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Abstract—Here, we develop a novel robust type2 fuzzy con-
troller (FC). It is based on a new type-2 membership function
called the type2 Distending Function (T2DF). It can model the
uncertainties associated with the measurement noise. The design
process does not include the implication and the type reduction
steps, hence it is computationally efficient. Also, aggregation is
carried out using fuzzy arithmetic operations and T2DF is closed
under linear combination. Because of these unique features, the
proposed type2 FC performs better even in the presence of
large measurement noise. The efficiency of the proposed FC is
demonstrated using the altitude control of a quadcopter with a
noisy feedback signal.

Index Terms—Type2 fuzzy sets, type2 distending function,
measurement noise, robust control.

I. INTRODUCTION

Fuzzy theory exploits uncertainty and imprecise informa-
tion obtained from the real world information in order to
derive robust, tractable and low cost solutions. It is achieved
by defining a type-1 membership function (MF) which has
crisp grade values. However, sometimes it happens that these
grade values become uncertain. The main reasons for these
uncertainties are: 1) The measuring device is imprecise; 2)
Sensor noise adds to the measured signal; 3) The actuators
have nonlinear characteristics which are not known; 4) The
experts have different opinions about the consequent values.
Type2 fuzzy sets are defined to handle such uncertainties [1],
and they have numerous proven practical applications [2–5].
The performance of the fuzzy logic system (FLS) depends on
the measured data. If noise enters the measurement system
then the data values become uncertain. It results in perfor-
mance degradation or an unstable response by the FLS. A lot
of research has been done to minimize the effect of noise and
design robust FLSs. It has been shown that type2 fuzzy sets
(T2FS) are better at handling the uncertainties introduced by
noise than to type-1 fuzzy sets [6–8]. In one key article [9],
a new type2 MF was introduced to minimize the uncertainty
due to noise. Motivated by this approach, we present a novel
type2 MF to model the uncertainty and we design a robust
system against measurement noise.
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Designing a control system using a T2FS consists of five steps;
1) Fuzzification; 2) Rules strength calculation; 3) Calculation
of the rules output using implication and aggregation; 4) Type-
reduction; 5) Defuzzification. Type reduction is carried out
using the Karnik Mendel (KM) algorithm [10]. This design
process has however several drawbacks:

1) It is computationally expensive due to the implication,
aggregation and the type reduction steps.

2) Various types of T2MF are used to model the uncer-
tainty. There is no systematic connection between the
choice of T2MF and the type of uncertainty.

3) The number of parameters associated with a T2MF is
usually large. Therefore parameter optimization is not
an easy task.

In this paper, we will define a new type2 MF called the Dis-
tending Function (DF) to handle the uncertainty introduced by
measurement noise. Based on this type2 MF, a new technique
for designing a type2 fuzzy controller will be presented. The
unique features of our approach are:

1) The design technique does not include implication and
type reduction steps. Aggregation is performed using
fuzzy arithmetic operations. Hence it is computationally
inexpensive.

2) The DF has a few parameters which can handle different
types of uncertainties.

3) All the parameters of the DF except one (associated
with the uncertainty) are kept fixed. This makes the
optimization process easier and faster.

Because of the above advantages, the proposed technique
implements a robust type2 fuzzy controller which can handle
the uncertainties associated with measurement noise.
The rest of the paper is organized as follows. In Section II, we
present the type2 DF and uncertainty representation. In Section
III, we outline the aggregation of the type2 DF. In Section
IV, we describe the proposed fuzzy controller. In Section V,
we present the benchmark system, simulation results and a
discussion. Lastly, in Section V, we draw some conclusions
and make a suggestion for future research.



II. UNCERTAINTY REPRESENTATIONS USING THE TYPE2
DISTENDING FUNCTION (T2DF)

The Distending Function (DF) is based on the Dombi
operator and it belongs to the parametric family of membership
functions [11]. The RHS and LHS of the DF (shown in Fig.
1) are given by
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These two sides can be combined using the Dombi conjunctive
operator to form a symmetric DF (shown in Fig. 2). The
symmetric DF is defined as
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It has four parameters, namely 1) The threshold (ν ∈ (0, 1)); 2)
Tolerance (ε > 0); 3) Sharpness (λ ∈ (1,+∞)); 4) Coordinate
of the peak value (c ∈ R). The DF can be translated to the
right and left along the x-axis using the c parameter. At x = c,
the value of DF is 1. The sharpness λ controls the steepness
of the DF. The threshold ν and the tolerance ε have logical
meanings and they control the width of the DF. If x = ±ε,
then ∆(x) = ν.
Any type of uncertainty present in the system can be modeled
using the DF. Uncertainty may be associated with each of
the four parameters of the DF and it results in the generation
of different types of T2DF. In our previous study [12], the
uncertainty in the c parameter leading to development of the
uncertain peak value DF was discussed. Here, we will deal
with the measurement noise and it can be modeled as an
uncertainty in the boundary values of the DF. It can be realized
by adding uncertainty in the ε parameter. It results in the
generation of a set of various DFs. Among these DFs, the one
with the highest grade value is called the upper membership
function (UMF) and the one with the lowest grade values is
called the lower membership function (LMF). The LMF, UMF
and all the DFs in between can be combined to form a type2
DF (T2DF). Consider the LHS and RHS of the DF, as shown in
Fig. 1. The uncertainty associated with the membership grade
can be modeled by adding the uncertainty to the ε value. It
will generate the LHS and RHS of T2DF Fig. 3. Applying
the Dombi conjunctive operator will result in a T2DF with
uncertain boundary values, as shown in Fig. 4. Next, we will
show that the T2DF is closed under linear combination i.e.
a linear combination of T2DFs is also a T2DF. We will use
fuzzy arithmetic operations to prove this.

III. AGGREGATION OF T2DFS

Fuzzy quantities can be aggregated using fuzzy arithmetic
operations [1, 13]. Let ∆1

2,∆
2
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n
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Fig. 1: LHS and RHS of DF

Fig. 2: Distending Function (here c=0)

Fig. 3: LHS and RHS of uncertain boundary values T2DF

Fig. 4: Uncertain boundary values T2DF



tolerance values ε1, ε2, . . . , εn, let ς1, ς2, . . . , ςn be the uncer-
tainties in the tolerance values and c1, c2, . . . , cn be the peak
value coordinates. We define

εa =

n∑
j=1

vjεj , εa =

n∑
j=1

vjεj , ca =

n∑
j=1

vjcj ,

ca =
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j=1
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n∑
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vjςj , (4)

where cj , cj are the peak value coordinates, εj , εj are the
tolerance values and vj , vj are the weights corresponding to
the UMF and LMF of the jth T2DF, respectively. These n
T2DFs can be aggregated using arithmetic operations and it
results in
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Here ∆a(x) and ∆
a
(x) are the LMF and the UMF of

the aggregated membership function. As ∆a(x) and ∆
a
(x)

are DFs, this proves that the T2DF is closed under linear
combination (a linear combination of T2DFs is also a T2DF).

IV. ROBUST FUZZY CONTROLLER DESIGN

The design presented here is based on our previous articles
[11, 12]. A multi-input multi-output system (MIMO) having
n inputs and m output is described by the following expert
rules:

If x1 is F j1 and ... and xn is F jn
then y1 is Oj1 ; ... ; ym is Ojm , (7)

where j = 1, ..., l are the number of fuzzy rules and
x1, x2, ..., xn are the input linguistic variables which take the
values from the input fuzzy sets F1, F2, ..., Fn. The output
linguistic variables y1, y2, ..., ym take the values from the
output fuzzy sets O1, O2, ..., Om. If the output variables are
independent of each other, then each rule given by Eq. (7) can
be written as m multi input single output (MISO) rules of the
form:

If x1 is F j1 and ... and xn is F jn then y is Oj . (8)

If any source of uncertainty is present in the system, then
it can be handled (modeled and minimized) via the T2DF.
The shape of each type2 DF will depend on the magnitude
of the uncertainty associated with the tolerance parameter ε
of the DF. The effect of this uncertainty on the system output
is minimized by defining a proper inference mechanism. This
inference mechanism will utilize the T2DFs to generate a crisp
output by mapping the input-output space. The part of the
fuzzy rule between If and then is called the antecedent and
the remaining part after then is called the consequent. We will
consider these two parts separately in our design.

1) The antecedent: The antecedent of the jth fuzzy rule is

`(∆1(x1)j ,∆2(x2)j , . . . ,∆n(xn)j) = v̂j(x). (9)

This ` represents a fuzzy logical expression comprising of
conjunction, disjunction and negation operators. The rule
applicability interval v̂j(x) contains two values. These values
corresponds to the lower and upper membership grade values
of the T2DF. We can use a general parametric operator [14]
to evaluate Eq. (9). It has the form
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This operator covers the Hamacher, Dombi, Einstein, product,
min/max and the drastic operators. For specific input values
x∗, Eq. (9) can be evaluated and this results in a set of two
numeric values v̂j(x

∗) and v̂j(x∗), representing an interval
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where v̂j(x
∗) and v̂i(x

∗) are the respective lower strength
and upper strength of the jth rule. Also, ∆n and ∆n are
the LMF and the UMF of the nth T2DF, respectively. The
rule strengths are normalized to obtain the firing strengths
(vj(x∗) , vj(x

∗)). The upper firing strength (UFS) and lower
firing strength (LFS) of the jth rule are given by

vj(x
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v̂j(x
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i=1 v̂j(x
∗)
, where

l∑
j=1

vi(x
∗) = 1. (11)

vj(x
∗) =

v̂j(x
∗)∑l

i=1 v̂j(x
∗)
, where

l∑
j=1
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∗) = 1. (12)

2) The consequent: The consequent in each rule is repre-
sented using a single T2DF. Multiply the LMF and UMF of
this T2DF by LFS and UFS of the rule. This will generate
the fuzzy output of the rule (it is a T2DF). Then aggregate
the output of all the rules to get the fuzzy output of the rule-
based system. This aggregated output (∆a(x)) will also be a
T2DF. The UMF and the LMF of the ∆a(x) are given by

∆a(x) =

l∑
j=1

vi(x
∗)∆jo(x). (13)

∆a(x) =

l∑
j=1

vi(x
∗)∆jo(x), (14)

where ∆jo(x) and ∆jo(x) are the LMF and the UMF of the
jth consequent T2DF. The UMF (∆a(x)) and LMF (∆a(x))



Algorithm 1: Robust fuzzy control using T2DF
Step 1: Construct the T2DFs for the outputs and
normalized inputs.
Step 2: Normalize the input data and fuzzify using the
T2DFs.
Step 3: Calculate the UFS and LFS of each rule using Eq.
(11) and Eq. (12).
Step 4: Construct the UMF and LMF of the aggregated
output T2DF using Eq. (13) and Eq. (14).
Step 5: Generate the crisp output control uc using Eq. (15),
Eq. (16) and Eq. (17)

have the form given by Eq. (5) and Eq. (6), respectively. The
parameters in these equations can be calculated using

ca =

l∑
j=1

vj(x
∗)cj , εa =
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The COG values of ∆a(x) and ∆a(x) can be used to generate
the crisp output control uc. Here,

uc =
ca + ca

2
(17)

Algorithm 1 briefly describes the procedure for designing the
robust type2 FC.

V. BENCHMARK SYSTEM, SIMULATION RESULTS AND
DISCUSSION

Now, we will demonstrate the effectiveness of the proposed
procedure. The altitude of a quadcopter will be controlled
using a robust type2 FC in the presence of noisy measurement
data.

A. Mambo quadcopter

The Parrot mini-drone Mambo is usually used in academic
research. The Matlab Simulink provides a flight simulation
model for this quadcopter [14]. It consists of: 1) A flight
controller; 2) A sensor model; 3) An airframe model; 4) An
environment model . The sensor model consists of sonar,
accelerometers and gyroscopes. The airframe model (shown in
Fig. 5) describes the structure of the mini drone. It consists of
the translational components (x, y, z), rotational components
(φ, θ, ψ), motor angular speeds ω, torques τ and upward forces
f . The environment model consists of external noise acting on
the system. The model of the quadcopter is given by:

Ẋ = f(X,u) +N, (18)

where
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Here X is the state vector, u is the input and N is the additive
white noise that affects the system states. Also,
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Here b and d are the thrust and drag coefficients. u1, u2, u3, u4

controls the altitude, roll, pitch and yaw movements of the
quadcopter. ωr is the residual angular speed and u1 is the
thrust. The state equations of the system are:
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ÿ
ż
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.

The altitude z is measured by a sonar device. Here, we design
a T2DF-based fuzzy controller to generate appropriate thrust
u1 to control the altitude z of the quadcopter in the presence
of external noise n3.

B. Altitude control in the presence of measurement noise

Now we will consider a situation where the altitude mea-
sured by the sonar is corrupted by an additive white mea-
surement noise. The quadcopter is ordered to take off and
reach an altitude of 1m, maintain this height for 20 seconds
and then increase the altitude to 2m. A fuzzy controller based
on T2DFs is designed to generate the required thrust signal
u1 during this entire operation. The altitude error and rate of
change of altitude are the two inputs of the controller and u1 is
the output. The controller knowledge base is shown in Table. I,
and the T2DFs of the antecedent and consequent are shown in



Fig. 5: Body and inertial frames of the Quadcopter structure
[15]

Fig. 9. The upper and lower control surfaces generated using
the T2DFs are shown in Fig. 6. The control surface used to
generate the thrust u1 is shown in Fig. 7. The altitude of the
quadcopter and the command signal sent during the simulation
have been plotted in Fig. 8. For comparison purposes, the
altitude response generated using a Mamdani (type-1) fuzzy
controller has also been plotted in Fig. 8. The top part of Fig. 8
shows the altitude response of both controllers in the absence
of external noise. The bottom part of Fig. 8 shows the response
in the presence of a large measurement noise (15 dB SNR).

Fig. 6: Upper (blue) and lower (green) control surfaces

C. Discussion

A T2DF-based controller is able to control the altitude
of the quadcopter using a few rules. The control surface
used to generate the thrust u1 has smooth transitions for
different input values. In the absence of external noise, the
response of the proposed controller is comparable with the
conventional Mamdani controller. However in the presence of
large measurement noise (15 dB SNR), the Mamdani con-
troller produces small oscillations in the quadcopter altitude.

Fig. 7: The control surface used to generate the controller
output

Fig. 8: Altitude control comparison of proposed Type2 and
Mamdani controllers. a) Without noise (top). b) Large mea-
surement noise (bottom)

In contrast, the proposed controller is more robust to this
measurement noise and it produces a smooth altitude response
compared to Mamdani controller. So, the proposed T2DF-
based controller is better able to overcome the problem of
external noise signals.



Rule No. Altitude
Error

Rate of
change of
Altitude

Thrust

1 Positive - Positive
2 Negative - Negative
3 Nominal - Minor

4 Nominal Positive Negative
Small

5 Nominal Negative Positive
Small

TABLE I: The rule base for the T2DF-based controller

Fig. 9: T2DFs for Altitude Error and Thrust u1

VI. CONCLUSION AND FUTURE WORK

Here, a new parametric type2 MF called T2DF is proposed.
It can handle the uncertainties introduced by measurement
noise. Based on this T2DF, a novel technique for a robust type2
fuzzy controller is presented. The controller is robust against
measurement noise, is computationally efficient and fast. The
efficiency of the proposed fuzzy controller was demonstrated
using the altitude control of a quadcopter. The results indicate
that the performance of the proposed controller is better than
that of the traditional Mamdani fuzzy controller in the presence
of large measurement noise. This also reinforce the claim that
the noise reduction property of type2 fuzzy controllers is better
than that of type-1 fuzzy controllers. Future study will include
the development of a data-driven-based type2 FC based on
T2DFs.
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