
Middlesex University Research Repository
An open access repository of

Middlesex University research



http://eprints.mdx.ac.uk
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Abstract 

At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize 
the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the 
characteristics determining attitudinal and behavioral responses to the pandemic is crucial to 
improving future interventions. In this study, we applied machine learning on the multi-national data 
collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 
51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality 
psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the 
pandemic. The results point to several valuable insights. Internalized moral identity provided the most 
consistent predictive contribution - individuals perceiving moral traits as central to their self-concept 
reported higher adherence to preventive measures. Similar was found for morality as cooperation, 
symbolized moral identity, self-control, open-mindedness, collective narcissism, while the inverse 
relationship was evident for the endorsement of conspiracy theories. However, we also found a non-
negligible variability in the explained variance and predictive contributions with respect to macro-level 
factors such as the pandemic stage or cultural region. Overall, the results underscore the importance 
of morality-related and contextual factors in understanding adherence to public health 
recommendations during the pandemic. 

Keywords: COVID-19, social distancing, hygiene, policy support, psychology, machine learning, 
public health measures  

 

Significance statement 

Outcomes of this study suggest that morality-related factors, along with prosociality and individual 
characteristics related to information processing and self-control, play an important role in determining 
attitudinal and behavioral responses to the COVID-19 pandemic. However, a substantial variation in 
the predictive contribution of included variables was observed. Therefore, the role of context (both in 
terms of culture and stage of the pandemic) should not be underestimated. Nevertheless, this study 
highlighted multiple factors relevant to the prevention of COVID-19 in different stages of the pandemic 
and cultures, which makes it a good starting point for more complex and causal research designs. 
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Introduction 

The COVID-19 pandemic has caused significant loss of life, commodities, jobs, and disruption of 
communities worldwide. As of March 2022, over 450 million infections and more than 6 million deaths 
have been reported globally (WHO, 2022). As we write this paper, the daily number of new cases 
worldwide exceeds one million. Given the lack of vaccination and treatment options, controlling the 
spread of the SARS-CoV-2 virus in its early stages depended on preventive behaviors, such as 
physical distancing (Thu et al., 2020) or hand and object disinfection (Alzyood et al., 2020, Meyers et 
al., 2021). While governments across the globe rushed to implement the proposed measures, many 
citizens resisted such change (Ryu et al., 2020, Van Zandwijk & Rasko, 2020). This is indicative of the 
vital role of individual characteristics in the form of attitudes, abilities, traits, and perceptions in 
compliance with preventive measures. Thus, decision-makers may benefit from insights from the 
social and behavioral sciences that could explain who will adhere to or ignore advised measures (Van 
Bavel et al., 2020). 

Furthermore, nations vary in the strictness of preventive measures enacted by local governments and 
the severity of the consequences of COVID-19: some countries report more than 100 deaths (e.g., 
Croatia, the UK), while others count less than one death (e.g., Bhutan, China) per 100,000 citizens 
(Johns Hopkins Coronavirus Resource Center, n.d.). A recent cross-national analysis suggests that 
many of these excess deaths in countries like the USA are the result of weak public health 
infrastructure and a decentralized, inconsistent response to the pandemic (Bilinski & Emanuel, 2020). 
This raises questions of how macro-level cultural variables might be associated with citizens’ health 
attitudes and behaviors across nations. 

The scientific community responded with numerous international research collaborations aimed at 
explaining adherence to preventive measures from different perspectives. One group of researchers 
(Travaglino & Moon, 2021) focused on cultural dimensions, self-awareness emotions, trust in 
governmental actions, and political orientation as predictors of compliance in the USA, Italy, and 
Korea. They found that horizontal collectivism was the only predictor of compliance significant in all 
three countries. Similarly, other scholars (Biddlestone et al., 2020) identified collectivism's role in 
promoting preventive behaviors. In terms of adherence to preventive measures, prosocial tendencies 
emerged as a significant positive predictor, while perceiving others as violating preventive measures 
was the most consistent negative predictor (Coroiu et al., 2020). Results from another study across 
70 countries showed that trust in government, conscientiousness, and agreeableness predicted 
engaging in preventive measures, with other variables having a negligible practical impact (Clark et 
al., 2020). As research accumulates, interpreting and integrating findings from diverse research 
streams with a variety of measures and samples presents another challenge for both scholars and 
practitioners. 

Due to their freedom of theoretical constraints, data-driven approaches might offer solutions to “grand 
challenges” of existing theories, defined as complex problems with intertwined and evolving 
underlying mechanisms (Eisenhardt et al., 2016) as they allow the effective use of highly dimensional 
data (Igarashi et al., 2016). For instance, network analysis was used on data from the UK and the 
Netherlands to explore the relationship between multiple constructs relevant for COVID-19 attitudes 
and behaviors (Chambon et al., 2021). The perceived level of adherence to norms and efficacy of 
preventive measures and support for these measures exhibited the strongest relationships with 
COVID-19 preventive behaviors. On the other hand, applying random forests on more than 100 
potentially relevant variables established different descriptive and injunctive norms and prosociality as 
some of the most relevant predictors of behaviors (Van Lissa et al., 2022). Overall, the relevance of 
prosociality and collectivism, both of which imply a willingness to make sacrifices for the benefit of the 
community, has been emphasized throughout the literature (Biddlestone et al., 2020; Capraro et al. 
2021; Coroiu et al., 2020; Travaglino & Moon, 2021; Van Bavel et al., 2022; Van Lissa et al., 2022). 
However, this does not eliminate the role of other individual differences and capacities in adherence 
to preventive measures (Clark et al., 2020; Van Lissa et al., 2022). 

Our study expands on and contributes to the existing literature in three important ways. Firstly, we 
brought together a diverse team of experts to select several key constructs from social, moral, 
cognitive, and personality psychology that might be relevant to supporting public health 
recommendations. Despite a proliferation of studies on predictors of attitudinal and behavioral 
responses to the COVID-19 pandemic (see, for example, Zettler et al., 2021), research in this field is 
still warranted. Hence, we sought to investigate attitudinal and behavioral responses in the first 
pandemic wave, when uncertainty regarding the spread of the virus dominated societies. In 
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conjunction with the existing findings, our study provides valuable evidence which can be utilized to 
compare pandemic responses from different time points during the pandemic. Moreover, we sought to 
statistically test the association between the three related but distinct outcomes – maintaining physical 
hygiene, avoiding physical contact, and supporting governmental policies related to COVID-19. This 
distinguishes our approach from prior research that employed a general factor of preventive behaviors 
as it allowed us to gain insights both into attitudinal and behavioral responses to the measures aimed 
at mitigating the spread of the virus. Secondly, we consider potential cultural differences in the 
meaning of the studied constructs by establishing equivalence of factor scores through (partial) strong 
invariance (see Putnick & Bornstein, 2016). Finally, to determine the efficacy of our independent 
variables in explaining contact avoidance, hygiene maintenance, and COVID-19 policy support in 
each country, we applied random forest-based regression algorithms appropriate for complex data 
sets with possible non-linear and interactive relationships between variables (Breiman, 2001; Sage, 
2018). 

Overview 

We focused on two specific research questions utilizing a large international sample of 51,404 
participants from 69 countries from all continents except Antarctica. Firstly, we tested how precisely 
(in terms of the explained variance) avoiding contact, maintaining hygiene, and policy support could 
be predicted using a combination of variables from moral, social, personality, and cognitive 
psychology, as well as socio-demographic variables. Secondly, we tested which of the included 
variables provided a substantial contribution to the accuracy of our predictions. Descriptions of the 
expected effects (of all study variables) based on theories or earlier studies are available as 
Supplementary materials A1. Additionally, to evaluate the robustness of our findings, we conducted 
additional analyses that took cultural differences and the pandemic stage during data collection into 
account. 

  

                                                      
1 All supplementary files can be found online in the following OSF folder: 
https://osf.io/cvkyr/?view_only=c88c0431224c4f878750875e599d2983   
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Materials and Methods 

International Collaboration on the Social & Moral Psychology of COVID-19 Project 

The aim of the International Collaboration on the Social & Moral Psychology of COVID-19 (ICSMP 
COVID-19) project is to examine and understand psychological factors related to the COVID-19 
pandemic response. We launched the project in April 2020 via a social media call for national teams 
that could collect samples in their own country. Over 230 scholars responded to the call. The main 
questionnaire, created in English, was disseminated to each national team, responsible for translating 
it to their local language (using the standard forward-backwards method). Each team collected the 
data in their own country. The resulting datasets were then collated and analyzed altogether, and are 
available online (Azevedo et al., 2022). The study received an umbrella ethics approval from the 
University of Kent.  

Participants 

The analyzed sample consisted of 51,404 participants from 69 countries and territories, 25 of which 
collected samples representative of their respective nations regarding age and gender (n = 22,064). 
The remaining data were drawn from convenience samples. Following exclusion criteria set for the 
purposes of this study (we excluded participants providing inaccurate response to the attention check, 
participants who did not provide responses to more than one quarter of items, participants providing 
the same response more than ten times in a row on the items of our predictors, participants who 
chose “other” as their gender and participants completing the questionnaire unusually fast or 
unusually slow, see Supplementary materials B and C), 7,615 participants were removed, resulting in 
a sample of 43,789 (Mage = 43, SDage = 16; 52% females) participants for our analyses. 

Measures 

Unless otherwise indicated, participants responded on an 11-point scale with higher values indicating 
higher levels of the measured concepts (after reversing the appropriate items). Prior to conducting 
analyses that presumed grouping of participants, we achieved partial strong invariance for all of the 
included multi-item scales. This was important to ensure that we measured the same constructs with 
similar efficacy in each group (see Putnick & Bornstein, 2016). Detailed output on how the fit was 
achieved can be found in Supplementary material C. 

Individual-level variables 

Criteria 

Avoidance of physical contact during the coronavirus (COVID-19) pandemic was measured via five 
items. Adequate fit (CFI = 0.979, RMSEA (95% CI upper limit) = 0.086, SRMR = 0.024, ꞷ2 = 0.69) 
was achieved after correlating the residuals of the last two items (keeping distance and avoiding 
handshakes). 

Maintaining physical hygiene was measured via five items related to washing hands and other 
behaviors related to personal hygiene. A single factor structure was retained (CFI = 0.999, RMSEA 
(95% CI upper limit) = 0.037, SRMR = 0.007, ꞷ2 = 0.74) with correlated residuals of the first two items 
(washing hands longer and more thoroughly). 

Support for COVID-19 related policy decisions was measured with five items relating to restrictive 
policies affecting five areas of everyday life. A single factor structure was retained (CFI = 0.989, 
RMSEA (95% CI upper limit) = 0.098, SRMR = 0.016, ꞷ2 = 0.86) after correlating residuals of support 
for forbidding public gatherings and unnecessary travel, and closing parks. 

Predictors 

  Morality 

Moral identity was measured using the 10-item moral identity scale (Aquino & Reed, 2002). The 
original paper reports a two-factor model (Internalization and Symbolization), with acceptable internal 
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consistency. The two-factor structure was confirmed in our study after correlating residuals of items 8 
and 9, and 4 and 7. (CFI = 0.939, RMSEA (95% CI upper limit) = 0.084, SRMR = 0.067, ꞷ2internalization 
= 0.68, ꞷ2symbolization = 0.75). 

The moral circle scale (Waytz et al., 2019) assesses the moral expansiveness across 16 different 
entities (human and non-human) deemed worthy of moral concern. Participants indicated the extent 
of their moral circle, i.e., the circle for which they are concerned about right and wrong done towards 
them, ranging from immediate family to all things in existence. 

Morality as cooperation was measured using the Relevance subscale of the Morality-as-
Cooperation Questionnaire (MAC-Q; Curry et al., 2019), which measures the extent to which each of 
the seven dimensions of cooperation is relevant when making moral judgments. One item per each of 
its seven dimensions was used in this study. After excluding the items of fairness and property and 
correlating residuals between helping a family member and showing courage and helping a family 
member and uniting a community, a general factor of the relevance of cooperation in morality (CFI = 
0.991, RMSEA (95% CI upper limit) = 0.066, SRMR = 0.014, ꞷ2 = 0.73) was extracted. 

  (Pro)social identification and attitudes 

National identity was assessed with two items combined into a scale: “I identify as [nationality]” 
(Postmes et al., 2013) and “Being a [nationality] is an important reflection of who I am” (see Cameron, 
2004). The correlation among items was r = 0.69, and a single score was extracted using PAF. 

Social belonging was measured using a four-item single-factor scale with excellent internal 
consistency (Malone et al., 2012). A single factor structure (CFI = .988, RMSEA (95% CI upper limit) = 
0.115, SRMR = 0.017, ꞷ2 = 0.78) was confirmed in this study after correlating the residuals between 
first and third item. 

Collective (national) narcissism was measured using three items of the original, single-factor 
Collective Narcissism scale (Golec de Zavala et al., 2009). Invariance of this scale was tested along 
with the endorsement of COVID-19 conspiracy theories (Sternisko et al., 2021), which was 
measured using a single item for a denial conspiracy and three items for deflection conspiracies (e.g., 
“a hoax invented by interest groups for financial gains”). The three items related to collective 
narcissism and the four items related to belief in conspiracy theories were modeled together and 
yielded a clear two-factor structure (CFI = 0.988, RMSEA (95% CI upper limit) = 0.069, SRMR = 
0.021, ꞷ2Conspiracies= 0.92 and ꞷ2Collective narcissism= 0.87). 

Political orientation was measured using a single item, “Overall, what would be the best description 
of your political views?”, on a scale ranging from very left-leaning (“0”) to very right-leaning (“10”). 

COVID-19 risk perception was measured with two items asking participants to rate how likely it was 
for them and for the average person to get infected with COVID-19 by April 30, 2021, on a slider scale 
ranging from 0 (“impossible”) to 100 (“certain”). Based on their high correlation (r = 0.66), a single 
component was extracted using PAF. 

  Individual dispositions 

Individual grandiose narcissism was measured using the brief version of the Narcissistic 
Admiration and Rivalry Questionnaire (Back et al., 2013), comprising two subcomponents, rivalry (R) 
and admiration (A), which exhibited acceptable internal consistency. The scale achieved acceptable 
fit after correlating residuals between items 3 and 6 reflecting rivalry (CFI = 0.986, RMSEA (95% CI 
upper limit) = 0.068, SRMR = 0.020, ꞷ2= 0.69 for admiration and ꞷ2= 0.55 for rivalry).  

Trait self-control was measured as a single-factor four-item scale (Tangney et al., 2004), with the 
last two items being negatively worded. However, an adequate fit was not obtained even after 
correlating residuals of the first two items (CFI = 0.988, RMSEA (95% CI upper limit) = 0.115, SRMR 
= 0.017, ꞷ2 = 0.78). 

Self-esteem was measured using the Single-Item Self-Esteem-Scale (SISE), which achieved good 
test-retest reliability and was established as a viable alternative of longer self-esteem scales (Robins 
et al., 2001). 
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Trait optimism was measured using two items from the three-item optimism subscale of the Life 
Orientation Test-Revised (Scheier et al., 1994). Based on their high correlation (r = 0.71), a single 
factor was retrieved using PAF. 

Open-mindedness, reflecting the acceptance of limitation of one’s knowledge and willingness to gain 
new knowledge, was measured with a six-item scale of the Multidimensional measure of intellectual 
humility (Alfano et al., 2017). The originally proposed single-factor structure achieved an acceptable fit 
in our study (CFI = 0.998, RMSEA (95% CI upper limit) = 0.025, SRMR = 0.007) and was retained. It 
exhibited questionable internal consistency (ꞷ2 = 0.50). 

Cognitive reflection was measured with a three-item test that measures the ability to inhibit intuitive 
answers and engage in reflection to provide correct ones, adapted from Frederick (2005). Correct 
answers were coded as “1” and incorrect as “0”, with a total scale ranging from 0 to 3. 

  Demographic factors and experiences 

The MacArthur Scale of Subjective Social Status (Adler et al., 2000) was used to measure subjective 
socio-economic status by asking participants to place themselves on an 11-rung ladder, with the top 
rung representing individuals who are best off (in terms of education, jobs, and wealth), and the 
bottom rung the ones worst off. 

Participants were asked whether they had (coded as “1”) tested positive for COVID-19 and/or had a 
close relative or acquaintance (friend, partner, family, colleague, etc.) who had tested positive for 
COVID-19 (“1”) or not (“0”) by the time of data collection. 

Multiple demographic factors were also collected. Participants were asked to indicate whether they 
identify as “male”, “female”, or “other” and enter their age (in years). Additionally, participants’ marital 
status had the following three options: married, single, in a relationship (recoded into married or in a 
relationship (“1”) or other (“0”)), after which they indicated the number of children they had. 
Participants were also asked to indicate their employment status (recoded into the employed, 
students, or retired (“1”) or other (“0”)). Finally, participants indicated whether they lived in an urban 
(coded as “1”) or rural setting (coded as “0”). 

Analytical Procedure 

This study was not preregistered. Our analytical approach consisted of multiple steps (see 
Supplementary materials B-F) conducted in R (R Core Team, 2021). A detailed description of data 
cleaning is presented in Supplementary material B, while used packages are listed at the beginning of 
every Supplementary material in which they were used. 

The psychometric properties of the applied measures were tested on the imputed data (see 
Supplementary material C). We focused on testing the applied measures’ factor structure and internal 
consistency. As the majority of the multi-item measures were taken from previously validated 
instruments, CFAs with robust maximum likelihood estimator (MLR; Brosseau-Liard & Savalei, 2013; 
Brosseau-Liard et al., 2012) and countries as clusters were applied using lavaan (Rosseel, 2012) to 
test whether the proposed structures fit to the overall data. Modification indices were consulted when 
theoretical models did not fit the data well. 

We tested whether the obtained results were stable concerning the pandemic stage during data 
collection. In the absence of any specific criterion, we initially attempted to group countries according 
to the total number of COVID-19 cases per million inhabitants during the period of data collection, 
calculated as the average of the number of cases per million at the start date of data collection and 
the number of new cases per million at the end date of data collection2. In samples where only one 
date was provided, we used the available information for that date. However, we noticed an unwanted 
regularity in the grouping process - most countries with the total number of cases above the median 
were European countries, and no countries from Africa were in this group. Thus, to minimize potential 
cultural biases, we grouped the countries according to the Inglehart-Welzel cultural map (World 
Values Survey 7, 2020) and selected the countries with the lowest and highest total number of cases 
per million from each cultural region (Orthodox European countries, Protestant European countries, 
Catholic European countries, English-Speaking countries, West & South Asian countries, Confucian 

                                                      
2 https://github.com/CSSEGISandData/COVID-19 
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countries, African-Islamic countries, and Latin American countries) as representative. This resulted in 
a group of countries in the early stage of the pandemic consisting of participants from Nigeria, 
Slovakia, Australia, Bulgaria, the Philippines, and Nepal. On the other hand, a group of countries in 
the advanced pandemic stage included participants from United Arab Emirates, Spain, Ireland, 
Serbia, Brazil, and Singapore. Regarding Latin American countries, we considered only countries with 
more than 150 participants as candidates, while no Protestant European countries were included due 
to all of them being in the advanced stage of the pandemic during the data collection period (with a 
total number of citizens infected per million exceeding 1000). Our two groups were highly distinctive 
with respect to the total number of cases per million during the data collection (Mearly stage = 154.14; 
Madvanced stage = 3520.87). In our attempt to further balance the analysis, we randomly selected the 
same number of participants from each selected country, equal to the size of the smallest included 
sample after the data cleaning (nUAE = 176). 

Then, we checked the cross-group invariance of our multi-item measures.3 After achieving an 
adequate fit by introducing changes suggested by modification indices, the cross-group invariance of 
each obtained theoretical model was tested. Stepwise tests were further conducted. Firstly, configural 
models were formed for each construct, followed by models with constrained item loadings to test 
weak invariance, and ultimately models with constrained item loadings and intercepts to test strong 
invariance. If the configural model achieved adequate fit, successive changes in fit indices with 
respect to imposing restriction were used as a criterion for invariance. A CFI change of -0.015 
accompanied by a change in RMSEA or SRMR of +.015 was considered as an indication of achieving 
a higher level of invariance. If invariance was not achieved on the first attempt, modification indices 
were consulted to achieve partial invariance. Finally, we extracted factor scores from models 
reflecting strong invariance (where loadings and intercepts were constrained to form comparable 
scores across countries) using the ten Berge correction to use them in further analyses. 

Because two-item measures cannot be tested using CFA, factor analyses using principal axis 
factoring were conducted to extract latent dimensions. In line with the factor scores based on strong 
invariance, the analyses were conducted on the entire dataset used in a specific analysis. 

Socio-demographic characteristics and moral circle were not scaled. Variables absent from a specific 
national data set were replaced with a constant (i.e., the number of children in the Ghanaian data set 
was set to median of other countries, while the residence data was coded as urban for participants 
from Canada and Bulgaria). 

The rest of the procedure was similar to the procedure applied by Van Lissa et al. (2022). After data 
preparations, random forests were applied. Ranger function (Wright & Ziegler, 2017) was used to 
apply random forests that served as a basis for partial dependence plots and permutation importance 
metrics (see Altmann et al., 2010), which were used to interpret the relationships (see Supplementary 
material D). Regarding the hyperparameters, the number of trees was set to 1000 and 2000, R2 was 
chosen as the accuracy metric, permutation importance metrics were extracted as estimated variable 
importance, the number of variables to test at each split ranged from five to twenty with an increment 
of one, splitting was based on variance, while the minimum node sizes ranged from three to ninety-
nine with an increment of three. Holdout sample was used to ensure the robustness of findings: 20% 
of the sample from each country formed a test set on which R2 and variable importance metrics (see 
Supplementary materials E and F) were calculated.  

  

                                                      
3 We also conducted analyses with groups reflecting regions of the Inglehart-Welzel cultural map 
(2020), which followed the described procedure. Due to space limitations, outputs of these analyses 
can be found in Supplementary materials G. 
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Results 

Obtained R2 values of optimally tuned models were of weak to moderate magnitude both on the 
complete data (R2

contact = .134, R2
hygiene = .200, R2

policy = .146) and data consisting of samples 
nationally representative regarding age and gender (R2

contact = .172, R2
hygiene = .256, R2

policy = .124). In 
the early stage of the pandemic, prediction of contact avoidance was negligible (R2

contact = .045, 
R2

hygiene = .272, R2
policy = .138). On the other hand, in the advanced stage of the pandemic, our models 

led to a very imprecise prediction of maintaining hygiene (R2
contact = .129, R2

hygiene = -.043, R2
policy = 

.173). Therefore, we decided not to interpret the predictive contributions in models with maintaining 
hygiene as the criterion on the sample reflecting the advanced stage of the pandemic. Nevertheless, 
they are presented in the following paragraphs. 

 

 

 

Figure 1. Permutation variable importance calculated with respect to representativeness of the 
samples and stage of the pandemic 

 

Results in Figure 1 show the importance metrics based on the models that yielded the highest R2 per 
analysis. As permutation importance reflects a reduction in error, these plots are not directly 
comparable. However, some common patterns can be observed. 

In terms of avoiding contact (Figure 2), internalized moral identity provided the most consistent 
contribution across analyses, followed by open-mindedness, collective narcissism, morality as 
cooperation, symbolized moral identity, and self-control. Endorsement of conspiracy theories seems 
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to have exhibited a stronger relationship with our criteria in the early stage of the pandemic than in the 
advanced stage. In general, participants achieving higher scores on avoiding contact also achieved 
higher scores on internalized moral identity, morality as cooperation, self-control, and open-
mindedness, respectively. These participants also exhibited lower endorsement of conspiracy 
theories. Regarding collective narcissism and symbolized moral identity, it seems that the individuals 
scoring around the midpoint reported higher contact avoidance compared to individuals scoring high 
and those scoring low on the scale. 

 

 

Note. Red, blue, and green represent avoiding contact, maintaining hygiene and policy support, 
respectively. 

Figure 2. Partial dependence plots depicting the relationships between our predictors and criteria 
based on the complete data 

 

Regarding hygiene maintenance (Figure 3), the most invariable contribution was found for social 
belonging and morality as cooperation, followed by internalized and symbolized moral identity, 
collective narcissism, and self-control. Gender differences in hygiene maintenance found on the 
complete data and data based on representative samples were not detected in data organized 
according to the stage of pandemic. Participants scoring higher on social belonging, internalized and 
symbolized moral identity, collective narcissism, and self-control also scored higher on maintaining 
hygiene. However, only the relationship between belonging and hygiene maintenance seemed linear 
– all other lines reached a plateau at some point (usually around the midpoint), indicating participants 
achieving the lowest scores on these factors also achieved the lowest scores on maintaining hygiene. 
On the other hand, higher scores were related to higher reported hygiene maintenance among 
participants scoring above the mean of morality as cooperation. 
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Note. Red, blue, and green represent avoiding contact, maintaining hygiene and policy support, 
respectively. 

Figure 3. Partial dependence plots based on the data reflecting the early stage of pandemic 

 

The most invariable predictors of policy support (Figure 4) were collective narcissism, internalized 
moral identity, and self-control. Endorsement of conspiracy theories, symbolized moral identity, 
possibly even morality as cooperation, and open-mindedness, seem to have exhibited a stronger 
relationship with policy support in the early stages of the pandemic compared to the advanced stage. 
Participants scoring higher on internalized moral identity and self-control generally were also more 
supportive of policy measures. However, the relationships were not linear in the early pandemic stage 
(and in the advanced stage in the context of self-control). The relationship between policy support and 
collective narcissism was also complex - it was close to linear and positive in the advanced pandemic 
stage, but in the early stages and on the complete data, it resembled an inverted-U-curve with a peak 
around the mean. This indicates that participants scoring around the mean were most supportive of 
restrictive policies, while those high and the ones low on collective narcissism were less supportive. 
Participants showing more endorsement for COVID-19 conspiracy theories were less supportive, 
while participants scoring higher on open-mindedness were more supportive of restrictive COVID-19 
policies. The relationship between morality as cooperation and policy support was established only on 
the complete data and indicated that only among those above the mean higher morality as 
cooperation was related to higher policy support. The opposite was found for symbolized moral 
identity – only among those lowest on this trait, the relationship between morality as cooperation and 
policy support was linear and positive. No relationships were established around the mean or above 
the mean. 
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Note. Red, blue, and green represent avoiding contact, maintaining hygiene and policy support, 
respectively. 

Figure 4. Partial dependence plots based on the data reflecting the advanced stage of pandemic 
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Discussion 

Taking the machine learning approach, we provided several insights into social, psychological, 
personality and cognitive factors in predicting COVID-19 responses. Although the nature of the 
analyses (i.e., the dependence of importance estimates on error estimates which changes across 
models) prevents us from direct comparisons of results across models, some consistent patterns were 
observed. 

Internalized moral identity was the most consistent predictor of COVID-19 attitudinal and behavioral 
responses - the extent to which people perceived moral traits as central to their self-concept was 
positively associated with their intentions to avoid physical contact, maintain hygiene, and support 
policy measures aimed at mitigating the spread of the virus. Morality-as-cooperation was also 
associated with the attitudinal and behavioral responses, most consistently in predicting hygiene 
maintenance. These results suggest that maintaining hygiene, but also physical distancing and policy 
support, were perceived as collective actions that benefit the group more than they benefit the self. 
Symbolized moral identity was also associated with the criteria, but, interestingly, the relationship was 
non-linear and strongest among participants scoring below the average of symbolized moral identity. 
These findings may reflect the fact that individuals characterized by moderate or high symbolization of 
moral identity prefer to be perceived as aligned with social norms, rather than actually adhering to 
them (Winterich et al., 2013). However, the threshold at which the relationship becomes linear seems 
to change with respect to the pandemic stage and specific criteria, indicating the need for further 
research into these relationships. Overall, these findings are in line with previous research suggesting 
that internalized moral identity is a relevant predictor of prosocial and cooperative intentions and 
behavior, with more inconsistent results when examining the symbolization dimension of moral 
identity (for a review, see Jennings et al., 2015; Winterich et al., 2013). The only variable related to 
morality that did not substantially contribute to our criteria's prediction was the moral circle. Altogether, 
these results indicate that morality represents an important factor in adherence to preventive 
measures. Nevertheless, different aspects of morality provide different contributions to the prediction 
of adherence to these measures. 

Open-mindedness and self-control were positively associated with avoiding contact and supporting 
policy, while self-control also exhibited a relatively steady, albeit weak, contribution to the prediction of 
hygiene maintenance. Open-mindedness was conceptualized as a part of cognitive humility, which 
reflects the virtue of being able to accept one’s fallibility and the willingness to accept information 
contrary to one’s initial beliefs (Alfano et al., 2017; Spiegel, 2012), with some authors treating it as a 
moral virtue (Arpaly, 2011; Song, 2018). Self-control is typically conceptualized as the capacity to 
work effectively to reach goals, resisting short-term temptations (Fishbach & Shah 2006; Tangney et 
al., 2004, ). Some authors have suggested that self-control goals are often moralized (Hofmann et al., 
2018). The relationship between open-mindedness and morality and between self-control and 
morality may underlie the predictive contribution of open-mindedness and self-control established in 
this study. 

Social belonging was also established as a relevant predictor predominantly in terms of maintaining 
hygiene, while collective narcissism also provided a substantial contribution to predicting policy 
support and a less substantial contribution to predicting contact avoidance. On the one hand, ingroup 
identification promotes acceptance of group norms (Livingstone et al., 2011), implying that findings on 
social belonging could also reflect morality. On the other hand, the relationship between collective 
narcissism and our criteria seems to be more complex, in line with the mixed evidence of previous 
studies on the role of collective narcissism concerning various types of preventive behaviors such as 
handwashing, physical distancing, and limiting leaving home (Nowak et al., 2020; Sternisko et al., 
2021). Namely, the evidence of a curvilinear relationship between collective narcissism and contact 
avoidance and policy support might reflect the need of individuals high in collective narcissism to 
establish and maintain a positive national image for the outside world (e.g., as model citizens, or 
morally superior) (Cichocka, 2016; Cichocka & Cislak, 2020). However, at even higher levels of 
collective narcissism, the need to assert and signal grandiosity and superiority in relation to various 
threats (in this case, the virus) might manifest in lower support for restrictive preventive measures, 
even at the cost of possible negative consequences for ingroup members (Cislak et al., 2018; 
Marchlewska et al., 2020). This is also evident from the inverted-U curve in the context of policy 
support, usually appearing slightly above the mean (except in the late stage of the pandemic, see 
Figures 2 and 3). Overall, this suggests that while believing in ingroup potential may motivate 
individuals to adhere to prosocial norms, irrational belief in superiority can undermine the support for 
preventive measures that bring about short-term disturbance in the everyday ingroup dynamics. 
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Additionally, conspiracy beliefs seem to be linked to contact avoidance and policy support, especially 
in the early stage of the pandemic. Namely, endorsement of COVID-19 conspiracy theories was 
associated with lower intentions to engage in physical distancing and lower policy support. Given that 
conspiracy believers were found to be more self-centered (Hornsey et al., 2021) and less generous 
(Alper et al., 2021) during the COVID-19 pandemic, this finding speaks in favor of viewing contact 
avoidance as a form of prosocial action. 

The presented findings suggest that prosociality and morality are relevant factors for understanding 
physical distancing. This is in line with previous work on the role of prosociality on physical distancing 
(e.g., Coroiu et al., 2020; Travaglino & Moon, 2021; Van Lissa et al., 2022; see Capraro et al. 2021 for 
a review) and with the idea that personal norms, internal standards on what is right or wrong in a 
given situation, play an important role in driving prosocial behavior (Capraro & Rand, 2018; Tappin & 
Capraro, 2018; see Capraro & Perc, 2021, for a review). However, our results indicated a substantial 
contextual variability, as well. While we focused on several most dependable and most substantial 
predictors only to describe general patterns, it should be noted that multiple other factors provided a 
contribution limited to a specific stage of the pandemic or specific culture (see Supplementary 
materials G). This also implies that campaigns for increasing compliance with preventive measures in 
future crises should be tailored to both the pandemic phase and the specifics of the culture in which 
they plan to be implemented. 

Generally, the obtained R2 values were lower than those reported by Van Lissa et al. (2022) in similar 
analyses. In their study, injunctive norms and support for COVID-19 restrictive measures were found 
to be two clearly dominant predictors of preventive behaviors, which may roughly approximate two 
aspects of the Theory of Planned Behavior (Ajzen, 1991) - subjective norms and attitudes on the 
specific behavior. We did not include these variables in our study, although policy support could 
broadly be considered as attitudes regarding preventive measures. Conversely, we treated policy 
support as one of the criteria rather than as one of the predictors, with contact avoidance, hygiene 
maintenance, and policy support being moderately correlated (r = approx. .40). Thus, the simplest 
explanation of the difference in the explained variance in our study compared to Van Lissa et al. 
(2022) may reflect the difference in the extent to which the Theory of Planned Behavior has been 
represented among predictors. Considered together, the two studies provide evidence in favor of the 
Theory of Planned Behavior in the context of a global crisis. 

Several limitations should be considered when interpreting our findings. Firstly, not all the national 
samples were representative, and even the representative samples were not based on probabilistic 
sampling, and consequently, some segments of society may have been underrepresented. 
Furthermore, as the study was conducted online, our sample over-represents people with greater 
access to internet-enabled technology, which may be a particularly important consideration in less-
developed countries (e.g., dissemination of conspiracy theories and fake news). Secondly, variability 
in our criteria was heavily skewed in many countries (i.e., the vast majority of participants reported 
high adherence to and support for preventive measures), which can be attributed to the first wave of 
the pandemic during which the data were collected. Nevertheless, in some countries, data collection 
was conducted during the peak of the first wave of the COVID-19 pandemic, while in other countries, 
it was carried out at its beginning. Although we tried to operationalize the pandemic stage according 
to the total number of infected individuals per million and took culture and sample size into account, 
even such operationalization may not have eliminated all the potential sources of bias. The rough 
similarity of the results based on representative and non-representative data, as well as data from 
countries in different pandemic stages and data from countries grouped according to cultural zones 
(see Supplementary materials G), provide arguments in favor of the validity of our findings; 
nevertheless, the robustness of these more specific findings needs to be corroborated utilizing 
different (i.e., longitudinal and nationally representative) samples. Furthermore, morality-as-
cooperation had to be modeled differently than proposed in the original papers to achieve invariance. 
Additionally, as there are no conventional methods of testing the invariance of two-item and single-
item measures across cultures, scores on such items may be less precisely calculated than in the 
case of multi-item measures. Finally, we focused on explaining variation in COVID-19 responses 
without testing causality. It should be noted that we used cross-sectional, self-reported data which 
may entail the desirability bias risk (Graeff, 2005). However, there is evidence that such desirability 
bias does not play a key role, especially in self-reported measures like self-esteem, control, or 
optimism (Caputo, 2017). 
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Conclusion 

Findings of our study indicate that the most effective predictors of COVID-19 responses, such as 
avoiding physical contact, maintaining hygiene, and supporting restrictive COVID-19 policies, were 
related to morality, prosociality, and traits and attitudes operationalizing self-control and information 
processing. However, the predictive contribution of even the most invariant predictors substantially 
varied with respect to the predicted type of response and cultural characteristics. While the research 
design of this study prevents any causal conclusions, the results suggest that the interplay between 
individual and contextual characteristics is relevant for understanding individual COVID-19 responses. 
Ultimately, our findings can serve as a starting point for future, more nuanced, research on the 
variables highlighted within our study. Hopefully, the growing body of research and accumulated 
insights should lead to informed and efficient prevention and intervention programs for health-related 
crises. 
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