
Why Squashing Functions in Multi-Layer Neural
Networks

1st Julio C. Urenda
Department of Mathematical Sciences
and Department of Computer Science

University of Texas at El Paso
El Paso, TX 79968, USA

jcurenda@utep.edu

2nd Orsolya Csiszár
Faculty of Basic Sciences

University of Applied Sciences Esslingen
Esslingen, Germany, and

Institute of Applied Mathematics
Óbuda University

Budapest, Hungary
orsolya.csiszar@nik.uni-obuda.hu

3rd Gábor Csiszár
Institute of Materials Physics

University of Stuttgart
Stuttgart, Germany

gabor.csiszar@mp.imw.uni-stuttgart.de

4th József Dombi
Institute of Informatics
University of Szeged

Szeged, Hungary
dombi@inf.u-szeged.hu

5th Olga Kosheleva
Department of Teacher Education

University of Texas at El Paso
El Paso, TX 79968, USA

olgak@utep.edu

6th Vladik Kreinovich
Department of Computer Science

University of Texas at El Paso
El Paso, TX 79968, USA

vladik@utep.edu

7th György Eigner
Institute of Applied Mathematics

Óbuda University
Budapest, Hungary

eigner.gyorgy@nik.uni-obuda.hu

Abstract—Most multi-layer neural networks used in deep
learning utilize rectified linear neurons. In our previous papers,
we showed that if we want to use the exact same activation
function for all the neurons, then the rectified linear function
is indeed a reasonable choice. However, preliminary analysis
shows that for some applications, it is more advantageous to
use different activation functions for different neurons – i.e.,
select a family of activation functions instead, and select the
parameters of activation functions of different neurons during
training. Specifically, this was shown for a special family of
squashing functions that contain rectified linear neurons as a
particular case. In this paper, we explain the empirical success
of squashing functions by showing that the formulas describing
this family follow from natural symmetry requirements.

Index Terms—multi-layer neural networks, rectified linear
function, squashing function, invariance

I. FORMULATION OF THE PROBLEM

Machine learning is needed to analyze systems of systems.
For some simple systems, we know the equations that describe
the system’s dynamics. These equations may be approximate,
but they are often good enough. With more complex systems
(such as systems of systems), this is often no longer the case.
Even when we have a good approximate model for each
subsystem, the corresponding inaccuracies add up, and the
resulting model of the whole system is too inaccurate to be
useful. For real-life systems like a city or a big plant, it is
therefore often not possible to predict the system’s behavior
based only on approximate models of subsystems. We also

This work was supported in part by the grant TUDFO/47138-1/2019-
ITM from the Ministry of Technology and Innovation, Hungary, and by the
US National Science Foundation grants 1623190 (A Model of Change for
Preparing a New Generation for Professional Practice in Computer Science)
and HRD-1242122 (Cyber-ShARE Center of Excellence). The authors are
greatly thankful to Professor Imre Rudas for his encouragement.

need to use the records of the actual system’s behavior when
making such predictions. Techniques that use the previous
behavior of a system to predict its future behavior are known
as machine learning techniques.

Deep learning. At present, the most efficient machine learning
technique is deep learning, i.e., the use of multi-layer neural
networks; see, e.g., [6]. In general, on layer of a neural
network, we transform signals x1, . . . , xn into a new signal

y = s

(
n∑
i=1

wi · xi + w0

)
, where the coefficient wi (called

weights) are to be determined during training, and s(z) is a
non-linear function called activation function.

Activation functions used in deep learning. Most multi-layer
neural networks used in deep learning utilize rectified linear
neurons, i.e., neurons that use the activation function s(z) =
max(z, 0) known as rectified linear function.

Why rectified linear activation function. In our previous
papers [?], [5], [7], we use invariance ideas – similar to what
we will use later in this paper – to show that if we want to
use the exact same activation function for all the neurons, then
the rectified linear function is indeed a reasonable choice.

Shall we go beyond rectified linear activation functions?
Preliminary analysis shows that for some applications, it is
more advantageous to use different activation functions for
different neurons – i.e., select a family of activation functions
instead, and select the parameters of activation functions of
different neurons during training. Specifically, this was shown
for a special family of squashing activation functions that

contain rectified linear neurons as a particular case; see, e.g.,
[2]–[4]. Functions from this family have the form

S
(β)
a,λ(z) =

1

λ · β
· ln 1 + exp(β · z − (a− λ/2))

1 + exp(β · z − (a+ λ/2))
. (1)

Why squashing functions? In this paper, we explain the
empirical success of squashing functions by showing that
the formulas describing this family also follow from natural
symmetry requirements.

How this paper is structured. In Section 2, we recall the
main ideas of symmetries and invariance. In Section 3, we
recall how these ideas can be used to explain the efficiency of
the sigmoid activation function

s(z) =
1

1 + exp(−z)
(2)

in the traditional 3-layer neural networks. Finally, in Section 4,
we use this information to explain the efficiency of squashing
activation functions.

II. NATURAL SYMMETRIES: GENERAL IDEA

Numerical values change when we change a measuring unit
and/or starting point. In data processing, we deal with nu-
merical values of different physical quantities. Computers just
treat these values as numbers, but from the physical viewpoint,
it is important to understand that the numerical values are not
absolute: they change if we change the measuring unit and/or
the starting point for measuring the corresponding quantity.

For example, we can measure a person’s height in meters
or in centimeters. The same height of 1.7 m, when described
in centimeters, becomes 170 cm. In general, if we replace
the original measuring unit with a new unit which is λ times
smaller, then for each physical quantity, instead of the original
numerical value x, we get a new numerical value λ ·x – while
the actual quantity remains the same.

For some physical quantities, e.g., for time or temperature,
the numerical value also depends on the starting point. For
example, we can measure the time by counting how much
time has passed during the flight – i.e., by using the flight
start time as a starting point. Alternatively, we can use the
usual calendar time, in which Year 0 is the starting point. In
general, if we replace the original starting point with the new
one which is x0 units earlier, than each original numerical
value x is replaced by a new numerical value x+ x0.

In general, if we change both the measuring unit and the
starting point, we get a linear transformation: from the original
value x, we get to λ·x+x0. A usual example of such a transfor-
mation is a transition from Celsius to Fahrenheit temperature
scales: if we know the temperature tC is Celsius, then the
Fahrenheit temperature tF is equal to tF = 1.8 · tC + 32.

Invariance. Changing the measuring unit and/or starting point
changes the numerical values but does not change the actual
quantity. It is therefore reasonable to require that physical
equations do not change if we simply change the measuring
unit and/or change the starting point.

Of course, to preserve the physical equations, if we change
the measuring unit and/or starting point for one quantity, we
may need to change the measuring units and/or starting points
for other quantities as well. For example, there is a well-
known relation d = v · t between distance d, velocity v,
and time t. If we change the measuring units for measuring
distance and time, this formula remains valid – but only if we
accordingly change the units for velocity. For example, if we
replace kilometers with meters and hours with seconds, then,
to preserve this formula, we also need to change the unit for
velocity from km/h to m/sec.

Natural transformations beyond linear ones: analysis. In
the previous text, we considered only linear transformations
between different scales. In some cases, the relation between
different scales is non-linear. For example, we can measure
the earthquake energy is Joules (i.e., in the usual scale) or in
a logarithmic (Richter) scale.

The possibility of non-linear transformations raises a nat-
ural question: what are the natural transformations between
different scales?
• First, as we have argued in the previous text, all linear

transformations are natural.
• Second, if we have a natural transformation f(x) from

scale A to another B, then the inverse transformation
f−1(x) from scale B to scale A should also be natural.

• Third, if f(x) and g(x) are natural scale transformation,
then we can apply first g(x) to get y = g(x) and then
f to get f(y) = f(g(x)). Thus, the composition f(g(x))
of two natural transformations should also be natural.

In mathematical terms, the class of transformations that con-
tain an identity mapping f(x) = x and that satisfies the second
and third properties is called a transformation group. In these
terms, the above properties can be reformulated as follows: the
class T of natural transformations is a transformation group
that contains all linear transformations.

We also need to take into account that in a computer, at
any given moment of time, we can only store the values
of finitely many parameters. Thus, the transformations from
the desired transformation group T should be determined by
a finite number of parameters. In mathematical terms, the
smallest number of parameters needed to describe a family is
known as the dimension of this family – just like the fact that
we need 3 coordinates to describe any point in space means
that the physical space is 3-dimensional. In these terms, the
transformation group T must be finite-dimensional.

Let us describe all natural transformations. Interestingly,
the above requirements uniquely determine the class of all
possible natural transformation. This result can be traced
back to Norbert Wiener, the father of cybernetics. In his
seminal book Cybernetics [10] that started this research area,
he noticed that when we approach an object form afar, our
perception of this object goes through several distinct phases:
• first, we see a blob; this means that at a large distance,

we cannot distinguish between images obtained each

other by all possible continuous transformations; in other
words, this phase corresponds to the group of all possible
continuous transformations; transformations);

• as we get closer, we start distinguishing angular parts
from smooth parts, but still cannot compare sizes; this
corresponds to the group of all projective transformations;

• after that, we become able to detect parallel lines; this
corresponds to the group of all transformations that
preserve parallel lines – i.e., to the group of all linear
(= affine) transformations;

• when we get even closer, we become able to detect the
shapes, but we still cannot distinguish between larger
objects that are further away and smaller objects which
are closer – our binocular vision (that enables us to make
this distinction) only starts working at shorter distances;
this corresponds to the group of all homotheties;

• finally, as we get much closer, we see the exact shapes
and sizes; this means that only the identity transformation
remains.

Wiener argued that there are no other transformation groups
– since if there were other transformation groups, after bil-
lions years of evolutions, we would use them. In precise
terms, he conjectured that the only two finite-dimensional
transformation groups that contain all linear transformations
are the groups of all linear transformations and the group of
all projective transformations. For transformations of the real
line, projective transformations are simply fractional-linear
transformations; see, e.g., [8], [9] and references therein:

f(x) =
a · x+ b

c · x+ d
.

III. HOW INVARIANCE IDEAS EXPLAIN THE EFFICIENCY
OF SIGMOID ACTIVATION FUNCTIONS IN TRADITIONAL

NEURAL NETWORKS

Why traditional neural networks. In order to understand
why sigmoid functions are efficient neural networks, let us
recall why traditional neural networks appeared in the first
place; see, e.g., [7].

The main reason, in our opinion, was that computers were
too slow. A natural way to speed up computations is to
make several processors work in parallel – so that each
processor only handles a simple task, not requiring too much
computation time.

For processing data, the simplest possible functions to
compute are linear functions. However, we cannot only use
linear functions – because then, no matter how many linear
transformations we apply one after another, we will only
get linear functions, and many real-life dependencies are
nonlinear. So, we need to supplement linear computations with
some nonlinear ones. In general, the fewer inputs, the faster
the computations. Thus, the fastest to compute are functions
with one input, i.e., functions of one variable. So, we end up
with a parallel computational device that has linear processing
units (L) and nonlinear processing units (NL) that compute
functions of one variable. First, the input signals come to
a layer of such devices, then the results of this layer go to

another layer, etc. The fewer layers we have, the faster the
computations.

It can be shown (see, e.g., [7]) that 1-layer schemes (L
or NL) and 2-layer schemes (L-NL, linear layer followed by
non-linear layer, or NL-L) are not sufficient to approximate
any possible dependence. Thus, we need at least 3-layer
networks – and 3-layer networks can be proven to be sufficient.
In a 3-layer network, we cannot have two linear layers or
two nonlinear layers following each other – that would be
equivalent to having one layer since, e.g., a composition of
two linear functions is also linear. Thus, we have only two
options: L-NL-L and NL-L-NL. Since linear transformations
are faster to compute, the fastest scheme is L-NL-L. In this
scheme:
• first, each neuron k in the L layer combines the inputs

into a linear combination zk =
n∑
i=1

wki · xi + wk0;

• then, in the next layer, each such signal is transformed
into yk = sk(zk) for some non-linear function; and

• finally, in the last linear layer, we form a linear combi-

nation of the values yk: y =
K∑
k=1

Wk · yk +W0.

The resulting transformation takes the form

y =

K∑
k=1

Wk · sk

(
n∑
i=1

wki · xi + wk0

)
+W0.

Usually, we use the same function s(z) for all transformations,
so we get

y =

K∑
k=1

Wk · s

(
n∑
i=1

wki · xi + wk0

)
+W0.

This is indeed the usual formula of the traditional neural
network.

Why sigmoid activation function: an idea behind the
invariance-based explanation. In real life, signals come with
noise, in particular, with background noise that, in effect, adds
a constant to all the measured signals. We can try to get rid
of this noise by subtracting the corresponding constant, i.e.,
by replacing the original numerical values xi with a corrected
value xi − ni. After this correction, instead of the original
value zk, we get a corrected value

z′k =

n∑
i=1

wki · (xi − ni) + wk0 = zk − h′k,

where we denoted h′k
def
=

n∑
i=1

wki · ni.
The trouble is that we do not know the exact value of this

constant – otherwise, this noise would not be a problem. So,
depending on our estimate, we may subtract different values
ni and thus, different values h′k. If we change from one value
h′k to another one h′′k , then the resulting value of zk is shifted
by the difference hk

def
= h′k − h′′k , namely, z′′k = z′k + hk,

exactly the same formula as for the shift corresponding to the
change in the starting point.

Since we do not know what shift is the best, all shifts
within a certain range are equally possible. It is therefore
reasonable to require that the formula y = s(z) for the
nonlinear activation function should work for all possible
shifts. In other words, as we mentioned in the previous section,
if we shift from z to z′ = z + h, then we should satisfy the
exact same formula y′ = s(z′) – probably for an appropriately
transformed value y.

In the previous section, we also mentioned that all possible
transformations should be fractionally linear. Thus, for each
possible shift h, the value s(z′) = s(z+h) should be obtained
from s(z) by an appropriate fractionally linear transformation:

s(z + h) =
a(h) · s(z) + b(h)

c(h) · s(z) + d(h)
. (3)

Let us show that this implies the sigmoid.

Why sigmoid – derivation: generic case. For h = 0, we
should have s(z + h) = s(z), thus, we should have d(0) 6= 0.
It is reasonable to require that the function d(h) is continuous.
In this case, d(h) is different from 0 for all small h. Then, we
can divide both numerator and denominator of the formula (3)
by d(h) and get a simpler formula, with only three functions
of h:

s(z + h) =
A(h) · s(z) +B(h)

C(h) · s(z) + 1
, (4)

where we denoted A(h) = a(h)/d(h), B(h) = b(h)/d(h),
and C(h) = c(h)/d(h). For h = 0, we have s(z+ h) = s(z),
so A(h) = 1 and B(h) = C(h) = 0.

It is also reasonable to require that the activation function
s(z) be smooth. We also want it to be defined for all z.

Smoothness requirement comes from the fact that on each
interval, every continuous function can be approximated, with
any desired accuracy, by a smooth one – even by a polynomial.
So we can always get non-smooth functions as limits of
smooth ones.

Multiplying both sides of the formula (4) by the denomi-
nator and moving the term s(z + h) · C(h) to the right-hand
side, we get the following formula:

s(z + h) = A(h) · s(z) +B(h)− s(z + h) · C(h).

In particular, if we take three different values z = z1, z = z2,
and z = z3, then, for each h, we get the following system of
three linear equations for determining the three values A(h),
B(h), and C(h):

s(z1 + h) = A(h) · s(z) +B(h)− s(z1 + h) · C(h);

s(z2 + h) = A(h) · s(z) +B(h)− s(z2 + h) · C(h);

s(z3 + h) = A(h) · s(z) +B(h)− s(z3 + h) · C(h).

Due to Cramer’s rule, the solution to this system is a ratio of
two determinants, i.e., of two polynomials of the coefficients
and is, thus, a smooth function of the values s(zi + h).
Since the function s(z) is smooth, we conclude that all three

functions A(h), B(h), and C(h) are also smooth. Thus, we
can differentiate both sides of the equation (4) by h and get

s′(z + h) =
N(h)

(C(h) · s(z) + 1)2
,

where

N(h)
def
= (A′(h) · s(z) +B′(h)) · (C(h) · s(z) + 1)−

(A(h) · s(z) +B(h)) · (C ′(h) · s(z)).

In particular, for h = 0, taking into account that A(h) = 1
and B(h) = C(h) = 0, we conclude that

s′(z) = a0 + a1 · s(z) + a2 · (s(z))2, (5)

where we denoted a0 = B′(0), a1 = A′(0), and a2 = −C ′(0),
i.e.,

ds

dz
= a0+a1 ·s+a2 ·s2. If we move all the terms related

to s to the left-and side and all the terms related to z to the
right-hand side, we get the following formula:

ds

a0 + a1 · s+ a2 · s2
= dz. (6)

Let us show how we can integrate both sides of this formula
and get an explicit expression of z(s), and how based on this
expression, we can find the explicit formula for the dependence
of s on z.

The generic case is when a2 6= 0. In this case, we can
multiply both sides of the formula (6) by a2 and get

ds
a0
a2

+
a1
a2
· s+ s2

= a2 · dz. (7)

The quadratic form in the denominator of the left-hand side
can be represented as (s + p)2 + q, where p =

a1
2a2

and q =

a0
a2
− p2. Thus, the formula (7) takes the form

ds

(s+ p)2 + q
= a2 · dz. (8)

So, for s1 = s+ p, we have

ds1
s21 + q

= a2 · dz. (9)

Let us now consider all three possible cases: when q = 0,
when q > 0, and when q < 0. When q = 0, then integrating
both sides of (9), we get

− 1

s1
= a2 · z + c,

for some integration constant c, thus s1(z) = −
1

a2 · z + c
and

s(z) = s1(z)− p = −
1

a2 · z + c
− p.

This function is not everywhere defined – namely, it is not
defined for z = −c/a2, thus we will not consider it.

When q > 0, then for s2 = s1/
√
q, we have s1 = s2 ·

√
q

thus ds1 =
√
q · ds2, s21 + q = q · s22 + q = q · (s12 + 1), and

(9) becomes
1
√
q
· ds2
s2 + 1

= a2 · z. Integrating leads to

1
√
q
· arctan(s2) = a2 · z + c

hence s2(z) = tan(
√
q ·a2 ·z+

√
q ·c. This value is not always

defined, thus s1(z) =
√
q · s2(z) and s(z) = s1(z) − p are

also not always defined, so we will consider this case either.
For q < 0, for s2 = s1/

√
|q|, we similarly have s1 = s2 ·√

|q| thus ds1 =
√
|q| ·ds2, s21+q = |q| ·s22+q = |q| ·(s22−1),

thus (9) becomes

1√
|q|
· ds2
s2 − 1

= a2 · z. (10)

One can easily check that

1

s22 − 1
=

1

2
·
(

1

s2 − 1
− 1

s2 + 1

)
,

thus integrating (10), we get

1

2
√
|q|
· (ln(s2 − 1)− ln(s2 + 1)) = a2 · z + c.

Multiplying both sides by 2
√
|q|, we conclude that the differ-

ence
ln(s2 − 1)− ln(s2 + 1) = ln

(
s2 − 1

s2 + 1

)
is equal to a linear function z1 of z. Thus, the fractional-linear

ratio
s2 − 1

s2 + 1
is equal to exp(z1). The inverse to a fractional

linear transformation is also fractional linear, so s2(z) is a
fractional linear function of exp(z1). The original function
s(z) is obtained from s2(z) by a linear transformation and is,
thus, also a fractionally linear expression in terms of exp(z1),
i.e.,

s(z) =
a · exp(z1) + b

c · exp(z1) + 1
.

For this expression to always be defined, we need c > 0; else,
if c < 0, it is not defined for z1 = − ln(|c|). The expression
for s(z) can be written as

a

c
+ const · 1

c · exp(z1) + 1
,

and for z2 = −z1 + ln(c), as

s(z) =
a

c
+ const · 1

1 + exp(−z2)
.

So, each such activation function s(z) can be obtained if we:
• first, apply some linear transformation to z, getting z2;
• then apply a sigmoid function; and
• finally, we apply a linear transformation to the result.

In the traditional neural network, as we mentioned earlier,
we always apply some linear transformation before we ap-
ply the activation function, and we also apply some linear
transformation after we apply the activation function. So, from

the viewpoint of the above general formula of the traditional
neural network, the class of functions which can be represented
with K neurons by using the activation function s(z) is exactly
the same as the class of functions represented with K neurons
by using the sigmoid function. In this sense, sigmoid is the
only shirt-invariant activation function – which explains its
efficiency in traditional neural networks.

Limit cases. In the previous subsection, we considered the
generic case when a2 6= 0. To complete our analysis, we need
to also consider the remaining case when a2 = 0. This is a
limit case of the generic case when a2 → 0. In this case, the
formula (6) takes the following simplified form:

ds

a0 + a1 · s
= dz. (11)

If a1 6= 0, then for s1 = a0 + a1 · s, we have ds1 = a1 · ds,
hence ds = ds1/a1, and (11) takes the form

1

a1
· ds1
s1

= dz.

Integrating, we get
1

a1
· ln(s1) = z+ c, hence ln(s1) = z1

def
=

a1 · z + a1 · c, so s1(z) = exp(z1), and s(z) =
s1(z)− a0

a1
=

1

a1
· (exp(z1) − a0). The resulting activation functions s(z)

can be obtained if we:
• first, apply some linear transformation to z, getting z2;
• then apply an exponential function; and
• finally, we apply a linear transformation to the result.

Similarly to the generic case, we can thus conclude that the
class of functions which can be represented with K neurons
by the using the activation function s(z) is exactly the same
as the class of functions represented with K neurons by using
the exponential function.

The only remaining case if a1 = 0. In this case, (11) easily
integrates into

s

a0
= z + c, i.e, to a linear activation function

s(z) = a0 · z + a0 · c. Mathematically, it is a legitimate case,
but, of course, from the viewpoint of neural networks it makes
no sense, since, as we have mentioned earlier, the whole point
of activation functions is to cover non-linear functions.

IV. WHY SQUASHING ACTIVATION FUNCTIONS

We need multi-layer neural networks. The problem with
traditional neural networks, as we mention in [?], [1], [7],
is that they waste a lot of bits: for K neurons, any of K!
permutations results in exactly the same function. To decrease
this duplication, we need to decrease the number of neurons
K in each layer. So, instead of placing all nonlinear neurons
in one layer, we place them in several consecutive layers. This
is one of the main idea behind deep learning.

Which activation function should we use: analysis of the
problem. In the first nonlinear layer, we make sure that a
shift in the input – corresponding to a different estimate of the
background noise – does not change the processing formula,

i.e., that results s(z + c) and s(z) can be obtained from each
other by applying an appropriate transformation – in this case,
a fractional-linear transformation. We already know that this
idea leads either to the sigmoid function (or to its limit case
– exponential function).

So far, so good, but this logic does not work if we try
to find out what activation function we should use in the
next nonlinear layers. Indeed, the output of the first layer
– which is the input to the second nonlinear layer – is no
longer shift-invariant, it is invariant with respect to some more
complex (fractional linear) transformations. We know what to
do when the input is shift-invariant, so a natural idea is to
perform some additional transformation that will make the
results shift-invariant. If we do that, then we will again be
able to apply the sigmoid activation function, then again the
additional transformation, etc.

These additional transformations should transform generic
fractional-linear operations into shift. This means that the
inverse of such a transformation should transform shifts into
some fractional-linear operations. But this is exactly what
we analyzed in the previous section – transformations that
transform shifts into fractional-linear operations. We already
know the formulas s(z) for these transformations. In general,
they are formed as follows:
• first, we apply some linear transformation to the input z,

resulting in a linear combination Z = p · z + q;
• then, we compute Y = exp(Z); and
• finally, we apply some fractional-linear transformation to

the resulting value Y , getting y.
So, to get the inverse transformation, we need to reverse all
three steps, starting with the last one:
• first, we apply a fractional-linear transformation to y,

getting Y ;
• then, we compute Z = ln(Y); and
• finally, we apply a linear transformation to Z, resulting

in z.

This leads exactly to squashing functions. What happens
if we first apply some sigmoid-type transformation moving
us from shifts to tractional-linear operations and then an
inverse-type transformation? The last step of the sigmoid-
type transformation and the first step of the inverse-type
transformation both apply fractional-linear transformations.
Since the composition of fractional-linear transformations is
fractional-linear, we can combine them into a single step.
Thus, the resulting combined activation function can thus be
described as follows:
• first, we apply some linear transformation L1 to the input
z, resulting in a linear combination Z = L1(z) = p·z+q;

• then, we compute E = exp(Z) = exp(L1(z));
• then, we apply some fractional-linear transformation F

to E = exp(Z), getting T = F (E) = F (exp(L1(z));
• then, we compute Y = ln(T) = ln(F (exp(L1(z))); and
• finally, we apply a linear transformation L2 to Y , re-

sulting in the final value y = s(z) = L2(Y) =
L2(ln(F (exp(L1(z)))).

One can check that these are exactly squashing function! Thus,
squashing functions can indeed be naturally explained by the
invariance requirements.

Example. As an example of the above description, let us
provide a family of squashing functions that tend to the
rectified linear activation function max(z, 0). For this purpose,
let us take:
• L1(z) = k · z, with k > 0, so that E = exp(L1(z)) =

exp(k · z);
• F (E) = 1 +E, so that T = F (E) = exp(k · z) + 1 and
Y = ln(T) = ln(exp(k · z) + 1); and

• L2(Y) =
1

k
· Y , so that the resulting activation function

takes the form s(z) =
1

k
· ln(exp(k · z) + 1).

Let us show that this expression tends to the rectified linear
activation function when k →∞.

When z < 0, then exp(k · z) → 0, so exp(k · z) + 1 → 1,
ln(exp(k · z) + 1)→ 0 and so s(z)→ 0.

On the other hand, when z > 0, then

exp(k · z) + 1 = exp(k · z) · (1 + exp(−k · z)),

thus ln(exp(k · z) + 1) = k · z + ln(1 + exp(−k · z)) and

s(z) =
1

k
· ln(exp(k · z) + 1) = z +

1

k
· ln(1 + exp(−k · z)).

When k →∞, we have exp(−k · z)→ 0, hence

1 + exp(−k · z)→ 1,

ln(1+ exp(−k · z))→ 0, so
1

k
· ln(1+ exp(−k · z))→ 0 and

indeed s(z)→ z.

REFERENCES

[1] C. Baral, O. Fuentes, and V. Kreinovich, “Why deep neural networks:
a possible theoretical explanation”, In: M. Ceberio and V. Kreinovich
(eds.), Constraint Programming and Decision Making: Theory and
Applications, Berlin, Heidelberg: Springer Verlag, 2018, pp. 1–6.

[2] O. Csiszár, G. Csiszár, and J. Dombi, Interpretable Neural Networks
Based on Continuous-Valued Logic and Multicriterion Decision Opera-
tors, arXiv:1910.02486v2, posted on February 7, 2020.

[3] J. Dombi and O. Csiszár, “Operator-dependent modifiers in nilpotent log-
ical systems”, Proceedings of the 10th International Joint Conference on
Computational Intelligence IJCCI’2018, Seville, Spain, September 18–
20, 2018, pp. 126–134.

[4] J. Dombi and Zs. Gera, “The approximation of piecewise linear mem-
bership functions and Lukasiewicz operators”, Fuzzy Sets and Systems,
vol. 154, pp. 275–286, 2005.

[5] O. Fuentes, J. Parra, E. Anthony, and V. Kreinovich, “Why rectified
linear neurons are efficient: a possible theoretical explanations”, In:
O. Kosheleva et al. (eds.), Beyond Traditional Probabilistic Data Pro-
cessing Techniques, Cham, Switzerland: Springer, 2020, to appear.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Leaning, Cambridge,
Massachusetts: MIT Press, 2016.

[7] V. Kreinovich and O. Kosheleva, “Deep learning (partly) demystified”,
Proceedings of the 4th International Conference on Intelligent Systems,
Metaheuristics & Swarm Intelligence ISMSI’2020, Thimpu, Bhutan,
March 21–22, 2020, to appear.

[8] V. Kreinovich and C. Quintana. “Neural networks: what non-linearity to
choose?,” Proc. 4th Univ. of New Brunswick AI Workshop, Fredericton,
New Brunswick, Canada, 1991, pp. 627–637.

[9] H. T. Nguyen and V. Kreinovich, Applications of Continuous Mathe-
matics to Computer Science, Dordrecht, Netherlands: Kluwer, 1997.

[10] N. Wiener, Cybernetics: Or Control and Communication in the Animal
and the Machine, Cambridge, Massachisetts: MIT Press, 1948.

