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Abstract

Many common photonic states are so-called Gaussian states. In a recent manuscript, we have shown
how the photon statistics of such states can be obtained by constructing and differentiating generating
functions [1]. In this technical report, we demonstrate the straightforward application of the framework
PyTorch to compute the required multivariate higher-order derivatives by automatic differentiation. Its
implementation requires only a few lines of Python code corroborating the strength of our approach
based on generating functions for the computation of photon statistics.
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Introduction
Important quantum-optical states such as vacuum, coherent states, squeezed states, thermal states,
or two-mode squeezed states generated by spontaneous parametric down-conversion are Gaussian
states (GSs). When the photon statistics of such states shall be analyzed and the states are transformed
and detected in complex optical setups exhibiting e.g. losses, partial interference, and noisy detectors,
numerical simulations are required. GSs and their transformations by optical setups can be modeled
conveniently by using the covariance formalism, encoding the complete information about the photon
statistics of the state in a covariance matrix Γ and a displacement vector d [2–7]. Transformations of the
Gaussian state correspond to simple matrix operations on Γ and d.

The simulation of the photon number distribution of GSs is known as Gaussian boson sampling. A
simulation approach based on a matrix function called Hafnian has been extensively discussed in the
literature concerning the computational complexity and to investigate the computational advantage of
quantum computers over classical computers [8–14]. The software library The Walrus [15] provides
several functions related to Gaussian boson sampling and methods to evaluate the Hafnian function.

In Ref. [1] we have chosen a different approach to evaluate the photon statistics of Gaussian states:
we have derived a generating function for the photon statistics, from which not only the photon number
distribution but also its moments or factorial moments can be obtained by differentiation. Furthermore,
we have shown that the method can also be applied to certain non-Gaussian states, such as photon-
added and photon-subtracted Gaussian states.

Our simulation method consists of two steps. First, the covariance matrix and displacement vector of
the quantum state to be detected are constructed. More details about setting up the covariance matrix,
displacement vector, and transformation matrices are presented in appendix A. The matrix operations
necessary for this step can easily be implemented with software, e.g. by using the Python package
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NumPy [16] or the software library QuGIT providing specialized function for the simulation of Gaussian
state dynamics [17].

In the second step, the covariance matrix and displacement vector are inserted into the generating
function, which is subsequently differentiated. In this technical report, we demonstrate the imple-
mentation of the second step with a simple example. Automatic differentiation (AD) software allows
evaluating the appearing multivariate higher-order derivatives with high numerical accuracy and re-
quires only relatively little implementation effort from the user. For AD, the elementary mathematical
operations necessary to compute the value of a function, such as addition, multiplication, or the sine
function, are tracked. For the computation of the derivative, the known derivatives of the elementary
operations are evaluated and combined to the derivative of the total function according to the chain
rule [18, 19]. For example, instead of approximating the derivative of the sine function numerically,
the cosine function is evaluated in this step. Thereby, the results obtained by AD are accurate to the
working precision. A variety of AD software tools exists and the website autodiff.org provides an
overview of some of them. AD is often used e.g. in machine learning, which is employed in a consis-
tently growing number of applications. We expect that software libraries for machine learning will be
further extended and maintained for the next couple of years and we have therefore chosen to imple-
ment AD for our purpose by using the popular machine learning software framework PyTorch [20,
21].

1. Background: Obtaining the Photon Statistics from a Generating
Function

A GS with S modes is a quantum state with a characteristic function χρ̂(ξ) = tr
�

ρ̂ exp(iξTq̂)
�

given by a
Gaussian function

χρ̂(ξ) = exp
�

−
1
4
ξTΓξ+ idTξ

�

(1)

of 2S variables ξT = (ξx1
, . . . ,ξxS

,ξp1
, . . . ,ξpS

). Here, the vector q̂= ( x̂1, . . . , x̂S, p̂1, . . . , p̂S)
T is a collec-

tion of the quadrature operators x̂ s = (âs + â†
s )/
⎷

2 and p̂s = (âs − â†
s )/(i
⎷

2) for s = 1, . . . , S. The state
is characterized by the covariance matrix Γ of dimension 2S×2S and by the displacement vector d with
2S elements. The generating function for the photon statistics we have derived in Ref. [1] reads1

G(w) =
exp(−dTΛ−1Wd/2)

⎷
detΛ

with Λ= 1+
1
2
W (Γ − 1) . (2)

The matrix W consists of two diagonal blocks diag(w) for the x and p components, with
w = (w1, . . . , wS)T:

W = diag(w)⊕ diag(w) . (3)

Each mode of the state is detected by one of d = 1, . . . , D detectors associated with a differentiation
parameter yd . To obtain the photon statistics, the generating function will be differentiated w.r.t. these
parameters. The m-th mode entering detector d is denoted md and detected with efficiency ηmd

. The

1The generating function derived in Ref. [1] depends on two further parameters u and v which are not relevant for the
example discussed in this report. They are therefore omitted.
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index s runs over all mode indices, i.e. enumerates md = 1d , . . . , Md for all D detectors in the order
11, 21, . . . , M1, 12, . . . M2, . . . . . . MD. To obtain the photon number distribution, the parameters ws are set
such that

ws = (1− yd)ηmd
, (4)

i.e. each mode is detected with an individual efficiency ηmd
and all modes entering the same detector d

share the same parameter yd . By slightly modifying the generating function and the definition of w
in eq. (4), the cumulative probabilities or the moments of the photon number distribution, the falling
factorial moments, or the rising factorial moments can be obtained [1].

Detection noise is modeled by multiplying G with the generating function for the noise statistics.
For example, if the detectors exhibit Poissonian noise with a mean number of νd noise counts the
d-th detector, the function G is multiplied by the generating function of the Poissonian statistics
exp
�

∑︁

d(yd − 1)νd

�

. The probability p(n,ν,η) to detect n1 photons in detector 1, n2 photons in
detector 2 etc. is then obtained by differentiating the generating function nd times w.r.t. yd for each
detector [1]:

p(n,ν,η) =

�

D
∏︂

d=1

1
nd!

dnd

dynd

�

exp

�

D
∑︂

d=1

(yd − 1)νd

�

G(w)

|︁

|︁

|︁

|︁

y=0
(5)

2. Python Code Example
By using PyTorch, the multivariate higher-order derivatives in eq. (5) can be evaluated conveniently.
The implementation requires only a few lines of code with the following general strategy:

1. Arrays for covariance matrix Γ and displacement vector d are constructed, e.g. as NumPy arrays,
and they converted to PyTorch tensors.

2. The differentiation parameters y are set up as PyTorch tensors. The value of the ten-
sors is the point at which the derivative is evaluated, i.e. y = 0 (cf. eq. (5)). The option
requires_grad=True is set so that PyTorch will track the further operations involving these
parameters for the subsequent computation of derivatives.

3. The matrices W and Λ and the generating function G are constructed according to eq. (2).
Mathematical operations involving tensors depending on the differentiation variables such as
sqrt, exp, or det are implemented with PyTorch functions so that these operations are tracked
for the computation of the derivative.

4. A function is defined to calculate the detection probability for n = (n1, . . . , nD) photons from
the multivariate higher-order derivatives. PyTorch hides the whole complexity of the derivative
computation from the user so that this function consists of only six lines of code.

We have set up the example codes with the parameters used in figure 3c of Ref. [1]. The state considered
is a two-mode squeezed vacuum (TMSV) state with 16 independent, equally strong two-mode squeezers
and a total mean photon pair number of µ = 3. The squeezing angle is set to zero, such that the
squeezing parameter is given by χ = r (cf. table 1). The signal modes of all squeezers are detected
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by the first detector with efficiency η = 0.8 and noise ν = 1 and the idler modes are detected by the
second detector with η= 0.9 and ν= 2.

Listing 1 shows the main part of the code required to calculate the bivariate photon number distribu-
tion for the two detectors. With the code below in listing 2, a 3D bar chart of the detection probabilities
for up to 4 photons in each detector can be generated. Clearly, this part is not necessary for the actual
computation of the derivatives. The resulting bar chart is shown in fig. 1.

When copying and pasting the code, the indentation may be lost. In this case please try to open the
file with a different PDF viewer or restore the indentation manually. The code has been tested with the
software versions Python 3.10, Matplotlib 3.5.2, NumPy 1.21.6, SciPy 1.8.1, and Torch 1.11.0.

Listing 1: Example code to generate the joint photon number distribution between two detectors.
One detector receives all signal modes with efficiency η1 = 0.8 and noise ν1 = 1 and the
other detector receives all idler modes with η2 = 0.9 and ν2 = 2. The state is a two-mode
squeezed vacuum with 16 two-mode squeezers.

from scipy.special import factorial
import torch
from torch.autograd import grad
from torch import tensor, zeros, ones, sqrt, exp, diag, stack, det, inverse
import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import block_diag

# Set default type of torch variables and tensors to 64-bit floating point
torch.set_default_dtype(torch.float64)
torch.set_default_tensor_type(torch.DoubleTensor)

###############################################################################
######    Set up covariance matrix of TMSV with squeezing angle = zero   ######
###############################################################################

mu = 3                                     # Total mean photon pair number
num_squeezers = 16                         # Number of equally strong squeezers
etas = [0.8, 0.9]                          # Detector efficiencies
nus = [1, 2]                               # Noise parameters

r =  np.arcsinh(np.sqrt(mu / num_squeezers))  # TMSV squeezing parameter
c, s = np.cosh(2*r), np.sinh(2*r)

covmat_TMSV = np.array([[c,  s,  0,  0],
                        [s,  c,  0,  0],
                        [0,  0,  c, -s],
                        [0,  0, -s,  c]])  # Covariance of a two-mode squeezer

# Set up block-diagonal covariance matrix with multiple two-mode squeezers
Gamma = tensor(block_diag(*([covmat_TMSV] * num_squeezers)))

dim = num_squeezers * covmat_TMSV.shape[0] # Dimension of the covariance matrix
d = zeros(dim)                             # The displacement vector is zero.
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###############################################################################
######        Set up differentiation parameters and Lambda-matrix        ######
###############################################################################

ys = [tensor(0., requires_grad=True) for i in (0, 1)]            # Parameters y

# Set up Diagonal W matrix  and Lambda matrix
W = diag(stack([eta * (1-y) for eta, y in zip(etas, ys)] * 2 * num_squeezers))
Lambda = diag(ones(dim)) + W @ (Gamma - diag(ones(dim))) / 2

###############################################################################
######                   Set up generating function                      ######
###############################################################################

G = exp(- d @ (inverse(Lambda) @ (W @ d)) / 2) / sqrt(det(Lambda))
G = G * exp(sum([(y-1) * nu for nu, y in zip(nus, ys)]))  # Multiply noise term

###  Function to compute probability from multivariate higher-order derivatives.
###  Each photon number n in the list ns corresponds to one y-parameter.
def p(ns):
    deriv = G
    for param, order in zip(ys, ns):
        for _ in range(order):
            deriv = grad(deriv, param, create_graph=True)[0]
    return deriv.detach() / np.prod(factorial(np.array(ns)))
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Listing 2: Code to generate a 3D bar chart with the joint detection probabilities up to photon num-
bers of 4.

###############################################################################
######     Compute probabilities on a square grid of photon numbers      ######
###############################################################################

n_max = 4                                    # Maximum photon number to compute
n_space = np.arange(0, n_max+1, 1)
n1grid, n2grid = np.meshgrid(n_space, n_space)
n1grid_fl, n2grid_fl = n1grid.flatten(), n2grid.flatten()

probs = []
for i in range(len(n1grid_fl)):
    probs.append(p([n1grid_fl[i], n2grid_fl[i]]))
    print(f'p({int(n1grid_fl[i])}, {int(n2grid_fl[i])}) = {probs[-1]:.3e}')

###############################################################################
######                         Plot a 3D bar chart                       ######
###############################################################################

bar_width = 0.5

fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(111, projection='3d')

ax.bar3d(n1grid_fl - bar_width / 2, n2grid_fl - bar_width / 2,
         np.zeros(len(n1grid_fl)), bar_width, bar_width, probs,
         edgecolor='black')

# plot cosmetics
ax.set_xticks(n_space)
ax.set_yticks(n_space)
ax.set_xlabel("$n_1$")
ax.set_ylabel("$n_2$")
ax.set_zlabel("$p(n_1, n_2)$")
ax.grid()

plt.show()
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Figure 1: Joint photon number distribution generated by using the python code from listings 1
and 2.
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A. CovarianceMatrix and Displacement Vector – Construction and
Examples

The vector of operators q̂ is related to the vector â= (â1, . . . , âS, â†
1, . . . , â†

S)
T by

q̂= Ωâ with Ω=
1
⎷

2

�

1 1

−i1 i1

�

. (6)

Unitary transformations described by Hamiltonians that are at most quadratic in the creation and
annihilation operators can be written as

Ĥ1 = ihTâ with h =
�

−α∗
α

�

and (7)

Ĥ2 =
1
2
â†Hâ with H =

�

X Y
Y ∗ X∗

�

. (8)

Such Hamiltonians map Gaussian states ρ̂ to new Gaussian states ρ̂′ by changing the covariance matrix
and displacement vector:

ρ̂′ = e−iĤ1ρ̂ eiĤ1 ⇒ Γ ′ = Γ d′ = d+ΩJh with J =
�

0 1

−1 0

�

and (9)

ρ̂′ = e−iĤ2ρ̂ eiĤ2 ⇒ Γ ′ = SΓST d′ = Sd (10)

The transformation matrix S is given by

S = Ωe−iKHΩ† with K =
�

1 0
0 −1

�

. (11)

Another useful transformation of Γ and d is the introduction of additional vacuum modes, which is
simply achieved by adding two columns and rows per mode with one on the diagonal for the new
x and p components. Conversely, discarding some modes, i.e. performing the partial trace over ρ̂, is
achieved by deleting from Γ and d all rows and columns associated with the traced-out subsystem.
This can be used for example to model losses L for a mode by introducing an auxiliary mode contain-
ing vacuum, coupling both modes with a beam splitter with transmission 1 − L and tracing out the
auxiliary mode. The overall loss transformation for a single-mode is represented by the transmission
matrix T =

⎷
1− L1 [7]:

Γ ′ = T ΓTT + L1 , d′ = Td . (12)

The covariance matrix of a two-mode squeezed vacuum (TMSV) state for example can be calculated
by setting up H from eq. (8) for exp(−iĤ2) = exp(χ â†

s â†
i − χ

∗âs âi), calculating S from eq. (11) and
applying it from both sides to the covariance of the initial vacuum state, Γ = 1, according to eq. (10).
However, in practice, these steps are not necessary because the expression for the covariance matrix of
TMSV can be looked up in the literature. Hence, the covariance formalism can be considered as a kit of
building blocks: known expressions for Γ and d for basic states can be used and combined with known
transformations S to represent the setup of interest. The parameters for Γ and d for various Gaussian
states and the most common transformation S can be found in various publications, e.g. in Refs. [2–7,
22]. Table 1 shows Γ and d for a few Gaussian states and table 2 shows two important transformation
matrices S.
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Table 1: Covariance representation of some commonGaussian states. The displacement operator
is D̂(α) = exp(αâ† −α∗â) and the squeezing operator is S(χ) = exp[(χ â†2 − χ∗â2)/2]. The
squeezing parameter for single- or two-mode squeezing is χ = r eiθ . We use the abbrevi-
ations C = cosh2r, S = sinh2r, c = cosθ , s = sinθ . The thermal state with mean photon
number µth is given by ρ̂th(µth) =

∑︁∞
m=0µ

m
th/(1+µth)m+1|m〉〈m|.

State Covariance matrix and displacement vector

vacuum |0〉 Γ = 1 and d= 0
coherent
state

|α〉= D̂(α) |0〉 Γ = 1 and d=
⎷

2 [Re(α), Im(α)]T

Displaced
squeezed
thermal
state [2, 5]

D(α)S(χ)ρ̂th(µth)S†(χ)D†(α) Γ = (1+ 2µth)

��

1 0
0 1

�

C +

�

c s
s −c

�

S

�

, d=
⎷

2

�

Re(α)
Im(α)

�

Two-mode
squeezed
vacuum

exp(χ â†
s â†

i −χ
∗âs âi) |0〉 Γ =

⎛

⎜

⎝

C Sc 0 Ss
Sc C Ss 0
0 Ss C −Sc
Ss 0 −Sc C

⎞

⎟

⎠
and d= 0

Table 2: Transformation matrices S representing phase rotations and beam splitters [7].

Transformation Matrix S

Phase rotation
â → e−iφ â

S =

�

cosφ sinφ
− sinφ cosφ

�

Beam splitter with
transmission T ,
coupling two modes

S =

⎛

⎜

⎜

⎝

⎷
T

⎷
1− T 0 0

−
⎷

1− T
⎷

T 0 0
0 0

⎷
T

⎷
1− T

0 0 −
⎷

1− T
⎷

T

⎞

⎟

⎟

⎠
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