R : in std_logic;

84

DSP_CSTR_R : in std_logic;

DSP_D_R0 : in std_logic;
DSP_D_R1 : in std_logic;
DSP_D_R2 : in std_logic;
DSP_D_R3 : in std_logic;
DSP_D_R4 : in std_logic;
DSP_D_R5 : in std_logic;
DSP_D_R6 : in std_logic;
DSP_D_R7 : in std_logic;

--dsp-link signals (write)
DSP_CRDY_R : in std_logic;
DSP_CREQ_R : in std_logic;
DSP_CACK_W : out std_logic;
DSP_CSTR_W : out std_logic;

DSP_D_W0 : out std_logic;
DSP_D_W1 : out std_logic;
DSP_D_W2 : out std_logic;
DSP_D_W3 : out std_logic;
DSP_D_W4 : out std_logic;
DSP_D_W5 : out std_logic;
DSP_D_W6 : out std_logic;
DSP_D_W7 : out std_logic;

-- leds
led1 : out std_logic;
led2 : out std_logic;
led3 : out std_logic;
led4 : out std_logic;

-- only for debug
piggy_io : out std_logic_vector(7 downto 0);

--adressing pins via FC
VG_A4 : in std_logic; --FC(0)
VG_A1 : in std_logic; --FC(1)

-- dsp-link buffer enable signals

DSP_DIR_D : out std_logic;
DSP_DIR_STRACK : out std_logic;
DSP_DIR_REQRDY : out std_logic

);
end entity fib_adcdac_app1_top_level;

architecture fib_adcdac_app1_top_level_arch of fib_adcdac_app1_top_level is

-- components
component reset_gen is

generic (reset_clks : integer := 2);
port (
clk_i : in std_logic;
rst_o : out std_logic
);

end component;

component clk_divider
generic (
clk_divider_width : integer);

port (

85

D FPGA Code

clk_div : in std_logic_vector (clk_divider_width - 1 downto 0);
rst_i : in std_logic;
clk_i : in std_logic;
clk_o : out std_logic);

end component;

-- component internal_pll
-- port (
-- areset : in std_logic;
-- inclk0 : in std_logic;
-- c0 : out std_logic;
-- e0 : out std_logic;
-- locked : out std_logic);
-- end component;

component busdriver
port (
en_write_to_bus : in std_logic; -- enable the buffer
data_bus : inout std_logic_vector (15 downto 0); \
-- Bus connection
data_to_bus : in std_logic_vector (15 downto 0); \
-- data written into the bus
data_from_bus : out std_logic_vector (15 downto 0) \
-- data read from the bus
);

end component;

component digital_short
generic (
clk_freq_in_hz : real := 200000000.0; --system clock frequency
delay_in_ns : real := 15.0); -- delay of the wait state

port (
rst_i : in std_logic; -- reset in
clk_i : in std_logic; -- clock in

rnw_o : out std_logic;
strobe_o : out std_logic;
ack_i : in std_logic;

ext_driver_dir : out std_logic;

adr_o : out std_logic_vector (5 downto 0);

en_write_to_bus : out std_logic;

data_to_bus : out std_logic_vector (15 downto 0);
data_from_bus : in std_logic_vector (15 downto 0)
);

end component;

-- common signals
signal global_rst : std_logic;

-- FAB related signals

signal data_bus : std_logic_vector (15 downto 0); -- FAB Data bus \
mapped to uCLinuk Address and Databus

signal adr_o : std_logic_vector (5 downto 0); -- Address \
bus for FAB
signal ext_driver_dir : std_logic;

86

signal areset : std_logic;
signal inclk0 : std_logic;
signal c0 : std_logic;
signal e0 : std_logic;
signal locked : std_logic;

signal en_write_to_bus : std_logic;
signal data_to_bus : std_logic_vector (15 downto 0);
signal data_from_bus : std_logic_vector (15 downto 0);

begin

reset_gen_inst : reset_gen
port map (
clk_i => clk0,
rst_o => global_rst
);

blinker1 : clk_divider
generic map (
clk_divider_width => 24)

port map (
clk_div => x"EEFFFF",
rst_i => global_rst,
clk_i => clk0,
clk_o => led2);

-- internal_pll_inst : internal_pll
-- port map (
-- areset => areset,
-- inclk0 => inclk0,
-- c0 => c0,
-- e0 => e0,
-- locked => locked);

busdriver_inst : busdriver
port map (
en_write_to_bus => en_write_to_bus,
data_bus => data_bus,
data_to_bus => data_to_bus,
data_from_bus => data_from_bus);

digital_short_inst : digital_short
port map (
rst_i => global_rst,
clk_i => clk0,
rnw_o => Piggy_RnW1,
strobe_o => Piggy_Strb1,
ack_i => Piggy_Ack1,
ext_driver_dir => ext_driver_dir,
adr_o => adr_o,
en_write_to_bus => en_write_to_bus,
data_to_bus => data_to_bus,
data_from_bus => data_from_bus
);

--static backplane buffer settings
BBA_DIR <= ’0’;
BBB_DIR <= ’0’;
BBC_DIR <= ’0’;
BBD_DIR <= ’0’;
BBE_DIR <= ’0’;

87

D FPGA Code

BBG_DIR <= ’0’;
BBH_DIR <= ’0’;
nBB_EN <= ’0’;

--static backplane open-collector output settings
DRDY <= ’0’;
SRQ3 <= ’0’;
DRQ <= ’0’;
INTERL <= ’0’;
DTACK <= ’0’;
nDRDY2 <= ’0’;
SEND_EN <= ’0’;
SEND_STR <= ’0’;

--static uC-Link buffer settings

nuC_Link_EN_CTRL_A <= ’1’;
uC_Link_EN_DA <= ’0’;

-- unused buffers get warm!

DSP_DIR_D <= ’1’;
DSP_DIR_REQRDY <= ’1’;
DSP_DIR_STRACK <= ’1’;

-- Actual signal interconnection

uC_Link_D <= data_bus (7 downto 0) when en_write_to_bus = ’1’ \
else (others => ’Z’);
uC_Link_A <= data_bus (15 downto 8) when en_write_to_bus = ’1’ \
else (others => ’Z’);

data_bus (7 downto 0) <= uC_Link_D when en_write_to_bus = ’0’ \
else (others => ’Z’);
data_bus (15 downto 8) <= uC_Link_A when en_write_to_bus = ’0’ \
else (others => ’Z’);

-- data_bus <= test;

piggy_io (5 downto 0) <= adr_o;

uC_Link_DIR_A <= ext_driver_dir;
uC_Link_DIR_D <= ext_driver_dir;

-- PLL signals

-- areset <= ’0’;
-- inclk0 <= clk0;

Piggy_Clk1 <= clk0;

-- process (clk0)
-- begin -- process
-- if clk0’event and clk0 = ’1’ then -- rising clock edge

-- data_bus (7 downto 0) <= uC_Link_D;

-- end if;
-- end process;

end architecture fib_adcdac_app1_top_level_arch;

88

E Simulation Code

--
-- 16-bit Bus driver with Tri State outputs
-- Simulation code
-- 20.07.2006/sh
--

library ieee;
use ieee.std_logic_1164.all;

entity driver_7416245 is
port (

iobus_a : inout std_logic_vector (15 downto 0);
iobus_b : inout std_logic_vector (15 downto 0);
dir_i : in std_logic);

end driver_7416245;

architecture driver_7416245_arch of driver_7416245 is

begin -- driver_7416245_arch

iobus_a <= iobus_b when dir_i = ’0’ else (others => ’Z’);
iobus_b <= iobus_a when dir_i = ’1’ else (others => ’Z’);

-- process
-- begin -- process
-- loop

-- wait on dir_i;
-- if dir_i = ’0’ then
-- wait for 5 ns;
-- iobus_a <= iobus_b;
-- else
-- iobus_a <= (others => ’Z’);
-- end if;

-- if dir_i = ’1’ then
-- wait for 5 ns;
-- iobus_b <= iobus_a;
-- else
-- iobus_b <= (others => ’Z’);
-- end if;
-- end loop;
-- end process;

end driver_7416245_arch;

library ieee;

91

E Simulation Code

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity mixed_tb is

end mixed_tb;

architecture mixed_tb_arch of mixed_tb is

component fab_adcdac_app1_top_level
generic (
clk_divider_width_toplevel : integer;
reset_clks_toplevel : integer);

port (
fibclk : in std_logic;
fibd : inout std_logic_vector (15 downto 0);
fiba : in std_logic_vector (5 downto 0);
fibrnw : in std_logic;
fibstrobe : in std_logic;
fiback : out std_logic;
adc1d : in std_logic_vector (13 downto 0);
dac1d : out std_logic_vector (13 downto 0);
adc2d : in std_logic_vector (13 downto 0);
dac2d : out std_logic_vector (13 downto 0);
adc1sw : out std_logic_vector (3 downto 0);
adc2sw : out std_logic_vector (3 downto 0);
adc1clk : out std_logic;
adc2clk : out std_logic;
dac1clk : out std_logic;
dac2clk : out std_logic;
adc1of : in std_logic;
adc2of : in std_logic;
adc1shdn : out std_logic;
adc2shdn : out std_logic;
dac1slp : out std_logic;
dac2slp : out std_logic;
tp1_tio1 : out std_logic;
tp2_tio1 : out std_logic;
tp3_dev_clrn : in std_logic;
tp4_gclk0 : in std_logic;
tp5_gclk1 : in std_logic;
tp6_dev_oe : in std_logic;
tp7_gclk3 : in std_logic);

end component;

component fib_adcdac_app1_top_level
generic (
clk_freq_in_hz : integer;
firmware_id : integer;
firmware_version : integer);

port (
trig1_in : in std_logic;
trig2_out : out std_logic;
clk0 : in std_logic;
hf_in : in std_logic;
uC_Link_D : inout std_logic_vector(7 downto 0);
uC_Link_A : inout std_logic_vector(7 downto 0);
Piggy_Clk1 : out std_logic;
Piggy_RnW1 : out std_logic;
Piggy_Strb1 : out std_logic;
Piggy_Ack1 : in std_logic;
uC_Link_DIR_D, uC_Link_DIR_A : out std_logic;

92

nuC_Link_EN_CTRL_A : out std_logic;
uC_Link_EN_DA : out std_logic;
A2nSW8 : in std_logic;
A3nSW9 : in std_logic;
A0nSW10 : in std_logic;
A1nSW11 : in std_logic;
Sub_A6nSW12 : in std_logic;
Sub_A7nSW13 : in std_logic;
Sub_A4nSW14 : in std_logic;
Sub_A5nSW15 : in std_logic;
nResetnSW0 : in std_logic;
SW1 : in std_logic;
nDSnSW2 : in std_logic;
BClocknSW3 : in std_logic;
RnWnSW4 : in std_logic;
SW5 : in std_logic;
A4nSW6 : in std_logic;
SW7 : in std_logic;
NEWDATA : in std_logic;
FC_Str : in std_logic;
FC0 : in std_logic;
FC1 : in std_logic;
FC2 : in std_logic;
FC3 : in std_logic;
FC4 : in std_logic;
FC5 : in std_logic;
VG_A3nFC6 : in std_logic;
FC7 : in std_logic;
SD : in std_logic;
nDRQ2 : out std_logic;
BBA_DIR : out std_logic;
BBB_DIR : out std_logic;
BBC_DIR : out std_logic;
BBD_DIR : out std_logic;
BBE_DIR : out std_logic;
BBG_DIR : out std_logic;
BBH_DIR : out std_logic;
nBB_EN : out std_logic;
DRDY : out std_logic;
SRQ3 : out std_logic;
DRQ : out std_logic;
INTERL : out std_logic;
DTACK : out std_logic;
nDRDY2 : out std_logic;
SEND_EN : out std_logic;
SEND_STR : out std_logic;
DSP_CRDY_W : out std_logic;
DSP_CREQ_W : out std_logic;
DSP_CACK_R : in std_logic;
DSP_CSTR_R : in std_logic;
DSP_D_R0 : in std_logic;
DSP_D_R1 : in std_logic;
DSP_D_R2 : in std_logic;
DSP_D_R3 : in std_logic;
DSP_D_R4 : in std_logic;
DSP_D_R5 : in std_logic;
DSP_D_R6 : in std_logic;
DSP_D_R7 : in std_logic;
DSP_CRDY_R : in std_logic;
DSP_CREQ_R : in std_logic;
DSP_CACK_W : out std_logic;
DSP_CSTR_W : out std_logic;
DSP_D_W0 : out std_logic;

93

E Simulation Code

DSP_D_W1 : out std_logic;
DSP_D_W2 : out std_logic;
DSP_D_W3 : out std_logic;
DSP_D_W4 : out std_logic;
DSP_D_W5 : out std_logic;
DSP_D_W6 : out std_logic;
DSP_D_W7 : out std_logic;
led1 : out std_logic;
led2 : out std_logic;
led3 : out std_logic;
led4 : out std_logic;
piggy_io : out std_logic_vector(7 downto 0);
VG_A4 : in std_logic;
VG_A1 : in std_logic;
DSP_DIR_D : out std_logic;
DSP_DIR_STRACK : out std_logic;
DSP_DIR_REQRDY : out std_logic);

end component;

component driver_7416245
port (
iobus_a : inout std_logic_vector (15 downto 0);
iobus_b : inout std_logic_vector (15 downto 0);
dir_i : in std_logic);

end component;

-- fab signals

constant clk_divider_width_toplevel : integer := 16;
constant reset_clks_toplevel : integer := 2;

signal fibclk_tb : std_logic;
signal fibd_tb : std_logic_vector (15 downto 0);
signal fiba_tb : std_logic_vector (5 downto 0);
signal fibrnw_tb : std_logic;
signal fibstrobe_tb : std_logic;
signal fiback_tb : std_logic;
signal adc1d_tb : std_logic_vector (13 downto 0);
signal dac1d_tb : std_logic_vector (13 downto 0);
signal adc2d_tb : std_logic_vector (13 downto 0);
signal dac2d_tb : std_logic_vector (13 downto 0);
signal adc1sw_tb : std_logic_vector (3 downto 0);
signal adc2sw_tb : std_logic_vector (3 downto 0);
signal adc1clk_tb : std_logic;
signal adc2clk_tb : std_logic;
signal dac1clk_tb : std_logic;
signal dac2clk_tb : std_logic;
signal adc1of_tb : std_logic;
signal adc2of_tb : std_logic;
signal adc1shdn_tb : std_logic;
signal adc2shdn_tb : std_logic;
signal dac1slp_tb : std_logic;
signal dac2slp_tb : std_logic;
signal tp1_tio1_tb : std_logic;
signal tp2_tio1_tb : std_logic;
signal tp3_dev_clrn_tb : std_logic;
signal tp4_gclk0_tb : std_logic;
signal tp5_gclk1_tb : std_logic;
signal tp6_dev_oe_tb : std_logic;
signal tp7_gclk3_tb : std_logic;

-- fib signals

94

constant clk_freq_in_hz : integer := 50000000;
constant firmware_id : integer := 1;
constant firmware_version : integer := 3;

signal trig1_in : std_logic;
signal trig2_out : std_logic;
signal clk0 : std_logic;
signal hf_in : std_logic;
signal uC_Link_D_tb : std_logic_vector(7 downto 0);
signal uC_Link_A_tb : std_logic_vector(7 downto 0);
signal Piggy_Clk1_tb : std_logic;
signal Piggy_RnW1_tb : std_logic;
signal Piggy_Strb1_tb : std_logic;
signal Piggy_Ack1_tb : std_logic;
signal uC_Link_DIR_D, uC_Link_DIR_A : std_logic;
signal nuC_Link_EN_CTRL_A : std_logic;
signal uC_Link_EN_DA : std_logic;
signal A2nSW8 : std_logic;
signal A3nSW9 : std_logic;
signal A0nSW10 : std_logic;
signal A1nSW11 : std_logic;
signal Sub_A6nSW12 : std_logic;
signal Sub_A7nSW13 : std_logic;
signal Sub_A4nSW14 : std_logic;
signal Sub_A5nSW15 : std_logic;
signal nResetnSW0 : std_logic;
signal SW1 : std_logic;
signal nDSnSW2 : std_logic;
signal BClocknSW3 : std_logic;
signal RnWnSW4 : std_logic;
signal SW5 : std_logic;
signal A4nSW6 : std_logic;
signal SW7 : std_logic;
signal NEWDATA : std_logic;
signal FC_Str : std_logic;
signal FC0 : std_logic;
signal FC1 : std_logic;
signal FC2 : std_logic;
signal FC3 : std_logic;
signal FC4 : std_logic;
signal FC5 : std_logic;
signal VG_A3nFC6 : std_logic;
signal FC7 : std_logic;
signal SD : std_logic;
signal nDRQ2 : std_logic;
signal BBA_DIR : std_logic;
signal BBB_DIR : std_logic;
signal BBC_DIR : std_logic;
signal BBD_DIR : std_logic;
signal BBE_DIR : std_logic;
signal BBG_DIR : std_logic;
signal BBH_DIR : std_logic;
signal nBB_EN : std_logic;
signal DRDY : std_logic;
signal SRQ3 : std_logic;
signal DRQ : std_logic;
signal INTERL : std_logic;
signal DTACK : std_logic;
signal nDRDY2 : std_logic;
signal SEND_EN : std_logic;
signal SEND_STR : std_logic;
signal DSP_CRDY_W : std_logic;
signal DSP_CREQ_W : std_logic;

95

E Simulation Code

signal DSP_CACK_R : std_logic;
signal DSP_CSTR_R : std_logic;
signal DSP_D_R0 : std_logic;
signal DSP_D_R1 : std_logic;
signal DSP_D_R2 : std_logic;
signal DSP_D_R3 : std_logic;
signal DSP_D_R4 : std_logic;
signal DSP_D_R5 : std_logic;
signal DSP_D_R6 : std_logic;
signal DSP_D_R7 : std_logic;
signal DSP_CRDY_R : std_logic;
signal DSP_CREQ_R : std_logic;
signal DSP_CACK_W : std_logic;
signal DSP_CSTR_W : std_logic;
signal DSP_D_W0 : std_logic;
signal DSP_D_W1 : std_logic;
signal DSP_D_W2 : std_logic;
signal DSP_D_W3 : std_logic;
signal DSP_D_W4 : std_logic;
signal DSP_D_W5 : std_logic;
signal DSP_D_W6 : std_logic;
signal DSP_D_W7 : std_logic;
signal led1 : std_logic;
signal led2 : std_logic;
signal led3 : std_logic;
signal led4 : std_logic;
signal piggy_io : std_logic_vector(7 downto 0);
signal VG_A4 : std_logic;
signal VG_A1 : std_logic;
signal DSP_DIR_D : std_logic;
signal DSP_DIR_STRACK : std_logic;
signal DSP_DIR_REQRDY : std_logic;

-- main clock
signal sim_clk : std_logic := ’1’;
signal sim_io_bus : std_logic_vector (15 downto 0);
signal sim_io_bus2 : std_logic_vector (15 downto 0);

begin -- mixed_tb_arch

fab_adcdac_app1_top_level_inst : fab_adcdac_app1_top_level
generic map (
clk_divider_width_toplevel => clk_divider_width_toplevel,
reset_clks_toplevel => reset_clks_toplevel)

port map (
fibclk => fibclk_tb,
fibd => fibd_tb,
fiba => fiba_tb,
fibrnw => fibrnw_tb,
fibstrobe => fibstrobe_tb,
fiback => fiback_tb,
adc1d => adc1d_tb,
dac1d => dac1d_tb,
adc2d => adc2d_tb,
dac2d => dac2d_tb,
adc1sw => adc1sw_tb,
adc2sw => adc2sw_tb,
adc1clk => adc1clk_tb,
adc2clk => adc2clk_tb,
dac1clk => dac1clk_tb,
dac2clk => dac2clk_tb,

96

adc1of => adc1of_tb,
adc2of => adc2of_tb,
adc1shdn => adc1shdn_tb,
adc2shdn => adc2shdn_tb,
dac1slp => dac1slp_tb,
dac2slp => dac2slp_tb,
tp1_tio1 => tp1_tio1_tb,
tp2_tio1 => tp2_tio1_tb,
tp3_dev_clrn => tp3_dev_clrn_tb,
tp4_gclk0 => tp4_gclk0_tb,
tp5_gclk1 => tp5_gclk1_tb,
tp6_dev_oe => tp6_dev_oe_tb,
tp7_gclk3 => tp7_gclk3_tb);

fib_adcdac_app1_top_level_inst : fib_adcdac_app1_top_level
generic map (
clk_freq_in_hz => clk_freq_in_hz,
firmware_id => firmware_id,
firmware_version => firmware_version)

port map (
trig1_in => trig1_in,
trig2_out => trig2_out,
clk0 => clk0,
hf_in => hf_in,
uC_Link_D => uC_Link_D_tb,
uC_Link_A => uC_Link_A_tb,
Piggy_Clk1 => Piggy_Clk1_tb,
Piggy_RnW1 => Piggy_RnW1_tb,
Piggy_Strb1 => Piggy_Strb1_tb,
Piggy_Ack1 => Piggy_Ack1_tb,
uC_Link_DIR_D => uC_Link_DIR_D,
uC_Link_DIR_A => uC_Link_DIR_A,
nuC_Link_EN_CTRL_A => nuC_Link_EN_CTRL_A,
uC_Link_EN_DA => uC_Link_EN_DA,
A2nSW8 => A2nSW8,
A3nSW9 => A3nSW9,
A0nSW10 => A0nSW10,
A1nSW11 => A1nSW11,
Sub_A6nSW12 => Sub_A6nSW12,
Sub_A7nSW13 => Sub_A7nSW13,
Sub_A4nSW14 => Sub_A4nSW14,
Sub_A5nSW15 => Sub_A5nSW15,
nResetnSW0 => nResetnSW0,
SW1 => SW1,
nDSnSW2 => nDSnSW2,
BClocknSW3 => BClocknSW3,
RnWnSW4 => RnWnSW4,
SW5 => SW5,
A4nSW6 => A4nSW6,
SW7 => SW7,
NEWDATA => NEWDATA,
FC_Str => FC_Str,
FC0 => FC0,
FC1 => FC1,
FC2 => FC2,
FC3 => FC3,
FC4 => FC4,
FC5 => FC5,
VG_A3nFC6 => VG_A3nFC6,
FC7 => FC7,
SD => SD,
nDRQ2 => nDRQ2,
BBA_DIR => BBA_DIR,

97

E Simulation Code

BBB_DIR => BBB_DIR,
BBC_DIR => BBC_DIR,
BBD_DIR => BBD_DIR,
BBE_DIR => BBE_DIR,
BBG_DIR => BBG_DIR,
BBH_DIR => BBH_DIR,
nBB_EN => nBB_EN,
DRDY => DRDY,
SRQ3 => SRQ3,
DRQ => DRQ,
INTERL => INTERL,
DTACK => DTACK,
nDRDY2 => nDRDY2,
SEND_EN => SEND_EN,
SEND_STR => SEND_STR,
DSP_CRDY_W => DSP_CRDY_W,
DSP_CREQ_W => DSP_CREQ_W,
DSP_CACK_R => DSP_CACK_R,
DSP_CSTR_R => DSP_CSTR_R,
DSP_D_R0 => DSP_D_R0,
DSP_D_R1 => DSP_D_R1,
DSP_D_R2 => DSP_D_R2,
DSP_D_R3 => DSP_D_R3,
DSP_D_R4 => DSP_D_R4,
DSP_D_R5 => DSP_D_R5,
DSP_D_R6 => DSP_D_R6,
DSP_D_R7 => DSP_D_R7,
DSP_CRDY_R => DSP_CRDY_R,
DSP_CREQ_R => DSP_CREQ_R,
DSP_CACK_W => DSP_CACK_W,
DSP_CSTR_W => DSP_CSTR_W,
DSP_D_W0 => DSP_D_W0,
DSP_D_W1 => DSP_D_W1,
DSP_D_W2 => DSP_D_W2,
DSP_D_W3 => DSP_D_W3,
DSP_D_W4 => DSP_D_W4,
DSP_D_W5 => DSP_D_W5,
DSP_D_W6 => DSP_D_W6,
DSP_D_W7 => DSP_D_W7,
led1 => led1,
led2 => led2,
led3 => led3,
led4 => led4,
piggy_io => piggy_io,
VG_A4 => VG_A4,
VG_A1 => VG_A1,
DSP_DIR_D => DSP_DIR_D,
DSP_DIR_STRACK => DSP_DIR_STRACK,
DSP_DIR_REQRDY => DSP_DIR_REQRDY);

driver_7416245_1 : driver_7416245
port map (
iobus_a => sim_io_bus,
iobus_b => sim_io_bus2,
dir_i => uC_Link_DIR_A);

-- clock generation

sim_clk <= not sim_clk after 10 ns; -- 50 MHz simulation clock
clk0 <= sim_clk;

-- component interconnections

98

fibclk_tb <= Piggy_Clk1_tb;

Piggy_Ack1_tb <= fiback_tb;
fibstrobe_tb <= Piggy_Strb1_tb;
fibrnw_tb <= Piggy_RnW1_tb;

fiba_tb <= piggy_io (5 downto 0);

adc1d_tb <= "10101010101010", "00011111111000" after 400 ns, \
"11111111111111" after 690 ns;

-- uC_Link_D_tb <= sim_io_bus (7 downto 0) when Piggy_RnW1_tb = \
’1’ else (others => ’Z’);
-- uC_Link_A_tb <= sim_io_bus (15 downto 8) when Piggy_RnW1_tb = \
’1’ else (others => ’Z’);

-- sim_io_bus (7 downto 0) <= uC_Link_D_tb when Piggy_RnW1_tb = \
’0’ else (others => ’Z’);
-- sim_io_bus (15 downto 8) <= uC_Link_A_tb when Piggy_RnW1_tb = \
’0’ else (others => ’Z’);

-- sim_io_bus <= fibd_tb when Piggy_RnW1_tb = ’1’ else (others \
=> ’Z’);
-- fibd_tb <= sim_io_bus when Piggy_RnW1_tb = ’0’ else (others \
=> ’Z’);

uC_Link_D_tb <= sim_io_bus (7 downto 0) when Piggy_RnW1_tb = ’1’ \
else (others => ’Z’);
uC_Link_A_tb <= sim_io_bus (15 downto 8) when Piggy_RnW1_tb = ’1’ \
else (others => ’Z’);

sim_io_bus (7 downto 0) <= uC_Link_D_tb when Piggy_RnW1_tb = ’0’ \
else (others => ’Z’);
sim_io_bus (15 downto 8) <= uC_Link_A_tb when Piggy_RnW1_tb = ’0’ \
else (others => ’Z’);

sim_io_bus2 <= fibd_tb when Piggy_RnW1_tb = ’1’ else (others \
=> ’Z’);
fibd_tb <= sim_io_bus2 when Piggy_RnW1_tb = ’0’ else (others \
=> ’Z’);

end mixed_tb_arch;

99

F Schemtatic Diagrams

101

G
S

IG
es

el
sc

ha
ft

fü
r

P
la

nk
st

ra
ss

e
1

D
-6

42
91

 D
ar

m
st

ad
t

G
E

R
M

A
N

Y
w

w
w

.g
si

.d
e

H
F-

G
ru

pp
e

S
ch

w
er

io
ne

nf
or

sc
hu

ng
 m

bH

B
an

k1

B
an

k2

B
an

k3

B
an

k4
P

W
R

_B
LK

C
FG

_B
LO

C
K

IO
1_

1
1

IO
2_

1
2

IO
3_

1
3

IO
4_

1
4

IO
5_

1
5

IO
6_

1
6

IO
7_

1
7

IO
8_

1
8

IO
9_

1
11

IO
10

_1
12

IO
11

_1
13

IO
12

_1
14

IO
13

_1
15

IO
14

_1
16

IO
15

_1
21

IO
16

_1
22

IO
17

_1
23

IO
18

_1
24

IO
19

_1
27

IO
20

_1
28

IO
21

_1
29

IO
22

_1
30

IO
23

_1
31

IO
24

_1
32

IO
1_

2
10

9

IO
2_

2
11

0

IO
3_

2
11

1

IO
4_

2
11

2

IO
5_

2
11

3

IO
6_

2
11

4

IO
7_

2
11

7

IO
8_

2
11

8

IO
9_

2
11

9

IO
10

_2
12

0

IO
11

_2
12

1

IO
12

_2
12

2

IO
13

_2
12

3

IO
14

_2
12

4

IO
15

_2
12

5

IO
16

_2
12

7

IO
17

_2
12

9

IO
18

_2
13

0

IO
19

_2
13

1

IO
20

_2
13

2

IO
21

_2
13

3

IO
22

_2
13

4

IO
23

_2
13

7

IO
24

_2
13

8

IO
25

_2
13

9

IO
26

_2
14

0

IO
27

_2
14

1

IO
28

_2
14

2

IO
29

_2
14

3

IO
30

_2
14

4

IO
1_

3
73

IO
2_

3
74

IO
3_

3
75

IO
4_

3
76

IO
5_

3
77

IO
6_

3
78

IO
7_

3
79

IO
8_

3
80

IO
9_

3
81

IO
10

_3
84

IO
11

_3
85

IO
12

_3
86

IO
13

_3
87

IO
14

_3
88

IO
15

_3
93

IO
16

_3
94

IO
17

_3
95

IO
18

_3
96

IO
19

_3
97

IO
20

_3
98

IO
21

10
1

IO
22

_3
10

2

IO
23

_3
10

3

IO
24

_3
10

4

IO
25

_3
10

5

IO
26

_3
10

6

IO
27

_3
10

7

IO
28

_3
10

8

IO
1_

4
37

IO
2_

4
38

IO
3_

4
39

IO
4_

4
40

IO
5_

4
41

IO
6_

4
42

IO
7_

4
43

IO
8_

4
44

IO
9_

4
45

IO
10

_4
48

IO
11

_4
49

IO
12

_4
50

IO
13

_4
51

IO
14

_4
52

IO
15

_4
53

IO
16

_4
55

IO
17

_4
57

IO
18

_4
58

IO
19

_4
59

IO
20

_4
62

IO
21

_4
63

IO
22

_4
66

IO
23

_4
67

IO
24

_4
68

IO
25

_4
69

IO
26

_4
70

IO
27

_4
71

IO
28

_4
72

G
N

D
IN

T1
17

G
N

D
IN

T2
54

G
N

D
IN

T3
92

G
N

D
IN

T4
12

8

G
N

D
IO

1
10

G
N

D
IO

2
26

G
N

D
IO

3
47

G
N

D
IO

4
65

G
N

D
IO

5
83

G
N

D
IO

6
99

G
N

D
IO

7
11

5

G
N

D
IO

8
13

5

V
C

C
IN

T1
19

V
C

C
IN

T2
56

V
C

C
IN

T3
90

V
C

C
IN

T4
12

6

V
C

C
IO

B
1_

1
9

V
C

C
IO

B
1_

2
25

V
C

C
IO

B
2_

1
11

6

V
C

C
IO

B
2_

2
13

6

V
C

C
IO

B
3_

1
82

V
C

C
IO

B
3_

2
10

0

V
C

C
IO

B
4_

1
46

V
C

C
IO

B
4_

2
64

IO
/G

C
LK

0
18

IO
/G

C
LK

1
20

IO
/G

C
LK

2
89

IO
/G

C
LK

3
91

IO
/D

E
V

_O
E

60

TM
S

33

TD
I

34

TC
K

35

TD
O

36

IO
/D

E
V

_C
LR

N
61

13579

X
1

1113151719212325

2468101214161820222426

13579

X
2

1113151719212325

2468101214161820222426

V
I

1

2

V
O

3

IC
2

G
N

D

V
I

2

1

V
O

3

IC
3

G
N

D

V
IN

2
V

O
U

T
6

GND 4

IC
4

TR
IM

5

1
2

3
4

5
6

7
8

9
10

X
3

TP
1

TP
2

TP
3

TP
4

TP
5

M
H

1
M

H
2

M
H

3

F1 FI
D

U
C

IA
L

M
A

R
K

F2 FI
D

U
C

IA
L

M
A

R
K

M
H

4

R
N

19

R
N

20

R
N

21

R
N

22

C
17

5

C
17

6
C

17
7

C
17

8

V
I

3

1V
O

1
2

IC
27 G

N
D

V
O

2
TA

B

C
53

C
54

C
55

C
17

3

V
I

3

1V
O

1
2

IC
28 G

N
D

V
O

2
TA

B

C
17

9
C

18
0

C
18

1
C

18
2L1

L2
L4

R
N

23

F3 FI
D

U
C

IA
L

M
A

R
K

R
N

24
R

16
7

TP
6

TP
7

C
13

C
14

C
17

C
18

C
21

C
6

C
3

C
4

C
5

C
1

C
2

C
7

C
8

C
9

C
10

C
11

C
12

R2

R3

R4

C
15

R1

C
20

C
19

TP8

TP9 TP10

TP11
TP12

TP13

TP14

TP15

TP16

C
16

D
A

C
2D

[0
..1

3]
,D

A
C

2S
LP

,D
A

C
2C

LK

A
D

C
2D

[0
..1

3]
,A

D
C

2S
H

D
N

,A
D

C
2O

F,
A

D
C

2C
LK

D
A

C
1D

[0
..1

3]
,D

A
C

1S
LP

,D
A

C
1C

LK

A
D

C
1D

[0
..1

3]
,A

D
C

1S
H

D
N

,A
D

C
1O

F,
A

D
C

1C
LK

R
N

FI
B

D
[0

..1
5]

RNFIBD[0..15]

AD
C

1S
W

[0
..3

]

A
D

C
2S

W
[0

..3
]

FI
B

C
LK

FI
B

C
LK

TC
K

TC
K

TD
O

TD
O

TM
S

TM
S

TD
I

TD
I

A
D

C
1D

0
A

D
C

1D
1

A
D

C
1D

2
A

D
C

1D
3

A
D

C
1D

4
A

D
C

1D
5

A
D

C
1D

6
A

D
C

1D
7

A
D

C
1D

8
A

D
C

1D
9

A
D

C
1D

10
A

D
C

1D
11

A
D

C
1D

12
A

D
C

1D
13

A
D

C
2D

0
A

D
C

2D
1

A
D

C
2D

3
A

D
C

2D
4

A
D

C
2D

5
A

D
C

2D
6

A
D

C
2D

7

A
D

C
2D

8
A

D
C

2D
9

A
D

C
2D

10
A

D
C

2D
11

A
D

C
2D

12
A

D
C

2D
13

FI
B

A
2

FI
B

A
2

FI
B

A
0

FI
B

A
0

FI
B

A
3

FI
B

A
3

FI
B

A
1

FI
B

A
1

FI
B

R
W

FI
B

R
W

FI
B

S
TR

O
B

E

FI
B

S
TR

O
B

E

FI
B

A
C

K

FI
B

A
C

K

FI
B

A
5

FI
B

A
5

FI
B

A
4

FI
B

A
4

FI
B

D
7

FI
B

D
7

FI
B

D
5

FI
B

D
5

FI
B

D
3

FI
B

D
3

FI
B

D
1

FI
B

D
1

FI
B

D
14

FI
B

D
14

FI
B

D
12

FI
B

D
12

FI
B

D
10

FI
B

D
10

FI
B

D
8

FI
B

D
8

FI
B

D
6

FI
B

D
6

FI
B

D
4

FI
B

D
4

FI
B

D
2

FI
B

D
2

FI
B

D
0

FI
B

D
0

FI
B

D
15

FI
B

D
15

FI
B

D
13

FI
B

D
13

FI
B

D
11

FI
B

D
11

FI
B

D
9

FI
B

D
9

A
D

C
1C

LK

A
D

C
2C

LK

D
A

C
2C

LK
D

A
C

2D
13

D
A

C
2D

12
D

A
C

2D
11

D
A

C
2D

10
D

A
C

2D
9

D
A

C
2D

8
D

A
C

2D
7

D
A

C
2D

6

D
A

C
2D

4
D

A
C

2D
3

D
A

C
2D

2
D

A
C

2D
1

D
A

C
2D

0
D

A
C

2S
LP

A
D

C
2S

H
D

N

A
D

C
2D

2
A

D
C

2O
F

D
A

C
1C

LK
D

A
C

1D
13

D
A

C
1D

12
D

A
C

1D
11

D
A

C
1D

10

D
A

C
1D

9
D

A
C

1D
8

D
A

C
1D

7
D

A
C

1D
6

D
A

C
1D

5
D

A
C

1D
4

D
A

C
1D

3
D

A
C

1D
2

D
A

C
1D

1
D

A
C

1D
0

D
A

C
1S

LP

A
D

C
1S

H
D

N
A

D
C

1O
F

R
N

FI
B

D
15

R
N

FI
B

D
15

R
N

FI
B

D
14

R
N

FI
B

D
14

R
N

FI
B

D
13

R
N

FI
B

D
13

R
N

FI
B

D
12

R
N

FI
B

D
12

R
N

FI
B

D
0

R
N

FI
B

D
0

R
N

FI
B

D
1

R
N

FI
B

D
1

R
N

FI
B

D
2

R
N

FI
B

D
2

R
N

FI
B

D
3

R
N

FI
B

D
3

R
N

FI
B

D
4

R
N

FI
B

D
4

R
N

FI
B

D
5

R
N

FI
B

D
5

R
N

FI
B

D
6

R
N

FI
B

D
6

R
N

FI
B

D
7

R
N

FI
B

D
7

R
N

FI
B

D
8

R
N

FI
B

D
8

R
N

FI
B

D
9

R
N

FI
B

D
9

R
N

FI
B

D
10

R
N

FI
B

D
10

R
N

FI
B

D
11

R
N

FI
B

D
11

A
D

C
1S

W
0

A
D

C
1S

W
1

A
D

C
1S

W
2

A
D

C
1S

W
3

A
D

C
2S

W
0

A
D

C
2S

W
1

A
D

C
2S

W
2

A
D

C
2S

W
3

D
A

C
2D

5

A
LT

E
R

A
-E

P
M

12
70

T1
44

+3
V

3

+3
V

3

FP
P

I
U

C
L

-1
5V

A

A
G

N
D

A
G

N
D

78
X

X
05

T

79
X

X
05

T

+1
5V

A
+5

V
A

-1
5V

A
-5

V
A

AGND

A
D

R
43

1

+5
V

A

A
G

N
D

+2
_5

V
R

E
F

C
P

LD
-J

TA
G

+3
V

3

+3
V

3
+3

V
3

A
G

N
D

A
G

N
D

A
G

N
D

A
G

N
D

A
G

N
D

A
G

N
D

+3
V

3

TI
O

1

TI
O

2

TI
O

3

TI
O

4

TI
O

5

M
O

U
N

T-
H

O
LE

3.
6

M
O

U
N

T-
H

O
LE

3.
6

M
O

U
N

T-
H

O
LE

3.
6

M
O

U
N

T-
H

O
LE

2.
8

22
R

22
R

22
R

22
R

68
0n

F

68
0n

F
68

0n
F

68
0n

FLM
S

15
87

10
0u

F-
50

V
10

0u
F-

50
V

68
0n

F
68

0n
F

A
G

N
D

+5
V

+3
V

3A

LM
S

15
87

10
0u

F-
50

V
10

0u
F-

50
V

68
0n

F
68

0n
F

A
G

N
D

+5
V

+3
V

3

1u
H

-3
A

1u
H

-3
A

1u
H

-3
A

+5
V

+1
5V

A

22
R

A
G

N
D

A
G

N
D

22
R

18
R

TI
O

6

TI
O

7

10
0u

F-
50

V

10
0u

F-
50

V

10
0u

F-
50

V

10
0u

F-
50

V

68
0n

F
10

0n
F

10
0n

F

1n
F

10
nF

1n
F

10
nF

1n
F

10
nF

10
0n

F

1n
F

10
nF

10
0n

F

10K

10K

10K

10
0n

F

1K

10
0n

F
10

0n
F

+3
V

3
+3

V
3A

+2
_5

V
R

E
F

+5
V

A

-5
V

A
A

G
N

D
-1

5V
A

+1
5V

A

+5
V

10
0n

F

S
te

ue
ru

ng
, V

er
so

rg
un

g

G
S

IG
es

el
sc

ha
ft

fü
r

P
la

nk
st

ra
ss

e
1

D
-6

42
91

 D
ar

m
st

ad
t

G
E

R
M

A
N

Y
w

w
w

.g
si

.d
e

H
F-

G
ru

pp
e

S
ch

w
er

io
ne

nf
or

sc
hu

ng
 m

bH

V+ V-

V+ V-

*

* n
u

=
N

ot
 u

se
d

X
5

1

23
6

IC
5

7 4

8

S
1

3
D

1
2

S
2

14
D

2
15

S
3

11
D

3
10

S
4

6
D

4
7

IN
1

1

IN
2

16

IN
3

9

IN
4

8

V
+

13

G
N

D
1

5

V
-

4

IC
6

G
N

D
2

12

1

23
6IC

9

7 4

8

X
6

IN
1

O
U

T
8

G24

G13

G2

G5 7

G4 6

G3 5

IC
8

P
LP

-3
0

C
26

C
62

R13

C31

C
32

R63

C63

R68

C
64

C65

D
0

12

D
1

13

D
2

14

D
3

15

D
4

16

D
5

17

D
6

18

D
7

19

D
8

22

D
9

23

D
10

24

D
11

25

D
12

26

A
G

N
D

2
33

A
V

D
D

2
32

C
LK

9

O
F

28

D
V

D
D

21

D
G

N
D

20

D
13

27

S
H

D
N

10

S
E

N
S

E
30

R
E

FH
1

3

R
E

FL
1

5

O
E

11
M

O
D

E
29

V
C

M
31

A
IN

-
2

A
IN

+
1

IC
15

R
E

FH
2

4

R
E

FL
2

6

A
V

D
D

1
7

A
G

N
D

1
8

R
N

1

R
N

2

R
N

3

R
N

4

C
75

C
76

C
77

C
78

C
79

C
81

C
82

C
80

R79 R80R81

R
82

R83

R84

C
83

C
84

C
15

3

C
15

4

C
15

5

C
15

6

R
52

R
69

R
70

R
71

R
72

C
17

2

R
22

R
23

C
17

4

R19

R
97

R
98

R
99

R
10

0

R
10

1

R
10

2

C
19

2

C
19

3

C
19

4

C
19

5

C
91

C
18

8

R169

R176

R177

R
17

8
R

17
9

R
18

0
R

18
1

R
18

2

R
18

3

R
18

4C89

R185

C
16

3

-D
IN

1

+D
IN

8

V+3

NC7

V- 6

+O
U

T
4

-O
U

T
5

VOCM 2

IC
12

2

X4
1

R
N

5

V
P

S
I

3

C
M

O
P

11

CMGN 8

V
P

S
O

14

VPOS16

IN
H

I
4

IN
LO

5

M
O

D
E

6

VDBS 7

COMM 9

VMAG 10

O
P

LO
12

O
P

H
I

13

CNTR15

OFST1

ENBL2

IC
7

R
78

R77

C
16

7

C
16

8

C
16

9
C

29

C
16

5

C
16

6

R15

R10
R

11

R
27

R
29

C
66

C
69

C
70

C
71

C
72

C
73

C
74

R14 R61

R62

C
67

C
68

R64 R65

C
33

C
34

R66 R67

C
28

C30

R16 R17

C
14

6
C

14
5

C
23

C
24

C
25

C
14

7
C

14
8

C
14

9

R
8

R9

R12

C
35

C
39

C
40

C
36

C
37

C
38

R30

R31

R33

R32

R28

R
24

R
25

A
D

C
1D

[0
..1

3]
,A

D
C

1S
H

D
N

,A
D

C
1O

F,
A

D
C

1C
LK

AD
C

1S
W

[0
..3

]

+2
_5

V
R

E
F

D
A

C
1O

U
T

D
A

C
2O

U
T

A
D

C
1V

R
E

F

A
D

C
1V

R
E

F

A
D

C
1V

R
E

F

A
D

C
1C

LK

A
D

C
1O

F
A

D
C

1D
13

A
D

C
1D

12
A

D
C

1D
11

A
D

C
1D

10
A

D
C

1D
9

A
D

C
1D

8
A

D
C

1D
7

A
D

C
1D

6
A

D
C

1D
5

A
D

C
1D

4
A

D
C

1D
3

A
D

C
1D

2
A

D
C

1D
1

A
D

C
1D

0
A

D
C

1S
H

D
N

A
D

C
1S

W
3

A
D

C
1S

W
2

A
D

C
1S

W
1

A
D

C
1S

W
0

A
D

C
1-

IN

A
G

N
D

A
G

N
D

TH
S

40
01

-5
V

A

+5
V

A

A
G

N
D

A
G

N
D

D
G

64
1

A
G

N
D

A
G

N
D

-5
V

A

A
G

N
D

A
G

N
D

A
G

N
D

+5
V

A

+5
V

A

A
G

N
D

+5
V

A

A
G

N
D

TH
S

40
01

-5
V

A
A

G
N

D

A
G

N
D

+1
5V

A
+5

V
A

A
D

C
1-

M
O

N

A
G

N
D

-1
5V

A

+1
5V

A

2.
2n

F

2.
2n

F

A
G

N
D

+5
V

A

nu

+5
V

A

A
G

N
D

3.3nF

2.
2n

F

nu

A
G

N
D

A
G

N
D

A
G

N
D

+5
V

A

2.2nF

A
G

N
D

+5
V

A

nu

2.
2n

F

+2
_5

V
R

E
F

2.2nF

+5
V

A

LT
C

22
49

22
R

22
R

22
R

22
R

2.
2n

F
10

0n
F

2.
2n

F
10

0n
F

+3
V

3A

A
G

N
D

A
G

N
D

10
0n

F

1u
F-

08
05

1u
F-

08
05

A
G

N
D

2.
2u

F-
08

05

A
G

N
D

nu nu0R

nu

nu

nu

1u
F-

08
05

2.
2u

F-
08

05

A
G

N
D

A
G

N
D

A
G

N
D

A
G

N
D

+3
V

3A
+2

_5
V

R
E

F

A
G

N
D

1n
F

1n
F

1n
F

1n
F

A
G

N
D

49
R

9

+5
V

A

A
G

N
D

49
R

9

A
G

N
D

+5
V

A

nu

nu

0R

10
0n

F

A
G

N
D

24
R

24
R

12
pF

49R918
0R

+5
V

A

0R

nu
(1

8R
)

nu
(1

8R
)

0R

18
R

68
0n

F

68
0n

F

AGND+5
V

A

-5
V

A

68
0n

F

68
0n

F

AGND+1
5V

A

-1
5V

A

+3
V

3

+3
V

310
0p

F

10
0p

F

49R9

A
G

N
D

nu

nu

nu
nu

nu
nu

nu

nu

0R

nu

nu

A
G

N
D

4.
7p

F

A
D

81
31

-5
V

A

A
G

N
D

-5
V

A

A
D

C
1-

S
IG

1K

A
D

83
30

10
K

20K

10
0p

F

3.
3n

F

10
0n

F
10

0p
F

3.
3n

F

10
0n

F

49R9

200R

20
0R

49
R

9

51
0R

10
0p

F

10
0p

F

3.
3n

F

10
0n

F

10
0p

F

3.
3n

F

10
0n

F

0R nu

A
G

N
D

nu

3.
3n

F

10
0n

F

6K8 3K

nu
nu

nu nu

nu
(3

.3
nF

)

nu
(3

.3
nF

)

nu(10K) 0R

10
0p

F
2.

2n
F

10
0n

F

10
0n

F

10
0n

F

10
0n

F
2.

2n
F

10
0p

F

0R

49R9

49R9

10
0n

F
2.

2n
F

10
0p

F

10
0n

F
2.

2n
F

10
0p

F

nu(0R)

0R

nu(0R)

0R

510R

51
0R

51
0R

E
nt

ko
pp

el
ko

nd
en

sa
to

re
n

fü
r d

en
 V

G
A

2'
s

C
om

pl
em

en
t,

C
LK

 s
ta

bi
liz

er
 o

n
S

LE
E

P
 M

od
e

ni
ch

t i
m

pl
em

en
tie

rt.
N

ur
 N

A
P

 u
nd

 N
O

R
M

A
L

m
od

i v
on

 C
P

LD
 s

te
ue

rb
ar

.
R

ef
er

en
z

zu
m

 in
te

rn
en

 2
V

pp
 g

es
et

zt
.

M
ax

im
al

e
ex

te
rn

e
R

ef
er

en
z

=
1V

A
D

C
 K

an
al

 1

A
D

C
 K

an
al

 1

V+ V-

G
S

IG
es

el
sc

ha
ft

fü
r

P
la

nk
st

ra
ss

e
1

D
-6

42
91

 D
ar

m
st

ad
t

G
E

R
M

A
N

Y
w

w
w

.g
si

.d
e

H
F-

G
ru

pp
e

S
ch

w
er

io
ne

nf
or

sc
hu

ng
 m

bH

V+ V-

1

23
6

IC
10

7 4

8

X
7

IN
1

O
U

T
8

G24

G13

G2

G5 7

G4 6

G3 5

IC
11

P
LP

-1
00

D
0

14

D
1

13

D
2

12

D
3

11

D
4

10

D
5

9

D
6

8

D
7

7

D
8

6

D
9

5

D
10

4

D
11

3

D
12

2

A
V

D
D

24

R
E

S
V

D
23

N
C

19

R
E

FI
O

17

FS
A

D
J

18

IO
U

TA
22

IO
U

TB
21

R
E

FL
O

16

A
C

O
M

20
D

C
O

M
26

C
LO

C
K

28

D
13

1

D
V

D
D

27

IC
13

S
LE

E
P

15

M
O

D
E

25

T1

R34

R
44

C
47

R45

R46

L3

R
47

C
51

C
52

1

23
6

IC
14

7 4

8

R
48

R
50

R51
R

35

R53 R54

R55

R56

C59
C

60
C

61

R
58

R
N

6

R
N

7

R
N

8

R
N

9

R
12

3

C
20

0

C
20

1

C
20

2

C
20

3

R26

R
16

5

R
12

5

R
15

2

R186

R187

R
18

8

R189

C
27

C
49

C
50

C
56

R
49

C
57

C
58

C
48

R43R38

C
41

C
45

C
46

R37

R42

R41

R
36

R39

R40

C
42

C
43

C
44

D
A

C
1D

[0
..1

3]
,D

A
C

1S
LP

,D
A

C
1C

LK

D
A

C
1O

U
T

D
A

C
1C

LK

D
A

C
1D

13
D

A
C

1D
12

D
A

C
1D

11
D

A
C

1D
10

D
A

C
1D

9
D

A
C

1D
8

D
A

C
1D

7
D

A
C

1D
6

D
A

C
1D

4
D

A
C

1D
3

D
A

C
1D

2
D

A
C

1D
1

D
A

C
1D

0
D

A
C

1S
LP

D
A

C
1D

5

A
G

N
D

TH
S

40
01

-5
V

A
A

G
N

D

A
G

N
D

+1
5V

A
+5

V
A

D
A

C
1-

O
U

T

A
G

N
D

-1
5V

A
A

G
N

D

A
G

N
D

A
G

N
D

A
D

97
44

T1
-6

T

nu

A
G

N
D

A
G

N
D

1K

A
G

N
D

10
0n

F

10K

nu(10K)

A
G

N
D

A
G

N
D

A
G

N
D

FE
R

R
IT

-1
21

0

1R

10
0n

F
10

0n
F

+3
V

3A

TH
S

40
01

-5
V

A
A

G
N

D

A
G

N
D

+5
V

A

22
0R

22
0R

470R

A
G

N
D

49
R

9

240R 1K

A
G

N
D

24R

24R
12pF

A
G

N
D

A
G

N
D

3.
3n

F

3.
3n

F

nu
(0

R
)+2

_5
V

R
E

F

22
R

22
R

22
R

22
R

18
R

68
0n

F

68
0n

F

AGND+5
V

A

-5
V

A

68
0n

F

68
0n

F

AGND+1
5V

A

-1
5V

A

+3
V

3

+3
V

3

18R

18
R

nu nu

nu(0R)

nu(0R)

nu

nu(0R)

4.
7p

F

10
0n

F
3.

3n
F

10
0p

F

47
0R

3.
3n

F

10
0p

F

10
0n

F

200R200R

10
0n

F
3.

3n
F

10
0p

F

49R9

nu(0R)

0R

49
R

9

nu(0R)

0R

10
0n

F
3.

3n
F

10
0p

F

B
es

tü
ck

va
ria

nt
e

A
C

 K
op

pl
un

g

E
in

ga
ng

sk
ap

. 5
pF

2'
s

C
om

pl
em

en
t O

ut
pu

t

D
A

C
 K

an
al

 1

D
A

C
 K

an
al

 1

G
S

IG
es

el
sc

ha
ft

fü
r

P
la

nk
st

ra
ss

e
1

D
-6

42
91

 D
ar

m
st

ad
t

G
E

R
M

A
N

Y
w

w
w

.g
si

.d
e

H
F-

G
ru

pp
e

S
ch

w
er

io
ne

nf
or

sc
hu

ng
 m

bH

G
S

IG
es

el
sc

ha
ft

fü
r

P
la

nk
st

ra
ss

e
1

D
-6

42
91

 D
ar

m
st

ad
t

G
E

R
M

A
N

Y
w

w
w

.g
si

.d
e

H
F-

G
ru

pp
e

S
ch

w
er

io
ne

nf
or

sc
hu

ng
 m

bH

V+ V-

V+ V-

X
8

1

23
6

IC
16

7 4

8

S
1

3
D

1
2

S
2

14
D

2
15

S
3

11
D

3
10

S
4

6
D

4
7

IN
1

1

IN
2

16

IN
3

9

IN
4

8

V
+

13

G
N

D
1

5

V
-

4

IC
17

G
N

D
2

12

1

23
6IC
19

7 4

8

X
9

IN
1

O
U

T
8

G24

G13

G2

G5 7

G4 6

G3 5

IC
20

P
LP

-3
0

C
10

1

C
10

2

R114

C103

C
10

4

R116

C105

R121

C
10

6

C107

D
0

12

D
1

13

D
2

14

D
3

15

D
4

16

D
5

17

D
6

18

D
7

19

D
8

22

D
9

23

D
10

24

D
11

25

D
12

26

A
G

N
D

2
33

A
V

D
D

2
32

C
LK

9

O
F

28

D
V

D
D

21

D
G

N
D

20

D
13

27

S
H

D
N

10

S
E

N
S

E
30

R
E

FH
1

3

R
E

FL
1

5

O
E

11
M

O
D

E
29

V
C

M
31

A
IN

-
2

A
IN

+
1

IC
21

R
E

FH
2

4

R
E

FL
2

6

A
V

D
D

1
7

A
G

N
D

1
8

R
N

10

R
N

11

R
N

12

R
N

13

C
11

7
C

11
8

C
11

9
C

12
0

C
12

1

C
12

2

C
12

3
C

12
4

R132 R133R134

R
13

5

R136

R137

C
12

5

C
12

6

C
15

7

C
15

8

C
15

9

C
16

0

R
N

18

R
57

R
73

R
74

R
75

R
76

C
18

6

R86

R
87

R
88

C
18

7

R
20

R
12

2

C
19

6

C
19

7

C
19

8

C
19

9

R
94

R
16

1

R
16

3

R
16

4

C
18

9
C

20
8

R170

R
5

R
6

R
7

R
59

R
60

R
17

1

R173

R174

R
17

2C161

R175

C
16

4

-D
IN

1

+D
IN

8

V+3

NC7

V- 6

+O
U

T
4

-O
U

T
5

VOCM 2

IC
26

2

X1
1

1

V
P

S
I

3

C
M

O
P

11

CMGN 8

V
P

S
O

14

VPOS16

IN
H

I
4

IN
LO

5

M
O

D
E

6

VDBS 7

COMM 9

VMAG 10

O
P

LO
12

O
P

H
I

13

CNTR15

OFST1

ENBL2

IC
18

R
13

1

R130

C
18

3

C
18

4

C
18

5
C

20
9

C
21

0

C
21

1

R21

R91

R
10

5

R
10

7

R
92

R115

C
90

C
92

C
93

C
94

C
10

8

C
10

9

C
11

0

C
11

1

C
11

2

C
11

3

C
11

4

C
11

5

C
11

6

R112 R113 R117 R118

R119 R120

R95 R96

C
87

C
88

C
22

C
86

C
15

0

R
89

R90

R93

C
85

C
15

1
C

15
2

C
95

C
99

C
10

0

R108

R109 R110

R111

C
96

C
97

C
98

R106
R

10
4

R
10

3

A
D

C
2D

[0
..1

3]
,A

D
C

2S
H

D
N

,A
D

C
2O

F,
A

D
C

2C
LK

AD
C

2S
W

[0
..3

]

+2
_5

V
R

E
F

D
A

C
1O

U
T

D
A

C
2O

U
T

A
D

C
2V

R
E

F

A
D

C
2V

R
E

F

A
D

C
2V

R
E

F

A
D

C
2C

LK

A
D

C
2O

F
A

D
C

2D
13

A
D

C
2D

12
A

D
C

2D
11

A
D

C
2D

10
A

D
C

2D
9

A
D

C
2D

8
A

D
C

2D
7

A
D

C
2D

6
A

D
C

2D
5

A
D

C
2D

4
A

D
C

2D
3

A
D

C
2D

2
A

D
C

2D
1

A
D

C
2D

0
A

D
C

2S
H

D
N

A
D

C
2S

W
3

A
D

C
2S

W
2

A
D

C
2S

W
1

A
D

C
2S

W
0

A
D

C
2-

IN

A
G

N
D

A
G

N
D

TH
S

40
01

-5
V

A

+5
V

A

A
G

N
D

D
G

64
1

A
G

N
D

A
G

N
D

-5
V

A

A
G

N
D

A
G

N
D

+5
V

A

+5
V

A
+5

V
A

A
G

N
D

TH
S

40
01

-5
V

A
A

G
N

D

A
G

N
D

+1
5V

A
+5

V
A

A
D

C
2-

M
O

N

A
G

N
D

-1
5V

A

+1
5V

A

2.
2n

F

2.
2n

F

A
G

N
D

+5
V

A

nu

+5
V

A

A
G

N
D

3.3nF

2.
2n

F

nu

A
G

N
D

A
G

N
D

A
G

N
D

+5
V

A

2.2nF

A
G

N
D

+5
V

A

nu

2.
2n

F

+2
_5

V
R

E
F

2.2nF

A
G

N
D

+5
V

A

LT
C

22
49

22
R

22
R

22
R

22
R

2.
2n

F
10

0n
F

2.
2n

F
10

0n
F

+3
V

3A

A
G

N
D

A
G

N
D

10
0n

F

1u
F-

08
05

1u
F-

08
05

A
G

N
D

2.
2u

F-
08

05

A
G

N
D

nu nu0R

nu

nu

nu

1u
F-

08
05

2.
2u

F-
08

05

A
G

N
D

A
G

N
D

A
G

N
D

A
G

N
D

+3
V

3A
+2

_5
V

R
E

F

A
G

N
D

A
G

N
D

1n
F

1n
F

1n
F

1n
F

A
G

N
D

1K

A
G

N
D

A
G

N
D

A
G

N
D

49
R

9

+5
V

A

49
R

9

A
G

N
D

+5
V

A

nu

nu

0R

10
0n

F

A
G

N
D

49R9

24
R

24
R

12
pF

18
0R

+5
V

A

18
R

68
0n

F

68
0n

F

AGND+5
V

A

-5
V

A

68
0n

F

68
0n

F

AGND+1
5V

A

-1
5V

A

0R

nu
(1

8R
)

nu
(1

8R
)

0R

+3
V

3

+3
V

310
0p

F

10
0p

F

49R9

A
G

N
D

nu
nu

nu
nu

nu

nu

nu

nu

0R

nu

nu

A
G

N
D

4.
7p

F

A
D

81
31

A
G

N
D

-5
V

A

-5
V

A

A
D

C
2-

S
IG

A
D

83
30

10
K

20K

10
0p

F

3.
3n

F

10
0n

F
10

0p
F

3.
3n

F

10
0n

F

49R9

200R

49
R

9

51
0R

20
0R

nu

nu
(3

.3
nF

)

nu
(3

.3
nF

)
nu

nu

10
0p

F

3.
3n

F

10
0n

F

10
0p

F

3.
3n

F

10
0n

F

10
0p

F

3.
3n

F

10
0n

F

0R nu 6K8 3K

nu nu

nu(10K) 0R

10
0n

F

10
0n

F

10
0n

F
2.

2n
F

10
0p

F

0R

49R9

49R9

10
0n

F
2.

2n
F

10
0p

F

10
0n

F
2.

2n
F

10
0p

F

nu(0R)

0R 0R

nu(0R)

10
0n

F
2.

2n
F

10
0p

F

510R51
0R

51
0R

E
nt

ko
pp

el
ko

nd
en

sa
to

re
n

fü
r d

en
 V

G
A

2'
s

C
om

pl
em

en
t,

C
LK

 s
ta

bi
liz

er
 o

n
S

LE
E

P
 M

od
e

ni
ch

t i
m

pl
em

en
tie

rt.
N

ur
 N

A
P

 u
nd

 N
O

R
M

A
L

m
od

i v
on

 C
P

LD
 s

te
ue

rb
ar

.
R

ef
er

en
z

zu
m

 in
te

rn
en

 2
V

pp
 g

es
et

zt
.

M
ax

im
al

e
ex

te
rn

e
R

ef
er

en
z

=
1V

A
D

C
 K

an
al

 2

A
D

C
 K

an
al

 2

V+ V-

G
S

IG
es

el
sc

ha
ft

fü
r

P
la

nk
st

ra
ss

e
1

D
-6

42
91

 D
ar

m
st

ad
t

G
E

R
M

A
N

Y
w

w
w

.g
si

.d
e

H
F-

G
ru

pp
e

S
ch

w
er

io
ne

nf
or

sc
hu

ng
 m

bH

V+ V-

1

23
6

IC
22

7 4

8

X
10

IN
1

O
U

T
8

G24

G13

G2

G5 7

G4 6

G3 5

IC
23

P
LP

-1
00

D
0

14

D
1

13

D
2

12

D
3

11

D
4

10

D
5

9

D
6

8

D
7

7

D
8

6

D
9

5

D
10

4

D
11

3

D
12

2

A
V

D
D

24

R
E

S
V

D
23

N
C

19

R
E

FI
O

17

FS
A

D
J

18

IO
U

TA
22

IO
U

TB
21

R
E

FL
O

16

A
C

O
M

20
D

C
O

M
26

C
LO

C
K

28

D
13

1

D
V

D
D

27

IC
24

S
LE

E
P

15

M
O

D
E

25

T2

R146

R
14

7

C
13

3

R148

R149

L1
2

R
15

0

C
13

4
C

13
5

1

23
6

IC
25

7 4

8

R
15

1

R
15

3

R
15

4
R155

R
15

6

R157 R158

R159

R160

C142
C

14
3

C
14

4

R
16

2

R
N

14

R
N

15

R
N

16

R
N

17

R
12

4

C
20

4

C
20

5

C
20

6

C
20

7

R166

R
16

8

R
19

0

R
19

1

R192

R193

R194

R
19

5

C
16

22

X1
2

1

C
13

7
C

13
8

C
13

9

C
13

6

C
14

0

C
14

1

R
13

8

R140

R139

C
12

7

C
13

1

C
13

2

R141

R142

R144

R143

R145

C
12

8
C

12
9

C
13

0

D
A

C
2D

[0
..1

3]
,D

A
C

2S
LP

,D
A

C
2C

LK

D
A

C
2O

U
T

D
A

C
2S

LP
D

A
C

2D
0

D
A

C
2D

1
D

A
C

2D
2

D
A

C
2D

3
D

A
C

2D
4

D
A

C
2D

5
D

A
C

2D
6

D
A

C
2D

7
D

A
C

2D
8

D
A

C
2D

9
D

A
C

2D
10

D
A

C
2D

11
D

A
C

2D
12

D
A

C
2D

13

D
A

C
2C

LK

A
G

N
D

TH
S

40
01

-5
V

A
A

G
N

D

A
G

N
D

+1
5V

A
+5

V
A

D
A

C
2-

O
U

T

A
G

N
D

-1
5V

A
A

G
N

D

A
G

N
D

A
G

N
D

A
D

97
44

T1
-6

T

nu

A
G

N
D

A
G

N
D

1K

A
G

N
D

10
0n

F

10K

nu(10K)

A
G

N
D

A
G

N
D

A
G

N
D

FE
R

R
IT

-1
21

0

1R

10
0n

F
10

0n
F

+3
V

3A

TH
S

40
01

-5
V

A
A

G
N

D

A
G

N
D

47
0R

+5
V

A

22
0R

22
0R

470R

A
G

N
D

49
R

9

240R 1K

A
G

N
D

24R

24R
12pF

A
G

N
D

A
G

N
D

3.
3n

F

3.
3n

F

nu
(0

R
)+2

_5
V

R
E

F

22
R

22
R

22
R

22
R

18
R

68
0n

F

68
0n

F

AGND+5
V

A

-5
V

A

68
0n

F

68
0n

F

AGND+1
5V

A

-1
5V

A

+3
V

3

+3
V

3

18R

18
R

nu nu

nu(0R)

nu(0R)

nu(0R)

nu

4.
7p

F

D
A

C
2-

S
IG

A
G

N
D

10
0n

F
3.

3n
F

10
0p

F

10
0n

F
3.

3n
F

10
0p

F

49
R

9

200R

49R9

10
0n

F
3.

3n
F

10
0p

F

nu(0R)

0R

nu(0R)

0R

200R

10
0n

F
3.

3n
F

10
0p

F

B
es

tü
ck

va
ria

nt
e

A
C

 K
op

pl
un

g

E
in

ga
ng

sk
ap

. 5
pF

2'
s

C
om

pl
em

en
t O

ut
pu

t

D
A

C
 K

an
al

 2

D
A

C
 K

an
al

 2

G
S

IG
es

el
sc

ha
ft

fü
r

P
la

nk
st

ra
ss

e
1

D
-6

42
91

 D
ar

m
st

ad
t

G
E

R
M

A
N

Y
w

w
w

.g
si

.d
e

H
F-

G
ru

pp
e

S
ch

w
er

io
ne

nf
or

sc
hu

ng
 m

bH

USB

D
IR

1

A
1

2

A
2

3

A
3

4

A
4

5

A
5

6

A
6

7

A
7

8

A
8

9
B

8
11

B
7

12
B

6
13

B
5

14
B

4
15

B
3

16
B

2
17

B
1

18

O
E

19

G
N

D
10

V
C

C
20

D
+ D
-

V
B

U
S

G
N

D

M
H

1
M

H
2

M
H

3
M

H
4

F1 FI
D

U
C

IA
L

M
A

R
K

F2 FI
D

U
C

IA
L

M
A

R
K

V
I

3

1V
O

1
2

IC
2 G

N
D

V
O

2
TA

B

C1

C2
D

IR
1

A
1

2

A
2

3

A
3

4

A
4

5

A
5

6

A
6

7

A
7

8

A
8

9
B

8
11

B
7

12
B

6
13

B
5

14
B

4
15

B
3

16
B

2
17

B
1

18

O
E

19

G
N

D
10

V
C

C
20

C3

C4

3V
3O

U
T

17

U
S

B
D

M
16

U
S

B
D

P
15

R
E

S
E

T
19

O
S

C
I

27

O
S

C
O

28

GND1 7

GND2 18

GND3 21

D
0

1

D
1

5

D
2

3

D
3

11

D
4

2

D
5

9

D
6

10

D
7

6

R
XF

23

TX
E

22

R
D

13

W
R

14

P
W

E
N

12

VCCIO4

AGND 25

IC
4

TE
S

T
26

VCC20

13579

X
2

111315171921232527293133

246810121416182022242628303234 C
5

C
6

C
7

C8

C9

R1 R2

C10

D
S

P
LI

N
K

D
0

D
S

P
LI

N
K

D
0

D
S

P
LI

N
K

D
1

D
S

P
LI

N
K

D
1

D
S

P
LI

N
K

D
2

D
S

P
LI

N
K

D
2

D
S

P
LI

N
K

D
3

D
S

P
LI

N
K

D
3

D
S

P
LI

N
K

D
4

D
S

P
LI

N
K

D
4

D
S

P
LI

N
K

D
5

D
S

P
LI

N
K

D
5

D
S

P
LI

N
K

D
6

D
S

P
LI

N
K

D
6

D
S

P
LI

N
K

D
7

D
S

P
LI

N
K

D
7

S
TR

_W
R

A
C

K
_N

R
D

R
E

Q
_N

TX
E

R
D

Y_
N

R
X

E

M
O

U
N

T-
H

O
LE

3.
0

M
O

U
N

T-
H

O
LE

3.
0

M
O

U
N

T-
H

O
LE

3.
0

M
O

U
N

T-
H

O
LE

3.
0

LM
S

15
87

10nF

100nF

10nF

100nF

FT
24

5R
L

D
G

N
D

+5
V

D
G

N
D

D
G

N
D

10
0u

F-
50

V
10

0n
F

10
0u

F-
50

V

+5
V

D
G

N
D

+3
V

3

+3
V

3

D
G

N
D

DGND DGND

+3
V

3

100nF

10nF

DGND

DGND

+3
V

3

4K7 10K

D
G

N
D

100nF

DGND

D
G

N
D

G GERBER Plots

103

FAB-ADC/DAC Rev.B

Page 1 of 15FAB_RevB.gbl

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 2 of 15FAB_RevB.gbo

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 3 of 15FAB_RevB.gbp

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 4 of 15FAB_RevB.gbs

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 5 of 15FAB_RevB.gl1

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 6 of 15FAB_RevB.gl2

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 7 of 15FAB_RevB.gm1

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 8 of 15FAB_RevB.gm2

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 9 of 15FAB_RevB.gp1

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 10 of 15FAB_RevB.gp2

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 11 of 15FAB_RevB.gtl

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 12 of 15FAB_RevB.gto

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 13 of 15FAB_RevB.gtp

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 14 of 15FAB_RevB.gts

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

FAB-ADC/DAC Rev.B

Page 15 of 15Hole/Rout Layers

Created with GC-Prevue V14.2.2 ©2000 GraphiCode, Inc.

