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a b s t r a c t

The theories of multi-criteria decision-making (MCDM) and fuzzy logic both aim to model human
thinking. In MCDM, aggregation processes and preference modeling play the central role. This paper
suggests a consistent framework for modeling human thinking by using the tools of both fields: fuzzy
logical operators as well as aggregation and preference operators. In this framework, aggregation,
preference, and the logical operators are described by the same unary generator function. Similarly to
the implication being defined as a composition of the disjunction and the negation operator, preference
operators were introduced as a composition of the aggregative operator and the negation operator.
After a profound examination of the main properties of the preference operator, our main goal is the
implementation into neural networks. We show how preference can be modeled by a perceptron, and
illustrate the results in practical neural applications.

© 2020 Published by Elsevier B.V.
I

1. Introduction

When it comes to modeling human thinking, two main ap-
roaches have received particular attention in the last decades:
uzzy logic and multi-criteria decision analysis (MCDA), or multi-
riteria decision-making (MCDM). In real-world applications, a
ecision-maker, more often than not, faces decision situations
here multiple criteria have to be considered simultaneously.
Since the modeling is always affected by the presence of differ-

nt kinds of uncertainty due to the imperfect human knowledge,
uzzy set theory, as a language that is capable to deal with
ncertainty has been successful also in MCDM models.
Fuzzy sets provide a theoretical framework to quantify a type

f uncertainty, such as imprecision and ambiguity that is in-
erent in many decision-making processes. The seminal paper
y Orlovsky [1] can be considered as the first attempt to use
uzzy set theory in preference modeling. In his paper, Orlovsky
efines the strict preference relation and the indifference relation
ith the use of Łukasiewicz- and minimum t-norms. As a result,
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numerous approaches have been proposed to solve fuzzy MCDM
problems [2]. A review and comparison of many of these methods
can be found in [3].

In multiple criteria decision-making (MCDM), the decision-
maker’s preference plays a key role (see e.g. [4–6], for a compre-
hensive taxonomy of the MCDA process characteristics, see [7]),
and therefore, preference modeling is fundamental. The classical
MCDM procedures perform generally in two steps; aggregation
and exploitation. First, the aggregation part defines an outranking
relation that indicates the global preference between any ordered
pair of alternatives. Second, the exploitation transforms the infor-
mation into a global ranking, usually by using a ranking method
to obtain a score function, like in classical procedures typical of
the so-called European (or French) School, such as PROMETHEE
[8] and ELECTRE III [9].

The preference operators of these outranking methods can
be described well by the generator-based preference operator
introduced in this article. The aggregation procedures in decision-
making often use value functions or preference relations. In the
classical theory, preference is a binary relation with the semanti-
cal meaning of

p(x, y) = truth of (x ≤ y).

n order to deal with the preference operator and the logical oper-

tors in a consistent framework, the in- and output values need to

https://doi.org/10.1016/j.knosys.2020.106530
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2020.106530&domain=pdf
mailto:csiszar.orsolya@nik.uni-obuda.hu
mailto:ocsiszar@hs-esslingen.de
mailto:Gabor.Csiszar@mp.imw.uni-stuttgart.de
mailto:dombi@inf.u-szeged.hu
https://doi.org/10.1016/j.knosys.2020.106530


O. Csiszár, G. Csiszár and J. Dombi Knowledge-Based Systems 210 (2020) 106530

b
n
t
w
i
n
f
o
t
s
s
c
o
f
f
i

i
n
n
n
t
i
c
i
‘
e
w

r
t
b
d
n
i
e
u
p
c
i
b
[
d

b
t
t
f
a
a
m
p
i

b
d
s
a
T
i
p
s
t
f
S

2

A
b
o
t
n
a
n
a
t
o
e
d
a
a
a
m
p
g
c
f

2

c
o
c
l
s
I

D
t

D
j
t

t
a
c
w

f

i
t
t
f

D

[

P

e normalized. As we can easily see, the preference operator does
ot belong to the logical operators, since logical operators need
o be consistent with the classical logic; i.e. on the boundaries
e need to get crisp values from {0, 1}. However, if the two

nput values are the same, preference operators should give a
eutral output value (greatest uncertainty level); i.e. different
rom 0 and 1. This means that for (0, 0) and for (1, 1), preference
perators cannot have a crisp value from {0, 1}, and therefore
hey do not belong to the world of logical operators in the strict
ense. In this work, we propose a suggestion on how we can
till create a theoretical framework synthesizing the worlds of
ontinuous logic and MCDM, and examine the main properties
f the preference operator in nilpotent systems. This consistent
ramework supports a potential application of the results in the
ield of artificial intelligence, as an important step towards the
nterpretability of neural models.

Recently, intelligent learning methods, especially deep learn-
ng models have been revolutionizing the business and tech-
ology world. One of the greatest challenges is the increasing
eed for interpretability, transparency, and safety. Although deep
eural networks have achieved impressive experimental results,
hey may surprisingly be unstable when it comes to adversar-
al perturbations. For example in image classification, minimal
hanges to the input image may cause the network to misclassify
t [10–13]. In predictive modeling, interpretability (opening the
‘black box’’) becomes more and more important. In a high-risk
nvironment, we also need to know the reasons why a decision
as made.
Neural models have also been developed for multiple crite-

ia decision-making [14,15]. In these models, the motivation is
o model the decision-maker’s underlying preference structures
y means of supervised learning based on sampled preference
ata. The recent advances in theory and methodology of neural
etworks and fuzzy logic have laid a solid basis for develop-
ng models based on neural architecture for MCDM in a fuzzy
nvironment. On the one hand, fuzzy systems can deal with
ncertainty and linguistic terms, modeling the decision-maker’s
references using fuzzy rules. On the other hand, neural networks
an exhibit learning capability. In this direction, Preference Learn-
ng (PL) is emerging as an extended paradigm in machine learning
y inducing predictive preference models from experimental data
16–19]. PL involves in various research fields such as knowledge
iscovery or recommender systems.
Although combinations of neural networks and MCDM have

een considered in different contexts, there has been little at-
empt to combine neural networks with continuous logical sys-
ems so far. The novelty of this paper is to suggest a consistent
ramework for modeling human thinking by using the tools of
ll three fields: fuzzy logical operators, MCDM tools (such as
ggregation and preference operators), as well as deep learning
ethods. Beyond the theoretical demand, our objective here is to
rovide multicriteria decision tools to the nilpotent neural model
ntroduced in [20].

The article is organized as follows. In Section 2, we recall some
asic preliminaries regarding nilpotent systems. Section 3 intro-
uces the problem of preference modeling in these systems and
uggests a definition for the preference operator combining the
ggregative operator with the negation operator of the system.
he main properties of the preference operator are examined
n Section 4. In Sections 5 and 6, we show how the nilpotent
reference can be modeled by a perceptron and illustrate this re-
ult in applications in neural networks. To obtain differentiability,
he squashing function as a smooth approximation of the cutting
unction is used in the formulae. The results are summarized in
ection 7.
 w

2

. Operators of nilpotent systems - a general framework

First, we highlight some of our related preliminary results.
mong other families of fuzzy logics, nilpotent fuzzy logic is
eneficial from several perspectives. The fulfillment of the law
f contradiction and the excluded middle, and the coincidence of
he residual and the S-implication [21,22] make the application of
ilpotent operators in logical systems promising. In [23–28], an
bundant asset of operators was examined thoroughly: in [24],
egations, conjunctions and disjunctions, in [25] implications,
nd in [26] equivalence operators. In [27], the aggregative opera-
ors were studied and a parametric form of a general operator
ν was given by using a shifting transformation of the gen-
rator function. Varying the parameters, nilpotent conjunctive,
isjunctive, aggregative (where a high input can compensate for
lower one) and negation operators can all be obtained. It was
lso demonstrated how the nilpotent generated operator can be
pplied for preference modeling. Moreover, as shown in [28],
embership functions, which play a substantial role in the overall
erformance of fuzzy representation, can also be defined using a
enerator function. In [20], the authors showed that in the field of
ontinuous logic, nilpotent logical systems are the most suitable
or neural computation.

.1. Normalization of the generator functions

Let us first consider the most important operators in classi-
al logic are the conjunction, the disjunction, and the negation
perator. These three basic operators together form a so-called
onnective system. When extending classical logic to continuous
ogic, compatibility and consistency are crucial. The negation
hould also be involutive; i.e. n(n(x)) = x, for ∀x ∈ [0, 1].
nvolutive negations are called strong negations.

efinition 1 ([24]). The triple (c, d, n), where c is a t-norm, d is a
-conorm and n is a strong negation, is called a connective system.

efinition 2 ([24]). A connective system is nilpotent if the con-
unction c is a nilpotent t-norm, and the disjunction d is a nilpo-
ent t-conorm.

In the nilpotent case, the generator functions of the disjunc-
ion, and the conjunction (denoted by t(x) and s(x) respectively)
re bounded functions, being determined up to a multiplicative
onstant. This means that they can be normalized the following
ay:

c(x) :=
t(x)
t(0)

, fd(x) :=
s(x)
s(1)

. (1)

Note that the normalized generator functions are now
uniquely defined. Next, we recall the definition of the cutting
function, to simplify the notations used. The differentiable ap-
proximation of the cutting function, the squashing function S(x)
ntroduced and examined in [29], is a ReLu-like bounded activa-
ion function in our model. In [27], the authors showed that all
he nilpotent operators can be described by using one generator
unction f (x) and the cutting function.

efinition 3 ([24]). Let us define the cutting operation [ ] by

x] =

{ 0 if x < 0
x if 0 ≤ x ≤ 1
1 if 1 < x

roposition 1 ([24]). With the help of the cutting operator, we can
rite the conjunction and disjunction in the following form, where f
c
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nd fd are decreasing and increasing normalized generator functions
espectively.

(x, y) = f −1
c [fc(x) + fc(y)], (2)

d(x, y) = f −1
d [fd(x) + fd(y)]. (3)

Remark 1. For the natural negations to coincide, as shown in
[24], fc(x)+ fd(x) = 1 must hold for ∀x ∈ [0, 1], which means that
only one generator function, e.g. fd(x) is needed to describe the
operators. Henceforth, fd is represented by f (x).

Remark 2. Note that the min and max operators (often used
as conjunction, and disjunction in applications) can also be ex-
pressed by [ ] in the following way:

min(x, y) = [x + [y − x + 1] − 1] , (4)

max(x, y) = [x + [y − x]] , (5)

where x, y ∈ [0, 1].

The associativity of t-norms and t-conorms permits us to
consider their extensions to the multivariable case.

2.2. The general parametric operator

In [27], the authors also examined a general parametric oper-
ator oν(x) of nilpotent systems.

Definition 4 ([27]). Let f : [0, 1] → [0, 1] be an increasing
ijection, ν ∈ [0, 1], and x = (x1, . . . , xn), where xi ∈ [0, 1] and

let us define the general operator by

oν(x) = f −1

[
n∑

i=1

(f (xi) − f (ν)) + f (ν)

]
=

= f −1

[
n∑

i=1

f (xi) − (n − 1)f (ν)

]
.

(6)

emark 3. Note that the general operator for ν = 1 is conjunc-
ive, for ν = 0 it is disjunctive and for ν = ν∗ = f −1

( 1
2

)
it is

self-dual.

On the basis of Remark 3, the conjunction, the disjunction and
the aggregative operator can be defined in the following way:

Definition 5 ([27]). Let f : [0, 1] → [0, 1] be an increasing
ijection, x = (x1, . . . , xn), where xi ∈ [0, 1]. Let us define the

conjunction, the disjunction and the aggregative operator by

c(x) := o1(x) = f −1

[
n∑

i=1

f (xi) − (n − 1)

]
, (7)

(x) := o0(x) = f −1

[
n∑

i=1

f (xi)

]
, (8)

a(x) := oν∗
(x) = f −1

[
n∑

i=1

f (xi) −
1
2
(n − 1)

]
, (9)

espectively, where ν∗ = f −1
( 1
2

)
.

A conjunction, a disjunction and an aggregative operator differ
nly in one parameter of the general operator in (6). The pa-
ameter ν has the semantic meaning of the level of expectation:
aximal for the conjunction, neutral for the aggregation, and
inimal for the disjunction.
Next, let us recall the weighted form of the general operator:
3

efinition 6 ([27]). Let w ∈ Rn, wi > 0, f : [0, 1] → [0, 1]
an increasing bijection with ν ∈ [0, 1], x = (x1, . . . , xn), where
xi ∈ [0, 1]. The weighted general operator is defined by

oν,w(x) := f −1

[
n∑

i=1

wi(f (xi) − f (ν)) + f (ν)

]
. (10)

Note that if the weight vector is normalized; i.e. for
∑n

i=1 wi =

,

ν,w(x) = f −1

(
n∑

i=1

wif (xi)

)
. (11)

For future application, we introduce a threshold-based operator
in the following way.

Definition 7 ([27]). Let w ∈ Rn, wi > 0, x = (x1, . . . , xn) ∈ [0, 1]n,
ν = (ν1, . . . νn) ∈ [0, 1]n and let f : [0, 1] → [0, 1] be a strictly
increasing bijection. Let us define the threshold-based nilpotent
operator by

oν,w(x) = f −1

[
n∑

i=1

wi (f (xi) − f (νi)) + f (ν)

]
=

= f −1

[
n∑

i=1

wif (xi) + C

]
, (12)

where

C = f (ν) −

n∑
i=1

wif (νi). (13)

Remark 1. Note that the Equation in (12) describes the percep-
tron model in neural computation. Here, the parameters all have
semantic meanings as importance (weights), decision level and
level of expectancy.

The most commonly used operators for n = 2 and for special
values of wi and C , also for f (x) = x, are listed in Table 1.

2.3. The unary operators: negation, modifiers and hedges

Now let us focus on the unary (1-variable) case, examined
in [28], which also plays a crucial role in the nilpotent neural
model. The unary operators are mainly used to construct mod-
ifiers and membership functions by using a generator function.
The membership functions can be interpreted as modeling an in-
equality [30]. Note that non-symmetrical membership functions
can also be constructed by connecting two unary operators with a
conjunction [23,28]. For the most important unary operators see
Table 2.

Definition 8 ([28]). Let λ ∈ R+, λ > 1, ν ∈ [0, 1], f : [0, 1] →

0, 1] be an increasing bijection. Let us define the unary operator
(λ)
ν (x) in the following way.
(λ)
ν (x) := f −1 [λ (f (x) − f (ν)) + f (ν)] . (14)

Remark 2. For ν = 1, ν = 0 and ν = ν∗ (i.e. f (ν) =
1
2 ),

we get the necessity, the possibility and the sharpness operators,
respectively.

3. Preference modeling

Preference modeling is an inevitable part of several applied
fields of decision-making and at the same time, it has its own



O. Csiszár, G. Csiszár and J. Dombi Knowledge-Based Systems 210 (2020) 106530

r

x

i
n

p

H
f
p

a
o
s
i
w

D
[

o

w
a
o
p
u

I

Table 1
The most important two-variable operators ow(x).

w1 w2 C ow(x, y) for f (x) = x Notation

Logical operators

Disjunction 1 1 0 f −1
[f (x) + f (y)] [x + y] d(x, y)

Conjunction 1 1 −1 f −1
[f (x) + f (y) − 1] [x + y − 1] c(x, y)

Implication −1 1 1 f −1
[f (y) − f (x) + 1] [y − x + 1] i(x, y)

Multi-criteria Decision Tools

Arithmetic mean 0.5 0.5 0 f −1
[ 1
2 (f (x) + f (y))

] 1
2 (x + y) m(x, y)

Preference −0.5 0.5 0.5 f −1
[ 1
2 (f (y) − f (x) + 1)

] 1
2 (y − x + 1) p(x, y)

Aggregative operator 1 1 −0.5 f −1
[
f (x) + f (y) −

1
2

] [
x + y −

1
2

]
a(x, y)
Table 2
The most important unary operators τ (λ)

ν (x).

ν τ (λ)
ν (x) for f (x) = x Notation

Possibility 1 f −1
[λf (x)] [λx] τP (x)

Necessity 0 f −1
[λf (x) − (λ − 1)] [λx − (λ − 1)] τN (x)

Sharpness ν∗ = f −1
( 1
2

)
f −1

[λf (x) −
1
2 (λ − 1)] [λx −

1
2 (λ − 1)] τS (x)

Negation (λ = −1) ν∗ = f −1
( 1
2

)
f −1

[−f (x) + 1] [−x + 1] n(x)
intriguing theoretical problems [2]. Since the modeling is always
affected by the presence of different kinds of uncertainty, the use
of soft techniques is sensible. Fuzzy set theory is a language that
is capable to deal with uncertainty.

In the classical theory, preference is a binary relation closely
elated to the implications:

Ry ⇐⇒ ‘‘y is not worse than x’’.

Preferences between alternatives can also be described by a val-
ued preference relation p, such that the value p(x, y) is normal-
zed, and introduced as the degree to which the statement ‘‘y is
ot worse than x’’ is true:

(x, y) = truth of (y ≥ x).

ere, p is a continuous function, which is strictly decreasing in the
irst-, and strictly increasing in the second variable, meanwhile
(x, y) = n(p(y, x)) must also hold.
In accordance with the case of the implication defined as

a composition of the disjunction and the negation operator,
i(x, y) = d(n(x), y), it seems convincing to define the preference
operator by composing the aggregation and the negation oper-
ator, p(x, y) = a(n(x), y). In other words, by substituting n(x)
nd y in the commutative self-De Morgan weighted aggregative
perator, the operator a(n(x), y) has certain properties that are
imilar to those expected of a preference operator. Consequently,
t is sensible to define the preference operator in the following
ay:

efinition 9. Let w > 0 be a real parameter and f : [0, 1] →

0, 1] be an increasing bijection. Let us define the preference
perator as pw(x, y) = aw(n(x), y) = f −1

[
w(f (y) − f (x)) +

1
2

]
.

Remark 4. Note that for w =
1
2 , p 1

2
(x, y) = f −1

( 1
2 (f (y)−

f (x) + 1)), henceforth referred to as p(x, y).

Preference operators with different generator functions and
eights are illustrated in Fig. 1. The fact that the implication
nd the preference operators can be derived in a similar way as
ν,w(n(x), y) with ν = 1, ν = f −1

( 1
2

)
respectively, provides a

ossible explanation of the common misconception about their
se. Let us consider the following two examples:

f x < y and y < z, then x < z
4

If x → y and y → z, then x → z.

The first one is based on the property of the preference relation
describing the transitivity of preferences, whereas the second
one is based on the implication (hypothetical reasoning or hypo-
thetical syllogism). In our everyday language, we do usually not
distinguish between these two types of reasoning, and we tend
to confuse them [31].

4. Properties of the preference operator

In this Section, we give a systematic overview of the main
properties of the preference operator defined in Definition 9. First,
the basic properties are examined in Section 4.1. In Section 4.2,
we focus on the ordering properties, which play an outstanding
role in preference modeling. In Sections 4.3 to 4.5 a wide range
of compositions with other operators (namely the negation oper-
ator, the conjunction, the disjunction, the aggregation and some
other unary operators) are examined. Finally, additive transitivity
and bisymmetry are studied in Sections 4.6 and 4.7.

4.1. Basic properties

First, we examine some basic properties of the preference
operator pw(x, y). Note the similarities to the properties of im-
plications.

Proposition 2. The preference operator pw(x, y) has the following
properties:

1. Continuity;
2. Self-duality (SD, see also Section 4.3); i.e.

pw(x, y) = n(pw(n(x), n(y))); (SD)

3. Neutrality: pw(x, x) = ν∗;

4. Weak dominance of falsity of antecedent (WDF):

pw(0, y) ≥ ν∗ for all y ∈ [0, 1]; (WDF)

5. Weak dominance of truth of consequent (WDT):

pw(x, 1) ≥ ν∗ for all x ∈ [0, 1]; (WDT)

6. Boundary conditions ((BC), Compatibility)

p (0, 0) = p (1, 1) = ν ;
w w ∗
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Fig. 1. Preference operator with generator functions f (x) = x and f (x) =
√
x, for w = 1 and w = 0.5.
m

p

pw(0, 1) ≥ ν∗, pw(1, 0) ≤ ν∗; (BC)

7. Specially,

pw(0, 1) = 1, and pw(1, 0) = 0

if and only if w ≥
1
2 ;

8. Preference property (PP); i.e.

x < y if and only if pw(x, y) > ν∗; (PP)

9. Threshold transitivity (TT); i.e.

pw(x, y) > ν∗ and pw(y, z) > ν∗ ⇒ pw(x, z) > ν∗; (TT)

where ν∗ = f −1
( 1
2

)
.

Proof.

1. Follows directly from the continuity of f .
2. From the commutativity and self-duality of aw(x, y), we get

pw(x, y) = aw(n(x), y) = n(aw(x, n(y))) = n(pw(n(x), n(y))).
3. Follows from direct calculation.
4. pw(0, y) = f −1

[
wf (y) +

1
2

]
≥ f −1

( 1
2

)
= ν∗.

5. pw(x, 1) = f −1
[
w (1 − f (x)) +

1
2

]
≥ f −1

( 1
2

)
= ν∗.

6. pw(0, 0) = pw(1, 1) = f −1
( 1
2

)
= ν∗;

pw(0, 1) = f −1
[
w (f (1) − f (0)) +

1
2

]
= f −1

[ 1
2 + w

]
≥ ν∗;

pw(1, 0) = f −1
[
w (f (0) − f (1)) +

1
2

]
= f −1

[ 1
2 − w

]
≤ ν∗.

7. Follows directly from 6.
8. Since f is a strictly increasing function, x < y if and only

if f (x) < f (y). pw(x, y) = f −1
[
w (f (y) − f (x)) +

1
2

]
>

f −1
[ 1
2

]
= ν∗.

9. Follows directly from 8.

Remark 5. Note that in the first statement of (BC), ν∗ represents
he maximal level of uncertainty.

.2. Ordering properties

Next, we focus on the ordering properties, which play an
utstanding role in preference modeling. Note the similarities to
he implications.

roposition 3. The preference operator pw(x, y) satisfies:

1. the first place antitonicity:

for all x1, x2, y ∈ [0, 1]

(if x1 ≤ x2 then pw(x1, y) ≥ pw(x2, y)). (FA)

2. the second place isotonicity:

for all x, y1, y2 ∈ [0, 1]

(if y1 ≤ y2 then pw(x, y1) ≤ pw(x, y2)); (SI)
5

3. the weak ordering property:

pw(x, y) = 1 if and only if

x ≤ τ (y), y ≥ f −1
(

1
2w

)
, (WOP)

where x ∈ [0, 1], and τ (x) : [0, 1] → [0, 1] is an increasing
function.

4.

pw(x, y) = 0 if and only if

x ≥ ρ(y), y ≤ f −1
[
1 −

1
2w

]
,

where x ∈ [0, 1], and ρ(x) : [0, 1] → [0, 1] is an increasing
function.

Proof.

1. Follows directly from the monotonicity of f (x) :

pw(x, y1) = f −1
[
w (f (y1) − f (x)) +

1
2

]
≤ f −1

[
w (f (y2) − f (x)) +

1
2

]
.

2. Follows directly from the monotonicity of f (x) :

pw(x1, y) = f −1
[
w (f (y) − f (x1)) +

1
2

]
≥ f −1

[
w (f (y) − f (x2)) +

1
2

]
.

3. pw(x, y) = 1 if and only if

f −1
[
w (f (y) − f (x)) +

1
2

]
= 1;

i.e. f (y) − f (x) ≥
1
2w , which means x ≤ f −1

[
f (y) −

1
2w

]
,

where y ≥ f −1
( 1
2w

)
must hold. Therefore,

τ (y) = f −1
[
f (y) −

1
2w

]
is an increasing function with the expected property.

4. Similarly with

ρ(y) = f −1
[
f (y) +

1
2w

]
.

Remark 6. Note that in 3, for w =
1
2 , τ (y) = 0 for ∀y, which

eans that p 1
2
(x, y) = 1 if and only if x = 0, y = 1.

For w = 1, p1(x, y) = 1 if and only if y ≥ ν∗ and x ≤

f −1
[
f (y) −

1
2

]
≤ ν∗.

Similarly, in 4, for w =
1
2 , ρ(y) = 1 for ∀y, which means that

1 (x, y) = 0 if and only if x = 1, y = 0.

2
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For w = 1, p1(x, y) = 0 if and only if y ≥ ν∗ and x ≥

f −1
[
f (y) −

1
2

]
≥ ν∗.

4.3. Preference and negation

Next, we consider several compositions of the preference op-
erator with the negation operator. Here, we can see again that
the preference is closely related to the implication. The next
Proposition tells us that p(x, y) has similar properties to the law
of contraposition for implications.

Proposition 4. The preference operator p(x, y) satisfies the follow-
ng properties with respect to a strong negation n:

1.

pw(x, y) = pw(n(y), n(x)) for all x, y ∈ [0, 1];

2.

pw(x, y) = n (pw(y, x)) for all x, y ∈ [0, 1];

3.

n (pw(x, y)) = pw(n(x), n(y)) for all x, y ∈ [0, 1];

Proof. From the commutativity and self-duality of aw(x, y), we
get

pw(x, y) = aw(n(x), y) = aw(y, n(x)) = pw(n(y), n(x)).

Similarly for the other two statements.

4.4. Preference, conjunction and disjunction

Next, we examine compositions of the preference operator
with the main logical operators (conjunction and disjunction).

Proposition 5. The preference operator p(x, y) satisfies the follow-
ing properties:

1. Asymmetry:

c (pw(x, y), pw(y, x)) = 0; (AS)

2. S-strong completeness:

; d (pw(x, y), pw(y, x)) = 1 (SSC)

3. T-transitivity

c (p(x, y), p(y, z)) ≤ p(x, z). (TT)

Proof.

1. Let A := w(f (y) − f (x)), then

c (pw(x, y), pw(y, x)) = f −1
[[

A +
1
2

]
+

[
−A +

1
2

]
− 1

]
= f −1(0) = 0.

2. Similarly for the disjunction.
3. Follows from direct calculation, based on the fact that the

terms in [ ] have values between 0 and 1; i.e. the cutting
functions can be omitted.

4.5. Preference and aggregation

Next, we examine compositions of the preference operator
ith the aggregative operator a(x, y).

roposition 6. The preference operator p(x, y) satisfies the follow-
ng properties:
6

1. Transitivity

a (p(x, y), p(y, z)) = p(x, z)

2. Common Base

p(x, y) = a (p(y, z), p(z, x))

3. Inverse Property

y = a (x, p1(y, z))

4. Neutrality

ν∗ = a (p(x, y), p(y, x))

for all xi, yi ∈ [0, 1].

Proof. All statements follow from direct calculation, based on
the fact that the terms in [ ] have values between 0 and 1; i.e.
the cutting functions can be omitted.

4.6. Additive transitivity

In [32], Tanino examined different types of transitivities.
Among others, he also considered the so-called additive tran-
sitivity, where we understand p(x, y) −

1
2 to be an intensity of

preference of y over x.

efinition 10. p(x, y) is an additive preference, if

p(x, y) −
1
2

)
+

(
p(y, z) −

1
2

)
= p(x, z) −

1
2

(15)

olds.

roposition 7. p(x, y) is an additive preference, if and only if for
its generator function f (x) = x holds.

Proof.

1. The sufficiency of the condition follows from direct calcu-
lation.

2. To prove the necessity, let p(x, y) be a preference operator
generated by f (x). Let us define g(x) = f −1

(
x +

1
2

)
−

1
2 ,

a =
1
2 (f (y) − f (x)) and b =

1
2 (f (z) − f (y)). p(x, y) is an

additive preference, if and only if

g(a) + g(b) = g(a + b). (16)

The solution of this functional equation is g(a) = ca, c ̸=

0, c ∈ R. This means that

f −1(x) = g
(
x −

1
2

)
+

1
2

= c
(
x −

1
2

)
+

1
2
. (17)

From f −1(0) = 0 and f −1(1) = 1 follows c = 1 and
f (x) = x.

Remark 7. From the above proposition follows that an additive
preference has the form

p(x, y) =
1
2
(y − x + 1). (18)

emark 8. Note that the use of the generator function f (x) = x
eads to Łukasiewicz logic.

.7. Bisymmetry and common base property

When it comes to the problem of consistent aggregation, as-
ociativity and bisymmetry play an important role [33]. From
ggregation point of view, associativity is an excellent tool for
xtending a binary function to an n-ary one, however, in some
ases, bisymmetry can come even more handy.
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roposition 8. The preference operator p(x, y) is bisymmetric; i.e.

(p(x1, y1), p(x2, y2)) = p (p(x1, x2), p(y1, y2)) (BS)

holds for ∀xi, yi ∈ [0, 1].

Proof. Taking into account that the terms in [ ] all have values
between 0 and 1, the cutting functions can be omitted. This way,
the statement follows from direct calculation.

Proposition 9. The preference operator p(x, y) satisfies the common
base property; i.e.

p(x, y) = p (p(z, x), p(z, y)) (CB)

holds for ∀xi, yi ∈ [0, 1].

Proof. Taking into account that the terms in [ ] all have values
between 0 and 1, the cutting functions can be omitted. This way,
the statement follows from direct calculation.

4.8. Preference and unary operators

Unary operators (see Table 2) and therefore also membership
functions, which play a substantial role in the overall perfor-
mance of fuzzy representation, can also be interpreted as pref-
erence operators, as the following Proposition states. In the lit-
erature, membership functions are usually chosen independently
from the logical operators of the system. Parameters are normally
fine-tuned on the basis of pure experimental results. As recalled
in (14), modifiers and membership functions can be connected
to the logical operators of the system. Using operator-dependent
membership functions makes it possible to build up a system by
using a single generator function and a few parameters. More-
over, this can provide a theoretical explanation for the choice
of membership functions and modifiers. Now we show that the
unary operators can be interpreted as preferences:

Proposition 10.

τ (λ)
ν∗

(x) = pλ(ν∗, x),

τ
( 12 )
N (x) = p(1, x),

τ
( 12 )
P (x) = p(0, x),

where ν∗ = f −1
( 1
2

)
.

Proof. Follows from direct calculation.

5. Squashing functions and preference operators

Our attention can now be turned to the cutting function. The
main drawback of the cutting function in the nilpotent operator
family is the lack of differentiability, which would be necessary
for numerous practical applications. Although most fuzzy applica-
tions (e.g. embedded fuzzy control) use piecewise linear member-
ship functions owing to their easy handling, there are areas where
the parameters are learned by a gradient-based optimization
method. In this case, the lack of continuous derivatives makes the
application impossible. For example, the membership functions
have to be differentiable for each input in order to fine-tune
a fuzzy control system by a simple gradient-based technique.
This problem could be solved by using the so-called squashing
function family, which provides a solution to the aforementioned
problem by a continuously differentiable approximation of the
cutting function. As it was shown in [20,34], these squashing
functions have a promising application in the field of neural
computation.
7

Fig. 2. Squashing functions for a = 0.5, λ = 1, for different β values (β1 = 1,
β2 = 2, β3 = 5, and β4 = 50).

Fig. 3. Preference operators with w = 1 and w = 2, first using the cutting
function, then the squashing function with β = 3.

Definition 11. The squashing function [28,29] is defined as

S(β)a,λ(x) =
1

λβ
ln

1 + eβ(x−(a−λ/2))

1 + eβ(x−(a+λ/2)) =
1

λβ
ln

σ
(−β)
a+λ/2(x)

σ
(−β)
a−λ/2(x)

,

where x, a, λ, β ∈ R and σ
(β)
d (x) denotes the logistic function:

σ
(β)
d (x) =

1
1 + e−β·(x−d) . (19)

The squashing function given in Definition 11 is a continuously
differentiable approximation of the generalized cutting function
by means of sigmoid functions (see Fig. 2). By increasing the value
of β , the squashing function approaches the generalized cutting
function. In other words, β shows the accuracy of the approxi-
mation, while the parameters a and λ determine the center and
width. The error of the approximation can be upper bounded by
c/β , which means that by increasing the parameter β , the error
decreases by the same order of magnitude. The derivatives of the
squashing function are easy to calculate and can be expressed by
sigmoid functions and itself:

∂S(β)a,λ(x)
∂x

=
1
λ

(
σ

(β)
a−λ/2(x) − σ

(β)
a+λ/2(x)

)
(20)

Preference operators using squashing functions are illustrated
in Fig. 3.

6. Application in neural computation

While AI techniques, especially deep learning techniques, are
revolutionizing the business and technology world, there is an
increasing need to address the problem of interpretability and to
improve model transparency, performance, and safety: a problem
that is of vital importance to all our research community. This
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Fig. 4. Nilpotent neural network block designed for preference modeling, Example 1.
a

hallenge is closely related to the fact that although deep neural
etworks have achieved impressive experimental results, espe-
ially in image classification, they have shown to be surprisingly
nstable when it comes to adversarial perturbations: minimal
hanges to the input image may cause the network to misclassify
t. In [20], the authors introduced an idea of achieving eXplainable
rtificial Intelligence (XAI) by combining neural networks with
ontinuous logic as a promising way to approach the problem:
y this combination, the black-box nature of neural models can
e reduced, and the neural network-based models can become
ore interpretable, transparent, and safe. Based on the results
f the previous sections, beside logical operators, the preference
perator can also be implemented in neural models. As Eq. (12)
hows, perceptrons in neural networks can be modeled by the
hreshold-based nilpotent operator oν,w(x). Approximating the
utting function with the squashing function given in Section 5
eads to an interpretable neural model introduced in [20]. Here,
he weights of the first layer are to be learned, while the hidden
ayers of the pre-designed neural block work with frozen weights
nd biases. This explains how the preference operator, as a special
ase of oν,w(x), can also be modeled by a perceptron. By learning
the parameters of oν,w(x), the network can be trained to find out
hich operator to use. Moreover, based on Remark 2, the min and
ax operators can also be modeled in this framework.
To demonstrate the use of the preference operator in solv-

ng classification problems by neural network, we extended the
ensorflow Playground, an interactive visualization of neural net-
orks written in typescript, with the squashing function as acti-
ation function and created some new target data sets. In this
ection, we consider two examples to illustrate the architecture
nd performance of the suggested model, where the network has
o find different regions of positive examples. The data points
represented by small circles) are initially colored orange or blue,
hich correspond to positive one and negative one. This color-
oding is also used for neuron and weight values. In the output
ayer, the dots are colored orange or blue depending on their
riginal values. The background color shows what the network
8

is predicting for a particular area, while the intensity of the color
shows how confident that prediction is.

In the first example (referred to as Example 1), the parameters
of two straight lines separating the different regions have to be
learned. Here, the target variable is positive when both y <

11x + a12 and y > a21x + a22 hold or where both y > a11x + a12
and y < a21x + a22 hold. In a logical network:

– If y < a11x + a12 AND y > a21x + a22 THEN predict +1
– If y > a11x + a12 AND y < a21x + a22 THEN predict +1
– Else predict −1

We designed the neural architecture corresponding to the
preference modeling introduced in the previous sections: ‘‘AND’’
can be modeled by the conjunction operator, ‘‘OR’’ by the dis-
junction, while the expression x > y by the preference operator
p(x, y). The architecture of the model is illustrated in Fig. 4 (for
the weights see Table 1). Note that in the neural block modeling
preference, all the weights in the hidden layers are frozen, only
the weights of the input layer (the parameters of the straight lines
separating the different regions) are to be learned.

In the second example (referred to as Example 2), a more
complex region is to be found. Here, the positive examples lie
inside a circle or outside a region bordered by two straight lines.
The corresponding neural architecture can be seen in Fig. 5.

To show the practicality of the proposed method, a detailed
study on the performance of the model and a comparison with
further potential competitors are necessary. However, to provide
more detailed comparison and a thorough study would be out of
the scope of the present article and therefore is left for future
work. As for now, to underline the nice performance of the
squashing function, we present the results of an experiment using
the second example illustrated in Fig. 5. Here, the neural architec-
ture is designed as suggested in Example 2, but at this stage, all
the weights and biases are learnable. Table 3 shows a comparison
of the performance of the most popular activation functions. Note
that in this case, the squashing function outperforms the other
three types of activation functions (see Fig. 6).
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Fig. 5. Nilpotent neural network block designed for preference modeling, Example 2.
Fig. 6. Comparison of the performance of different activation functions in Example 2.
. Conclusion and future work

This work, as a part of a series of studies about nilpotent
ystems, suggests a consistent framework for MCDM and contin-
ous logical tools. In this framework, aggregation, preference, and
he logical operators are described by the same unary generator
unction.

Similarly to the implication being defined as a composition of
he disjunction and the negation operator, preference operators
ere introduced as a composition of the aggregative operators
nd the negation operator. The main properties were examined
ystematically and suggested a differentiable approximation for
he cutting function, the squashing function. Finally, we have
hown how the preference operator introduced in this work can
e modeled by a perceptron pointing towards applications in the

ield of neural computation for MCDM. The implementation of

9

this hybrid model in deeper networks (by combining the build-
ing blocks introduced here) and its application, illustrated with
simulations and further validation of the results is left for future
work. As a next step, we are working on a comparison with
extreme learning machines introduced in [35], where, similarly
to the model suggested in this work, the parameters of hidden
nodes need not be tuned. Extreme learning machines are able to
produce good generalization performance and learn thousands of
times faster than networks trained using backpropagation. Com-
bining extreme learning machines with the continuous logical
background can be a very promising direction towards a more
interpretable, transparent, and safe machine learning.

Supplemental research is also in progress aiming to explain
the empirical success of squashing functions in neural networks
by showing that the formulas describing this family follow from

natural symmetry requirements [34]. Moreover, we are currently
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erformance of the squashing function with β = 10, λ = 1, a = 0.5, compared to
eLu, Sigmoid and Tanh in Example 2, with learning rate 0.003, ratio of training
o test data: 70%.
Activation Function Number of Epochs Test Loss

Sigmoid 500 0.342
700 0.342
1000 0.341
1500 0.317

ReLu 500 0.317
700 0.295
1000 0.286
1500 0.251

Tanh 500 0.315
700 0.283
1000 0.252
1500 0.203

Squashing 500 0.387
700 0.367
1000 0.108
1500 0.061

in the process of investigating which ‘‘And’’- and ‘‘Or’’-operations
can be represented by the fastest (i.e., 1-Layer) neural networks,
and which activations functions allow such representations [36].
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