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Abstract
A range of regularization approaches have been proposed in the data sciences to overcome overfitting, to exploit sparsity

or to improve prediction. Using a broad definition of regularization, namely controlling model complexity by adding infor-

mation in order to solve ill-posed problems or to prevent overfitting, we review a range of approaches within this frame-

work including penalization, early stopping, ensembling and model averaging. Aspects of their practical implementation

are discussed including available R-packages and examples are provided. To assess the extent to which these approaches

are used in medicine, we conducted a review of three general medical journals. It revealed that regularization approaches

are rarely applied in practical clinical applications, with the exception of random effects models. Hence, we suggest a

more frequent use of regularization approaches in medical research. In situations where also other approaches work

well, the only downside of the regularization approaches is increased complexity in the conduct of the analyses which

can pose challenges in terms of computational resources and expertise on the side of the data analyst. In our view,

both can and should be overcome by investments in appropriate computing facilities and educational resources.
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1 Introduction
The general aim of regularization is to control model complexity by adding information, allowing us to solve ill-posed
problems and prevent overfitting. With this broad definition, regularization includes techniques such as penalization,1,2

early stopping,3,4 ensembling5,6 and model averaging.7 These statistical techniques have been applied in medical research
for some time now. For instance, penalization is implemented in variable or model selection through ridge regression1 or
the least absolute shrinkage and selection operator (LASSO).2 These approaches can also be applied, in the context of
missing data8 or causal analyses,9 to name a few. Furthermore, Bayesian hierarchical models are used for evidence syn-
thesis.10 Whereas traditional meta-analysis focuses on the combined effect across a number of included studies, the
same hierarchical models can also be utilized for dynamic borrowing, i.e. estimation of an effect in one study by borrowing
information from the other studies, through shrinkage estimation.11 Clinical applications of regularization range from phar-
macovigilance12 through non-small-cell lung cancer13 to Alzheimer’s disease.14
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The concept of regularization has a long history in both mathematics and statistics. Many of the early approaches are
well understood by now. In terms of adding information, the most prominent origin is Bayes’ idea of adding prior infor-
mation to a likelihood based inference.15,16 The Bayesian model formulation with its prior and likelihood components per
se allows for regularization. The grade of regularization then depends on the informativeness of the prior. While non-
informative prior choices do not lead to regularization, vague, weakly informative and informative prior choices
impose different levels of regularization. Tikhonov17 firstly aims to use regularization to solve an ill-posed problem.
From a statistical perspective, Hoerl18 provides a ridge regression formulation of Tikhonov’s idea, and Foster19 interprets
this method as a Wiener Kolmogoroff or Kriging filter. Tikhonov’s regularized solution can also be interpreted as a Bayes
solution, see, e.g., Vogel20 or Wolpert and Ickstadt.21 Formally, adding information, e.g., in terms of a prior distribution, to
a statistical inference problem is best described in a decision theoretic framework; see, e.g., Wald22 or Lehmann23 for the
foundation of decision theory and Berger24 for a detailed overview. One of the first regularization ideas to avoid overfitting
in a statistical analysis is the stepwise procedure of early stopping. Its origin lies in the theory of sequential testing and goes
back to Wald.25 Nowadays, early stopping is employed in many statistical learning approaches.

Although there is a growing literature on regularization with a wealth of techniques being available to overcome the
problems outlined above, it is currently largely unknown to what extent these methods are actually used in clinical medi-
cine and what type of problems are addressed by their use. To shed some light on these questions we systematically
reviewed recent volumes of three journals publishing in general medicine, namely the Journal of the American Medical
Association (JAMA), the New England Journal of Medicine (NEJM) and the British Medical Journal (BMJ).

The remainder of this paper is organized as follows. In Section 2, an overview of regularization approaches is provided,
starting with a brief history of regularization and in particular, covering aspects such as penalization, early stopping, ensem-
bling and model averaging. In Section 3, a review of articles in medical journals that summarizes the current state of appli-
cations of regularization in clinical medicine is reported. Some examples are presented in Section 4 before making some
closing remarks in Section 5.

2 Regularization approaches
In this section, we will describe a variety of regularization approaches. In particular, we will formulate specific goals as well
as suitable statistical models and procedures to achieve them. The types of regularization approaches comprise penalization
and including external and/or historical data (Section 2.1), early stopping (Section 2.2), ensembling (Section 2.3), and
further ideas like injecting noise (Section 2.4). Table 1 summarizes all of these regularization types, their goals and the
corresponding statistical methods. This section concludes with some practical remarks on regularization (Section 2.6)
and corresponding software (Section 2.7).

2.1 Penalization
Penalization approaches make the trade-off between model fit and model complexity explicit by combining (a) a (lack of)
fit criterion representing the ability of a model to fit the given data with (b) a penalty that measures the model complexity. In
the following, we will introduce this idea in more detail for parametric models characterized by a parameter vector θ, but
the ideas immediately generalize to semi- and non-parametric models. The observed data will be denoted as y and we will
illustrate penalization along regression-type models where y represents a vector of observed response values while θ com-
prises the regression coefficients.

In a frequentist and loss-based formulation, penalized regularization approaches take the form

ρ(y; θ)+ pen(θ), (1)

with some appropriately chosen loss function ρ( · ; · ) and non-negative penalty term pen(·). The loss function can be the
negative log-likelihood of, e.g., a generalized linear model (GLM), but other loss functions such as L1 or L2 loss or robust
versions such as Huber’s loss26 are also conceivable. The penalty term is chosen to reflect the complexity of the model (as
characterized by the parameter vector θ) or to enforce desirable properties of the estimate. Popular examples include:

• The L2 penalty leading to ridge regression, where pen(θ) = λθ⊤θ = λ
∑

j θ
2
j with non-negative penalty parameter

λ ≥ 0, which enforces shrinkage and adds stability to the estimation.1

• The L1 penalty for simultaneous shrinkage and selection leading to the least absolute shrinkage and selection operator
(LASSO) with pen(θ) = λ

∑
j |θj|.2,27–29 Again the penalty enforces shrinkage and adds stability, but it also enables

variable selection.
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• The L0 penalty pen(θ) = λ
∑

j 1(θj ≠ 0) with the indicator function 1(·) implying a penalty on the number of non-zero

coefficients.29

In all these examples, the penalty includes a penalty parameter λ ≥ 0 that governs the effective trade-off between the loss
and the penalty term in (1). If λ → 0, the penalty loses its importance such that the resulting estimate θ̂minimizes the under-
lying loss irrespective of the chosen penalty (leading, e.g., to the maximum likelihood estimate in case of a loss function
representing the negative log-likelihood), while for λ > 0 the estimate minimizes the loss subject to a constraint imposed by
the penalty. In the examples above, all penalties lead to an empty model with all parameters being estimated equal to zero,
when λ approaches infinity. However, the paths at which the coefficients approach zero are very distinct and depend on the
underlying geometry of the penalty term. In the case of orthonormal designs, ridge regression induces a proportional
shrinkage of all coefficients, and therefore θ̂ = 0 is only achieved as a limiting case. For the LASSO, an orthonormal
design, in contrast, leads to a linear decay to zero such that coefficients are exactly set to zero already for finite values
of the penalty parameter λ. Figure 1 represents the coefficient paths for the LASSO applied to the prostate data set discussed
in Section 2.7. Displayed are the paths for growing log (λ), illustrating the shrinking towards zero, which results in variable
selection. One peculiarity here is that, due to the non-orthogonal design of the covariates, increasing the smoothing par-
ameter may initially lead to increasing effect sizes. Still, when the smoothing parameter is increased further, all estimates
eventually approach the limiting value of zero.

Various extensions and alternatives to the three penalties introduced above have been suggested to achieve other forms
of penalization or to enforce other forms of the coefficients paths. For example, the penalty may leave certain parameter
configurations unpenalized, such that even for λ → ∞ there will be free parameters to estimate. As the simplest case, a
number of parameters (such as the intercept and parameters relating to covariates that are deemed important a priori)
may be left out of the penalization term. More complex models may also comprise multiple penalty parameters, for
example when additively combining penalties such as in the elastic net30 with pen(θ) = λ1

∑
j θ

2
j + λ2

∑
j |θj|.

Penalized forms of regularized estimation enjoy a close link to Bayesian inference where, according to Bayes’ theorem,
the posterior p(θ|y) can be determined as

p(θ|y) = p(y|θ)p(θ)
�
p(y|θ)p(θ)dθ ∝ p(y|θ)p(θ) ,

i.e. the posterior is proportional to the likelihood p(y|θ) times the prior p(θ).2 Taking the logarithm illuminates that (using ∝
to denote equality up to additive constants)

Table 1. Overview of regularization types, their general idea, and the statistical approaches that fall into the respective category.

The approaches are described in more detail in Sections 2.1 – 2.4.

Type Description Common statistical approaches

Penalization

(Section 2.1)

Add penalty term(s) to fitting criterion – Ridge regression, LASSO, elastic net

– Bayesian regularization priors

– Constraints for parameters

– Random effects

– Semiparametric regression

Early stopping

(Section 2.2)

Early stopping of an iterative fitting procedure – Coefficient paths in penalization approaches

– Boosting

– Pruning of trees

– Learning rate in deep neural networks

Ensembling

(Section 2.3)

Combine multiple base-procedures to an ensemble – Bagging

– Random forests

– (Bayesian) model averaging

– Boosting

Other approaches

(Section 2.4)

– – Injecting noise

– Random probing in model selection

– Out-of-sample evaluation

LASSO: least absolute shrinkage and selection operator.
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log (p(θ|y)) ∝ log (p(y|θ))+ log (p(θ)) , (2)

such that maximizing the posterior is equivalent to a penalized estimate combining the log-likelihood with a penalty
induced by the log-prior. This can be interpreted in two ways: On the one hand, regularized maximum likelihood estimates
can also be understood as posterior mode estimates. On the other hand, the prior distribution in Bayesian inference deter-
mines a corresponding form of regularization with the log-prior inducing the penalty term. As such, regularization may also
be interpreted as a way of including prior or expert knowledge in model estimation. Concerning the examples introduced
above, ridge regression corresponds to an i.i.d. zero-mean Gaussian prior for the regression coefficients, while the LASSO
has its equivalent in i.i.d. zero mean Laplace priors.31

In between frequentist, loss-based regularization and Bayesian regularization are models with random effects where
some of the regression coefficients are assigned a random effects distribution that can formally also be interpreted as a
Bayesian prior. Similarly, random effects estimates are often interpreted as shrinkage estimates where the random
effects distribution enables estimation of a potentially large number of effects, shrunken towards zero. As a consequence,
various types of models involving random effects, e.g., hierarchical mixed-effects models or spatial regression models
involving spatially correlated stochastic processes, can also be seen as regularized regression where the specific form of
regularization depends on the distributional assumption for the random effects. For example, most spatial regression
models implement spatial dependence such that spatial effects tend to be similar when the corresponding locations are
close to each other (corresponding to Tobler’s famous first law of geography stating that ‘everything is related to everything
else, but near things are more related than distant things’32). In this case, the penalty implied by the distribution of the
stochastic process penalizes large differences between spatial effects at close locations.

Finally, applying the penalty not directly to the parameter vector but to functions thereof allows to enforce other types of
regularization behaviour. Furthermore, considering the penalty not on the original covariates but on transformations or
basis function expansions thereof contributes further flexibility. Some areas that have attracted particular interest in the
last decade include:

• Fusion penalties, where the goal is to fuse certain effects together, for example when considering the effects of features
that can be ordered in some meaningful way. Effects of ordinal categorical covariates are just one particular example of
this. One of the early suggestions is the ‘fused LASSO’33 that penalizes the L1 norm of both the coefficients and their

Figure 1. Coefficient paths obtained by applying the least absolute shrinkage and selection operator (LASSO) to the prostate data set

discussed in the Section 2.7. As the penalty strength λ grows, the coefficients are shrunk towards zero.
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successive differences, but several extensions have been suggested in the literature since then.34–39 A nice and extensive
overview on the topic ‘Regularized regression for categorical data’, for both categorical predictors and responses, can be
found in Tutz and Gertheiss.40 Also in the Bayesian framework, fusion of effects has been investigated by several
researchers, see, e.g., Pauger et al.41 or Malsiner-Walli et al.42 A nice discussion on Bayesian regularization and
effect smoothing for categorical predictors can be found in Wagner and Pauger.43

• Semiparametric function estimation with smoothness priors where a flexible effect f (x) of a covariate x of interest shall
be estimated. One option is to work with function spaces and associated norms such as the functional L2 loss
pen( f ) = λ

�
( f ′′(x))2dx, i.e., the integrated squared second derivative that penalizes the curvature of the function.

This is the basis for the famous special case of smoothing splines. When approximating the effect of interest in
terms of a basis expansion such that f (x) = ∑

j βjBj(x) with appropriate basis functions Bj(x), penalties can again be

constructed for the basis coefficients βj with penalized splines44,45 as one of the most prominent examples. One can
then also design penalties that enforce not only smoothness but other properties such as monotonicity, convexity/con-
cavity or constant limiting behaviour.46,47

• Structured additive regression models that consider regression predictors

f1(ν1)+ . . .+ fj(νj)+ . . .+ fJ (νJ )

that are an additive combination of various types of effects fj(νj) based on covariate vectors of different type and asso-
ciated with quadratic penalties to enforce desirable properties of the individual effects. For example, structured additive
regression comprises nonlinear effects of continuous covariates, varying coefficient terms, interaction surfaces, random
effects and spatial effects as special cases, see for example Fahrmeir et al.48 and Fahrmeir and Kneib49 for an in-depth
discussion.

• Single index models that extend generalized linear and additive models by also estimating the link function that maps the
regression predictor to the conditional expectation of the response variable in a data-driven way. When a flexible, non-
parametric approach is taken for the link function, regularization is also required for this part of the model.50 With a
linear predictor, single index models provide a combination of nonlinear and linear modelling techniques.

We close the discussion of penalization approaches by highlighting that the penalty pen (·) from (1) typically involves one
or multiple hyperparameters that determine the impact of the penalty on the fit. Determining the optimal hyperparameter(s)
from the data allows for a data-driven amount of regularization and is a central problem for turning penalty-based regu-
larization into practice. Cross-validation (CV) is one prominent example, but for specific classes of models, more specific
approaches such as (restricted) maximum likelihood for determining random effects variances or smoothing parameters in
structured additive regression are also conceivable, see for example Chs. 7 and 9 in Fahrmeir et al.51 Figure 2 shows the CV
curves for the LASSO applied to the prostate cancer data, see Section 2.7 for details. In a Bayesian approach, suitable
hyperpriors can be assigned to the hyperparameters, making them part of the Bayesian inferential scheme.

In R,52 penalization approaches such as LASSO or ridge regression are implemented in the packages glmnet53 and
penalized.54

2.2 Early stopping
Many statistical and machine learning approaches build up a (potentially complex) model by iteratively refining a simple
model towards the most complex case allowed by the model specification. One way of inducing regularization in such
cases is to stop the fitting process before the most complex model is achieved, i.e. to identify the best trade-off between
model simplicity (models close to the initial model) and fit to the data (models close to the final, most complex model)
by early stopping. In fact, the penalization approaches discussed in the previous section can also be cast into this framework
when considering the complete path of coefficients produced by varying the penalty parameter from infinity (simplest
model determined by minimizing the penalty) to zero (complex model fit without the penalty). Early stopping then
means that we are not using the most complex model without a penalty, but ‘stop’ at an optimal value for the penalty par-
ameter determined, for example, again via CV techniques.

Boosting approaches are another example where regularization can be achieved by early stopping. The concept of
boosting emerged from the field of machine learning55 and was later adapted to estimate predictors for statistical
models.56,57 Main advantages of statistical boosting algorithms are their flexibility for high-dimensional data and their
ability to incorporate variable selection in the fitting process.3 Furthermore, due to the modular nature of these algorithms,
they are relatively easy to extend to new regression settings.58 In general, boosting algorithms can be also described as
gradient descent approaches in function space,4 where the algorithm iteratively fits simple (e.g. linear) regression models
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(so-called base-learning procedures), not to the actual observations but to the negative gradient (first derivative) of the loss func-
tion – evaluated at the previous iteration. In this way, boosting iteratively improves the fit of the model by re-directing attention to
those observations that have not yet been explained well and therefore still have large gradients. For a large number of iterations,
the model will finally approach the minimizer of the loss function employed in the model specification. As a consequence, the
number of boosting iterations is the main (and typically only) tuning parameter, and early stopping yields a regularized estimate
determined by the starting values of the algorithm and the base-learners employed to generate the way towards the most complex
model. In R, boosting is e.g. implemented in the packages mboost,59 gbm60 and xgboost.61

Pruning of classification and regression trees (CARTs) also fits into the range of early stopping procedures. Trees itera-
tively split the available data into subsets that are homogeneous with respect to some impurity measure within the subsets
but maximize heterogeneity between the subsets. Taking this to the extreme, each observation would finally form its own
subset, but usual tree implementations require a certain minimal number of observations in the final subsets, a strategy
which already provides some (limited) protection against overfitting. However, the resulting trees are usually still too
complex such that an additional pruning step is applied to remove superfluous splits.62 Consider the algorithmic generation
of the full tree: This is an iterative procedure starting from a single set comprising all observations. From there, it moves
over a simple stump with just two splits and finally becomes a fine-grained tree with many subsets. Early stopping now
means that we determine the optimal number of splits based on some measure for generalizability such as CV.
Software packages implementing these procedures are discussed in the context of random forests below.

As a final example, consider the learning rate in deep neural networks. Deep neural networks are usually trained with
stochastic gradient descent optimization that updates the weights in the network. Due to a large number of weights
involved in deep networks and the corresponding model flexibility, full optimization of the model would usually
lead to a perfect fit, implying over-fitting and low generalizability. As a consequence, a decaying learning rate is
usually implemented such that the maximum possible change is reduced as the model fit progresses. In effect, this
means that after a certain number of iterations (dictated by the exact implementation of the decay of the learning
rate), there will be no change in the weights of the network anymore, which also implements early stopping. Often
an exponential decay is employed such that a single scalar value determines the learning rate and this parameter has
to be chosen to achieve an optimal compromise between long-training processes (small learning rate) and unstable /
over-fitting results (large learning rate). See Goodfellow et al.63 for details. Neural networks are implemented,
among others, in the R-packages neuralnet64 and deepnet.65 Moreover, there exist interfaces to Python deep learn-
ing implementations such as keras.66

Figure 2. Cross-validation error curve for the LASSO applied to the prostate cancer data from Section 2.7. Two special values of λ are
highlighted through vertical dotted lines: λmin gives the smallest mean cross-validated error (left), while λ1se is the value of λ that gives
the most regularized model such that the cross-validated error is within one standard error of the minimum (right). The numbers on

top of the plot denote the number of non-zero coefficients entering the model at the respective penalty strength.
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2.3 Ensembling and model averaging
While the previous two approaches build regularization directly into a specific model, we now turn to regularization by
combining a variety of models with the aim of achieving improved model performance. For the sake of illustration, con-
sider a model with a good ability to fit the given data but large variability such that the model does not generalize well to
new data. If multiple variants of such a model are available, the variability can be reduced by building an ensemble of the
models or by averaging over predictions or other quantities derived from the models.

We illustrate the idea of ensembling with one of the most frequently used ensemble techniques: random forest, origin-
ally proposed by Breiman.6 A random forest is an aggregation of a (typically large) number of classification or regression
trees (which we already considered in the previous section). CARTs repeatedly partition the predictor space using binary
splits of the covariate domain. The goal of the partitioning process is to find partitions such that the respective response
values are very homogeneous within a partition but very heterogeneous between partitions (measured via criteria such
as the mean squared error of prediction or the classification rate). CARTs can principally be used both for metric (regres-
sion trees) and for nominal/ordinal responses (classification trees). To obtain the prediction for a new observation, all
response values within a partition are aggregated either by averaging (in regression trees) or simply by counting and
using majority vote (in classification trees).

In the previous section, we already discussed pruning trees to avoid overfitting arising from trees with a large number of
splits. However, even such pruned regression trees usually suffer from large estimation uncertainty, i.e. large variance,
since small changes in the data can induce large differences in the resulting tree. To overcome this, random forests aggre-
gate a large number B (e.g., B = 5000) of trees grown independently from each other. The combination of many trees has
the advantage that the resulting predictions inherit the property of unbiasedness from the single trees while reducing the
variance of the predictions. To get a final prediction, predictions of single trees are aggregated (i.e. we form an ensemble
of trees), in the case of regression trees simply by averaging over all the predictions from the single trees. In order to
achieve the goal that the aggregation of trees is less variant than a single tree, it is important to reduce the dependencies
between the trees that are aggregated in a forest. Typically, two randomization steps are applied to achieve this goal. First,
the trees are not applied to the original sample but to bootstrap samples or random subsamples of the data. Second, at each
node, a (random) subset of the predictor variables is drawn which is used to find the best split. These randomization steps
de-correlate the single trees and help to lower the variance of a random forest compared to single trees. The size of the
random subset of predictors at each node is a tuning parameter, which could be choosen e.g. by CV. According to
Probst and Boulesteix,67 the number of trees B does not have to be tuned as long as it is chosen sufficiently large.

In R, two slightly different variants of regression forests are available. First, the classical random forest algorithm pro-
posed by Breiman6 is implemented in the R-package ranger.68 The second variant is implemented in the function
cforest from the party package.69 Here, the single trees are constructed following the principle of conditional infer-
ence trees as proposed in Hothorn et al.70 The main advantage of these conditional inference trees is that they avoid selec-
tion bias in cases where the covariates have different scales, e.g., numerical vs. categorical with many categories (see, for
example, Strobl et al.71,72 for details). Conditional forests share the feature of conditional inference trees avoiding biased
variable selection. The CV of the tuning parameter mtry can be done using the machine learning framework provided by
the R-package mlr3.73

Model averaging is a second way of combining models together with the aim of improving upon the individual model
performance. For illustration, let us consider a regression scenario where, from a set of p available covariates, we build all
potential 2 p models. Instead of choosing one best model, e.g. based on some model choice criterion, we aim at combining
the evidence for all models together, for example for forming predicted values. However, naively averaging over all models
neglects differences in the ability of these models to explain the data as well as potential dependencies between the cov-
ariates. To overcome this, we weight the models according to some model fit criterion, for example the AIC. In this way,
models that do not fit the data well obtain small weights and, vice versa, models with a good fit obtain large weights. If there
is one single model that fits much better than all the others, the results from model averaging will be close to those from this
model. However, in most cases, it is much more likely that there are multiple models with a similar fit that maybe only
differ in small details. In such cases, all these models will contribute to the model-averaged prediction.

Model averaging can not only be used for forming predictions, but also for statistical inference on other properties
shared by all models such as the regression coefficients or the variance. Intuitively, averaging over models again
reduces the variance or the uncertainty associated with a single model. A thorough introduction to model averaging can
be found in Claeskens and Hjort.7 The R-packages BMA74 and BMS75 implement Bayesian model averaging, whereas
the model.avg-function of the MuMIn-package76 performs model averaging based on information criteria.

Other approaches that fit into the realm of model ensembling and model averaging include bagging5 and boosting (as
discussed in the previous section), which iteratively combine weak learners. In general, we can distinguish between parallel
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modes of aggregation (where various models are fitted independently of each other and then combined together) and
sequential ensembles (where the models are iteratively improved and then combined). Boosting is an example of the
latter while random forests and model averaging are examples of the former.

2.4 Other regularization approaches
Of course, the list of regularization approaches discussed so far is by no means exhaustive. Various other takes on regu-
larization exist, focusing on different aspects of the model-fitting process. One example is injecting noise, where some kind
of distortion is introduced in the model fitting process. Random forests with their two steps of randomization (bootstrap-
ping observations and considering only random subsets of covariates for splits) can be cast into this class as well and,
hence, are a prominent example. In other cases, random probing, i.e. the introduction of simulated additional covariates
that are, by definition, independent of the response of interest, can be used to better distinguish informative and non-
informative covariates in model selection procedures such as boosting.77 Out-of-sample evaluation strategies can also
be considered as an implicit mode of regularization, where the ability of the model to generalize well beyond the observed
data is explicitly determined based on hold-out datasets. A further example is drop-out in neural networks, where part of the
neurons in one layer is randomly shut down to avoid overfitting due to co-adaption.78

Many of the approaches discussed above are summarized in the R-package mlr3.73 In the supplementary material to
this paper, we provide an example implementation of different regularization approaches using a data set on prostate
cancer.79 Further details are discussed in Section 2.7 below.

2.5 Comparison of the different approaches
In this section, we briefly discuss pros and cons of the various regularization types and specific statistical approaches to
provide guidance for applied users.

• Flexibility.While many of the statistical regularization approaches are tailored towards specific model classes and ways
of modelling the data, penalization approaches (and partly also boosting approaches) are very flexible when it comes to
implementing various types of constraints (e.g. complexity, sparsity, smoothness, etc.). This often implies advantages
with respect to direct interpretability.

• Interpretability. While some methods are basically resulting in black box models, penalization and some of the early
stopping methods (in particular, gradient- or likelihood-based boosting) can be used to estimate models that resemble
unregularized versions when it comes to interpretation. This allows for an easier transition to practice. Nevertheless,
some caution is still required since regularization results in biased estimates and often significance statements for
those are not directly available anymore.

• General loss functions. Some of the methods, in particular penalization, boosting, random forests, and deep learning,
allow to use general loss functions and not only least squares or log-likelihoods resulting from probabilistic models.
This can have advantages to increase the robustness of the approaches.

• Over-specified models. Some methods are specifically tailored towards over-specified models, i.e. they allow to deter-
mine models with more covariates than observations or a large number of parameters resulting e.g. from basis function
expansions or random effects. This includes penalization and Bayesian hierarchical approaches, but also boosting and
deep learning.

• Non-additive model specifications. Sacrificing interpretation for the sake of better prediction, some approaches such as
deep learning, bagging, and random forests allow for flexible covariate-response relations that circumvent the restric-
tions of additive model specifications.

• Multi-model inference. The ensembling approaches combine evidence from multiple models rather than focusing on one
single ‘best’ model as most of the other approaches do.

2.6 Practical aspects with relevance to regularization
In any of the regularization approaches discussed before, there are a number of practical aspects that deserve particular
attention when applying them in statistical analyses:

• Interactions. The inclusion of interaction effects in addition to main effects considerably increases the potential size of a
statistical model. From this perspective, regularization is particularly interesting here since a large number of candidate
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effects (including interactions) can be generated, which is afterwards controlled via a suitable regularization approach.
While most regularization approaches require the user to pre-define whether and which interactions shall be included,
some automatically including potential interactions. For example, random forests implicitly implement interactions due
to the recursive application of covariate splits.

Note also that especially for regularization approaches enabling variable selection, e.g. the LASSO or componentwise
boosting, particular care needs to be taken in order to account for certain hierarchical structures, such as ‘interaction
effects only included if both main effects are included’.

• Transformations of covariates. Transforming covariates, for example, to account for specific types of nonlinear effects,
is very common in regression analyses. Similar as with the interactions, transformations usually have to be pre-defined in
regularized approaches. More precisely, regularization usually works on a pre-specified model class such as linear
models, GLMs or generalized additive models (GAMs), and influences the specific version of the model estimated
from the data but not the model class itself. Only when models are nested, as for example with the GLM and GAM,
regularization may in fact reduce the more complex version to the simpler one.

• Standardization. Standardization is a specific type of transformation that can be useful or even necessary in regulariza-
tion approaches. For example, penalization approaches such as the LASSO and ridge regression critically rely on the fact
that all regression coefficients can be compared to each other in absolute terms. In such cases, standardizing all covari-
ates is necessary to achieve this. Many software packages automatically perform the standardization step internally and
report back-transformed estimates afterwards, but it is important to check the exact implementation to ensure that one
interprets the estimated model correctly.

• Covariate scales. Similarly, covariates with different scales (e.g. continuous vs. categorical) can be problematic in regu-
larization. For example, simple versions of random forests can be shown to have an intrinsic preference to select cat-
egorical covariates with more categories for the next split. While unbiased selection criteria have been suggested, the
scale of covariates is still an important property to be considered in regularized approaches, in general.

• Combining linear and nonlinear effects. Principally, both for purely linear or nonlinear effects several approaches for
variable selection via penalization exist. However, for the combination of both in so-called semiparametric models, suit-
able penalization is more tricky and only few works in this regard have been developed in the frequentist penalized like-
lihood framework.80More work has been conducted based on the inherent model selection property of boosting81–83 and
in the Bayesian framework based on variable and effect selection priors.84,85

2.7 R implementation of different regularization approaches
An example implementation of different regularization approaches can be found in the supplemental material to this paper.
Here, we used a kaggle data set on prostate cancer for illustration purposes.79 The data contains information on the tumours
of 100 patients (radius, texture, perimeter, etc.) as well as their diagnosis (binary outcome). We demonstrate the implemen-
tation of six different regularization approaches, namely a classification tree (CART), a random forest, subset selection,
rigde regression, LASSO, and elastic net and compare them to standard logistic regression by means of area under the
curve (AUC) and the mean classification error (MCE). Hyperparameters are chosen based on 10-fold CV and results
are averaged over ten repetitions. In this example, standard logistic regression is outperformed by the regularization
methods. The penalization approaches (LASSO, ridge and elastic net) perform better than logistic regression in terms
of the AUC, while ridge regression, elastic net, CART, and subset selection have a smaller MCE than logistic regression.

3 The state of regularization applications in medicine
We performed a literature review in three top medical journals to investigate how much regularization is used in published
medical research. To this aim, we reviewed all issues published between January and September 2020 in the Journal of the
American Medical Association (JAMA) as well as in the New England Journal of Medicine (NEJM) and the British
Medical Journal (BMJ). These journals were chosen since they range among the general medical journals with the
highest impact factors in the world. We identified and reviewed all original research articles, resulting in 383 articles,
see the PRISMA flow chart in the supplement.

3.1 Overview of used regularization methods
After the exclusion of three updates of a living systematic review, 380 articles remained. For each of these, the statistical
methods section was screened for applications of regularization. Thereby, we used the definition and the examples of
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regularization approaches described in Section 2. The exact results of our search were collected in an Excel spreadsheet,
which we provide as a supplement. It contains the following general information for each paper: the digital object identifier,
the journal in which it was published (JAMA, NEJM or BMJ), the name of the first author, and the title. As statistically
relevant variables it also includes the studies’ sample sizes, a dichotomous variable describing whether regularization was
used and, if so, another one indicating the exact form of regularization as described in Section 2. Moreover, we extracted
the type of software used for the analyses. Our main findings regarding the use of regularization are summarized in Table 2.
In the supplement, we provide an additional table summarizing the study characteristics.

The two striking key messages are as follows:

1. The majority of studies did not use regularization techniques at all.
2. If regularization was used, it was mainly by means of random effects.

In fact, out of the 128 studies that applied at least one regularization method, 104 used random effect models. Other
techniques that were used cover Bayesian (16 out of 380) and penalization methods (6) as well as smoothing (3), a
priori knowledge (3), CV (2) and boosting (2). Random forests and subset selection were only used once, respect-
ively. The numbers also suggest a different journal openness regarding regularization: While 39% (SE 0.048) of the
JAMA articles and 40% (SE 0.045) of the BMJ articles applied regularization, only 26% (SE 0.034) of the NEJM
articles did.

3.2 Discussion of specific examples
For each regularization method, other than random effects modelling, listed in Table 2 we briefly discuss its concrete usage
in the reviewed papers In the remainder of this section, we refrain from citing these papers in the references, since they
serve as examples rather than literature citations. Complete information can be found in the online supplement.

Bayesian methods were used in 16 papers as follows: In a randomized control trial (RCT) on coronary heart disease,
Maron et al. (2020, NEJM) used Bayesian techniques to quantify effect sizes. In the context of coronavirus disease
2019 (COVID-19), Li et al. (2020, NEJM) used an informative prior distribution from SARS studies to construct a
serial interval, while Reynolds et al. (2020, NEJM) used Bayesian methods to compare outcomes between treated and
untreated patients. Hong et al. (2020, NEJM) used a Bayes-logistic regression model for dose-escalation in a lung
cancer study. A Bayesian random effects model with informative priors for heterogeneity estimates was used by
Ferreyro et al. (2020, JAMA) for a research synthesis on acute hypoxemic respiratory failure. Spertus et al. (2020,
NEJM) used Bayesian methods in the context of two RCT studies (on kidney and coronary disease, respectively) with lon-
gitudinal data. Chen et al. (2020, NEJM) applied a Bayesian linear modelling framework for plasma proteome analyses in
undernourished children. In the context of coronary heart disease, Bangalore et al. (2020, NEJM) used a Bayesian approach
to assess the effect of revascularization on a composite endpoint. Bayesian meta-analyses were used by Siemieniuk et al.
(2020, BMJ), Ge et al. (2020, BMJ), Wang et al. (2020, BMJ), Moustgaard et al. (2020, BMJ), Parisi et al. (2020, BMJ) and
Li et al. (2020, BMJ) in different application contexts. Richardson et al. (2020, BMJ) used a Bayesian linear mixed model
in a Mendelian randomization study.

Six papers used penalization: Kang et al. (2020, NEJM) used a penalized Cox model with Firth correction in an RCT on
severe aortic stenosis. To tune polygenic risk scores in an observational study on coronary artery disease, Elliott et al.
(2020, JAMA) applied Lassosum. Three papers used penalized splines: Knight et al. (2020, BMJ) in a study on
COVID-19, Ho et al. (2020, BMJ) in a study on cardiovascular disease and Huang et al. (2020, BMJ) in a prospective
cohort study on stroke. Dieleman et al. (2020, JAMA) used penalized regression to avoid spurious associations caused

Table 2. Number of regularization applications found from our literature review. As some regularization methods were occasionally

used in combination, multiple enumerations are possible. Row-wise percentages are rounded to integers.

No

regularization

Random

effects Bayes Penalization

A

priori CV Smoothing Boosting

Random

forest

Subset

selection

JAMA 62 (61%) 35 (35%) 1 (1%) 2 (2%) 0 (0%) 1 (1%) 0 (0%) 1 (1%) 1 (1%) 0 (0%)

NEJM 121 (74%) 31 (19%) 8 (5%) 1 (1%) 2 (1%) 1 (1%) 2 (1%) 0 (0%) 0 (0%) 0 (0%)

BMJ 70 (60%) 38 (33%) 7 (6%) 3 (3%) 1 (1%) 0 (0%) 1 (1%) 1(1%) 0 (0%) 1 (1%)

Total 253 (67%) 104 (27%) 16 (4%) 6 (2%) 3 (1%) 2 (1%) 3 (1%) 2 (1%) 1 (0%) 1 (0%)

CV: cross-validation; JAMA: Journal of the American Medical Association; NEJM: New England Journal of Medicine; BMJ: British Medical Journal.
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by small sample sizes and applied CV for the determination of the tuning parameters. CV was also applied by Milea et al.
(2020, NEJM) for classification of fundus photographs.

A priori information in the sense of domain knowledge was used to impute missing values in two studies on bacterial
infection (Jernigan et al., 2020, NEJM and Guh et al., 2020, NEJM), while Lewnard et al. (2020, BMJ) used a priori infor-
mation borrowed from previous studies to develop parameterizations of the incubation period in COVID-19.

Smoothing was applied in three papers: Peled et al. (2020, NEJM) used loess-smoothed averages in plots for microbiota
composition in patients undergoing haematopoietic-cell transplantation. In a study on rheumatoid arthritis, Orange et al.
(2020, NEJM) applied the locally weighted scatterplot smoothing (LOWESS) technique. Safiri et al. (2020, BMJ) used
smoothing spline models to determine the shape of the association between neck pain burden and sociodemographic
indices.

Boosting was used twice, namely by Dhruva et al. (2020, JAMA), who applied extreme gradient boosting for the devel-
opment of a log-odds model with high-dimensional nonlinear relationships between covariates, and by Knight et al. (2020,
BMJ), who used gradient boosting decision trees in a study on COVID-19.

Finally, a random survival forest was used by Fosbol et al. (2020, JAMA) in a study on COVID-19 as a sensitivity
analysis, and Nicholson et al. (2020, BMJ) performed subset selection in a logistic regression model for cancer.

On the other hand, several papers did not use regularization approaches although the analyses could have benefited from
it. For example, instead of using GEEs, Pincus et al. (2020, JAMA), Lindenauer et al. (2020, JAMA), Marshall et al. (2020,
NEJM), Juul et al. (2020, NEJM) and Marc et al. (2020, JAMA), among others, could have used random effect models. In
Lindenauer et al., for instance, modelling the hospital clusters as random effects would have enabled a different kind of
analysis, where the focus is on the conditional rather than the marginal effect.86 Other papers, e.g. Piccininni et al.
(2020, BMJ) and Man et al. (2020, JAMA), used linear splines with fixed knots. Here, penalized splines might increase
the flexibility of the model and help detecting nonlinear effects. Variable selection methods could have been applied in
numerous papers to reduce the number of covariates included in the models. Examples include Kurth et al. (2020,
JAMA), Pasternak et al. (2020, BMJ), Bailey et al. (2020, NEJM) or Smith et al. (2020, JAMA).

This concludes the overview of the use of regularization methods applied in real studies published in 383 research
papers. It is our opinion that regularization would have been beneficial as well for several other studies, since they increase
flexibility and can combine evidence from multiple models or sources, as mentioned in Section 2. We illustrate this in the
next section, by explaining the concrete approach and the obtained results of three different regularization applications in
the literature.

4 Examples
To demonstrate the versatility of using regularization methods and their potential positive effects, we discuss selected
biostatistical examples from the literature.

4.1 Variable selection and shrinkage methods for linear regression
An example well-known in the statistical learning community refers to the prostate cancer data set analysed in Chapter 3.4
of Hastie et al.87 with shrinkage methods for linear regression. The data originate from a study by Stamey et al.88 who
examined the level of prostate-specific antigen (PSA) in 97 prostate cancer patients, before receiving radical prostatectomy.
PSA is a well-known biomarker in prostate cancer and the correlation of log PSA (lpsa) to eight clinical variables was
analysed, including log cancer volume (lca), log prostate weight (lweight), age, log of benign prostatic hyperplasia
amount (lbph), seminal vesicle invasion (svi), log of capsular penetration (lcp), Gleason score (gleason), and percent of
Gleason scores 4 or 5 (pgg45).

A natural approach to model the relationship between lpsa and the eight predictors in a multivariate approach is standard
linear regression, without any regularization. At first glance, in this case, variable selection seems not urgently required
(only p = 8 variables and n = 97 observations). However, Hastie et al.87 applied various variable selection and shrinkage
methods to the regression problem. First, the data were split into a training set and a test set. Then, on the training set, the
models were fitted using CV for potential hyperparameter tuning. Finally, test set errors were computed on the test set that
was not touched for model fitting, and its standard errors were estimated on the left-out sets in the CV.

In best subset selection, all combinations of variables were considered. Ridge regression and LASSO regression were
used as shrinkage methods, and principal component regression and partial least squares as methods with decorrelated
linear combinations of the original variables. The results are presented in Table 3, cf. Table 3.3 in Hastie et al.87

The test error was highest for standard linear regression (least squares) and for partial least squares and considerably
lower for all other approaches. Further, best subset and LASSO regression selected only two and four variables out of
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the original eight, respectively. This demonstrates the potential benefit from regularization, here in the form of penalized
regression, even in this fairly simple situation, due to the considerable correlation between the original variables.

4.2 Using additional a priori information for evidence synthesis
Borrowing information, for example from an observational study, to support a small-scale randomized trial can be achieved
by deriving a shrinkage estimate within a Bayesian random effects meta-analysis.11 The approach first analyses the obser-
vational data using the shrinkage estimator in a hierarchical model and subsequently uses the derived posterior distribution
to inform the analysis of the RCT. The efficiency gain of this approach was exemplified by Röver and Friede11 in the
context of Creutzfeld-Jakob disease. This disease is a rare disease with a prevalence of 1 in 1,000,000. An RCT on doxy-
cycline89was terminated prematurely with only 12 patients included. However, additional data on 88 patients was available
from an observational study. The primary endpoint of all-cause mortality was analysed using Cox proportional hazards
regression. Using the external information from the observational study led to Bayesian shrinkage intervals spanning
only two-thirds of the confidence interval derived from RCT data, thus showing a clear gain in efficiency.

The approach was also applied in a recent study90 on children with Alport syndrome. The Alport syndrome is a rare
kidney disease which typically leads to end-stage renal disease in early life and requires renal replacement.91

Incorporating the results of real-world evidence from a prospective US cohort into the randomized data by Bayesian evi-
dence synthesis resulted in a more precise estimate of the treatment effect indicated by a much shorter credible interval.

4.3 Boosting capture-recapture methods
Systematic reviews of clinical trials should be based on all relevant trials on the particular topic. For evaluation of the compre-
hensiveness of systematic literature reviews, capture-recapture analyses have been proposed. These require the selection of an
appropriate model. To this end, Rücker et al.92 proposed to combine capture-recapture analysis with componentwise boosting.
The boosting procedure allows to specify the mandatory variables that are always included in the model as well as optional vari-
ables. The latter are included only if relevant. This approach turned out to be robust against overfitting, and an appropriate model
for statistical inference was automatically developed. In particular, Rücker et al.92 compared the componentwise boosting to a
manually selected Poisson model to estimate the number of missing references for two systematic reviews on gastroenterology
(prevention of biliary stent occlusion) and haematology (managing transfusional iron overload in sickle cell disease patients),
respectively. For the first study, the manually selected model estimated 82 missing articles (95%CI: 52–128), whereas the boost-
ing technique found 127 (95 % CI: 86–186) missing articles. For the second example, boosting again provided a more efficient
estimate of 188 (95%CI: 159–223) compared to the best manually selectedmodel (140missing articles with 95%CI: 116–168).

5 Discussion
A range of regularization approaches has been proposed to overcome problems such as overfitting, deal with data sparsity
or improve the prediction and generalizability of results. Using a broad definition of regularization, namely the process of
adding information in order to control model complexity, we reviewed a range of approaches within this framework includ-
ing penalization, early stopping, ensembling and model averaging. We discussed aspects of their practical implementation
including available R-packages. In this manuscript, we focused on R as a programming language and also demonstrated the
use of regularization methods in an R-implementation. However, regularization approaches are also implemented in other
statistical software. For example, penalization approaches such as LASSO or Ridge regression are implemented in SAS in
the GLMSELECT and the REG procedure, while more complex penalization methods can be found in PROC TPSPLINE.

Table 3. Results for the application of different (mostly regularized) regression models to the prostate cancer dataset, with model fitting

on the training set, using 10-fold CV. Reported are test errors, their estimated standard errors computed from the CV, and numbers of

variables selected.

Least

squares

Best

subset

Ridge

regression

LASSO

regression

Principal component

regression

Partial least

squares

Test error 0.521 0.492 0.492 0.479 0.449 0.528

Std error 0.179 0.143 0.165 0.164 0.105 0.152

Number of variables 8 2 8 4 8 8

CV: cross validation; LASSO: least absolute shrinkage and selection operator.
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A random forest implementation is given by PROC HPFOREST, for example. Bayesian method can be incorporated in
various ways: PROC FMM, PROC GENMOD, PROC LIFEREG and PROC PHREG allow for Bayesian analyses through a
BAYES statement, while PROC BGLIMM and PROC MCMC are specifically tailored to perform Bayesian estimation.93

Similarly, xtreg, lasso and boost provide implementations of random effects models, LASSO penalization and boosting
in Stata, respectively. Examples were provided to showcase the practical use of regularization encouraging more wide spread
use of these techniques in medicine. This is on the background of our review of recent issues of three general medical journals,
which revealed that regularization approaches could be usedmore. The only exception are random effects models which featured
relatively regularly. Other regularization approaches were rarely applied. In our view, there is space for improvement in the use
of regularization methods in clinical medicine. Their application can be considered on a regular basis, since they only improve
analyses and their interpretation. In situations where also other approaches work well, the only downside of the regularization
approaches is increased complexity in the conduct of the analyses which can pose challenges in terms of computational resources
and expertise on the side of the data analyst. In our view, both can and should be overcome by investments in appropriate com-
puting facilities and educational resources.

Of course, the application of regularization approaches also entails some limitations:

• In general, their application is somewhat more challenging and requires a better understanding of the corresponding
methodology. However, as we have shown in this review, the methodological gap between classical and regularized
approaches is not always that big in the end.

• Some of the regularization approaches presented in this manuscript can be computationally intense, e.g. in the case of
neural networks or random forests, especially when cross-validated tuning of hyperparameters is required.

• Some approaches are black box methods (e.g. tree-based ensembles, or deep neural networks), and will therefore be hard
to interpret, limiting the possibility to communicate them to practitioners.

Finally, the selection of any statistical approach should of course be guided by the actual research question at hand and the
corresponding goals (e.g. causal vs. exploratory vs. predictive analyses), and regularization approaches will not always be
the best choice for this goal. For example, Riley et al.94 demonstrated that penalization and shrinkage methods produced
unreliable clinical prediction models especially when the sample size was small.

The review of NEJM, JAMA and BMJ shed some light on the current state of the use of regularization methods in medi-
cine. Although the review clearly shows that regularization methods are underused in clinical applications, it is limited in
scope since only three journals were searched. Moreover, the choice of journals to include in such a review remains some-
what arbitrary. For instance, one reviewer suggested to include The Lancet as an additional high-impact general medicine
journal. Furthermore, we focused on a relatively recent time period only and did not investigate any trends over time.

Before us, others have highlighted that existing methods are underused in clinical applications leading to suboptimal
designs and analyses, sometimes even resulting in misleading interpretations. As an example, we refer to the
STRATOS (STRengthening Analytical Thinking for Observational Studies) initiative (https://stratos-initiative.org/).95

Several topic groups (TGs) of the initiative are also concerned with regularization approaches, in particular, TG 2
‘Selection of variables and functional forms in multivariable analysis’96 and TG 9 ‘High-dimensional data’.
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