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Abstract: Background—There are various influence factors that affect visual inspection of aircraft engine
blades including type of inspection, defect type, severity level, blade perspective and background colour.
The effect of those factors on the inspection performance was assessed. Method—The inspection accuracy
of fifty industry practitioners was measured for 137 blade images, leading to N = 6850 observations.
The data were statistically analysed to identify the significant factors. Subsequent evaluation of the eye
tracking data provided additional insights into the inspection process. Results—Inspection accuracies in
borescope inspections were significantly lower compared to piece-part inspection at 63.8% and 82.6%,
respectively. Airfoil dents (19.0%), cracks (11.0%), and blockage (8.0%) were the most difficult defects
to detect, while nicks (100.0%), tears (95.5%), and tip curls (89.0%) had the highest detection rates. The
classification accuracy was lowest for airfoil dents (5.3%), burns (38.4%), and tears (44.9%), while coating
loss (98.1%), nicks (90.0%), and blockage (87.5%) were most accurately classified. Defects of severity
level S1 (72.0%) were more difficult to detect than increased severity levels S2 (92.8%) and S3 (99.0%).
Moreover, visual perspectives perpendicular to the airfoil led to better inspection rates (up to 87.5%) than
edge perspectives (51.0% to 66.5%). Background colour was not a significant factor. The eye tracking
results of novices showed an unstructured search path, characterised by numerous fixations, leading to
longer inspection times. Experts in contrast applied a systematic search strategy with focus on the edges,
and showed a better defect discrimination ability. This observation was consistent across all stimuli,
thus independent of the influence factors. Conclusions—Eye tracking identified the challenges of the
inspection process and errors made. A revised inspection framework was proposed based on insights
gained, and support the idea of an underlying mental model.

Keywords: visual inspection; influence factors; impact factors; gas turbine engine blades; defect
detection; eye tracking; MRO; aviation; aircraft engine maintenance

1. Introduction

Aircraft engine components are subject to various internal and external factors such
as vibration, high temperatures, rotational speed, rubbing, corrosion, and foreign ob-
jects debris (FOD). All of these factors combined can cause internal stress and material
fatigue, which has the potential to cause part failure over time. Hence, to assure safe
operation, aircraft engines are inspected frequently either after a set amount of flying
hours (e.g., 15,000–20,000) or flying cycles, i.e., the number of flights from start to landing
(e.g., 5000–10,000) [1]. Rotating parts such as engine blades are subject to more wear and
tear compared to static components. Preventative maintenance and frequent inspection
can extend the life of those components, thus saving the airline material costs and reduc-
ing downtime. Visual inspection is the most common check-up of aircraft engines, as it
accounts for 90% of all non-destructive testing (NDT) [2,3].

In gas turbine maintenance, repair, and overhaul (MRO), engine blades are visually
inspected at different levels and under different inspection conditions. The first type of
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inspection, the so called borescope inspection, is used for internal examination of the
engine. A tubular device with a camera and light source at the tip is inserted into the
engine through borescope holes and the blades are inspected while the engine is turned
either manually or electronically. It allows for the inspecting of hard-to-reach areas under
magnification without requiring disassembly. This inspection type is characterised by a
dark environment with the borescope diode being the only light source, limited accessibility
and manoeuvrability of the borescope tip due to the engine design, overlapping blades,
and distorted images due to the wide angle borescope lens.

If a critical condition is found during borescope inspection, the engine gets subse-
quently disassembled and the parts are inspected on a work bench. During this piece-part
inspection, blades are presented one by one under somewhat ideal inspection conditions,
e.g., optimal lighting. It also allows for the inspecting of the blades from different perspec-
tives and on different backgrounds.

This paper contributes to the body of knowledge by addressing several gaps. Firstly,
the inspection accuracy in borescope inspection is assessed and compared to piece-part
inspection. Secondly, the detectability of defect types that have yet to be quantified was
evaluated, including bends, breakage, burns, coating loss, tip curl, and tip rub. Thirdly,
the effect of other influence factors such as defect severities, blade perspectives, and
background colour was analysed. This was worth doing because the gained insights have
the potential to improve the inspection processes and training strategies accordingly. The
results show significant differences for the type of inspection, defect type, severity level,
and blade perspective. No significance was found for background colour. Furthermore,
eye tracking was applied to understand the different search strategies, how the influence
factors affect the gaze pattern, and what inspection errors occurred. Lastly, a revised
visual inspection framework has been developed, taking into account the recognition and
judgement component.

2. Literature Review

The purpose of any inspection is to assure that an organisation’s products or services
meet a defined standard. Therefore, it is essential to understand how accurate the inspection
processes are, i.e., how well deviations from the standard are detected and serviceability
decisions are made. The most common measure for evaluating the inspection performance
is the inspection accuracy. It takes into account correct and incorrect inspections of defective
and non-defective parts. Previous studies analysed the inspection performance as part
of both quality assurance processes in manufacturing and serviceability inspections in
maintenance operations [4,5]. The achieved inspection accuracies range from 67% to
76% [6–8], and from 52% to 68% [5,9,10], respectively. In the aviation maintenance domain,
the inspection of several components including aircraft fuselage, cargo bays, landing gear
components and engine parts was addressed, and inspection rates of 42% to 87% were
reported [5,11–13]. Not all studies reported a specific detection rate, since it is dependent
on the defect type and size. Hence, for cracks and dents—the most common defects
investigated in previous studies—the results were commonly reported as probability of
detection (PoD) curves, which visualises the likelihood of detecting the defect (y-axis) as a
function of the defect size (x-axis) [14–18]. For such PoD curves, a minimum sample size of
N = 60 per defect type is required [19].

While it is important to know how accurate the inspection processes are, there is also
a need to understand why the performance is not 100%, i.e., what factors influence the
inspection performance and to what extent? Several works have identified the various
influence factors in visual inspection including individual (subject), physical and envi-
ronmental, task-related, and organisational factors [20]. An overview is provided in [21],
which was later complemented by additional factors by See [20]. Aust and Pons provided
an overview of factors affecting borescope inspection specifically, and grouped them by
Ishikawa’s 6M categories [22,23].
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Although the various influence factors were already identified, and their relevance
acknowledged, the quantification thereof remains difficult. Previous work on the vi-
sual inspection of composite materials focused on assessing the effect of lighting, defect
size, surface slant, paint colour and surface finish, part cleanliness, and inspection dis-
tance [14–17,24]. Furthermore, the effect of demographic factors on the inspection results
was evaluated, taking into consideration the work experience, professional certifications,
inspection training, education, visual acuity, gender and age. While the above factors were
assessed for dent and crack detection on flat composite panels, there might be differences
in blade inspection due to the more complex geometries, different material properties, and
surface coatings, leading to different defect types and severities [25].

There are several gaps in the body of knowledge, which will be addressed in the
following. A first study by Aust and Pons measured the inspection accuracy in piece-part
blade inspection under consideration of the cleanliness factor [13]. However, no previous
work was found that quantified the performance of borescope inspection. Moreover, no
other impact factors affecting blade inspection were quantitatively analysed.

Dent and crack detection received the most attention, while other defects such as nicks
and tears were only recently addressed [13]. There is still a range of defects that have not
yet been evaluated, such as bends, breakage, burns, coating loss, tip curl, and tip rub [25].
Most studies created the defects artificially using drop weights [14] and impact testing
devices [15]. While this is beneficial to control the defect size, it is limited to dull impact
damage such as dents. Other defect types such as tears, burns or coating loss are much
more difficult to create artificially as the results would look fairly different to real defects,
and thus would not be representative. Hence, there is a gap in assessing operationally
introduced defects of different severities.

Another factor that was analysed in previous studies was the surface slant and tilt
of composite aircraft panels [14]. The study focused on the effect of lighting and the
resulting reflection, shading and shadow cues. Hence, only a single, somewhat ideal
perspective was analysed. As proposed by the author, future work could focus on analysing
different perspectives from various angles. This might even be more worthwhile to do for
parts with more complex geometries such as compressor or turbine blades. Moreover, it
could provide additional insights that might be useful for advanced technologies such as
continuum robots [26–28].

The effect of colour was analysed in different ways. While one study assessed the
influence of the defect colour in woven fabrics [4], another tested whether the paint colour
of composite materials affected the inspection performance [14]. However, none of them
addresses the effect of background colour.

The different influence factors have yet not been analysed under eye tracking observa-
tion, except for cleanliness [13] and part complexity [4]. Eye tracking offers the opportunity
to gain a better understanding of the inspection process such as the various search strategies
that have been applied and how the different influence factors affected the gaze paths and
search patterns. This information cannot be extracted from the performance data (inspec-
tion accuracy). Furthermore, eye tracking allows identification of which inspection error
occurred. This has the potential to suggest remedies, thereby improving the inspection
quality and thus contribute to safety.

An alternative to eye tracking is the think-aloud method, whereby participants are
asked to verbally express what they are looking at while inspecting the parts. However,
in the light of blade inspection this much more difficult to do than in the typical usability
studies where participants navigate through a website with clearly separated elements.
Moreover, there is the risk that the verbalisation could hinder their thought process and
affect the performance significantly [29]. More drawbacks of this approach are outlined
in [29,30]. It should be noted that a substantial number of participants in the present study
were non-native English speakers. Thus, verbalising their search approach would have
added another layer of complexity. Eye tracking in turn provides a method to capture
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relevant data about the eye movement without any additional effort or actions required by
the participant.

3. Materials and Methods
3.1. Research Objective and Methodology

The study objective was to analyse the effect of different influence factors on inspection
performance. The variables admitted to the study were inspection type, defect type, severity
level, blade perspective, background colour, and demographic variables such as expertise.
Each one was analysed individually. The study was not designed to seek a correlation
between these various factors. This would have been a much larger research work.

The parts under examination were compressor and turbine blades of V2500 turbo
fan engines. The research sample comprised images taken of those blades with different
settings (background colour and blade perspective), as well as stills from the corresponding
borescope videos. The images were presented to industry practitioners under eye tracking
observation.

The approach taken in this work was hypothesis testing. The hypotheses are based
on the typical industry practice, which is understanding the effect of the factors on the
inspection accuracy. The results were analysed statistically and where applicable model
building was applied to each factor looking at the demographic variables.

3.2. Research Sample (Stimuli)
3.2.1. Part Selection

For this study, high-pressure compressor (HPC) blades were used, since these parts
are exposed to airborne contamination, debris on the runway, and wildlife causing foreign
object damage (FOD)—one of the main reasons for unscheduled engine shop visits. Due
to the current operational processes at our industry partner, only stages six to 12 were
available to us. Of those we collected 524 blades from different engines and airlines for
possible inclusion in this study. Only a portion of this catalogue could be used to minimise
the impact the study might have on the operational processes and productivity. Purposeful
sampling was applied (see Figure 1) which led to N = 80 blades (53 defective and 27 non-
defective). Non-defective refers to both undamaged blades and blades with acceptable
conditions. In this study we presented the participants with images of the blades to allow
for the specific assessment of each factor individually. All variables were held constant and
only the one factor to be analysed was varied. Hence, some blades were shown multiple
times with different image acquisition settings, i.e., the same part was shown with different
background colours. The same principle applies to the other factors. Thus, a total number of
137 images (118 piece-part images and 19 borescope stills) were presented to 50 participants,
leading to N = 6850 observations. This large dataset lent itself to statistical analysis.

While the main focus of this study lies on the inspection of HPC blades, we also
included a few high-pressure turbine (HPT) blades to analyse other defect types that only
occur in the hot section, such as burns, cracks, coating loss, and cooling hole blockage.

3.2.2. Part Preparation

The defective and non-defective parts were provided by our industry partner. The
defective parts were all scrap parts and hence could be used for our research without any
risk. When scraping a part, it is part of the inspection procedure to mark the defect with a
red pen and take a photograph of the blade for evidence. These markings however were not
helpful for the purpose of our study, since the part should be presented to the participants
in such a way as if it just came off the engine. Hence, these markings had to be cleaned
off. To maintain the dirty condition, including deposits and discolouration of the blade, we
removed the red markings in a manual process using methylated spirit and cotton buds. A
before and after picture is shown in Figure 2.
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Figure 1. Sample part selection process. The diagram purely serves illustration purposes and is not
drawn to scale.

Figure 2. (a) Part before and (b) after marking removal.

3.2.3. Image Acquisition

There are two levels of inspection we want to analyse, namely borescope inspection
and piece-part inspection. For borescope inspection, a set of stills was extracted from
the borescope videos that were recorded with a Mentor iQ borescope (manufactured by
Waygate Technologies, Shorewood, IL, USA) at our industry partner. The exported stills
contained technical and customer-related data such as engine numbers, which was blotted
out as it might have influenced the participants’ inspection.

To represent the on-bench inspection environment, a second set of images of single
blades was acquired in a self-built light tent with somewhat ideal lighting (Figure 3). This
provided flexibility to take images from different perspectives and with different coloured
backgrounds. A wooden template was used for repeatable positioning of the blade to
assure standardised blade orientations.
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Figure 3. Image acquisition setup comprising (1) three Superlux LSY LED ring lights, (2) self-built
light tent, (3) Slik U9000 tripod, (4) Nikon Macro lenses (AF-S Micro Nikkor 105 mm 1:2.8 G), and (5)
Nikon D5100 DSLR camera.

The acquired piece-part images and the extracted borescope stills were presented to a
bench-inspection and borescope inspection expert respectively to identify all safety-critical
defects. This was set as the ground truth for the analysis of the inspection performance.
The two experts defining the ground truth did not further participate in the study.

3.3. Research Population

The research population was the same as in [13]. A total of N = 50 participants(
MAge = 44.5 years; SDAge = 10.33 years

)
working in a V2500 engine maintenance, repair

and overhaul (MRO) shop participated in this study. Participants had 1.5 to 35 of years
of work experience in aviation

(
MWork Exp. = 17.7 years; SDWork Exp. = 9.4 years

)
. A de-

tailed overview of the participants’ demographics is provided in [13]. The study included
three groups of expertise, namely: inspectors, engineers and assembly operators in descend-
ing order. The inspector group includes both borescope inspectors and bench inspectors.
While the effect of expertise was already analysed in [13], other research in visual inspection
suggests that the performance of individual operators is task-dependent [16]. While the
task has not changed much, the inspection environment has.

3.4. Stimuli Presentation under Eye Tracking Observation

This study utilised eye tracking technology to record the participants’ eye movement
during the inspection task. The eye tracking setup is described in detail in [13]. To present
the images, we used PowerPoint 2016 (developed by Microsoft, Redmond, WA, USA), as
the pen function was beneficial for the recording of the inspection results, i.e., participants
were able to draw a circle around their findings using the mouse, which is somewhat
similar to the inspectors’ daily job. Moreover, the participants could navigate through the
presentation at their own pace. The time was not restricted, but we asked the participants
to perform as they would in their daily job.

The research sample (images) was presented in random order with regard to the engine
stage, defect type, defect severity, blade perspective, background colour, and inspection
type. Any possible learning or fatigue effect is distributed equally across the sample set.
However, piece-part images were presented first and borescope stills last, since mixing the
two does not represent the operational processes.
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3.5. Influence Factors
3.5.1. Inspection Type

The inspection environment varies significantly based on the inspection type (borescope
vs. piece-part). While the blades are fully exposed in piece-part inspection and can be inspected
one by one, the borescope inspection situation is much different and shows a high level of
variability (see Figure 4). For example, the lighting is limited to the integrated borescope LED
diode, and is absorbed differently depending on the cleanliness and coating. Moreover, the
view is restricted by the engine design and overlapping adjacent blades. While the expectations
towards borescope inspectors is to find every single defect in such a difficult environment, this
study intended to analyse the feasibility and measure the performance when compared to
piece-part inspection in a somewhat ideal environment.

Figure 4. Blade with nick on leading edge at different inspection levels: (a) borescope inspection;
(b) piece-part inspection.

Hypothesis 1 (H1). The inspection type affects the inspection performance.

3.5.2. Defect Type

Some defect types are more salient than others. Hence, there was an interest to
understand which defect types are most difficult to detect. The research sample included
airfoil dents, bends, blockage, breakage, burns, coating loss, cracks, dents, nicks, non-
defective blades, tip curl, tip rub, and tears. An overview of the different defect types
including a representative image and defect description can be found in [25]. While the
focus of this study lies on compressor blades, the inclusion of turbine blades in this sub-
study was inevitable in order to analyse additional defect types.

Another metric that is important when it comes to analysing different defect types
is the defect classification accuracy, i.e., how many defects have been correctly classified.
Correct classification is essential as it determines the service and repair action of that
blade. An incorrectly classified defect might be accepted or scrapped without justification
depending on the confused defect type. Since the detection of a defect is a prerequisite of the
defect classification, the classification accuracy is based on the correctly identified defects,
i.e., it provides a measure for the correct classifications of the correctly identified defects.

Hypothesis 2 (H2). The defect type affects the inspection and classification accuracy.
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3.5.3. Defect Severity

The defect severity is another factor that needs to be assessed. While it might seem
obvious that a larger defect size generally leads to a higher detectability, it is unclear yet
where the threshold is and whether some defect types are more difficult to detect than
others. A simplified defect categorisation was applied with the three defect groups being
airfoil defects (surface damage), edge defects with deformation, and edge defects with
material loss. Each defect was presented in three severity levels (Figure 5). A tiered severity
classification was chosen over a probability of detection (PoD) curve, since the latter would
have required a sample size of at least N = 60 per defect, and thus would have exhausted
the study. Moreover, the detection rates (probability) for each severity level can be fed back
into the defect detection risk framework in [31].

Figure 5. Different levels of defect severity from (a) lowest Level 1 to (c) highest Level 3. The defects
are highlighted by red circles.

Hypothesis 3 (H3). The defect severity affects the inspection performance.

3.5.4. Blade Perspective

Different levels of inspection allow for different viewing perspectives of the part. Thus,
there is a relationship between the level of disassembly and the defect manifestation [31].
There was an interest to understand which perspective(s) are most beneficial to detect
different defect groups (edge defects vs. surface defects). The insights could be useful
for future standardisation and automation. Eight different blade perspectives were tested
(Figure 6). The perspective nomenclature was adopted from [32].

Figure 6. Different blade perspectives with 45 degree intervals.

Hypothesis 4 (H4). The blade perspective affects the inspection performance.
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3.5.5. Background Colour

The motivation for analysing the background colour derived from industry. When
reviewing historic data of defective blades, we realised that quite a few of the blade
images were taking on a coloured background. When asking staff why they took those
images on a coloured background as opposed to a white work bench, they said that the
colour made the defects stand out more. This hypothesis that defects are more salient on
coloured background and lead to better inspection results was tested. If this hypothesis
could be proven true, the coloured background would be an easy and affordable way to
improve inspection.

The parts were presented on four different backgrounds including white, red, green,
and yellow (Figure 7). In the image acquisition process we used different sheets of coloured
paper, rather than post-processing the images and changing the colour artificially. The
paper was provided by our industry partner to represent the real situation as close as
possible. We also included different defect groups, i.e., surface defects, edge defects and
non-defective blades to understand whether certain defects are better visible on one colour
than another.

Figure 7. Blade with different coloured backgrounds: (a) chalky white (RGB: 229, 230, 232), (b) brick
red (RGB: 230, 99, 79), (c) mint green (RGB: 111, 194, 124), and (d) honey yellow (RGB: 241, 212, 59).

Hypothesis 5 (H5). The background colour affects the inspection performance.

3.6. Data Analysis

This study applied statistical hypothesis testing to analyse the five hypotheses H1
to H5 as previously outlined. Each hypothesis tests the effect of an influence factor on
the inspection performance. The inspection performance can be measured in Inspection
Accuracy and Defect Classification Accuracy. The primary measure in this study was
Inspection Accuracy, and is defined as the proportion of correct serviceability decisions
(true positives and true negatives) and the total amount of blades inspected. For the
assessment of the defect type an additional measure was introduced, namely the Defect
Classification Accuracy. The purpose was to analyse how accurately participants identified
the defect type after successful detection.

The independent variables assigned to this study were the five influence factors and
the following demographic variables: Expertise, Education, Previous Inspection Experience,
Work Experience, and Visual Acuity (Table 1).
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Table 1. Overview of demographic factors and levels thereof.

Demographic Factor Levels

Expertise Inspector, Engineer, Assembly Operator
Education University degree, Diploma, Trade Certificate
Previous Inspection Experience Yes, No
Work Experience in Aviation 1 to 4, 5 to 9, 10 to 19, 20 and more years
Visual Acuity Corrected vision, No corrected vision

Statistical methods were selected considering the type of data. Analysis of Variance
(ANOVA) was used to analyse each influence factor individually and provide a visual
representation of the direction of effects. When two categorical variables were assessed
(e.g., inspection type and defect type), a factorial ANOVA was performed. Subsequently,
the interaction of the multiple variables was analysed using generalised linear/non-linear
model building. This allowed the dependencies between the individual variables to be
elucidated. For example, there are complex interactions between blade perspective and
defect type. In the case of inspection accuracy, and again for classification accuracy, the
dependent variable takes values of 1 and 0, i.e., the decision can be correct (1) or incorrect
(0). Hence, logit odds ratio was applied in these cases.

4. Statistical Results
4.1. Inspection Type

The first factor that was analysed is the type of inspection, i.e., borescope and piece-part
inspection. Table 2 shows the inspection accuracy for each of them by group of expertise.

Table 2. Inspection accuracies by expertise group and inspection type (in percentages).

Expertise Borescope Inspection
M (SD)

Piece-Part Inspection
M (SD)

Inspectors (N = 18) 66.7 (13.0) 83.3 (10.1)
Engineers (N = 16) 63.4 (11.6) 82.1 (14.3)
Assembly Ops. (N = 16) 60.7 (20.5) 82.1 (12.2)
All participants (N = 50) 63.7 (15.3) 82.6 (12.0)

The results show that the average inspection accuracy improved throughout all groups
of expertise from borescope inspection to piece-part inspection. This was confirmed by an
ANOVA, F(1, 698) = 33.085, p < 0.001. To see whether this is consistent for all defect groups,
a Factorial ANOVA was subsequently performed and showed significance too, F(3, 692)
= 5.093, p < 0.002. Figure 8 highlights that the significant difference was predominantly
for non-defective blades and nicks, while the inspection accuracy was less affected by the
inspection type for dents and tears.

Dents were equally detectable in both levels of inspection with a tendency towards
better performance in borescope inspection. A possible reason could be the advantage
of the borescope lighting being quite focused and creating shades on the blade surface,
which may allow for better differentiation between dents (indentations) and deposits (offset
material), and thus an improved inspection performance.

As later discussed in Section 4.4., the blade perspective in borescope inspection (P3) is
most beneficial for detecting airfoil damage such as dents. Hence, this could have further
contributed to an equal performance in borescope and piece-part inspection.

It stood out that the inspection accuracy for non-defective blades was quite low in
both piece-part and borescope inspection. This could possibly be explained by staff of
high reliability organisations (e.g., in aviation) taking a conservative approach in favour
of safety, i.e., in the case of uncertainty it would be reasonable to remove the blade from
service. Another reason for the low performance might be the skewed research sample,
i.e., the amount of defective blades was disproportionately high compared to reality. Thus,
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participants may have been biased towards finding defects. Furthermore, participants knew
that they were under scrutiny and that their performance was recorded, which might have
further contributed towards a risk averse approach resulting in higher false-positive rates.

Figure 8. Effect of Inspection Type on the Inspection Accuracy for each defect group.

A Generalised Linear/Non-linear logit model for Inspection Accuracy with categorical
factors (Inspection Type, Expertise, Previous Inspection Experience, Education, and Visual
Acuity), and continuous predictor of Work Experience, showed the only significant factor
was Inspection Type (X2(1, 698) = 32.347, p < 0.001), which has already been discussed.

4.2. Defect Type

In this section the factor ‘Defect Type’ is analysed in detail. The inspection results
measured in detection accuracy and classification accuracy are shown in Table 3.

Table 3. Inspection accuracy and classification accuracy by defect type (in percentages).

Defect Type Mean Inspection Accuracy %
Mean (SD)

Mean Classification
Accuracy %
Mean (SD)

Airfoil dent 19.0 (31.8) 5.3 (25.8)
Bend 79.0 (30.5) 58.8 (41.7)
Blockage 8.0 (25.5) 87.5 (44.7)
Burn 79.5 (18.7) 38.4 (38.2)
Coating Loss 85.3 (24.4) 98.1 (8.7)
Crack 11.0 (29.1) 73.3 (50.5)
Dent 36.0 (32.0) 54.3 (49.9)
Nick 100.0 (0.0) 90.0 (30.3)
No damage 59.0 (23.0) 100.0 (0.0)
Tear 95.5 (6.1) 44.9 (22.2)
Tip Curl 89.0 (20.9) 84.1 (29.0)
Tip Rub 83.3 (16.8) 76.0 (30.6)

The statistical analysis using a Factorial ANOVA (Figure 9) revealed statistical signifi-
cance of defect type on the inspection accuracy, F(11, 1738) = 112.11, p < 0.001. The results
show that blockage, cracks, and airfoil dents were the most difficult ones to detect with 8%,
11% and 19%, respectively. The highest detection rates were achieved for nicks (100.0%),
tears (95.5%), and tip curls (89.0%). The defect classification accuracy was also dependent
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on the defect type, F(11, 1130) = 31.273, p < 0.001. Airfoil dents (5.3%), burns (38.4%), and
tears (44.9%) were the most difficult defects to classify, while the highest classification
accuracy was noted for coating loss (98.1%), followed by nicks (90.0%), blockage (87.5%)
and tip curl (84.1%). An interesting finding is that blockage had the lowest detection rate
(8.0%) while having one of the highest classification accuracies (87.5%). This implies that
participants who found this defect type knew exactly what to look for. The same effect can
be seen for cracks. Contrarily, tears had the second highest detection rate (95.5%), but a low
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Figure 9. Mean inspection accuracy and defect classification accuracy for each defect type.

Generalised linear/non-linear logit modelling around inspection accuracy and clas-
sification accuracy with Defect Type, Expertise, Visual Acuity, Education, and Previous
Inspection Experience as categorical factors and Work Experience as a continuous vari-
able showed that there was no correlation between the demographic variables and the
inspection or classification accuracy, respectively.

There was a need to understand which defects were misclassified and with what
other defect types they were confused. Figure 10 provides an overview of the actual defect
type (ground truth) and the classification thereof made by the participants. The correct
classifications of each defect type are highlighted in grey. The highest miss-classification
occurred for airfoil dents, burns and tears.

Airfoil dents (surface) are most commonly confused with dents (edges) potentially
due to their similarity in terminology and characteristics, while the difference might not be
known by inspectors. Even if adding the two types of dents, the accumulative classification
rate is still below 50% and offers great potential for improvement.

Burns are often confused with coating loss (31.6%) and breakage (28.2%), depending
on the amount of missing material. Tears in contrast have the widest range of confused
defect types with breakage (21.9%) and cracks (21.3%) being the most common ones. This
appears to indicate that defects were classified based on their visual appearance rather than
on contextual knowledge or by taking into account the potential root causes.

Breakage was added to Figure 10 under predicted class as a significant amount of
participants predicted this defect class. Since it was not pre-defined and there was no breakage
in the dataset, this class does not appear as a column under the ground truth. The ‘no damage’
column was added to the defect list as it provides additional insights of what participants
supposedly detected on non-defective blades, e.g., in 7.5% of the time a non-defective blade
was incorrectly removed from service because participants supposedly detected an airfoil
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dent. Most non-defective blades were incorrectly classified because of suspect tip rub (22.5%)
and nicks (18.0%), followed by coating loss (12.5%) and tip curls (12.0%).

Figure 10. Classification matrix showing the distribution of defect types that are often confused.

4.3. Severity

Three levels of severity (S1 to S3) were analysed and the inspection results of each
level grouped by the different defect categories are presented in Table 4.

Table 4. Inspection accuracies by defect group and severity level (in percentages).

Defect Group Severity Level 1
M (SD)

Severity Level 2
M (SD)

Severity Level 3
M (SD)

Airfoil defects (surface
damage) 30.0 (46.3) 76.0 (43.1) 98.0 (14.1)

Edge defects (deformation) 83.3 (37.4) 98.0 (14.1) 98.0 (14.1)
Edge defects (material loss) 74.7 (43.6) 96.7 (18.0) 100 (0.0)
All defects 72.0 (45.0) 92.8 (25.9) 99.0 (10.0)

It comes as no surprise that the inspection accuracy improved with increasing severity,
X2(2, 797) = 102.5, p < 0.001. The difference was measured between severity level one and
level two (Odds Ratio = 5.01, p < 0.001), and between level one and level three (Odds Ratio
= 38.5, p < 0.001). There was no significant difference between level two and three (Odds
Ratio = 7.68, p = 0.624).

Generalised linear/non-linear logit modelling revealed that both Defect Type (X2(2,
797) = 37.889, p < 0.001) and Expertise (X2(2, 797) = 9.585, p < 0.01) were correlated with
inspection accuracy. Surface defects were more difficult to detect than both types of edge
defects, i.e., with and without material loss. On average and across all three severity levels,
engineers showed the lowest inspection accuracy of 80.5% followed by assembly operators
(86.7%) and inspectors (88.2%). Figure 11 highlights that the difference specifically occurred
in severity level S1, i.e., engineers had an inspection accuracy of 61.6%, while both assembly
operators (73.2%) and inspectors (80.2%) performed better on smaller defects. No other
demographic factors were significant (all p > 0.129).
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Figure 11. Effect of defect severity on inspection accuracy for each group of expertise.

4.4. Blade Perspective

Eight different blade perspectives covering a 360-degree view of the blade were tested.
The inspection rates of each perspective are presented in Table 5.

Table 5. Inspection accuracies by blade perspective and defect group (in percentages).

Blade
Perspective

Airfoil Defects
(Surface Damage)

M (SD)

Edge Defects
(Deformation)

M (SD)

Edge Defects
(Material Loss)

M (SD)

No Damage
(Non-Defective)

M (SD)

All Blades
M (SD)

P1 98.0 (14.1) 100.0 (0.0) 10.0 (3.0) 58.0 (49.9) 66.5 (47.3)
P2 84.0 (37.0) 98.0 (14.1) 100.0 (0.0) 44.0 (50.1) 81.5 (38.9)
P3 100.0 (0.0) 96.0 (19.8) 100.0 (0.0) 54.0 (50.4) 87.5 (33.2)
P4 80.0 (40.1) 98.0 (14.1) 100.0 (0.0) 44.0 (50.1) 80.5 (39.7)
P5 38.0 (6.9) 20.0 (5.7) 100.0 (0.0) 46.0 (50.4) 51.0 (50.1)
P6 34.0 (47.9) 100.0 (0.0) 100.0 (0.0) 64.0 (48.5) 74.5 (43.7)
P7 64.0 (48.5) 46.0 (7.1) 100.0 (0.0) 66.0 (47.9) 69.0 (46.4)
P8 86.0 (35.1) 96.0 (2.8) 98.0 (2.0) 44.0 (50.1) 81.0 (39.3)

The results were statistically analysed, and the One-way ANOVA confirmed that the
blade perspective is significant for the inspection performance, F(7, 1592) = 14.772, p < 0.001.
Figure 12 shows that the inspection accuracy in P5 (51.0%) was significantly lower than in
any other perspective. Perspective P3 shows the highest accuracy with 87.5% and is notably
higher than P1 (66.5%), P6 (74.5%), and P7 (69.0%). Good results were also achieved in
perspectives P2, P8, and P4 with 81.5%, 81.0%, and 80.5%, respectively.

A subsequently performed generalised linear/non-linear logit model with Inspection
Accuracy as the dependent variable, Blade Perspective, Defect Type, Expertise, Previous
Inspection Experience, Education, and Visual Acuity as categorical factors, and Work
Experience as the continuous predictor revealed that besides the Blade Perspective the
Defect Type was a significant factor affecting the inspection accuracy, X2(7, 1592) = 94.771,
p < 0.001. No other demographic factor was significant. Thus, there was an interest to
understand what perspectives are preferable for which defect type. The mean accuracies
of all participants for the different groups of defects and perspectives are presented in
Figure 13. Edge defects with material loss (e.g., nicks) were the most detected defects
in any perspective except for P1 (10.0% detection rate). Airfoil defects (e.g., dents) and
edge deformation, (e.g., bends) in contrast, showed one of the highest detection rates in
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the P1 perspective with 98.0% and 100.0%, respectively. This highlights the difficulty of
standardising the inspection process, especially when no previous work has analysed the
perspective factor.

Figure 12. Effect of blade perspective on inspection accuracy.

Figure 13. Effect of blade perspective on inspection accuracy for each defect group.

4.5. Background Colour

Four different background colours were assessed to evaluate whether colour had any
effect on the inspection performance. The results for each colour is presented in Table 6.

There was no significant difference in inspection accuracy between the different colours
for the sample as a whole, F(3, 796) = 0.759, p = 0.517. A generalised linear/non-linear logit
model around inspection accuracy with Background Colour, Expertise, Previous Inspection
Experience, Education, and Visual Acuity as categorical factors and Work Experience as the
continuous predictor confirmed also that none of the demographical factors was significant.
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Table 6. Inspection accuracies by defect type and severity (in percentages).

Defect Type White
M (SD)

Red
M (SD)

Green
M (SD)

Yellow
M (SD)

Surface defects 80.0 (40.4) 86.0 (35.1) 86.0 (35.1) 82.0 (38.8)
Edge defects 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100 (0.0)
No damage 30.0 (46.3) 38.0 (49.0) 22.0 (41.9) 46.0 (50.4)
All defects 77.5 (41.9) 81.0 (39.3) 77.0 (42.2) 82.0 (38.5)

Similar to previous influence factors, there was interest in understanding whether this
effect is consistent across all defect types, or whether one benefits more from a specific
colour than another. The factorial ANOVA in Figure 14 with inspection accuracy as the
dependent variable, and background colour and defect type as categorical factors shows
that for both airfoil defects and edge defects, the background colour had no significant
effect. For non-defective blades, however, the background colour affects the inspection
performance, F(6, 788) = 2.5287, p < 0.02. Green had the lowest mean inspection accuracy
of 22.0%, followed by white (30.0%), red (38.0%), and yellow (48.0%). The difference was
measured between green and yellow backgrounds (Odds Ratio = 3.02, p < 0.05), while
the performance improvement for white and red backgrounds was not significant. Yellow
was the brightest colour and while some participants stated it highlighted defects the best
(which was actually not the case for the research population as a whole), others complained
about the bright colour and that it was fatiguing for the eyes. This might explain why
there was a tendency towards less findings on yellow backgrounds, as well as for defective
blades, although not significant.

Figure 14. Effect of defect type on inspection accuracy for each background colour.

Another unanticipated finding was that participants tended to perform better on one
colour over the others, although this was not consistent across the research population.
Thus, it was hypothesised that there was a personal preference (intentionally or unin-
tentionally) that one or more colours are preferred, while others are not. This raises the
possibility that colour perception, including colour blindness, may be a factor. Individual
inspection results for each participant and colour are plotted in Figure 15. The results show
that 23 participants (46%) performed best on a specific colour, while the other three colours
lead to equally poor performances. Contrarily, 15 participants (30%) tended to have a least
preferred colour on which they performed worst. This finding was underpinned by the
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feedback provided by the participants, who had a clear opinion towards specific colours
(positively as well as negatively).

Figure 15. Effect of background colour on the individual inspection accuracy (without standard
deviation for legibility purposes). The diagram shows high personal preference for specific colours.

5. Evaluation of the Eye Tracking Data

The eye tracking data were analysed to gain insights into the inspection and influence
factors. More specifically, we wanted to understand why defects were missed, what search
strategies were applied, and what inspection errors occurred. Background colour was
the only factor that was not statistically significant and screening of the eye tracking
recordings showed no striking conspicuousness. Hence, the gaze plots and heat maps are
not presented here.

The way the two eye tracking outputs can be interpreted is as follows. Heat maps
highlighted the areas that attracted most attention and we used a traffic light colour
scheme whereby green indicates areas receiving scant attention (short dwell times) and red
highlighting indicates areas with the most attention (long dwell times). Areas that were not
looked at are not coloured. Gaze plots in contrast show the scan path, order of fixations,
and dwell times. A larger gaze plot diameter indicates a longer dwell time, and vice versa
for smaller gaze points.

One of the limitations of eye tracking is the restricted ability to quantitatively compare
heat maps and gaze plots between different sample groups and subject groups [13]. For this
reason and to present the findings in the most concise way, some representative samples
were selected and semi-quantitatively analysed in the following sections.

5.1. Inspection Type

The statistical analysis in Section 4 revealed that, overall, piece-part inspection led to
better inspection performance than borescope inspection of the same blade. A detailed
analysis of the inspection results revealed that this was true for 26.9% of the cases, while
65.1% of the time the same results were achieved in both inspection types. In 8.0% of
inspections, borescope led to better results than piece-part. This was predominantly for
non-defective blades, i.e., participants incorrectly marked more non-defective blades as
defective during piece-part inspection than in borescope inspection.

The eye tracking data were further analysed to better understand this effect. The
resulting heat maps for piece-part inspection in Figure 16 indicate that all participants
detected the defect during piece-part inspection. This was confirmed by their recorded
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defect markings. As expected, the bench inspector—having the most experience in blade
inspection—performed the fastest with 3.799 s. The borescope inspector took significantly
longer (15.402 s) and their inspection time was fairly similar to the engineer’s (14.912 s).
Thus, the latter two took around four times longer than the bench inspector. The longest
inspection time was measured for the assembly operator (39.224 s), which was 10 times
as long as the one of the bench inspector and 2.5 longer than the borescope inspector’s
and engineer’s.

Figure 16. Eye tracking results for piece-part inspection by expertise.

The gaze plots show the search path of each participant. The bench inspectors’ eye
tracking results show 11 fixations predominantly on the edges of the airfoil. The number of
fixations on the airfoil edges in the borescope inspector’s recording are similar to the bench
inspector. However, while the bench inspector did not even look at the root, the borescope
inspector spent half of the time inspecting the platform and root.

This is interesting for two reasons: firstly, because the root is exposed during piece-part
inspection and thus one would expect the bench inspector to inspect it. This might reveal
another issue with blade inspection, i.e., the term ‘blade’ is confused with the term ‘airfoil’,
and thus only the latter was inspected, while the root and platform was left out. Secondly,
this finding is interesting because the root is not visible during borescope inspection.
It might indicate the unfamiliarity of the borescope inspector with inspecting this part of
the blade, which might have led to a more detailed and thus longer inspection.

Furthermore, the gaze plots show that both inspectors’ focus lay on the edges, whereas
the engineer and assembly operator also inspected the airfoil surface. Some discolouration
and a negligible surface scratch close to the middle right edge particularly attracted their
attention, as can be seen in the heat maps. Additionally, the assembly operator focused on
the right corner of the platform with some acceptable chafing (within limits). Thus, we
conclude that with increasing experience, smaller, acceptable conditions are being ignored
and the focus is rather set on critical locations and defect types. Moreover, less experienced
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staff in visual inspection (engineers and assembly operators) tended to inspect the blade in
more detail and returned multiple times to re-inspect areas of interest.

Next, the eye tracking recordings of the same blade shown as for the borescope image
were evaluated. The resulting heat maps and gaze plots are shown in Figure 17. The
defect markings show that only the borescope inspector found and marked the defect.
None of the others classified the blade as unserviceable. However, the heat maps show
that all participants looked at the defective area for a while. Hence, it is likely that the
irregularity (defect) was noticed, but an incorrect decision was made in regards to the
serviceability of the blade.

Figure 17. Eye tracking results by expertise for the same blade shown in Figure 16 but now as
borescope image.



Aerospace 2022, 9, 18 20 of 40

The inspection times show that the borescope inspector was 1.640 s (21%) slower
than the bench inspector, followed by the engineer who was 2.4 times slower than the
bench inspector and 1.9 times slower than the borescope inspector. Similarly to piece-part
inspection, the assembly operator was significantly slower than the engineer, borescope
inspector and bench inspector, and required 3.5, 6.6 and 8.3 times longer, respectively.

The gaze plots of both the bench and borescope inspectors showed a similar number of
fixations, with 28 and 34, respectively. However, their scan paths differed significantly from
another, i.e., the bench inspector scanned the image in a zig-zag pattern, while the borescope
inspector followed a clear search strategy (further described below). The engineer made
50 fixations, and their gaze plots form two clouds: one around the blades in the centre of
the image and one around the vanes in the subsequent row. The assembly operator’s gaze
plot showed 146 fixations with no patterns or clusters, but an unstructured back and forth
eye movement.

The eye gaze visualisations show that shiny areas (reflections of the borescope light)
attracted the attention of the bench inspector, engineer and assembly operator, and that
those areas were inspected multiple times. This was different to the borescope inspector
and might be explained by pre-existing knowledge of the latter, i.e., there is no defect
information retrievable from reflections. It is further apparent that all participants except
the borescope inspector looked at the ceramic liners (top right corner). Equally, their
eyes dwelled at the manufacturing stamps, which suggests that the participants were not
familiar with those markings and unsure whether it was a defect. Finally, it is visible in the
gaze visualisation that the borescope inspector focused on the edges only, while the other
participants inspected surfaces such as the airfoil or the aforementioned liners.

The gaze plot of the borescope inspector was further analysed, as it indicated a quite
specific search approach that is worthwhile to highlight. As shown in Figure 18a, the
borescope inspector’s eyes fixated on the defective area straight away (gaze plot 2 to 4). The
search continued along the leading edge with some focus around gaze plot 8 (Figure 18b).
After the leading edge, the participant continued their search on the trailing edge shown
by gaze plots 9 to 12 (Figure 18c). This was followed by inspecting the platform (gaze plot
13 to 22 in Figure 18c,d). Finally, the leading edges of the subsequent blades were analysed
(Figure 18e,f). The borescope inspector specifically focused on the trajectory of the foreign
object after finding a defect on the foremost blade, i.e., from experience the participant
would expect damage on subsequent blades as well. This behaviour was observed for all
borescope inspectors and thus seems typical.

Overall, it stood out that for both inspection types (borescope and piece-part) the
inspectors had a more systematic and structured search compared to engineers and assem-
bly operators. The latter two showed a larger number of fixations, distributed across the
stimuli. The long saccades (distances) in combination with several revisits of the same area
led to long inspection times for both the engineer and particularly the inspector.

The bench inspector took 2.465 s (65%) longer in borescope inspection compared
to piece-part inspection. Similarly, the assembly operator required 12.648 s (32%) more
time in borescope inspection. Less surprising was the observation that the borescope
inspector was faster in borescope inspection. However, it was indeed surprising that
piece-part inspection took them twice as long, although only one blade was presented.
Another interesting finding was that the inspection times of the engineer for borescope and
piece-part inspection were almost identical, with only 0.144 s of a difference (<1%).

After reviewing the eye tracking data it can be concluded that the reason for the
lower inspection performance in borescope inspection did not stem from overlooking the
defect, but from incorrect decisions made, i.e., the defect was not recognised as a defect,
but as an acceptable condition. The gaze plots further indicate that non-inspecting staff
looked at more irrelevant features that might be visually more salient but not critical from
a safety perspective.

The direct comparison of the piece-part and borescope image of the same blade
revealed that the defect appears much bigger in borescope inspection than in piece-part
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inspection. Herein lies the possibility that either the defect is more likely to be detected
because it appears bigger, or, contrarily, the damage might not be marked as a defect because
the operator does understand the magnification effect and that everything appears bigger
in borescope inspection. Our results suggest that the magnification helped with recognising
the defect by all levels of expertise. However, the reason for the incorrect decision remains
unclear. Future work could address this question by using the think-aloud method to
gain additional insights.

Figure 18. Gaze plot of an experienced borescope inspector in 1.5-s intervals.

5.2. Defect Type

As the results in Section 4.2 show, the lowest detection rates were achieved for dents,
airfoil dents, cracks and blockage in descending order. While blockage and airfoil dents are
less critical from a safety perspective, the successful detection of cracks and dents on the
edges, however, is crucial. Hence, eye tracking was used to understand what caused the
low detection rates of cracks and dents, respectively.
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The cracked blade (Figure 19) showed a second defect, namely a burn. It is likely
that participants focused on this more salient feature and hence overlooked the crack. The
heat map and gaze plot in Figure 19 (left) confirm that the participant who missed the
crack spent quite some time focusing on the top left corner where the burn was located.
Furthermore, it becomes apparent from the gaze plot that the search was aborted once the
first defect was found. While this is generally an effective approach and favourable from an
operational perspective, it entails the risk that other defects that are more critical or require
a different repair action are being missed. While the serviceability decision might be the
same, the blade could have been removed from service for the wrong reason.

Figure 19. A blade with a crack (red circle) and burn (blue circle) was presented to participants. Heat
maps and gaze plots were created for a missed crack (left) and a detected crack (right).

The eye tracking data of a participant who detected both defects (including the crack)
shows that a more systematic and detailed search was performed with continuously in-
spection of the leading edge and tip of the blade from bottom to top, from left to right, and
back repeatedly (Figure 19, right). The detailed search required more time as the eyes had
to fixate on almost five times more areas as evident in the gaze plot.

In order to improve the reliability of visual inspection, it is necessary to understand
why the defect was missed and what inspection error occurred. Therefore the framework
introduced by Aust et al. [13] was utilised to determine the inspection error that might
have occurred. There are three types of inspection errors: (1) search error, (2) recognition
error, and (3) decision error. A search error occurs when the defective areas was not looked
at, i.e., the eye tracking data shows no gaze plots in that area. When the defective area
shows fixation points but they were below a set threshold, e.g., 600ms [33], then it can be
concluded that a recognition error occurred. If the gaze plot on the defective area is above
the threshold but the participant did not mark their finding and classify it as defect, then a
decision error arose.
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The dented blade in Figure 20 had a detection rate of 62% (31 participants), i.e., 19 par-
ticipants (38%) missed the defect. The evaluation of the eye tracking data shows that all
three types of inspection errors occurred. Of the 19 participants who missed the defect,
four (21.1%) did not look at the defective area (search error). The eyes of another eight
participants (42.1%) wandered over the defect location, but without recognising the defect
(recognition error). The eyes of the remaining seven participants (36.8%) dwelled for a
significant amount of time at the defective area with some returning to re-inspect the
indication multiple times. However, they decided that the finding is acceptable (did not
mark the defect) and thus a decision error occurred.

Figure 20. Blade with dent on the trailing edge (indicated by red circle). Heat maps and gaze plots
were created, highlighting the different inspection errors.



Aerospace 2022, 9, 18 24 of 40

The gaze plot analyses in Figure 20 indicates that the number of fixations and the inspec-
tion time T increases for each inspection error, i.e., T(search error) < T(recognition error) <
T(decision error). To test whether this was true for the entire research population, an ANOVA
was performed around inspection time and inspection error. It was found that there is a strong
correlation between the two, F(2, 19) = 44.182, p < 0.001. As shown in Figure 21, participants
who made a search error needed on average 3.710 s, while inspections leading to recogni-
tion errors took 8.659 s, and participants who could not decide whether the finding was a
defect or acceptable required 18.449 s. A generalised linear/non-linear normal log model was
constructed around inspection time. The results are presented in Table 7 and show that the
inspection times associated with all three types of inspection errors differ significantly from
each other. Hence, the inspection time might indicate what inspection error occurred.
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Figure 21. Correlation between inspection time and inspection error.

Table 7. Statistical model around the inspection time (Wald test and parameter estimates).

Effect Reference
Level

Level of
Effect Wald. Stat Estimate Lower CL

95%
Upper CL

95% p

Inspection
Error

Recognition
Error Search Error 14.2811 −0.817130 −1.24093 −0.393333 <0.001

Inspection
Error

Recognition
Error

Decision
Error 43.3729 0.786754 0.55261 1.020895 <0.001

5.3. Severity

As expected, the inspection accuracy decreased with decreasing defect severity. An
interesting finding, however, was that the inspection performance in the lowest severity
level S1 differed significantly between the expertise groups. As the analysis in Section 4.3
showed, inspectors were more accurate than assembly operators, who in turn performed
better than engineers.

The evaluation of the eye tracking recordings for the different expertise groups re-
vealed that there is a predominant error occurring in each group, and interestingly it is
a different type of error for each of them. Figure 22 shows that most inspectors made a
search error (57.1%), while engineers struggled to recognise the defect 80.0% of the time,
and two out of three assembly operators incorrectly classified the defect as acceptable
(decision error).
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The eye tracking data of the participants who missed the defect were further analysed,
and heat maps and gaze plots were created for a representative sample of each group and
for the predominant inspection error. The results are shown in Figure 23.

Figure 23. Eye tracking results for each level of expertise, highlighting the predominant inspection
error. Defect indicated by red circle.
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The eye tracking recordings of inspectors who missed the defect showed that a search
error occurred and that other features attracted their attention. This can be deduced from
the gaze plot in Figure 23, which clearly shows that the defective area was not looked at,
i.e., not showing any fixations.

One inspector stood out from the others, as the recording showed an extreme short
inspection time of 2.224 s. The eye tracking results revealed that this participant only
skimmed the blade, which is evident by the few fixations (N = 9), each under 283 ms and
thus below the recognition threshold. This phenomenon of an initial holistic scan prior to a
detailed search is already described in [13,33]. However, in this case the inspector did not
continue with a detailed search but rather continues inspecting the next blades and thus
missing the defect. This search behaviour was only observed for one of the inspectors and
thus is not representative for the expertise group.

The engineer’s gaze plot indicated that the participant focused predominantly on
the leading edge and thus missed the defect on the trailing edge. Their eyes scanned
the defective area early on (gaze plot 7) for 197 ms, but never returned to inspect it in
more detail. This infers that the participant did not recognise the defect and a recognition
error occurred.

The heat map and gaze plot of the assembly operator highlighted that the participant
looked at and recognised the defective area (red colour in heat map and large gaze plot #6).
However, they did not mark it as defective, which leads to the conclusion that a decision
error occurred. The presented blade is relatively dirty with deposits on in the airfoil. A
possible explanation for the decision error might be that the participants identified the
irregularity as a deposit on the edge as opposed to an edge defect.

Another interesting finding from the eye tracking data is a notable difference in
inspection time between the three groups. The inspector was 3.232 s (31.5%) faster than
the engineer, who was 6.952 s (40.4%) faster than the assembly operator. Consequently, the
inspector was 10.184 s (59.2%) faster than the assembly operator. This aligns with previous
studies [13]. It also matches the findings in Section 5.2, whereby search errors are associated
with short inspection times, while decision errors are linked to long inspection times.

When comparing the eye tracking results of the three expertise groups it becomes
apparent that the gaze plots varied significantly. While the scan path of the inspector
showed fewer gaze plots and a more systematic search in a counter clockwise circle, the
engineer’s gaze plot exhibited more fixations, predominantly on the leading edge. The
assembly operator in turn inspected the entire airfoil and root of the blade in an unorganised,
almost chaotic way. Nonetheless, the more detailed search led to recognition of the defect,
although the serviceability decision was incorrect, i.e., the defect was classified as acceptable
(decision error).

5.4. Blade Perspective

The statistical analysis revealed that perspective P3 is overall the best viewing per-
spective for defective and non-defective blades. However, the inspection accuracy is still
not 100%, and the eye tracking data were further analysed to understand why even the
optimum perspective led to missing the damage. Figure 24 shows the heat maps and
gaze plots of two representative participants who missed a bend on the leading edge. The
inspection times and number of gaze plots of the two are fairly similar and do not stand
out from other participants who detected the defect. Thus, no conclusions can be drawn
from these quantitative numbers.

The first participant looked several times and for quite a while at the defective area, as
evident in the heat map and gaze plot (Figure 24, left). This means that a decision error
occurred, which could have been caused by insufficient training or inexperience. In the
second case, the heat map (Figure 24, right) shows that the first area the participant looked
at was the defect. The participant did however continue the search immediately without
spending much time on it. However, based on a dwell time of 517 ms it can be assumed
that the feature was recognised.
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Both cases confirm that perspective P3 is beneficial for detecting deviations and that
missing the defect was caused by incorrect decision making rather than due to visual search
capabilities or inappropriate search strategies.

Figure 24. Two participants missed the defect from the most favourable blade perspective.

6. Discussion
6.1. Summary of Research Findings and Comparison with Other Studies

In this study the effect of different influence factors on the inspection performance was
evaluated. Statistical analysis was used for screening of the significant effects, followed by
semi-quantitative assessment of the eye tracking data to gain additional insights into the
inspection process. The tested hypotheses are summarised in Table 8 along with a brief
overview of the results. The findings are further discussed and compared to other studies
in the field.

6.1.1. Inspection Performance

Overall, an inspection accuracy of 75.5% across all influence factors was achieved.
This is comparable to the inspection performance reported for other maintenance activities,
ranging from 53% to 77% [9,13,34]. Similar accuracies were measured in the manufacturing
industry and range from 45% to 76% [6–8,35,36]. Interestingly, the performance seems
to settle around the 80% mark, independent of the industry, inspecting part, and defect
type (manufacturing or operational). This suggests that there may be a natural limit to
human performance.

The results show that the inspection rates in borescope inspections are significantly
lower than for piece-part inspection with 63.8% and 82.6%, respectively. This was consistent
for all three groups of expertise. Since it is the first study that quantifies the borescope
inspection performance, no comparison to the literature could be made.
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Table 8. Research hypotheses and findings.

Hypotheses Findings

H1 The inspection type affects
the inspection performance.

Accepted. Piece-part inspection showed a
higher inspection rate than borescope
inspection.

H2 The defect type affects the inspection and
classification accuracy.

Accepted. Nicks, tears, and tip curls had
the highest detection rates, while
blockage, cracks, and airfoil dents were
the categories more often missed. The
classification accuracy was highest for
coating loss, nicks, blockage, and tip curl.
Airfoil dents, burns, and tears were most
difficult to classify.

H3 The defect severity affects the inspection
performance.

Accepted. The inspection accuracy
decreased with decreasing severity and
the critical threshold was identified
between severity level S1 and S2.

H4 The blade perspective affects
the inspection performance.

Accepted. Perspective P3 lead to the
highest accuracy, while P2, P4, and P8
also achieved good results. The worst
perspective was P5.

H5 The background colour affects
the inspection performance.

Rejected. The background colour had no
impact on the inspection performance.

Assessment of the defect types revealed that some defects are more difficult to detect
than others. Airfoil dents (19.0%), cracks (11.0%), and blockage (8.0%) showed the lowest
detection rates, while nicks (100.0%), tears (95.5%), and tip curls (89.0%) had the highest.
This supports previous research whereby salient defects such as tears had a high detection
rate and surface defects (e.g., airfoil dents) were often missed [37]. This was consistent for
different inspection methods including visual and visual-tactile inspections [37]. Megaw
and Richardson [4] pointed out that knowing the critical defects and their appearances can
lead not only to better search strategies, but also to higher inspection performances. This
corresponds to the comments made by some participants of the present study (mainly non-
inspecting staff), who stated that a defect list with a description and sample photograph
would have been helpful to better detect and classify defects.

The classification accuracy was also dependent on the defect type. While airfoil dents
(5.3%), burns (38.4%), and tears (44.9%) showed the lowest performance, coating loss
(98.1%), nicks (90.0%), and blockage (87.5%) were most accurately classified. Across all
defect types an average classification accuracy of 62.3% was achieved, which is higher
than the 39.1% reported in previous work [37]. This could be due to the current study
having a larger research population and sample size with a bigger variety of defect types
with a more distinct manifestation. Examination of the classification results identified
specific confusion between defect types. The biggest confusion occurred between dents
and nicks, with 45.7% of dents being classified as nicks. This is in alignment with previous
findings [37] where tears were often confused with breakage. In the present study 21.9%
of tears were confused with breakage, and 21.3% with cracks. The present findings show
that bends are the most common defect type that that is confused with tip curl in 11.5%
of the cases and reflects previous findings [37]. None of the other defect types and their
misclassification distribution were previously analysed.

A study by Spencer [16] found that if an area had two defects, e.g., in the case where
one defect propagated to another one, the inspectors would name only one or the other. In
the present study we found that multiple participants understood the propagation well
and verbally expressed the propagation of the defect. Since they were asked to select only
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one defect type, they would naturally choose the worst one as it validates the removal of
the part from service.

During the study, the researchers noted that several participants described defects with
their own terminology, e.g., they were calling a nick a ‘notch’. Moreover, defects tended to
be classified based on their visual appearance rather than on contextual knowledge or by
taking into account the potential root causes. Hence inconsistency was found in the use of
defect terminology. Many participants were ignorant, causing inability to discriminate the
defects. Appropriate training and a standardised defect taxonomy might offer potential to
improve the classification accuracy, see also [25].

Defects of severity level S1 (72.0%) were more difficult to detect than severity level S2
(92.8%) and S3 (99.0%). Previous studies [14–18] reported the detection performance in the
form of probability of detection (PoD) curves, which cannot be compared to our findings.
However, it is generally accepted that with increasing defect size, and thus severity, the
likelihood of detecting the defect increases [15].

The blade perspective had a significant effect on the inspection performance with
the best perspective being P3 (87.5%) followed by P2, P8, and P4 with 81.5%, 81.0%, and
80.5%, respectively. The worst perspectives were P5, P1, and P7 with 51.0%, 66.5%, and
69.0%, respectively. Megaw and Richardson [4] analysed the perspective factor in visual
inspection of electrical connectors. Those authors determined the best perspective based on
eye tracking parameters, namely fixation times and number of fixations, while we ranked
the different perspectives based on the inspection accuracy. Several studies [14,15] assessed
the effect the tilting angle of flat composite panels has on the detection rate of surface
dents. The main difference to our work is that we analysed the perspective based on an
incremental rotation of the part as opposed to tilting. Moreover, in [15] the angle between
light source and panel surface changed with changing tilting angle, thus a combination of
angle and lighting effect was assessed. While the results are not comparable to our study, it
might provide an opportunity for future research, i.e., to assess the effect of illumination
including light source angle and distance, colour temperature, and luminous flux. An
interesting finding is that the identified favourable perspectives of the present study are
also beneficial for automated inspection systems such as the one in [32]. Both the human
and software apply (computer) vision for the visual search and inspection task. We propose
that the perspective highlights a variety of edge and surface defects and thereby contributes
to visual perception and recognition.

Surprisingly, the background colour had no significant effect on the inspection accuracy.
This is contrary to other studies [4,14,15]. Waite [38] found that surface damages are easier
to find on green painted composite panels. In the present study, the green background
colour showed the highest positive-rate (TP & FP) and was significantly higher compared
to the white background, F(3, 796) = 2.315, p < 0.05. However, due to the high false-
positive rate, the inspection accuracy was overall the lowest. Hence, it can be said that
a green inspection background is beneficial for detecting any irregularities that require
further investigation, while it is less favourable for making a serviceability decision as it
leads to a high rejection rate of serviceable (non-damaged) blades. Another interesting
finding of the present study was that there seems to be a personal preference towards one
colour or another, but without a clear tendency towards a specific one for the research
population as a whole.

This study generally found no correlation between expertise and inspection perfor-
mance (accuracy). The only difference measured was in severity level S1, i.e., blades
with very small defects, which accounts for 8.75% of the research sample. In this specific
case, inspectors performed best (80.2%), followed by assembly operators (73.2%), with
engineers performing the worst (61.6%). The general observation of the present work is
supported by several studies [13,16,35,39]. The S1 finding is also consistent with other
research [15,40]. This shows that the general literature is ambiguous about the effect of
the expertise. The lowest severity level S1 was perceived as most challenging according to
participants’ comments. Thus, the significance of expertise in this case might be explained
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by the task difficulty, i.e., the more challenging the inspection, the more important the
previous experience and contextual knowledge.

The statistical analysis revealed that none of the demographic factors had a significant
effect on the inspection performance (with expertise being the only exception in the severity
sub-study, as discussed previously). This is in line with the earlier literature [8,13,15]
that found that demographic variables such as work experience in the industry, previous
experience in inspection, education, certification, and visual acuity did not affect the
inspection performance. It is possible to conclude that there are other personal factors that
need to be considered, such as visual perception capabilities that go beyond the sole visual
acuity, e.g., search strategies or cognitive feature recognition. Furthermore, there might be
a knowledge component affecting the serviceability decision and thus performance. Since
the years of work experience in the industry seem to have no effect, the knowledge might
be individually developed and could have been influenced by previous training.

6.1.2. Inspection Approach

Assessment of the eye tracking data in the form of heat maps and gaze plots showed
the complexity of borescope inspection compared to piece-part inspection in the form of
longer inspection times and the larger number of fixations. This is in alignment with the
general literature, which agrees that an increase in eye tracking parameters indicate more
complex tasks and a higher cognitive workload [40–47].

The eye tracking recordings further showed significant differences between the dif-
ferent groups of expertise, which was in accordance with previous work [13,35,39,48]. A
review of the gaze plots revealed that inspectors made fewer fixations than engineers
and assembly operators. Moreover, it was apparent that bench inspectors in piece-part
inspection and borescope inspectors in borescope inspection, respectively, applied a sys-
tematic search strategy with clear focus on the edges. Engineers and assembly operators,
in contrast, inspected the blade in an unstructured way. Their gaze plots showed widely
spread fixations across the stimuli and multiple revisits of the same areas. This could
indicate a level of ‘technical anxiety’.

There is a relationship between the number of fixations and inspection time, i.e.,
more fixations mean additional dwell time for each of those and more ‘travelling’ (time)
for the participants’ eyes between the fixations [4,13]. Therefore, it was not surprising
that inspectors performed the fastest, while engineers and assembly operators required
more time. Comparison of the findings with those of other studies confirms that experts
have a clear search strategy with fewer fixations and thus shorter times compared to
novices [13,16,35,39].

Consistent with the literature [8,13,16], this research found that participants looked
at salient features first and most often. If a blade had more than one defect, participants
tended to detect the most obvious one, while less salient defects were missed. The results
further support the idea of an underlying mental model introduced in [13], i.e., previous
work experience and contextual knowledge influences the search focus and inspection
approach. This was observed in several ways:

Firstly, as previously discussed, inspectors (experts) focused on the blade edges, these
being the most critical areas. With experience, they might have developed their individual
inspection patterns, e.g., visual circuits with focus on areas where defects usually appear.
These findings are consistent with those of Spencer [16], who concluded that experts
develop an expectancy of where to find defects. Therein lies the risk that the inspection is
performed too rapidly due to high self-efficacy (over confidence) and following a deeply-
rooted approach, whereby only suspect areas are inspected, rather than the entire part. This
behaviour might explain why in the present study the most common inspection error made
by inspectors was a search error, i.e., the defective area was not inspected, possibly because
the participant did not expect a defect at this location. This could further explain why their
inspection performance was not significantly better than any of the other groups.
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Secondly, if a defect was detected that justified the removal of the part from service,
then the search was aborted and the next blade was inspected. Working in an environment
under time pressure imposes this behaviour further. Industry practitioners understand
the time constraints and aim to work efficiently. Hence, searching for additional defects
on a blade that has already been identified as unserviceable would be a non-value adding
activity and considered as ‘waste’ according to lean principles.

Furthermore, inspectors were able to distinguish defects from other conditions such
as deposits or reflections of the borescope light. This could be seen in their eye tracking
recordings, whereby the gaze plots showed no fixations in areas with conditions, but rather
a clear focus (fixations with long dwell times) on the defect.

An interesting finding was that borescope experts inspected anticipatorily, i.e., when
a defect was found on the foremost blade (edge), they drew an imaginary trajectory of
the foreign object that caused that defect and searched for any damage on the subsequent
blades along that trajectory. Figure 25 shows the defect markings of a borescope inspector
(red circles) and the trajectory (blue line, added later for better understanding). This search
behaviour was only observed for borescope inspectors and could have been consciously or
subconsciously undertaken.

Figure 25. Inspection results of a borescope inspector (red circles) and foreign object trajectory
(indicated blue line).

The results show that eye tracking can be used to identify the occurring inspection
error of each individual operator and thus areas of improvement. For example, search
errors are visible in the gaze plots in the form of missing fixations in the suspect area.
The visual locus does not overlap with the defective area. If participants fail to pause
their search to look at an irregularity, a recognition error occurred. The gaze plot shows
short fixations below the recognition threshold. It appears that recognition errors often
occur in situations where people get distracted by other, more prominent features like
reflections, deposits or other defects. When the defect was detected but misjudged as being
an acceptable condition, then a decision error was made. This is related to the classification
ability and understanding of the quality systems.

An interesting finding was that each expertise group tended to make a different in-
spection error. Inspectors were prone to search errors, while engineers did not recognise
anomalies and continued their search without pausing. Assembly operators struggled to
differentiate between defects and conditions, indicating the lack of contextual knowledge
and experience in inspection. Moreover, this study found a correlation between the inspec-
tion time and type of error. Both findings were not previously reported in the literature
and add to the understanding of visual inspection.
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6.2. Towards a Revised Visual Inspection Framework Including Inspection Errors

The existing framework for visual inspection entails five functions: Initiate, Access,
Search, Decision, and Response [34,49]. This concept may need to be reconsidered in
the light of the present findings and previous research [13], taking into account the eye
tracking observations.

Firstly, the current results show the importance of the visual locus in the search phase,
i.e., the specific search strategy for the preferred retinal locus that the operator selects
(perhaps unconsciously) to guide their eye movements. Secondly, the decision component
in [34] has been replaced by two processes, namely a recognition and a judgement activity.
The recognition comprises ontological knowledge of defect terminology and discrimination
ability of irregularities. This is different from the search and the decision phase because
search is motoric, i.e., physical movement of the eye, while recognition is cognitive, i.e., the
brain processes information and pauses once an alarming feature is found. Thus, the
recognition phase is added as an individual step to the inspection framework. Thirdly,
the judgement phase requires knowledge of the serviceability conditions and includes
an accept-reject decision. If required, a closer inspection might be performed before the
defect is confirmed. In the case of borescopy this might involve replaying the video, and
re-searching for other visual diagnostic clues. For inspection more generally this might
involve looking at the part from other perspectives, tactile inspection, use of magnification,
or commitment of the part to another non-destructive test (NDT). Errors in the judgement
activity correspond to the ‘decision errors’ in the above text. Fourthly, the inspection
process finishes with the completion of the inspection task, making it a continuous process
(see Figure 26). The different process steps of the proposed visual inspection framework
are further described in Table 9.

Figure 26. Visual Inspection Framework.
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Table 9. Description of the Visual Inspection Framework exemplary for borescope inspection.

Process Step (Hazard) Process Description Potential Error (Top Event) and
Possible Causes (Threats)

Tasks in the Example of
Borescope Inspection (Barriers)

1. Initiation

Inspection workplace setup and
part preparation. Provision and
setup of required inspection tools.
Comprehend standard working
procedure (SOP).

Initiation error:

• Incorrect part preparation
• Inadequate, missing, or

non-compliance with
procedures

• Inadequate setup
knowledge

• Incorrect, inoperative, or
non-calibrated tools

• Inadequate inspection
environment

Pre-wash engine, select
appropriate borescope tip and
correct camera settings, read and
comply with engine manual and
standard work procedures.

2. Access

Locate inspection area and gain
access to location. Ensure best
possible position for reliable part
inspection.

Access error:

• Incorrect part accessed
• Incorrect part presentation

(distance, angle, or lighting)
• Part or surrounding

components damaged
during access

Remove borescope hole plug,
insert borescope, and manoeuvre
borescope into appropriate
location for blade inspection.

3. Search

Comprehensively scan the part
and systematically search for any
irregularity. Ensure an adequate
search strategy covering the entire
stimulus is used.

Search error:

• Inappropriate search
strategy

• Inexperience staff
• Human factors, e.g., fatigue
• Operational time pressure

Start video recording, initiate
engine rotation, and search for
any damages on the blade.

4. Recognition

Process visual information and
perceive indications of possible
anomalies. Recognise that the part
differs from its ideal condition
and discriminate against other
possibilities.

Recognition error:

• Indication missed
• False memory of ideal part
• Distracted by other (more

salient) features
• Human factors, e.g., fatigue

Pause engine rotation if indication
is found. Inspect finding in detail.

5. Judgement

Classify indication as condition or
defect. Determine defect type and
compare finding to corresponding
limits in standard. Decide
whether finding is within limits
(acceptable) or outside limits
(reject).

Decision or judgement error:

• Irregularity forgotten before
decision is made

• Misclassification of
indication

• Misjudgement or incorrect
measurement of indication
size and location

• Incorrect comparison to
standard

Decide whether the finding is
acceptable or needs to be repaired,
i.e., whether an engine tear-down
is required.

6. Response
Record and report findings.
Complete inspection
documentation.

Response error:

• Findings not reported
• Incorrect documentation
• Task not signed off

Take a picture (snapshot) of the
paused borescope video, report
finding (classify defect and
location). Repeat from step 3 until
all blades are inspected.

7. Completion

Remove equipment from
inspection area and return to
storage for next use. Release part
to next process in accordance with
inspection outcomes (e.g., repair).

Completion error:

• Misinterpretation of the
reported findings

• Incorrect action performed
• Incomplete action

Remove borescope and re-install
borescope plug. Repeat from step
2 until all stages have been
inspected. Continue maintenance
procedure, e.g., engine tear down
and repair.

The inspection framework can be used as an operational guide and can be represented
in two ways: (a) as a table, or (b) graphically as a bowtie diagram. The two representations
are complimentary and could be used for different purposes, i.e., to express different
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information. While the table can be used as a checklist to manage the inspection task, the
bowtie diagram allows representing barriers and escalation factors in a concise way that is
easy to communicate and to understand, which may have benefits for training. Moreover,
the bowtie diagram allows for the colour-coding of the barrier to show their effectiveness,
and using the 6M framework to further explore other contributing factors [22].

A bowtie diagram was drawn for the first process step (Initiation) to exemplify the
concept, see Figure 27. The process step forms the hazard of the bowtie diagram and the top
event is the inspection error that can occur in this step. The threats are any inherent risks in
the process that can cause an inspection error, e.g., incorrect part preparation or incorrect
equipment. Any procedure that is part of the process can act as a barrier, e.g., compressor
wash or selecting an appropriate borescope tip. Moreover, preceding procedures, such as
appropriate training, can be included as barriers. If a task is performed incorrectly and the
barriers fail, an error occurs. It can cascade through the subsequent processes, causing an
incorrect serviceability decision (e.g., missing a defect), ultimately affecting part reliability
and operational safety. The development of a bowtie representation of the visual inspection
framework is not the key objective of this paper, hence only the ‘Initiation’ phase is shown
here. There is an opportunity for further research.

Figure 27. Exemplary Bowtie Diagram for the first step of the inspection process.

In this study there were cases of defects being missed. It should be noted that from an
operational perspective, a missed defect is not necessarily a safety issue. This is because the
safety consequences are also affected by defect type, size, and severity. For example, a crack
might cause a blade to fracture and result in a catastrophic engine failure, whereas the much
larger feature of an airfoil dent might merely decrease the fuel efficiency of the engine.
Furthermore, the safety outcomes are moderated by regular inspection. From a safety
perspective the fundamental objective is that any blade condition that could propagate to
a dangerous state during the next engine tour (before the next regular engine shop visit),
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should be removed from service before that tour begins. Hence, the minimum inspection
requirement is for the operator to ensure that the blade under examination does not have
any such conditions. However, this is a complex serviceability decision because of the
aforementioned interaction between defect type, size & severity. There are heuristics for
this decision, as represented in the engine manuals, but nonetheless a judgement must be
made by the operator. It is natural that operators will use the precautionary principle when
applying their agency, i.e., err on the side of rejecting a blade rather than risk the adverse
consequences to the engine, aircraft, and passenger.

Being a high reliability industry, operators are conditioned by their training and the
work culture to make safety-conservative decisions. Nonetheless, missed defects do occur.
At a first approximation it can be assumed that this is a genuine slip, lapse or mistake, rather
than perverse agency [50]. The eye tracking analysis was useful in identifying where the
people gazed relative to the defect, and this informed the development of the revised visual
inspection framework. Specifically, we noted that one cause of missed defects was related
to the search—recognition—decision error progression (see Figure 23 and related text). We
noted a variety of visual search strategies, even within one group of operators, not all of
which were effective. In other cases participants looked at a defect, even for some time,
but did not classify it as a defect in the end (serviceability decision error). We tentatively
suggest that a way to protect against missed defects might be to more deliberately talk
about visual search strategies and decision errors when training operators.

It was also apparent from the eye tracking results that borescope inspectors were all
using a similar search strategy of examining the edges (see Figure 18). This was generally
effective and efficient. However, it should be noted that the serviceability decision that
needs to be made by a borescope inspector when examining an engine on the wing is not
the same as an operator examining disassembled blades. The borescope inspector needs
to determine whether or not the engine needs to be committed to tear down, and defects
to the blade edges are the key determinants. This illustrates that it may be possible to
develop specific inspection protocols, including visual search strategies, but these would
presumably need to be contextualised to each situation.

6.3. Implications for Practitioners
6.3.1. Inspection Environment and Emerging Technologies

The insights gained from this study concerning the effect of different influence factors
on the inspection performance could be used to improve the inspection environment
and processes, and thus performance. For instance, the favoured perspective could be
considered in the engine design (location and orientation of borescope holes). Another
approach might be using the most beneficial perspective to standardise the image and
video acquisition in piece-part and borescope inspection, respectively. This could be
achieved with advanced technologies such as continuum robots [26–28]. Standardisation
increases the repeatability and is desirable for automated defect detection software using
conventional image processing [32]. It would also benefit artificial intelligence (AI) systems
with deep learning (DL) algorithms, as it would require smaller datasets to train the AI,
making the training faster and cheaper [51].

6.3.2. Training Implications

This study identified different inspection errors that occurred. Due to the different
nature thereof, different training interventions are required. We propose that eye tracking
can be used to evaluate any one inspector and identify which types of errors they are most
prone to. Subsequently, customised training can be provided to selectively address those
errors and improve their performance. For example, if someone shows a high search error
rate, then it might be valuable to provide this person with a search strategy, e.g., scanning
along the edges of the blade. As previous studies already indicated, there might be an
opportunity for eye tracking being used as a training tool by playing the gaze recording of
an inspection expert to learn by example.
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If a recognition error occurred, staff might need more practice in recognising relevant
features that require further assessment. This relates to the person’s visual sensitivity, and
slowing down their search could potentially allow them to recognise more irregularities.
We would tentatively recommend not putting them under time pressure, particularly with
regard to novices and new staff.

Decision errors could possibly be mitigated by having a training set of blades with a
variety of defects and conditions. It is important to train staff in the difference between a
defect and an acceptable condition. Currently, there is no consistent ontological description
of defect types within the industry and thus it cannot be assumed that everyone in an
organisation understands the difference between the different defect types. We also notice
a conservativeness towards part rejection leading to high false positive rates, which shows
the importance of operators knowing the criteria for part acceptance and rejection. Ulti-
mately, it is tentatively recommended to work towards a common understanding within
an organisation and the industry by applying a standardised defect taxonomy such as
the one in [25].

While some factors such as defect type or severity cannot be influenced, it was still
worthwhile to analyse them. The insights could be used by maintenance providers to tailor
their training endeavours and focus them around the critical and difficult detectable defects
and defect locations. The mentioned training implications have all the potential to improve
the inspection performance and staff competency, thereby assuring flight safety [52–54].

6.4. Limitations

This study has several limitations. Firstly, the blades were presented as piece-part
images on a computer screen rather than handing the physical part to the participant for in-
spection. Similarly, the borescope images were stills from a borescope video that inspectors
would usually see. In both cases, images were used to allow for eye tracking recording and
repeatedly measured with consistent parameters such as lighting or blade perspectives.
Thus, images provided the best solution and somewhat represent the borescope inspection,
which is already a screen-based inspection. However, we acknowledge that eye tracking
glasses might be better for piece-part inspection, as it allows for the recording of the eye
gaze while holding the actual part, and could be considered for future research. Previous
research [37] measured an inspection accuracy of 70.5% when presented with images, and
84.0% when inspecting physical parts. This translates to an improvement of 19.1% over the
images. However, the accuracy of image-based piece-part inspection in the present paper
was already 82.6%, which is higher than the 70.5% measured in [37]. Thus, the benefit of
physical handling might be much lower than 19.1%.

Secondly, there were only two borescope inspectors participating in this study. Thus, it
was not possible to include them as an individual group in the statistical analysis. The small
number was due to limited staff available at our industry partner with certified borescope
experience. Future work could analyse the borescope inspection further, allowing for a
sufficiently large research population for statistical evaluation.

Thirdly, safe flight operation is of utmost importance and thus the inspection accuracy
was chosen as the main performance measure. The influence factors might also have an
effect on the inspection time. However, the inspection time was not analysed in this study
due to the nature of eye tracking analysis being a tedious process and could be addressed
in the future when eye tracking analysis will be further automated and less laborious. Refer
to [13] for a detailed overview of the limitation of eye tracking technology.

We introduced three levels of defect severity to allow for quantification of the inspec-
tion risk using the framework provided in [31]. An alternative is to describe the severity
as a function of the defect size (similar to a PoD curve) [18]. Still another way of defining
severity is to take into account the defect tolerances such as fatigue life [15]. Furthermore,
the location of the defect plays a crucial role and is included in the engine limits of the
different tolerance zones.
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There is a risk that a memory effect might have occurred when the same blade was
presented multiple times, e.g., with different background colours or from different perspec-
tives. To minimise this effect, the stimuli were presented in random order and distributed
across a large sample set of 120 images. Nonetheless, the possibility of an occurring memory
effect cannot be entirely ruled out.

6.5. Future Work

Some future work streams were already discussed previously and are not repeated
here. This study did not seek correlation between the various influence factors. Future
research could explore those interrelationships. The findings of the present study indicate
that colour is not a major variable and therefore we tentatively recommend that if there
was a wider study looking at the associations between the variables that the colour variable
could be excluded.

There is an interest to study how inspection operations can be enhanced to improve
the inspection accuracy and get closer to the 100% mark. Future work could explore several
pathways including but not limited to (a) increasing the performance of the human operator
by providing better training (as discussed earlier); (b) improving the inspection processes
by e.g., introducing a consecutive, independent inspection or developing procedures to
counteract human factors; and (c) introducing emerging technologies such as artificial intel-
ligent software for automated defect detection or 3D scanning technologies to complement
the human operator.

The performance of the participants and the effect of the influence factors was mea-
sured based on the inspection accuracy. However, there are other ways of determining the
performance and selecting the best parameter for each influence factor. Weighted statistical
analysis could be used to reflect the importance of the defect, e.g., based on the frequency
with which the defect type occurs during visual inspection, or based on the associated risk
if the defect is missed (i.e., critical defects are weighted more than non-critical ones). This
could result in a different outcome when comparing the different groups of expertise.

A quantitative comparison of the eye tracking results of the different participants and
expertise groups could potentially be made using areas of interest (AOIs). AOIs are defined
regions of a stimulus for which eye tracking data can be specifically extracted. An example
for blade inspection is given in Figure 28. After identifying relevant areas, eye tracking
metrics such as the number of fixations or the time spent in that area can be extracted and
analysed statistically. This is a manual and laborious process and might not be applicable to
borescope inspection, where parts of the blade are covered by other blades and the image
is highly distorted.

Figure 28. Blade with areas of interest (AOIs).
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7. Conclusions

This work makes the following original contributions to the field. Firstly, the effect
of different influence factors on the inspection performance was quantitatively and quali-
tatively assessed. Those factors include the type of inspection, defect type, severity level,
blade perspective, and background colour. This complements the previously analysed
defect types in [13] and takes into account turbine blade defects such as burns, cracks, coat-
ing loss, and cooling hole blockage. Furthermore, the correlations between the influence
factors and demographic variables including expertise, education, previous experience in
inspection, work experience in the industry, and visual acuity were analysed.

Secondly, eye tracking was applied to further understand the effect of each influence
factor on the visual search process. It provided a better understanding of the visual focus
and underlying cognitive processes. The different search strategies and inspection errors
made by the operator were extracted from the heat maps and gaze plots. Eye tracking
has proved to be useful for individual performance assessment and could be beneficial for
customised training to improve the inspection performance of the operator.

A third contribution is the suggestion of a revised visual search framework, taking
into account the cognitive processes that appeared in the empirical findings. This was
applied to borescopy. It was shown that this can in principle be extended into a bowtie
framework. The principles appear to be generalisable.

There is a general understanding in the industry that borescope inspection is more
challenging than piece-part inspection. The present study is the first work in the literature
that quantitatively assessed the operators’ performance in borescope inspection and con-
firmed the hypothesis. This may contribute to a more realistic expectancy of the industry
and regulatory authorities regarding the achievable performance of human operators in
such an inspection environment. The insights gained might be applicable to other indus-
tries using borescopes as inspection aids, including automotive, oil and gas, and power
generation.

Overall, the findings contribute in several ways to our understanding of visual inspec-
tion and might be applicable to other industries with inspection processes. The insights can
be used to improve the inspection environment and to customise training endeavours. This
has the potential to increase inspection performance in both reliability and productivity.
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