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Abstract

Huynh et al. introduced a probability-based fuzzy relation for comparing fuzzy numbers (see V. Huynh, Y. Nakamori and 
J. Lawry (2008) [40]), but they did not detail how to compute it. Here, we will consider this fuzzy relation as a probability-
based preference intensity index and present closed formulas for the integrals needed to compute this index for fuzzy sets that 
have trapezoidal membership functions. Also, we will propose an algorithm to compute this index and a numerical method to 
approximate it. The comparison of two fuzzy numbers should also be able to capture the situation where the order of the fuzzy 
numbers cannot be judged; and so, their order may be considered as being indifferent. Here, using the probability-based preference 
intensity index, we will introduce two crisp relations, which have a common parameter, over a collection of fuzzy sets that have 
trapezoidal membership functions. Next, we will show that - depending on the parameter value - one of them is a strict order 
relation and the other one may be interpreted as a relation that expresses the order indifference of fuzzy numbers. We will call this 
latter one the order indifference relation. Lastly, we will demonstrate how these two relations can be utilized to rank a collection of 
fuzzy sets that have trapezoidal membership functions.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Since the ranking of fuzzy numbers plays an important role in fuzzy decision-making, it has been in the focus of a 
lot of research [1–9]. There is a wide range of approaches available for tackling the problem of raking fuzzy numbers. 
The diversity of the methods is reflected in the literature of recent years. Wang [10] presented a method for ranking 
triangular and trapezoidal fuzzy numbers based on a relative preference relation. Chai et al. [11] developed an extended 
ranking method for fuzzy numbers, which is a synthesis of fuzzy targets and the application of Dempster–Shafer 
theory. Roldán López de Hierro et al. [12] demonstrated how a ranking method for fuzzy numbers can be applied 
to economic data. Gu and Xuan [13] proposed an approach for ranking fuzzy numbers by applying the possibility 
theory. Chutia and Chutia [14] introduced a value and ambiguity-based method for ranking parametric forms of 
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fuzzy numbers. Khorshidi and Nikfalazar [15] presented a similarity measure for generalized fuzzy numbers and its 
application to fuzzy risk analysis. Yu et al. [16] proposed a new epsilon-deviation degree approach which is based on 
the left and right areas of a fuzzy number and the concept of a centroid point. This method was developed further by 
Chutia [17]. Rahmani et al. [18] introduced a method for the defuzzification and ranking of fuzzy numbers based on 
the statistical beta distribution. Boulmakoul et al. [19] approached the ranking of fuzzy numbers by using an inclusion 
index and bitset encoding. Hesamian and Bahrami [20] introduced a credibility theory oriented preference index for 
ranking fuzzy numbers. It should be added that there is a lot of interest in ranking intuitionistic fuzzy numbers as well 
(see, e.g. [21–25]).

Based on the above-mentioned researches, the fuzzy number ranking methods can be classified into two main cat-
egories. One of them contains methods that are founded on defuzzification, the other one comprises procedures that 
compare fuzzy numbers using preference relations. The defuzzification-based approaches are simpler and easier than 
those which utilize a preference relation for pair-wise comparison of fuzzy numbers. We should note that defuzzifi-
cation, which is often founded on heuristics, leads to the loss of fuzzy messages, while the preference relation-based 
pair-wise comparisons are more complex procedures, but they preserve the fuzzy messages. Therefore, Yuan [26]
supposed that a fuzzy ranking method had to present preference relation in fuzzy terms. Wang [10] also emphasized 
that a fuzzy preference relation, through a membership function, represents a preference degree.

It is a well-known fact that characterization of preferences among fuzzy numbers is closely related to ranking of 
interval-valued quantities. Therefore, there are many publications on the ranking of intervals. Interval numbers can 
be used to estimate experts’ opinions (see, e.g. [27–30]). Also, interval-valued weights are widely applied in various 
decision making problems (see, e.g. [31–35]). Sengupta and Pal presented a comprehensive overview of the methods 
for comparing interval numbers [36]. Ordering interval numbers is an important task in multiple attribute decision 
making processes as well (see, e.g. [37–39]). The idea of utilizing probability measures to quantify the preference 
intensity between two intervals is not completely new (see, e.g. [28,22,36]).

1.1. The objective of this study

By introducing a probability-based methodology for comparison of fuzzy numbers, Huynh et al. [40] laid the foun-
dations of a novel approach to the problem of raking fuzzy numbers. They presented a probability-based comparison 
relation for two intervals and two fuzzy sets. Following their results, here, we will utilize the so-called probability-
based preference intensity indexes M and MF for two intervals and two fuzzy sets, respectively. Note that these 
indexes are the same as the above-mentioned probability-based comparison relations for two intervals and two fuzzy 
sets.

It should be added that in our study, we will follow a different approach from that presented by Huynh et al. 
Namely, we will introduce parametric crisp relations that are based on the index MF , study their algebraic properties 
and show how these crisp relations can be used to rank fuzzy numbers.

Here, we will present a novel characterization of intervals that results in simpler calculation formulas for the 
probability-based preference intensity index for two intervals.

Next, we will propose two methods for computing the index MF for two fuzzy sets that have trapezoidal mem-
bership functions. Namely, we will introduce an analytical and a numerical method for computing MF for fuzzy sets 
with trapezoidal membership functions. In our analytical method, we will present closed formulas for the integrals 
needed to compute MF for fuzzy sets that have trapezoidal membership functions. Also, we will propose an algorithm 
to compute MF using the closed formulas for the integrals.

It is worth noting that comparing two fuzzy numbers may not merely mean that one of them is preferred over 
the other. The comparison should also be able to capture the situation where the order of two fuzzy numbers can-
not be judged; and so, the order of these two fuzzy numbers may be considered as being indifferent. Here, using 
the probability-based preference intensity index MF for fuzzy sets with trapezoidal membership functions, we will 
introduce two crisp relations, which have a common parameter, over a collection of such fuzzy sets. Next, we will 
study the algebraic properties of these relations and show that one of them can be used as a strict order relation, and 
the other one may be interpreted as a relation that expresses the order indifference of fuzzy numbers. We will call 
this latter one the order indifference relation. We consider two fuzzy numbers as being comparable, when their order 
can be unambiguously determined. We will use our strict order relation to rank comparable fuzzy numbers, while the 
indifference relation is used to express that the order of some fuzzy numbers is indifferent. Lastly, in a comprehensive 
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case study, we will demonstrate how these two relations can be utilized to rank a collection of fuzzy sets that have 
trapezoidal membership functions.

This paper is organized as follows. In Section 2, we will discuss about the probability-based preference intensity 
index for intervals and fuzzy numbers. Next, in Section 3, we will present two methods for computing the probability-
based preference intensity index for two fuzzy sets with trapezoidal membership functions. In Section 4, we will 
propose two parametric relations over a collection of such fuzzy sets and demonstrate how these relations can be used 
to rank trapezoidal fuzzy numbers. Lastly, in Section 5, we will give a short summary of our findings and highlight 
our future research plans.

2. Probability-based preference intensity index for intervals and fuzzy numbers

Huynh et al. defined the probability-based comparison relation P(A � B) for the fuzzy numbers A and B as

P(A � B) =
1∫

0

P(Aα � Bα)dα, (1)

where Aα and Bα are the α-cut intervals of A and B , respectively, and the quantity P(Aα � Bα) is the probability-
based comparison relation for the intervals Aα and Bα [40]. In their paper, Huynh et al. also showed how to compute 
the probability-based comparison relation for two intervals [40].

Following their results, here, we will utilize the so-called probability-based preference intensity indexes M and MF

for two intervals and two fuzzy sets, respectively. Note that this index is the same as the above-mentioned probability-
based comparison relation for two intervals. However, we will follow a different approach from that presented by 
Huynh et al. [40]. Namely, we will introduce crisp relations that are based on index MF , study their algebraic proper-
ties and show how these crisp relations can be used to rank fuzzy numbers. Here, we will briefly summarize the most 
important properties of the probability-based preference intensity index for two intervals. Also, we will introduce a 
novel characterization of the intervals, which results in simpler computation formulas.

Let I be a collection of intervals on the real line and let I1, I2 ∈ I, I1 = [a1, b1] and I2 = [a2, b2]. Henceforth, we 
shall assume that a1 < b1 and a2 < b2.

Definition 1. The probability-based preference intensity index M : I × I → [0, 1] is given by

M (I1, I2) = μ(A)

μ(�)
,

where I1, I2 are two intervals in the collection I,

� = I1 × I2,

A = {(x, y) : (x, y) ∈ I1 × I2, x < y} ⊆ �,

and μ(R) is the area of the two-dimensional region R for any R ⊆ �.

Here, the function value M (I1, I2) represents the probability of x < y, where the values of x and y have been 
randomly chosen from the intervals I1 and I2, respectively. The quantity M (I1, I2) may be interpreted as a measure 
of how much the interval I1 precedes the interval I2.

Remark 1. The following properties of the probability-based preference intensity index M immediately follow from 
its definition:

(1) 0 ≤ M (I1, I2) ≤ 1 holds for any I1 = [a1, b1] and I2 = [a2, b2].
(2) M (I1, I2) is a continuous function of the variables a1, b1, a2 and b2.
(3) If the interval [a1, b1] entirely precedes the interval [a2, b2]; that is, b1 ≤ a2, then A = �; and so M (I1, I2) = 1.
(4) If the interval [a2, b2] entirely precedes the interval [a1, b1]; that is, b2 ≤ a1, then A = ∅; and so M (I1, I2) = 0.
(5) If I1 = I2, then M (I1, I2) = 1 .
2
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Fig. 1. A geometric interpretation of the probability-based preference intensity index M (I1, I2) for the intervals I1 = [a1, b1] and I2 = [a2, b2].

(6) (Reciprocity) If I1 = [a1, b1], I2 = [a2, b2] are two intervals on the real line, then

M(I1, I2) + M(I2, I1) = 1.

Note that due to the continuity of function M , in (3), we can write b1 < a2 instead of b1 ≤ a2, and in (4), we can write 
b2 < a1 instead of b2 ≤ a1.

It should be mentioned that the definition of the probability-based preference intensity index M is based on the 
notion that the inequality x0 ≤ y0 can be interpreted geometrically. Namely, x0 ≤ y0 holds if and only if the point 
(x0, y0) is in the upper half plane defined by the line y = x, where x0, y0, x, y ∈ R. Fig. 1 shows the geometric 
interpretation of the probability-based preference intensity index M (I1, I2) for the intervals I1 = [a1, b1] and I2 =
[a2, b2]. And it should be added that Chuan Yue used the same approach to define the possibility degree of the 
preference of two interval-valued intuitionistic fuzzy sets [22].

In Fig. 1, the probability-based preference intensity index M (I1, I2) is the ratio between the area of the gray-
colored polygon and the area of the rectangle PQRS, where the points P(a1, a2), Q(b1, a2), R(b1, b2) and S(a1, b2)

are determined by the intervals I1 = [a1, b1] and I2 = [a2, b2]. The gray-colored polygon is that part of the rectangle 
PQRS located in the upper half plane defined by the line y = x. It should be added that if the intervals I1 = [a1, b1]
and I2 = [a2, b2] are overlapping, then the line y = x intersects two adjacent sides of the rectangle PQRS (see 
Fig. 1b). Also, if one of the intervals I1 = [a1, b1] and I2 = [a2, b2] includes the other one, then the line y = x

intersects two opposing sides of the rectangle PQRS (see Fig. 1c).

2.1. Computing the probability-based preference intensity index for intervals

In the following, we will use the quantities:

l1 = b1 − a1

2
, l2 = b2 − a2

2
(2)

d = a2 + b2

2
− a1 + b1

2
. (3)

Here, 2l1 and 2l2 are the lengths (measures) of the intervals I1 = [a1, b1] and I2 = [a2, b2], respectively, and d is 
the (signed) distance between the midpoints of I2 and I1. The following theorem summarizes how to compute the 
probability-based preference intensity index for two intervals.
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Theorem 1. Let I1 = [a1, b1], I2 = [a2, b2] be two intervals on the real line. Then, the probability-based preference 
intensity index M(I1, I2) for the intervals I1 and I2 is

M(I1, I2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if a2 < b2 ≤ a1 < b1 (case 1: precedence)

1, if a1 < b1 ≤ a2 < b2 (case 2: precedence)

1 − (l1+l2−d)2

8l1l2
, if a1 < a2 < b1 < b2 (case 3: overlapping)

(l1+l2+d)2

8l1l2
, if a2 < a1 < b2 < b1 (case 4: overlapping)

1
2 + d

2l2
, if a2 ≤ a1 < b1 ≤ b2 (case 5: inclusion)

1
2 + d

2l1
, if a1 ≤ a2 < b2 ≤ b1 (case 6: inclusion),

(4)

where l1, l2 and d are given by Eq. (2) and Eq. (3).

Proof. The theorem immediately follows from the definition of M(I1, I2) by utilizing its geometric interpretation in 
Fig. 1 and the quantities in Eq. (2) and Eq. (3). �
Remark 2. It immediately follows from Theorem 1 that M(I1, I2) = 1

2 holds if and only if d = 0.

Remark 3. Let suppose that d 	= 0. Then, Eq. (4) can be written as

M(I1, I2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if a2 < b2 ≤ a1 < b1 (case 1: precedence)

1, if a1 < b1 ≤ a2 < b2 (case 2: precedence)

1 − (x+y−1)2

8xy
, if a1 < a2 < b1 < b2 (case 3: overlapping)

(x+y+1)2

8xy
, if a2 < a1 < b2 < b1 (case 4: overlapping)

1
2 + 1

2y
, if a2 ≤ a1 < b1 ≤ b2 (case 5: inclusion)

1
2 + 1

2x
, if a1 ≤ a2 < b2 ≤ b1 (case 6: inclusion),

where

x = l1

d
, y = l2

d
.

Noting that if d = 0, then either I1 ⊆ I2 or I2 ⊆ I1 and M(I1, I2) = 1
2 , the previous results can be summarized in such 

a way that the probability-based preference intensity index M(I1, I2) depends on the ratios l1
d

and l2
d

if d 	= 0, and it 
is 1

2 if d = 0.

3. Probability-based preference intensity index for trapezoidal fuzzy membership functions

Now, we will show how the probability-based preference intensity index for two intervals given in Definition 1 can 
be extended to two trapezoidal fuzzy membership functions.

Definition 2. The trapezoidal fuzzy membership function μA : R → [0, 1] with the parameters xL
A < xL

A ≤ xR
A < xR

A

is given by

μA

(
x;xL

A,xL
A,xR

A,xR
A

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x < xL
A

x−xL
A

xL
A−xL

A

, if xL
A ≤ x < xL

A

1, if xL
A ≤ x < xR

A
x−xR

A

xR
A−xR

A

, if xR
A ≤ x < xR

A

0, if xR ≥ x.

(5)
A
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Fig. 2. Plots of trapezoidal fuzzy membership functions of the fuzzy sets A and B .

Fig. 2 shows two examples of trapezoidal fuzzy membership functions. Note that if xL
A = xR

A, then the membership 
function μA, which is given in Definition 2, is a triangular membership function. Here, following the proposal of 
Huynh et al. [40] in Eq. (1), we will define the probability-based preference intensity index for two fuzzy sets that 
have trapezoidal membership functions.

Definition 3. Let A and B be two fuzzy sets that have the trapezoidal membership functions μA and μB with the pa-
rameters xL

A < xL
A ≤ xR

A < xR
A and xL

B < xL
B ≤ xR

B < xR
B , respectively. Then, the probability-based preference intensity 

index MF (A, B) for the fuzzy sets A and B is given by

MF (A,B) =
1∫

0

M (IA(α), IB(α))dα, (6)

where IA(α) and IB(α) are the α-cuts of the fuzzy sets A and B , respectively.

Since the fuzzy sets A and B have trapezoidal membership functions, the α-cuts IA(α) and IB(α) are given by the 
intervals

IA(α) = [aA(α), bA(α)], IB(α) = [aB(α), bB(α)],
where

aA(α) = αxL
A + (1 − α)xL

A, bA(α) = αxR
A + (1 − α)xR

A

aB(α) = αxL
B + (1 − α)xL

B, bB(α) = αxR
B + (1 − α)xR

B,
(7)

α ∈ [0, 1]. That is, the quantity MF (A, B) in Definition 3 exits. It also means that we interpret the probability-based 
preference intensity index MF (A, B) as the average of the M (IA(α), IB(α)) values, where α ∈ [0, 1].
Remark 4. Let A and B be two fuzzy sets that have trapezoidal membership functions with the parameters xL

A < xL
A ≤

xR
A < xR

A and xL
B < xL

B ≤ xR
B < xR

B , respectively. Then, the following properties of the probability-based preference 
intensity index MF (A, B) immediately follow from its definition:

(1) 0 ≤ MF (A,B) ≤ 1.
(2) MF (A,B) is a continuous function of the variables xL

A, xL
A, xR

A, xR
A, xL

B , xL
B , xR

B and xR
B .

(3) If xR
A ≤ xL

B , then MF (A,B) = 1.
(4) If xR

B ≤ xL
A, then MF (A,B) = 0.

(5) If A = B , then MF (A,B) = 1
2 .

From now on, according to Eq. (2) and Eq. (3), lA(α), lB(α) and d(α) are given by

lA(α) = bA(α) − aA(α)

2
, lB(α) = bB(α) − aB(α)

2
(8)

d(α) = aB(α) + bB(α)

2
− aA(α) + bA(α)

2
(9)

for any α ∈ [0, 1].
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Fig. 3. Examples of α-cuts when α ∈ [0, α1], α ∈ (α1, α2) and α ∈ [α2,1].

3.1. Reciprocity of the probability-based preference intensity index for fuzzy sets with trapezoidal membership 
functions

The following proposition demonstrates the reciprocity property of the probability-based preference intensity in-
dex MF .

Proposition 1. If A and B are two fuzzy sets that have trapezoidal membership functions, then

MF (A,B) + MF (B,A) = 1. (10)

Proof. Noting the definition of the function MF in Definition 3, and the reciprocity property of the probability-based 
preference intensity index M (see Remark 1), we have

MF (B,A) =
1∫

0

M (IB(α), IA(α))dα =
1∫

0

(1 − M (IA(α), IB(α)))dα =

= 1 −
1∫

0

M (IA(α), IB(α))dα = 1 − MF (A,B),

from which Eq. (10) follows. �
3.2. Computing the probability-based preference intensity index for fuzzy sets with trapezoidal membership functions

It should be mentioned here that, based on Theorem 1, the formula for the probability-based preference inten-
sity index M (IA(α), IB(α)) varies depending on whether the intervals IA(α) and IB(α) are disjoint, overlapping or 
including each other. For example, in Fig. 3, we can see that

• if α ∈ [0, α1], then IA(α) ⊆ IB(α)

• if α ∈ (α1, α2), then IA(α) and IB(α) are overlapping
• if α ∈ [α2, 1], then IA(α) and IB(α) are disjoint.

Therefore, to compute the integral in Eq. (6), we need to identify those disjoint sub-intervals of the interval [0, 1] in 
each of which the integrand is the same function. Since the fuzzy sets A and B have trapezoidal membership functions, 
intersections of the lateral sides of the trapezoids A and B determine sub-intervals in the interval [0, 1] so that in each 
of these sub-intervals the integrand is the same. In the example given in Fig. 3,

• if α ∈ [0, α1], then IA(α) ⊆ IB(α) and the integral that we need to calculate is

α1∫ (
1

2
+ d(α)

2lB(α)

)
dα
0
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• if α ∈ (α1, α2), then IA(α) and IB(α) are overlapping so that aA(α) < aB(α); that is, here we need to compute

α2∫
α1

(
1 − (lA(α) + lB(α) − d(α))2

8lA(α)lB(α)

)
dα

• if α ∈ [α2, α1], then IA(α) entirely precedes IB(α), and so we need to compute the integral

1∫
α2

1dα.

And so

MF (A,B) =
α1∫

0

(
1

2
+ d(α)

2lB(α)

)
dα+

+
α2∫

α1

(
1 − (lA(α) + lB(α) − d(α))2

8lA(α)lB(α)

)
dα +

1∫
α2

1dα.

Thus, more generally, according to Theorem 1, we will need to compute the following types of integrals:

Ip
aA≥bB

(α′, α′′) =
α′′∫

α′
0dα (11)

Ip
aB≥bA

(α′, α′′) =
α′′∫

α′
1dα (12)

Io
aA<aB

(α′, α′′) =
α′′∫

α′

(
1 − (lA(α) + lB(α) − d(α))2

8lA(α)lB(α)

)
dα (13)

Io
aA>aB

(α′, α′′) =
α′′∫

α′

(lA(α) + lB(α) + d(α))2

8lA(α)lB(α)
dα (14)

I i
IA⊆IB

(α′, α′′) =
α′′∫

α′

(
1

2
+ d(α)

2lB(α)

)
dα (15)

I i
IB⊆IA

(α′, α′′) =
α′′∫

α′

(
1

2
+ d(α)

2lA(α)

)
dα, (16)

where, α, α′, α′′ ∈ [0, 1] and α′ ≤ α′′. Here, the upper index of I indicates that for any α ∈ [α′, α′′] ⊆ [0, 1], the 
intervals IA(α) and IB(α) are preceding (p), overlapping (o), or including (i) each other, and the lower index of I
indicates the relative position of the intervals IA(α) and IB(α). Using these quantities and notations, the probability-
based preference intensity index MF(A, B) in the example given by Fig. 3 can be written as

MF (A,B) = I i
IA⊆IB

(0, α1) + Io
aA<aB

(α1, α2) + Ip
aB≥bA

(α2,1).

Here, we will show how to compute the integrals in equations from Eq. (11) to Eq. (16).
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3.2.1. Computing Ip
aA≥bB

(α′, α′′) and Ip
aB≥bA

(α′, α′′)
The integrals in Eq. (11) and Eq. (12) are trivial, namely

Ip
aA≥bB

(α′, α′′) = 0 (17)

Ip
aB≥bA

(α′, α′′) = α′′ − α′. (18)

In order to compute the integrals in Eq. (13), Eq. (14), Eq. (15) and Eq. (16), we need to use lA(α), lB(α) and d(α). 
Now, by using Eq. (8), Eq. (9) and the α-cuts given in Eq. (7), lA(α), lB(α) and d(α) can be written as

lA(α) = plAα + qlA (19)

lB(α) = plB α + qlB (20)

d(α) = pdα + qd, (21)

where

plA = 1

2

((
xR

A − xR
A

)
−

(
xL

A − xL
A

))
(22)

qlA = 1

2

(
xR

A − xL
A

)
(23)

plB = 1

2

((
xR

B − xR
B

)
−

(
xL

B − xL
B

))
(24)

qlB = 1

2

(
xR

B − xL
B

)
(25)

pd = 1

2

((
xR

B − xR
B

)
+

(
xL

B − xL
B

)
−

(
xL

A − xL
A

)
−

(
xR

A − xR
A

))
(26)

qd = 1

2

(
xL

B + xR
B − xL

A − xR
A

)
. (27)

3.2.2. Computing Io
aA<aB

(α′, α′′)
By using Eq. (19), Eq. (20), Eq. (21), the definitions of plA , qlA , plB , qlB , pd and qd , the integral Io

aA<aB
(α′, α′′)

in Eq. (13) can be written as

Io
aA<aB

(α′, α′′) =
α′′∫

α′

(
1 − (lA(α) + lB(α) − d(α))2

8lA(α)lB(α)

)
dα =

= α′′ − α′ −
α′′∫

α′

((
plA + plB − pd

)
α + (

qlA + qlB − qd

))2

8
(
plAα + qlA

) (
plB α + qlB

) dα.

(28)

Now, consider the integral∫
(A0x + B0)

2

(A1x + B1) (A2x + B2)
dx. (29)

By performing polynomial long division and applying partial fraction decomposition, we get that the integral in Eq. 
(29) is∫

(A0x + B0)
2

(A1x + B1) (A2x + B2)
dx =

= (A0B1 − A1B0)
2 ln (|A1x + B1|)

A2
1 (A1B2 − A2B1)

− (A0B2 − A2B0)
2 ln (|A2x + B2|)

A2
2 (A1B2 − A2B1)

+

+ A2
0x

A1A2
+ C,

(30)

where C is an arbitrary constant. Next, using Eq. (30), after direct calculation, Eq. (28) can be written as



J. Dombi, T. Jónás / Fuzzy Sets and Systems 399 (2020) 20–43 29
Io
aA<aB

(α′, α′′) =
(

1 − A2
0

8A1A2

)(
α′′ − α′)+

+ (A0B2 − A2B0)
2

8A2
2 (A1B2 − A2B1)

ln

∣∣∣∣A2α
′′ + B2

A2α′ + B2

∣∣∣∣−
− (A0B1 − A1B0)

2

8A2
1 (A1B2 − A2B1)

ln

∣∣∣∣A1α
′′ + B1

A1α′ + B1

∣∣∣∣ ,
(31)

where

A0 = plA + plB − pd, B0 = qlA + qlB − qd

A1 = plA, B1 = qlA, A2 = plB , B2 = qlB .

Now, by noting the equations from Eq. (22) to Eq. (27), after direct calculation, we get

A0 =
(
xR

A − xR
A

)
−

(
xL

B − xL
B

)
, B0 = xR

A − xL
B

A1 = 1

2

((
xR

A − xR
A

)
−

(
xL

A − xL
A

))
, B1 = 1

2

(
xR

A − xL
A

)
A2 = 1

2

((
xR

B − xR
B

)
−

(
xL

B − xL
B

))
, B2 = 1

2

(
xR

B − xL
B

)
.

(32)

3.2.3. Computing Io
aA>aB

(α′, α′′)
By noting Eq. (19), Eq. (20), Eq. (21), the definitions of plA , qlA , plB , qlB , pd and qd , the integral Io

aA>aB
(α′, α′′)

in Eq. (14) can be written as

Io
aA>aB

(α′, α′′) =
α′′∫

α′

(lA(α) + lB(α) + d(α))2

8lA(α)lB(α)
dα =

=
α′′∫

α′

((
plA + plB + pd

)
α + (

qlA + qlB + qd

))2

8
(
plAα + qlA

) (
plB α + qlB

) dα.

(33)

Next, by taking into account (30), Eq. (33) can be written as

Io
aA>aB

(α′, α′′) = A2
0

8A1A2

(
α′′ − α′)+

+ (A0B1 − A1B0)
2

8A2
1 (A1B2 − A2B1)

ln

∣∣∣∣A1α
′′ + B1

A1α′ + B1

∣∣∣∣−
− (A0B2 − A2B0)

2

8A2
2 (A1B2 − A2B1)

ln

∣∣∣∣A2α
′′ + B2

A2α′ + B2

∣∣∣∣ ,
(34)

where

A0 = plA + plB + pd, B0 = qlA + qlB + qd

A1 = plA, B1 = qlA, A2 = plB , B2 = qlB .

Now, by using the equations from Eq. (22) to Eq. (27), after direct calculation, we get

A0 =
(
xR

B − xR
B

)
−

(
xL

A − xL
A

)
, B0 = xR

B − xL
A

A1 = 1

2

((
xR

A − xR
A

)
−

(
xL

A − xL
A

))
, B1 = 1

2

(
xR

A − xL
A

)
A2 = 1 ((

xR
B − xR

B

)
−

(
xL

B − xL
B

))
, B2 = 1 (

xR
B − xL

B

)
.

(35)
2 2
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3.2.4. Computing I i
IA⊆IB

(α′, α′′)
By using Eq. (20), Eq. (21), the definitions of plB , qlB , pd and qd , the integral I i

IA⊆IB
(α′, α′′) in Eq. (15) can be 

written as

I i
IA⊆IB

(α′, α′′) =
α′′∫

α′

(
1

2
+ d(α)

2lB(α)

)
dα =

= 1

2

(
α′′ − α′) + 1

2

α′′∫
α′

pdα + qd

plB α + qlB

dα.

(36)

Now, consider the integral∫
A0x + B0

A1x + B1
dx. (37)

It can be shown that the integral in Eq. (37) is∫
A0x + B0

A1x + B1
dx =

= A0

A1
x − (A0B1 − A1B0) ln (|A1x + B1|)

A2
1

+ C,

(38)

where C is an arbitrary constant. Next, using Eq. (38), after direct calculation, Eq. (36) can be written as

I i
IA⊆IB

(α′, α′′) =
= 1

2

(
α′′ − α′)(

1 + A0

A1

)
− (A0B1 − A1B0)

2A2
1

ln

∣∣∣∣A1α
′′ + B1

A1α′ + B1

∣∣∣∣ , (39)

where

A0 = pd, B0 = qd A1 = plB , B1 = qlB .

Now, by using Eq. (24), Eq. (25), Eq. (26) and Eq. (27), we have

A0 = 1

2

((
xR

B − xR
B

)
+

(
xL

B − xL
B

)
−

(
xL

A − xL
A

)
−

(
xR

A − xR
A

))
B0 = 1

2

(
xL

B + xR
B − xL

A − xR
A

)
A1 = 1

2

((
xR

B − xR
B

)
−

(
xL

B − xL
B

))
, B1 = 1

2

(
xR

B − xL
B

)
.

(40)

3.2.5. Computing I i
IB⊆IA

(α′, α′′)
Here, we seek to compute the following integral:

I i
IB⊆IA

(α′, α′′) =
α′′∫

α′

(
1

2
+ d(α)

2lA(α)

)
dα. (41)

Notice that this integral has the same form as the integral I i
IA⊆IB

(α′, α′′) in Eq. (36). Therefore, by noting Eq. (36)
and Eq. (42), we get

I i
IB⊆IA

(α′, α′′) =
= 1

2

(
α′′ − α′)(

1 + A0

A1

)
− (A0B1 − A1B0)

2A2
1

ln

∣∣∣∣A1α
′′ + B1

A1α′ + B1

∣∣∣∣ , (42)

where
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A0 = pd, B0 = qd A1 = plA, B1 = qlA.

Next, by using Eq. (22), Eq. (23), Eq. (26) and Eq. (27), we have

A0 = 1

2

((
xR

B − xR
B

)
+

(
xL

B − xL
B

)
−

(
xL

A − xL
A

)
−

(
xR

A − xR
A

))
B0 = 1

2

(
xL

B + xR
B − xL

A − xR
A

)
A1 = 1

2

((
xR

A − xR
A

)
−

(
xL

A − xL
A

))
, B1 = 1

2

(
xR

A − xL
A

)
.

(43)

(Note that the discontinuities of Io
aA<aB

(α′, α′′), Io
aA>aB

(α′, α′′), I i
IA⊆IB

(α′, α′′) and I i
IB⊆IA

(α′, α′′) are all remov-
able.)

3.3. Computation methods

Now we will introduce two methods that can be utilized in practice to compute the probability-based preference 
intensity index MF (A, B) for the fuzzy sets A and B when they have trapezoidal membership functions. First, we 
will introduce an analytical method, and then we will discuss a numerical one.

3.3.1. Analytical approach
Let A and B be two fuzzy sets that have the trapezoidal membership functions μA and μB with the parameters 

xL
A < xL

A ≤ xR
A < xR

A and xL
B < xL

B ≤ xR
B < xR

B , respectively, as defined in Definition 2. Then, the left hand side line 
SL

A(x) and the right hand side line SR
A(x) of the trapezoid A are given by the equations

SL
A(x) = x − xL

A

xL
A − xL

A

, SR
A(x) = x − xR

A

xR
A − xR

A

.

Similarly, the left hand side line SL
B(x) and the right hand side line SR

B (x) of the trapezoid B are given by the equations

SL
B(x) = x − xL

B

xL
B − xL

B

, SR
B (x) = x − xR

B

xR
B − xR

B

.

The intersection points of the lateral sides of the trapezoids A and B can be derived by solving the equations

SL
A(x) = SL

B(x), SL
A(x) = SR

B (x), SR
A(x) = SL

B(x), SR
A(x) = SR

B (x). (44)

Notice that the equations in Eq. (44) all have the following form:

x − a

b − a
= x − c

d − c
. (45)

That is,

• if a = xL
A, b = xL

A, c = xL
B and d = xL

B , then Eq. (45) is SL
A(x) = SL

B(x)

• if a = xL
A, b = xL

A, c = xR
B and d = xR

B , then Eq. (45) is SL
A(x) = SR

B (x)

• if a = xR
A, b = xR

A, c = xL
B and d = xL

B , then Eq. (45) is SR
A(x) = SL

B(x)

• if a = xR
A, b = xR

A, c = xR
B and d = xR

B , then Eq. (45) is SR
A(x) = SR

B (x).

(Note that since xL
A < xL

A ≤ xR
A < xR

A and xL
B < xL

B ≤ xR
B < xR

B hold, b 	= a and d 	= c.) Obviously, if the two sides 
of Eq. (45) represent two parallel lines; that is, when b − a = d − c, then Eq. (45) has no solution. Otherwise, the 
solution of Eq. (45) is

xα = ad − bc

a − b + d − c

and the vertical coordinate of the intersection point corresponding to xα is
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Fig. 4. Two trapezoidal membership functions with three intersections.

α = a − c

a − b + d − c
.

From the intersection points obtained from the equations in Eq. (44), we need only those whose vertical coordinates 
are in the interval (0, 1). Notice that there can be at most three intersections with vertical coordinates in the interval 
(0, 1) obtained from the equations in Eq. (44). For example, if the equation SL

A(x) = SL
B(x) has such a solution and 

the equation SR
A(x) = SL

B(x) also has such a solution, then the equation SL
A(x) = SR

B (x) cannot not have any solution 
for which SL

A(x) ∈ (0, 1) (and also SR
B (x) ∈ (0, 1)). An example for this is shown in Fig. 4. Therefore, the lateral sides 

of the trapezoids A and B can have zero, one, two or three intersections with vertical coordinates in the interval (0, 1). 
It should also be added that we are interested only in those intersection points that have different vertical coordinates. 
This is because if the vertical coordinates of two intersection points are the same, then these do not represent any case 
for computing the integral MF (A, B). For example, suppose that the intersections (x1, α1) and (x2, α2) in Fig. 4 had 
the same vertical coordinates; that is, α1 = α2. Then, MF (A, B) would be computed as

MF (A,B) = Io
aA>aB

(0, α1) + Io
aA<aB

(α1, α3) + Ip
aB≥bA

(α3,1).

Note that if α1 < α2, as it is originally in Fig. 4, then M(A, B) can be computed as

MF (A,B) = Io
aA>aB

(0, α1) + I i
IB⊆IA

(α1, α2)+
+ Io

aA<aB
(α2, α3) + Ip

aB≥bA
(α3,1).

Based on the considerations and results above, a method for computing the probability-based preference intensity 
index MF (A, B) for the fuzzy sets A and B when they have trapezoidal membership functions can be summarized as 
follows.

Method 1. Computing the probability-based preference intensity index MF(A, B) for the fuzzy sets A and B when 
they have trapezoidal membership functions.

INPUTS: parameters xL
A < xL

A ≤ xR
A < xR

A and xL
B < xL

B ≤ xR
B < xR

B of the trapezoidal membership functions of the 
fuzzy sets A and B , respectively.

Step 1: S = ∅
Step 2:

• If xL
A − xL

A 	= xL
B − xL

B , then

α1 = xL
A − xL

B

xL
A − xL

A + xL
B − xL

B

;

• If xL
A − xL

A 	= xR
B − xR

B , then

α2 = xL
A − xR

B

xL − xL + xR − xR
;

A A B B
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• If xR
A − xR

A 	= xL
B − xL

B , then

α3 = xR
A − xL

B

xR
A − xR

A + xL
B − xL

B

;

• If xR
A − xR

A 	= xR
B − xR

B , then

α4 = xR
A − xR

B

xR
A − xR

A + xR
B − xR

B

;

Step 3:
For all i ∈ {1, 2, 3, 4}

if αi ∈ (0, 1) and αi /∈ S , then S := S ∪ {αi};
End for

Step 4:
n := |S|;
Let the ordered set {α′

1, . . . , α
′
n} contain all the elements of S

set in increasing order;
α′

0 := 0, α′
n+1 = 1;

Step 5:
MF (A, B) := 0.
For all i ∈ {0, . . . , n}

α∗
i := α′

i + α′
i+1

2
aA(α∗

i ) := α∗
i xL

A + (1 − α∗
i )xL

A, bA(α∗
i ) = α∗

i xR
A + (1 − α∗

i )xR
A

aB(α∗
i ) := α∗

i xL
B + (1 − α∗

i )xL
B, bB(α∗

i ) = α∗
i xR

B + (1 − α∗
i )xR

B

Mi :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ip
aA≥bB

(α′
i , α

′
i+1), if aB(α∗

i ) < bB(α∗
i ) ≤ aA(α∗

i ) < bA(α∗
i )

Ip
aB≥bA

(α′
i , α

′
i+1), if aA(α∗

i ) < bA(α∗
i ) ≤ aB(α∗

i ) < bB(α∗
i )

Io
aA<aB

(α′
i , α

′
i+1), if aA(α∗

i ) < aB(α∗
i ) < bA(α∗

i ) < bB(α∗
i )

Io
aA>aB

(α′
i , α

′
i+1), if aB(α∗

i ) < aA(α∗
i ) < bB(α∗

i ) < bA(α∗
i )

I i
IA⊆IB

(α′
i , α

′
i+1), if aB(α∗

i ) ≤ aA(α∗
i ) < bA(α∗

i ) ≤ bB(α∗
i )

I i
IB⊆IA

(α′
i , α

′
i+1), if aA(α∗

i ) ≤ aB(α∗
i ) < bB(α∗

i ) ≤ bA(α∗
i )

MF (A,B) := MF (A,B) + Mi

End for

OUTPUT: MF (A, B).

The formulas for the integrals needed to calculate Mi ; that is, Ip
aA≥bB

(α′
i , α

′
i+1), I

p
aB≥bA

(α′
i , α

′
i+1), Io

aA<aB
(α′

i , α
′
i+1),

Io
aA>aB

(α′
i , α

′
i+1), I i

IA⊆IB
(α′

i , α
′
i+1) and I i

IB⊆IA
(α′

i , α
′
i+1) were computed in Section 3.2.

3.3.2. Numerical approximation
Here again, let A and B be two fuzzy sets that have the trapezoidal membership functions μA and μB with 

the parameters xL
A < xL

A ≤ xR
A < xR

A and xL
B < xL

B ≤ xR
B < xR

B , respectively, as defined in Definition 2. Now, we 
will introduce a numerical approach to approximate the probability-based preference intensity index MF(A, B). Let 
n > 0 be a fixed integer and let α1, α2, . . . , αn be n equidistant points in the interval [0, 1] such that αi = i for 
n
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i = 1, 2, . . . , n. Recall that since the fuzzy sets A and B have trapezoidal membership functions, the αi-cuts of A and 
B are the intervals IA(αi) and IB(αi), respectively, where

IA(αi) = [aA(αi), bA(αi)], IB(αi) = [aB(αi), bB(αi)],
and

aA(αi) = αix
L
A + (1 − αi)x

L
A, bA(αi) = αxR

A + (1 − αi)x
R
A

aB(αi) = αix
L
B + (1 − αi)x

L
B, bB(αi) = αxR

B + (1 − αi)x
R
B.

Next, if n is sufficiently large, for example n = 1000, then the integral

MF (A,B) =
1∫

0

M (IA(α), IB(α))dα

can be approximated quite well by the following average:

1

n

n∑
i=1

M (IA(αi), IA(αi)) ,

where

M (IA(αi), IA(αi)) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if aB(αi) < bB(αi) ≤ aA(αi) < bA(αi)

1, if aA(αi) < bA(αi) ≤ aB(αi) < bB(αi)

1 − (lA(αi )+lB (αi )−d(αi ))
2

8lA(αi )lB(αi )
, if aA(αi) < aB(αi) < bA(αi) < bB(αi)

(lA(αi )+lB (αi )+d(αi))
2

8lA(αi )lB(αi )
, if aB(αi) < aA(αi) < bB(αi) < bA(αi)

1
2 + d(αi )

2lB (αi )
, if aB(αi) ≤ aA(αi) < bA(αi) ≤ bB(αi)

1
2 + d(αi )

2lA(αi )
, if aA(αi) ≤ aB(αi) < bB(αi) ≤ bA(αi)

and

lA(αi) = bA(αi) − aA(αi)

2
, lB(αi) = bB(αi) − aB(αi)

2

d(αi) = aB(αi) + bB(αi)

2
− aA(αi) + bA(αi)

2
for any αi ∈ [0, 1]. Therefore, a method for approximating the probability-based preference intensity index MF(A, B)

for the fuzzy sets A and B when they have trapezoidal membership functions can be summarized as follows.

Method 2. Computing the probability-based preference intensity index M(A, B) for the fuzzy sets A and B when 
they have trapezoidal membership functions.

INPUTS: parameters xL
A < xL

A ≤ xR
A < xR

A and xL
B < xL

B ≤ xR
B < xR

B of the trapezoidal membership functions of the 
fuzzy sets A and B , respectively.

S = 0;
n = 1000;
For all i ∈ {1, . . . , n}

αi := i

n

aA(αi) := αix
L
A + (1 − αi)x

L
A;

bA(αi) := αxR
A + (1 − αi)x

R
A;
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Fig. 5. The trapezoidal membership functions of the fuzzy sets A and B .

aB(αi) := αix
L
B + (1 − αi)x

L
B;

bB(αi) := αxR
B + (1 − αi)x

R
B;

lA(αi) := bA(αi) − aA(αi)

2
;

lB(αi) := bB(αi) − aB(αi)

2
;

d(αi) := aB(αi) + bB(αi)

2
− aA(αi) + bA(αi)

2
;

Mi :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if aB(αi) < bB(αi) ≤ aA(αi) < bA(αi)

1, if aA(αi) < bA(αi) ≤ aB(αi) < bB(αi)

1 − (lA(αi )+lB (αi )−d(αi ))
2

8lA(αi )lB (αi )
, if aA(αi) < aB(αi) < bA(αi) < bB(αi)

(lA(αi )+lB (αi )+d(αi ))
2

8lA(αi )lB(αi )
, if aB(αi) < aA(αi) < bB(αi) < bA(αi)

1
2 + d(αi )

2lB (αi )
, if aB(αi) ≤ aA(αi) < bA(αi) ≤ bB(αi)

1
2 + d(αi)

2lA(αi )
, if aA(αi) ≤ aB(αi) < bB(αi) ≤ bA(αi)

S := S + Mi;
End for
MF (A, B) := S

n
;

OUTPUT: MF (A, B).

3.3.3. A demonstrative example
Here, we will demonstrate how our analytical and numerical methods can be applied in practice to compute the 

probability-based preference intensity index MF(A, B) for the fuzzy sets A and B when they have trapezoidal mem-
bership functions.

Let A and B be two fuzzy sets that have the trapezoidal membership functions μA and μB with the parameters 
xL

A < xL
A ≤ xR

A < xR
A and xL

B < xL
B ≤ xR

B < xR
B , respectively, as defined in Definition 2. Let the parameter values be

xL
A = 3, xL

A = 6, xR
A = 9, xR

A = 11

xL
B = 2, xL

B = 9.75, xR
B = 10.25, xR

B = 10.5

The trapezoidal membership functions of the fuzzy sets A and B are shown in Fig. 5. Firstly, we will compute 
MF (A, B) according to our analytical method. With this method, the vertical coordinates of the intersections of the 
lateral sides of the trapezoids A and B are

α1 = xL
A − xL

B

xL − xL + xL − xL
= 0.2105
A A B B
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α2 = xL
A − xR

B

xL
A − xL

A + xR
B − xR

B

= 2.3077

α3 = xR
A − xL

B

xR
A − xR

A + xL
B − xL

B

= 0.9231

α4 = xR
A − xR

B

xR
A − xR

A + xR
B − xR

B

= 0.2857.

Here, the set S is

S = {αi : αi ∈ (0,1), i = 1,2,3,4} = {0.2105,0.9231,0.2857},
and its cardinality is n = 3. That is, the trapezoids A and B have three intersection points. Therefore the ordered set 
{α′

1, α
′
2, α

′
3} which contains all the elements of set S is

{α′
1, α

′
2, α

′
3} = {0.2105,0.2857,0.9231}.

That is, α′
1 = 0.2105, α′

2 = 0.2857 and α′
3 = 0.9231; and we also have α′

0 = 0 and α′
4 = 1. With our analytical method, 

we have

α∗
0 = α′

0 + α′
1

2
= 0.1053

aA(α∗
0) = 3.3158, bA(α∗

0) = 10.7895

aB(α∗
0) = 2.8158, bB(α∗

0) = 10.4737

and since aB(α∗
i ) < aA(α∗

i ) < bB(α∗
i ) < bA(α∗

i ) holds, we need to compute M0 = Io
aA>aB

(0, α′
1). Using the formula 

for the integral Io
aA>aB

(α′, α′′), we get

M0 = Io
aA>aB

(0, α′
1) = 0.0945.

By continuing the method for i = 1, 2, 3, we get

M1 = I i
IB⊆IA

(α′
1, α

′
2) = 0.0383

M2 = Io
aA<aB

(α′
2, α

′
3) = 0.4783

M3 = Ip
aB≥bA

(α′
3,1) = 0.0769,

and so MF (A, B) = M0 + M1 + M2 + M3 = 0.6880.
If we execute our numerical method with the parameter value n = 1000, then we get MF (A, B) ≈ 0.6883, which 

is very close to the analytically computed value of MF(A, B). It is worth mentioning here that if we run the approxi-
mation with the parameter value n = 100, then we get MF (A, B) ≈ 0.6909, which is still quite a good approximation 
of the exact value.

4. Ranking fuzzy sets with trapezoidal membership functions using the probability-based preference intensity 
index

Now, using the probability-based preference intensity index for fuzzy sets with trapezoidal membership functions, 
we will introduce a relation over a collection of such fuzzy sets and demonstrate that this relation is irreflexive and 
antisymmetric.

Definition 4. Let F be a collection of fuzzy sets with trapezoidal membership functions. The binary relation ≺F over 
the collection F is given by

≺F :=
{
(A,B) ∈ F × F : MF (A,B) >

1
}

.

2
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Fig. 6. Intransitivity of ≺F : A ≺F B , B ≺F C, but A⊀F C.

In other words, based on Definition 4, the relation A ≺F B holds if and only if MF (A, B) > 1
2 , where A and B are 

two fuzzy sets with trapezoidal membership functions. The following proposition demonstrates the irreflexivity and 
antisymmetry properties of relation ≺F over a collection of fuzzy sets that have trapezoidal membership functions.

Proposition 2. The relation ≺F given in Definition 4 is irreflexive and antisymmetric.

Proof. Let F be a collection of fuzzy sets with trapezoidal membership functions. Here, we intend to show that 
relation ≺F is

(1) irreflexive, i.e., A ⊀F A holds for any A ∈ F
(2) antisymmetric, i.e., if A ≺F B , then B ⊀F A for any A, B ∈ F.

(1) (Irreflexivity.) Since MF (A, A) = 1
2 for any A ∈ F, based on Definition 4, A ≺F A does not hold.

(2) (Antisymmetry.) Let A, B ∈ F such that A ≺F B . Then, based on Definition 4, MF (A, B) > 1
2 . Now, by 

noting the reciprocity property of function MF (see Proposition 1), we have MF (A, B) + MF (B, A) = 1 and so 
MF (B, A) < 1

2 , which means that B ⊀F A. �
Note that if the relation ≺F given in Definition 4 were also transitive; i.e., if A ≺F B and B ≺F C, then A ≺F C

for any A, B, C ∈ F, then ≺F would meet all the criteria for a strict order. In Fig. 6, we can see the trapezoidal 
membership functions of three fuzzy sets, A, B and C, with the following parameters:

xL
A = 45, xL

A = 48, xR
A = 52, xR

A = 63

xL
B = 23, xL

B = 55, xR
B = 58, xR

B = 64

xL
C = 1, xL

C = 60, xR
C = 63, xR

C = 66

By using Method 1 in Section 3.3, we get

MF (A,B) = 0.5094, MF (B,C) = 0.5070, MF (A,C) = 0.4845,

meaning that A ≺F B and B ≺F C both hold, but A ≺F C does not hold. This example tells us that the relation 
≺F over a collection of fuzzy sets with trapezoidal membership functions is not transitive. It should be added that 
in this example, there are very small differences among the MF values, which is in line with the human perception 
that judging the order of these fuzzy sets is difficult; and so, we tend to consider their order as being indifferent. 
In the following, using the probability-based preference intensity index for fuzzy sets with trapezoidal membership 
functions, we will introduce a parametric relation over a collection of such fuzzy sets and show that this relation can 
be turned into a strict order relation.

Definition 5. Let F be a collection of fuzzy sets with trapezoidal membership functions. The binary relation ≺(δ)
F over 

the collection F is given by

≺(δ)
F :=

{
(A,B) ∈ F × F : MF (A,B) ≥ 1

2
+ δ

}
,

where δ ∈ (0, 1/2].
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Theorem 2. Let F be a collection of fuzzy sets with trapezoidal membership functions and let the binary relation ≺(δ)
F

over the collection F be given by Definition 5. Then, there exists a δ ∈ (0, 1/2] such that ≺(δ)
F is a strict order relation 

over F.

Proof. We will show that if δ = 1
2 , then ≺(δ)

F is a strict order relation. In order to prove this, we need to show that ≺(δ)
F

is

(1) irreflexive, i.e., A ⊀(δ)
F A holds for any A ∈ F

(2) antisymmetric, i.e., if A ≺(δ)
F B , then B ⊀

(δ)
F A holds for any A, B ∈ F

(3) transitive, i.e., if A ≺(δ)
F B and B ≺(δ)

F C, then A ≺(δ)
F C holds for any A, B, C ∈ F.

(1) (Irreflexivity.) Since MF (A, A) = 1
2 for any A ∈ F, based on Definition 5, A ≺(δ)

F A does not hold.

(2) (Antisymmetry.) Let A, B ∈ F such that A ≺(δ)
F B . Then, based on Definition 5, MF (A, B) ≥ δ + 1

2 > 1
2 . Now, 

by noting the reciprocity property of function MF (see Proposition 1), we have MF (A, B) + MF (B, A) = 1; and so 
MF (B, A) < 1

2 , which means that B ⊀
(δ)
F A.

(3) (Transitivity.) Let A, B ∈ F such that A ≺(δ)
F B and B ≺(δ)

F C. Then, based on Definition 5, noting that δ = 1
2 , 

we have MF (A, B) ≥ 1 and MF (B, C) ≥ 1. Since MF (A, B) ≤ 1 and MF (B, C) ≤ 1 (see Remark 4), we get that 
MF (A, B) = 1 and MF (B, C) = 1. Noting the fact that

MF (A,B) =
1∫

0

M (IA(α), IB(α))dα,

where IA(α) and IB(α) are the α-cut intervals of A and B , respectively, and the fact that M (IA(α), IB(α)) ≤ 1 for any 
α ∈ [0, 1], we get that MF (A, B) = 1 can hold only if M (IA(α), IB(α)) = 1 for any α ∈ [0, 1]. Now, by noting The-
orem 1, we know that M (IA(α), IB(α)) = 1 holds only if the interval IA(α) = [aA(α), bA(α)] entirely precedes the 
interval IB(α) = [aB(α), bB(α)]. That is, bA(α) < aB(α) holds for any α ∈ [0, 1]. Similarly, MF (B, C) = 1 implies 
that bB(α) < aC(α) holds for any α ∈ [0, 1], where IC(α) = [aC(α), bC(α)] is the α-cut interval of C. Therefore, by 
noting that bA(α) < aB(α) < bB(α) < aC(α) for any α ∈ [0, 1], we have that the interval IA(α) entirely precedes the 
interval IC(α) for any α ∈ [0, 1], which, based on Theorem 1, means that M (IA(α), IC(α)) = 1 for any α ∈ [0, 1]; 
and so,

MF (A,C) =
1∫

0

M (IA(α), IC(α))dα = 1. (46)

Considering Definition 5 and the fact that δ = 1
2 , Eq. (46) tells us that A ≺(δ)

F C holds. That is, if δ = 1
2 , then A ≺(δ)

F B

and B ≺(δ)
F C imply A ≺(δ)

F C. �
In Theorem 2, we demonstrated that the relation ≺(δ)

F is transitive if δ = 1
2 . In practice, for a given finite collection 

F, the smallest value of δ ∈ (0, 12 ], for which relation ≺(δ)
F is transitive, can be numerically determined by using 

searching methods such as the binary search or the simple brute-force search.

Remark 5. Note that the fact that the relation ≺(δ)
F is a strict order over a finite collection F of fuzzy numbers with 

trapezoidal membership functions does not necessarily imply that ≺(δ)
F is a total order. That is, it does not necessarily 

hold for any A, B ∈ F that either A ≺(δ)
F B or B ≺(δ)

F A or A = B .

Suppose that A and B are two incomparable elements of F; that is, neither A ≺(δ)
F B nor B ≺(δ)

F A nor A = B

holds. This means that 1
2 − δ < MF (A, B) < 1

2 + δ. Here, we may assume that in practice, the value of parameter δ is 
close to zero; and so, the previous inequality suggests that the order of A and B may be viewed as being indifferent. 



J. Dombi, T. Jónás / Fuzzy Sets and Systems 399 (2020) 20–43 39
Table 1
Parameters of the trapezoidal membership functions.

xL
A

xL
A

xR
A

xR
A

A1 33 65 68 74
A2 55 58 62 73
A3 67 76 125 130
A4 38 67 83 107
A5 72 85 88 91
A6 65 68 72 83
A7 22 80 83 86
A8 28 31 34 61
A9 2 5 20 66
A10 11 70 73 76

Based on this line of thinking, now, we will introduce the following indifference relation over a collection of fuzzy 
sets with trapezoidal membership functions.

Definition 6. Let F be a collection of fuzzy sets with trapezoidal membership functions. The binary relation �(δ)
F

(indifference relation) over the collection F is given by

�(δ)
F :=

{
(A,B) ∈ F × F :

∣∣∣∣MF (A,B) − 1

2

∣∣∣∣ < δ

}
,

where δ ∈ (0, 1/2].

Corollary 1. Let F be a collection of fuzzy sets with trapezoidal membership functions and let the relations ≺(δ)
F and 

�(δ)
F over the set F be given by Definition 5 and Definition 6, respectively, where δ ∈ (0,1/2] has a fixed value. Then, 

for any A, B ∈ F, if A ⊀(δ)
F B , then either B ≺(δ)

F A or A �(δ)
F B holds.

Proof. The corollary immediately follows from Definition 5 and Definition 6. �
The following example demonstrates how the relations ≺(δ)

F and �(δ)
F can be used to rank fuzzy sets that have 

trapezoidal membership functions.

4.1. A demonstrative example

Suppose that we wish to rank the elements of the collection

F = {A1,A2, . . . ,An}
of fuzzy sets that have trapezoidal membership functions. The parameter values of A1, A2, . . . , An are shown in 
Table 1.

Fig. 7 shows the plots of the trapezoidal membership functions of the fuzzy sets in F.
Method 1 and Method 2, which were presented in Section 3.3, had been implemented in MATLAB 2019a com-

puting environment (see https://github.com /dombijozsef). Using Method 2, the probability-based preference intensity 
index MF (Ai, Aj) was computed for every (Ai, Aj) pair and stored in the probability-based preference intensity in-
dex matrix in Table 2, where Ai, Aj ∈ F, i, j = 1, 2, . . . , 10. In this matrix, we can see the reciprocity property of the 
index MF ; that is, MF (Ai, Aj) = 1 − MF (Aj , Ai) holds for any i, j = 1, 2, . . . , 10.

Note that the computed values in Table 2 have been rounded to four digits. Here, we have

MF (A10,A2) = 0.5155, MF (A2,A1) = 0.5094, MF (A10,A1) = 0.4929,

which means that the relations A10 ≺F A2 and A2 ≺F A1 hold, but the relation A10 ≺F A1 does not hold. That is, 
the relation ≺F over the set F (see Definition 4) is not transitive. Also, we have A2 ≺F A1 and A1 ≺F A10, but 
A2 ⊀F A10; and A1 ≺F A10 and A10 ≺F A2, but A1 ⊀F A2.

https://github.com/dombijozsef
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Fig. 7. Plots of the membership functions in collection F.

Table 2
Probability-based preference intensity index matrix.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 0.5000 0.4906 0.9984 0.9008 1.0000 0.9740 0.9438 0.0596 0.0360 0.5071
A2 0.5094 0.5000 0.9984 0.8660 1.0000 0.9834 0.9294 0.0022 0.0043 0.4845
A3 0.0016 0.0016 0.5000 0.1559 0.2229 0.0714 0.0478 0.0000 0.0000 0.0033
A4 0.0992 0.1340 0.8441 0.5000 0.6804 0.3700 0.3654 0.0105 0.0080 0.1047
A5 0.0000 0.0000 0.7771 0.3196 0.5000 0.1086 0.0453 0.0000 0.0000 0.0006
A6 0.0260 0.0166 0.9286 0.6300 0.8914 0.5000 0.4943 0.0000 0.0000 0.1175
A7 0.0562 0.0706 0.9522 0.6346 0.9547 0.5057 0.5000 0.0003 0.0012 0.0834
A8 0.9404 0.9978 1.0000 0.9895 1.0000 1.0000 0.9997 0.5000 0.1372 0.8486
A9 0.9640 0.9957 1.0000 0.9920 1.0000 1.0000 0.9988 0.8628 0.5000 0.9167
A10 0.4929 0.5155 0.9967 0.8953 0.9994 0.8825 0.9166 0.1514 0.0833 0.5000

Table 3
The ni , pi , uk and oi values.

i 1 2 3 4 5 6 7 8 9 10
ni 5 5 0 2 1 3 3 8 9 5
pi 5 5 10 8 9 7 7 2 1 5
k 1 2 3 4 5 6 7
uk 1 2 5 7 8 9 10
oi 3 3 7 5 6 4 4 2 1 3

Next, by using a simple incremental search, starting from 0.01 with the increment of 0.01, we identified δ = 0.02
as a value for which the relation ≺(δ)

F over the set F is transitive.

Let ni denote the cardinality of the set {j ∈ {1, 2, . . . , 10} : Ai ≺(δ)
F Aj }; that is, ni is the number of those Aj

fuzzy sets for which MF (Ai, Aj) ≥ 1
2 + δ holds, i ∈ {1, 2, . . . , 10} (see Table 3). Let pi be given by pi = 10 − ni

for i = 1, 2, . . .10, and let the sequence u1 < u2 < · · · < um contain the unique values of p1, p2, . . . , pn in increasing 
order, (m ≤ n). Now, for every i ∈ {1, 2, . . . , 10} let oi be given by oi = k such that uk = pi , where k ∈ {1, 2, . . . , m}. 
Then, oi may be interpreted as the order index of the fuzzy set Ai , where i = 1, 2, . . . , 10. Table 3 summarizes the ni , 
pi , uk and oi values for our case.

Notice that the fuzzy sets A1, A2 and A10 have the same order index (3); that is, we consider the order of these 
three fuzzy sets as being indifferent. From Table 2, we can see that

MF (A1,A2) = 0.4906, MF (A2,A10) = 0.4845, MF (A1,A10) = 0.5071,
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Fig. 8. Graph representation of ≺(δ)
F

and �(δ)
F

over the set F.

Fig. 9. Ranked fuzzy sets.

which, after considering the definition for the relation �(δ)
F over the set F and the fact that δ = 0.02, means that the 

relations

A1 �(δ)
F A2, A2 �(δ)

F A10, A1 �(δ)
F A10

hold. Also, the fuzzy sets A6 and A7 have the same order index (4), which means that the relation

A6 �(δ)
F A7

hold. Hence, the fuzzy sets with the same order index oi form groups such that in each of these groups, we consider 
the order of the sets as being indifferent. Using the relations ≺(δ)

F and �(δ)
F , the order of the fuzzy sets in F can be 

represented by the following relation chain:

A9 ≺(δ)
F A8 ≺(δ)

F A1 �(δ)
F A2 �(δ)

F A10 ≺(δ)
F A6 �(δ)

F A7 ≺(δ)
F A4 ≺(δ)

F A5 ≺(δ)
F A3.

Fig. 8 shows a graph representation of this relation chain. In this figure, the black and gray-colored arrows represent 
the relations ≺(δ)

F and �(δ)
F , respectively.

Fig. 9 shows the fuzzy sets when they are ranked using the relations ≺(δ)
F and �(δ)

F . In this figure, each of the gray-
colored areas contain a group of fuzzy numbers whose order is considered as being indifferent: group {A1, A2, A10}
and group {A6, A7}.

5. Conclusions and future work

The chief results of this study can be summarized as follows.
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• Following the approach proposed by Huynh et al. [40], utilizing a probability-based preference intensity index 
M for two intervals, we presented a probability-based preference intensity index MF for two fuzzy sets that have 
trapezoidal membership functions.

• We proposed two methods for computing the index MF for two fuzzy sets that have trapezoidal membership 
functions. Namely, we introduced an analytical and a numerical method for computing MF for fuzzy sets with 
trapezoidal membership functions. In our analytical method, we presented closed formulas for the integrals needed 
to compute MF . Also, we proposed an algorithm to compute MF using the closed formulas for the integrals.

• We introduced two crisp relations, which have a common parameter, over a collection of fuzzy sets with trape-
zoidal membership functions. Then, we studied the algebraic properties of these relations and show that - de-
pending on the parameter value - one of them is a strict order relation, and the other one may be interpreted as 
a relation that expresses the order indifference of fuzzy numbers. We called this latter one the order indifference 
relation. Here, we considered two fuzzy numbers as being comparable, when their order can be unambiguously 
determined. Next, we showed that our strict order relation can be used to rank comparable fuzzy numbers, while 
the indifference relation can be utilized to express that the order of some fuzzy numbers is indifferent.

• In a comprehensive case study, we demonstrated how these two relations can be used to rank a collection of fuzzy 
sets that have trapezoidal membership functions.

As part of our future work, we intend to study how the probability-based preference intensity index MF can be 
computed for fuzzy numbers that have membership functions from well-known membership function classes. We 
would also like to know how the value of the δ parameter can be efficiently determined such that the relation ≺(δ)

F is a 
strict order relation.
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