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Abstract. The problem of varying length recordings is a well-known
issue in paralinguistics. We investigated how to resolve this problem
using the bag-of-audio-words feature extraction approach. The steps of
this technique involve preprocessing, clustering, quantization and normal-
ization. The bag-of-audio-words technique is competitive in the area of
speech emotion recognition, but the method has several parameters that
need to be precisely tuned for good efficiency. The main aim of our study
was to analyse the effectiveness of bag-of-audio-words method and try to
find the best parameter values for emotion recognition. We optimized the
parameters one-by-one, but built on the results of each other. We per-
formed the feature extraction, using openSMILE. Next we transformed
our features into same-sized vectors with openXBOW, and finally trained
and evaluated SVM models with 10-fold-crossvalidation and UAR. In our
experiments, we worked with a Hungarian emotion database. According
to our results, the emotion classification performance improves with the
bag-of-audio-words feature representation. Not all the BoAW parameters
have the optimal settings but later we can make clear recommendations
on how to set bag-of-audio-words parameters for emotion detection tasks.

Computing Classification System 1998: H.3.1, I.2.7.
Mathematics Subject Classification 2010: 68R15
Key words and phrases: bag-of-audio-words, emotion detection, human voice, sound pro-
cessing
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1 Introduction

Human speech is not only used for encoding the words uttered, but it also con-
tains other information about the speakers. For example, about their physical
and mental state. These include the emotional state, signs of illness, depres-
sion, joy and so on. This extra information can be used in various ways by
computer science and engineering information technology. Nowadays emotion
detection from audio data (speech emotion recognition or SER) is an active
area of research with a wide range of possible applications. It can be used in
the human-computer interfaces, like that for monitoring human communica-
tion [12] and detecting the gender of the speaker, or their emotional state, or
how confident they are. We can also use paralinguistics in dialogue systems [3]
where we can detect the problematic dialogue phrases or adapt the dialogue to
help the speaker. Besides this, it may be useful in healthcare systems [10, 26] to
monitor the patient’s mental state. Last, but not least we can utilize emotion
detection in call centres [26]. For instance if the client get angry, we can au-
tomatically inform a boss about this. Using machines for emotion recognition
and monitoring systems is a currently evolving area. In the future with good
emotion recognition systems, we will be able to create more human-oriented
and friendlier systems. For example we can create intelligent tutorial systems
that can adapt to the student’s mental state and give them more constructive
advice. In addition, we can use it for lie detection to improve law enforcement.
Emotion detection is also useful in a call centre or a banking software mon-
itoring application, where we can monitor how patient members of the staff
are. Furthermore we can also use it for the support diagnostics of therapists,
create more empathic healthcare robots, and in computer games use it to set
the difficulty of the game by the emotion of the user [13]. There are other in-
teresting applications in paralinguistics. Human computer interfaces and user
adaptation systems could be used to recognizing the age and the gender of
the speaker from their voice. For instance here are some electronic systems
that can use these human features: an automatic dialogue system can adapt
to the speaker by speaking slower and louder for an older user or use a dif-
ferent corpus for younger and older customers; an interactive voice response
system can choose the background music by guessing the age and the gender
of the user; smart home systems can adapt to the age of the speaker because
an older customer needs more automation while a younger customer need a
more collaborative system; a police call analysis system can identify the age
and the gender of a suspect from a telephone call [17].
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Since the beginning of research in this area, many feature extraction and
classification techniques have been used along with different datasets to get the
best results. The variable length of recordings has always been a big problem
here. This is due to the fact that our recordings have different lengths, but our
classifiers expect a fixed length input. So one of the most difficult problems
in speech emotion recognition and in other paralinguistics areas is feature
extraction, because as we mentioned our recordings are different in length,
but the classification techniques requires fixed-sized feature vectors. Several
methods have already been developed to tackle the problem of varying length
and to make the features extracted from the recordings the same length. For
example x-vectors [18], i-vectors [27], Fisher vectors [8], neural networks [9] and
the Bag-of-Audio-Words (i.e: BoAW [15]) approach that we investigate here.
Our experiments were performed on a Hungarian database and our final results
indicated that the BoAW technique can be used effectively. However, we should
also add that creating any BoAW feature representation is sensitive to the
parameter settings and working with bigger codebooks for better classification
result requires more CPU time.

Our baseline comes from a Hungarian emotion speech database. Previous
studies (i.e.: [25], [23], [8]) using this database produced accuracy scores of 66–
70%. Previous results in speech emotion recognition with another databases
are came between 60–80% [24, 11, 20]. Our results give us an unweighted
average recall (UAR) score of 66–71%.

2 Bag-of-audio-words method

Using the bag-of-audio-words feature representation, we can overcome the
above-mentioned problem of varying length. This feature extraction method
is similar to the bag-of-visual-words [5] and the bag-of-words [28] techniques,
which are used in image and speech preprocessing. Now we will present the
BoAW workflow.

BoAW first performs an analysis on the entire audio database and then,
based on the results obtained, generates statistics for each file separately that
represent their relationship to the entire database. Figure 1 shows the gen-
eral workflow for generating a BoAW representation from a dataset. The two
columns belong to the training and the test set extraction steps. As we can
see, the extraction of the test set depends on the train set extraction workflow,
but it mostly contains the same steps, so let us discuss the training set.
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Figure 1: Workflow for the bag-of-audio-words technique.

In the first step, we have to extract the frame-level feature vectors per
recording. In this step we get a different number of feature vectors for each
recording, because the number of vectors depends on the original length of
the evaluated recording and the frame’s windowing size. In the next step, we
work with all the feature vectors from all the recordings, collect them into
one big “bag” and perform clustering on it. The purpose of this is to break
down the vectors of the “bag” into meaningful subsets such that vectors in the
same groups are more similar to other vectors in the same group than those in
other groups. The number of clusters to be produced is determined by us. This
cluster size parameter N is one of the parameters of the BoAW method. The
centres of the created clusters will be called “codewords”. The group of these
“codewords” will be the “codebook”. The N parameter is called the codebook
size. The vector dimension of the classification will depend on the codebook
size.

Figure 2: A bag-of-audio-words histogram of the recording.
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After the clustering process, in the vector quantization step, we again work
with individual recordings and create a histogram for each recording. We re-
place the original feature vectors by the index of the closest codeword. We
then find the nearest neighbours using the minimum Euclidean distance. We
can also specify how many closest vectors we are looking for (this is also a
parameter of the BoAW method). So this produced, same-sized (i.e. N) his-
tograms for each recording. The x-axis of the histogram lists the index of
each codeword, and the y-axis shows quantities which represent how many of
the feature vectors of the recording were mapped into a particular codeword.
After quantization, each file’s feature becomes independent of the length of
the particular audio recording. For example, Figure 2 shows a histogram for
one recording. In this case the codewords are represented by their indices (i.e.
1, 2, 3 and so on). This recording has 43 frames, and every frame gets mapped
into 1 codeword.

In the last step, we normalize the histogram, so the given frequencies are
divided by the number of frames of the speech recording. We notice that each
histogram can be represented by a codebook-sized vector. These histograms
will be our new feature vectors that have an independent length from the
recording sizes. We will call this set of histograms “Bag-of-Audio-Words” and
use it as features for our classifier.

Figure 1 shows how the clustering step can be omitted for the test set. This
can be done because the openXBOW software allows us to save two important
things: the parameter settings applied to the training set and the computed
codebook. Then we use these later in the test set, so that the quantization
step can be performed on the cluster centres generated during the training set
recordings without re-clustering. This operation is easy to implement, since the
test file has frame-level feature vectors. They are the same as those produced
with a set of features like the vectors of the training set, so we can classify
them into each cluster based on their distance from the previously defined
codewords.

2.1 Parameters of the BoAW method

The BoAW method has many adjustable parameters that can influence the
process of codebook creation. In our study, we tested the effect of the prepro-
cessing method, clustering method, the codebook size N, and the quantization
neighbour number parameters on the learning algorithm performance. For the
codebook building, we used an open-source program called openXBOW [21].
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Preprocessing techniques: with openXBOW we can do some preprocessing
for the frame level descriptors, before the clustering step. If some of the features
have extremely high or low values compared to the others, they may dominate
the Euclidean distance during the BoAW vector quantization step. We tested
to see how preprocessing improves the performance, so we tried out three
different solutions for it. The first one was without any preprocessing, the
second one was normalizing the feature vectors and the third one was by
standardizing the vectors before clustering.

Clustering method: One important factor is the clustering procedure used
to create the codebook. Pancoast and Akbacak used k-means in their original
study [16]; however, due to the large number of frames to be clustered, the
runtime of this approach is very high. Rawat et al offer simple random sam-
pling [19]; its runtime is marginally better than the k-means, and it does not
really affect the performance. Later, Arthur et al. applied k-means++ clus-
tering [1], a cluster center initialization procedure, which was used instead of
completely random sampling, hence the distribution of cluster centers became
more balanced. Compared to k-means, cluster centers are not selected at ran-
dom during initialization, but selected via a uniform distribution. We tested
the effect of applying the k-means and k-means++ methods on our data.

Histogram neighbour number: Instead of looking for just the closest code-
word, each vector may also be assigned to a certain number of the closest
codewords. Pancoast and Akbacak assume that instead of just using the clos-
est cluster to each frame, we can assign a set of closest neighbours [16]. This
leads to a more precise description of the recordings with the same feature
vector size. This is why we experimented with two different settings (5 and
10).

Codebook size: As we said earlier, we can control how many clusters we wish
to create, and how long we want the feature vectors to be. In each experiment
we tested the effect of the following lengths: 32, 64, 128, 256, 512, 1 024, 2 048,
4 096, 8 192.

Derivatives: In speech processing, it is common practice to subtract the first
and second derivatives of the feature vectors extracted from the sound record-
ings. These are the so-called deltas and delta-deltas, from which the dynamics
of speech can be deduced [6]. With the help of the openXBOW program,
we can create separate codebooks for the original low-level descriptors and
another for the ∆s.
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3 Data and methods

Next, we will present our experimental setup and environment: the database,
the classification method and its parameters, the evaluation metric, and the
feature set we used.

3.1 Hungarian emotion database

In each experiment, we created and evaluated our classification model on the
Hungarian emotion database. It contains utterances of 97 native Hungarian
and Hungarian-speaking speakers [25]. The voice samples were recorded dur-
ing television shows. The vast majority of segments were recorded from an
emotion-rich, continuous, spontaneous programme with actors. The other part
came from an improvisation entertainment show. In the first case due to the
acting performance, the samples are vivid, and the emotions are clearer. The
samples from the second case due to the improvisation, are closer to real-life
emotions. The database contains 1111 sentences, which were separated into
an 831 sample training set and a 280 sample test set. We had to detect four
emotions, namely neutral, joy, anger, sad. The distribution of the emotions
however was not uniform. The training set sample distribution was: ≈ 57%
neutral, ≈ 6% sad, ≈ 9% joy and ≈ 27% anger. The test set sample distribu-
tion was: ≈ 62% neutral, ≈ 4% sad ≈ 7% joy and ≈ 27% anger. The training
set contains approximately 20 minutes of recordings and the test set contains
approximately 7 minutes of recordings. The sampling frequency of the samples
is 16 kHz. Earlier studies working with the same database were able to achieve
a classification accuracy score of 66–70% [23, 25, 8].

3.2 Feature set

The feature set employed in the study came from the INTERSPEECH 2013

Paralinguistic Challenge [22]. It contains 65 frame-level features: 55 spectral; 6
voicing related low-level descriptors; 4 energy-related. 60 ms frame (Gaussian
window function) and a sigma value of 0.4 was used for the speech-related
features; and a 25 ms frame (Hamming window function with a step size of 10
ms) for the others.

For feature extraction we used the open-source openSMILE software pack-
age [7] with the IS13 ComParE config file. The final feature set we used con-
tained not only the basic features, but also their derivatives. We used deltas
because we wanted to get information about the dynamics of the speech sam-
ples over time.
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3.3 Evaluation method

The classification was performed using the LIBSVM library [4], which is an
SVM (Support Vector Machine [2]) implementation written in C++; here we
used the Python extension. The SVM C complexity parameter was tested in
the range 10−5 to 100. In the evaluated configurations the following powers of
10 used were: −5; −4; −3; −2; −1 and 0. We applied a Python implemented
standardization on the input BoAW feature representations before each model
was trained.

In the optimization part of our experiments, we worked with the training set,
based on 10-fold cross-validation. We split the data into roughly 10 equal folds,
where each speaker is shown in only one fold, so each fold became absolute
speaker independent. Afterwards, we trained on the 9/10 part and evaluated on
the 1/10 part for each possible combination. Consequently, when evaluating
one part as a test set, we got predictions for a specific part of the entire
database which did not overlap with the other parts, so after running all
possible combinations, we had exactly one prediction for each element of the
entire database. UAR metrics could then be easily derived from this. After
the 10th evaluation, we collected the predicted percentage scores from all the
test cases (one score for each sample) and calculated the UAR metrics. The
unweighted average recall was used as an indicator to see how good the actual
feature set was for emotion recognition.

In the test scenario, we trained a model on the whole training set with the
optimal C parameter value found above and evaluated it on the test set with
the Unweighted Average Recall (UAR) metrics [14]. The reason we use this
metric, because we have imbalanced classes. Accuracy and UAR metrics are
related, but the accuracy gives a more optimistic value because it gives higher
scores to classes with more samples, but the UAR gives the correct expectation
on each class predictions.

In the last part, we describe our experimental procedure and the evaluation
of our results. We extracted 2× 65 features (65 frame-level features and their
derivatives) in a frame-level window. Therefore we created two codebooks in
parallel (one for 65 frame-level features and one for their derivatives). Because
of this, the codebook sizes given in this section have to be multiplied by 2 to get
the number of features currently used. The results of each test cases are shown
below and the best results are given in tabular form for better transparency.
In each figure, the x-axis shows the size of the codebook (which has to be mul-
tiplied), and the y-axis shows the UAR of the SVM. The legends of our figures
contains abbreviations: “a1” means 1 neighbour during quantization; “a5”
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Feature- Maximum Codebook
preprocessing UAR size

No preprocessing 36.32% 8 192

Normalization 46.73% 4 096

Standardization 45.42% 1 024

Table 1: Preprocessing: The best results got without preprocessing, with nor-
malization and standardization, when we evaluated our technique with cross-
validation.

means 5 neighbours during quantization; “a10” means 10 neighbours during
quantization; “standardized” and “stand” both means standardization during
preprocessing; “normalized” and “norm” both means normalization during
preprocessing; “k-means” means k-means clustering technique, “k-means++”
means k-means++ clustering technique.

4 Tests and results

4.1 Preprocessing

In the first case, we compared preprocessing techniques before clustering. Pre-
processing is always a good choice because databases contains outliers, which
have a detrimental effect on learning effectiveness.

From our results (see Figure 3 and Table 1), it is apparent that the data
without preprocessing proved to be the weakest in all cases. By comparison,
normalization and standardization gave performance improvements that were
nearly the same. Another advantage of normalizing or standardizing the input
is that significantly fewer clusters are required for optimal performance than
leaving the input unchanged (8 192). When we applied normalization, we got
46.35% for 1 024 codewords, so we found that in both normalization and stan-
dardization, a size of 1 024 was big enough to achieve the best performance.
This lower codebook size also helps the performance of the SVM, because in a
smaller feature space the speed and success of the learning will also increase.

The best result of the cross-validation (i.e. 46.73%) was achieved with nor-
malization and a codebook size of 4 096. Otherwise there is no significant differ-
ence between the best standardization and normalization results. In addition,
it is not clear that normalization or standardization will produce a better re-
sult with the feature set. Here, further tests were performed in parallel, with
normalization and standardization to ascertain the benefits.



10 M. Vetráb, G. Gosztolya

Figure 3: Preprocessing: The results obtained for different codebook sizes and
preprocessing techniques.

Feature- Maximum Codebook
preprocessing a UAR size

Normalization
1 46.73% 4 096

5 48.93% 4 096

10 49.14% 16 384

Standardization
1 45.42% 1 024

5 46.16% 8 192

10 47.37% 8 192

Table 2: Number of neighbours: The best results obtained for 1, 5, 10 neigh-
bours with normalization and standardization.

4.2 Number of neighbours assigned during quantization

In the next comparison, we investigate how many closest codewords have to
be assigned to a frame-level feature vector when creating a histogram, to
achieve the optimal performance. In our experiments, we tested three options,
where we used the closest 1/5/10 neighbours. Based on the results of our
previous optimization, all three quantatization options were also evaluated
with normalization and standardization.

From our new results (see Table 2, Figure 5 and Figure 4), we may conclude
that more than one neighbour gives better results in the majority of cases.
This can be seen for both preprocessing techniques (normalization and stan-
dardization). As regards the performance of the classification algorithm, we
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Figure 4: Number of neighbours: The results obtained for 1, 5, 10 neighbours
and normalization.

Figure 5: Number of neighbours: The results obtained for 1, 5, 10 neighbours
and standardization.

did not find any significant difference between the a = 5 and a = 10 values.
As can be seen, above the codebook size of 512 we got significantly better
results with applied preprocessing, so any kind of preprocessing is always a
good choice if we want better results. With larger codebook sizes there is only
a small difference (1%–3%) between the results got using standardization and
normalization. Hence we need to investigate them further.
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Figure 6: Number of neighbours: The results got using different codebook sizes,
preprocessing techniques and neighbour counts.

Table 2 shows the best results for the different cases. We notice that 5 and
10 closest codewords give the same improvement, compared to the 1 neighbour
version. Although not significant, the a = 10 option gives slightly better results
in both preprocessing cases. Here we think that the multi-neighbour technique
needs more clusters to achieve the best results. However it can be seen in
Figure 6 that with standardization and normalization, the codebook size of
1 024 is already capable of giving results as good as the best single-neighbour
variation. Based on our results, we decided in later test cases to test the 5 and
10 options in order to draw a more precise conclusion.

4.3 Clustering algorithm

The third parameter we investigated was the clustering algorithm, where we
tested two techniques: k-means and k-means++. Based on our earlier results
we decided to test them with normalization and standardization, and with 5
and 10 neighbours in the quantification step.
So our test cases were:

� 5 neighbours and standardization

� 5 neighbours and normalization

� 10 neighbours and standardization

� 10 neighbours and normalization
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Figure 7: Clustering algorithm: The results obtained for k-means and k-
means++ algorithms with 5 neighbours.

Figure 8: Clustering algorithm: The results obtained for k-means and k-
means++ algorithms with 10 neighbours.

Based on the results (see Table 3, Figure 7, Figure 8, and Figure 9), we
can say that both clustering methods have the same trend. Once again we
get higher scores than 46% above a codebook size of 512. Also, we notice
that normalization begins to perform better than the standardized case as the
codebook size increases. The accuracy values are best with a codebook size
of 4 096, which means that we need higher spatial dimensions to get better
results. Since we did not find any significant difference between the trends of
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Clustering- Feature Maximum Codebook
algorithm preprocessing a UAR size

k-means Normalization
5 48.93% 4 096
10 49.14% 16 384

k-means Standardization
5 46.16% 8 192
10 47.37% 8 192

k-means++ Normalization
5 50.94% 4 096
10 47.77% 4 096

k-means++ Standardization
5 50.08% 8 192
10 47.74% 4 096

Table 3: Clustering algorithm: The best results for k-means and k-means++
algorithms with cross-validation.

k-means and k-means++, we decided to take the codebook sizes and settings
that proved promising in our previous experiment (1 024 codebook size and
normalization). Then, other tests were performed using the k-means algorithm.

Figure 9: Clustering algorithm: The results got using different codebook sizes,
preprocessing techniques, neighbour counts and quantatization algorithms.

4.4 Upsampling

Upsampling for smaller datasets and downsampling for large ones are com-
mon techniques when we have a very unbalanced dataset for labels. Because
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Feature- Maximum Codebook
preprocessing a UAR size

Normalization
5 58.88% 2 048

10 60.42% 256

Standardization
5 55.93% 128

10 58.59% 1 024

Table 4: Upsampling: The best results obtained with upsampling in cross-
validation training.

our Hungarian emotion database is smaller and not a balanced one (57–61%
of the dataset has the label “neutral”), we decided to use upsampling on
our BoAW features before SVM learning. In this scenario, we tested how up-
sampling affects our results. We carried out tests with 5 and 10 neighbours,
standardization and normalization, as previously and we utilized the k-means
clustering algorithm.

Based on the results (see Table 4 and Figure 10), we can state that up-
sampling gave an improvement of about 10% compared to all of our previous
results. In addition, perhaps the biggest advantage is that we were able to
further reduce the optimal codebook size, which is good in terms of the speed
and degree of difficulty of the learning process. It has only one disadvantage,
namely our training curve is not as stable as before. There are two peaks here
instead of one and it leads to less predictable learning. Because of this, we
applied upsampling in our next experiment.

Figure 10: Upsampling: The results obtained with upsampling in cross-
validation training.
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Feature- Maximum Codebook
preprocessing a UAR size

Normalization
5 58.63% 512

10 57.48% 512

Standardization
5 56.08% 512

10 59.00% 512

Table 5: Deltas: The best results of cross-validation using deltas.

4.5 Derivatives

As we mentioned previously, using derivatives is a frequently used technique in
speech processing to get information about the speaker’s change of voice over
time. In the last optimizing scenario we tested the effect of using these deltas.
Our experiments so far have shown that the 16 384-sized codebooks always
give a lower performance, and working with big dimensions slows down the
training process. Because of the low performance we no longer need to run
cross-validation and test with this huge 16 384 size. It should be added that
the codebook sizes on Figure 11 had to be doubled, because we created two
unit-sized codebooks; one for the original features and one for deltas and we
used both of them while training.

From our results (see Table 5 and Figure 11), by using deltas we managed to
reduce the number of necessary and sufficient codewords to a moderate size.
Another advantage is that training trends are less random than before and
much more predictable. So owing to this positive result, the final evaluation
with the test database was performed with deltas.

4.6 Final tests

All of our previous decisions were made based on the optimal results got by
the cross-validation performed on the teaching set, so our final set of BoAW
parameters are the following:

� 5 neighbours, normalization, upsampling and using deltas

� 10 neighbours, normalization, upsampling and using deltas

� 5 neighbours, standardization, upsampling and using deltas

� 10 neighbours, standardization, upsampling and using deltas

All of our previous results indicate that above a codebook size of 64 the
results display consistently increasing trends. Because of this, we decided to
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Figure 11: Deltas: The results of cross-validation using deltas.

Feature- Maximum Codebook
preprocessing a UAR size

Normalization
5 68.68% 64

10 67.77% 128

Standardization
5 71.15% 64

10 65.42% 64

Table 6: Final tests: The best results of the final tests without cross-validation.

run our tests with a size of 128 (the codebook size is 64 on the test diagrams,
because we have to double the size when using deltas).

Based on our final results (see Table 6 and Figure 12), we may conclude
that the bag-of-audio-words representation can be utilized for speech emotion
recognition. It can be seen that with the right parameter settings we were
able to reduce the dimension of the best result. However the trends of the
test results are not clear, and the connection between increasing codeword
quantities and decreasing evaluation results also seems to suggest that the
larger the codebook size we choose, the greater the chance of over-fitting and
our classifier will lose its ability to generalize.

The best results on the test set are close to 70%, which is at least as good
as the other published paper results. Our final percentage scores cannot be
compared directly to previous published results for this database because they
used accuracy instead of UAR and had no upsampling. However we can still
state that BoAW is as good representation as any other if we carefully optimize
the parameter values of the algorithm.
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Figure 12: Final tests: The results of the final tests without cross-validation.

5 Conclusions

In this study, the bag-of-audio-words feature representation method was used
for speech emotion recognition with a Hungarian emotional database. Because
the BoAW method has many adjustable parameters, we had to train a lot
of machine learning models with different parameter value combinations, so
the training runtimes was an important consideration. Although each model
building and evaluation did not take a long time, due to the many combinations
and possible correction runs, the whole experiment took far too far.

From our results, we offer some useful suggestions that might be helpful
when using openXBOW. These are:

� Transform the input sample set to the same scale by normalization or
standardization. This is always a good choice.

� For greater generalization ability, it is worth including more neighbours
in the quantizing step, such as 5 or 10.

� It is worth choosing the size of codebook from a medium-large range
(e.g. between 128 and 4 096). If possible, try to keep the codebook size
low to get a better generalization.

� Clustering the k-means and k-means++ algorithms are worth exploring.
� By balancing the frequency of classes seen during learning (in this case

with upsampling), we can improve our generalization ability.
� We should calculate and use the deltas.

Now we see that the bag-of-audio-words technique is competitive in the area
of speech emotion recognition, but this method has several parameter values
that need to be precisely tuned for optimal efficiency.



Using the BoAW approach for emotion recognition 19

There are several directions we can pursue in the future. Firstly, we would
like to see if we can use other database codebooks to extract BoAW features
from different databases. In another words, we wish to know whether code-
books are portable and what the best codebooks are for different purposes. We
could also test other frame-level feature sets to see if there are any practical
benefits of using them.
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Abstract. The concept of first KCD signless Laplacian energy is initiated
in this article. Moreover, we determine first KCD signless Laplacian spec-
trum and first KCD signless Laplacian energy for some class of graphs
and their complement.

1 Introduction

In this article, a connected, simple and undirected graph G having n vertices
and m edges is considered. The degree of vertex vi is represented as di. The
complement G of G has two vertices adjacent if they are not adjacent in G [12].
The regular graph G has degree r. For undefined terminologies refer [12].

The idea of energy of a graph G was outlined by Gutman [11]. It defines
energy of G as the sum of absolute eigenvalues of G. Tremendous work on this
concept is available in the literature [11, 16]. Recently various graph-energy-
like quantities: Laplacian [10], signless Laplacian [1, 8], distance [13] etc. are
studied. Further, two non-isomorphic graphs having same spectra are cospec-
tral otherwise noncospectral. Various energies are available in the literature
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defined using the degree of a vertex. The vertex degree and edge degree to-
gether makes the concept more fascinating and opens new areas of research.
With this urge a new matrix using vertex and edge degree together was defined
by Mirajkar et al. in [14].

The first Karnatak College Dharwad matrix i.e., first KCD matrix [14]
KCD1(G) is defined as

kcd1ij =

{
(di + dj) + dij if vi is adjacent to vj ,
0 otherwise,

with di and dj representing vertex degrees vi and vj respectively, the edge
degree is dij = di + dj − 2.
β1 > β2 > ... > βn represents the first KCD eigenvalues of G. The first

KCD energy EKCD1
(G) [14] is

EKCD1
(G) =

n∑
i=1

|βi|. (1)

If D(G) and KCD1(G) are the diagonal matrix and first KCD matrix respec-
tively, then for a (n,m) graph G, the first Karnatak College Dharwad Lapla-
cian matrix [15] LKCD1

(G) is

LKCD1
(G) = D(G) − KCD1(G).

It has first KCD Laplacian eigenvalues η1 > η2 > ... > ηn in the non-
increasing order. The corresponding first Karnatak College Dharwad Laplacian
energy [15] LEKCD1

(G) is

LEKCD1
(G) =

n∑
i=1

∣∣∣∣ηi − 2m

n

∣∣∣∣ , (2)

where ηi, i = 1, 2, ..., n represents the first KCD Laplacian eigenvalues of G.
If D(G) and A(G) are the diagonal matrix and adjacency matrix respec-

tively, then the signless Laplacian matrix [1] of G is

SL(G) = D(G) +A(G).

It has µ+1 > µ
+
2 > ... > µ

+
n as the signless Laplacian eigenvalues of G.

The signless Lapalcian energy [1] of G is

SLE(G) =

n∑
i=1

∣∣∣∣µ+i −
2m

n

∣∣∣∣ .
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Analogous to energy of a graph G the concept of SLE(G) also has nu-
merous chemical applications. For some of the spectral properties of SL(G)
refer [1, 3, 5, 6, 7]. Further more, the concept of SL(G)and SLE(G) has moti-
vated us to develop the idea of the first KCD signless Laplacian matrix and
first KCD signless Laplacian energy of G.

With this motivation, in the second section, we introduce the first KCD
signless Laplacian matrix and first KCD signless Laplacian energy of G, fol-
lowed by general basic results on them. Further, in third section we determine
first KCD signless Laplacian spectrum and first KCD signless Laplacian energy
for some class of graphs and their complements.

2 First KCD signless Laplacian energy

Definition 1 If D(G) and KCD1(G) are the diagonal matrix and first KCD
matrix respectively, then for a (n,m) graph G, the first Karnatak College Dhar-
wad signless Laplacian matrix SLKCD1

(G) is defined as

SLKCD1
(G) = D(G) + KCD1(G).

It has first KCD signless Laplacian eigenvalues η+1 > η+2 > ... > η+n in the
non-increasing order, where η+1 and η+n are the highest and lowest first KCD
signless Laplacian eigenvalues of G respectively.

The corresponding first Karnatak College Dharwad signless Laplacian energy
SLEKCD1

(G) is defined as

SLEKCD1
(G) =

n∑
i=1

∣∣∣∣η+i −
2m

n

∣∣∣∣ , (3)

where η+i , i = 1, 2, ..., n are the first KCD signless Laplacian eigenvalues of G.

Lemma 2 If G is a regular graph, then

SLEKCD1
(G) = EKCD1

(G). (4)

Proof. The regular graph G satisfies

η+i −
2m

n
= βi, i = 1, 2, ..., n (5)

Making an appeal to Eq. (5) in (3), we get

SLEKCD1
(G) =

n∑
i=1

|βi| = EKCD1
(G).
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�

Corollary 3 If G is a regular graph, then

SLEKCD1
(G) = LEKCD1

(G) = EKCD1
(G).

Proof. From Eq. (4), we have

SLEKCD1
(G) = EKCD1

(G). (6)

Further, from [15], we consider

LEKCD1
(G) = EKCD1

(G) (7)

Finally, from Eqs. (6) and (7), we obtain the required result.
�

3 Estimation of first KCD signless Laplacian en-
ergy for some class of graphs and their comple-
ments

This section considers first SLEKCD1
(G) for few class of graphs and respective

complements.
If η+1 > η

+
2 > ... > η

+
k are the distinct first KCD signless Laplacian eigenvalues

of G having the multiplicities t1, t2, ..., tk then, the first KCD signless Laplacian
spectrum of G is denoted as

SLSpecKCD1
(G) =

(
η+1 η+2 ... η+k
t1 t2 ... tk

)
,

where t1 + t2 + ...+ tk = n.

Further calculations are based on the following

Lemma 4 [13] If

M =

(
M0 M1

M1 M0

)
represents a symmetric matrix with block partition, then the eigenvalues of
M are the eigenvalues of the matrices M0 +M1 and M0 −M1.
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Theorem 5 If Kn
2
,n
2

has |V(Kn
2
,n
2
)| = n = {2l; l = 3, 4, ...}, then

SLSpecKCD1

(
Kn

2
,n
2

)
=

 n

2

(
3− 2n

2

)
n

(
2n− 1

2

)
n

n− 2 1 1


and

SLEKCD1

(
Kn

2
,n
2

)
= 2n2 − 2n.

Proof. For Kn
2
,n
2

of order n, we have

SLKCD1

(
Kn

2
,n
2

)
=

(
n
2 In2

(2n− 2)Jn
2

(2n− 2)Jn
2

n
2 In2

)
.

Here In
2

is the identity matrix having order n
2 and Jn

2
is the n

2 ×
n
2 matrix with

all entries as 1.
Further, above matrix can be expressed as

SLKCD1

(
Kn

2
,n
2

)
=

(
M0 M1

M1 M0

)
,

where M0 =
n
2 In2

and M1 = (2n− 2)Jn
2
.

Now,

M0 +M1 =
n

2
In

2
+ (2n− 2)Jn

2

and

M0 −M1 =
n

2
In

2
− (2n− 2)Jn

2
.

By using Lemma 4, the spectrum of SLKCD1

(
Kn

2
,n
2

)
is

SLSpecKCD1

(
Kn

2
,n
2

)
=

 n

2

(
3− 2n

2

)
n

(
2n− 1

2

)
n

n− 2 1 1

 .
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Further, employing the Eq. (3), we derive

SLEKCD1

(
Kn

2
,n
2

)
=

n∑
i=1

∣∣∣∣η+i −
2m

n

∣∣∣∣
=

n∑
i=1

∣∣∣η+i −
n

2

∣∣∣
= (n− 2)

∣∣∣n
2
−
n

2

∣∣∣+ ∣∣∣∣(3− 2n2
)
n−

n

2

∣∣∣∣
+

∣∣∣∣(2n− 1

2

)
n−

n

2

∣∣∣∣
= 2n2 − 2n.

�

Definition 6 [9] The crown graph CR(c) for an integer c > 3 represents the
graph with vertex set {u1, u2, ..., uc, v1, v2, ..., vc} and edge set {uivj, 1 6 i, j 6
c, i 6= j}.

Figure 1: Crown graph

Theorem 7 For CR(c) with an integer c > 3,

SLSpecKCD1
(CR(c)) =

(
5− 3c 5c− 7 11c− 7− 4c2 4c2 − 9c+ 5
c− 1 c− 1 1 1

)
and

SLEKCD1
(CR(c)) = 8(2c2 − 5c+ 3).
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Proof. For CR(c) of order n = 2c, we have

SLKCD1
(CR(c)) =

(
(c− 1)Ic (4c− 6)(Jc − Ic)

(4c− 6)(Jc − Ic) (c− 1)Ic

)
.

Here Ic is the identity matrix having order c and Jc is the square matrix having
order c with all entries equal to 1.
Further, above matrix can be expressed as

SLKCD1
(CR(c)) =

(
M0 M1

M1 M0

)
,

where M0 = (c− 1)Ic and M1 = (4c− 6)(Jc − Ic).
Now,

M0 +M1 = (5− 3c)Ic + (4c− 6)Jc

and

M0 −M1 = (5c− 7)Ic − (4c− 6)Jc.

By using Lemma 4, the spectrum of SLKCD1
(CR(c)) is

SLSpecKCD1
(CR(c)) =

(
5− 3c 5c− 7 11c− 7− 4c2 4c2 − 9c+ 5
c− 1 c− 1 1 1

)
.

Further, employing the Eq. (3), we prove

SLEKCD1
(CR(c)) =

n=2c∑
i=1

∣∣η+i − (c− 1)
∣∣

= 8(2c2 − 5c+ 3).

�

Definition 8 [2, 4] The cocktail party graph CP(a) (for a > 3) is the graph
consisting of two rows of paired vertices in which all vertices but the paired
ones are connected with an edge.
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Figure 2: Cocktail party graph

Theorem 9 For CP(a) with an integer a > 3,

SLSpecKCD1
(CP(a)) =

(
2a− 2 18− 14a 16a2 − 34a+ 18
a a− 1 1

)
and

SLEKCD1
(CP(a)) = 8(a− 1)(4a− 5).

Proof. For CP(a) of order n = 2a, we have

SLKCD1
(CP(a)) =

(
(8a − 10)(Ja − Ia) + (2a − 2)Ia (8a − 10)(Ja −Ua)

(8a − 10)(Ja −Ua) (8a − 10)(Ja − Ia) + (2a − 2)Ia

)
.

Here Ia is the identity matrix having order a, Ja is the square matrix having
order a with all entries equal to 1 and Ua is a square matrix with all entries
as zeros, except the entries on the anti-diagonal being 1.
Further, above matrix can be expressed as

SLKCD1
(CP(a)) =

(
M0 M1

M1 M0

)
,

where M0 = (8a− 10)(Ja − Ia) + (2a− 2)Ia and M1 = (8a− 10)(Ja −Ua).
Now,

M0 +M1 = 2(8a− 10)Ja − (6a− 8)Ia − (8a− 10)Ua

and

M0 −M1 = (8a− 10)Ua − (6a− 8)Ia.
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By using Lemma 4, the spectrum of SLKCD1
(CP(a)) is

SLSpecKCD1
(CP(a)) =

(
2a− 2 18− 14a 16a2 − 34a+ 18
a a− 1 1

)
.

Further, employing the Eq. (3), we prove

SLEKCD1
(CP(a)) =

n=2a∑
i=1

∣∣η+i − 2(a− 1)
∣∣

= 8(a− 1)(4a− 5).

�

Theorem 10 If Kn
2
,n
2

has |V(Kn
2
,n
2
)| = n = {2l; l = 3, 4, ...}, then

SLSpecKCD1

(
Kn

2
,n
2

)
=

5− 3n

2

2n2 − 9n+ 10

2
n− 2 2


and

SLEKCD1

(
Kn

2
,n
2

)
= 4(n− 2)(n− 3).

Proof. For Kn
2
,n
2

of order n, we have

SLKCD1

(
Kn

2
,n
2

)
=

(2n− 6)Jn
2
−

(
3n

2
− 5

)
In

2
On

2

On
2

(2n− 6)Jn
2
−

(
3n

2
− 5

)
In

2

 .
Here In

2
is the identity matrix having order n

2
, Jn

2
is the n

2
× n

2
matrix with all entries

as 1 and On
2

is a zero matrix of order n/2.
Further, above matrix can be expressed as

SLKCD1

(
Kn

2
,n
2

)
=

(
M0 M1

M1 M0

)
,

where M0 = (2n− 6)Jn
2
−

(
3n

2
− 5

)
In

2
and M1 = On

2
.

Now,

M0 +M1 = (2n− 6)Jn
2
−

(
3n

2
− 5

)
In

2
=M0 −M1.
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By using Lemma 4, the spectrum of SLKCD1

(
Kn

2
,n
2

)
is

SLSpecKCD1

(
Kn

2
,n
2

)
=

5− 3n

2

2n2 − 9n+ 10

2
n− 2 2

 .
Further, employing the Eq. (3), we derive

SLEKCD1

(
Kn

2
,n
2

)
=

n∑
i=1

∣∣∣η+i −
(n
2
− 1
)∣∣∣

= 4(n− 2)(n− 3).

�

Theorem 11 For CR(c) with an integer c > 3,

SLSpecKCD1

(
CR(c)

)
=

(
c 4− 7c 4c2 − 9c+ 4 4c2 − c

c− 1 c− 1 1 1

)
and

SLEKCD1

(
CR(c)

)
= 8(c− 1)(2c− 1).

Proof. For CR(c) of order n = 2c, we have

SLKCD1

(
CR(c)

)
=

(
(4c− 2)Jc − (3c− 2)Ic (4c− 2)Ic

(4c− 2)Ic (4c− 2)Jc − (3c− 2)Ic

)
.

Here Ic is the identity matrix having order c and Jc is the square matrix having
order c with all entries equal to 1.
Further, above matrix can be expressed as

SLKCD1

(
CR(c)

)
=

(
M0 M1

M1 M0

)
,

where M0 = (4c− 2)Jc − (3c− 2)Ic and M1 = (4c− 2)Ic.
Now,

M0 +M1 = (4c− 2)Jc + cIc
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and

M0 −M1 = (4c− 2)Jc − (7c− 4)Ic.

By using Lemma 4, the spectrum of SLKCD1

(
CR(c)

)
is

SLSpecKCD1

(
CR(c)

)
=

(
c 4− 7c 4c2 − 9c+ 4 4c2 − c

c− 1 c− 1 1 1

)
.

Further, employing the Eq. (3), we prove

SLEKCD1

(
CR(c)

)
=

n=2c∑
i=1

∣∣η+i − c
∣∣

= 8(c− 1)(2c− 1).

�

Theorem 12 For CP(a) with an integer a > 3,

SLSpecKCD1

(
CP(a)

)
=

(
−1 3

a a

)
and

SLEKCD1

(
CP(a)

)
= 4a.

Proof. For Cp(a) of order n = 2a, we have

SLKCD1

(
Cp(a)

)
=

(
Ia 2Ua
2Ua Ia

)
.

Here Ia is the identity matrix having order a and Ua is a square matrix with
all entries as zeros, except the entries on the anti-diagonal being 1.
Further, above matrix can be expressed as

SLKCD1

(
Cp(a)

)
=

(
M0 M1

M1 M0

)
,

where M0 = Ia and M1 = 2Ua.
Now,

M0 +M1 = Ia + 2Ua
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and

M0 −M1 = Ia − 2Ua.

By using Lemma 4, the spectrum of SLKCD1

(
CP(a)

)
is

SLSpecKCD1

(
CP(a)

)
=

(
−1 3

a a

)
.

Further, employing the Eq. (3), we establish

SLEKCD1

(
CP(a)

)
=

n=2a∑
i=1

∣∣η+i − 1
∣∣

= 4a.

�
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Abstract. In this paper, we derive several results related to total path
length and Sackin index in two classes of random recursive trees. A limit-
ing distribution of the normalized version of the Sackin index is given by
the contraction method in random recursive trees. Also, we show the nor-
malized total path length converges in L2 and almost surely to a limiting
random variable in plane-oriented recursive trees via martingales.

1 Introduction

A loopless graph G is a collection of vertices and edges connecting pairs of
such vertices. The vertex set and the edge set of G are denoted by V(G) and
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E(G), respectively. Trees are defined as connected graphs without cycles [2].
In a rooted tree, the depth of a vertex is the number of edges from the root
to the vertex. The outdegree of vertex v is the number of tail ends adjacent to
it (denoted by d+(v)). The leaves of the tree are the vertices with outdegree
zero. The Sackin index of a rooted tree is the sum of the depths of its leaves
and the total path length is the sum of all root-to-vertex distances [17].

A tree Tn of order n labelled 1, 2, ..., n is a recursive tree if for each h

(2 ≤ h ≤ n) the labels of vertices in the unique path from the 1-st vertex to
the h-th vertex of the tree form an increasing subsequence of set {1, 2, ..., h}.
A random recursive tree (RRT) of order n is a tree picked at random from
the family of all recursive trees of order n. We assume that each of all (n−1)!
possible choices of a tree is equiprobable. Equivalently, we may describe RRTs
via the following tree evolution process, which generates RRTs of arbitrary
order n. At step 1, the tee starts with the root (labeled by 1). At step h+ 1,
the vertex with label h+ 1 is attached to any previous vertex v of the already
grown tree Th with probability ph(v) = 1/h.

Let LRn be the number of leaves of the RRT of order n. Najock and Heyde
[11] showed that

E(LRn) =
n

2
, Var(LRn) =

n

12

Let DRj be the depth of vertex j in a RRT of order n. In [12],

E(DRj ) = Hj−1, Var(DRj ) = Hj−1 −H
(2)
j−1,

where

H
(p)
n =

n∑
k=1

1

kp
, Hn := H

(1)
n , p ≥ 1.

Assume that IRn is the total path length of a RRT. Then

E(IRn) = n(Hn − 1),

which is asymptotically equivalent to n lnn.
Mahmoud [9] showed that there is a random variable IR such that

IRn − n lnn

n
→ IR,

in quadratic mean and almost surely. Also, as n→ ∞,

Var(IRn) ∼
(
2−

1

6
π2
)
n2.
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A plane-oriented recursive tree (PORT) Tn is obtained from Tn−1 by choosing
a parent in Tn−1 and adjoining a vertex labeled n to it. The vertex n can be
adjoined at any of the insertion positions or gaps between the children of the
chosen parent since insertion in each gap will give a different ordering. Similar
to RRTs, we can describe the following description for this model:
Step 1: The tree starts with the root (labelled by 1).
Step h + 1: The vertex with label h + 1 is attached to any previous vertex v
(with outdegree d+(v)) of the already grown PORT Th with probability

ph+1(v) =
1+ d+(v)

2h− 1
.

Plane-oriented recursive trees were introduced in the literature under a few
different names such as heap-ordered trees, nonuniform recursive trees, scale-
free trees (see [10] for main results on this tree).

The depth of node j in a random PORT of order n has been studied by
Mahmoud et al. [10] and Panholzer and Prodinger [12]. They proved with
different approaches that

E(DPj ) = H2j−2 −
1

2
Hj−1,

Var(DPj ) = H2j−2 −
1

2
Hj−1 −H

(2)
2j−2 +

1

4
H

(2)
j−1.

Then E(DPj ) = Var(DPj ) =
1
2 log j+O(1). Let LPn be the number of leaves of a

PORT of order n. Mahmoud and Smythe [10] showed that

E(LPn) =
2n− 1

3
, Var(LPn) =

n

9
−
1

18
−

1

6(2n− 1)
.

Assume that IPn is the total path length of a random PORT. Mahmoud [8]
showed that

E(IPn) =
(
H2n−3 −

1

2
Hn−2

)(
n−

1

2

)
−
1

2
(n− 1),

which is asymptotically equivalent to 1
2n logn.

Hwang [6] proved that the centered and normalized random variables (IPn −
E(IPn))/n converge in distribution and with all moments to

√
πIP, where a

recurrence of the moments of IP is given by

ηm = E((IP)m) =
Γ(m− 1)

∑
a+b+c=m

(
m
a,d,c

)
ηaηb

∫1
0 x

a−3/2(1− x)b−1/2ϕ(x)cdx

2
√
πΓ(m− 1/2)

,
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for m ≥ 2 with η0 = 1 and η1 = 0 (0 ≤ a, b, c ≤ m). Here

ϕ(x) = (x log x+ (1− x) log(1− x) + 2x)/(2
√
π).

Note that

Var(IPn) ∼
(
3

2
−
π2

8

)
n2.

The article is organized as follows. In Section 2, we give the average Sackin
index in our tree models. In Section 3, a limiting distribution of the normalized
version of the Sackin index is given by the contraction method in RRTs. Also,
via martingales, the normalized total path length is shown to converge in L2

and almost surely to a limiting random variable in PORTs.

2 Average Sackin index

Let SRn be the Sackin index of a RRT of order n. Szymański [18] showed that
E(SRn) = n

2Hn−
n
4 . He used from conditional expectation for proving this result.

First, we prove this simple result by another method.

Lemma 1 Let (tn)n≥1 be a give sequence and define an by a0 = 0 and

an =
2

n− 1

n−1∑
k=1

ak + tn.

Then for n ≥ 1,

an = 2n

n−1∑
k=1

tk
k(k+ 1)

+ tn.

Proof. We have

2

n−2∑
k=1

ak = (an−1 − tn−1)(n− 2).

Then

an =
1

n− 1

(
2

n−2∑
k=1

ak + 2an−1

)
+ tn

=
n

n− 1
an−1 −

n− 2

n− 1
tn−1 + tn.

By iteration, proof is completed. �
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Theorem 2 The average Sackin index SRn of a RRT of order n is given by

E(SRn) =
n

2
Hn −

n

4
.

Proof. Let Jn be the size of the subtree rooted at node 2 in a recursive tree
built from labels 1, 2, ..., n. Then Jn is distributed uniformly on {1, 2, ..., n−1}.
Conditioning on Jn,

SRn
d
= SRJn + SR∗n−Jn + LRJn , (1)

where SRk
d
= SR∗k , SR0 = 0, SR1 = 0 and Sk, S

R∗
k and Jn are independent. Suppose

an = E(SRn) and tn = E(LRJn). Then

an =
2

n− 1

n−1∑
k=1

ak + tn,

where

tn =
1

n− 1

n−1∑
k=1

E(LRk) =
n

4
.

From Lemma 1, proof is completed. �

Corollary 3 We have

E(SRn) =
1

2
n logn+

(γ
2
−
1

4

)
n+O(n−1),

where γ is the Euler’s constant. Then, the average total path length is asymp-
totically twice as much as the asymptotic average Sackin index.

Let In be the size of the first subtree of the root in a random PORT. Then

P(In = j) := πn,j =
2(n− j)CjCn−j

nCn
, 1 ≤ j < n

where Cn =
(
2n−2
n−1

)
/n denotes the (shifted) Catalan numbers [4]. Also,

Cn ∼ π−1/2n−3/24n−1.

Theorem 4 The average Sackin index SPn of a random PORT of order n is
given by

E(SPn) =
(
n−

1

2

)(2
3
H2n −

1

3
Hn

)
−
2

3
n+

1

3
, n ≥ 3.
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Proof. By conditioning on the size of the first subtree of the root, Jn,

SPn
d
= SPIn + SP∗n−In + LPIn , n ≥ 3 (2)

where SPj
d
= SP∗j , SP0 = 0, SP1 = 0 and SPj , SP∗j are independent. Suppose an =

E(SPn). Then

an = 2

n∑
j=1

πn,jaj + bn, (3)

where

bn = E(LPJn) =
n−1∑
j=1

E(LPj )πn,j =
4n−1

3nCn
−
1

3
.

The recurrence (3) has the exact solution (assuming a0 = b0 = 0)

an =

n∑
j=1

Cj(n+ 1− j)Cn+1−j
Cn

bj.

Denote by [zn]f(z) the coefficient of zn in the Taylor expansion of f(z). Then
[3],

[zn]
1√
1− z

log
1

1− z
= 4−n

(
2n

n

)
(2H2n −Hn),

Thus

E(SPn) = −
n

3
+

1

12Cn

(
2n

n

)
(2H2n −Hn) −

n

3
+
1

3
,

and proof is completed. �

Corollary 5 We have

E(SPn) =
1

3
n logn+

(γ
3
+
2

3
log 2−

2

3

)
n+O(logn),

where γ is the Euler’s constant. Thus, asymptotically,

E(SPn) ∼
2

3
E(IPn).
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3 Limiting results

Contraction method introduced in [14] for studying the quicksort algorithm.
This method is famous and useful in the process of achieving the limiting
distribution [13, 16]. Here, we shall use the setting of Hwang and Neininger [7]
and consider a subset of RRTs in which the number of leaves in subtree rooted
at node 2, LRJn , is known. Let us consider the normalized random variables

Xn =
SRn − E(SRn)

n
, n ≥ 2.

From (1),

Xn
d
=
Jn

n
XJn +

n− Jn
n

X∗n−Jn + cn(Jn), n ≥ 2 (4)

where

cn(j) =
E(SRj ) + E(SRn−j) − E(SRn) + LRj

n
.

According to (1), Xn, X∗n, and ( Jnn ,
n−Jn
n , cn) are independent, and Xn

d
= X∗n

for all n ≥ 0. If Jn
n ,

n−Jn
n and cn stabilize as n → ∞, say, to A1, A2, and c,

respectively, and we expect that Xn converges in distribution, then the weak
limit X of Xn should satisfy the following limiting equation:

X
d
= A1X+A2X

∗ + c, (5)

where X,X∗, and (A1, A2, c) are independent and X
d
= X∗. We use the minimal

L2-metric `2 where `r-metrics are defined on the spaces Mr of probability
measures on the Borel σ-algebra of R with finite absolute rth moment by [13]:

`r(µ, ν) = inf{‖X− Y‖r, X
d
= µ, Y

d
= ν}, µ, ν ∈Mr, r ≥ 1.

Let Mr(0) be the subspace of the centered probability measures in Mr. The
metric spaces (Mr, `r) and (Mr(0), `r) are complete. Also, convergence is
equivalent to weak convergence and convergence of the rth absolute moment.
The existence of a unique fixed-point L(X) in M2(0) for (5) and the conver-
gence in `2 of Xn given by (4) to X holds particularly if the following properties
are satisfied [15]:
(a) E(cn) = E(c) = 0, E(c2) <∞.
(b) ‖( Jnn ,

n−Jn
n , cn) − (A1, A2, c)‖2 → 0.

(c) E(A21) + E(A22) < 1.

(d) For all n1 ∈ N, E
(
I{Jn≤n1}

(
Jn
n

)2)
+ E

(
I{n−Jn≤n1}

(
n−Jn
n

)2)→ 0.
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Lemma 6 Assume Jn is distributed uniformly on {1, 2, ..., n − 1} and U is a
uniform random variable over the unit interval. Then(

Jn

n
,
LRJn
n

)
L2−→ (

U,
U

2

)
.

Proof. It is not hard to see that Jn has, conditioned on U = u, the binomial
B(n−1, u) distribution, andU has, conditioned on Jn = k, the beta(k+1, n+1)
distribution. Thus

E(UJn) = E(E(UJn|U))

=
n− 1

3
,

E
(
LRJn
n

)2
=

1

n2(n− 1)

n−1∑
j=1

E(LR2j )

=
1

12
,

E(JnLRJn) =
1

n− 1

n−1∑
j=1

E(jLRj )

=
n(2n− 1)

12
,

E(ULRJn) = E(E(ULRJn |Jn))

=
1

n+ 1
(E(JnLRJn) + n/4)

=
n(2n− 1)

12(n+ 1)
+

n

4(n+ 1)
.

Hence

E
(
Jn

n
−U

)2
=
1

3n
−
1

6n
,

E
(
LRJn
n

−
U

2

)2
=
1

6
−

n2

6n(n+ 1)
−

1

6n(n+ 1)
−

1

4(n+ 1)
.

By the L2-convergence definition, proof is completed.
�
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From Lemma 6,∥∥∥∥Jnn −U

∥∥∥∥
2

→ 0,

∥∥∥∥n− Jn
n

− (1−U)

∥∥∥∥
2

→ 0.

Also,

cn(Jn)
L2−→ c(U) =

1

2

(
U logU+ (1−U) log(1−U) +U

)
.

This establishes the stabilization of the modified recursion (4) to the limiting
equation

X
d
= UX+ (1−U)X∗ +

1

2

(
U logU+ (1−U) log(1−U) +U

)
. (6)

The limiting equation (6) defines a map S(U) on M2:

SU :M2 →M2, µ 7→ L(UZ+ (1−U)Z∗ + c(U)), (7)

where Z,Z∗, U are independent and Z
d
= Z∗

d
= µ.

Theorem 7 Let SRn be the Sackin index of a RRT of order n. Then

`2

(
SRn − E(SRn)

n
,XU

)→ 0,

where L(XU) is the unique fixed-point in M2(0) of the map SU defined in (7).

Proof. The restriction of SU toM2(0) is a map intoM2(0). For this, suppose
that µ ∈ M2(0). Then SU(µ) has a finite second moment because of the

same property of the coefficients and independence. Since
LRJn
n → U

2 in L2,
E(U/2) = 1/4, and thus E(c(U)) = 0. This implies E(SU(µ)) = 0, and then
SU(µ) ∈M2(0). SU is Lipschitz continuous on (M2(0), `2) such that [6],

lip(SU) ≤ (E(U2) + E((1−U)2))
1
2 =

√
2

3
< 1.

Thus SU is a contraction on spaceM2(0). From Banach’s fixed-point theorem,
SU has a (unique) fixed-point L(XU) in M2(0). By (6),

XU
d
= A1XU +A2X

∗
U + c(U).
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It remains to check the conditions (a)-(d). First, by taking expectations in (4)
and (6), respectively, we obtain E(cn) = E(c) = 0; also, E(c2) < ∞. Thus
(a) is satisfied. It is not hard to see that condition (b) is satisfied and also
condition (c) is the contraction property of SU. Finally, condition (d) follows
from Jn

n ,
n−Jn
n < 1 since

E
(
I{Jn≤n1}

(
Jn

n

)2)
+ E

(
I{n−Jn≤n1}

(
n− Jn
n

)2)
≤ P(Jn ≤ n1) + P(n− Jn ≤ n1)

=
2n1
n

→ 0,

for all n1 ∈ N. Proof is completed by applying Rösler’s theorem [15].
�

Corollary 8 By Theorem 7,

Var(SRn) = n2Var(Xn) ∼ n2E(X2U).

Since XU solves (6), we deduce, by taking squares and expectations, that

E(X2U) = 3E(c2(U)) =
1

2
−
π2

24
.

Then

Var(SRn) ∼
(
1

2
−
π2

24

)
n2.

If the LRJn is unknown, there are two ways to overcome the problem but both
require a much more refined study of the problem. Firstly, one can try to gen-
eralize Rösler’s proof. This seems to require to first derive the asymptotic be-
havior of the covariance Cov(SRn, L

R
n) since such terms will additionally appear

in Rösler’s estimates. Secondly, one could try to study the joint distribution
of (SRn, L

R
n) by means of the contraction method. This would also require to

estimate the covariance. The fixed-point equation then will be(
X

Y

)
d
=

(
U 0

0
√
U

)(
X

Y

)
+

(
1−U 0

0
√
1−U

)(
X∗

Y∗

)
+

(
c(U)

0

)
.

It can be expected that in this case, too, the claim presented in Theorem 7 is
hold.
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Let D(v) (or Dv for convenient) be the depth of vertex v. Assume that r is
the root of Tn. Each vertex in V(Tn) \ {r} is a child of another vertex and is
counted in its outdegree. Hence

n⋃
i=1

⋃
j∈N+(i)

{j} =

n⋃
i=1

N+(i) = V(Tn) \ {r},

where N+(i) is the set of children of i and
∑n
i=1 d

+(i) = n − 1. Assume that
d+(i) = t and its children are i1, i2, ..., it. Thus, for each j ∈ {1, 2, ..., t}, we
have D(ij) = D(i) + 1. This implies that

t∑
j=1

D(ij) = t (D(i) + 1) = d+(i)D(i) + d+(i).

Since the depth of root is zero, we have

n∑
i=1

(d+(i)D(i) + d+(i)) =

n∑
i=1

( ∑
j∈N+(i)

D(j)
)
=

n∑
i=1

D(i) = In.

This implies that

n∑
i=1

d+(i)D(i) = In −

n∑
i=1

d+(i) = In − (n− 1).

Lemma 9 Let IPn be the total path length of a random PORT. Then for n ≥ 4,

E(IPn|Fn−1) =
2n− 1

2n− 3
IPn−1 +

n− 1

2n− 3

Proof. Let Fn be the sigma-field generated by the first n stages of PORTs.
Let Un be a randomly chosen vertex belonging to a PORT of order n. By
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definition, IPn = IPn−1 +D(Un−1) + 1. Then

E(IPn|Fn−1) = IPn−1 + E(D(Un−1)|Fn−1) + 1

= IPn−1 +

n−1∑
i=1

1+ d+(i)

2n− 3
D(i) + 1

= IPn−1 +
1

2n− 3

(
n−1∑
i=1

D(i) +

n−1∑
i=1

d+(i)D(i)

)
+ 1

= IPn−1 +
1

2n− 3

(
2IPn−1 − (n− 2)

)
+ 1

=
2n− 1

2n− 3
IPn−1 +

n− 1

2n− 3
.

�

The proof of Lemma 9 for the internal path length of RRTs has also been
done by the contraction method where the dependence problem of the present
paper does not occur [1]. The proof of the following theorem is similar to the
proof of a closely related result in [8].

Theorem 10 We have
IPn − E(IPn)

2n
−→ IP,

in L2 and almost surely where IP is a limiting random variable.

Proof. From lemma 9, { I
P
n−E(IPn)
2n−1 ,Fn}n≥1 is a martingale with uniformly bounded

second moments. By the existence of the mean of IPn for each n, absolute in-
tegrability of the sequence (Wn)n≥1 is guaranteed. Hence, the (Wn)n≥1 is a
zero-mean martingale. We have IPn = IPn−1+D

P
n where DPn is the depth of label

n. Then

E(DPn|Fn−1) = E(IPn|Fn−1) − IPn−1 =
2

2n− 3
IPn−1 +

n− 1

2n− 3
.

To compute the second moment of Wn, we formulate a recurrence for it as
follows. We have

Wn =
IPn−1 +D

P
n − E(IPn−1 +DPn)
2n− 1

=
2n− 3

2n− 1
Wn−1 +

DPn − E(DPn)
2n− 1

.
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Squaring the above relation, then taking expectations yields:

E(W2
n) =

(
2n− 3

2n− 1

)2
E(W2

n−1) +
Var(DPn)
(2n− 1)2

=
2n− 3

(2n− 1)2
E(Wn−1(D

P
n − E(DPn))).

We have E(Wn−1E(DPn)) = 0. Thus in the last term we need only to find
E(Wn−1D

P
n). But

E(Wn−1D
P
n) = E(Wn−1E(DPn|Fn−1))

= E
(
Wn−1

(
2Wn−1 +

2

2n− 3
E(IPn−1) +

n− 1

2n− 3

))
= 2E(W2

n−1).

Then

E(W2
n) =

2n− 3

2n− 1
E(W2

n−1) +
Var(DPn)
(2n− 1)2

=
c[n]

c[n− 1]
E(W2

n−1) + t[n],

where

c[n] =
Γ
(
n− 1

2

)
Γ
(
n+ 1

2

) , t[n] =
Var(DPn)
(2n− 1)2

, n ≥ 1.

The solution to the recurrence gives E(W2
n) as

E(W2
n) = c[n]

n∑
j=1

t[j]

c[j]
.

The sum in E(W2
n) converges, i.e., E(W2

n) is bounded uniformly in n. Conver-
gence almost surely and in L2 follows from the martingale convergence theorem
[5]. �
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Abstract. In this paper we propose to create an end-to-end brain tu-
mor segmentation system that applies three variants of the well-known
U-Net convolutional neural networks. In our results we obtain and anal-
yse the detection performances of U-Net, VGG16-UNet and ResNet-UNet
on the BraTS2020 training dataset. Further, we inspect the behavior of
the ensemble model obtained as the weighted response of the three CNN
models. We introduce essential preprocessing and post-processing steps
so as to improve the detection performances. The original images were
corrected and the different intensity ranges were transformed into the
8-bit grayscale domain to uniformize the tissue intensities, while preserv-
ing the original histogram shapes. For post-processing we apply region
connectedness onto the whole tumor and conversion of background pix-
els into necrosis inside the whole tumor. As a result, we present the Dice
scores of our system obtained for WT (whole tumor), TC (tumor core)
and ET (enhanced tumor) on the BraTS2020 training dataset.
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1 Introduction

The automatic processing of medical images is one of the fastest-growing do-
mains in the field of computer assisted medical diagnosis and surgery. The
automation systems concentrate on the use of various artificial intelligence
methods relying mostly on supervised learning. Generally, the computing al-
gorithms have the role of identifying different malformations in the healthy
tissues. Their role is to localize them by applying a detection algorithm or to
segment the image, determining the class of each pixel. These algorithms are
based on an enormous amount of data on which the algorithms have to be
trained in order to obtain a capability for generalization on unseen images. In
this paper we concentrate on medical image segmentation, namely, on brain
tumor segmentation from MRI (Magnetic Resonance Image) data. The tumors
in the brain can develop into two types: LGG (Low-Grade Glioma) and HGG
(High-Grade Glioma). According to the WHO, tumors can be categorized into
4 subtypes: Grade I and II are LGG and III and IV are HGG. Grade I is a
benign and slow-growing tumor, while grade II presents increased hypercellu-
lality and can develop into a HGG tumor. Grade III and IV are much more
severe variants. Grade III shows a high rate of hypercellularity and a high
rate of mitosis, while Grade IV is an advanced form of Grade III in which
necrosis and vascular proliferation occur [10]. Early diagnosis is essential in
the treatment of the disease and facilitates timely initiation of treatment or
other necessary medical interventions. It is also essential to note that comput-
erized detection is a rapid process providing a non-contact diagnosis tool for
physicians. The worldwide spread of MRI equipment and the growing number
of MRI records acquired should make the general screening of the population
possible, thereby detecting cases in an early stage.

The bottlenecks of an automatic brain tumor segmentation are the great
variety of positions, dimensions, aspects and textures of the tumor; the defor-
mation of the normal tissues; the wide variety of MRI equipment used without
a given standardized protocol; the varying resolutions and pixel value inho-
mogeneity produced by different MRI machines.

MRI image processing methods can be classified into two large categories:
traditional image processing methods and CNN methods. The pre-deep learn-
ing era concentrates on traditional pattern recognition methods, such as thresh-
olding, region-based and pixel classification methods or model-based tech-
niques. Thresholding techniques include global thresholding, local thresholding
or Gaussian distribution-based thresholding. Region-based methods search for
common features of a given region such as homogeneity, similarity, region grow-
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ing and watershed segmentation. Pixel classification methods and model-based
methods are combined in various ways. According to the literature, this cate-
gory comprises clustering methods, fuzzy c-means clustering, Markov Random
Fields, Artificial Neural Networks, Self-organizing Maps, Random Forest [18],
Boosting, Geometric Deformable Models, Level Set Methods, Charged Fluid
Model and so on. Paper [12] presents a review of the above-mentioned meth-
ods.

The organization of the BraTS – Brain Tumor Segmentation World Grand
Challenges represents a major leap in the development of brain tumor seg-
mentation [29, 20, 4, 2]. This Challenge has been organized since 2012 by the
MICCAI Society at the eponymous conference. From then on, the organizers,
including dozens of contributors, have been gathering MRI images from hos-
pitals and research centers. Until 2015, all methods were based on pre-deep
learning models. In 2015-2016, the new deep learning technique expanded into
the field of medical imaging as well. In [21] Pereira et al. propose CNNs ex-
ploring small kernels of 3Ö3 pixels to obtain deeper network architecture with
a lower number of weights than larger kernels. In [28] the authors propose a
two-step segmentation for brain tumors: first the authors train a Fully Con-
volutional Neural Network (FCN) and then train Conditional Random Fields
as Neural Networks.

Kamnitsas et al. [16] describe a 3D 11-layered deep neural network in which
they process adjacent image patches in a single pass through the networks
to handle class imbalance. In order to handle local and global features, they
propose a dual-pathway multi-resolution network. Xue et al. [27] introduces
a novel Generative Adversarial Network (GAN) for medical image segmen-
tation. In the GAN, the segmentor is an FCN producing segmentation label
maps, while the adversarial critic is a multi-scale CNN with L1 loss. Ding et
al. [11] describes the Deep Residual Dilate Network with Middle Supervision
(RDM-Net) that combines the residual network with delated convolution for
multi-modal brain tumor segmentation. Chen et al. [9] proposes a dual-force
training scheme for the extended version of DeepMedic, leading to more accu-
rate segmentation in the Multi-Level DeepMedic thus obtained. Wu et al. in
article [26] introduces the Multi-features Refinement and Aggregation (MRA)
that utilizes hierarchical features by combining features from different levels
into an aggregation module passing the joined response through a second CNN.
Isensee et al. [15] developed a network that configures itself automatically con-
sidering 2D and 3D U-Net and U-Net Cascade. It computes the number of
downsampling/upsampling form the resolution of the data, the class ratio and
the image size after cropping the background. In addition, it determines the
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patch size, the batch size, the optimization function and the number of images
to be augmented in order to fit into the GPU memory. This architecture has
participated at the Medical Segmentation Decathlon Challenge [31] and has
achieved one of the highest mean Dice scores in all segmentation challenges.

All referenced articles written after 2015 rely on the BraTS dataset col-
lected between 2012-2020. The most up-to-date publicly available dataset was
published in the TCGA-GBM [5] and TCGA-LGG collections [6].

The main contribution of this paper consists of two major steps: we apply
the histogram uniformization described below as preprocessing for the image
dataset and adapt the well-known U-Net architecture for the purpose of brain
tumor segmentation. In addition to applying only the Vanilla-UNet, we also
adapt and train VGG16-UNet, the ResNet50-UNet versions of the U-Net. We
also create an ensemble model combining the probability responses of the 3
mentioned models.

The paper is organized as follows: following this first introductory section
and a short literature review, our system is described, detailing the methods
and models applied and going through every component of the segmentation
pipeline. Finally, we present the results obtained and suggest a number of
important improvements in the conclusion.

2 Materials and methods

Our proposed automated segmentation system (Figure 1) is based on different
U-shaped deep convolutional neural networks. For semantic segmentation, the
traditional convolutional neural networks are transformed into fully convolu-
tional neural networks (FCNs). Our system is trained on the BraTS 2017-2020
database.

The original 3D images are preprocessed at the beginning to provide uni-
form tissue intensities on all the images. In the training process, the data is
divided into training, validation and test sets. The training stops when the
Dice score does not increase any more. After obtaining the segmentations of
the 3D brains, the connectedness of the tumors is verified. Finally, our results
are evaluated using the well-known measures of accuracy on the test set.

2.1 Database

The image database used in this study is a publicly available database provided
by the organization committee of BraTS (Brain Tumor Segmentation World
Grand Challenge). The database consists of 369 cases of 293 HGG images
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Figure 1: The proposed automatic segmentation pipeline

(a) T1 image (b) T1ce image (c) T2 image (d) FLAIR image

(e) corrected T1 (f) corrected T1ce (g) corrected T2 (h) corrected FLAIR

Figure 2: Histogram uniformization of the 4 modalities: 1. row: original images,
2. row: histogram unified images
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and 76 LGG images. The images are of course in 3D with a resolution of
240×240×155 pixels. 1 voxel corresponds to 1 mm3. A human brain is about
1500 cm3, represented by 1.5 million voxels. The image format is NifTI, with
every image being multi-modal containing 4 modalities: T1 image (longitudinal
relaxation time), T1ce image (T1ce-weigthed with contrast agent), T2 image
(transverse relaxation time) and FLAIR image (T2-Fluid Attenuated Inversion
Recovery) Figure 2-row1. All these images are acquired via the MRI machine
with different hardware setups. Every image was annotated by experts and
represents the corresponding ground truth.

The image classes are: class0 is the background and the healthy tissue;
class1-necrotic tumor core (NEC, joined with the non-enhancing tumor-NET);
class2-peritumoral edema (ED), class4-enhancing tumor (ET). Class3 (label3)
is missing; it was initially the non-enhancing tumor (NET).

2.2 Preprocessing

The images in the original database are preprocessed applying the following
steps: skull-stripping, they have the same resolution regardless of the MRI
equipment and every image sets of the 4 modalities (T1, T1ce, T2, FLAIR) is
co-registered to the same T1 template.

Intensity uniformization [13, 17] is an indispensable step in MRI image pre-
processing. The differences in the setup and characteristics of the various
equipment used to acquire images produce different intensity values for the
same tissue. There is a wide range of intensity intervals that differs greatly
from image to image. The same intensity grayscale value I(x, y, z) can be the
value of any of the possible tissue types (healthy, edema, enhanced or even
necrosis) on different images. It is obvious that without obtaining the same
intensity for the same tissue on different images the supervised learning can-
not generalize and the segmentation results, without the preprocessing step,
will be of low quality. The aim of the proposed histogram uniformization is
to obtain the same intensity values for the same tissue over all images. Our
uniformization method reduces the tissue intensity variance. We have chosen
to transform the intensities between fist-quartile (Q1) and third-quartile (Q3)
into a fixed experimentally defined interval [int1, int2], because the intensity
values in this range [Q1, Q3] contain the major part of the image information.
The interval [int1, int2] is considered in the middle of the 8-bit grayscale range
[0, 255] (eq. 1). This histogram uniformization is a truncated linear transfor-
mation in which the values are limited into [0, 255] (eq. 2). Every voxel of the
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(a) T1 original
histogram

(b) T1ce original
histogram

(c) T2 original
histogram

(d) FLAIR original
histogram

(e) T1 unified
histogram

(f) T1ce unified
histogram

(g) T2 unified
histogram

(h) FLAIR unified
histogram

Figure 3: Original and corrected histograms of images in Figure 2

original image is transformed into the new 8-bit grayscale value by applying
equations 1 and 2.

f(I(x, y, z)) =
int2 − int1
Q3 −Q1

· I(x, y, z) + int1 ·Q3 − int2 ·Q1
Q3 −Q1

, (1)

In this formula some values may be exceed the [0, 255] interval, so the f(I(x, y, z))
is limited to the 8-bit grayscale value.

Inew(x, y, z) = min{max{0, f(I(x, y, z)}, 255} (2)

Thus, the histogram transformation is context-dependent and the initial wide
range of values [0, 6000] fits into the uint8=1byte data type (Figures 2 and 3).

2.3 CNN training

FCN is an encoder-decoder architecture (Figure 4), where the encoder obtains
a convolutional code (small-sized feature) of the input image after several steps
of halving and passing through the various usual layers (convolution, pooling,
padding and batch normalization and dropout) in a CNN. The decoder is a
symmetrical part of the encoder, built of transpose convolution, upsampling,
concatenation and softmax layers. The encoder is the so-called contracting
layer, since it reduces the image over a number of stages up to a given size.
The output of the CNN at the end of the encoder is the code of the input



56 Sz. Lefkovits, L. Lefkovits

Figure 4: Encoder-decoder-type CNN

image. If the number of reductions is n, and each stage halves the input image
size (W × H), then after n steps the code size will be (W/2n × H/2n). The
decoder has to do the opposite operations in order to obtain a segmentation
output of the same size as the original image. This is called the expending
layer. The first FCN networks in the literature were SegNet [3], FCN [24] and
U-Net [22].

The original U-Net [22] has 5 stages. From a grayscale input image of
572 × 572 pixels of resolution it obtains a code of 28 × 28 pixels. In the en-
coder part, each halving stage has the same structure: 2 convolution layers
of kernel size 3 × 3 with a ReLU activation function (Figure 5 blue arrow),
followed by a max-pooling layer with the role of halving the output of the
previous convolution (Figure 5 dark red arrow). After each convolution, the
input image size is reduced by 2 pixels in both width and height, due to the
nature of the convolution operation applied. The inputs and outputs before
and after each conv-layer are the stage-wise feature maps. At the first level of
original size, the conv-layers are of depth 64 and 64; next, at a size of 1/2, the
convolutional layers are double to 128, 128, followed by two of depth 256, 256.
At the size of 1/24, the depth is doubled again to 512 and 512. At the end of
the 5th stage, there are the last two convolutional layers of a depth of 1024,
and the output of the last conv-layer is, in fact, the code of the input of size
28 × 28 pixels. From the code, the segmentation is obtained via the decoder
part. Here, the convolutions are substituted by up-convolutions, also called
transposed convolutions. These operations are the inverse-convolutions that
are capable of doubling their input feature maps by padding them with zeros
and passing through the kernel of the same size as the matching stage convo-
lution kernel. In this manner they reach the 2× size (Figure 5 green arrow).
The output of transposed convolutions have the same depth and size as the
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Figure 5: Original U-Net architecture [22]

corresponding convolutions. The trick here is the concatenation of the output
of each encoder-stage to the first deconvolution at the same stage of the de-
coder (Figure 5 light gray arrow). Thus, if the input depth of the convolutions
and deconvolutions were d1 and d1, respectively, the depth of concatenated
layer will be 2d1. Consequently, the first deconvolution layer depth is doubled.
The second deconvolution at each stage remains of the same depth d1. The
last layer is a bottleneck convolution (Figure 5 turquoise arrow) of depth 2
which obtains a segmentation map for both classes (object of interest and
background.) All the details are shown in Figure 5.

In our adapted variant of U-Net, we consider 3 stages. The input image mea-
sures 240 × 240 × 4 pixels. The third dimension is 4, containing the 4 image
modalities (T1, T1c, T2 and FLAIR). Every stage consists of 2 convolutional
layers. Each convolution is followed by batch-normalization and dropout lay-
ers. The stage-wise depth of the conv-layers is 32, 64 and 128. Halving is
obtained via MaxPooling2D. The code size in our case is 60 × 60 pixels. The
decoder part is the corresponding extending layer with the concatenation of
the corresponding convolution output to the first deconvolution layer in each
stage. The upsampling from a given size to its double, up to the original image
size, is computed via transpose convolution with the role of Upsampling2D.
The component diagram of the adapted U-Net architecture is shown in Fig-
ure 6.
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Figure 6: Adapted implementation of U-Net architecture for brain tumor seg-
mentation

Figure 7: Adapted implementation of VGG-UNet architecture for brain tumor
segmentation

The next architecture that was adapted into a U-Net-like architecture was
the VGG16 [25] network. Here, the encoder part is formed based on the VGG16
architecture.
The VGG16-architecture [25] is made up of 5 stages from 224Ö224 pixels up
to 7× 7 pixels (W/25 ×H/25). Stages 1 and 2 contain 2 conv-layers of depth
64, 64 and 128, 128. Stages 3, 4 and 5 contain 3 conv-layers each of depth 256,
256, 256; 512, 512, 512 and 512, 512, 512. Here, the code size is 7×7 pixels. In
case of classification, the code output is followed by two fully connected layers
and a softmax classification layer.

The advantage of VGG16-UNet is that pretrained weights can be loaded
onto this architecture. In the literature, the preloading of pretrained weights
for other purposes is called transfer learning. We load the pretrained weights
of ImageNet [30] into the encoder part and start the training process for the
brain segmentation from those initial weight values. The ImageNet weights are
weights obtained from training the VGG16 CNN network for distinguishing
1000 usual object classes, they are not related to segmentation.

The VGG16-UNet architecture, adapted for brain tumor segmentation, has
the following structure: the adapted VGG16-UNet architecture. It considers
the center-cropped brain images measuring 224 × 224 pixels. We consider 4
stages up to a size of 14 × 14 pixels. In one stage, we have two conv-layers
padded to the same size as the stage input followed by the ReLU activation. In
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Figure 8: Residual Block with 3 conv-layers

Figure 7, a stage is denoted by the orange-colored Group. The corresponding
transpose convolution is the blue group. The architectures of Figures 6 and 7
were created by the Net2Vis visualization grammar module [8].

The last architecture adapted for the purpose of multi-modal brain tumor
segmentation was the ResNet50 [14]. The ResNet50 is made up of 5 convo-
lutional blocks on the 5 consecutive sizes of the encoding part. Each block is
implemented via the Residual module that learns the difference between the
input and the output of the block. This residue is obtained by passing the
input value through 2 or 3 convolutional layers. In our case the number of
conv-layers of a residual block is 3 (Figure 8). The identity connection is in
fact a skip connection.

Block1 is used once at the beginning, block2 is repeated 3 times with the
3 conv-layers (1 × 1, 64), (3 × 3, 64), (1 × 1, 256), block3 is repeated 4 times
(1 × 1, 128), (3 × 3, 128), (1 × 1, 512), block4 appears 6 times (1 × 1, 256),
(3 × 3, 256), (1 × 1, 1024) and the last block appears 3 times (1 × 1, 512),
(3 × 3, 512), (1 × 1, 2048). The ResNet50-UNet is a network based on the
ResNet architecture and combined with U-Net. The Encoder part of U-Net is
substituted by the ResNet50 blocks. The architecture of ResNet50 is shown in
Figure 9.

The convolution blocks represent the different stages on different input sizes.
The triplets inside the conv-block represent the kernel-size k×k and the depth
of the conv-layers (k×k, depth). Each conv-block is repeated a given number
of times represented above the block, and the output size of every block is the
resolution written under the block name.

The adapted ResNet50-UNet variant has corresponding transpose convolu-
tion layers concatenated to the outputs of the same-sized convolution block
and followed by 2 convolution layer of depths (512,512); (256,256); (128,128)
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Figure 9: ResNet50 encoder: the first part of ResNet-UNet architecture

Figure 10: ResNet-UNet architecture

and (64,64). The output segmentation is obtained after a bottleneck convolu-
tion (Figure 10).

2.4 The training process

The training process is the usual training of CNN networks via the Backprop-
agation algorithm. The hyperparameters of the training are crucial from the
perspective of the final training, validation and test scores.

Before the training starts, the preprocessed database is split into 3 parts:
training (203 images=18676 slices)-60%, validation set (66 images=6006 slices)-
20% and test set (66 images=10230 slices)–20%.
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For the training and validation images, we only considered non-zero slices,
while the test set used all slices. There were 18676 training image slices, 6006
validation images slices and 10230 test slices.

The main hyperparameters were set experimentally to obtain good valida-
tion performance. The batch size that fits into GPU memory is between 8
and 24 images. Such a batch of images is processed in parallel through the
forward and backward passes of the CNN. The update to the weights is made
once a batch. In every epoch, the whole training dataset is passed through
the network once, in batches. The total number of training images over the
batch size represents the number of iterations. Weights are adapted in every
iteration. The entire process ran for 100 epochs or until a given validation
Dice coefficient was met. The optimization method was AdaDelta and the loss
function was the weighted mean Dice loss.

The AdaDelta optimization algorithm, instead of considering all past squared
gradients, only considers those of a range with a fixed window size w. The sum
of gradients is a recursive expression, an exponentially decaying average of all
past squared gradients in w. It depends on the previous running average with
weight γ and the current gradient with weight (1 − γ). The gradient update
will be a product of the gradient and the proportion of the root-mean-square
error (RMSE) of the previous update and the RMSE of the current gradient.
The main advantage of AdaDelta is that the initial learning rate does not have
to be set.

The loss based on which the optimization function was minimized is the
weighted mean Dice-Sørensen loss (eq. 8). The Dice Similarity Coefficient
(Dice) measures the similarity between two discrete pieces of data. In our
case, it measures the similarity between the automatic segmentation obtained
by our system and the gold standard annotations of experts. The Dice score is
computed for every image in a batch, namely, for every image in the training
set. It is a measure of similarity between the segmented image (Seg) and the
ground truth (GT).

DiceI =
2|SegI ∩GTI|

|SegI|+ |GTI|+ ε
(3)

In the case of multi-class classification, the Dice score is computed class-wise,
and the optimization process considers the mean-Dice loss.

mDiceI =
∑

c∈Classes
DicecI (4)
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The mean Dice score on every image or on a batch is computed by

mDice =
∑

I∈Images
DiceI (5)

The loss is computed from the mean Dice score of a batch.

DiceLoss = 1−mDiceI (6)

In our training we have tried to train the CNN network not only based on
the simple mean-Dice, but on the class-wise weighted Dice score (weightc) as
well.

wmDiceI =
2
∑
c∈Classes weightc|Seg

c
I ∩GT cI |∑

c∈Classes weightc
(
|SegcI |+ |GT cI |

) (7)

wmDice =
∑

I∈Images
mwDiceI (8)

The role of implementing the weighted mean Dice score (wmDice) is to put
more emphasis on the classes with much fewer pixels in the dataset and to
overcome the problem of class imbalance. The weights were computed to be
inversely proportional to the average of number of pixels in each class. The
total number of pixels in an image is 240×240×155 ≈ 9 million. Of these, 1.5
million are brain pixels. About 2,000-90,000 pixels is tumor tissue, of which
40-80% is edema, 15-60% is enhancing tumor and 0-5% represents necrosis.

2.5 Post-processing

In the final post-processing step, we considered the formal structure of the
tumors, namely, the tumor is a compact nodule. Usually, there can be 1 or
sometimes 2 large nodules. Thus, we considered the 2 largest nodules, being,
in volume, more than 90% of the total detected tumor regions. This way, the
small false positive pixel regions could be eliminated. Another step was the
elimination of false detected background pixels inside the whole tumor. These
are very dark gray parts that can be easily mistaken for the background class
by every autonomous system, but they are in fact necrotic regions.

3 Results and discussion

In our research we have implemented 3 variants of the U-Net [22] convolu-
tional neural network and adapted them to be suitable for brain tumor seg-
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mentation. The training of the autonomous system is based on the super-
vised learning method. The initial BraTS dataset is split into 3 disjoint sets:
training, validation and test sets. The convolutional networks are trained on
18676 multi-modal images. The network is optimized via the AdaDelta opti-
mization method, considering the weighted Dice loss function as optimization
criteria. The weights are crucial in order to overcome the drawbacks of a class-
unbalanced dataset. The weight multiplication factor for class 0 is mw0

= 1,
the weight for class 1 is mw1

= 2000, while classes 2 and 4 are assigned
mw2

= 400 and mw4
= 800, respectively.The factors are inversely propor-

tional to the average size of the tumor tissue of each class. These weights are
converted into the [0,1] interval.

weightc =
mwc∑

c∈Classesmwc

(9)

These weights are used only in computation of training losses. The training
process stops after 100 epochs or if the mean Dice score on validation reaches
0.9915. Validation mean Dice score was determined experimentally. This value
assures the sufficiently high Dice score (above 80-85%) on the whole tumor. A
mean Dice score of 0.992-0.993 can be reached after running additional tens or
hundreds of epochs. The further training last very long compared to the benefit
of < 1% on the overall validation mean Dice score. The hyperparameters for
training are batch-size between 16-24 images, and the number of iterations for
an epoch is 500-1200. The weight parameter in AdaDelta is γ = 0.9. The total
training time of a single CNN architecture is between 36 and 72 hours.

The hardware used for training was an NVIDIA 1080Ti GPU card with
11GB of memory. The training was done in Tensorflow Keras in the Python
programming language. The visualization of the histograms and pre- and post-
processing steps were done in ImageJ and Matlab.

The total number of parameters, namely, the trained and untrained weights
are shown in Table 1.

Figures 11 and 12 show the comparison of the training process for the 3
convolutional neural networks.

The training process is very similar from the perspective of all 3 network
types. It can be seen in Figure 11 that the simple U-Net increases the most,
only after a few epochs. The mean Dice score indicates similarity as well,
but the training loss for U-Net and ResNet50-UNet decreases more than for
VGG-UNet.

Table 2 shows the increase in mean Dice scores throughout the training
process. U-Net and ResNet50-UNet are the two best from this perspective.
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CNN
Total Non-trainable Trainable

parameters parameters parameters

U-Net 4,473,477 3,328 4,470,149

VGGUNet 13,324,667 1,920 12,322,757

ResNet50-UNet 16,375,173 32,512 16,342,661

Table 1: Trainable parameters of CNNs

Figure 11: Training mean Dice score
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Epoch U-Net VGG-UNet ResNet-UNet

Loss Dice Loss Dice Loss Dice

5 0.1102 0.8898 0.2144 0.7856 0.2209 0.7791

10 0.0082 0.9918 0.0126 0.9874 0.0140 0.9860

20 0.0065 0.9935 0.0118 0.9882 0.0121 0.9879

30 0.0057 0.9943 0.0114 0.9886 0.0102 0.9898

40 0.0051 0.9949 0.0111 0.9889 0.0078 0.9922

50 0.0048 0.9952 0.0109 0.9891 0.0067 0.9933

60 0.0046 0.9954 0.0108 0.9892 0.0062 0.9938

70 0.0043 0.9957 0.0107 0.9893 0.0056 0.9944

80 0.0041 0.9959 0.0106 0.9894 0.0053 0.9947

90 0.0040 0.9960 0.0103 0.9897 0.0051 0.9949

100 0.0039 0.9961 0.0102 0.9898 0.0049 0.9951

Table 2: Loss and Dice scores in training

Figure 12: Training loss
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Figure 13: Validation mean Dice score

Form the standpoint of an autonomous systems the generalization capability
is essential. A CNN is capable of generalization i.e. recognizes non-seen images
with the same precision as in training if the validation score on the unseen
validation set is similar to those obtained on the training set. Figures 13 and 14
and Table 3 present the results on the validation set.

The mean Dice score is very similar for all 3 networks. A very small change
in the mean Dice score has a great impact on class-wise Dice scores. If the
mean Dice score is not over 0.9915, then the segmentation of different classes
is not high enough.

The real segmentation accuracy of the trained CNNs is determined by the
performance scores of the different classes.

Tables 4 and 5 show the class-wise performance measure of the Dice score
on the training and test sets. The optimization of the CNN models were done
not on the class-wise Dice scores, but on the weighted mean Dice score. Small
changes in the weighted mean Dice score may lead to noticeable class-wise
Dice score change.

These tables show a superior performance for the simple U-Net and ResNet-
UNet. The background and healthy tissues are detected with a Dice score
of 0.9984-0.9985. Class1+3 represent necrosis and the non-enhanced tumor,
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Figure 14: Validation loss

Epoch U-Net VGG-UNet ResNet-UNet

Loss Dice Loss Dice Loss Dice

5 0.0226 0.9806 0.0327 0.9651 0.0663 0.9328

10 0.0107 0.9890 0.0146 0.9876 0.0146 0.9868

20 0.0058 0.9916 0.0131 0.9885 0.0142 0.9873

30 0.0112 0.9904 0.0111 0.9885 0.0147 0.9885

40 0.0093 0.9914 0.0129 0.989 0.0083 0.9906

50 0.0065 0.9918 0.0108 0.9887 0.0098 0.9905

60 0.0075 0.9917 0.0127 0.9888 0.0085 0.9905

70 0.0079 0.9918 0.0091 0.9895 0.0075 0.9908

80 0.0075 0.9916 0.0128 0.989 0.0100 0.9907

90 0.0063 0.9916 0.0107 0.9895 0.012 0.9906

100 0.0074 0.9915 0.0102 0.9894 0.0108 0.9909

Table 3: Loss and Dice scores for the validation set
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Training Dice-
Cl0

Dice-
Cl1+3

Dice-
Cl2

Dice-
Cl4

Dice-
WT

Dice-
TC

U-Net 0.9991 0.7153 0.8557 0.8113 0.9200 0.8793

VGG-UNet 0.9981 0.4785 0.7237 0.7088 0.8219 0.7704

ResNet-
UNet

0.9991 0.6989 0.8495 0.7860 0.9186 0.8722

Table 4: Class-wise Dice scores in training

Test Dice-
Cl0

Dice-
Cl1+3

Dice-
Cl2

Dice-
Cl4

Dice-
WT

Dice-
TC

U-Net 0.9984 0.474 0.7272 0.7338 0.8359 0.7773

VGG-UNet 0.9984 0.4156 0.7117 0.7334 0.8217 0.7618

ResNet-
UNet

0.9985 0.5005 0.7372 0.7488 0.8434 0.7865

Table 5: Class-wise Dice scores for the test set

respectively. This class can be easily mistaken for the dark background because
of its very dark intensity on the MRI image. The Dice score results for this
class are the lowest (47%-50%). Compared to the difficult class, the other two
classes Class2 and Class4 are detected with a higher Dice score of (73%-74%).

In the literature, it is not the class-wise Dice coefficients that are compared;
nevertheless, from the perspective of a physician, the Whole Tumor (WT), the
Tumor Core (TC) and the Enhanced Tumor (ET) are much more important.
The WT is the joint region of all the tumor types (Class1+3 ∪ Class2 ∪
Class4). The TC is the union of Class1+3 ∪ Class4, without the edema region.
The third type ET is Class4.

If we consider these tumoral regions, the results become much better. Ta-
bles 6 and 7 show the results for WT and TC, and the results for ET are the
same as those specified for Cl4 (Tables 4 and 5).

All the three U-Net models were improved via post-processing steps. The
two main corrections steps applied were fillholes and connected components.
In the 3D image if a region inside a tumor was detected background it was
set to be Class1, i.e. necrosis. From the detection results only the greatest
connected components were kept for which the cumulative sum of the total
pixels is above 90% of the total detected tumor pixels. The rest (small regions
compared to the volume of greatest) was considered false positive and was
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Training Dice-
WT

Sens-
WT

Spec-
WT

Dice-
TC

Sens-
TC

Spec-
TC

U-Net 0.9200 0.9278 0.999 0.8793 0.8820 0.9987

VGG-UNet 0.8219 0.9081 0.9972 0.7704 0.7395 0.9983

ResNet-
UNet

0.9186 0.9432 0.9988 0.8722 0.8563 0.9989

Table 6: Dice score of tumor regions in training

Test Dice-
WT

Sens-
WT

Spec-
WT

Dice-
TC

Sens-
TC

Spec-
TC

U-Net 0.8359 0.8335 0.9986 0.7773 0.8259 0.9977

VGG-UNet 0.8217 0.8524 0.9982 0.7618 0.7843 0.9980

ResNet-
UNet

0.8434 0.8586 0.9984 0.7865 0.8122 0.9981

Table 7: Dice score of tumor regions for the test set

erased from the segmentation. These post-processing steps brought a 2-3%
improvement compared to the original results (Tables 5 and 9).

The best results here are obtained by ResNet-UNet WT=0.8688 and
TC=0.8286. We also considered the ensemble model, which is the joint re-
sponse of the probability maps for the 3 individual networks and the ensemble.
The joint response obtains a 1-2% improvement compared to the best out of
the three models presented (Table 8).

Figure 15 shows the segmentation results for the three U-Net variants stud-
ied. Visual comparison of the results becomes exceedingly difficult. The results
are very similar; however, U-Net and ResNet-UNet achieve the best results,
especially on Class1+3. On Figure 15 different colors denote different tissues:
background (Class0) is black, Class2 is the edema denoted by light gray, Class4

Test Dice-
WT

Sens-
WT

Spec-
WT

Dice-
TC

Sens-
TC

Spec-
TC

Ensemble
model

0.8765 0.8727 0.9988 0.8169 0.8461 0.9981

Table 8: Dice score of ensemble model
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Test Dice-
WT

Sens-
WT

Spec-
WT

Dice-
TC

Sens-
TC

Spec-
TC

U-Net 0.8623 0.8542 0.9986 0.7992 0.8496 0.9976

VGG-
UNet

0.8534 0.8660 0.9983 0.7892 0.8276 0.9978

ResNet-
UNet

0.8688 0.8836 0.9984 0.8076 0.8286 0.9981

Table 9: Dice score of tumor regions with post-processing

BraTS 2020 Dice-
WT

Dice-
ET

Dice-
TC

McHugh [19] 0.859 0.766 0.788

Savadikar [23] 0.818 0.688 0.716

Ali [1] 0.871 0.748 0.748

Bommineni [7] 0.883 0.718 0.787

Isensee [15] 0.889 0.820 0.850

Our ResNet-UNet 0.8688 0.7507 0.8076

Our Ensemble 0.8765 0.7588 0.8169

Table 10: Comparison to BraTS2020

enhanced tumor is the white part, and the innermost tumor region is the non-
enhanced+necrotic part (Class1+3) labelled with light gray.

Table 10 shows the most up-to-date results published for the BraTS2020
competition in 2021. The models featured all are different version of the U-
Net network. Our WT, ET and TC results are similar to the results described
in the literature.

4 Conclusions

In this paper we present an automated system used for brain tumor segmen-
tation. We compare three well-known CNN networks used for object detection
and adapt them for the purpose of brain tumor segmentation. The three net-
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(a) Ground truth (b) U-Net (c) VGG-UNet (d) ResNet-UNet (e) Ensemble

Figure 15: Segmented images – black: background; light gray: edema; white:
enhanced tumor; dark gray: non-enhanced tumor+necrosis

works converted to encoder-decoder networks were U-Net, VGG16-UNet and
ResNet50-UNet. The main contributions of this paper are: the intensity uni-
formization of the BraTS2020 dataset, the adaptation of CNN networks for
brain tumor segmentation, training and evaluation of the segmentation sys-
tem obtained. In the preprocessing phase all of the different image intensity
ranges were transformed into the standard grayscale domain of [0,255] while
maintaining the histogram form of the original image. Using this preprocessed
dataset we have adapted and trained the mentioned three models for brain
tumor segmentation. Moreover, these models were combined into an ensemble
that achieved an overall performance boost of 2%.

To obtain even better results, we further suggest to implement and apply
other types of CNN networks that use the attention module and multi-pathway
models with different scales and resolutions with the role of correcting the seg-
mentation on the tissue borders. We also propound to implement the 3D U-Net
for brain tumor segmentation and compare the results presented to those of a
3D-CNN. The 3D models require more GPU capacity to fit into the memory
and are usually implemented in HPC environments. In addition, a cascade of
multiply applied binary classifications of the different tumor regions would im-
prove segmentation. In our future work, we suggest to first segment the whole
tumor, followed by the edema, tumor core and finally the enhanced tumor and
necrosis. The role of this type of classification is an even better delimitation
of different tissue types. Moreover, we set to improve our results even more by
concentrating especially on the tissue borders that are the least accurately de-
tected. All these suggestions would additionally improve the results presented
in this paper.
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[13] A. Győrfi, L. Szilágyi, L. Kovács, A fully automatic procedure for brain tumor
segmentation from multi-spectral MRI records using ensemble learning and atlas-
based data enhancement, Applied Sciences, 11, 2 (2021). ⇒54

[14] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
CoRR abs/1512.03385, 2015. ⇒59
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Abstract. For a commutative ring R with identity 1, the zero-divisor
graph of R, denoted by Γ(R), is a simple graph whose vertex set is the set
of non-zero zero divisors Z∗(R) and the two vertices x and y ∈ Z∗(R) are
adjacent if and only if xy = 0. In this paper, we compute the values of
some graph parameters of the zero-divisor graph associated to the ring
of Gaussian integers modulo n, Zn[i] and the ring of integers modulo n,
Zn.

1 Introduction

Throughout this paper, all rings are assumed to be commutative with unity
unless explicitly stated otherwise. Given a commutative ring with identity R,
the zero-divisor graph of R, denoted by Γ(R), is the graph where the vertices are
the nonzero zero-divisors (Z∗(R)) of R, and there is an undirected edge between
two distinct vertices x and y if and only if xy = 0. An annihilator of an element
x of a ring R, denoted by ann(x), is the setann(x) = {r ∈ R : rx = 0}. The
zero-divisor graph that Anderson and Livingston [1] introduced allows us to
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visually represent algebraic properties of a commutative, unital ring through
graph theoretic properties. This ability to use graph-theoretic properties to
visualize underlying algebraic properties is applicable to many different types
of rings.

The set of Gaussian integers Z[i] is a subset of C defined as Z[i] = {a +
ib | a, b ∈ Z and i =

√
−1}. Let Zn = {0, 1, 2, . . . , n − 1} be the ring of

integers modulo n. Then, the quotient ring Z[i]/〈n〉 is isomorphic to Zn[i] =
{a + ib | a, b ∈ Zn}, where 〈n〉 is a principal ideal generated by n for some
positive integer larger than 1 in Z[i]. Several results on zero-divisor graphs of
the ring of integers modulo n and the ring of Gaussian integers modulo n can
be found in [5, 6, 7, 8, 11].

All graphs G in this article will be simple. The vertex set of G will be denoted
by V(G). In G, the distance between two vertices x and y, denoted d(x, y), is
the length of the shortest path. A maximal connected subgraph of a graph G is
called a component of G, and the number of components of a graph G is denoted
by k(G). A vertex v of G is called a cut vertex of G if k(G − v) > k(G). The
vertex-connectivity of G, denoted by κv(G), is the smallest number of vertices
whose removal from the graph G results in either a disconnected graph or a
single vertex graph. The eccentricity of x, denoted by e(x), is the maximum
of the distances from x to the other vertices of G. The minimum eccentricity
value is the radius of G. Note that any graph G with radius 1 necessarily has
at least one vertex adjacent to all other vertices of G. We denote the minimum
and maximum degree of a graph G by dδ(G) and d∆(G) respectively. For n ≥ 1,

Kn will denote a complete graph on n vertices containing all

(
n

2

)
possible

edges. In a graph G, if no two vertices of a subset A of the vertex set V are
adjacent, then A is said to be an independent set. A maximal complete
subgraph of G is a clique of G and the order of a clique of G is the clique
number, denoted by clq(G). More on graph theory definitions, the reader is
referred to [9].

In Section 2, we obtain the values of some parameters, like clique number
ω(G), chromatic number χG) and radius rad(G) of the zero-divisor graph
associated to the ring of integers modulo n, denoted by Zn, and the ring
Gaussian integers modulo n, denoted by Zn[i].
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2 Zero-divisor graph of Zqm[i], q ∼= 3 (mod 4) and Zn
Theorem 1 Let Γ(Zqm [i]) be the zero-divisor graph of Zqm [i], where q ∼=
3 (mod 4). Then the clique number of Γ(Zqm [i])

is given by

{
q2d

m
2
e − 1 if m is even

q2d
m
2
e if m is odd

Proof. If α and β are two nonzero zero-divisors in Zqm [i] such that qd
m
2
e | α

and qd
m
2
e | β, α 6= β, then α and β are adjacent in Γ(Zqm [i]). Thus, all such

zero-divisors form a clique in Γ(Zqm [i]) and there are
q2m

q2d
m
2
e − 1 = q2b

m
2
c − 1

such zero-divisors. Also notice that the vertices of Γ(Zqm [i]) that are not in
the clique form an independent set of vertices. Moreover, if m is odd then each
vertex of the subring generated by < qd

m
2
e > is adjacent to α, where qd

m
2
e | α.

Therefore, the clique number is given by

{
q
2dm
2
e
− 1 if m is even

q2d
m
2
e if m is odd

�

Notice that for a Gaussian prime q and m > 1, Zqm [i] ∼= Z[i]/〈qm〉 is a local
ring with unique maximal ideal 〈q〉. Also, |U(Zqm [i])| = q2m − q2m−2 [4], so
that |Z∗(Zqm [i])| = q2m − (q2m − q2m−2) − 1 = q2m−2 − 1.

Theorem 2 If m is a positive integer and q is a Gaussian prime, then
(i) dδ(Γ(Zqm [i])) = q2− 1, d∆(Γ(Zqm [i])) = q2m−2− 2, κv(Γ(Zqm [i])) = q2− 1,
where κv denotes the vertex connectivity.

Proof. To find the minimum and maximum degree of Γ(Zqm [i]), let λ ∈
V(Zqm [i]). Then λq is the vertex with least degree because no vertex λq is
adjacent to any other vertex except the vertices obtained as multiples of qm−1.
Thus, dδ(Γ(Zqm [i])) = q2 − 1.

Also, every vertex of the clique induced by vertices from the subring <
qm−1 > is adjacent to every vertex of Γ(Zqm [i]). Therefore, d∆(Γ(Zqm [i])) =
q2m−2 − 2 = |Z∗(Zqm [i])| − 1. This implies that rad(Γ(Zqm [i])) = 1 and the
vertex connectivity of Γ(Zqm [i]) can be obtained by removing the vertices as-
sociated to the subring generated by < qm−1 >, since their removal leaves
each vertex of the form λq as isolated, where λ ∈ V(Zqm [i]). Thus, the vertex
connectivity is q2 − 1. �

The following lemma gives a formula for calculating the clique number of
zero-divisor graph Γ(Zn) of Zn, for n ≥ 1.
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Lemma 3 [2] If n = pα11 p
α2
2 . . . pαrr is the canonical representation of n, then

Z/nZ ∼= Z/pα11 Z× · · · × Z/p
αk
k Z as rings. If each αi (1 ≤ i ≤ r) is even, then

ω(Γ(Zn) = p
α1
2

1 p
α2
2

2 . . . p
αr
2
r − 1 and if

n = pα11 p
α2
2 . . . pαrr q

β1
1 q

β2
2 . . . p

βs
s

such that αi
s are even and βi

s are odd, then

ω(Γ(Zn) = p
α1
2

1 p
α2
2

2 . . . p
αr
2
r q

β1−1

2 q
β2−1

2 . . . q
βs−1
2 +s− 1,

where s is the number of odd primes.

From Lemma 3, the following observation is immediate.

Theorem 4 If p is a prime number and n ∈ N, then the clique number of
Γ(Zpn) is given by

ω(Γ(Zpn)) =

{
p

n
2
−1 if n is even

p
n−1
2 if n is odd

Theorem 5 If Γ(Z2m [i]) be a zero-divisor graph of the ring Z2m [i], where
m ≥ 1 is an integer, then d∆(Γ(Z2m [i])) = 22m−1 − 2, ω(Γ(Z2m [i])) = 2m − 1,
dδ(Γ(Z2m [i])) = 1, kv(Γ(Z2m [i])) = 1 and rad(Γ(Z2m [i])) = 1, where m ≥ 2.

Proof. For m = 1, the case is trivial. For m > 1, one can see that Z2m [i] ∼=
Z[i]/〈2m〉 = Z[i]/〈(1+i)2m〉. Clearly, Z∗(Z2m [i]) = 〈1+i〉−{0} is an annihilator
ideal, that is, there exists a vertex, say α ∈ Z∗(Z2m [i]), adjacent to every other
vertex. Also, by Proposition 2.4 in [3], Γ(Z2m [i]) ∼= Γ(Z22m). With this property,
we have d∆(Γ(Z2m [i])) = 22m−1 − 2, ω(Γ(Z2m [i])) = 2m − 1, dδ(Γ(Z2m [i])) = 1,
kv(Γ(Z2m [i])) = 1, where m ≥ 2. Also, the degree of the vertices are given as
deg(vi) = 2

i − 1, if 1 ≤ i < m and deg(vi) = 2
i − 2, for m ≤ i ≤ 2m− 1.

Now, we claim that there exists a pendent vertex 1+ i in Γ(Z2m [i]). Assume
that (1 + i)(a + ib) = 0, which implies that (a − b) + i(a + b) = 0, that is,

a = b or a + b = 0, that is a + b = 2m. Thus, (1 + i) ∼ (
2m

2
+ i
2m

2
). Hence,

1+ i is a pendent vertex. �

By Theorem 3 in [10], if we partition the vertex set of Γ(Zpm) into the
sets S1, S2, . . . , Sm−1, where Si = {kip

i : p - ki}, 1 ≤ i ≤ m − 1, then
it is easy to see that |Vi| = (p − 1)pm−i−1, 1 ≤ i ≤ m − 1 and there-

fore |Γ(Zpm)| =
m−1∑
i=1

(p − 1)pm−i−1 = pm−1 − 1. Also, for a positive inte-

ger k, 1 ≤ k ≤ m − 1, the degrees of the vertices in Γ(Zpm) are given by
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deg(Vk) =

{
pk − 1 if 1 ≤ k < dm2 e
pk − 2 if dm2 e ≤ k ≤ m− 1

where dxe denotes the smallest

integer function.

A nontrivial connected graph G is Eulerian if and only if every vertex of G
has even degree.

Theorem 6 For each m ≥ 1, the graph Γ(Zpm), where p is a prime, is not
Eulerian.

Proof. We divide the vertex set of Γ(Zpm) into the sets S1, S2, . . . , Sm−1, where
Si = {kip

i : p - ki}, 1 ≤ i ≤ m−1. Clearly, a vertex of Si is adjacent to a vertex
of Sj if and only if i+ j ≥ m. This implies that a vertex v ∈ S1 is adjacent to
a vertex u ∈ V(Γ(Zpm)) if and only if u ∈ Sm−1. Now, for each v1 ∈ S1 and
vm−1 ∈ Sm−1, we have deg(v1) = p−1 and deg(vm−1) = p

m−1−2. So, for each
prime p and a positive integer m, it follows that either deg(v1) or deg(vm−1)
is odd, where v1 ∈ S1, vm−1 ∈ Sm−1. �

Now, we obtain the values of some graph parameters of the zero-divisor
graph associated to the ring Zpq2 , where p and q are distinct prime integers.

Theorem 7 Let Γ(Zpq2) be the zero-divisor graph of the ring Zpq2, where p
and q are distinct prime integers. If
(i) p is odd prime and q = 2, then diam(Γ(Zpq2)) = 3, dδ(Γ(Zpq2)) = q − 1,
d∆(Γ(Zpq2)) = pq − q, rad(Γ(Zpq2)) = 1, κv(Γ(Zpq2)) = 1 and ω(Γ(Zpq2) =
q− 1.
(ii) p = 2 and q is odd, then diam(Γ(Zpq2)) = 3, rad(Γ(Zpq2) = 1, d∆(Γ(Zpq2) =
q2 − 1, dδ(Γ(Zpq2)) = q− 1 and ω(Γ(Zpq2) = q− 1.

(iii) diam(Γ(Zpq2)) = 3, rad(Γ(Zpq2) = 1, d∆(Γ(Zpq2) = q2+p−1, dδ(Γ(Zpq2)) =
q− 1 and ω(Γ(Zpq2) = q− 1.

Proof. The number of zero-divisors in Zm is given by m−φ(m) − 1 = pq2 −
φ(pq2) − 1 = pq2 − (p− 1)(q2 − q) − 1 = q(p+ q− 1) − 1.
(i). When p is odd prime and q = 2. In this case, we partition the vertex
set as V1 = {q2k : 1 ≤ k < p, (k, p) = 1}, V2 = {kp : 1 ≤ k < q2} and
V3 = {2k : 1 ≤ k < pq, k 6= p, (2, k) = 1}. Now, in Γ(Zpq2), we take pq as a
center vertex. Clearly, no two vertices of V1 are adjacent. However, for each
u ∈ V1 and v ∈ V2, uv = 0. Thus, V1 and V2 form a complete bipartite
graph. Furthermore, the vertices of V3 are adjacent to the vertex pq, which
form an independent set (tail vertices). In this way, we get p − 1 number of
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pendent vertices. So, clearly dδ(Γ(Zpq2)) = q − 1. Also, diam(Γ(Zpq2)) = 3,
d∆(Γ(Zpq2)) = 2, κv(Γ(Zpq2)) = 1, rad(Γ(Zpq2)) = 1 and ω(Γ(Zpq2)) = q − 1.
For illustration, consider Z28 in Figure 1(a).
(ii). When p = 2 and q is odd prime, we partition the vertex set into the
subsets: V1 = {k(2q) : 1 ≤ k < q, (2k, q) = 1}, V2 = {kq : 1 ≤ k ≤ q, (k, q) = 1}
and V3 = {2k : 1 ≤ k ≤ q2 − q, (2, q) = 1}. Clearly, no two vertices of V1 and
V2 are adjacent. However, for each u ∈ V1 and v ∈ V2, uv = 0. Also, there
exists a vertex q2 ∈ V2 such that each vertex vi ∈ V3 is adjacent to q2. So,
we observe that diam(Γ(Zpq2)) = 3, rad(Γ(Zpq2)) = 1, d∆(Γ(Zpq2)) = q2 − 1,
dδ(Γ(Zpq2)) = q − 1, the set of vertices {2q, 2.2q, 3.2q, . . . q − 1.2q} form a
clique, that is, ω(Γ(Zpq2)) = q − 1. For example, consider Z2.52 , see Figure
1(b).
(iii). When both p and q are odd primes. In this case, we partition the vertex
set as: V1 = {kq : 1 ≤ k < q2, (k, p) = 1}, V2 = {kp : 1 ≤ k < q2−q, (k, q) = 1},
V3 = {kq2 : 1 ≤ k < p, (k, p) = 1} and V4 = {kpq : 1 ≤ k < pq − p, (k, p) =
1, (k, q) = 1}. It is clear that diam(Γ(Zpq2)) = 3, rad = 1, d∆(Γ(Zpq2)) =

q2+p−1, dδ(Γ(Zpq2)) = q−1 and ω(Γ(Zpq2)) = q−1. For example, consider
Z32.5, see Figure 2. �
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Figure 1: Example Γ(Zp2q), p and q are odd

A ring R is said to be decomposable if it can be written as a direct product
R1 × R2, where R1 and R2 are nonzero rings, otherwise R is said to be inde-
composable. In the next two results, we find the values of graph parameters of
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Figure 2: Example Γ(Zp2q), p, q are odd primes

the zero divisor graph associated to the finite commutative ring which is the
direct product of finite local rings.

Theorem 8 Let R ∼= R1 × R2 be a commutative ring and ann(x) be minimal
non-trivial ideal.
(i) If R1 = Z2, then kv(Γ(R)) = 1, d∆(Γ(R)) = |R2|− 1, dδ(Γ(R)) = 1.
(ii) If R2 = Z2, then kv(Γ(R)) = 1, d∆(Γ(R)) = |R1|− 1, dδ(Γ(R)) = 1.
(iii) κv(Γ(R)) = dδ(Γ(R)) = min(|R1|, |R2|), d∆(Γ(R)) = max(|R1|, |R2|), if R1 =
F , where F is a field and R1 � Z2.
(iv) κv(Γ(R)) = |ann(x, 1)|.

Proof. (i). As Z2 is a field, we partition the vertex set of Z2 × R2 as V1 =
{(0, 1), (0, x1), . . . , (0, xm)} and V2 = {(1, 0)}. Now, there exists a vertex (1, 0)
joined to every vertex of V1. When the cut-vertex (1, 0) is removed from Γ(R),
the resulting graph is no longer connected leaving (0, 1) as an isolated vertex.
Hence, κv(Γ(R)) = 1. Also, if ann(x) is a minimal non-trivial annihilator ideal
in R2, where x ∈ Z∗(R2), then ann(0, xi) = {(0, xj) and (1, xj) | xj ∈ ann(xi)}.
Thus, the graph Γ(R) is incomplete. Clearly, |ann(0, xi)| < deg(1, 0) implies
that d∆(Γ(R)) = |R2|− 1 and dδ(Γ(R)) = 1.
(ii). This follows by using the argument similar to above.
(iii). Since R ∼= F ×R2 is a commutative ring, where F is a field and R2 � Z2,
so S1 = {(u, 0) | u ∈ F∗} is a cut-set of Γ(R) if |F | < |R2| and S2 = {(0, a) | a ∈
R2} if |F | > |R2|. Thus, κv(Γ(R)) = min(|R1|, |R2|), d∆ = max(|R1|, |R2|). In case
R2 ∼= Z2, then (0, 1) is the cut-vertex of Γ(R).
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(iv). Let x ∈ Z∗(R1). If ann(x) = {y ∈ Z∗(R1) : xy = 0} and ann(x) is the
minimal non-trivial annihilator ideal, then ann(x, 1) = {(y, 0)}. Clearly, when
S = {(y, 0) : y ∈ ann(x)} is removed, Γ(R) becomes disconnected. Thus, S is
the minimal cut-set. Hence, kv(Γ(R)) = |S|. �

Theorem 9 Let R = R1 × R2 × · · · × Rn, n ≥ 2, R � Z2 × Z2 and each Ri is
a finite local ring, then
(i) κv(Γ(R)) = 1, if R1 ∼= Z2
(ii) κv(Γ(R)) = 1, if R1 ∼= Z4 or

Z2[x]
x2

.

Proof. (i). Let R = R1 × R2 × · · · × Rn, n ≥ 2, R � Z2 × Z2 and each Ri
be a finite local ring. When R1 ∼= Z2, then R ∼= Z2 × R2 × · · · × Rn. Clearly,
ann((1, 0, . . . , 0)) consists of at least one pendent vertex (0, 1, . . . , 1). Deletion
of the vertex (1, 0, . . . , 0) isolates (0, 1, . . . , 1) and hence disconnects the graph
with κv(Γ(R)) = 1.
(ii). When R1 ∼= Z4, let ann(2) be the minimal annihilator ideal of Z4. Then
ann((2, 0, . . . , 0)) = {(2, 1, . . . , 1), . . . : 2 ∈ ann(2)}. Clearly, the vertex
(2, 1, . . . , 1) is only adjacent to (2, 0, . . . , 0). Hence, κv(Γ(R)) = 1, in this case
also.

When R1 ∼=
Z2[x]
x2

, there exists only one path from (x, 0, . . . , 0) to (x, 1, . . . , 1).

Then the graph becomes disconnected on removing
(x, 0, . . . , 0). �

Using Lemma 3, we can find the clique number of a zero-divisor graph Γ(Zn)
for any large n. To calculate this, we factorize the integers in different forms.
For example, ω(Γ(Z2000)) = 22 · 5 + 1 − 1 = 20. For distinct prime integers
p, q, we have (i) ω(Γ(Zpq)) = p0q0 + 2 − 1 = 2. (ii) If n = p2q, then ω =
pq0 + 1 − 1 = p. (iii) ω(Γ(Zp3q) = pq0 + 2 − 1 = p + 1 (iv) ω(Γ(Zp2q2))
= pq− 1. (v) ω(Γ(Zp3) = p. (vi) ω(Γ(Zp4) = p2 − 1.
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Abstract. The transmission of a vertex u in a connected graph G is de-
fined as σ(u) =

∑
v∈V(G) d(u, v) and reciprocal transmission of a vertex

u is defined as rs(u) =
∑
v∈V(G)

1
d(u,v) , where d(u, v) is the distance

between vertex u and v in G. In this paper we define new distance based
topological index of a connected graph G called transmission-reciprocal

transmission index TRT(G) =
∑
uv∈E(G)

(
σ(u)
rs(u) +

σ(v)
rs(v)

)
and its coindex

TRT(G) =
∑
uv/∈E(G)

(
σ(u)
rs(u) +

σ(v)
rs(v)

)
, where E(G) is the edge set of a

graph G and establish the relation between TRT(G) and TRT(G). Further
compute this index for some standard class of graphs and obtain bounds
for it.

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 05C12, 05C09
Key words and phrases: Distance, transmission of a vertex, reciprocal
transmission of a vertex, transmission-reciprocal transmission index.

84

https://www.kud.ac.in
https://www.kud.ac.in
https://www.kud.ac.in
https://www.kud.ac.in
mailto:hsramane@yahoo.com
https://orcid.org/0000-0002-6131-536X
https://orcid.org/0000-0002-6131-536X
https://orcid.org/0000-0002-6131-536X
https://orcid.org/0000-0002-6131-536X
mailto:deepakitturmath@gmail.com
https://orcid.org/0000-0001-6811-3528
https://orcid.org/0000-0001-6811-3528
https://orcid.org/0000-0001-6811-3528
https://orcid.org/0000-0001-6811-3528
https://orcid.org/0000-0001-6811-3528
mailto:kavitabhajantri5@gmail.com


T-RT index and coindex of graphs 85

1 Introduction

Throughout this paper, we consider a finite connected graph G that has no
loops and multiple edges. We respectively denote by n and m the cardinality
of its vertex set V(G) and its edge set E(G). As customary, we denote by d(u)
the degree of u and by d(u, v) the distance between u and v.

In recent years a large number of topological indices have been reported and
utilized for chemical documentation, isomer discrimination, study of molecular
complexity, similarity/dissimilarity, drug design, and database selection, least
optimization, rational combinatorial library design and for deriving multilinear
regression models.

The use of topological and information theoretical indices in QSAR (Quan-
tative structure-activity relationship) has become of growing importance seems
to play an important role in situations where biological activity is determined
predominantly by topological architecture of molecular structure, where sim-
ple connectivity among neighbouring atoms without considering the chemical
nature of atom or nature of chemical bonding, may be the major determinant
of biological activity of a molecule.

The status [11, 16] (or transmission [1]) of a vertex u in G is defined as the
sum of the distances between u and all other vertices of G and is denoted by
σ(u). That is,

σ(u) =
∑
v∈V(G)

d(u, v).

The reciprocal status of a vertex [15] u ∈ V(G) is defined as the sum of
reciprocal of its distance from every other vertex in V(G) and is denoted by
rs(u). That is,

rs(u) =
∑

uv∈E(G), u 6=v

1

d(u, v)
.

The Wiener index of graph G is defined as [18]

W(G) =
∑

{u,v}⊆V(G)

d(u, v) =
1

2

∑
u∈V(G)

σ(u).

More results about Wiener index can be found in [5, 6, 10, 12, 13, 14, 17].
The first and second Zagreb indices of a graph G are defined as [9]

Z1(G) =
∑

uv∈E(G)

[d(u) + d(v)] and Z2(G) =
∑

uv∈E(G)

d(u)d(v).
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Results on the Zagreb indices can be found in [4] and the references cited
therein.

The Zagreb coindices of a graph G are defined as [7]

Z1(G) =
∑

uv/∈E(G)

[d(u) + d(v)] and Z2(G) =
∑

uv/∈E(G)

d(u)d(v).

More results on Zagreb coindices can be found in [2, 3].
We introduce here new distance based index called as transmission-reciprocal

transmission (T-RT) index of a graph and is defined as

TRT(G) =
∑

uv∈E(G)

(
σ(u)

rs(u)
+
σ(v)

rs(v)

)
. (1)

The transmission-reciprocal transmission coindex of a graph is defined as

TRT(G) =
∑

uv/∈E(G)

(
σ(u)

rs(u)
+
σ(v)

rs(v)

)
. (2)

Figure 1: Graph G.

Example 1 In a graph G of Fig. 1, V(G) = {v1, v2, v3, v4}. Status of vertices
are σ(v1) = 5, σ(v2) = 3, σ(v3) = 4, σ(v4) = 4 and reciprocal status of
vertices are rs(v1) = 2, rs(v2) = 3, rs(v3) = 5

2 , rs(v4) = 5
2 . By definition,

TRT(G) = 11.9 and TRT(G) = 8.2.

2 Computation of transmission-reciprocal transmis-
sion index of graphs

Let diam(G) denotes the diameter of a graph G.
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Theorem 2 Let G be a connected graph with n vertices and m edges and let
diam(G) ≤ 2. Then

TRT(G) =
∑

uv∈E(G)

2[4n2 − 8n+ (n− 1)(d(u) + d(v)) − 2d(u)d(v) + 4]

n2 − 2n+ (n− 1)(d(u) + d(v)) + d(u)d(v) + 1
.

Proof. If diam(G) ≤ 2 then d(u) be the number of vertices at distance 1
from the vertex u and the remaining (n− 1−d(u)) vertices are at distance 2.
Therefore for each vertex u in G, σ(u) = d(u)+2(n−1−d(u)) = 2n−2−d(u).

If diam(G) ≤ 2, then d(u) number of vertices are at distance 1 from the
vertex u and the remaining n − 1 − d(u) vertices are at distance 2. There-
fore for each vertex u in G, rs(u) = 1

2(n−1+d(u)). Now by the Eq. (1) we have

TRT(G)

=
∑

uv∈E(G)

(
σ(u)

rs(u)
+
σ(v)

rs(v)

)

=
∑

uv∈E(G)

(
2n− 2− d(u)
1
2(n− 1+ d(u))

+
2n− 2− d(v)
1
2(n− 1+ d(v))

)

=
∑

uv∈E(G)

(
2(2n− 2− d(u))

(n− 1+ d(u))
+
2(2n− 2− d(v))

(n− 1+ d(v))

)

=
∑

uv∈E(G)

[
2(n− 1+ d(v))(2n− 2− d(u))+
2(n− 1+ d(u))(2n− 2− d(v))

]
(n− 1+ d(u))(n− 1+ d(v))

=
∑

uv∈E(G)

2[4n2 − 8n+ (d(u) + d(v))(−n+ 1+ 2n− 2) − 2d(u)d(v) + 4]

n2 − 2n+ (n− 1)(d(u) + d(v)) + d(u)d(v) + 1

=
∑

uv∈E(G)

2[4n2 − 8n+ (n− 1)(d(u) + d(v)) − 2d(u)d(v) + 4]

n2 − 2n+ (n− 1)(d(u) + d(v)) + d(u)d(v) + 1
.

�

Corollary 3 Let G be a connected regular graph of degree r on n vertices and
m edges and let diam(G) ≤ 2. Then

TRT(G) =
2m[4n2 − 8n+ 4+ 2r(n− 1) − 2r2]

n2 − 2n+ 2r(n− 1) + r2 + 1
.
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Proof. By Theorem 2 we have

TRT(G) =
∑

uv∈E(G)

2[4n2 − 8n+ (n− 1)(d(u) + d(v)) − 2d(u)d(v) + 4]

n2 − 2n+ (n− 1)(d(u) + d(v)) + d(u)d(v) + 1
.

Since G is a regular graph, d(u) = r, for all u ∈ V(G). Therefore

TRT(G) =
∑

uv∈E(G)

2[4n2 − 8n+ 2r(n− 1) − 2r2 + 4]

n2 − 2n+ 2r(n− 1) + r2 + 1

=
2m[4n2 − 8n+ 2r(n− 1) − 2r2 + 4]

n2 − 2n+ 2r(n− 1) + r2 + 1
.

�

Corollary 4 For a complete graph Kn on n vertices,

TRT(Kn) = n(n− 1).

Proof. As Kn is a complete graph, d(u) = n− 1 for all u ∈ V(Kn). Therefore

TRT(Kn) =
∑

uv∈E(Kn)

2[4n2 − 8n+ (n− 1)(d(u) + d(v)) − 2(u)d(v) + 4]

n2 − 2n+ (n− 1)(d(u) + d(v)) + d(u)d(v) + 1

=
∑

uv∈E(Kn)

2[4n2 − 8n+ 2(n− 1) − 2(n− 1)2 + 4]

n2 − 2n+ 2(n− 1)2 + (n− 1)2 + 1

=
∑

uv∈E(Kn)

2

= 2
n(n− 1)

2
= n(n− 1).

�

Proposition 5 For a complete bipartite graph Kp,q,

TRT(Kp,q) =
2pq[(p+ q)(5p+ 5q− 9) − 2pq+ 4]

(p+ q)(2p+ 2q− 3) + pq+ 1
.

Proof. The graph Kp,q has n = p + q vertices and m = pq edges. Also
diam(Kp,q) ≤ 2. The vertex set V(Kp,q) can be partitioned into two sets V1
and V2 such that for every edge uv of Kp,q the vertex u ∈ V1 and v ∈ V2, where
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|V1| = p and |V2| = q. Therefore d(u) = q and d(v) = p. By Theorem 2, we
have

TRT(Kp,q)

=
∑

uv∈E(Kp,q)

2[4(p+ q)2 − 8(p+ q) + (p+ q− 1)(p+ q) − 2pq+ 4]

(p+ q)2 − 2(p+ q) + (p+ q− 1)(p+ q) + pq+ 1

=
∑

uv∈E(Kp,q)

2[(p+ q)(4p+ 4q+ p+ q− 9) − 2pq+ 4]

(p+ q)(p+ q+ p+ q− 3) + pq+ 1

=
∑

uv∈E(Kp,q)

2[(p+ q)(5p+ 5q− 9) − 2pq+ 4]

(p+ q)(2p+ 2q− 3) + pq+ 1

=
2pq[(p+ q)(5p+ 5q− 9) − 2pq+ 4]

(p+ q)(2p+ 2q− 3) + pq+ 1
.

�

Proposition 6 For a path Pn on n vertices,

TRT(Pn) =

n(n− 1)
n−1∑
j=1

1
j

+

n−1∑
i=2

n2 + n+ 2i(i− n− 1)
i−1∑
j=1

1
j +

n−i∑
j=1

1
j

 .
Proof. Let v1, v2, . . . , vn be the vertices of Pn, where vi is adjacent to vi+1,
i = 1, 2, . . . , n− 1. Therefore,

σ(vi) = (i− 1) + (i− 2) + · · ·+ 1+ 1+ 2+ · · ·+ (n− i)

=
(i− 1)i

2
+

(n− i)(n− i+ 1)

2

=
n2 + n

2
+ i(i− n− 1), for i = 1, 2, 3, . . . , n− 1,

rs(vi) =

i−1∑
j=1

1

j
+

n−i∑
j=1

1

j
, for i = 2, 3, . . . , n− 1

and

rs(v1) = rs(vn) =

n−1∑
j=1

1

j
.
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Therefore

TRT(Pn) =

n−1∑
i=1

(
σ(vi)

rs(vi)
+
σ(vi+1)

rs(vi+1)

)

=
σ(v1)

rs(v1)
+ 2

n−1∑
i=2

(
σ(vi)

rs(vi)

)
+
σ(vn)

rs(vn)

=


n(n−1)
2

n−1∑
j=1

1
j

+ 2

n−1∑
i=2

 n2+n
2 + i(i− n− 1)
i−1∑
j=1

1
j +

n−i∑
j=1

1
j

+


n(n−1)
2

n−1∑
j=1

1
j



=

n(n− 1)
n−1∑
j=1

1
j

+

n−1∑
i=2

n2 + n+ 2i(i− n− 1)
i−1∑
j=1

1
j +

n−i∑
j=1

1
j

 .
�

Proposition 7 For a cycle Cn on n ≥ 3 vertices,

TRT(Cn) =



n4

4

1+n n−22∑
i=1

1
i

 , if n is even

n(n2−1)

4

n−1
2∑
i=1

1
i

, if n is odd.

Proof. If n is even, then for every vertex u of Cn

σ(u) = 2

[
1+ 2+ 3+ · · ·+ n− 1

2

]
+
n

2
=
n2

4

and

rs(u) =
2

n
+ 2

n−2
2∑
i=1

1

i
.

Therefore
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TRT(Cn) =
∑

uv∈E(Cn)

(
σ(u)

rs(u)
+
σ(v)

rs(v)

)

=
∑

uv∈E(Cn)


n2

4

2
n + 2

n−2
2∑
i=1

1
i

+
n2

4

2
n + 2

n−2
2∑
i=1

1
i


=

∑
uv∈E(Cn)

n2

2

 2
n + 2

n−2
2∑
i=1

1
i


=

n4

4

1+ n n−2
2∑
i=1

1
i

 .

If n is odd, then for every vertex u of Cn

σ(u) = 2

[
1+ 2+ · · ·+ n− 1

2

]
=
n2 − 1

4
and rs(u) = 2

n−1
2∑
i=1

1

i
.

Therefore

TRT(Cn) =
∑

uv∈E(Cn)

(
σ(u)

rs(u)
+
σ(v)

rs(v)

)

=
∑

uv∈E(Cn)


n2−1
4

2

n−1
2∑
i=1

1
i

+
n2−1
4

2

n−1
2∑
i=1

1
i


=

∑
uv∈E(Cn)

n2 − 1

4

n−1
2∑
i=1

1
i
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=
n(n2 − 1)

4

n−1
2∑
i=1

1
i

 .

�

Definition 8 A wheel Wn+1, is a graph obtained from the cycle Cn, n ≥ 3,
by adding a new vertex and making it adjacent to all the vertices of Cn (see
Fig. 2).

Figure 2: Wheel W7.

Definition 9 A friendship graph (or Dutch windmill graph) Fn, n ≥ 2, is a
graph that can be constructed by coalescence n copies of the cycle C3 of length
3 with a common vertex (see Fig. 3). It has 2n+ 1 vertices and 3n edges.

Figure 3: Friendship graph F3.

Proposition 10 For a wheel Wn+1, n ≥ 3,

TRT(Wn+1) =
n

n+ 3
(13n− 15).
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Proof. The wheel Wn+1 has n + 1 vertices, 2n edges and diam(wn+1) = 2.
The edge set E(Wn+1) can be partitioned into two sets E1 and E2, such that
E1(Wn+1) = {uv | d(u) = n, d(v) = 3} and E2(Wn+1) = {uv | d(u) = 3, d(v) =
3}. It is easy to check that |E1(Wn+1)| = n and |E2(Wn+1)| = n. By the Theo-
rem 2 we have

TRT(Wn+1)

=
∑

uv∈E(Wn+1)

2[4n2 − 8n+ (n− 1)(d(u) + d(v)) − 2d(u)d(v) + 4]

n2 − 2n+ (n− 1)(d(u) + d(v)) + d(u)d(v) + 1

=
∑

uv∈E1(Wn+1)

2[4(n+ 1)2 − 8(n+ 1) + n(n+ 3) − 6n+ 4]

(n+ 1)2 − 2(n+ 1) + n(n+ 3) + 3n+ 1

+
∑

uv∈E2(Wn+1)

2[4(n+ 1)2 − 8(n+ 1) + n(6) − 18+ 4]

(n+ 1)2 − 2(n+ 1) + n(6) + 9+ 1

=
∑

uv∈E1(Wn+1)

2[4n2 + 4+ 8n− 8n− 8+ n2 + 3n− 6n+ 4]

n2 + 1+ 2n− 2n− 2+ n2 + 3n+ 3n+ 1

+
∑

uv∈E2(Wn+1)

2[4n2 + 4+ 8n− 8n− 8+ 6n− 18+ 4]

n2 + 1+ 2n− 2n− 2+ 6n+ 9+ 1

=
2n(5n2 − 3n)

2n2 + 6n
+
2n(4n2 + 6n− 18)

n2 + 6n+ 9

=
n

n+ 3
(13n− 15).

�

Proposition 11 For a friendship graph Fn, n ≥ 2,

TRT(Fn) =
6n

n+ 1
(3n− 1).

Proof. The edge set E(Fn) can be partitioned into two sets E1 and E2 such that
E1(Fn) = {uv | d(u) = 2n, d(v) = 2} and E2(Fn) = {uv | d(u) = 2, d(v) = 2}.
It is easy to check that |E1(Fn)| = 2n and |E2(Fn)| = n. By the Theorem 2 we
have

TRT(Fn) =
∑

uv∈E(Fn)

2[4n2 − 8n+ (n− 1)(d(u) + d(v)) − 2d(u)d(v) + 4]

n2 − 2n+ (n− 1)(d(u) + d(v)) + d(u)d(v) + 1
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=
∑

uv∈E1(Fn)

2[4(2n+ 1)2 − 8(2n+ 1) + 2n(2n+ 2) − 8n+ 4]

(2n+ 1)2 − 2(2n+ 1) + 2n(2n+ 2) + 4n+ 1

+
∑

uv∈E2(Fn)

2[4(2n+ 1)2 − 8(2n+ 1) + 8n− 8+ 4]

(2n+ 1)2 − 2(2n+ 1) + 8n+ 4+ 1

=
∑

uv∈E1(Fn)

2[4(4n2 + 1+ 4n) − 16n− 8+ 4n2 + 4n− 8n+ 4]

4n2 + 1+ 4n− 4n− 2+ 4n2 + 4n+ 4n+ 1

+
∑

uv∈E2(Fn)

2[4(4n2 + 1+ 4n) − 16n− 8+ 8n− 8+ 4]

4n2 + 1+ 4n− 4n− 2+ 8n+ 4+ 1

=
2n(5n− 1)

n+ 1
+
4n(2n− 1)

n+ 1

=
6n

n+ 1
(3n− 1).

�

3 Transmission-reciprocal transmission index of clus-
ter graphs

The graphs with large number of edges are referred as cluster graphs. Some
of the cluster graphs obtained from complete graph are defined below.

Definition 12 [8] Let ei, i = 1, 2, . . . , k, 1 ≤ k ≤ n− 2, be the distinct edges
of a complete graph Kn, n ≥ 3, all being incident to a single vertex. The
graph Kan(k) is obtained by deleting ei, i = 1, 2, . . . , k from Kn. In addition
Kan(0) ∼= Kn.

Definition 13 [8] Let fi, i = 1, 2, . . . , k, 1 ≤ k ≤ bn2 c be independent edges
of the complete graph Kn, n ≥ 3. The graph Kbn(k) is obtained by deleting fi,
i = 1, 2, . . . , k from Kn. In addition Kbn(0) ∼= Kn.

Definition 14 [8] Let Vk be a k-element subset of the vertex set of the com-
plete graph Kn, 2 ≤ k ≤ n − 1, n ≥ 3. The graph Kcn(k) is obtained by
deleting from Kn all the edges connecting pairs of vertices from Vk. In addi-
tion Kcn(0) ∼= Kcn(1) ∼= Kn.
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Definition 15 [8] Let 3 ≤ k ≤ n, n ≥ 3. The graph Kdn(k) is obtained
by deleting from the complete graph Kn, the edges belonging to a k-membered
cycle.

Proposition 16 For n ≥ 3 and 1 ≤ k ≤ n− 2,

TRT(Kan(k)) =
(n− k− 1)(4n2 − 8n+ k(n− 1) + 4)

2n2 − 4n+ k(1− n) + 2

+
2k(k− 1)(2n2 − 3n)

4n2 − 12n+ 9

+
k(n− k− 1)(4n2 − 7n+ 3)

(2n2 − 5n+ 3)
+ (n− k− 1)(n− k− 2).

Proof. The graph Kan(k) has n vertices, n(n−1)2 −k edges and diam(Kan(k)) =
2. The edge set E(Kan(k)) can be partitioned into four sets E1 = {uv | d(u) =
n − 1 − k, d(v) = n − 1}, E2 = {uv | d(u) = n − 2 = d(v)}, E3 = {uv | d(u) =
n − 2, d(v) = n − 1} and E4 = {uv | d(u) = n − 1 = d(v)}. It is easy to check

that |E1| = n − k − 1, |E2| =
k(k−1)
2 , |E3| = k(n − k − 1) |E4| =

(n−k−1)(n−k−2)
2 .

Now we have

TRT(Kan(k))

=
∑

uv∈E(Kan(k))

2[4n2 − 8n+ (n− 1)(d(u) + d(v)) − 2d(u)d(v) + 4]

n2 − 2n+ (n− 1)(d(u) + d(v)) + d(u)d(v) + 1

=
∑
uv∈E1

2[4n2 − 8n+ (n− 1)(n− 1− k+ n− 1) − 2(n− 1− k)(n− 1) + 4]

n2 − 2n+ (n− 1)(n− 1− k+ n− 1) + (n− 1− k)(n− 1) + 1

+
∑
uv∈E2

2[4n2 − 8n+ (n− 1)(n− 2+ n− 2) − 2(n− 2)2 + 4]

n2 − 2n+ (n− 1)(n− 2+ n− 2) + (n− 2)2 + 1

+
∑
uv∈E3

2[4n2 − 8n+ (n− 1)(n− 2+ n− 1) − 2(n− 1)(n− 2) + 4]

n2 − 2n+ (n− 1)(n− 2+ n− 1) + (n− 2)(n− 1) + 1

+
∑
uv∈E4

2[4n2 − 8n+ (n− 1)(n− 1+ n− 1) − 2(n− 1)2 + 4]

n2 − 2n+ (n− 1)(n− 1+ n− 1) + (n− 1)2 + 1
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=
∑

uv∈E1(Kan(k))

2(4n2 − 8n+ nk− k+ 4)

4n2 − 8n− 2nk+ 2k+ 4
+

∑
uv∈E2(Kan(k))

4(2n2 − 3n)

4n2 − 12n+ 9

+
∑

uv∈E3(Kan(k))

2(4n2 − 7n+ 3)

4n2 − 10n+ 6
+

∑
uv∈E4(Kan(k))

2(4n2 − 8n+ 4)

4n2 − 8n+ 4

=
(n− k− 1)(4n2 − 8n+ k(n− 1) + 4)

2n2 − 4n+ k(1− n) + 2
+
2k(k− 1)(2n2 − 3n)

4n2 − 12n+ 9

+
k(n− k− 1)(4n2 − 7n+ 3)

(2n2 − 5n+ 3)
+ (n− k− 1)(n− k− 2).

�

Proposition 17 For n ≥ 3 and 1 ≤ k ≤ bn/2c,

TRT(Kbn(k)) =
4k(n− 2k)(4n2 − 7n+ 3)

4n2 − 9n+ 6
+ (n− 2k)(n− 2k− 1)

+

((
2k(2k− 1)

2

)
− k

)(
4(2n2 − 3n)

4n2 − 12n+ 9

)
Proof. The graph Kbn(k) has n vertices, n(n−1)2 −k edges and diam(Kbn(k)) =
2. The edge set E(Kbn(k)) can be partitioned into three sets E1 = {uv | d(u) =
n − 2, d(v) = n − 1}, E2 = {uv | d(u) = n − 1 = d(v)} and E3 = {uv | d(u) =

n− 2 = d(v)}. It is easy to check that |E1| = 2k(n− 2k), |E2| =
(n−2k)(n−2k−1)

2 ,

|E3| =
(
2k(2k−1)

2

)
− k. Therefore we have

TRT(Kbn(k))

=
∑

uv∈E(Kbn(k))

2[4n2 − 8n+ (n− 1)(d(u) + d(v)) − 2d(u)d(v) + 4]

n2 − 2n+ (n− 1)(d(u) + d(v)) + d(u)d(v) + 1

=
∑

uv∈E1(Kbn(k))

2[4n2 − 8n+ (n− 1)(n− 2+ n− 1) − 2(n− 2)(n− 1) + 4]

n2 − 2n+ (n− 1)(n− 2+ n− 1) + (n− 2)(n− 1) + 1

+
∑

uv∈E2(Kbn(k))

2[4n2 − 8n+ (n− 1)(n− 1+ n− 1) − 2(n− 1)2 + 4]

n2 − 2n+ (n− 1)(n− 1+ n− 1) + (n− 1)2 + 1

+
∑

uv∈E3(Kbn(k))

2[4n2 − 8n+ (n− 1)(n− 2+ n− 2) − 2(n− 2)2 + 4]

n2 − 2n+ (n− 1)(n− 2+ n− 2) + (n− 2)2 + 1
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=
∑

uv∈E1(Kbn(k))

2(4n2 − 7n+ 3)

4n2 − 9n+ 6
+

∑
uv∈E2(Kbn(k))

2(4n2 − 8n+ 4)

4n2 − 8n+ 4

+
∑

uv∈E3(Kbn(k))

4(2n2 − 3n)

4n2 − 12n+ 9

=
4k(n− 2k)(4n2 − 7n+ 3)

4n2 − 9n+ 6
+ (n− 2k)(n− 2k− 1)

+

((
2k(2k− 1)

2

)
− k

)(
4(2n2 − 3n)

4n2 − 12n+ 9

)
.

�

Proposition 18 For n ≥ 3 and 2 ≤ k ≤ n− 1,

TRT(Kcn(k)) =
2k(n− k)(4n2 − 9n+ k(n+ 3) + 5)

4n2 − 6n− 2k(n− 1) + 2
+ (n− k)(n− k− 1).

Proof. The graph Kcn(k) has n vertices and 1
2(n− k)(n+ k− 1) edges. Also

diam(Kcn(k)) = 2. The edge set E(Kcn(k)) can be partitioned into two sets
E1 = {uv | d(u) = n − k, d(v) = n − 1} and E2 = {uv | d(u) = n − 1 = d(v)}.

It is easy to check that |E1| = k(n− k), |E2| =
(n−k)(n−k−1)

2 . Therefore we have

TRT(Kcn(k))

=
∑

uv∈E(Kcn(k))

2[4n2 − 8n+ (n− 1)(d(u) + d(v)) − 2d(u)d(v) + 4]

n2 − 2n+ (n− 1)(d(u) + d(v)) + d(u)d(v) + 1

=
∑

uv∈E1(Kcn(k))

2[4n2 − 8n+ (n− 1)(n− k+ n− 1) − 2(n− k)(n− 1) + 4]

n2 − 2n+ (n− 1)(n− k+ n− 1) + (n− k)(n− 1) + 1

+
∑

uv∈E2(Kcn(k))

2[4n2 − 8n+ (n− 1)(n− 1+ n− 1) − 2(n− 1)2 + 4]

n2 − 2n+ (n− 1)(n− 1+ n− 1) + (n− 1)2 + 1

=
∑

uv∈E1(Kcn(k))

(4n2 − 9n+ nk− k+ 5)

2n2 − 3n− nk+ k+ 1
+

∑
uv∈E2(Kcn(k))

2(4n2 − 8n+ 4)

4n2 − 8n+ 4

=
k(n− k)(4n2 − 9n+ nk− k+ 5)

2n2 − 3n− nk+ k+ 1
+ (n− k)(n− k− 1).

�
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Proposition 19 For 3 ≤ k ≤ n and n ≥ 5,

TRT(Kdn(k)) =
k(n− k)(2n2 − 3n+ 1)

n2 − 3n+ 2
+ (n− k)(n− k− 1) +((

k(k− 1)

2

)
− k

)(
2(n2 − n− 2)

n2 − 4n+ 4

)
.

Proof. The graph Kdn(k) has n vertices and n(n−1)
2 − k edges.

Also diam(Kdn(k)) = 2. The edge set E(Kdn(k)) can be partitioned into three
sets E1 = {uv | d(u) = n − 3 = d(v)}, E2 = {uv | d(u) = n − 3, d(v) = n − 1}

and E3 = {uv | d(u) = n− 1 = d(v)}. It is easy to check that |E1| =
k(k−1)
2 − k,

|E2| = (n− k)k, |E3| =
(n−k−1)(n−k)

2 . Therefore we have

TRT(Kdn(k))

=
∑

uv∈E(Kdn(k))

2[4n2 − 8n+ (n− 1)(d(u) + d(v)) − 2d(u)d(v) + 4]

n2 − 2n+ (n− 1)(d(u) + d(v)) + d(u)d(v) + 1

=
∑

uv∈E1(Kdn(k))

2[4n2 − 8n+ (n− 1)(n− 3+ n− 3) − 2(n− 3)2 + 4]

n2 − 2n+ (n− 1)(n− 3+ n− 3) + (n− 3)2 + 1
+

∑
uv∈E2(Kdn(k))

2[4n2 − 8n+ (n− 1)(n− 3+ n− 1) − 2(n− 3)(n− 1) + 4]

n2 − 2n+ (n− 1)(n− 3+ n− 1) + (n− 3)(n− 1) + 1

+
∑

uv∈E3(Kdn(k))

2[4n2 − 8n+ (n− 1)(n− 1+ n− 1) − 2(n− 1)2 + 4]

n2 − 2n+ (n− 1)(n− 1+ n− 1) + (n− 1)2 + 1

=
∑

uv∈E1(Kdn(k))

2(n2 − n− 2)

n2 − 4n+ 4
+

∑
uv∈E2(Kdn(k))

2n2 − 3n+ 1

n2 − 3n+ 2

+
∑

uv∈E3(Kdn(k))

2(4n2 − 8n+ 4)

4n2 − 8n+ 4

=

((
k(k− 1)

2

)
− k

)(
2(n2 − n− 2)

n2 − 4n+ 4

)
+
k(n− k)(2n2 − 3n+ 1)

n2 − 3n+ 2

+(n− k)(n− k− 1).

�
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4 Bounds for transmission-reciprocal transmission
index of graphs

Theorem 20 Let G be a connected graph with n vertices, m edges and let
diam(G) = D. Then

∑
uv∈E(G)

8(n− 1)2 + 2(n− 1)(d(u) + d(v)) − 4d(u)d(v)

(n− 1)2 + (n− 1)(d(u) + d(v)) + d(u)d(v)
≤ TRT(G) ≤

∑
uv∈E(G)

2D2(n− 1)2 +D(D− 1)2(n− 1)(d(u) + d(v)) − 2D(D− 1)2d(u)d(v)

(n− 1)2 + (n− 1)(D− 1)(d(u) + d(v)) + (D− 1)2d(u)d(v)
.

Proof. Lower bound: For any vertex u of G, there are d(u) vertices which are
at distance 1 from u and remaining n − 1 − d(u) vertices are at distance at
least 2. Therefore

σ(u) ≥ d(u) + 2(n− 1− d(u)) = 2n− 2− d(u)

and

rs(u) ≤ d(u) + 1

2
(n− 1− d(u)) ≤ 1

2
(n− 1+ d(u)).

This implies
1

rs(u)
≥ 2

(n− 1+ d(u))
.

Therefore

TRT(G)

=
∑

uv∈E(G)

(
σ(u)

rs(u)
+
σ(v)

rs(v)

)

≥
∑

uv∈E(G)

(
2(2n− 2− d(u))

n− 1+ d(u)
+
2(2n− 2− d(v))

n− 1+ d(v)

)

=
∑

uv∈E(G)

(4n− 4− 2d(u))(n− 1+ d(v)) + (4n− 4− 2d(v))(n− 1+ d(u))

(n− 1+ d(u))(n− 1+ d(v))

=
∑

uv∈E(G)

8(n− 1)2 + 2(n− 1)(d(u) + d(v)) − 4d(u)d(v)

(n− 1)2 + (n− 1)(d(u) + d(v)) + d(u)d(v)
.
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Upper Bound: For any vertex u of G, there are d(u) vertices which are at
distance 1 from u and the remaining (n− 1−d(u)) vertices are at distance at
most D. Therefore

σ(u) ≤ d(u) +D(n− 1− d(u)) = D(n− 1) − (D− 1)d(u)

and

rs(u) ≥ d(u) + 1

D
(n− 1− d(u)) =

1

D
(n− 1) +

(
1−

1

D

)
d(u).

This implies

1

rs(u)
≤ D

(n− 1) + (D− 1)d(u)
.

Therefore

TRT(G)

=
∑

uv∈E(G)

(
σ(u)

rs(u)
+
σ(v)

rs(v)

)

≤
∑

uv∈E(G)

[
(D(n− 1) − (D− 1)d(u))D

((n− 1) + (D− 1)d(u))
+

(D(n− 1) − (D− 1)d(v))D

((n− 1) + (D− 1)d(v))

]

=
∑

uv∈E(G)

[
2D2(n− 1)2 +D(D− 1)2(n− 1)(d(u) + d(v))

−2D(D− 1)2d(u)d(v)

]
(n− 1)2 + (n− 1)(D− 1)(d(u) + d(v)) + (D− 1)2d(u)d(v)

.

�

5 Transmission-reciprocal transmission coindex of
graphs

Proposition 21 Let G be a connected graph on n vertices. Then

TRT(G) = (n− 1)
∑

u∈V(G)

σ(u)

rs(u)
− TRT(G).
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Proof.

TRT(G) =
∑

uv/∈E(G)

(
σ(u)

rs(u)
+
σ(v)

rs(v)

)

=
∑

{u,v}⊆V(G)

(
σ(u)

rs(u)
+
σ(v)

rs(v)

)
−

∑
uv∈E(G)

(
σ(u)

rs(u)
+
σ(v)

rs(v)

)

= (n− 1)
∑

u∈V(G)

σ(u)

rs(u)
− TRT(G).

�

Corollary 22 Let G be a connected graph on n vertices and diam(G) ≤ 2.
Then

TRT(G) = (n− 1)
∑

u∈V(G)

4n− 4− 2d(u)

n− 1+ d(u)

−
∑

uv∈E(G)

2[4n2 − 8n+ (n− 1)(d(u) + d(v)) − 2d(u)d(v) + 4]

n2 − 2n+ (n− 1)(d(u) + d(v)) + d(u)d(v) + 1
.

Proof. For a graph with diam(G) ≤ 2, we know that σ(u) = 2n − 2 − d(u)
and rs(u) = 1

2(n− 1+ d(u)). By Proposition 21 result follows. �

Proposition 23 For any connected graph with n vertices and diam(G) ≤ 2,

TRT(G) =
∑

uv/∈E(G)

8(n− 1)2 + 2(n− 1)(d(u) + d(v)) − 4d(u)d(v)

(n− 1)2 + (n− 1)(d(u) + d(v)) + d(u)d(v)
.

Proof. For any graph with diam(G) ≤ 2, σ(u) = 2n− 2− d(u) and rs(u) =
1
2(n− 1+ d(u)). Therefore

TRT(G)

=
∑

uv/∈E(G)

(
2(2n− 2− d(u))

n− 1+ d(u)
+
2(2n− 2− d(v))

n− 1+ d(v)

)

=
∑

uv/∈E(G)

(4n− 4− 2d(u))(n− 1+ d(v)) + (4n− 4− 2d(v))(n− 1+ d(u))

(n− 1+ d(u))(n− 1+ d(v))

=
∑

uv/∈E(G)

8(n− 1)2 + 2(n− 1)(d(u) + d(v)) − 4d(u)d(v)

(n− 1)2 + (n− 1)(d(u) + d(v)) + d(u)d(v)
.
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�

Proposition 24 Let G be a graph with n vertices. Let G be the complement
of G and it is connected. Then

TRT(G) ≥
∑

uv∈E(G)

8(n− 1)2 − 6(n− 1)(d(u) + d(v)) + 4d(u)d(v)

4(n− 1)2 − 2(n− 1)(d(u) + d(v)) + d(u)d(v)
.

Proof. For any vertex u in G, there are n − 1 − dG(u) vertices which are
at distance 1 and the remaining dG(u) vertices are at distance at least 2.
Therefore

σG(u) ≥ [n− 1− dG(u)] + 2dG(u) = n− 1− dG(u)

and

rsG(u) ≤ (n− 1− dG(u)) +
1

2
dG(u) = n− 1−

1

2
dG(u).

Therefore

TRT(G)

=
∑

uv∈E(G)

(
σ(u)

rs(u)
+
σ(v)

rs(v)

)

≥
∑

uv∈E(G)

(
2n− 2− 2d(u)

2n− 2− d(u)
+
2n− 2− 2d(v)

2n− 2− d(v)

)

=
∑

uv∈E(G)

8n2 − 16n+ 8− (6n− 6)(d(u) + d(v)) + 4d(u)d(v)

4n2 − 8n+ 4− (2n− 2)(d(u) + d(v)) + d(u)d(v)

=
∑

uv∈E(G)

8(n− 1)2 − 6(n− 1)(d(u) + d(v)) + 4d(u)d(v)

4(n− 1)2 − 2(n− 1)(d(u) + d(v)) + d(u)d(v)
.

�
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Abstract. In this work, the Seidel Laplacian spectrum of graphs are de-
termined. Then new bounds are presented for the Seidel Laplacian energy
of regular graphs and graphs by using their Seidel Laplacian spectrum
and other techniques. Further, the Seidel Laplacian energy of specific
graphs are computed.

1 Introduction

Let G be a simple graph with vertex set and edge set of cardinality n and e,
respectively. The adjacent vertices are denoted by vi ∼ vj, otherwise vi � vj.
Degree of a vertex vi is denoted by di. The adjacency matrix A(G) is defined
with (i, j)-entries as 1 and 0, if vi ∼ vj and otherwise, respectively. The energy of

a graph is introduced in [8] as En(G) =
n∑
i=1

|λi| , where λi are the eigenvalues of

A(G), namely En(G) = En(A (G)). Graph energy and its types have long been
an interesting topic for chemists and mathematicians (see [3],[11],[15],[18]).

Let D (G) = diag(d1, d2, ..., dn) be the diagonal matrix of vertex degrees of
G. The Laplacian matrix L(G) is defined as L(G) = D (G) −A(G) with eigen-
values n ≥ ϑ1 ≥ ϑ2 ≥ ... ≥ ϑn = 0 which are called as Laplacian eigenvalues of

G. The Laplacian energy of G is introduced in [6] as En(L(G)) =
n∑
i=1

∣∣ϑi − 2e
n

∣∣.
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The Seidel matrix of G is defined by S(G) = A (Gc) − A(G), where Gc is
the complement of the graph G. The Seidel energy En(S(G)) of G is proposed

in [9] as En(S(G)) =
n∑
i=1

|ξi| , where ξi are the Seidel eigenvalues of G. In [15],

the relations between the Seidel energy and energy of graphs are given.
The Seidel Laplacian matrix SL(G) of G is introduced in [17] as

SL(G) = Ds (G) − S(G), (1)

where Ds (G) be the diagonal matrix with main diagonal entries n− 1− 2di.
Also, Ds (G) = D (Gc) − D(G) and SL(G) = L (Gc) − L(G). The eigenvalues
ξL1 , ξ

L
2 , ..., ξ

L
n of SL(G) are called as the Seidel Laplacian eigenvalues of G.

Further, the Seidel Laplacian energy of G is proposed in [17] as

En (SL (G)) =

n∑
i=1

∣∣∣∣ξLi − n (n− 1) − 4e

n

∣∣∣∣
and some bounds for the Seidel Laplacian energy are presented by using math-
ematical inequalities. The eigenvalues ξLi with multiplicities form the Seidel
Laplacian spectrum of G and ξL1 denotes the spectral radius of SL(G). Further
studies on Seidel Laplacian energy see [1],[5]. Throughout this work, the order
of all matrices is n.

Let ti := ξ
L
i − X, where X = n(n−1)−4e

n . Hence,

En (SL (G)) =

n∑
i=1

|ti| . (2)

In this work, we initially determine the Seidel Laplacian spectrum of graphs.
Then we propose new bounds for the Seidel Laplacian energy of graphs and
regular graphs. Besides, we calculate the Seidel Laplacian energy of specific
graphs.

In [17], it is shown that
n∑
i=1

ti = 0, (3)

n∑
i=1

t2i = n(n− 1) + 4Zg−
16e2

n
, (4)

where Zg = Zg (G) =
∑
u∼v
du+dv is the first Zagreb index of G. The inequality

(5) is given in [1].
|t1| ≥ |X| (5)
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Lemma 1 ([17]) If ξLi are the Seidel Laplacian eigenvalues of G, then −ξLi
are the Seidel Laplacian eigenvalues of Gc, for i = 1, 2, ..., n.

Lemma 2 ([17]) If ξ1, ξ2, ..., ξn are the Seidel eigenvalues of a r-regular graph
G, then n− 1− 2r− ξi (i = 1, 2, ..., n) are the Seidel Laplacian eigenvalues of
G.

2 Seidel Laplacian eigenvalues

Let ϑ1 ≥ ϑ2 ≥ ... ≥ ϑn be the Laplacian eigenvalues of G and associated
Laplacian eigenvectors be

→
c1,

→
c2, ...,

→
cn are column-vectors of dimension n. Let

I be the unit matrix and J be the all-ones matrix.

Lemma 3 ([7]) The vector
→
j with all components are 1 is a Laplacian eigen-

vector of any order n graph corresponding to the eigenvalue of ϑn = 0.

According to the previous lemma
→
cn =

→
j can be choosen. Assume that for

i = 1, 2, ..., n − 1 the Laplacian eigenvectors
→
ci are orthogonal to

→
cn. For any

vector
→
c , the scalar product is

→
jt ·→c = ρ

(→
c
)
.

Lemma 4 ([7]) If G is a graph, then ρ
(→
ci

)
= 0 for any 1 ≤ i ≤ n− 1.

Now we give the relationship between the Seidel Laplacian and Laplacian
eigenvalues as follows.

Theorem 5 If
→
ci is a Laplacian eigenvector of the graph G, then

→
ci is a Seidel

Laplacian eigenvector of the graph G and ξLi = n − 2ϑi, for 1 ≤ i ≤ n − 1. If
i = n, then ξLi = ϑi = 0.

Proof. Clearly SL(G) = L (G
c) − L(G) = nI− J− 2L (G) . Thus from Lemma

4, we have

SL(G)
→
ci = [nI− J− 2L (G)]

→
ci

=nI
→
ci − J

→
ci − 2L(G)

→
ci

=n
→
ci − ρ

(→
ci

)→
j − 2ϑi

→
ci

=(n− 2ϑi)
→
ci.

(6)

From (6) obviously we have ξLi = n − 2ϑi for 1 ≤ i ≤ n − 1. If i = n, then
ξLi = ϑi = 0 see [1]. �
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Corollary 6 The following assertions hold for the Seidel Laplacian eigenval-
ues of G and Gc :

(i) ξLi = −n + 2ϑn−i, for 1 ≤ i ≤ n − 1 and ξLi = ϑi = ϑi = 0 for i = n,

where ξLi and ϑi are the Seidel Laplacian and Laplacian eigenvalues of
Gc, respectively.

(ii) The Seidel Laplacian eigenvalues of G and Gc can be given respectively
as

n− 2ϑ1, n− 2ϑ2, ..., n− 2ϑn−1, 0 (7)

− n+ 2ϑn−1,−n+ 2ϑn−2, ...,−n+ 2ϑ1, 0. (8)

Proof.

(i) Obviously for i = n, ϑi = ϑi = 0 and for 1 ≤ i ≤ n − 1, ϑi = n − ϑn−i.

From Theorem 5, ξLi = n − 2ϑi for 1 ≤ i ≤ n − 1, we also have ξLi =

n− 2ϑi = n− 2 (n− ϑn−i) = −n+ 2ϑn−i. For i = n, ξLi = ϑi = ϑi = 0.

(ii) The proof of (7) and (8) can be seen as a result of Theorem 5 and (i),
respectively.

�

Remark 7 ([2]) Let λ1 ≥ λ2 ≥ ... ≥ λn be the eigenvalues of a r-regular graph,
then λ1 = r and its Laplacian eigenvalues are

0, r− λ2, ..., r− λn,

and the Seidel eigenvalues are

n− 1− 2r,−1− 2λ2, ...,−1− 2λn. (9)

Corollary 8 If G is a r-regular graph, then the Seidel Laplacian eigenvalues
of G are

0, n− 2r+ 2λ2, ..., n− 2r+ 2λn. (10)

Proof. From Lemma 2, n − 1 − 2r − ξi are the Seidel Laplacian eigenvalues
of G and using (9) yields the result. �

We will determine the Seidel Laplacian spectrum of certain graphs by using
Theorem 5 and their Laplacian spectrum.
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Proposition 9 If Sn is a star, then the Seidel Laplacian spectrum of Sn is−n, 0, n− 2, ..., n− 2︸ ︷︷ ︸
n−2

 .

Proof. Laplacian spectrum of Sn is

n, 0, 1, ..., 1︸ ︷︷ ︸
n−2

. Then by using ξLi = n−

2ϑi, for 1 ≤ i ≤ n− 1 and ξLn = ϑn = 0, the proof can be seen. �

Proposition 10 If Cn is a cycle graph, then the Seidel Laplacian spectrum
of Cn is n− 4

(
1− cos 2πin

)
, i = 0, 1, ..., n− 1.

Proof. Laplacian spectrum of Cn is 2
(
1− cos 2πin

)
for i = 0, 1, ..., n − 1 (see

[19]). Using Theorem 5 completes the proof. �

Proposition 11 If Pn is a path graph, then the Seidel Laplacian spectrum of
Pn is n− 4

(
1− cos πin

)
, i = 0, 1, ..., n− 1.

Proof. Laplacian spectrum of Pn is 2
(
1− cos πin

)
for i = 0, 1, ..., n − 1 (see

[19]), using Theorem 5 yields the result. �

Proposition 12 If Km,n be a complete bipartite graph, then Seidel Laplacian
eigenvalues of Km,n are −(m + n), 0; n −m of multiplicity n − 1; m − n of
multiplicity m− 1.

Proof. Laplacian eigenvalues of Km,n are m + n, 0; m of multiplicity n − 1;
n of multiplicity m − 1. As Km,n has m + n vertices, then from Theorem 5
ξLi = m+ n− 2ϑi for 1 ≤ i ≤ m+ n− 1 and ξLm+n = ϑm+n = 0 . �

The friendship graph is formed by s triangles with a common vertex, which
has 2s+ 1 vertices and 3s edges.

Proposition 13 If Fs (s ≥ 1) is a friendship graph, then the Seidel Laplacian
spectrum of Fs is −(2s+ 1) , 0; 2s − 5 of multiplicity s; 2s − 1 of multiplicity
s− 1.

Proof. The friendship graph has Laplacian eigenvalues 2s + 1, 0; 3 of multi-
plicity s; 1 of multiplicity s− 1 (see [19]). The proof is clear from Theorem 5.
�
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Lemma 14 ([10]) If B is an irreducible non-negative matrix with spectral ra-
dius θ (B) and si (B) be the ith row sum of B, then

θ (B) ≤ max
1≤i≤n

si (B) .

Now we present an upper bound for ξL1 .

Theorem 15 Let G be an order n connected graph with maximum degree ∆.
Then

ξL1 ≤ 2∆.

Proof. Using the previous lemma we get

ξL1 ≤θ (|SL|)
≤max
1≤i≤n

si (|SL|)

= max
1≤i≤n

{|n− 1− 2di|+ n− 1}

If n−1 ≥ 2di, then si (|SL|) = 2 (n− 1− di) and if n−1 < 2di, then si (|SL|) =
2di. Therefore we have

ξL1 ≤2max
1≤i≤n

{di, n− 1− di}

≤2max
1≤i≤n

{∆,n− 1− δ} = 2∆,

where δ is the minimum degree. �

3 Bounds for Seidel Laplacian energy

Several bounds will be obtained for the Seidel Laplacian energy of graphs
via their Seidel Laplacian spectrum, mathematical inequalities and Ky Fan
theorem in this section. Now, we can begin with the following theorem which
states that the Seidel Laplacian energy and Seidel energy coincides for regular
graphs.

Theorem 16 If G is a r-regular graph of order n, then

En (SL (G)) = En(S (G)).
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Proof. We have X = n− 1− 2r and by Lemma 2, ξLi = n− 1− 2r− ξi which
yields

En (SL (G)) =

n∑
i=1

|n− 1− 2r− ξi − (n− 1− 2r)|

=En (S (G)) .

�

Theorem 17 ([12]) If G is a graph of order n with e edges, then

En (G) ≤
√
2en. (11)

Here, we can give two bounds for the Seidel Laplacian energy of regular graphs.

Theorem 18 If G is a r-regular graph of order n, then

En (SL (G)) ≤ |n− 1− 2r|+ n− 1− 2r+ 2En (G) . (12)

Proof. From (10) and as X = n− 1− 2r, we get

En (SL (G)) =

n∑
i=1

∣∣∣ξLi − (n− 1− 2r)
∣∣∣

= |n− 1− 2r|+

n∑
i=2

|n− 2r+ 2λi − (n− 1− 2r)|

≤ |n− 1− 2r|+

n∑
i=2

(2 |λi|+ 1)

= |n− 1− 2r|+ n− 1+ 2 (En(G) − |λ1|) .

The proof is clear by using λ1 = r. �

Corollary 19 If G is a r-regular graph of order n, then

En (SL (G)) ≤ |n− 1− 2r|+ n− 1− 2r+ 2n
√
r.

Proof. From (11), En (G) ≤ n
√
r. By using this fact in (12) yields the result.

�

Theorem 20 Let G be a graph of order n with e edges. Then

En (SL (G)) ≥
√
n(n− 1) + 4Zg−

16e2

n
.
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Proof. If we apply the Radon inequality [16], then

n∑
i=1

|ti| =

n∑
i=1

|ti|
2

|ti|
≥

n∑
i=1

|ti|
2

n∑
i=1

|ti|

.

Hence, from (2) and (4) the proof is clear. �

Theorem 21 Let G be a graph. Then

En (SL (G)) ≥ 2 |X| .

Proof. Clearly

En (SL (G)) = |t1|+

n∑
i=2

|ti|

≥ |t1|+

∣∣∣∣∣
n∑
i=2

ti

∣∣∣∣∣ .
From (3), |t1| =

∣∣∣∣− n∑
i=2

ti

∣∣∣∣ . Thus by (5)

En (SL (G)) ≥ 2 |t1| ≥ 2
∣∣∣∣n− 1−

4e

n

∣∣∣∣ ,
completes the proof. �

Theorem 22 If G is a graph with n vertices and e edges, then

En(SL(G)) ≥
2
(
n(n− 1) + 4Zg− 16e2

n

)
ξL1

.

Proof. Let (ai) , (bi) , i = 1, 2, ..., n be real numbers with
n∑
i=1

|ai| = 1 and

n∑
i=1

ai = 0. Then ∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ ≤ 12
(

max
1≤i≤n

bi − min
1≤i≤n

bi

)
(13)

holds ([13],p.346).
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Setting bi := ξ
L
i −X and ai =

ξLi −X
n∑

i=1
|ξLi −X|

satisfies the conditions for inequality

(13). Thus∣∣∣∣∣∣∣∣
n∑
i=1

(
ξLi − X

)2
n∑
i=1

∣∣ξLi − X∣∣
∣∣∣∣∣∣∣∣ ≤

1

2

(
max
1≤i≤n

(
ξLi − X

)
− min
1≤i≤n

(
ξLi − X

))
,

then, by (4)

n (n− 1) + 4Zg− 16e2

n

En (SL (G))
≤ 1
2

(
ξL1 − X− (0− X)

)
,

yields

En (SL (G)) ≥
2
(
n (n− 1) + 4Zg− 16e2

n

)
ξL1

.

�

Combining Theorem 15 with Theorem 22 results as follows.

Corollary 23 Let G be a connected graph. Then

En (SL (G)) ≥
n(n− 1) + 4Zg− 16e2

n

∆
.

Let H be a symmetric matrix, yi (H) be its eigenvalues and σi (H) be its
singular values, i = 1, 2, ..., n. Then σi (H) = |yi (H)| for i = 1, 2, ..., n. In [14],
the energy of a graph G is reconsidered as sum of the singular values of its
adjacency matrix A(G). This point of view has brought a new approach to the
graph energy theory and made the following theorem proved by Fan [4] to be
included in the graph energy theory.

Theorem 24 ([4]) If A,B and C are square matrices of order n, then

n∑
i=1

σi (A) ≤
n∑
i=1

σi (B) +

n∑
i=1

σi (C) ,

where A = B+ C.
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Theorem 25 Let G be a graph, then

En (SL (G)) ≤ En (S (G)) + 2

n∑
i=1

∣∣d− di
∣∣ , (14)

where d is the average degree of G.

Proof. From (1), we can write(
SL (G) −

n (n− 1) − 4e

n
I

)
= (−S(G)) +

(
Ds (G) −

n (n− 1) − 4e

n
I

)
.

Also,
(
Ds (G) −

n(n−1)−4e
n I

)
is a diagonal matrix with eigenvalues 4e

n − 2di

that is, 2
(
d− di

)
for i = 1, 2, ..., n where d= 2e

n . Then by (2) and applying
Theorem 24 satisfies the result. �

Corollary 26 If G is a graph of order n, then

En (SL(G)) ≤
√
n (n2 − n) + 2

n∑
i=1

∣∣d− di
∣∣ .

Proof. In [11], it is shown that En (S (G)) ≤
√
n (n2 − n). If we use this

bound in (14), then we get the result. �

Different bounds for En (SL(G)) can also be derived by using the bounds
for Seidel energy.

4 Seidel Laplacian energy of specific graphs

The Seidel Laplacian energy of certain graphs will be calculated here by using
their Seidel Laplacian spectrum.

Proposition 27 If Sn is a star with n (≥ 4) vertices, then En (SL (Sn)) =
6n+ 16

n − 20.

Proof. Star graph has n− 1 edges, thus X = n2−5n+4
n . From Proposition 9

En (SL (Sn)) =

∣∣∣∣−n−
n2 − 5n+ 4

n

∣∣∣∣+ ∣∣∣∣n2 − 5n+ 4

n

∣∣∣∣
+ (n− 2)

∣∣∣∣n− 2−
n2 − 5n+ 4

n

∣∣∣∣
=

∣∣∣∣5− (2n+
4

n

)∣∣∣∣+ ∣∣∣∣n+
4

n
− 5

∣∣∣∣+ (n− 2)

∣∣∣∣3− 4

n

∣∣∣∣ .
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Since 5−
(
2n+ 4

n

)
< 0, 3− 4

n > 0 and n+ 4
n − 5 ≥ 0 for n ≥ 4, we obtain

En (SL (Sn)) = − 5+ 2n+
4

n
+ n+

4

n
− 5+ (n− 2)

(
3−

4

n

)
=6n+

16

n
− 20.

�

Proposition 28 If Cn is the cycle graph with n vertices, then

En (SL (Cn)) =

n−1∑
i=0

∣∣∣∣1+ 4 cos
2πi

n

∣∣∣∣ .
Proof. From Proposition 10 and X = n− 5, we have

En (SL (Cn)) =

n−1∑
i=0

∣∣∣∣n− 4

(
1− cos

2πi

n

)
− (n− 5)

∣∣∣∣ = n−1∑
i=0

∣∣∣∣1+ 4 cos
2πi

n

∣∣∣∣ .
�

Proposition 29 If Pn is the path graph with n vertices, then

En (SL (Pn)) =

n−1∑
i=0

∣∣∣∣1+ 4(cos
πi

n

)
−
4

n

∣∣∣∣ .
Proof. From Proposition 11 and as X = n2−5n+4

n , we obtain

En (SL (Pn)) =

n−1∑
i=0

∣∣∣∣n− 4

(
1− cos

πi

n

)
−
n2 − 5n+ 4

n

∣∣∣∣
=

n−1∑
i=0

∣∣∣∣1+ 4(cos
πi

n

)
−
4

n

∣∣∣∣ .
�

Proposition 30 If Km,n (1 < n < m) is a complete bipartite graph, then

En (SL (Km,n)) =


4(m2n−n2m+n2)+2(m2−m−n−mn)

m+n , if X > 0
4(m2n−n2m)+2(n2+mn)

m+n , if X < 0
,
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where X = (m−n)2−(m+n)
m+n .

Proof. Km,n has m+n vertices, mn edges, then X = (m−n)2−(m+n)
m+n . Thus from

Proposition 12

En (SL (Km,n)) =

∣∣∣∣∣−(m+ n) −
(m− n)2 − (m+ n)

m+ n

∣∣∣∣∣
+ (n− 1)

∣∣∣∣∣n−m−
(m− n)2 − (m+ n)

m+ n

∣∣∣∣∣
+ (m− 1)

∣∣∣∣∣m− n−
(m− n)2 − (m+ n)

m+ n

∣∣∣∣∣
+

∣∣∣∣∣(m− n)2 − (m+ n)

m+ n

∣∣∣∣∣ .

(15)

Denote the terms in RHS of (15) as A1, A2, A3, A4, respectively. Then

A1 = (m+ n) +
(m− n)2 − (m+ n)

m+ n
=
2m2 + 2n2 −m− n

m+ n
,

as −(m+ n) − (m−n)2−(m+n)
m+n =

(m+n)−[(m−n)2+(m+n)2]
m+n < 0.

A2 =(n− 1)

[
−(m+ n) +

(
m2 − n2

)
+ (m− n)2

m+ n

]

=(n− 1)

(
2m2 − 2mn−m− n

m+ n

)
=
2m2n− 2n2m− 2m2 − n2 +mn+m+ n

m+ n
,

as n−m− (m−n)2−(m+n)
m+n =

m+n−[(m2−n2)+(m−n)2]
m+n < 0.

A3 =(m− 1)

(
m− n−

(m− n)2 − (m+ n)

m+ n

)

=(m− 1)

(
−2n2 + 2mn+m+ n

m+ n

)
=
−2n2m+ 2m2n+m2 + 2n2 −mn−m− n

m+ n
,
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as m− n− (m−n)2−(m+n)
m+n = m2−n2−(m−n)2+m+n

m+n = 2n(m−n)+m+n
m+n > 0. Now con-

siderA4 =
∣∣∣ (m−n)2−(m+n)

m+n

∣∣∣ = |X| .Obviously if X > 0, thenA4 =
m2−2mn+n2−m−n

m+n

and if X < 0, then A4 = −m2−2mn+n2−m−n
m+n . If we sum A1, A2, A3, A4 in case

X > 0, then

En (SL (Km,n)) =
4m2n− 4n2m+ 2m2 + 4n2 − 2m− 2n− 2mn

m+ n
.

Repeating above operations in case X < 0, we have

En (SL (Km,n)) =
4m2n− 4n2m+ 2n2 + 2mn

m+ n
.

�

Example 31 Let K4,3 be a complete bipartite graph. Then the Seidel Lapla-
cian eigenvalues of K4,3 are −7, 0; −1 of multiplicity 2; 1 of multiplicity 3.
Since X = 12−7

7 = −6
7 < 0, from Proposition 30 we have En (SL (Km,n)) =

4(m2n−n2m)+2(n2+mn)
m+n , thus En (SL (K4,3)) =

90
7 . Consider K5,2, then the Seidel

Laplacian eigenvalues of K5,2 are −7, 0; −3 of multiplicity 1; 3 of multiplicity
4. Since X = 32−7

7 = 2
7 > 0, from Proposition 30 we have En (SL (Km,n)) =

4(m2n−n2m+n2)+2(m2−m−n−mn)
m+n , then En (SL (K5,2)) =

152
7 .

Proposition 32 If Fs (s ≥ 3) is the friendship graph, then En (SL (Fs)) =
24s2−32s+21

2s+1 .

Proof. By Proposition 13 and as X = (2s+1)2s−12s
2s+1 = 4s2−10s

2s+1 , we have

En (SL (Fs)) =

2s+1∑
i=0

∣∣∣ξLi − X∣∣∣
=

∣∣∣∣−(2s+ 1) −
4s2 − 10s

2s+ 1

∣∣∣∣+ s ∣∣∣∣2s− 5− 4s2 − 10s

2s+ 1

∣∣∣∣
+ (s− 1)

∣∣∣∣2s− 1− 4s2 − 10s

2s+ 1

∣∣∣∣+ ∣∣∣∣4s2 − 10s2s+ 1

∣∣∣∣
=

1

2s+ 1

(∣∣∣8s2−6s+1∣∣∣+s |2s−5|+ (s−1) |10r−1|+
∣∣∣4s2−10s∣∣∣) .

(16)
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In RHS of (16), all of the expressions in absolute value are positive for s ≥ 3,
thus

En (SL (Fs)) =
1

2s+ 1

(
24s2 − 32s+ 2

)
.

�

Corollary 33 If G is the friendship graph with n vertices, then

En (SL (G)) =
6n2 − 28n+ 24

n
.

Proof. Setting s = n−1
2 in Proposition 32 yields the result. �
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Abstract. Suppose that the zero-divisor graph of a commutative semi-
group S, be a complete graph with an end vertex. In this paper, we
determine the structure of the annihilator graph S and we show that if
Z(S) = S, then the annihilator graph S is a disconnected graph.

1 Introduction

In this paper S is a commutative semigroup with zero whose operation is
written multiplicatively and Z(S) is the set of all zero-divisors of S also Z(S)∗ =
Z(S) \ {0}.

The zero-divisor graph of a commutative semigroup S with zero, is denoted
by Γ(S), is an undirected graph with vertex set Z(S)∗ and two distinct vertices
x and y are adjacent if and only if xy = 0. Γ(S) is a connected graph and the
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diameter of Γ(S) is less than or equal to three. For other results on zero divisor
graphs one can see [5, 6, 7, 8, 9, 10].

In [1], we introduced and studied the annihilator graph for a commutative
semigroup S, and showed it with AG(S). The graph AG(S) is an undirected
graph with vertex set Z(S)∗ and two distinct vertices x and y are adjacent if
and only if annS(xy) 6= annS(x) ∪ annS(y), where annS(x) = {s ∈ S | xs = 0}.
We proved that if Z(S) 6= S, then Γ(S) is a subgraph of AG(S), and so AG(S)
is connected. Also if Z(S) = S, then AG(S) may be connected or disconnected
and if there exists x ∈ S∗ = S \ {0} such that x is adjacent to all vertices in
Γ(S), then x is an isolated vertex in AG(S).

In [1, section 4 ] and in [2], we characterized all annihilator graphs with three
and four vertices. Also in [3], we studied the structure of the annihilator graph
of a commutative semigroup S whose Γ(S) is a refinement of a star graph.

A complete graph and a complete graph with an end vertex are one of the
graphs can be zero-divisor graph of a commutative semigroup.

In this paper, we study the annihilator graph associated with a commutative
semigroup with zero using the zero-divisor graph Γ(S), where Γ(S) is a complete
graph Kn with an end vertex u /∈ V(Kn) and u is only adjacent to z ∈ V( Kn).
Let m be the number of edges between u and V(Kn) in AG(S). We show that
the following four statements hold.

(i) Let u2 = 0. If Z(S) 6= S, then m ∈ {1, 2, 3, ....., n} and if Z(S) = S, then
m ∈ {0, 1, 2, 3, ....., n− 1}.

(ii) Let u2 = z. If Z(S) 6= S, then m = n and so u is adjacent to all vertices
of V(Kn) in AG(S) and if Z(S) = S, then m = n−1 and u is not adjacent
to z in AG(S).

(iii) Let u2 = u. If Z(S) 6= S, then m ∈ {1, 2, 3, ....., n − 1} and if Z(S) = S,
then m ∈ {0, 1, 2, 3, ....., n−2} and so there is at least one vertex of V(Kn)
that u is not adjacent to it in AG(S).

(iv) Let u2 = b /∈ {0, z, u}. If Z(S) 6= S, then m ∈ {n− 1, n} and so there is at
most one vertex (u2 = b) of V(Kn) that u is not adjacent to it in AG(S).
Also if Z(S) = S, then m ∈ {n − 1, n − 2} and u is not adjacent to z in
AG(S).
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2 Preliminaries

In this section, we recall some definitions and notations of graphs and we use
the standard terminology of graphs is contained in [4]. Here, G is a graph with
vertex set V(G) and edge set E(G). If a is adjacent to b in G, then the edge
between a and b will denote by {ab} and we write a ∼ b .

The distance between two distinct vertices x and y is the length of the
shortest path connecting x and y and will denote by d(x, y), if such a path
exists; otherwise, we use d(x, y) := ∞. Also diam(G) = sup{d(x, y) : x and y
are distinct vertices of G} is the diameter of the graph G.

The girth of G, denoted by gr(G), is the length of the shortest cycle in G. If
there exists a path between any two distinct vertices of G, we say that graph
G is a connected graph, and if for each two vertices x and y of V(G) we have
x is adjacent to y, we say that G is a complete graph and Kn is the complete
graph with n vertices. If no two vertices of G are adjacent, we say that G is a
totally disconnected graph and nK1 is the totally disconnected graph with n
vertices.

We say that u is an end vertex in G, If u is adjacent to only one vertex of
G and if for each vertex x ∈ V(G) we have u is not adjacent to x, then we say
that u is an isolated vertex in G.

Suppose that H and G are two graphs. We use the notation G ≤ H to denote
that G is a subgraph of H and if H is isomorphic to G, we write H ∼= G. Let
G be a graph. G \ {{x1y1}, {x2y2}, {x3y3}, ..., {xnyn}} is a graph such that edges
{x1y1}, {x2y2}, {x3y3}, ..., {xnyn} are deleted.
Pn is the path of length n and Cn is the cycle of length n.
mKn is a graph with m components such that each component is isomorphic
to Kn. G ∪ H, the union of the graphs G and H, is a graph with vertex set
V(G) ∪ V(H) and edge set E(H) ∪ E(G).

Now, we recall some results which we are used in the next section.

Theorem 1 [1] If Z(S) 6= S, then we have Γ(S) ≤ AG(S).

Theorem 2 [1] Let Z(S) = S and there exists x ∈ S∗ such that, for each non
zero element y 6= x of S, we have xy = 0. Then x is an isolated vertex in
AG(S).

Lemma 3 [2] If Z(S) 6= S and Γ(S) ∼= P3, then AG(S) ∼= C4.

Lemma 4 [2] Let Z(S) 6= S. Then AG(S) ∼= C4 if and only if we either have
Γ(S) ∼= P3 or Γ(S) ∼= C4.
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Lemma 5 [2] Let Z(S) = S. Then AG(S) ∼= P3 with x ∼ w ∼ z ∼ y if and only
if Γ(S) ∼= P3 with w ∼ x ∼ y ∼ z.

Lemma 6 [2] Let S be a commutative semigroup with Z(S) 6= S, and let Γ(S) ∼=
K3 + {wx} with wx = xy = yz = zx = 0. Then AG(S) ∼= K4 \ {wy} if and only
if the relations between the zero-divisors of S satisfies in one of the following
four conditions.

(i) wy = y, wz = x, w2 = y2 = y, x2 = 0, and z2 ∈ {0, x}.

(ii) wy = wz = x, w2 = y2 = x2 = 0, and z2 = x.

(iii) wy = y = wz, w2 = w, z2 = x, and y2 = x2 = 0.

Lemma 7 [2] Let S be a commutative semigroup with Z(S) 6= S, and let Γ(S) ∼=
K3 + {wx} with wx = xy = yz = zx = 0. Then AG(S) ∼= K4 if and only if the
relations between the zero-divisors of S satisfies in one of the following eleven
conditions.

(i) wx = xy = yz = zx = 0, wy = x, wz = y, y2 = x2 = 0, w2 = z and
z2 = x.

(ii) wx = xy = yz = zx = 0, wy = z, wz = x, w2 = y, y2 = x and
z2 = x2 = 0.

(iii) wx = xy = yz = zx = 0, wy = wz = x, x2 = 0 and one of the following
nine cases holds.

(1) w2 = 0, y2 = x and z2 = x.

(2) w2 = y, y2 = 0 and z2 ∈ {0, x}.

(3) w2 = z, z2 = 0 and y2 ∈ {0, x}.

(4) w2 = x, y2 = 0 and z2 ∈ {0, x}.

(5) w2 = x, y2 = x and z2 ∈ {0, x}.

Lemma 8 [2] Let S be a commutative semigroup with Z(S) 6= S, and let Γ(S) ∼=
K3 + {wx} with wx = xy = yz = zx = 0. Then AG(S) ∼= K3 + {wx} with
w ∼ x ∼ y ∼ z ∼ x if and only if the relations between the zero-divisors of S
satisfies in one of the following nineteen conditions.

(i) wx = xy = yz = zx = 0, wy = y = wz, z2 = y2 = 0, w2 = w and
x2 ∈ {0, x}.
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(ii) wx = xy = yz = zx = 0, wz = wy = x and w2 = y2 = z2 = x2 = 0.

(iii) wx = xy = yz = zx = 0, wz = z = wy, w2 = w, y2 = z2 = 0 and
x2 ∈ {0, x}.

(iv) wx = xy = yz = zx = 0, wz = y, wy = z, w2 = w, y2 = z2 = 0 and
x2 ∈ {0, x}.

(v) wx = xy = yz = zx = 0, wy = y, wz = z, w2 = w and we have the
following twelve situations.

(1) y2 = 0, z2 = 0 and x2 ∈ {0, x}.

(2) y2 = 0, z2 = z and x2 ∈ {0, x}.

(3) y2 = 0, z2 = y and x2 ∈ {0, x}.

(4) y2 = y, z2 = 0 and x2 ∈ {0, x}.

(5) y2 = y, z2 = z and x2 ∈ {0, x}.

(6) y2 = z, z2 = 0 and x2 ∈ {0, x}.

Lemma 9 [2] Let S be a commutative semigroup with Z(S) = S, and let Γ(S) ∼=
K3+ {wx} with wx = xy = yz = zx = 0. Then AG(S) ∼= 2K1 ∪K2, where x and
w are isolated vertices and z is adjacent to y, if and only if the semigroup S
satisfies in one of the nineteen conditions of Lemma (8).

Lemma 10 [2] Let S be a commutative semigroup with Z(S) = S. Then
AG(S) ∼= K1,2 ∪ K1, where x is an isolated vertex and the vertices y, z,
w form a star graph with center z, if and only if Γ(S) ∼= K3 + {wx} with
wx = xy = yz = zx = 0, and the semigroup S satisfies in one of the four
conditions of Lemma (6).

Lemma 11 [2] Let S be a commutative semigroup with Z(S) = S, and let
Γ(S) ∼= K3+ {wx} with wx = xy = yz = zx = 0. Then AG(S) ∼= K3 ∪K1, where
x is an isolated vertex and the vertices w, z, y form a triangle if and only if
the semigroup S satisfies in one of the eleven conditions of Lemma (7).

Suppose that G is a complete graph Kn with an end vertex u that u is
adjacent to z ∈ V(Kn) and n = 1. Then Γ(S) ∼= K2. Now if Z(S) = S, then
clearly AG(S) ∼= 2K1, and if Z(S) 6= S, then AG(S) ∼= Γ(S) ∼= K2.

Let n = 2. We have Γ(S) ∼= K1,2 = P2 with u ∼ z ∼ x. In [1], we show that,
if Z(S) = S, then AG(S) ∼= 3K1 or AG(S) ∼= K1 ∪ K2, and if Z(S) 6= S, then
AG(S) ∼= K1,2 or AG(S) ∼= K3 .
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Morover assume that complete graph K2 has two end vertices u1 and u2
adjacent to z1 and z2. Then Γ(S) ∼= P3 with u1 ∼ z1 ∼ z2 ∼ u2. Now by lemma
5, if Z(S) = S, then AG(S) ∼= P3 with z1 ∼ u1 ∼ u2 ∼ z2 such that z1 and z2 are
two end vertices in AG(S), and by lemma 3, if Z(S) 6= S, then AG(S) ∼= C4.

3 Properties of AG(S)

In this section, we assume that |Z(S)∗| ≥ 4 and Kn is a complete graph with
at least three vertices and z ∈ V( Kn) and u /∈ V(Kn). we add to Kn an end
vertex u, which is adjacent to a unique vertex z of V(Kn) and denote it by
Γ(S) ∼= Kn + {uz} and so Γ(S) ∼= Kn + {uz} is the graph of a commutative
semigroup such that Z(S) = V(Kn) ∪ {0} ∪ {u}. Thus for each two distinct
vertices x and y inV(Kn), we have xy = zu = 0 and xu 6= 0 and Since z is a
cut vertex in Γ(S), thus {0, z} is an ideal of S and so z2 = 0 or z2 = z.

In following, we distinguish the structure of the annihilator graph a com-
mutative semigroup whose Γ(S) ∼= Kn + {uz}, for cases u2 = 0 or u2 = z or
u2 = u or u2 6= 0, z, u.

The following lemma show that if Γ(S) is a complete graph Kn with an end
vertex u, then for all x, y ∈ V(Kn) \ {z} always, x is adjacent to y in AG(S).

Lemma 12 Suppose that Γ(S) is a complete graph Kn with an end vertex u.
Then for all x, y ∈ V(Kn) \ {z}, we have x is adjacent to y in AG(S).

Proof. Since Γ(S) ∼= Kn + {uz} and x, y ∈ V(Kn) \ {z}, we have xy = 0 and so
annS(xy) = S. since u is an end vertex adjacent to only z in Γ(S) thus ux 6= 0
and uy 6= 0 so u /∈ annS(x)∪ annS(y) which follows that annS(x)∪ annS(y) 6=
annS(xy). Therefore x is adjacent to y in AG(S). �

Lemma 13 Suppose that Γ(S) is a complete graph Kn with an end vertex u.
Then the following statements hold.

(i) If Z(S) 6= S, then AG(S) is a connected graph and u is adjacent to z in
AG(S).

(ii) If Z(S) = S, then AG(S) is a disconnected graph and z is an isolated
vertex in AG(S).

Proof. (i) Since Z(S) 6= S by theorem 1, we have Γ(S) ≤ AG(S). Since Γ(S) is a
connected graph and z is adjacent to u in Γ(S), we have AG(S) is a connected
graph and u is adjacent to z in AG(S).
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(ii) Since z is adjacent to all vertices in Γ(S) and Z(S) = S by theorem 2, z
is an isolated vertex in AG(S) and so AG(S) is a disconnected graph. �

Let Γ(S) ∼= Kn+ {uz}. By lemma 12 and lemma 13, to study the graph AG(S),
it is sufficient to examine the edges between u and x, for all x ∈ V(Kn) \ {z}.

Proposition 14 Suppose that Γ(S) is a complete graph Kn with an end vertex
u. Also assume that u2 = 0 and x, y ∈ V(Kn) \ {z}. Then ux = z, z2 = 0 and
x2 = 0 or x2 = z.

Proof. Since u is not adjacent to x in Γ(S), we have ux 6= 0. If ux = u, then
uy = (ux)y = u(xy) = 0, which is impossible and so ux 6= u. Now let ux = y.
We have uy = u(ux) = u2x = 0 which is again impossible. Since Z(S) =
V(Kn) ∪ {0} ∪ {u}, we have ux = z and so z2 = (ux)z = u(xz) = 0. Finally,
since ux = z, we have ux2 = (ux)x = zx = 0 and so x2 ∈ annS(u) = {0, u, z}.
If x2 = u, then uy = x2y = x(xy) = 0, which is impossible. Therefore x2 = 0
or x2 = z. �

Let u2 = 0. The following lemma states which vertices of V(Kn) \ {z} are
connected to the end vertex u in AG(S)

Lemma 15 Suppose that Γ(S) is a complete graph Kn with an end vertex u.
Also assume that u2 = 0 and x, y ∈ V(Kn)\ {z}. Then the following statements
hold.

(i) u is adjacent to x in AG(S) if and only if x2 = z.

(ii) u is not adjacent to x in AG(S) if and only if x2 = 0.

Proof. (i) By proposition 14, we have u2 = z2 = uz = 0, ux = z and x2 = 0

or x2 = z.
First suppose that x2 = z. Then x /∈ annS(x). Since ux = z so x /∈ annS(u)

and since zx = 0, we have x ∈ annS(z) = annS(ux). Thus annS(x)∪annS(u) 6=
annS(ux). Therefore x is adjacent to u in AG(S).

Conversely, assume that u is adjacent to x in AG(S) and x2 = 0. Then
annS(x) = V(Kn). Also annS(u) = {0, u, z} hence annS(x) ∪ annS(u) = Z(S) =
annS(z) = annS(ux). Thus u is not adjacent to x in AG(S) which is impossible.
Therefore x2 6= 0 and by proposition 14, x2 = z.

(ii) It is clear. �

By the above lemma, we have the following theorem.

Theorem 16 Suppose that Γ(S) is a complete graph Kn with an end vertex u
and u2 = 0. Also assume that Z(S) 6= S and V(Kn) = {x1, x2, x3, ., ., ., xn−1, z}.
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Then AG(S) ∼= Kn+1 \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxm}} if and only if for all
0 ≤ i ≤ m and m+ 1 ≤ j ≤ n− 1, we have xi

2 = 0 and xj
2 = z.

Proof. First suppose that AG(S) ∼= Kn+1 \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxm}}.
Then for all 0 ≤ i ≤ m, we have u is not adjacent to xi in AG(S) and for all
m+ 1 ≤ j ≤ n− 1, we have u is adjacent to xj in AG(S). By lemma 15, for all
0 ≤ i ≤ m and m+ 1 ≤ j ≤ n− 1, we have xi

2 = 0 and xj
2 = z.

Conversely, Since Z(S) 6= S by theorem 1, we have Γ(S) ≤ AG(S) and
by lemma 15, for all 0 ≤ i ≤ m and m + 1 ≤ j ≤ n − 1, we have u is
not adjacent to xi in AG(S) and u is adjacent to xj in AG(S). Therefore
AG(S) ∼= Kn+1 \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxm}}. �

If m = 0 or m = 1 or m = n− 1, we have the following corollary.

Corollary 17 Suppose that Γ(S) is a complete graph Kn with an end vertex u
and u2 = 0. Also assume that Z(S) 6= S and V(Kn) = {x1, x2, x3, ., ., ., xn−1, z}.
Then the following statements hold.

(i) AG(S) ∼= Kn+1 if and only if for all 1 ≤ i ≤ n− 1, we have xi
2 = z.

(ii) AG(S) ∼= Kn+1 \ {{ux1}} if and only if x1
2 = 0 and for all 2 ≤ i ≤ n − 1,

we have xi
2 = z.

(iii) AG(S) ∼= Kn + {uz} if and only if for all 1 ≤ i ≤ n− 1, we have xi
2 = 0.

The next corollary follows from theorem 16.

Corollary 18 Suppose that Γ(S) is a complete graph Kn with an end vertex
u and u2 = 0. Also assume that V(Kn) = {x1, x2, x3, ., ., ., xn−1, z}. Then the
following statements hold.

(i) If Z(S) 6= S, then AG(S) can be one of the graphs: Kn+1 or Kn+1 \ {{ux1}}
or Kn+1 \ {{ux1}, {ux2}} or Kn+1 \ {{ux1}, {ux2}, {ux3}} or ..... or Kn+1 \
{{ux1}, {ux2}, {ux3}, ., ., ., {uxn−1}} = Kn + {uz}

(ii) If Z(S) = S, then AG(S) can be one of the graphs: K1 ∪ Kn or K1 ∪
Kn \ {{ux1}} or K1 ∪Kn \ {{ux1}, {ux2}} or K1 ∪Kn \ {{ux1}, {ux2}, {ux3}} or
.......or K1 ∪ Kn \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxn−1}} = 2K1 ∪ Kn−1 with u
and z are two isolated vertices.

Proof. If Z(S) 6= S, by theorem 1, then Γ(S) ≤ AG(S) and if Z(S) = S, by
theorem 2, then z is an isolated vertex in AG(S). Now by theorem 16, the
results hold. �
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Example 19 Suppose that Γ(S) is a complete graph K3 with an end vertex u
and u2 = 0. Also assume that V(K3) = {x, y, z}. Then xy = xz = yz = uz = 0
and we have ux = uy = z and z2 = 0. Moreover we have one of the following
three statements.

(i) x2 = 0 and y2 = z or x2 = z and y2 = 0. In this case if Z(S) 6= S, by
lemma 6, we have AG(S) ∼= K4 \ {{ux}} or AG(S) ∼= K4 \ {{uy}} and if
Z(S) = S, by lemma 10, we have AG(S) ∼= K1 ∪ K3 \ {{ux}} or AG(S) ∼=
K1 ∪ K3 \ {{uy}}.

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

(ii) x2 = z and y2 = z. In this case if Z(S) 6= S, by lemma 7, we have
AG(S) ∼= K4 and if Z(S) = S, by lemma 11, we have AG(S) ∼= K1 ∪ K3.

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

(iii) x2 = y2 = 0. In this case if Z(S) 6= S, by lemma 8, we have AG(S) ∼=
K4 \ {{ux}, {uy}} = K3 + {uz} and if Z(S) = S, by lemma 9, we have
AG(S) ∼= 2K1∪K2 such that u and z are two isolated vertices in AG(S).

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

In the following we study the case of u2 = z and we show that u is adjacent
to x, for all x ∈ V(Kn) \ {z}.
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Proposition 20 Suppose that Γ(S) is a complete graph Kn with an end vertex
u. Also assume that u2 = z and x, y ∈ V(Kn) \ {z}. Then ux = z, z2 = 0 and
x2 = 0 or x2 = z.

Proof. Since u2 = z, we have z2 = u2z = u(uz) = u0 = 0 and since u is not
adjacent to x in Γ(S), we have ux 6= 0. If ux = u, then uy = (ux)y = u(xy) = 0
and if for all y ∈ V(Kn)\{z}, we have ux = y, then uy = u(ux) = u2x = zx = 0
which are impossible. Thus ux /∈ {0, u} ∪V(Kn) \ {z}. Therefore ux = z. Since
ux = z, we have ux2 = (ux)x = zx = 0 and so x2 ∈ annS(u) = {0, z}.

�

Lemma 21 Suppose that Γ(S) is a complete graph Kn with an end vertex u.
Also assume that u2 = z and x ∈ V(Kn) \ {z}. Then u is adjacent to x in
AG(S).

Proof. By proposition 20, we have z2 = uz = 0, ux = z and x2 = 0 or x2 = z.
Since z2 = uz = 0, we have annS(z) = Z(S). On the other hand, since u2 = z
and ux = z, so u /∈ annS(x)∪ annS(u) which follows that annS(x)∪ annS(u) 6=
Z(S) = annS(z) = annS(ux). Therefore x is adjacent to u in AG(S). �

By the above lemma, we have the following theorem.

Theorem 22 Suppose that Γ(S) is a complete graph Kn with an end vertex u
and u2 = z. Then the following two statements hold.

(i) If Z(S) 6= S, then AG(S) ∼= Kn+1.

(ii) If Z(S) = S, then AG(S) ∼= K1 ∪ Kn.

Proof. (i) Since Z(S) 6= S by theorem 1, we have Γ(S) ≤ AG(S). By lemma 21,
for all x ∈ V(Kn) \ {z}, we have u is adjacent to x in AG(S). Also by lemmas
12 and 13, for all x, y ∈ V(Kn), we have x is adjacent to y in AG(S). Therefore
AG(S) ∼= Kn+1.

(ii) Sincs Z(S) = S by theorem 2, we have z is an isolated vertex in AG(S).
Now by lemmas 12, 13, 21, we have AG(S) ∼= K1 ∪ Kn. �

Example 23 Suppose that Γ(S) is a complete graph K3 with an end vertex u
and u2 = z. Also assume that V(K3) = {x, y, z}. Then xy = xz = yz = uz = 0
and we have ux = uy = z and z2 = 0. Moreover we have one of the following
three statements.

(i) x2 = 0 and y2 = z or x2 = z and y2 = 0.
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(ii) x2 = y2 = z.

(iii) x2 = y2 = 0.

In three cases if Z(S) 6= S, by lemma 7, we have AG(S) ∼= K4 and if
Z(S) = S, by ,lemma 11, we have AG(S) ∼= K1 ∪ K3

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

In the following we study the case of u2 = u and we show that there is at
least one vertex y ∈ V(Kn) such that u is not adjacent to y in AG(S) and so
in this case AG(S) is not a complete graph.

Proposition 24 Suppose that Γ(S) is a complete graph Kn with an end vertex
u. Also assume that u2 = u and x, y are two distincet vertices in V(Kn) \ {z}.
Then z2 = 0 or z2 = z. and ux ∈ Z(S) \ {0, z, u} = V(Kn) \ {z}. Also we have
the following two statements.

(i) If ux = x, then x2 = 0 or x2 = x or x2 = y and uy = y.

(ii) If ux = y, then uy = y and y2 = 0 and also x2 = 0 or x2 = z.

Proof. Since u is not adjacent to x in Γ(S), we have ux 6= 0. If ux = z, then
z = ux = u2x = u(ux) = uz = 0 this is impossible and if ux = u, then
uy = (ux)y = u(xy) = 0 which is again impossible. So ux /∈ {0, z, u} and thus
ux ∈ Z(S) \ {0, z, u} = V(Kn) \ {z}.

(i) Also suppose that ux = x. Then ux2 = x2. If x2 = z, then z = uz = 0

and if x2 = u, then uy = x2y = x(xy) = 0 which are impossible. So x2 /∈ {z, u}

and thus x2 ∈ Z(S)\ {z, u} = V(Kn)\ {z}. Therefore x2 = 0 or x2 = x or x2 = y.
Also if x2 = y, then uy = ux2 = (ux)x = x2 = y.

(ii) Now assume that ux = y. Then y2 = (ux)y = u(xy) = 0 and uy =
u(ux) = u2x = ux = y. Since ux2 = (ux)x = yx = 0, we have x2 ∈ annS(u) =
{0, z} and thus x2 = 0 or x2 = z. �

Let u2 = u. The following lemma states which vertices of V(Kn) \ {z} are
connected to the end vertex u in AG(S).
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Lemma 25 Suppose that Γ(S) is a complete graph Kn with an end vertex u.
Also assume that u2 = u and x, y ∈ V(Kn) \ {z}. Then the following two
statements hold.

(i) u is adjacent to x in AG(S) if and only if ux = y and x2 = z.

(ii) u is not adjacent to x in AG(S) if and only if ux = x or ux = y and
x2 = 0. Moreover if ux = y, then in both cases x2 = z, and x2 = 0 we
have u is not adjacent to y in AG(S).

Proof.
(i) First suppose that u is adjacent to x in AG(S). Then ux 6= x and by

proposition 24, ux = y and y2 = 0 and x2 = 0 or x2 = z. If x2 = 0, then
annS(x) ∪ annS(u) = V(Kn) ∪ {0, z} = V(Kn) ∪ {0} = annS(y) = annS(ux) and
so u is not adjacent to x in AG(S) this is impossible. Therefore x2 6= 0 and so
x2 = z.

Conversely, assum that ux = y and x2 = z. Then x /∈ annS(x) ∪ annS(u)
and x ∈ annS(y) and so u is adjacent to x in AG(S).

(ii) First suppose that u is not adjacent to x in Γ(S) and ux 6= x. Then by
proposition 24, we have ux = y, y2 = 0 and also x2 = 0 or x2 = z. If x2 = z,
then u is adjacent to x in AG(S) this is impossible. Therefore x2 = 0.

Conversely, if ux = x, then u is not adjacent to x in AG(S). Now assume
that ux 6= x. Then by proposition 24, we have ux = y, y2 = 0 and since
x2 = 0, we have annS(x) = annS(y) = annS(ux) and so u is not adjacent to x
in AG(S).

Moreover if ux = y, then uy = u(ux) = u2x = ux = y and so u is not
adjacent to y in AG(S). �

By proposition 24, for all x ∈ V(Kn) \ {z}, we have ux ∈ Z(S) \ {0, z, u} =
V(Kn) \ {z} and ux = x or there is y ∈ V(Kn) \ {z, x} that ux = y and uy = y.
So u is not adjacent to x in AG(S) or u is not adjacent to y in AG(S). Therefore
there is at least one vertex x ∈ V(Kn) \ {z} that is not adjacent to u in AG(S)
and thus AG(S) is not a commplete graph.

Corollary 26 Suppose that Γ(S) is a complete graph Kn with an end vertex
u. Also assume that u2 = u. Then AG(S) is not a complete graph.

Theorem 27 Suppose that Γ(S) is a complete graph Kn with an end vertex u
and u2 = u. Also assume that Z(S) 6= S and V(Kn) = {x1, x2, x3, ., ., ., xn−1, z}.
Then AG(S) ∼= Kn+1 \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxm}} if and only if for all
1 ≤ i ≤ m and m+ 1 ≤ j ≤ n− 1, we have the following two statements.
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(i) either uxi = xi or uxi = xt and 1 ≤ t ≤ m also xi
2 = 0.

(ii) uxj = xi and xj
2 = z

Proof. (i) First suppose that AG(S) ∼= Kn+1 \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxm}}.
Then u is not adjacent to xi in AG(S) and by lemma 25 for all 1 ≤ i ≤ m, we
have uxi = xi or uxi = xt and xi

2 = 0. Moreover if uxi = xt, then uxt = xt
and so u is not adjacent to xt in AG(S). Thus 1 ≤ t ≤ m.

(ii)Since u is adjacent to xj in AG(S) by lemma 25 for all m+1 ≤ j ≤ n−1,
we have uxj = xt and xj

2 = z. Also if uxj = xt, then uxt = xt and so u is not
adjacent to xt in AG(S). Thus 1 ≤ t ≤ m. Therefore uxj = xi.

Conversely, by lemma 25, if statement (i) holds, then for all 1 ≤ i ≤ m,
we have u is not adjacent to xi in AG(S) and if statement (ii) holds, then
for all m + 1 ≤ j ≤ n − 1, we have u is adjacent to xj in AG(S) and so
AG(S) ∼= Kn+1 \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxm}}. �

In the above theorem, since AG(S) is not a commplete graph so m 6= 0. If
m = 1 or m = n− 1, then we have the following corollary.

Corollary 28 Suppose that Γ(S) is a complete graph Kn with an end vertex u
and u2 = u. Also assume that Z(S) 6= S and V(Kn) = {x1, x2, x3, ., ., ., xn−1, z}.
Then the following statements hold.

(i) AG(S) ∼= Kn+1 \ {{ux1}} if and only if ux1 = x1 and for all 2 ≤ i ≤ n− 1,
we have uxi = x1 and x1

2 = 0 and xi
2 = z.

(ii) AG(S) ∼= Kn + {uz} if and only if for all 1 ≤ i, j ≤ n − 1, we have if
uxi 6= xi, then uxi = xj and xi

2 = xj
2 = 0.

The next corollary follows from theorem 27.

Corollary 29 Suppose that Γ(S) is a complete graph Kn with an end vertex
u and u2 = u. Also assume that V(Kn) = {x1, x2, x3, ., ., ., xn−1, z}. Then the
following statements hold.

(i) If Z(S) 6= S, then AG(S) can be one of the graphs: Kn+1 \ {{ux1}} or
Kn+1 \ {{ux1}, {ux2}} or Kn+1 \ {{ux1}, {ux2}, {ux3}} or,...... ,or Kn+1 \

{{ux1}, {ux2}, {ux3}, ., ., ., {uxn−1}}.

(ii) If Z(S) = S, then AG(S) can be one of the graphs: K1 ∪ Kn \ {{ux1}}

or K1 ∪ Kn \ {{ux1}, {ux2}} or K1 ∪ Kn \ {{ux1}, {ux2}, {ux3}} or,......,or
K1∪Kn \ {{ux1}, {ux2}, {ux3}, ., ., ., {uxn−1}} = 2K1∪Kn−1 with u and z are
two isolated vertices.
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Proof. By corollary 26, AG(S) is not a complete graph. If Z(S) 6= S by theorem
1, we have Γ(S) ≤ AG(S) and if Z(S) = S by theorem 2, we have z is an isolated
vertex in AG(S). Now by theorem 27, the results hold. �

Example 30 Suppose that Γ(S) is a complete graph K3 with an end vertex u
and u2 = u. Also assume that V(K3) = {x, y, z}. Then xy = xz = yz = uz = 0
and z2 = 0 or z2 = z. Moreover we have one of the following three statements.

(i) ux = y = uy, x2 = z, y2 = z2 = 0 or ux = x = uy, y2 = z and
x2 = z2 = 0,. In this case if Z(S) 6= S, by lemma 6, we have AG(S) ∼=
K4 \{{uy}} or AG(S) ∼= K4 \{{ux}} and if Z(S) = S, by lemma 10, we have
AG(S) ∼= K1 ∪ K3 \ {{uy}} or AG(S) ∼= K1 ∪ K3 \ {{ux}}.

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

(ii) z2 ∈ {0, z} and ux = y = uy, x2 = y2 = 0, or ux = x = uy, x2 = y2 = 0
or ux = y, uy = x, x2 = y2 = 0. In this case if Z(S) 6= S, by lemma 8,
we have AG(S) ∼= K4 \ {{ux}, {uy}} = K3+ {uz} and if Z(S) = S, by lemma
9, we have AG(S) ∼= 2K1 ∪K2 such that u and z are two isolated vertices
in AG(S).

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

(iii) z2 ∈ {0, z} and ux = x, uy = y and we have the following six cases.

(1) y2 = 0, and x2 ∈ {0, x, y}.

(2) y2 = y,and x2 ∈ {0, x}.

(3) y2 = x, and x2 = 0.
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In this case if Z(S) 6= S, by lemma 8, we have AG(S) ∼= K4\{{ux}, {uy}} =
K3 + {uz} and if Z(S) = S, by lemma 9, we have AG(S) ∼= 2K1 ∪ K2 such
that u and z are two isolated vertices in AG(S).

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

Finally, we study the case of u2 /∈ {0, z, u} and so u2 = b ∈ V(Kn) \ {z}. we
show that u is adjacent to all vertices y ∈ V(Kn) \ {z, b} in AG(S) and u is
adjacent to b in AG(S) if and only if ub 6= b.

Proposition 31 Suppose that Γ(S) is a complete graph Kn with an end vertex
u. Also assume that u2 = b /∈ {0, z, u}. Then u2 = b ∈ V(Kn)\{z} and we have
the following two statements.

(i) For all x ∈ Z(S) \ {0, z, u, b}, we have ux = z, z2 = 0 and x2 = 0 or
x2 = z.

(ii) ub = b and b2 = b, or ub = z and b2 = 0 or ub = y ∈ Z(S) \ {0, z, u, b}
and b2 = z, y2 = 0.

Proof. (i) Suppose that u2 = b. For all x ∈ Z(S) \ {0, z, u, b}, since u is not
adjacent to x in Γ(S), we have ux 6= 0. If ux = u, then ub = (ux)b = u(xb) = 0
which is impossible. For all y ∈ V(Kn) \ {z}, if ux = y, then uy = u(ux) =
u2x = bx = 0 which is again impossible and so ux /∈ {0, u} ∪ V(Kn) \ {z}.
Therefore ux = z and z2 = (ux)z = u(xz) = 0.

Since ux = z, we have ux2 = (ux)x = zx = 0 and so x2 ∈ annS(u) = {0, u}.
Therefore x2 = 0 or x2 = z.

(ii) Clearly ub 6= 0 and ub 6= u so ub ∈ V(Kn) and thus ub = b or ub = z or
ub = y ∈ V(Kn)\{z, b}. Since u2 = b, if ub = b, then u3 = uu2 = ub = b = u2

and so u4 = u3 = u2. Thus b2 = u4 = u3 = u2 = b and if ub = z we have
b2 = bb = u2b = u(ub) = uz = 0.

Now assume that ub = y ∈ Z(S)\{0, z, u, b}. Then y2 = (ub)y = u(by) = 0.
Since uy = z, we have b2 = bb = u2b = u(ub) = uy = z. �

Lemma 32 Suppose that Γ(S) is a complete graph Kn with an end vertex u.
Also assume that u2 = b ∈ V(Kn) \ {z} and x ∈ V(Kn) \ {z, b}. Then u is
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adjacent to x in AG(S). Moreover u is adjacent to b in AG(S) if and only if
ub 6= b.

Proof. By proposition 31, For all x ∈ V(Kn) \ {z, b}, we have ux = z. Since
u2 = b so u /∈ annS(x) ∪ annS(u) and u ∈ annS(z) = annS(ux). Thus u is
adjacent to x in AG(S).

Moreover if u is adjacent to b in AG(S), then ub 6= b.
Conversely assume that ub 6= b. By proposition 31, we have ub = z and

b2 = 0 or ub = y ∈ Z(S) \ {0, z, u, b} and b2 = z, y2 = 0.
If ub = z and b2 = 0, then u /∈ annS(b) ∪ annS(u) and u ∈ annS(z) =

annS(ub). Thus u is adjacent to b in AG(S). Also if ub = y ∈ Z(S)\{0, z, u, b}
and b2 = z, y2 = 0, then b /∈ annS(b)∪annS(u) and b ∈ annS(y) = annS(ub).
Therefore u is adjacent to b in AG(S). �

Corollary 33 Suppose that Γ(S) is a complete graph Kn with an end vertex
u. Also assume that u2 = b ∈ V(Kn) \ {z} and Z(S) 6= S. Then AG(S) is not
a commplete graph if and only if ub = b.

Theorem 34 Suppose that Γ(S) is a complete graph Kn with an end vertex u
and u2 = b ∈ V(Kn) \ {z}. Then the following statements hold.

(i) If Z(S) 6= S, then we have two cases.

(1) AG(S) ∼= Kn+1 if and only if ub 6= b.

(2) AG(S) ∼= Kn+1 \ {{ub}} if and only if ub = b.

(ii) If Z(S) = S, then we have two cases.

(1) AG(S) ∼= K1 ∪ Kn if and only if ub 6= b.

(2) AG(S) ∼= K1 ∪ Kn \ {{ub}} if and only if ub = b.

Proof. If Z(S) 6= S, then Γ(S) ≤ AG(S). By lemma 32, for all x ∈ V(Kn)\{z, b},
we have u is adjacent to x in AG(S) and u is adjacent to b in AG(S) if and
only if ub 6= b. Thus the statement (i) holds.

(ii) Since Z(S) = S, we have z is an isolated vertex in AG(S). Now by lemma
32, the results hold. �

Example 35 Suppose that Γ(S) is a complete graph K3 with an end vertex
u and u2 = x or u2 = y. Also assume that V(K3) = {x, y, z}. Then xy =
xz = yz = uz = 0 and z2 = 0. Moreover we have one of the following two
statements.
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(i) ux = z, uy = y, u2 = y2 = y, and x2 = 0 or x2 = z or uy = z, ux = x,
u2 = x2 = x, and y2 = 0 or y2 = z. In this case if Z(S) 6= S, by lemma 6,
we have AG(S) ∼= K4 \ {{uy}} or AG(S) ∼= K4 \ {{ux}} and if Z(S) = S, by
lemma 10, we have AG(S) ∼= K1∪K3 \ {{uy}} or AG(S) ∼= K1∪K3 \ {{ux}}.

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))

(ii) Also we have the following four cases.

(1) ux = y, uy = z, u2 = x, and x2 = y2 = 0 .

(2) ux = z, uy = x, u2 = y, and x2 = 0, y2 = z .

(3) ux = uy = z, u2 = y, y2 = 0 and x2 = 0 or x2 = z.

(4) ux = uy = z, u2 = x, x2 = 0 and y2 = 0 or y2 = z.

In this case if Z(S) 6= S, by lemma 7, we have AG(S) ∼= K4 and if
Z(S) = S, by lemma 11, we have AG(S) ∼= K1 ∪ K3 such that u is an
isolated vertex in AG(S).

z u

x y
Γ(S)

z u

x y
AG(S), Z(S) 6= S

z u

x y
AG(Z(S))
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Abstract. Zero forcing is one of the dynamic vertex coloring problem.
Zero forcing number is the minimum cardinality of the zero forcing sets.
This parameter is the upper bound for the maximum nullity. A new class
of graph where the maximum nullity is equal to the zero forcing number
of the graph is defined as closed global shadow graph. Basic properties
and zero forcing number of this graph class is analysed.

1 Introduction

All graphs considered in this article are finite, undirected and simple. A graph
is a pair G = (V, E). The set V or V(G) is called the vertex set and E or
E(G) is called the edge set. E(G) = {(u, v) | u, v ∈ V(G) and u 6= v}. Two
vertices are said to be adjacent to each other if there exists an edge between
them. If u and v are adjacent vertices in G then we represent this as u ∼ v.
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A vertex is said to be a neighbour of other if they are adjacent to each other.
Open neighbourhood of an arbitrary vertex v in the graph G is the set N(v)
containing all the vertices that are adjacent to v. Closed neighbourhood of an
arbitrary vertex v is the set N[v] containing the vertices in the open neighbour
set N(v) and the vertex v. Degree of the vertex v in the graph G is the number
of edges incident to v. The minimum degree among the vertices of a graph G
is represented by δ(G) and the maximum degree among the vertices of a graph
G is represented by ∆(G).

A shadow graph of G is obtained by taking a graph and a copy of it say G
and G ′. Then making all the neighbouring vertices of u ′ in G ′ adjacent to the
vertex u in G [17]. Motivated by the definition of shadow graphs the concept of
open global shadow graphs were introduced in [14]. In this paper, we introduce
a class of graphs which is closely related to the open global shadow graph and
is known as the closed global shadow graph. Let G be a graph and G ′ be a copy
of G such that V(G) = {v1, v2, . . . , vn} and V(G ′) = {v ′1, v

′
2, . . . , v

′
n}. The closed

global shadow graph denoted by GS[G] is obtained by taking two copies of G
say, G and G ′ and joining the vertex vi to each of the vertex in {V(G ′)\N(v ′i)},
where 1 ≤ i ≤ n.

The closed global shadow graph of the cycle C5 is depicted in the figure
1. It is evident that C5 is a graph having vertex set {v1, v2, . . . , v5} and the
copy of the graph C5 that is C ′

5 has the vertex set {v ′1, v
′
2, . . . , v

′
5}. The vertex

vi ∈ V(C5) is adjacent to each of the vertex in {C ′
5 \N(v ′i)}, where i takes value

between 1 to 5.

v ′2 v ′1 v ′5

v ′3 v ′4

v4

v1

v3

v2v5

Figure 1: Closed global shadow graph of C5: GS[C5]

We use the following definitions for the further development of this article.
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� Zero forcing set S ⊆ V(G), is a set of black vertices which forces the
entire graph black based on the following color change rule.

� Color change rule: A black vertex can force at most one white vertex
black, provided it is the only white neighbour of it.

� The derived coloring of a graph G is the result of applying the color-
change rule until no more changes are possible.

� Zero forcing number is a minimization problem. The zero forcing number
of a graph is the minimum cardinality of the zero forcing set.

� For n number of vertices, the total number of maximum possible edges
are n(n−1)

2 . Let G be a graph, and let u, v be any two vertices which are
not adjacent in G. Then we call uv as the missing edge in G.

For basic definitions related to graphs we refer to [18]. The zero forcing was
initially introduced independently by AIM work group to bound the minimum
rank [1]. Burgarth and Giovannetti introduced the zero forcing to understand
the controlability of quantum system [6]. Zero forcing number of different type
of graphs are studied in [8, 9, 13, 11]. Since the introduction of zero forcing
it has been used in many areas like physics, disease and information spread-
ing model in social network,logic circuit, coding theory and power network
monitoring [4, 6, 7, 19, 12, 16].

The following section is intended to discuss about some basic properties of
the closed global shadow graph of a given graph G.

2 Results on the closed global shadow graph of a
graph

The closed global shadow graph is obtained by taking two copies of the given
graph G with n vertices each. Therefore the following observation is obvious.

Observation 1 Let G be a simple graph of order n. Then the total number
of vertices in a closed global shadow graph is twice the number of vertices of
the graph G.

The next theorem gives the total number of edges of the closed global shadow
graph of the given graph G with t number edges.

Theorem 2 Let G be a simple graph of order n. Then |E(GS[G])| = n2.

Proof. Let t be the total edges present in G, and since G ′ is a copy of G
|E(G ′)| = t. However, the total possible edges for an n vertex simple graph is
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n(n−1)
2 . Let v be a vertex in G and v ′ be its corresponding vertex in G ′. By

the definition of closed global shadow graph we know that each vertex v in G
is adjacent to the corresponding vertex of its non-neighbours and the vertex
v ′. Similarly each vertex u ′ in G ′ is adjacent to the corresponding vertex of
its non-neighbours and the vertex u ′.

|E(GS[G])| = t+ t+ n+ 2(
n(n− 1)

2
− t) = n(n− 1) + n = n2

�

Theorem 3 Let G be a simple graph of order n. Then the closed global shadow
graph of G, GS[G] is a connected n regular graph.

Proof. To prove that GS[G] is a connected graph: Let G be a connected
graph. The graph GS[G] will have the graph G and copy of G that is G ′ and
the edges connecting each vertex in G to its corresponding vertices in G ′. since
G and G ′ are connected, the closed global shadow graph GS[G] is connected.

Let G be a disconnected graph. Let u and v be the vertices in two different
components of G. Clearly v is not adjacent to u in G, then v is made adjacent
to u ′ and u is made adjacent to v ′ in GS[G]. Hence for each missing edge uv in
G, there exists a path u, u ′, v or v, v ′, u between u, v in GS[G]. Due to which
GS[G] cannot be disconnected.

To prove that GS[G] is an n regular graph: By the definition of closed
global shadow graph each of the vertices v will be adjacent to N(v) and the
corresponding vertices of V(G) \N(v) that is V(G ′) \N(v ′). Which make the
total degree of v as n. Similarly each vertex u ′ will be adjacent to N(u ′) and
the corresponding vertices of V(G ′) \N(u ′) that is V(G) \N(u). Making the
total degree of u ′ as n. Therefore it is clear that in GS[G], degree of each of
the vertices is n. Hence GS[G] is an n-regular graph. �

Theorem 4 Let G be a simple graph of order n > 1. Then the closed global
shadow graph of graph G has no cut edge or cut vertex.

Proof. Case 1 Let us first prove that GS[G] has no cut edge. On contrary let
us assume that GS[G] has a cut edge for n > 1.

Subcase 1.1 Assume that G has no cut edge. Clearly removal of any edge
E(G) or E(G ′) cannot disconnected the graph GS[G]. According to the def-
inition of closed global shadow graph, GS[G] will have all the vertices in G
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adjacent to their corresponding vertices in G ′. Hence removal of any edge be-
tween V(G) and V(G ′) still keeps the graph GS[G] connected. Therefore a
contradiction.

Subcase 1.2 Assume that G has a cut edge let uv be the cut edge. Now
removal of the edge uv from the graph G will lead to at least two disconnected
components. In the graph GS[G], the vertex u is adjacent to the vertex u ′,
similarly the vertex v is adjacent to the vertex v ′. Since there exists edge uv
in GS[G], u ′ and v ′ will also have an edge between them. Clearly removal of
any edge uv will not disconnected the graph GS[G]. The only possibility for a
cut edge to exists is in between G and G ′ but since all the vertices of G are
adjacent to its corresponding vertices in G ′, the graph is connected even after
the removal of the edge vv ′. Hence a contradiction.
Case 2 Let us prove that GS[G] has no cut vertex.

Subcase 2.1 Suppose G is a graph with no cut vertex. This implies that
G ′ has no cut vertex. Clearly for each missing vertex in the graph G a pair of
edges are added in GS[G], hence the graph GS[G] doesn’t have cut vertex.

Subcase 2.2 Suppose G is a graph with a cut vertex. Let v be a cut vertex
in G and K and H be the components of the graph G − v. Let K ′ and H ′ be
the graphs corresponding to K and H respectively in GS[G]. Clearly in GS[G]
all the vertices in the component H will be adjacent to all the vertices in K ′

similarly all the vertices in the component K are made adjacent to all the
vertices in H ′. Therefore we cannot find any cut vertex. �

Theorem 5 Every pair of vertices in a simple graph G, induces a cycle C4 in
GS[G] with their corresponding vertices in G ′.

Proof. Let G be any simple graph, v and u be any two vertices in G. Then
for v and u there are two possibilities that is v ∼ u or v � u.
Case 1 Assume that v and u are adjacent in G (v ∼ u). In the graph GS[G],
v is adjacent to v ′, u is adjacent to u ′. Since G ′ is a copy of G, v ′ and u ′ are
also adjacent in GS[G]. Therefore, the vertices v, v ′, u ′ and u forms a cycle C4
in GS[G].
Case 2 Assume that v and u are not adjacent in G (v � u). Clearly by the
definition of closed global shadow graph, v is adjacent to u ′ in GS[G] as v and
u are not adjacent in G. Similarly u is adjacent to v ′. The vertices u, u ′ and
v, v ′ are adjacent in GS[G], since u ′ and v ′ are the vertices corresponding to u
and v in GS[G]. Hence the vertices v, u ′, u and v ′ forms a cycle C4 in GS[G].

�

Theorem 6 [15] Subgraph of a bipartite graph is bipartite.
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Theorem 7 Let G be a simple graph of order n. Then GS[G] is a complete
bipartite graph Kn,n if and only if either G is a null graph of order n or G is
a complete bipartite graph of order n.

Proof. Let G be a null graph of order n. All the vertices of graph G forms
an independent set. In the closed global shadow graph of G, ∀ v ∈ V(G), v
is adjacent to all the vertices in V(G ′) and ∀ u ′ ∈ V(G ′), the vertex u ′ is
adjacent to all the vertices in the set V(G). This makes the graph GS[G] as a
complete bipartite graph.

Let graph G is a complete bipartite graph Kp,q such that p + q = n. Let
P and Q be the partite sets having p and q number of vertices respectively.
Clearly the subgraph induced by the vertices in set P and Q independently
forms a null subgraphs. In the closed global shadow graph of the graph Kp,q,
each of the vertices in the set P are adjacent to all the vertices in the set P ′.
Similarly each of the vertices in the set Q are adjacent to all the vertices in the
set Q ′. Where P ′ and Q ′ are the vertex set of the partite set of G ′. Clearly the
set P and Q ′ forms one of the partite set and the set Q and P ′ forms another
partite set of the complete bipartite graph Kn,n.

To prove the converse part let us assume the contrary, suppose there is a
graph G other than the null graph and complete bipartite graph for which
GS[G] forms a complete bipartite graph. It can be seen that the graph G is
a subgraph of the graph GS[G] with V(G) as the vertex set. The theorem 6
shows that the subgraph induced by a complete bipartite graph is either a null
graph or complete bipartite graph. Hence a contradiction. �

Definition 8 A graph is said to be hamiltonian, if there exist a closed walk
such that all the vertices are in the walk and an edge is visited only once.

Theorem 9 [10] If G is a simple graph of order n ≥ 3 and the degree of every
vertex in G is greater than or equal to n

2 , then G is Hamiltonian.

Theorem 10 Every closed global shadow graph of a graph is Hamiltonian.

Proof. Total number of vertices in the graph GS[G] is 2n, where n is the order
of graph G. Further from theorem 3, GS[G] is a n regular graph. Meaning
every vertex in GS[G] has a degree d(v) = d(v ′) = n ≥ 2n

2 , ∀v ∈ V(G) and
v ′ ∈ V(G ′). From dirac’s theorem (theorem 9) it can be seen that GS[G] is
Hamiltonian. �
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Definition 11 A dominating set is a set of vertices D ∈ V(G) such that a
vertex not in the set D is adjacent to at least one vertex in the set D.
The minimum cardinality among the dominating set is called the domination
number and is denoted by γ(G).

Definition 12 If subgraph formed by the dominating set is connected, then
such a set is called the connected dominating set.
The minimum cardinality among the connected dominating set is called the
connected domination number and is denoted by γcG.

Theorem 13 Let GS[G] be a simple graph of order n. Then the domina-
tion and connected domination number is respectively given by γ(GS[G]) =
γc(GS[G]) = 2.

Proof. Any two vertex v and v ′, (v ∈ V(G) and v ′ ∈ V(G ′)) can dominate
the entire graph. That is v can dominate N(v) and V(G ′) \N(v ′). Similarly v ′

can dominated N(v ′) and V(G) \N(v). Also it is clear that any one vertex in
GS[G] is not sufficient to force the entire graph GS[G]. Hence γ(G) = 2. Also
the subgraph induced by v and v ′ are connected γ(G) = γc(G) = 2. �

Definition 14 Matching in a graph is a set of edges such that no two edges
in the set are incident to the same vertex.
Perfect matching in a graph is a matching that matches all the vertices in the
graph.

Theorem 15 The closed global shadow graph has perfect matching.

Proof. In the closed global shadow graph all the vertices are adjacent to
their corresponding vertices. Hence each of the edge vv ′ (∀v ∈ V(G) and
∀v ′ ∈ V(G ′)) form a perfect matching. �

3 Zero forcing number of closed global shadow graph

In this section we find the zero forcing number of closed global shadow graph
and give some upper bounds. Also we provide the relation between the chro-
matic number and zero forcing number of the closed global shadow graph.

Theorem 16 [5] The zero forcing number of any graph G is given by Z(G) ≥
δ(G).
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Theorem 17 The zero forcing number of closed global shadow graph is bound
by the order of graph G, Z(GS[G]) ≥ n.

Proof. From theorem 16 we know that Z(G) ≥ δ. It can be seen from theorem
3 that δ(GS[G]) = n. Hence Z(GS[G]) ≥ n. �

Theorem 18 [3] The zero forcing number of a graph G of order n is bound
by ∆ as, Z(G) ≤ ∆

∆+1n.

Theorem 19 Let G be a simple graph of order n ≥ 2 and GS[G] be its closed
global shadow graph of order 2n. Then the zero forcing number of GS[G] is
given by 2 ≤ Z(GS[G]) ≤ 2n− 2.

Proof. From theorem 17, Z(GS[G]) ≥ n. When the order ofG is 2, Z(GS[G]) ≥
2. On the other hand the upper bound can be found by using theorem 18.

Z(G) ≤ ∆
∆+1n

Z(GS[G]) ≤ n
n+12n

Z(GS[G]) ≤ 2n2

n+1

The above equation can be factorised as

2n2

n+1 = 2n− 2+ 2
n+1 .

Since n ≥ 2, 2
n+1 is never a whole number. Hence 2 ≤ Z(GS[G]) ≤ 2n− 2. �

Theorem 20 Let G be a simple graph with two connected components Km, Kn,
that is G is isomorphic to Km∪Kn. Then the zero forcing number Z(GS[G]) =
m+ n.

Proof. From theorem 17 it is known that Z(GS[G]) ≥ m + n. It is left to
show that Z(GS[G]) ≤ m + n. Let G be the graph with two components Km
and Kn as cliques. Similarly let G ′ be the graph with two components K ′

m

and K ′
n as cliques. In GS[G], all the vertices of Km are adjacent to all the

vertices of K ′
n and all the vertices of Kn are adjacent to all the vertices in

K ′
m. By taking V(Km) and V(K ′

n) as the black vertices each vertex in Km can
force its corresponding vertex in K ′

m. Similarly all vertices in K ′
n can force its

corresponding vertex in Kn as black. Thereby forcing the entire graph black.
This implies that Z(GS[G]) ≤ m+ n. �
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Theorem 21 Let G be the complete graph Kn of order n ≥ 2. Then Z(GS[G]) =
n.

Proof. If G is the complete graph, then closed global shadow graph of G,
GS[G] contains two copies of Kn and the corresponding vertices in each copy
are adjacent. By taking all the n vertices of G in GS[G] as black we can force
the entire graph GS[G] as black. Once all the n vertices of G are taken black,
each black vertex is left with exactly one corresponding white vertex which
can be forced black. Hence Z(GS[G]) ≤ n. From theorem 17 we know that
Z(GS[G]) ≥ n. Hence the proof. �

Theorem 22 [13] The zero forcing number of complete bipartite graph is given
as Z(Km,n) = n+m− 2.

Theorem 23 The zero forcing number Z(GS[G]) = 2n−2 if and only if GS[G]
is the complete bipartite graph Kn,n, where n is the number of vertices in G.

Proof. If GS[G] is a complete bipartite graph, then according to theorem 22
the zero forcing number, Z(GS[G]) = n+ n− 2 = 2n− 2.

When Z(GS[G]) = 2n − 2, we need to show that the graph GS[G] is the
complete bipartite Kn,n. If there are just 2 vertices in G, it can be seen in
figure 2 that Z(GS[G]) = 2 and both the graph are complete bipartite. Hence
the theorem is true when n = 2.

For graph G with more than 2 vertices, let us assume that Z(GS[G]) = 2n−2
but GS[G] is not a complete bipartite graph.

Claim For a connected graph of order n ≥ 2, the only bipartite closed global
shadow graph of G is the complete bipartite graph.

Proof of the Claim Assume that GS[G] is a bipartite graph but not a
complete bipartite graph. Since the subgraph of a bipartite graph is a bipartite
graph, the graph G which is the subgraph of GS[G] is also a bipartite graph. If
G is a complete bipartite graph, then GS[G] is also a complete bipartite graph
from theorem 7, this is a contradiction.

Hence G is a bipartite graph but not a complete bipartite graph. If K and
H are the two partite set of the graph G then there exist a vertex v ∈ K and
u ∈ H, such that v � u. Let K ′ and H ′ be the partite set of G ′ and there exist
a vertex v ′ ∈ K ′ and u ′ ∈ H ′ such that v ′ � u ′. Clearly in GS[G], v ∼ u ′,
u ∼ v ′. Since v ∼ v ′ and u ∼ u ′ . The only possibility to divide these four
vertices into two partite set is by taking G and G ′ as the two partite sets.
However G and G ′ are not null graph. Hence a contradiction.
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Now it is evident that GS[G] is not a bipartite graph. Let vi, vj and vk be
three arbitrary vertices in V(GS[G]).

Case 1 If the vertex vi is not adjacent to the vertex vj, both the vertices
vi and vj are adjacent to the vertex vk. Clearly the induced graph formed by
vertices vi, vj, vk, v

′
i, v

′
j and v ′k forms a complete bipartite graph with vi, vj, v

′
k in

one partite set and v ′i, v
′
j , vk in other partite set. Since GS[G] is not a complete

bipartite graph, there exist vt such that vt is adjacent to vi and not adjacent
to vj. Now by taking vi as the initial black vertex along with n − 1 of its
neighbour vi can force remaining one white neighbour black. From the above
construction clearly vt is adjacent to at least two black vertices (vi and v ′j)
so clearly we need to choose at most n − 3 of its neighbours to force the
remaining white neighbour of vt black. At this stage either the entire graph
is forced black with at most 1 + n − 1 + n − 3 = 2n − 3 black vertices or the
forcing process continues. If the forcing process continues, then there will be
at least one more white vertex which gets forced hence there will be at most
2n−3 black vertices, so the zero forcing number will be at most 2n−3. Hence
a contradiction.

Case 2 If the vertex vi is not adjacent to the vertex vj, the vertex vi is
adjacent to the vertex vk and the vertex vj is not adjacent to the vertex vk.
Now consider vi and n−1 neighbours of vi to be black, so that vi can force the
remaining one white neighbour of vi black. From the construction vk is adjacent
to at least 2 black vertices vi and v ′j . By taking at most n−3 of its neighbours
black the remaining white neighbour of vk can be forced. At this stage either
the entire graph is forced black with at most 1+n− 1+n− 3 = 2n− 3 black
vertices or the forcing process continues. If the forcing process continues there
there will be at least one more white vertex which gets forced hence there will
be at most 2n − 3 black vertices, so the zero forcing number will be at most
2n− 3. Hence a contradiction.

Case 3 If the vertex vi is adjacent to the vertex vj, both the vertices vi and
vj are adjacent to the vertex vk. Now consider vi and n−1 neighbours of vi to
be black so that vi can force the remaining one white vertex black. From the
construction vk is adjacent to at least 2 black vertices vi and vj. By taking at
most n − 3 of its neighbours black the remaining white neighbour of vk can
be forced. At this stage either the entire graph is forced black with at most
1+n−1+n−3 = 2n−3 black vertices or the forcing process continues. If the
forcing process continues there there will be at least one more white vertex
which gets forced hence there will be at most 2n−3 black vertices, so the zero
forcing number will be at most 2n− 3. Hence a contradiction.
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Case 4 If the vertex vi is adjacent to the vertex vj, both the vertices vi
and vj are not adjacent to the vertex vk. Clearly the induced graph formed
by vertices vi, vj, vk, v

′
i, v

′
j and v ′k forms a complete bipartite graph with the

vertices vi, v
′
j , v

′
k in one partite set and the vertices v ′i, vj, vk in other partite set.

Since GS[G] is not a complete bipartite graph, there exist the vertex vt such
that vt is adjacent to vi and not adjacent to v ′j . Now by taking vi as the initial
black vertex along with n−1 of its neighbour vi can force remaining one white
neighbour black. From the above construction clearly vt is adjacent to at least
two black vertices (vi and vj) so clearly we need to choose at most n− 3 of its
neighbours to force the remaining white neighbour of vt. At this stage either
the entire graph is forced black with at most 1+n− 1+n− 3 = 2n− 3 black
vertices or the forcing process continues. If the forcing process continues there
there will be at least one more white vertex which gets forced hence there will
be at most 2n − 3 black vertices, so the zero forcing number will be at most
2n− 3. Hence a contradiction. �

Theorem 24 If G is a path Pn where n > 2, then the zero forcing number of
closed global shadow graph Z(GS[Pn]) = n+ 1.

Proof. From theorem 17 we know that Z(GS[G]) ≥ n. We need to show that n
initially colored black vertices are not sufficient to force the whole graph black.
Let G be a path Pn with vertex set {v1, v2, . . . , vn}. Without loss of generality
let vertex v1 and vn be the two vertices in the graph Pn having degree one and
remaining vi, 2 ≤ i ≤ n− 1 be n− 2 vertices in the graph Pn having degree 2.

Let G ′ be the path P ′
n with vertex set {v ′1, v

′
2, . . . , v

′
n}. Without loss of gen-

erality let v ′1 and v ′n be two vertices in the graph P ′
n having degree one and

remaining v ′j , 2 ≤ j ≤ n− 1 be n− 2 vertices in the graph P ′
n having degree 2.

Case 1 When a degree 1 vertex in Pn is taken initially black:
Let v1 be the initially colored black vertex. In GS[Pn], vertex v1 is adjacent

to v2, v
′
1, v

′
j , where 3 ≤ j ≤ n. That is | N(v1) |= n, by taking n − 1 of its

neighbours to be initially black v1 can force the remaining one white neighbour
black. The forcing process stops as the black vertices v ′1, v

′
j , where 3 ≤ j ≤ n

have more than two white neighbours and vertex v2 has exactly two white
neighbours. Therefore it is not possible to force the entire graph black by
taking a degree 1 vertex in Pn as initially black.
Case 2 When a degree 1 vertex in P ′

n is taken initially black. Same as Case 1
is followed.
Case 3 When a degree 2 vertex in Pn is taken initially black:

Let v2 be the initially colored black vertex. In GS[Pn], v2 is adjacent to
v1, v3, v

′
2, v

′
j where where 4 ≤ j ≤ n. Totally v2 has n neighbours, by taking
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n−1 of its neighbour to be initially black v2 can force the remaining one white
neighbour black. The forcing process stops as v1 has two white neighbours,
v3 has three white neighbour (in case when G is P3, v3 will have 2 white
neighbours) and v ′2, v

′
j , where 4 ≤ j ≤ n have two or more white neighbours.

Therefore it is not possible to force the entire graph black by taking a degree
2 vertex in Pn as initially black.
Case 4 When a degree 2 vertex in P ′

n is taken initially black. Same as Case 3
is followed.

Clearly from the above cases we can conclude that Z(GS[G]) > n. Now we
are left to show that Z(GS[G]) ≤ n+ 1.

Consider all the vertices in G ′ and one of the end vertex in G (v1 or vn)
say v1 to be black. Then v1 can force v2 black, v2 can force v3 black, . . . this
process continues till all the vertices are forced black. Hence Z(GS[G]) ≤ n+1.

�

In the above theorem when n = 2, that is when graph G is P2. GS[G] is a
cycle C4 and Z(GS[G]) = Z(C4) = 2.

Theorem 25 If G is a cycle Cn, then the zero forcing number of closed global
shadow graph of Cn is

Z(GS[G]) =


3 if n = 3

6 if n = 5

n+ 2 if n = 4 and n > 5

.

Proof. Let the graph G be a cycle Cn with n number of vertices. When n = 3,
C3 is same as the complete graph K3. Hence from theorem 21, 3 black vertices
are enough to force the entire graph black. When n = 4, C4 forms a complete
bipartite graph according to theorem 7 and theorem 23 Z(GS[C4]) = 4+2 = 6.
When n = 5, let the graph GS[C5] have vertex set V(GS[G]) = {V(G), V(G ′)}
(V(G) = {v1, v2, v3, v4, v5} and V(G ′) = {v ′1, v

′
2, v

′
3, v

′
4, v

′
5}). By taking v1 and

4 of its neighbours say v2, v5, v
′
3, v

′
4 as black v1 can force v ′1 black. Clearly,

all the black vertices have 2 white neighbours. we know from theorem 17
Z(GS[G]) ≥ n, but here with 5 black vertices it is not possible to force the
entire graph black. By taking one more black vertex say v ′5, then v ′5 can force
v3 and v ′3 can force v ′2 and further v3 can force v4 black. There by forcing the
entire graph black.

It is clear from the theorem 17 that Z(GS[G]) ≥ n. Now we need to show
that with n+ 1 black vertices it is not possible to force the entire graph black
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when n > 5. On contrary let us assume that n+1 vertices are enough to force
the whole graph GS[G] black. Since G or G ′ is a regular graph(cycle Cn where
n ≥ 6), choosing any vertex as the initial black vertex makes no difference. Let
v1 be the initial black vertex. Now, v1 is adjacent to n other vertices of GS[G]
(v2, vn, v

′
1, v

′
j where 3 ≤ j ≤ n − 1). By choosing any of the n − 1 neighbours

black the remaining white neighbour of v1 can be forced black.
Clearly v2 and vn have three white neighbours (v ′2, v

′
n and v3 or vn−1 respec-

tively). Hence we need to select at least two of them as black in order for v2
or vn to continue forcing, a contradiction.
v ′1 has n− 1 black neighbours this implies that n− 2 of its neighbours should
be taken as black, contradiction.
Finally for the black vertices v ′j ,3 ≤ j ≤ n − 1 either n − 3 or n − 5 white
vertices are left.
Case 1 If n−3 white vertices are left it is evident that n−3 > 2 for all n ≥ 6.
Hence the forcing process stops.
Case 2 If n− 5 white vertices are left, then the following subcases follows

Subcase 2.1 When n = 6, n − 5 is one hence this vertex v ′j (in particular
v ′4) can force its only white neighbour (v4) black. However at this stage the
black vertex has two or more white neighbour. That is v4 has v3, v5, v

′
2 and v ′n

as its white neighbours Hence the process stops.
Subcase 2.2 When n = 7, n−5 is two this vertex v ′j (in particular v ′4 or v ′5)

having n − 5 = 7 − 5 = 2 white vertex, can force one of the white neighbour
black by taking the other white neighbour as initially black. Say v4 and v3 are
the white neighbours of v ′4, by taking one of them black other vertex can be
forced black. Now clearly any black vertices has either no white neighbour or
two or more white neighbour. Hence the process stops.

Subcase 2.3 It can be observed that for n > 7, n−5 take values more than
2. Hence it becomes a contradiction to our assumptions.

Form the above cases we can conclude that we need at least n + 2 initial
black vertices in order to force the entire graph black.

In the graph GS[G], by taking all the n vertex of G ′ to be black, the graph
GS[G] reduces to Cn. In other words by taking all the n vertices of G ′ to
be black, the only white vertices left is from G. Hence by taking two out of
n vertices in G whole graph GS[G] can be forced black. This forcing process
shows that Z(GS[G]) ≤ n+ 2. �
Definition 26 Join of two graphs K and H is the graph obtained by taking
a copy of K and a copy of H and making each of the vertices in the graph K
to be adjacent to each of the vertices in the graph H. The join of K and H is
denoted by K+H.
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Theorem 27 Let G be an n order simple graph and G1 be the join of G and
K1 that is G1 = G+ K1. Then Z(GS[G

1]) ≥ Z(GS[G]) + 1.

Proof. Let G be a graph of order n with vertex set {v1, v2, . . . , vn}. Let
Z(GS[G]) = z and the zero forcing set be S. Clearly G1 is a graph of or-
der n + 1 such that vn+1 is adjacent to all the other n vertices. In GS[G1] all
the vertices in S will be adjacent to either vn+1 or v ′n+1. That is degree of each
of the vertices in GS[G] is increased by one. Z(GS[G1]) cannot be z as every
vertex in the set S will have at least 2 white neighbours. Thereby increasing
the zero forcing number of GS[G1], Z(GS[G1]) ≥ Z(GS[G]) + 1. �

Theorem 28 Let G be a wheel graph W1,n. Then the zero forcing number of
closed global shadow graph of W1,n is

Z(GS[G]) =

{
4 if n = 3

n+ 3 if n ≥ 4.

Proof. Wheel graph W1,n is obtained by adding a central vertex to a cycle
which is adjacent to all the other vertices of the graph Cn. When n = 3, the
wheel graph is similar to that of a complete graph K4 hence by theorem 21
the zero forcing number is 4. When n ≥ 4, by taking all the vertices in the
set V(W1,n) and two of the vertices in the set V(W ′

1,n) other than v ′n+1 to
be initially black, the graph GS[W1,n] can be completely forced black. Hence
Z(GS[G]) ≤ n+ 3.
Clearly when n = 4 and n > 5, from the theorem 27, we know that

Z(GS[W1,n]) ≥ Z(GS[Cn]) + 1 = n+ 2+ 1 = n+ 3

For graph when n = 5, Z(GS[W1,5]) ≥ Z(GS[C5]) + 1 = 6 + 1 = 7. But it
can be shown that with 7 black vertices it is not sufficient to force the entire
graph black. Let v1, v2, . . . , v6 be the vertices of the graph W1,5 such that v6
is the central vertex. In GS[W1,5], by taking v1 and 5 of its neighbours black,
the remaining one white neighbour of v1 is forced black. Further the forcing
stops as all the black vertices except v1 that is v ′1, v2, v5, v6, v

′
3, v

′
4 have three

white neighbour. In order for any of v ′1, v2, v5, v6, v
′
3 or v ′4 vertices to force

their neighbour, two of their neighbours must be taken initially black. There
by forcing the entire graph black. It is clear that with 7 black vertices it is not
possible to force the graph black. Hence Z(GS[W1,5]) = 8 = n+ 3. �

Theorem 29 The zero forcing number Z(GS[G]) = 2 if and only if G is either
K2 or K̄2.
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Proof. If G is either K2 or K̄2, then GS[G] is cycle C4.We know that the zero
forcing number of cycle is 2. Hence Z(GS[K2]) = Z(GS[K̄2]) = Z(C4) = 2.

If Z(GS[G]) = 2, from theorem 17 it evident that n = 1 or 2. Clearly when
n = 1, GS[G] is P2 implies Z(GS[G]) = Z(P2) = 1. Hence G is either K2 or
K̄2. In both the cases GS[G] is a cycle C4 as shown in the figure 2. Hence
Z(GS[G]) = 2. �

v1 v2

v ′1 v ′2

G = 2K1,
Z(GS[G]) = 2

v1 v2

v ′1 v ′2

G = K2or P2,
Z(GS[G]) = 2

Figure 2: All the possible closed global shadow graph of graph when n=2.

Theorem 30 The zero forcing number Z(GS[G]) = 3 if and only if G is either
K3 or P̄3.

Proof. When G is K3, from theorem 21 it can be concluded that Z(GS[K3]) =
3. WhenG is P̄3, the forcing process is depicted in the figure 3 (since Z(GS[G]) ≥
n = 3, 3 black vertices are enough to force the entire graph).
Let the zero forcing number of closed global shadow graph is Z(GS[G]) = 3,
this implies that n = 1, 2 or 3 from theorem 3. But from theorem 29 there
exist no graph when n = 1, 2 that has the zero forcing number of its closed
global shadow graph to be 3. Hence Z(GS[G]) = 3 is possible only when n = 3.
There are 4 possible graphs G when n = 3. null graph K̄3, complete graph K3,
P̄3 and path P3. When G is complete graph K3 and P̄3 it can be seen in figure
3 that Z(GS[G]) = 3. Where as when G is null graph from theorem 23 we
known that Z(GS[G]) = 2n − 2 = 2 ∗ 3 − 2 = 4 and when G is path P3 it can
be seen from the theorem 24 that Z(GS[G]) = n+ 1 = 3+ 1 = 4. �

Theorem 31 [1] If G is a Hamiltonian graph and M(G) is the maximum
nullity of graph G, then the zero forcing number is related to maximum nullity
of the graph as Z(G) =M(G).

Theorem 32 Let G be any simple graph of order n, then Z(GS[G]) =M(GS[G]).
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v1

v2

v3

v ′1

v ′2

v ′3

G = 3K1,
Z(GS[G]) = 4

v1

v2

v3

v ′2

v ′1 v ′3

G = K3 or C3,
Z(GS[G]) = 3

v1

v2

v3

v ′2

v ′1

v ′3

G = P3,
Z(GS[G]) = 3

v1 v2 v3

v ′1 v ′2 v ′3

G = P3,
Z(GS[G]) = 4

Figure 3: All the possible closed global shadow graph of graph when n=3.

Proof. It is proved in theorem 10 that closed global shadow graph is Hamil-
tonian. From the above theorem 31 we conclude that Z(GS[G]) =M(GS[G]).

�
Theorem 33 [2] Let G be any graph, then χ(G) ≤ Z(G) + 1.

Theorem 34 (Brook’s) For any connected undirected graph G, the chro-
matic number of G that is χ(G) ≤ ∆. Where ∆ is the maximum degree of
graph G. Provided G is not a complete graph or odd cycle.

Theorem 35 Let G be simple graph, then χ(GS[G]) ≤ n.

Proof. The graph GS[G] is always connected n-regular graph. GS[G] can
never form a complete graph or odd cycle. Hence according to brook’s theorem
χ(GS[G]) ≤ n. �
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Theorem 36 Let G be any graph, then χ(GS[G]) < Z(GS[G]) + 1.

Proof. The graph GS[G] is n-regular graph and clearly Z(GS[G]) ≥ n. Accord-
ing to theorem 35, χ(GS[G]) ≤ n. Therefore the theorem 33 can be rewritten
as χ(GS[G]) < Z(GS[G]) + 1. �

Theorem 37 If G is a complete graph, then χ(GS[G]) = Z(GS[G]).

Proof. According to theorem 21, Z(GS[G]) = n if G is a complete graph. From
theorem 35, χ(GS[G]) ≤ n is known. It is left to show that χ(GS[G]) ≥ n. G
being a complete graph on n vertices is a subgraph of GS[G] and χ(G) = n.
The chromatic number of GS[G] will be at least that of its subgraph (G).
Therefore χ(GS[G]) ≥ n. �

4 Conclusion

The natural and intrinsic characterisation of the closed global shadow graph is
provided. This includes some of the characterisation like hamiltonicity, perfect
matching, regularity, etc., The zero forcing number of various classes of closed
global shadow graph are studied. In few cases, the necessary and sufficient
condition for equality of certain zero forcing number is analysed. The closed
global shadow graph GS[G] has a subgraph graph G�K2. It can be seen that
Z(GS[G]) = Z(G�K2) when G is a complete graph Kn. It is an open problem
to solve when the zero forcing number of GS[G] becomes equal to the zero
forcing number of G�K2. The relation between chromatic number and zero
forcing number of GS[G] is understood. One may still find the characterisation
for χ(GS[G]) to be equal to Z(GS[G]).
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