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Abstract

The paper presents a novel data-driven type2 fuzzy controller. A new
type2 membership function called the type2 Distending function (T2DF)
is used. It represents the uncertainties in the measured data using the
T2DF parameters. A special algorithm is presented for extracting a few
key rules from the training data. These rules cover the whole input
space using the T2DFs and Dombi conjunctive operator. The so-called
arithmetic-based tpe2 fuzzy controller is designed. The controller design
does not include any implication or reduction steps. Futhermore, a rule
reduction technique is developed to reduce the number of extracted rules.
The computational complexity is low and the controller can be imple-
mented in real time. The efficiency of the algorithms is demonstrated by
the altitude control of a quadcopter. The experiment incorporate both
the simulation studies and hardware implementations.

Type2 arithmetic-based fuzzy controller, Type2 Distending function, Control
and Error surfaces, Parrot mini-drone Mambo.

1 Introduction

Fuzzy theory has found numerous practical applications in the fields of engi-
neering, operational research and statistics [1, 2, 3]. The fuzzy inference engine
consists of a fuzzifier, a rule base system, fuzzy operators and defuzzification.
These rules describe the dependencies between the input and output variables
in the form of IF-THEN statements. In most cases, expert knowledge is not
available or it is poorly described. So the exact description of fuzzy rules is
not an easy task. However, if the working data of the process is available then
a data-driven based design is an attractive option [4, 5, 6]. The data-based
identification of a fuzzy model can be divided into two parts, namely qualita-
tive and quantitative identification. Qualitative identification focuses on the
number and description of fuzzy rules, while quantitative identification is con-
cerned with the identification of parameter values. These parameters belong to
membership functions and fuzzy operators. Soft computing methodologies like
evolutionary algorithms, genetic algorithms and swarm optimization [7, 8, 9, 10]
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are used for qualitative identification. Neural networks are mostly used in quan-
titative identification. These leads to the development of Adaptive Neuro-Fuzzy
Inference systems (ANFIS) [11]. However, these methods have some limitations
related to the identification, rule interpretability and complexity of the con-
troller design. Earlier we presented a data-driven based approach to solve these
issues using the Distending function [12].
Type2 fuzzy systems (T2FS) were developed to handle the uncertainty in type-I
fuzzy sets [13, 14]. The sources of uncertainties in type-I fuzzy systems are:

1. The words used in the fuzzy rules may convey different meanings to people.

2. The sensing devices may be imprecise and noise appears in the measured
signal.

3. The experts do not always agree on the values in the consequents.

Because of these uncertainties, the membership functions are no longer certain
i.e. the grade of the membership functions cannot be a crisp value. To overcome
this problem, type2 membership functions (T2MF) were introduced. T2MF
contains the footprint of uncertainty (FOU) between the upper membership
function (UMF) and lower membership functions (LMF). Interval T2FS have
been developed to reduce the computational complexity [15]. T2FS has superior
properties such as: 1) Better handling of uncertainties [16]; 2) Smooth controller
response [17]; 3) Adaptivity [17]; 4) Reduction in the number of fuzzy rules [18].
T2FS have been successfully used in control system design [19], data mining
[20] and time series predictions [21]. The design of the interval T2FS consists
of:

1. Fuzzification of the inputs using T2MF.

2. Calculation of rule firing strengths.

3. Implication and aggregation to produce rule outputs. These operations
produce a type2 fuzzy set.

4. Type reduction to convert type2 fuzzy sets into type1 fuzzy sets.

5. Defuzzification to get a final crisp output value.

The type reduction step is performed using the so-called Karnik Mendel (KM)
iterative algorithm [22]. This algorithm defines two switching points for the
lower and upper firing strengths. Using these points, the algorithm generates
two type-I fuzzy sets. These sets are defuzzified to get a crisp output. This
approach has some drawbacks, such as: 1) The choice of T2MFs; 2) Computa-
tional complexity of the type reduction step; 3) Difficulty in the optimization
process; 4) Controller design complexity. In our previous paper, we offered solu-
tions to these problems by proposing an arithmetic-based type2 fuzzy controller
[23].
In this study, we wish to extend our approach to the case where expert knowl-
edge is not available and the training data of the system is uncertain. It leads
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to the design of a data-driven T2FS. Quite recently a few techniques have been
proposed to tackle this problem [24, 25, 26]. However, these approaches also
have following drawbacks:

1. Qualitative identification:
Qualitative identification suffers from the so-called flat structure (curse
of dimensionality) problem of the rule-base [20] i.e. if the number of
input variables increase, then an exponentially large number of rules are
required to accurately model the system. This is due to the fact that
the support area of the most frequently used membership function (e.g.
triangular, trapezoidal etc) covers a limited area of the input space. To
cover the input space completely, a huge number of rules are required.
If we have 2 input variables, each with 6 categories, then the number of
rules required to cover the whole input space will be 36. Each rule is
applicable only within a specific area and its strength is zero outside. If
the training data of the system does not fully span the input and output
spaces, then this will cause serious problems when modeling the system. If
the input falls in these uncovered areas, then the identified rule base does
not generate any action. Even if some sort of interpolation technique is
applied, the computation complexity will increase [27]. Therefore a global
fuzzy model requires a large number of rules and the number of rules
depends exponentially on the number of the input variables and this will
lead to a huge complexity in data-driven fuzzy models.

2. Quantitative identification:
The computation complexity of the quantitative part of the identified
fuzzy model also increases with the number of rules. As the number of
rules increases, the number of parameters of the T2MF and operators also
grow exponentially. Computing these parameters will then increase the
computational cost of the quantitative model.

3. Choice of T2MF:
The choice of T2MF and its systematic connection with the type of un-
certainty are not clear. Different type-I membership functions can be
combined to generate T2MFs. However, it is not clear which type of
membership functions should be used for a particular type of uncertainty.

4. Interpretability:
In most cases, the interpretability of the identified fuzzy rule base is not
clear. It is easier to interpret a few rules and get an insight into the
working model. However, if the number of rules grows exponentially, then
for a given set of input values, it is not possible to predict the response of
the model and analyze its performance. The model tends to be more like
a black box in these situations.

5. Optimization process:
Although type2 fuzzy logic systems require fewer rules compared to type-
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I fuzzy systems, the number of parameters is comparatively large. So
optimizing a large number of parameter values is not an easy task.

6. Complexity of the type2 fuzzy controller design:
After the identification of the rule-base, an interval type2 fuzzy controller
can be designed using well established techniques [28]. Most of these
techniques use the type reduction step. The type reduction step is based
on the KM algorithm, which is computationally expensive. Due to its
iterative nature, it is ill-suited for on-line applications. There are some
alternative solutions which reduce the computation burden, but these are
approximations [29]. These techniques also include the implication and
aggregation steps. These steps further add to the computation complexity
of the type2 fuzzy controller.

Here, we propose solutions to remove some of these drawbacks by extending
our previous results [30, 12, 23]. We present a novel approach to model data-
driven type2 fuzzy inference systems. The inference scheme is based on a re-
duced number of identified rules. Using these rules, we present a design of an
arithmetic-based interval type2 fuzzy controller. The whole procedure has the
following unique features:

1. We use a new type2 membership function called the interval type2 dis-
tending function (T2DF) [23]. With a few rules, it can completely cover
the whole input space, and this helps overcome the flat structure issue.

2. T2DF has only a few parameters. Most of these parameters are kept
fixed and a few are varied during the training process. It reduces the
computation burden of quantitative identification.

3. Different types of uncertainties can be modeled using various parameters
of T2DF. Therefore, most forms of the uncertainties in fuzzy systems can
be represented using T2DF.

4. Our approach identifies a few important fuzzy rules. And we have devel-
oped a rule reduction algorithm which can further reduce the number of
identified rules and it results in a interpretable model.

5. Because only a few parameters are varied during the design process, the
optimization is simple and fast.

6. We use an arithmetic-based interval type2 fuzzy controller [30]. The type
reduction, implication and aggregation steps are not involved. Therefore
the controller is computationally efficient.

The proposed data-driven type2 fuzzy controller is computationally efficient,
more interpretable and it can handle various types of uncertainties.
The rest of the paper is organized as follows. In Section II, we briefly intro-
duce interval T2DF and its properties. In Section III, we explain the proposed
controller design approach and rule reduction algorithm. In Section IV, we de-
scribe the bench mark system, simulation results, hardware implementation and
discuss the results. In Section V, we give a brief summary and conclusion.
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2 Interval type2 Distending Function

Zadeh proposed various membership functions and one of them has the following
form [31]:

µ(x) =
1

1 +
(
x−a
b

)2 (1)

Based on µ(x), we defined a more general parametric function which models a
soft equality and it is called the Distending function (DF). This type of mem-
bership function is closely related to the operator systems and in our case (i.e.
the Distending function), it is associated with the Dombi operators. DF can be
derived from the Kappa function of the Dombi operator [32]. The DF has four
parameters, namely ν, ε, λ and c.
It has two forms: 1) Symmetric; 2) Asymmetric. The Symmetric DF (shown in
Fig. 1) is symmetric around x− c and it is defined as [30]:

δ(λ)
ε,ν (x− c) =

1

1 + 1−ν
ν

∣∣x−c
ε

∣∣λ , (2)

where ν ∈ (0, 1), ε > 0, λ ∈ (1,+∞) and c ∈ R. δ
(λ)
ε,ν (x− c) is denoted by δs(x).

Figure 1: Various shapes of symmetric Distending Functions (here c = 0)

The asymmetric DF (shown in Fig. 2) is given by

δA(x− c) =

1

1 + 1−νR
νR

∣∣∣x−cεR

∣∣∣λR 1
1+e−λ∗(x−c) + 1−νL

νL

∣∣∣x−cεL

∣∣∣λL 1
1+eλ∗(x−c)

, (3)

where νR, νL ∈ (0, 1), εR, εL > 0, λL, λR ∈ (1,+∞), c ∈ R and λ∗ ∈ (1,+∞).
Here, c is the centre point i.e. δA(c) = 1.
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Figure 2: The asymmetric Distending Function (νL = 0.5, εL = 0.5 , λL = 5,
νR = 0.8, εR = 0.7 , λR = 5, λ = 5, c = 0)

Figure 3: Uncertain peak values T2DF with the footprint of uncertainty (FOU)

2.1 Construction of the interval T2DF

The values of the DF parameters (ν, ε, λ, c) may be uncertain. As a result,
these parameters can take various values around their nominal values, within
the uncertainty bound (∆). By varying the parameter values within ∆, various
DFs are obtained. The DF with the highest grade values is called the upper
membership function (UMF) and that with lowest values is called the lower
membership function (LMF). The UMF, LMF and various DFs in between can
be combined to form an interval T2DF [23]. If the peak value of the DF becomes
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uncertain, then it can be represented using the interval T2DF with an uncertain
’c’ value, as shown in Fig. 3.
Various T2DFs belonging to the same fuzzy variable can be combined together
to form a single T2DF. The support of the resultant T2DF will be approximately
same as the combined support of the individual T2DFs. The UMF of the T2DF
consists of the LHS and RHS (the same is true for the LMF). The LHS and
RHS are given as [23]

δ̄2
L(x− c) =

1

1 + 1−ν
ν

∣∣x−c
ε

∣∣λ 1
1+e(λ∗(x−c))

, (4)

δ̄2
R(x− c) =

1

1 + 1−ν
ν

∣∣x−c
ε

∣∣λ 1
1+e(−λ∗(x−c))

. (5)

The LHS and RHS of the UMF and LMF can be combined using the Dombi
conjunctive operator to get a single T2DF. Consider two T2DFs δ2

1 and δ2
2 . The

LHS of δ2
1 and RHS of δ2

2 can be combined using the Dombi conjunctive operator.
This produces a resultant T2DF δ2

result, as shown in Fig. 4. Combining various
T2DF helps to reduce the number of fuzzy rules. This leads to a decrease in
the computational complexity of the identified fuzzy model.

Figure 4: Combining two T2DF (δ2
1 and δ2

2) to get a single T2DF (δ2
result)

2.2 Distending Function in a Higher Dimension

Consider n different T2DFs in n different dimensions given by δ
2(λ1)
1(ε1,ν1)(x1− c1),

δ
2(λ2)
2(ε2,ν2)(x2 − c2) . . . , δ

2(λn)
n(εn,νn)(xn − cn). If we apply the Dombi conjunctive op-

erator on these n T2DFs, then the result will also be a T2DF δ2(x1, x2, . . . , xn)
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in n dimensions (shown in Fig. 5). And

δ̄2(x1, x2, . . . , xn) =
1

1 +
∑n
i=1

1−νi
νi

∣∣∣xi−aiεi

∣∣∣λi , (6)

δ2(x1, x2, . . . , xn) =
1

1 +
∑n
i=1

1−νi
νi

(∣∣∣xi−(ci−∆)
εi

∣∣∣λi σLi +
∣∣∣xi−(ci+∆)

εi

∣∣∣λi σRi) ,
(7)

where σLi =
1

1 + e−λi(xi−(ci−∆))
and σRi =

1

1 + eλi(xi−(ci+∆))
.

Here ∆ is the upper bound on the uncertainty in the c value, δ̄2(x1, x2, . . . , xn)
is the UMF and δ2(x1, x2, . . . , xn) is the LMF of δ2(x1, x2, . . . , xn). (Please see
the Appendix for the proof.)

Figure 5: The T2DF in the x3 dimension

3 Data-driven fuzzy controller

The proposed algorithm is motivated by our previous study, where fuzzy arith-
metic operations were used to design a fuzzy controller [30]. Here, we suppose
that expert knowledge in the form of linguistic rules is not available. However
the training (working) data of the process is available. Using the training data,
a rule base for a multi-input multi-output (MIMO) system can be written as:

if x1 is U i1 and ...... and xn is U in

then y1 is V i1 ; ...... ; ym is V im, (8)

8



where x1, x2, ..., xn are the input variables and y1, y2, ..., ym are the m output
variables, and the corresponding fuzzy subsets are U1, U2, ..., Un and V1, V2, ..., Vm,
respectively. The index i represents the rule number and there are l fuzzy rules.
A MIMO system given by Eq. (8) with m independent outputs can always be
replaced by m multi-input single output (MISO) systems of the form

if x1 is U i1 and ...... and xn is U in then ys is V is , (9)

where s = 1, ...,m are the m outputs. For simplicity, we will consider the case
where s = 1 and we propose a methodology for generating a crisp control signal
using the input and output training data. The methodology can be generalized
to m independent outputs.
Let us now assume that the input and output databases have the following form:

U =


a1

1 a1
2 . . . a1

n

a2
1 a2

2 . . . a2
n

...
...

...
...

al1 al2 . . . aln

 , V =


b1

b2

...
bl

 , (10)

where U and V contains the l data points of each input and output vari-
able. a1, a2, . . . , an are the data points belonging to the input fuzzy subsets
U1, U2, . . . , Un respectively and b1 is included in the output fuzzy subset V .
Each column of the U matrix corresponds to a unique feature (input variables)
of the process. Therefore the U matrix forms an n dimensional input feature
space. Each column of the training matrix U is normalized by transforming it
into the [0, 1] interval. As a result, the features values are comparable on the
same scale.
Fuzzy rule consists of an antecedent and a consequent part. Here, the an-
tecedent part contains a row of U and the consequent part is an element of V .
The antecedent part of the ith fuzzy rule is given by the following relation:

L(δ2
1(x1)i, δ2

2(x2)i, . . . , δ2
n(xn)i), (11)

where L is the fuzzy logical expression and it may contain AND (x1 ∈ A1 and
x2 ∈ A2), OR (x1 ∈ A1 or x2 ∈ A2) and NOT (x1 6∈ A1) operators. Here, we
can use a very general class of the fuzzy operators [10]:

Dγ(x) =
1

1 +

 1
γ

(∏n
i=1

(
1 + γ

(
1−δ2(xi)
δ2(xi)

)α)
− 1

) 1
α

(12)

This operator describes a wide range of fuzzy operators e.g. min/max, Ein-
stein, Hamacher, product and drastic. But here we will use the Dombi conjunc-
tive/disjunctive operator.
In our approach the fuzzy rules will be based on sample values in the U and V

9



matrices. Therefore, a few rows from the data base matrix U are selected. These
can be selected randomly, but from a practical point of view it is beneficial to
choose those rows which contain the extremum (around 0 and 1) and average
(around 0.5) values of the input variables. These rows and the corresponding
elements in the V matrix are used to construct the rule base. It is called the
boundary-value rule base (Rb) because it mostly contains those values of the
inputs that lie on the boundary of the control domain.
In our procedure, two different control surfaces are constructed. These are called
the estimated and the fuzzy control surfaces. The estimated control surface is
constructed directly from the database (Eq. (10). For missing data values, lin-
ear interpolation is used. The estimated control surface is denoted by G. The
fuzzy control surface is generated from Rb and it is denoted by G∗. These two
surface are then used to create a third surface called the error surface E. Next,
we will describe the procedure used to construct the surfaces G∗ and E using
Rb .

3.1 Construction of Fuzzy Control Surface G∗ and Error
Surface E

Each selected row from the database matrix U corresponds to a single rule.
It is a row vector and it consists of unique values of all the input variables
(features). We will construct T2DFs for all input variables. The parameter c
(peak value coordinate) of T2DF is given and it is equal to the value of the
corresponding input variable. The value of λ can be chosen between 1 to ∞,
but for practical applications λ = 3 serves as a good initial value. The value of
ε depends upon the number of rules in Rb (ε = 1

no. of rules in Rb
) and it ensures

that the whole input space is covered. The input variables are usually measured
using the feedback sensors. The ∆ value of each sensor depends on the tolerance
intervals of the corresponding sensor. All the ∆ values are transformed into the
[0, 1] interval to make these compatible with the values of the input variables.
T2DFs have a long tail. Consequently each T2DF influences the other existing
T2DFs. The ν value of each T2DFs will be calculated based on the principle of
minimum influence on all the other T2DFs. This influence can never be zero,
but it can be decreased by a factor k. For less influence, a large value of k should
be chosen. However from practical point of view, a value of 10 is sufficient. It
means that the influence will decrease 10 folds. The influence of the ith T2DF
at the peak value of the jth T2DF is given by

1

1 + 1−ν
ν

(
|xi1−xj1ε |λ + · · ·+ |xin−xjnε |λ

) =
1

k
, (13)

where xi1, . . . , xin are the n coordinates of the peak value of the ith T2DF
and xj1, . . . , xjn are the coordinates of the peak value of the jth T2DF. This
equation can be used for single dimensional T2DFs as well as n dimensional
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T2DFs. Then the required value of ν can be calculated using

ν =
1

1 + k−1
d

, (14)

where d =
(
|xi1−xj1ε |λ + · · ·+ |xin−xjnε |λ

)
. Obviously it is a distance measure

if ε = 1 and λ = 2.
In the antecedent part of ith rule, there are n T2DFs corresponding to n input
variables. Each rule is evaluated using the Dombi conjunctive/disjunctive oper-
ator. By applying the Dombi conjunctive/disjunctive operator over the n input
T2DFs, we get a single T2DF. This is called the output T2DF. The UMF and
LMF of this output T2DF are given by Eq. (6) and Eq. (7), respectively. Here,
l output T2DFs will be generated from the l rules. All these output T2DFs are
superimposed in the input space to generate a fuzzy control surface G∗.
An error surface E is defined as the difference between the estimated control
surface G and the fuzzy control surface G∗. That is,

E(x1, . . . , xn) = G(x1, . . . , xn)−G∗(x1, . . . , xn). (15)

3.2 Extending the rule base

We shall decrease the magnitude of E below a chosen threshold τE ( |E| < τE ).
This is achieved by an iterative procedure of adding new rules to Rb. To add a
new fuzzy rule, the coordinates of the maximum value on E are located. The
corresponding row in the database containing these coordinates is selected. This
row is then added to Rb as a new rule. This rule is evaluated to generate an
output T2DF. The ν value of this output T2DF is calculated using Eq. (14).
This T2DF is superimposed in G∗. This will modify the surface G∗ in such
a way that the magnitude of the maximum error on the surface E at these
coordinates will decrease. This process is repeated in an iterative manner until
the error surface E is within the tolerance limit τE . For a very small value of
τE , a large number of rules have to be extracted from the training data and vice
versa. Therefore there is a compromise between the value of the threshold τE
and the number of rules in Rb.
If the number of rules in Rb is large, then some of the rules can be merged
to reduce the computational complexity. This is achieved using a reduction
procedure.

3.3 Reducing the rule base

Here, we describe a heuristic approach used to decrease the number of rules
in Rb. Rules reduction will lead to a lower computational cost and higher
interpretability. Various output T2DFs which are close to each other in the
input space can be combined to get a single T2DF (as shown in Fig. 4). The
procedure is explained as follows:
One of the input variable is selected and we call it a principle feature. In a
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control system, the error measure of the control variable is usually chosen as
the principle feature. To ensure that the rule reduction procedure does not
change the fuzzy control surface significantly, the input space is divided into
two half spaces. The space where the principle feature value is less than 0.5
lies in the first half and the rest of the space lies in the second second half.
Within each half, the output T2DFs are segregated into different groups. If
the Euclidean distance between the peak value coordinates of various output
T2DFs is less than a predefined distance D then these T2DFs are placed in the
same group, where for each half:

D =
Sum of euclidean distances b/w peak value coordinates of T2DFs

Total no. of T2DFs in the same half
. (16)

Each output T2DF is obtained by applying a unique rule in Rb. The output
T2DFs in the same group are combined together to produce a single T2DF.
Consequently the rules associated with all these output T2DFs are eliminated
and replaced by a single new rule. Therefore the number of rules in Rb decreases.
Now it is called a reduced rule base Rr. Using Rr, a new fuzzy control surface
is constructed and it is denoted by G∗

r . Then a reduced error surface (Er) is
obtained using

Er(x1, . . . , xn) = G(x1, . . . , xn)−G∗
r(x1, . . . , xn). (17)

This procedure is performed in an iterative way as long as Er(x1, . . . , xn) is
within a chosen threshold τR. If the threshold value τR is high then a large
number of rules can be eliminated to get a much simpler and interpretable
model. However, the accuracy of such an identified fuzzy model decreases. So
the τR value should be chosen based on a compromise between model accuracy
and interpretablility. A high τR value leads to more interpretability but less
accuracy and vice versa.

3.4 Designing the Interval type2 fuzzy controller

The reduced rule base Rr is used to design an arithmetic-based interval type2
fuzzy controller [23]. Each rule in Rr has two parts (antecedent and consequent).
We evaluate these two parts separately to generate a crisp control signal. For a
specific values of input variables, the antecedent part is evaluated (Eq. 11) and
it results in an interval [v̂i(x

∗) v̂i(x
∗)]

L(δ̄2
1(x∗1)i, δ̄2

2(x∗2)i, . . . , δ̄2
n(x∗n)i) = v̂i(x

∗)],

L(δ2
1(x∗1)i, δ2

2(x∗2)i, . . . , δ2
n(x∗n)i) = v̂i(x

∗).

Here, v̂i(x
∗) is the lower strength and v̂i is the upper strength of the ith rule.

δ2
n(xn)i is the LMF and δ

2

n(xn)i is the UMF of the nth T2DF. The rule strengths
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are normalized to get the lower and upper firing strengths (vi(x
∗), vi(x

∗)):

vi(x
∗) =

v̂i(x
∗)∑k

i=1 v̂i(x
∗)
, vi(x

∗) =
v̂i(x

∗)∑k
i=1 v̂i(x

∗)
, (18)

where

k∑
i=1

vi(x
∗) = 1,

k∑
i=1

vi(x
∗) = 1,

and k is the total number of rules in Rr.
The consequent part of each rule in Rr is a single numeric value in the data
matrix V . Let b1, . . . , bk be the consequent values, v∗1, . . . , v

∗
k be the upper firing

strengths and v∗1, . . . , v
∗
k be the lower firing strengths of the k fuzzy rules in Rr.

Then the crisp output control Ucrisp is generated by

Ucrisp =
ca + ca

2
, (19)

where ca =

k∑
i=1

vi(x
∗)bi, and ca =

k∑
i=1

vi(x
∗)bi.

The whole procedure is summarized in Algorithm 1.

4 Benchmark System, Simulations Results, Hard-
ware implementation and discussion

The effectiveness of the proposed technique is demonstrated by designing an
altitude control system for a quadcopter (Parrot mini-drone). Using the train-
ing data of the quadcopter, a data-driven type2 controller is designed based on
the proposed approach. Simulation studies are carried in Matlab Simuliunk to
control the altitude of the quadcopter in the presence of noisy sensor measure-
ments. Later the designed controller is deployed on the mini-drone hardware to
check the real-time performance performance.

4.1 Quadcopter Model

Parrot mini-drone Mambo is used in this study. The Matlab Simulink Aerospace
block set provides the simulation model of this quadcopter [33]. The simulation
consists of the airframe model, sensors model, environment model and flight
controller. The airframe model is schematically shown in Fig. 6. It consists of
axis parameters (rotational (φ, θ, ψ) and translational (x, y, z)), mass, torques,
and rotors. The environment model describes the effects of external factors
on the quadcopter. It consists of atmosphere and gravity models. The sensor
model includes three sensors, namely 1) Sonar for altitude measurement; 2) A
camera for optical flow estimation; 3) IMUs to measure the linear and rotational
motions. The flight control system contains the roll φ, pitch θ , yaw ψ and
altitude z controllers. The mathematical model of the system is given as

ẋ = F (x, u) +N, (20)
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Algorithm 1: Algorithm for Data Riven Based Type2 Fuzzy Con-
troller

Step 1: Obtain the input and output databases of the process (Eq.
(10)).
Step 2: Transform each column of U into the [0, 1] interval.
Step 3: Construct the estimated control surface G.
Step 4: Generate a boundary value rule base Rb from the input and
output databases.
Step 5: Assign a T2DF to each input point in the antecedent part of
the rule base Rb. Choose k = 10 and calculate ν using Eq. (13) and Eq.
(14).
Step 6: Calculate the output T2DF for each rule using Eq. (6) and Eq.
(7).
Step 7: Generate fuzzy control surfaces G∗ from all the output T2DFs.
Step 8: Construct the error surface E using Eq. (15). If E is within the
threshold τE , then go to step 10.
Step 9: Find the maximum value coordinates on E. Add a new rule in
Rb corresponding to these coordinates in the databases. Go to Step 6.
Step 10: Calculate the Euclidean distance D and create groups of
output T2DFs.
Step 11: Combine the T2DFs in each group using the Dombi
conjunctive operator.
Step 12: Construct the reduced error surface Er using Eq. (17). If Er
is within the threshold τR, then go to step 10.
Step 13: Generate the crisp control signal using Eq. (19).

14



Figure 6: Airframe model of the quadcopter structure [34]

where

x = [x y z φ θ ψ]
T
,

u = [u1 u2 u3 u4]
T
,

N = [n1 n2 n3 n4 n5 n6]
T
.

Here x is the state vector consisting of translational and rotational components,
N contains the external disturbances affecting the system states and u represents
the model inputs. Let Ω1, Ω2, Ω3, Ω4 are the angular speeds of the four rotors
of the quadcopter. Then

u1

u2

u3

u4

ur

 =


b
(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4

)
b
(
−Ω2

2 + Ω2
4

)
b
(
Ω2

1 − Ω2
3

)
d
(
−Ω2

1 + Ω2
2 − Ω2

3 + Ω2
4

)
−Ω1 + Ω2 − Ω3 + Ω4

 .

Here, u2, u3, u4 controls the roll, pitch and yaw angles. u1 is the total thrust
input and controls the altitude z of the quadcopter. b is the thrust coefficient,
d is the drag coefficient and ur is the residual angular speed.

4.2 Designing the data driven altitude controller

The objective is to control the altitude z by generating an appropriate total
thrust u1. The thrust u1 depends on the height (sonar measurement) and rate
of change of the height of the quadcopter. The input and output databases are
generated for an altitude control scenario using a PD control. The rule base Rb
is constructed from the normalized data using Algorithm 1. Here, 26 rules are
identified in Rb. The T2DFs corresponding to Rb are shown in Fig. 7. The
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upper and lower control surfaces constructed using Rb are shown in Fig. 8. The
threshold τE is set at .15. The final erorr surface E for Rb is constructed using
Eq. (15) (Fig. 9). Then rule reduction is applied to get a reduced rule base
Rr. The number of rules is reduced to 17. The upper and lower control surfaces
constructed using Rr are shown in Fig. 11. Fig. 10 shows the T2DFs contained
in Rr, and the error surface Er is shown in Fig. 12. An arithmetic based
controller is designed using Rr (Eq. 18 and Eq. 19). The controller is then used
to regulate the altitude of the quadcopter. Fig. 13 shows the surface plot of
the arithmetic based controller. The quadcopter is programmed to takeoff and
reach to an altitude of 1m, then rise to altitude of 1.5m and finally descend to
1m. Fig. 14 shows the altitude response of the controller quadcopter during
this simulation study.

Figure 7: T2DFs for the Normalized Inputs using rule base Rb (Extended rule
base)

4.3 Hardware Implementation

Matlab provides a support package for parrot quadcopter drones (Mambo FPV
and Bebop2). It connects with the quadcopter over bluetooth/Wifi and can
sends control commands. Matlab Simulink inlcudes the simulation model of
the quadcopter. The model contains the algorithm for the flight control sys-
tem (FCS). FCS algorithm implements roll, pitch, yaw and altitude controllers.
The support package generates the C code of FCS and deploys it in the quad-
copter. The algorithm can access the on-board sensors such as the accelerom-
eter, gryoscopes, camera and sonar. The flight data (altitude, images etc) is
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Figure 8: Upper (blue) and Lower (Red) control surfaces using rule base Rb

Figure 9: Error surfaces E using rule base Rb

saved in on-board storage and can be retrieved from the quadcopter at the end
of the flight. The altitude controller in the FCS was replaced with the proposed
controller. The C code of the FCS was generated and deployed in the quad-
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Figure 10: Upper (blue) and Lower (Red) control surfaces using rule base Rr

Figure 11: T2DFs for the Normalized Inputs using rule base Rr (Reduced rule
base)

copter via bluetooth. A fixed flight trajectory corresponding to the simulation
scenario was also coded. The uncertainty in the controller input (altitude) data
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Figure 12: Error surfaces Er using rule base Rr

Figure 13: Control surface of the Arithmetic based controller

was created by adding white noise to the sonar measurements. The altitude mea-
surements together with the added noise signal are shown in Fig. 15. The noisy
data was the input to the proposed type2 controller in the FCS. The drone flight

19



Figure 14: Simulated altitude response of Quadcopter (Matlab Simulink)

was tested in a protected environment. The data recorded during the flight was
retrieved at the end (Flight data: https://github.com/Abrarlaghari/Mambo-
Quadcopter-Simulink.git). Fig. 16 shows the altitude measurements during the
test flight. This shows that the proposed controller successfully followed the
desired trajectory, even in the presence of the noisy sensor data.

Figure 15: Noisy altitude measurements by on-board sonar sensor

20



Figure 16: Altitude trajectory followed by Mambo quadcopter

4.4 Result discussions

Control surface (Fig. 8 and Fig. 10) with smooth transitions can be obtained
using T2DF and the Dombi conjunctive operator. The whole input space is
covered using the rule base Rb/Rr. The λ and ε parameters are kept fixed, the
c parameter is determined directly from the data and ν is calculated using Eq.
(14). This reduced the number of parameter calculations per T2DF. There is
a slight difference between the surfaces obtained using Rb and Rr. However,
the number of rules in Rr are two-thirds compared to Rb. This demonstrates
the efficiency of the rules reduction procedure. The simulation results in Fig.
14 tell us that the proposed controller is able to regulate the altitude of the
quadcopter very precisely. Hardware implementations showed very promising
results for the real-time control applications. The controller performed the
altitude control function in the presence of the uncertain (noisy) measurement
data. This demonstrates the effectiveness of the proposed data-driven design
based on T2DF.

5 Conclusion

Here, we presented a data-driven interval type2 fuzzy controller for real-time
control applications. A new type2 membership function called the type2 Dis-
tending function (T2DF) is used in conjunction with Dombi operator. It can
model various type of uncertainties using its parameters. The whole input space
can be covered just using a few rules. The rules are identified from the input
and output databases directly. Then we presented a rule reduction procedure.
It is based on combining the T2DFs in the close vicinity and it reduces the num-
ber of rules to two-thirds. A procedure is proposed to design arithmetic based
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interval type2 fuzzy controller using the reduced rule base. The controller de-
sign does not include the implication and type reduction steps. This greatly
reduces the computational complexity and paves the way for the real-time im-
plementation of the proposed design. The effectiveness of the whole procedure
was demonstrated by designing an altitude controller for Parrot Mambo quad-
copter. Simulations carried out in Matlab Simulink showed promising results.
Later the designed controller was deployed and tested in the flight control sys-
tem on the quadcopter hardware. Real-time hardware implementations gave
the same results as were obtained in the simulations. The controller regulated
the altitude of the quadcopter even in the presence of noisy (uncertain) sensor
measurements. This robustness to the noisy data is due the use of T2DFs. The
main achievement of the study was a novel robust type2 fuzzy controller that
can be derived directly from the data of the system. The controller is suitable
for real-time control applications due to its low computation complexity and
design simplicity.
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