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ABSTRACT
This article introduces the schedule assignment problem for public transit, which aims to assign vehicle
blocks of a planning period to buses in the eet of a transportation company. This assignment has to
satisfy several constraints, the most important of which is compatibility, meaning that certain blocks can
only be serviced by buses belonging to given types. Other constraints come from the fact that the problem
considers a long-term plan for several days or weeks, which means that daily parking and periodic
maintenance activities also have to be taken into account. We give a state-expanded multi-commodity
ow network for the above problem. This model takes parking constraints into account, and also assigns
preventive maintenance tasks to buses after serving blocks for a xed amount of time. The solutions of this
model are presented for real-life and randomly generated instances.
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Introduction

Creating a long-term schedule is one of the most important
optimization problems of a transportation company. This usually
considers a planning period of several days or weeks, with timet-
abled tasks that have to be serviced every day. When such a
schedule is created, the timetabled trips that should be carried
out by the same vehicles are organized into dierent vehicle
blocks, which form the daily vehicle schedule together. As a result,
these blocks can be considered as sequences of tasks that the
vehicles of the company have to execute on the given day. An
important feature of the problem is that the days of this planning
period are generally not completely independent of each other,
and they can be divided into dierent day-types, such as workdays
and holidays. Days that share a day-type have the same underlying
timetable of trips, and the same daily schedule can be applied to
them because of this.

Vehicle blocks will be the same for every day that share the
same day-type. However, the vehicles executing these blocks might
be dierent on two separate days. A daily vehicle schedule can be
created by solving the vehicle scheduling problem (VSP), which is
a well studied eld in the literature. This problem receives the
timetabled trips of the company as an input, and creates assigns
sequences of these trips to theoretical vehicles in the eet of the
company, creating vehicle blocks during the process.

Yet, the assignment of real vehicles to these blocks over a
longer horizon is not really considered to our knowledge, and
even less attention is given to intercity transportation. The aim
of this article is to propose a long-term assignment between the
daily vehicle blocks and the eet of a transportation company that
satises arising constraint such as parking and maintenance. Such
constraints are especially important in the case of intercity trans-
portation. While vehicles performing urban schedules usually end
their day in the same garage where they started, buses in intercity
transportation might nish their daily tasks at garages that are
dierent from their starting locations. Traveling to these places
can mean signicant extra costs for the company, and minimizing

such travel costs are crucial to their expenses. Moreover, dealing
with the theory of intercity bus transportation is especially impor-
tant nowadays: a recent review on the quality of public transporta-
tion by Ojo (2017) states that intercity bus transportation plays a
major part in commuting and long-distance movement.

While the goal of the problem is to give an assignment for
every day of the planning horizon, this should not be done
sequentially on a day-by-day basis, as the optimal solution is
most likely lost in the process. The assignment of every vehicle
and task has a global eect on other days of the horizon as well,
and all constraints for every day should be considered together
because of this.

The outline of the article is the following: rst, we present the
problems of vehicle scheduling and maintenance, and give a lit-
erature overview of these topics. Using the introduced concepts,
we dene the schedule assignment problem, which aims to assign
daily blocks to vehicles of the company over a planning period,
with respect to parking and maintenance constraints. We intro-
duce a state-expanded multi-commodity ow network for this
problem. The mathematical model of this network is solved
using a mixed-integer programming (MIP) solver, and its results
are presented both for real-life and randomly generated instances.
Our preliminary results on this topic can be seen in the extended
conference abstract Dávid (2016).

Scheduling vehicle tasks and maintenance activities

Creating a vehicle schedule for a single day is known in literature
as the VSP. The schedule given by the VSP is made up of blocks, a
block being the sequence of tasks serviced by a single vehicle for
that day. For the introduction of the VSP, we refer to our for-
malization in Dávid and Krész (2017).

The input of the problem is the set V of vehicles and T of
service trips. The features of these trips include a departure and
arrival time, a starting and ending location, and a covered dis-
tance. A ðt; t0Þ pair of trips are compatible, if the same vehicle can
service both trips; the arrival time of t has to be lower than the
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departure time of t0, and if the starting location of t0 is dierent
from the ending location of t, then the vehicle must be able to
execute a so-called deadhead trip between these two locations.

The VSP assigns the trips of the given timetable to vehicles,
satisfying the following conditions:

● Every trip in T must be executed exactly once.
● For every v 2 V, the trips assigned to v must be compatible

with each other.
● The cost of the assignment must be minimal. The solution of

the VSP has two main cost components: a cost proportional
to the distance traveled by the vehicles, and a one-time cost
given by each vehicle that is used in the solution.

The problem is illustrated in Figure 1. The ve trips of the input
are represented by the boxes on the left, and trip compatibilities
are given by the dashed lines. The right part of the gure shows a
possible solution with four vehicle blocks.

A set D of depots can also be introduced for the problem. In
this case, every v 2 V vehicle has a depot-type dðvÞ 2 D. Vehicles
having the same depot-type share the same characteristics, and
also have the same costs. If a vehicle v belonging to depot d is used
in the solution, it contributes a cost of dcðdÞ þ tcðdÞ  distðvÞ,
where dcðdÞ is the one-time daily cost, and tcðdÞ is the cost of
traveling a unit distance for a vehicle belonging to depot d, while
distðvÞ is the distance covered by vehicle v in the solution. While
the concept of depots traditionally separates vehicles that start the
planning period at the same geographical location, these groups
can easily be extended to consider vehicle characteristics (vehicle
types) as well. In this article, a depot will include vehicles that start
the planning horizon at the same geographical location, and also
have the exact same characteristics. A binary depot-compatibility
vector vt ¼ ðv1; :::; v Dj jÞ can also be introduced for every trip
t 2 T. If such a vector exists, a vehicle belonging to depot d can
only service trip t, if vtd ¼ 1.

If the problem has only one depot, it is called a single depot
vehicle scheduling problem (SDVSP), and can be solved in poly-
nomial time. A formulation for the SDVSP can be seen in Bodin
and Golden (1981). If the number of depots is at least two, we get
a multiple depot vehicle scheduling problem (MDVSP). The
MDVSP was introduced in Bodin et al. (1983) and is proven to

be NP-hard by Bertossi, Carraresi, and Gallo (1987). Several dif-
ferent models have been proposed for the representation of the
problem over the years, including but not limited to a decomposi-
tion (Saha (1970)), assignment (Orlo (1976)), and ow (Bodin
et al. (1983)) models. An overview of research on the VSP can be
found in Bunte and Kliewer (2009).

The result given by the above VSP corresponds to a set of
vehicle blocks for one day. A vehicle block gives the tasks that a
single vehicle has to execute on the given day, and also species
the type of vehicle that can execute it. However, the VSP does not
assign specic vehicles to its blocks, and because of this, the result
can be called a ‘theoretical’ schedule, as further steps have to be
taken to determine the exact vehicles in service on the current day.

When the concept of a heterogeneous vehicle eet is important, a
multi-vehicle type scheduling problem (MVTSP) can also be consid-
ered. This problem is frequently treated as an alternative version of
the MDVSP, as mentioned before. However, several papers have
studied problems with multiple vehicle types in the past years.
While Laurent and Hao (2009) study the problem as a variant of
the MDVSP, and give a powerful iterated local search method for its
solution, Ceder (2011) emphasizes the concept of multiple vehicle
types, and uses a so-called decit function (DF) approach to visualize
the number of particular vehicles at each location in the system. A
column generation-based solution framework was proposed for the
MVTSP by Guedes and Borenstein (2015).

Literature on vehicle scheduling over a planning period is really
scarce, publications usually focus on creating optimal schedule for
a single day. Papers dealing with a longer horizon usually study
rolling stock rotations, vehicle maintenance, or try to integrate
driver rostering with vehicle assignment.

Integrated vehicle assignment and driver rostering

Driver rostering aims to assign duties to the workers of the
company over a planning horizon under dierent constraints.
While this is a separate research eld in itself (see Ernst et al.
(2004) for a review), there are certain papers dealing with the
integration of vehicle assignment.

Peters, de Matta, and Boe (2007) gave a branch-and-price
framework for the problem aided by a GRASP, and presented
their results of both real and simulated data. They consider both

Figure 1. Creating vehicle blocks from trips (taken from Árgilán et al. (2014)).
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a primary and secondary job type for the drivers, and address a
eet of heterogeneous vehicles. This problem formulation is
further studied in de Matta and Peters (2009), where they present
the set covering mathematical model behind the framework.

The vehicle-crew rostering problem (VCRP) is proposed by
Mesquita et al. (2011), where they aim to give an assignment
between trips, duties, drivers, and buses. They propose a preemptive
goal programming heuristic, which decomposes the VCRP into daily
problems, and joins their outputs to create the nal roster.

Sargut, Altuntas, and Tulazoğlu (2017) consider a multi-objec-
tive crew rostering problem, and proposes a model with assign-
ment variables between vehicles and blocks. A tabu search method
is proposed for the solution of the problem, and results are pre-
sented on smaller instances.

Rolling stock rotations

Papers about rotation planning aim to optimize long-distance
railway transportation, creating cyclic plans based on a standard
week using timetabled trips. Borndörfer et al. (2015) present a
hypergraph-based MIP model for the rolling stock rotation plan-
ning problem for intercity railway. They consider railway vehicle
compositions, and also include maintenance constraints and infra-
structure capacities, and focus on the cyclic planning period of a
standard week. This model was rst studied in Borndörfer et al.
(2011, 2012). Their results are presented on use-case scenarios of
the Deutsche Bahn.

Integrating maintenance into the rolling stock circulation pro-
blem is also studied by Giacco, D’Ariano, and Pacciarelli (2014).
They consider the same timetable to be repeated every day (calling
it a cyclic timetable), with scheduled train services also given in the
input. Their proposed model inserts the maintenance activities
into this pre-determined assignment, and aims to produce a cyclic
roster where the number of days is minimal. In Giacco et al.
(2014), they describe a framework that sequentially creates rolling
stock rosters, then assign maintenance to those using the above
approach. Their results are presented on small scenarios of an
Italian railway company.

Lai, Fan, and Huang (2015) consider a MIP and a hybrid
heuristic model for the rolling stock assignment with maintenance
constraints. They examine a single day, which is further divided
into two time slots. The assignment of a longer period is done
sequentially over these time slots. They conduct optimization on a
daily basis, and only consider a look-ahead of 4 days when making
decisions. A rolling horizon is used with the above sequential
solution approach to give results for a 90-day period.

Bus transportation and maintenance

To our knowledge, the maintenance scheduling problem for buses
is only studied by Haghani and Shafahi (2002). They examine the
insertion of dierent maintenance activities into existing bus sche-
dules over several days, but the assignment of schedules to buses is
given in the input. They formulate multiple mathematical models
for the assignment of maintenance task into time slots of the pre-
determined schedules of the buses, and give test results for two
dierent sets; a smaller example, where maintenance is scheduled
for a vehicle eet of 10 buses over a 3-day planning period, and a
larger example of 181 buses and 182 days. However, they run the
scheduling simulation daily in the latter case, and solve single
problems sequentially for each day.

Our preliminary work in Dávid (2016) considered the problem
of schedule assignment with parking constraints only. A sequential

heuristic was proposed for the problem, and its results were
evaluated with the help of a MIP model.

Our contribution

Our motivation behind developing the schedule assignment pro-
blem was the introduction of a model which creates a rostering
over a longer planning period (several weeks, not just days),
where:

● Every daily block is assigned to the buses in the eet of the
company.

● Buses are also sent to garages at the end of every day.
● Regular preventive maintenance activities are carried out for

every bus.
● And all of the above constraints are optimized together,

minimizing the arising travel and operational costs.

Although all the above requirements were studied before (see
Subsections 2.1, 2.2, and 2.3), they either have not been considered
together in the same problem, or solutions for a longer period
were acquired by a sequential solution of smaller subproblems of
days. Considering a longer planning period, both approaches have
the same issue: the decisions made when fullling a requirement,
or developing a daily solution do not only have a local eect on the
given day but also aect the entire horizon.

Because of this, all constraints for every day should be consid-
ered in the same problem, otherwise the optimal, or good quality
solutions might be lost in the solution process. Our goal is to give
a model that represents the structure of the entire problem, and
optimizes the whole horizon at once, considering all arising con-
straints together.

As the model is capable of providing solutions for a period of
multiple weeks, its results can be used in a decision support system
to aid long-term planning. Dierent congurations of vehicle eet,
maintenance and garage capacities and block types can be experi-
mented with, and the resulting possible feasible solutions can help
experts of the company in making a decision about the nal
schedule.

Schedule assignment problem

As seen in Section 2, the resulting schedules of the VSP only give
the vehicle blocks for a single day. This alone, however, is not
enough, as transportation companies create their schedules in
advance for a planning period (e.g. several weeks, or even
months). The days of this planning period are usually divided
into dierent ‘day-types’ (workday, Saturday, holiday, etc.), and a
theoretical vehicle schedule is created for each of these. This
means that days belonging to the same day-type will have the
exact same vehicle blocks, and same blocks will always have the
same vehicle requirements throughout the entire planning period.
However, they will not necessarily be executed by the same vehicle
on dierent days.

The input for the schedule assignment problem is the n-day
planning period of the company, with each day i having an
assigned day-type dtðiÞ. The set V of vehicles available over the
planning period is given as well. A set D of depots is also intro-
duced for these vehicles, and the depot-type dðvÞ 2 D is deter-
mined for every v 2 V. Similarly to the VSP, vehicles belonging to
the same depot share the same costs and characteristics. Set G
represents garages where vehicles can stay for the night between
two days of the planning period.
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A theoretical vehicle schedule is also provided for every day-
type dtðiÞ, which is the set SðdtðiÞÞ of vehicle blocks that have to be
executed on days of the given type. We consider these schedules
(and also the blocks contained by them) theoretical, because they
only give the sequences of timetabled tasks that have to be exe-
cuted on days of the given type. However, they do not contain
information about the vehicle executing them, and consequently
do not include the tasks that are specic to this vehicle on the
given day. Mandatory tasks that vehicles have to execute out on a
given day include a vehicle leaving its starting garage at the
beginning of the day, parking at a garage at the end of the day,
or carrying out maintenance. Expanding the theoretical schedules
with such activities will be the task of the schedule assignment
problem.

A vehicle block j 2 SðdtðiÞÞ also has a binary depot-compat-
ibility vector vj ¼ ðv1; :::; v Dj jÞ. A vehicle from depot d can service

block j if and only if vjd ¼ 1. In some cases, it may be possible for a
vehicle to service multiple blocks on the same day. For this, we
have to dene block-compatibility: two o; p 2 SðdtðiÞÞ blocks of
the same day i are compatible with regard to depot d, if both can
be serviced by vehicles of the depot (meaning both vod ¼ 1 and
vpd ¼ 1), and there is enough time for the vehicle between the
ending time of o and the starting time of p to travel from the
arrival location of o to the departure location of p with a deadhead
trip.

Contrary to the solution of the VSP, the vehicle blocks in the
input daily schedules do not include the starting and ending
garages, as these will be given by the assignment. Papers dealing
with the scheduling of buses usually apply a constraint where
vehicles have to return to their starting garage at the end of
each day. This may be a viable strategy for local transportation
problems, where vehicles only travel inside a city to reach their
ending destination. However, vehicles in intercity transportation
do not necessarily end their blocks close to their starting garage,
and returning there might be expensive. Instead of this, a garage
g 2 G also has to be assigned to each vehicle at the end of each
day, where it will stay for the night and begin the next day of
the planning period. Arising travel costs should also be consid-
ered when choosing this garage, as the vehicle has to travel here
from its location at the end of the day, and then also head out
to the starting location of its vehicle block on the next day. We
also consider a vehicle specic requirement during the solution
of the problem, which is the assignment of mandatory main-
tenance activities to vehicles. Maintenance activities can usually
be of two types: daily inspections are smaller tasks that can be
included as tasks in the daily vehicle blocks, or larger manda-
tory inspections (usually called preventive or periodic inspec-
tion) that require an entire day. These large inspections usually
have to be executed after a vehicle has been working for a pre-
specied time, or covered a set distance while servicing blocks
since its last inspection. In our case, we consider the number of
days spent in service. Let integer parameter s give the maximum
number of days that a vehicle can spend servicing blocks before
it has to be sent on such an inspection. A vehicle can undertake
an inspection activity anytime at a maintenance location
m 2 M, but vehicles that already reached their maximum run-
time of s days have only two choices: either stay at their current
garage, or undertake a periodic inspection at one of the main-
tenance locations. Similarly to choosing the garages, arising
travel costs to and from maintenance locations should also be
considered.

The aim of the problem is to assign the blocks to the vehicles of
the company over the planning period such that each block is

executed exactly once, every vehicle stays at a garage at the end of
each day, a vehicle services blocks on at most s days between two
inspections, and the arising costs are minimal. A vehicle v from
depot d contributes dcðdÞ workvi þ tcðdÞ  distðvÞ to the cost of
the problem, where dcðdÞ and tcðdÞ are the one-time daily and
unit-distance costs of a vehicle from depot d, respectively, distðvÞ
is the distance traveled by vehicle v during the planning period
(either by servicing blocks or traveling to/from garages). The
binary vector workv ¼ ðwork1; :::;worknÞ denotes whether vehicle
v was in service on day i of the planning period, or not.

Mathematical model

This section introduces a state expanded multi-commodity net-
work ow model for the schedule assignment problem. The nodes
of this network will represent the dierent tasks that can be carried
out by the vehicles (servicing a block, staying at a garage, or having
a mechanical inspection), while the edges give the transitions
between them.

Let us consider a planning period of n days, and let integer
parameter s denote the maximum number of days that a vehicle
can spend servicing blocks between two inspections. Whenever a
node is said to have inspection state h, it can only be carried out by
vehicles that have serviced exactly h blocks since their last
inspection.

Let B be the node set of vehicle blocks given by the daily
schedules of the planning period, hypernode Bi;j  B representing
the vehicle block j on day i, where 1  i  n, 1  j  k, and k ¼
SðdtðiÞÞj j is the number or blocks on day i. This hypernode Bi;j ¼
ðb0i;j; b1i;j; :::; bs1

i;j Þ consists of nodes bhi;j representing all possible
inspection states of the vehicle executing the given block, h giving
the inspection state of the node.

Let G be the set of garage nodes for the l garages of the input.
Similarly to vehicle blocks, garages are also represented by hyper-
nodes Gi;j ¼ ðg0i;j; g1i;j; :::; gsi;jÞ, where a node ghi;j represents garage j
on day i for vehicles in state h (0  i  n, 1  j  l). The special
hypernode G0;j denotes the garage j at the beginning of the plan-
ning period. Every garage i also has a capacity kgðiÞ, which gives
the number of vehicles that can simultaneously stay at that garage.

Let M be the set of maintenance nodes, representing geogra-
phical locations where the inspections of the vehicles can be
carried out, node mi;j 2 M standing for location j on day i.
Maintenance nodes have a capacity kgðiÞ, which gives the number
of vehicles that can be serviced there in a single day. It might be
possible, that the same geographical location contains both a
garage and a maintenance facility, but garage nodes and mainte-
nance nodes are handled as separate entities even in this case: such
a location will contribute two nodes (g 2 G and m 2 M) to the
model of the problem, and both will have separate kgðgÞ and
kmðmÞ capacities.

Let D be the set of d depots representing the vehicles of the
company. Each depot i is dened by two nodes: di;0 represents
vehicles of the depot at the beginning of the planning period and
di;1 at the end of the planning period. Vehicles belonging to the same
depot are of the same type, and share the same costs and character-
istics, but they will not necessarily share their starting locations at the
beginning of the planning period. Depots also have a capacity kdðiÞ
that gives the number of vehicles available of that type.

The edges of the network can be given using the above nodes.
These mostly represent the possible traveling activities of vehicles
throughout the planning period, either heading to block nodes to
service them, to garage nodes where they stay for the night, or to

TRANSPORTATION LETTERS 69



maintenance nodes for a mechanical inspection. Each depot will
have its own set of edges. The starting state of the dierent vehicle
types and their location at the beginning of the planning period is
represented by depot starting edges:

Eds ¼ fðdi;0; g00;jÞj1  i  d, j can be the starting garage of a
vehicle from depot ig.

Vehicles of each depot ending the planning period in one of the
possible garages are represented by depot ending edges:

Ede ¼ fðghn;i; dj;1Þj1  i  l; 1  j  d; 0  h  sg:

Vehicles leaving their garages to execute a block at the begin-
ning of a day are represented by block starting edges:

Ebs ¼ fðghi1;j; b
h
i;oÞj1  i  n; 1  j  l; 1  o  k; 0  h  s 1g:

Note that garage nodes in inspection state s cannot send vehi-
cles to execute a block, as they have to carry out a mechanical
inspection activity rst.

Vehicles returning to garages at the end of the day from a block
are represented by block ending edges:

Ebe ¼ fðbhi;o; ghþ1
i;j Þj1  i  n; 1  j  l; 1  o  k; 0  h  s 1g:

When a vehicle travels through one of these block ending
edges, its state (denoting the number of days spent in service) is
also increased by one; this is represented by the vehicle moving to
another state layer of the network (in the case of the above edges,
from layer h to layer hþ 1). Also note that after servicing a vehicle
block, the inspection state of the destination garage node has to be
at least 1.

As mentioned before, it may be allowed in some cases for a
vehicle to service multiple blocks on the same day. For every
block-compatible ðo; pÞ pair of blocks, we can introduce block
connection edges:

Ebc ¼ fðbhi;o; bhi;pÞj1  i  n; 1  o; p  k; 0  h  s 1g:

These edges will provide the possibility for a vehicle to service
multiple compatible blocks on the same day instead of heading
back to a garage at the end of its rst block. Note, that the state h
of the vehicle does not change between executing two blocks, as it
is still in service on the given day i. The change of its state will be
managed by the block ending edge that is carried out after its last
block.

Vehicles leaving their garages for mechanical inspections are
represented by inspection starting edges:

Eis ¼ fðghi;j;mi;oÞj1  i  n; 1  j  l; 1  o  Mj j; 1  h  sg:

It can be noted again that vehicles in garages with inspection
state 0 have no reason to execute a mechanical inspection, and
therefore these edges are not added to the network.

Vehicles returning to garages after a mechanical inspection are
represented by inspection ending edges:

Eie ¼ fðmi;o; g
0
i;jÞj1  i  n; 1  j  l; 1  o  kg:

A vehicle always arrives at a garage node with an inspection
state 0 after a mechanical inspection.

Vehicles staying at a garage for a given day are represented by
garage edges:

Eg ¼ fðghi1;j; g
h
i;jÞj1  i  n; 1  j  l; 1  h  sg:

The following circulation edges are also added between all
depot ending and starting nodes.

Ef ¼ fðdi;1; di;0Þj1  i  dg:
Edges in all the above sets represent dierent deadheading

activities of the vehicles, with the exception of sets Eds;Ede; Eg ;Ef .
An illustration of the network can be seen in Figure 2. The

gure presents a 3-day planning horizon with a single depot, 2
garages, 2 daily vehicle blocks, and 1 maintenance location. The
two blocks on the rst day are block-compatible (given by edges
ðb00;1; b00;2Þ and ðb10;1; b10;2Þ). The parameter s for maximal days in
service before inspection is set to 2, which can be seen on the three
state layers of the network (s ¼ 0; 1; 2, represented by the dashed
rectangles in the gure).

Using the node set N ¼ B[D[G[Mf g and edge set E ¼
Eds [ Ede [ Ebs [ Ebe [ Ebc [ Eis [ Eie [ Eg [ E f

 
the multi-com-

modity network ðN; EÞ can be dened. This network will have d
separate commodities, one for every depot. The commodities of
this network will be denoted by c 2 D. For each edge e of this
network, we give an integer vector xe. This vector will have one
component for every commodity c, which will be denoted by xce.
The value xce represents if a vehicle from depot c can be assigned
the traveling activity connected to edge e (servicing a block, under-
taking maintenance, heading to a garage, staying at a garage).
Edges Eds, Ede, Ef are added for the respective commodity of the
depot they represent, while edges in Ebs and Ebe are created for
every depot d that is able to execute the corresponding block.
Other edges are available for all commodities. Notations δþðnÞ
and δðnÞ are used to denote the set of arcs leaving node n and
entering node n, respectively. Based on the above data, a mathe-
matical model can be given for the problem, and the list of the
most important notations regarding this can be seen in the
Appendix. The model is formalized the following way:

min
X

c2D

X

e2E
trcex

c
e

s.t.
X

c2D

X

e2δðBi;jÞ
xce ¼ 1; f"ði; jÞ : 1  i  n; 1  j  SðdtðiÞÞg (1)

X

e2δþðdc;0Þ
xce  kdðcÞ;"c 2 D (2)

X

c2D

X

e2δðGi;jÞ
xce  kgðjÞ; f"ði; jÞ : 1  i  n; 1  j  lg (3)

X

c2D

X

e:ði;mÞ2Eis
xce  kmðjÞ;"m 2 M (4)

X

e2δðnÞ
xce 

X

e2δþðnÞ
xce ¼ 0;"n 2 N; c 2 D (5)

xce 2 0; 1f g;"e 2 Eds [ Ede [ Ebs [ Ebe [ Ebc
 

(6)

xce  0 integer;"e 2 Eg [ Eis [ Eie [ E f
 

(7)

Constraint (1) determines that a block has to be serviced by
exactly one vehicle. Constraint (2) gives the vehicle limits for
every depot at the beginning of planning period, while (3) denes
capacities for every garage at the end of every day. Constraint (4)
sets the daily limits of the maintenance nodes, the possible incom-
ing vehicles for a maintenance node m 2 M on day i being
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represented by edges Eisi;m  Eis. Flow conservation for every node
of the network is given by (5), while constraints (6) and (7)
provide the binary and integrality constraints for all the variables.

The objective of the model is to minimize the arising vehicle and
travel costs: the cost of a vehicle from commodity c to service the
travel activity denoted by edge e is given by trce, the travel cost of a
vehicle from depot c to cover the distance denoted by edge e. If the
edge is a travel activity during which the vehicle leaves its current
garage, then the cost of the edge is given by trce þ dcc instead, there
dcc is the one-time daily cost of a vehicle from depot c.

Test results

The model was tested both on real-life and randomly generated
input. Important characteristics of both input types, and the

solution processes are presented in this section, and the achieved
results are also analyzed.

The mathematical model was solved using the GurobiMIP solver,
and ran on a PC with and Intel Core i7 3.30 GHz processor using 32
GBRAM. The time limit for the solver was set to 1 day (86 400 s), and
the solver optimality gap tolerance was set to 0.00%. This way, the
solution process could terminate only on two conditions: either by
nding the optimal solution, or by reaching the designated time limit.

Real-life instances

The real input was part of a ‘what-if’ scenario, trying to coordinate
the transportation of three regions in Hungary. The companies in
these regions organized their transportation semi-independently
before. The transportation companies provided input for a 3-week
long planning period, which consisted of vehicle blocks belonging
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Figure 2. Illustration of the underlying model.
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to 7 dierent day-types. The important features of the input data
can be seen in Table 1.

Vehicles of the input were separated into three dierent depots.
Vehicles belonging to depot 3 were able to execute any of the
vehicle blocks, while vehicles in depot 1 could execute blocks
belonging to either depot 1 or 2. Vehicle of depot 1 could not
execute blocks belonging to other depots. Blocks of the daily
schedules were not block-compatible, meaning that a vehicle
could only service a single block on any given day. Using the
input data above, we created two main groups of test instances:
one with all three vehicle types, and another with depots 2 and 3
merged into a single type. We ran tests for the entire planning
period of 3 weeks and smaller intervals of 1 and 2 weeks also.
Values between 2 and 6 were all used as the parameter s of
maximum working days for every instance type. Dierent combi-
nations of the above parameters result in a total number of 30
dierent instances for the real-life input. The model was solved
using the constraints introduced at the beginning of the section.

The results of the mathematical model on the above real-life
instances can be seen in Table 2. Each row of the table presents
solution data for a single independent test run; it gives the number
of depots used for the problem, the length of the planning period
(in weeks), and the value of parameter s (the number of maximum
days that a vehicle can spend in service before going to mainte-
nance). It also gives the size (rows and columns) of the resulting
mathematical model (denoting the number of constraints and
variables), and shows the solution time of the problem (in sec-
onds), with the optimality gap of the achieved result.

It can be seen from the table that solutions of a 1-week period
are easily reachable, and in most cases, optimal results can also be
acquired for a longer planning period of 2 weeks. Almost optimal
solutions are also obtainable for the large instances of the 3-week-
long period. This is especially important when considering the
practical application of the model, as the results are promising
regarding both the runtimes and the qualities of the solutions. The
easy modication of the parameter s can also help in testing
dierent scenarios for making future decisions.

Random instances

Our random input data was generated in two steps. First, random
VSP inputs were created using the method in Dávid and Krész
(2013). These instances had 100, 500, or 1000 trips, and used
either 2 or 3 depots. A total of 60 instances were generated this
way, 10 for every depot-trip combination. Solving the VSP for all
these instances resulted in daily vehicle schedules, which were then
used as an input for the schedule assignment problem.

Each vehicle schedule was used as the input of a planning
period with a single day-type, and planning periods of 1, 2, and
3 weeks were all considered for every schedule. Values between 2
and 6 were all used as the parameter s of maximum working days
for every instance type. Considering all combinations of the above
parameters, we achieved optimal solutions for a total of 900 test
runs. Important features of these input instances are given by
Table 3.

The aggregated results of the instances presented above can be
seen in Table 4. Each row of the table provides optimal results for
three dierent instance sets, every set representing one of three
problem sizes (100, 500, or 1000 trips). The problem size of a set is
given by its column header, while additional parameters of these
sets are presented in the header of the row: the number of depots,
length of the planning period (in weeks), and the value of para-
meter s for maximum working days. Each set presents the aggre-
gated results of 10 dierent test instances, giving average model
size and running time of the optimal solutions.

Our preliminary test runs for the 900 instances in Table 4 were
all executed with the same constraints as mentioned before at the
beginning of Section 5. We managed to solve 896 instances to
optimality this way within the given time. The remaining four
instances all belonged to the set of three depot problems for a 3-
week planning period with the parameter s ¼ 6 for maximum
working days. The optimality gaps for their results we achieved
within the time limit were 0.02, 0.03, 0.003, 0.02%, respectively. As
these solutions are near-optimal and we received optimal results
for all other test runs, we decided to solve these four instances also
to optimality without the limit on running time; thus, not needing
to include data for optimality gaps in the table. Because of this, the
table presents an average running time that is greater than the 1-
day limit for the last instance set. The above results are also
promising, as solutions can easily be obtained for random input
of dierent sizes and parameter combinations. The size of the
largest problem sets presented in the table (with the average of
99 daily blocks) can be equivalent to the networks of some regions;

Table 1. Real input characteristics.

Vehicles 238
Garages 109
Maintenance locations 6
Average daily blocks 131

Table 2. Results for the real-life instances.

Depots Weeks s Columns Rows Time (s) Gap (%)

2 1 2 397 694 8 422 1 038 0.00
3 591 051 11 026 114 0.00
4 784 408 13 630 86 0.00
5 977 765 16 234 84 0.00
6 1 171 122 18 838 114 0.00

2 2 799 652 16 232 5 520 0.00
3 1 188 717 21 234 4 663 0.00
4 1 577 782 26 236 2 207 0.00
5 1 966 847 31 238 15 358 0.05
6 2 355 912 36 240 29 345 0.00

3 2 1 201 610 24 042 67 195 0.00
3 1 786 383 31 442 48 705 0.00
4 2 371 156 38 842 51 261 0.04
5 2 955 929 46 242 77 546 0.05
6 3 540 702 53 642 56 165 0.03

3 1 2 544 730 11 702 585 0.00
3 808 860 15 487 128 0.00
4 1 072 990 19 272 40 0.00
5 1 337 120 23 057 39 0.00
6 1 601 250 26 842 57 0.00

2 2 1 094 569 22 467 3 395 0.00
3 1 625 712 29 725 19 431 0.00
4 2 156 855 36 983 25 304 0.04
5 2 687 998 44 241 6 840 0.00
6 3 219 141 51 499 21 640 0.00

3 2 1 644 408 33 232 16 323 0.01
3 2 442 564 43 963 22 957 0.04
4 3 240 720 54 694 81 941 0.23
5 4 038 876 65 425 79 146 0.37
6 4 837 032 76 156 52 454 0.78

Table 3. Random input characteristics.

Trips
Average
vehicles Garages

Maintenance
locations Average daily blocks

100 51 30 2 17
500 219 40 3 55
1000 433 60 4 99
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thus, the given model and solutions process can also be applied to
real-life instances with similar characteristics.

As it can be seen both from the real-life and randomized test
results, there are three main factors inuencing problem size and
running time. One of these is the value of the parameter s. As the
state of the vehicles has to be tracked throughout the network, a
separate layer is created for each such state. This basically means
the duplication of all garage and block nodes, and these result in
more constraints and variables to the problem (capacity con-
straints and ow conservation) as well as more variables.

Using a heterogeneous eet with multiple depots also results in
an increased number of constraints. Each depot has its own
commodity in the network, and similarly to state layers, both
ow conservation and node capacities have to be checked sepa-
rately for every depot. Moreover, there are also constraints linking
these dierent commodities; constraints ensuring that each block
is serviced exactly once

Naturally, the length of the planning period also inuences the
size of the model. As the schedules of a single week are usually
more or less similar in structure, the number of decision variables
and constraints is expected to grow in a somewhat linear propor-
tion to the number of weeks considered by the problem. This
eect can be observed on the sizes of both the real-life and the
randomly generated problems.

The combination of the above three factors (parameter s,
number of depots and size of the planning period) contribute
together to the problem size and solution running time. It can
be seen from both the real-life and random test results that
instances with a 1-week planning period are easily solvable in a
short time regardless of number of blocks, depots, or s. This is
also true in the case of most test instances with a 2-week
planning period, slower running times only occurred for some
problems with a higher (four or greater) value of s. The only

instance types that constantly resulted in slow running times are
the ones with a 3-week planning period, and a value s  4. Yet,
even solutions for these instances achieved within the given
time limit of 1-day were optimal or near-optimal.

Several types of optimization problems exist for public bus
transportation, and the most important characteristics of their
results vary depending on the area of their application. For
instance, the vehicle rescheduling problem, which addresses
unforeseen events occurring during the execution of a pre-planned
schedule, has to be solved almost instantly, as the solutions are
needed as soon as possible to restore the order of transportation.
Here, the running time is more important than the quality of the
results. On the other hand, solving the VSP for a single day should
yield better quality solutions, while also not taking exceptionally
long, especially when the results are only used as suggestions in a
decision support system, where experts of the company want to
experiment with several dierent parameter congurations for the
same problem. In both of these cases, however, optimality is only a
secondary requirement, as the results are only used by the experts
of a company as suggestions in their decision-making process.

As opposed to the above problem types, the long running
times for the larger instances of schedule assignment are still
acceptable when considering its practical application. As these
instances have to be solved only once to produce results for a
several-week-long horizon, companies can aord even multiple
hours of running time when solving such complex problems
over a longer planning period. If these solutions are near opti-
mal, and they can be applied in practice, then even the max-
imum running time of one day that we set for the solver is
acceptable for a single execution.

The model yielded good solutions for real-life data that con-
nected the transportation of three dierent regions, and gave
results for a signicant planning period of 3 weeks. The largest

Table 4. Aggregated results for 900 random test runs.

100 trips 500 trips 1000 trips

Depots Weeks s Columns Rows Time (s) Columns Rows Time (s) Columns Rows Time (s)

2 1 2 15 787 1 135 0.79 67 641 2 423 2.37 177 985 4 044 7.35
3 23 335 1 475 1.73 101 001 3 104 4.48 266 077 5 169 8.88
4 30 883 1 814 1.35 134 361 3 785 3.99 354 169 6 293 8.98
5 38 431 2 153 1.52 167 721 4 466 3.98 442 261 7 418 8.99
6 45 979 2 493 2.04 201 081 5 148 3.12 530 353 8 543 10.28

2 2 31 453 2 177 4.22 135 121 4 722 11.50 355 729 7 904 27.50
3 46 519 2 826 7.84 201 801 6 044 42.04 531 853 10 093 329.77
4 61 585 3 474 15.51 268 481 7 366 144.63 707 977 12 282 462.19
5 76 651 4 123 39.01 335 161 8 689 268.54 884 101 14 472 683.01
6 91 717 4 772 92.19 401 841 10 011 206.11 1 060 225 16 661 372.70

3 2 47 119 3 219 7.48 202 601 7 020 31.31 533 473 11 763 127.11
3 69 703 4 177 47.62 304 281 9 026 297.94 797 629 15 018 816.75
4 92 287 5 153 225.45 402 601 10 948 10 115.95 1 059 321 18 273 25 449.56
5 114 871 6 093 6 626.98 502 601 12 911 4 752.78 1 333 186 21 621 30 154.33
6 137 455 7 051 6 682.53 602 601 14 875 6 374.63 1 598 791 24 889 51 144.84

3 1 2 23 431 1 208 0.76 90 713 2 521 2.97 235 609 4 259 10.51
3 34 801 1 566 3.00 135 609 3 227 6.41 352 513 5 438 27.78
4 46 171 1 923 2.94 180 505 3 932 9.76 469 417 6 617 32.84
5 57 541 2 281 2.70 225 401 4 638 10.92 586 321 7 795 40.54
6 68 911 2 638 3.48 270 297 5 344 6.01 703 225 8 974 13.11

2 2 46 741 2 323 3.62 181 265 4 918 11.48 470 977 8 335 52.82
3 69 451 3 008 18.60 271 017 6 289 51.55 704 725 10 632 527.44
4 92 161 3 693 34.05 360 769 7 660 363.30 938 473 12 929 2 091.90
5 114 871 4 378 61.79 450 521 9 032 533.76 1 172 221 15 226 2 843.32
6 137 581 5 063 116.72 540 273 10 403 1 015.38 1 405 969 17 524 2 015.59

3 2 70 051 3 437 5.88 271 817 7 314 39.74 706 345 12 410 125.09
3 104 101 4 450 50.30 406 425 9 352 499.80 1 056 937 15 826 1 644.36
4 138 151 5 463 619.36 541 033 11 389 2 531.34 1 402 041 19 197 41 684.79
5 172 201 6 476 9 622.47 675 641 13 426 7 038.57 1 751 261 22 605 51 468.83
6 206 251 7 488 3 401.35 810 249 15 463 25 688.33 2 100 481 26 014 97 058.60a

aThe running time limit was relaxed for four test runs of this instance set in order to achieve optimal solutions in all 900 test cases. See Subsection 5.2 for details.
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random instance sets are also comparable with similarly sized real-
life scenarios, meaning that the model can be applied generally to
such problems.

Conclusions

This article introduces the schedule assignment problem for inter-
city bus transportation over a planning period, where the daily
vehicle blocks are assigned to buses of a transportation company.
Important requirements like daily parking and preventive main-
tenance have to be taken into account due to the long-term nature
of the task. To our knowledge, this exact resulting problem has not
been considered before in the literature of bus transportation.

We present a mathematical model for the problem using a
state-expanded multi-commodity network, which is then solved
with the Gurobi MIP solver. Both real-life and random instances
are used as an input, and the results are promising for dierent
number of vehicle types and varying parameters for the time limit
of the preventive maintenance.

Parking and maintenance constraints considered for the model are
only basic requirements of such an assignment, and the model can be
further extended to incorporate more sophisticated needs. One such
example is the consideration ‘vehicle history’ (dierent beginning
states) at the beginning of the planning period, which could easily be
achieved by modifying the denition of vehicle node in the model.
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Appendix: List of Notations Used in the Mathematical
Model

B Set of vehicle blocks
D Set of depots
G Set of garages
M Set of maintenance locations
N Set of all nodes
Ebs Set of block starting edges
Ebe Set of block ending edges
Eg Set of garage waiting edges
Eis Set of inspection starting edges
di;0 The node representing vehicles of depot i at the beginning of the

planning period
kdðiÞ Capacity of depot i
kgðiÞ Capacity of garage i
kmðiÞ Capacity of maintenance location i
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