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Summary 55 

Effective public-health measures against SARS-CoV-2 require granular knowledge of population-

level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to 

assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous 

seromonitoring of hospital patients and blood donors (n=72’250) in the canton of Zurich from De-

cember 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a 60 

half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in 

mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with 

wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Cru-

cially, we found no evidence for a difference in long-term complications between those whose 

infection was symptomatic and those with asymptomatic acute infection. The cohort of asympto-65 

matic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly 

unexpected sequelae. 
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Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, henceforth abbreviated as 70 

CoV2) is responsible for COVID-19 1,2 and has caused millions of deaths. It has also indirectly 

caused many more fatalities by hijacking healthcare resources, thereby making them unavailable 

to patients suffering from other diseases. In addition, COVID-19 has created profound economic 

distress for most travel-related industries, and has disrupted a plethora of industrial supply chains, 

resulting in a massive worldwide economic crisis that may cost many more human lives. 75 

The canton of Zurich, with a population of approximately 1.5 million inhabitants, registered its first 

two COVID-19 cases on February 27, 2020. Zurich has seen a relatively mild first wave, with 134 

deaths (and 3’785 reported cases) until June 31, 2020. However, the case numbers exploded in 

October, resulting in 460 deaths (and 45’516 reported cases) by December 1, 2020 3, with hospi-

tals working at capacity limit. In order to alleviate the direct consequences of the CoV2 pandemic, 80 

governments and public healthcare agencies need granular and reliable data on the prevalence 

of infection, the incidence of new infections, and the spatial-temporal oscillations of these param-

eters within regions of interest.  

Intuitively, PCR-based diagnostics would seem suitable to fulfill the above criteria. However, prac-

tical experience has shown that this is not the case. The acquisition of representative diagnostic 85 

material for PCR has proven challenging, with deep nasal swabs being difficult to perform, un-

comfortable for patients and potentially hazardous for medical personnel. Accordingly, the sensi-

tivity of PCR diagnostics is often disappointing, with reported false-negative rates of 25% even 

under the best conditions 4.  

Serological assays, on the other hand, address the adaptive immune responses of the host which 90 

are fundamental to limiting viral spread within individuals and populations. While they lag behind 

the viral infection, they can serve as both powerful epidemiological tools as well as useful clinical 

aids. Firstly, antibodies can be easily retrieved from many biological fluids, notably including ve-

nous and capillary blood. Secondly, antibodies typically persist for several months whereas the 

viral load in the upper respiratory tract frequently wanes within weeks 5. Importantly, immunolog-95 

ical assays can be largely automated, and are thus suitable to mass screening of extremely large 

cohorts. 

Although large serological surveys have been carried out in several countries 6–10, there is a lack 

of continuous seroprevalence data. As waning of CoV2 antibodies has been reported in multiple 

instances 11–15, single timepoint serology estimates may yield misleading insights into the true 100 
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extent of CoV2 spread. We, therefore, aimed to investigate the evolution of the CoV2 seropreva-

lence in the canton of Zurich, a particularly low prevalence setting during the first and second 

waves in 2020, using an in-house developed tripartite automated blood immunoassay (TRABI) 

already employed in multiple studies 16–20. Continuous immunosurveys were conducted in a large 

cohort of the University Hospital of Zurich (n=55’814 samples) and blood donors from the Blood 105 

Donation Services of the canton of Zurich (n=16’291), over a period from December 2019 to De-

cember 2020, i.e. prior to the onset of the vaccination campaigns. Apart from assessing the un-

derlying cumulative incidence, we aimed to build a foundation for the subsequent identification of 

sequelae in the clinically well characterized hospital patients. To this end, we have made use of 

available ICD-10 codes and free-text reports to elucidate whether seropositivity is associated with 110 

disease entities beyond those already reported. Finally, we invited serologically tested hospital 

patients to participate in an online health survey to investigate the follow-up health status of se-

ropositive patients post COVID-19, with the first infection dating back more than 500 days (me-

dian). These combined seroepidemiological and nosoepidemiological endeavors, together with 

the close monitoring of ongoing vaccination efforts and variants of concerns (VOCs), are likely 115 

pivotal in enhancing our understanding on how to manage the current as well as future pandemic 

outbreaks.  
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Results 

TRABI: a miniaturized high-throughput ELISA for multiple CoV2 antigens 

Here we assessed the changes in CoV2 seroprevalence in the population of the canton of Zurich 120 

(n=1.5 million) between December 2019 and December 2020. To this end, we developed a tri-

partite automated blood immunoassay (TRABI) utilizing contactless acoustic dispensing 21,22 to 

transfer diluted plasma droplets (2.5 nl) into high-density 1536-well plates (total volume: 3 µl) and 

measuring the IgG response against viral proteins by immunocolorimetry (Fig. 1A and Fig. S1A 

for detailed procedure). 125 

In order to identify the most suitable viral targets for TRABI, we infected Vero cells with wild-type 

CoV2 virus. Cell lysates were then subjected to Western blotting using the plasma of patients with 

confirmed COVID-19 (n=7). The bands corresponding to the S and NC proteins were prominently 

visible in infected cells, but were undetectable in non-infected cells and were suppressed by add-

ing soluble S and NC antigen to the patient plasma before incubation with the Western blot (Fig. 130 

1B). Accordingly, we selected the CoV2 spike protein 23, the receptor binding domain (RBD, amino 

acids 330-532 of the S protein), and the nucleocapsid protein (NC, amino acids 1-419) as target 

antigens for TRABI. Each sample was tested at eight consecutive two-fold dilution points (1:50 to 

1:6’000), and the resulting data were fitted to a sigmoidal curve by logistic regression. The inflec-

tion point (or –log10(EC50)) of each sigmoid was defined as the respective antibody titer.  135 

As reference samples for assay establishment, we utilized a collective of 55 venous plasma sam-

ples drawn at various days post onset of symptoms (dpo) from 27 RT-qPCR confirmed patients 

suffering from COVID-19 and hospitalized at the University Hospital of Zurich (USZ, true positives, 

see Table 1 and Table S1), as well as 90 anonymized USZ samples from the prepandemic era 

(true negatives). We then constructed receiver-operating-characteristics (ROC) curves to assess 140 

the assay quality for each antigen individually. Finally, we created a composite metric that inte-

grates S/RBD/NC measurements using quadratic discriminant analysis (QDA). While each single 

antigen showed excellent discrimination of negatives and positives on samples drawn at ≥14 dpo, 

the compound models outperformed the individual antigen measurements at 7-13 dpo, where the 

emergence of an IgG response is expected to be variable (Fig. 1C, upper panel). We therefore 145 

used the QDA modeling assumptions to infer the prevalence in large cohorts based on the distri-

butional information of true negatives and true positives using information gained from all three 

antigens.  

To benchmark TRABI, we compared the results with a high-throughput assay – at the time of 

testing still under development – at the University of Oxford as well as assays commercialized by 150 
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Roche (Elecsys), DiaSorin, EuroImmun, and Abbott (Fig. 1C, lower panel). This comparative as-

sessment was based on 136 of 146 samples (10 samples were removed from the analysis be-

cause of insufficient sample volume to perform all tests). While all assays displayed 100% spec-

ificity/sensitivity at late time points, TRABI scored best at early time points, also when additionally 

compared to a lateral-flow assay (Fig. S2). When these results were plotted as a function of dpo, 155 

a temporal pattern emerged consistent with the gradual emergence of IgG antibodies within 14 

dpo (Fig. 1D).  

Characterization of cohort used for seroprevalence estimates from December 2019 

to December 2020 

Anti-CoV2 antibodies were measured with TRABI in 66’630 copandemic samples (collected be-160 

tween December 2019 and December 2020), 51’435 belonging to patients of the USZ and 15’195 

to blood donors. On average, we collected and analyzed 3’957 (standard deviation: 1’801) and 

1’169 (standard deviation: 273) samples per month, for USZ and BDS, respectively (Table 1). 

These samples were assigned to 48’561 individuals. 38’526 individuals (79.3%) provided one 

sample, 5’604 individuals (11.5%) two samples, 2’406 individuals (5.0%) three samples, and 165 

2’025 individuals (4.2%) four or more samples; however, maximally one donation per month per 

individual was entering our pipeline. The median age of the USZ patients was 55 (40-68) years 

(Table 1 and Fig. S3A) and 42 (28-54) years of the blood donors (Table 1 and Fig. S3B), which 

was stable over the time span of our measurements for the USZ patients (Fig. S3C) but showed 

deviations for the blood donors, with a decrease in overall age between April and August, 2020, 170 

followed by an increase in age from henceforth (Fig. S3D). The sex distribution in the USZ sample 

was stable over time, with a female/male ratio close to parity (Fig. S3E). The BDS sample con-

tained slightly more men than expected (Fig. S3F). Most of the hospital patients included in this 

study were adult residents of the canton of Zurich (Fig. S4A) and were treated in one of the many 

clinical departments (Fig. S4B), the highest number in Medical Oncology and Hematology, fol-175 

lowed by Cardiology, Infectious Diseases and Hospital Hygiene, Rheumatology, and Gastroen-

terology and Hepatology. The distribution of samples originating from these hospital wards was 

relatively stable over time (Fig. S4C). 5’345 distinct ICD-10 codes were assigned to hospital pa-

tients, of which the 50 most common ones are summarized in Table S2. Within these 50 ICD-10 

codes are many of the common diseases like ‘essential primary hypertension’ (ICD-10: I10.00), 180 

‘type II diabetes mellitus’ (ICD-10: E11.9), or ‘heart failure’ (ICD-10: I50) but also ‘chronic kidney 

disease’ (ICD-10: N18), and ‘malignant melanoma of skin’ (ICD-10: C43). 
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Temporal evolution of the CoV2 epidemic in the greater area of Zurich 

5’475 prepandemic samples collected before December 2019 were used as condition negatives 

(see Table 1) and 154 copandemic (n=78 from USZ, n=76 from BDS, see below) samples, in-185 

cluded in the screen in the same manner as all other copandemic samples, identified as condition 

positives. Their annotation as condition positives was performed post-hoc using USZ and BDS 

databases in the absence of serological data. First, we identified all USZ samples with known 

positive CoV2 RT-qPCR results (n=320). Condition-positive samples (n=78) were defined as 

those with (1) clinically manifest COVID-19 pneumonia and (2) positive RT-qPCR for CoV2 and 190 

(3) venipuncture occurring ≥ 14 days after the positive qPCR to account for seroconversion. To 

avail of condition positives from the cohort of blood donors, 76 samples from convalescent indi-

viduals with PCR-confirmed CoV2 infection recruited for a plasmapheresis study conducted with 

blood donors and part of the same pool of BDS samples sent to us for the seroprevalence study 

were included – these samples were annotated as convalescent individuals post-hoc and were 195 

not used to estimate seroprevalence as they were study-specifically recruited by BDS, unlike all 

other blood donors whose blood was collected during routine blood donation and was then ana-

lyzed in our study. In addition to the QDA-based model that assumes that both the condition-

positive and negative data follow distinct multivariate Gaussian distribution with unequal covari-

ances (Fig. 2A, B), we tested a model based on Gaussian distributions with equal covariances: 200 

linear discriminant analysis (LDA) (Fig. S5A, B). LDA allows to verify the distributional assump-

tions more readily (Fig. S5C, D). Using the distributions of the condition negatives and the condi-

tion positives, we computed the posterior probability (i.e. the probability of an individual to be 

seropositive as modeled via the distribution of the known condition-negatives and known condi-

tion-positives) for all data points. The respective ROC curves were then plotted (Fig. S5E, F). At 205 

100% specificity, we identified 78% of the annotated true positives for the USZ (Fig. S5E) and 

67% annotated true positives for the BDS cohort (Fig. S5F). For both the USZ and the BDS 

cohorts, the sensitivity increased rapidly with a slight decrease in specificity (at a false-positive-

rate of 0.001, we identified 82% condition positives for USZ and 89% for BDS). 

We then applied the QDA-based probability model to estimate the monthly prevalence, from De-210 

cember 2019 to December 2020, using the USZ and the BDS cohorts. No substantial shift above 

baseline was inferred for samples screened until February 2020 (Fig. 2C). In March 2020, the 

USZ-based prevalence increased to 0.5% (95% confidence intervals: 0.3%-0.7%) and to 1.6% 

(CI95%: 1.2%-2.0%) in April 2020, with blood donors displaying a comparable course of serocon-

version, with the prevalence approximating 1.3% in April (CI95%: 1.0%-2.0%). The blood donors 215 
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then reached a first peak in May 2020, with a prevalence of 1.8% (CI95%: 1.3%-2.5%), while the 

USZ patients plateaued. Following an initial decline in June (USZ: 1.0% (CI95%: 0.8%-1.2%), 

BDS: 1.4% (CI95%: 0.6%-2.3%)), the seroprevalence fluctuated at around 0.8% over the course 

of the summer. These summer months were generally characterized by a low reported incidence 

(4,106 new PCR-confirmed cases and 16 COVID-19-associated deaths from July 1 to September 220 

30 in the canton of Zurich 3), until a second wave surged in October. A sharp rise in seropreva-

lence was observed for November (USZ: 4.0% (CI95%: 3.4%-4.5%), BDS: 2.4% (CI95%: 1.5%-

3.2%)) and beginning/mid-December 2020 (USZ: 6.3 (CI95%: 5.5%-7.2%), BDS: 5.1% (CI95%: 

4.2%-6.4%)). 

To assess the technical reproducibility of TRABI, we repeated the assay on 200 and 112 randomly 225 

selected positive and negative samples, respectively. This repeat screen was found to reproduce 

the original TRABI results (R2 = 0.85, Fig. 2D and Fig. S6). 

Antibodies against the RBD of SARS-CoV can bind to the CoV2 RBD 24. We therefore tested 

whether samples with high anti-CoV2-RBD titers display cross-reactivity with SARS-CoV RBD. 

For visualization, we binned samples into groups of absent, moderate and high CoV2 RBD titers 230 

(–log[EC50] < 1.5, 1.5-2, and > 2.5, respectively) and computed their respective QDA-derived pos-

terior probability (same color map as in Fig. 2B). For individuals with CoV2 RBD titers < 2, a small 

fraction showed binding to SARS-CoV RBD at –log(EC50) > 2 (Fig. 2E). However, those with 

strong binding properties to CoV2 RBD (> 2.5) clustered at high values for SARS-CoV RBD, 

indicating that some anti-CoV2 RBD antibodies were cross-reactive to SARS-CoV RBD. 235 

Post-stratification for age and sex and removal of patients admitted because of 

COVID-19. 

We then stratified the seroprevalence data according to age and sex, for both cohorts (Fig. S7A 

for USZ samples and S7B for BDS samples). As the age and sex distributions of the USZ and 

BDS cohorts are not entirely congruent with the distributions within the general population (Fig. 240 

S3A and 3B), we employed a post-stratification on sex and age using distributional information 

from the population of the canton of Zurich (Fig. 3A and 3B). However, this correction led to only 

minor changes (maximal effect observed: 5.1% (CI95%: 4.2%-6.4%) unadjusted versus 4.0% 

(CI95%: 3.1%-5.1%) adjusted for age and sex, for blood donors in December 2020) in the calcu-

lated prevalence, suggesting that the two cohorts appropriately reflect the seroprevalence of the 245 

adult population. 

Additionally, we aimed to assess the extent of a bias posed by patients with severe COVID-19, 

hospitalized at the USZ for this reason. We thus removed patients (1) admitted to the Infectious 
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Disease and Hospital Hygiene or the Internal Medicine wards or (2) with ICD-10 codes J96.00 

(‘Acute respiratory failure’) and U.99.0 (‘Special procedures for testing for CoV2’) from the dataset 250 

and re-evaluated the course of seroprevalence for the cohort of hospital patients. We found that 

COVID-19 patients contribute to the prevalence observed during both the first as well as the sec-

ond wave (Fig. 3C). Yet, the application of post-stratification on age and sex and the removal of 

COVID-19 patients did not change the overall dynamics of seroprevalence. 

Antibody waning and cumulative incidence 255 

The decrease in seroprevalence observed after the peak of the first wave is suggestive of waning 

of antibodies on the population level. The availability of repeated samples from the hospital pa-

tients allowed us to explore the titers individually. Using data from 65 individuals with a posterior 

probability ≥ 0.5 and at least two seroestimates, we observe a decrease of all measurements, 

except for the S protein, over time, including the compound metric (Fig. 3D), in line with a previous 260 

report 25. We then estimated the half-life of the decrease of the antibody titer directly from the 

seroprevalence data, using an extension of the classic Susceptible-Exposed-Infectious-Removed 

(SEIR) model 26. Assuming an average time to seroconversion of 14 days 27–29, an average gen-

eration interval of 5.2 days 30 and an average time from disease onset to death of 20.2 days 31, 

the overall half-life observed on the level of the population is 75 (CrI95% 55-103) days (unad-265 

justed) or 88 (CrI95%: 61-128) days (post-stratification for age and sex), similar to what was re-

ported by others 32. We then computed the cumulative incidence of CoV2, i.e. the seroprevalence 

corrected for antibody waning, for the population of the canton of Zurich (Fig. 3E). The cumulative 

incidence first raised in March and slowly but gradually increased over the summer period, cumu-

lating to 2.3% (CrI95%: 2.0%-2.8%) in June, 2020. A sharp escalation was detectable at the be-270 

ginning of November, mounding in a cumulative incidence of 12.2% (CrI95%: 10.3%-14.6%)) in 

mid-December 2020. This suggests that over 180’000 people had contracted CoV2 until mid-

December 2020 in the canton of Zurich. Thus, the cumulative number of cases detected by PCR 

(55’375 until 13th of December 2020 3) is likely to underestimate the true prevalence by approxi-

mately factor 3 on average. However, the hidden epidemic ratio (i.e. the number of unobserved 275 

cases for each reported case) has changed over time, with a drastic underestimation of cases at 

the time of the first wave, a clearly improved precision around summer 2020, and a significant 

underestimation during the second wave (Fig. S7C). 

Spatiotemporal seromonitoring in USZ patients covering two waves 

We aimed to further depict the evolution of seroprevalence in the canton of Zurich. As we avail of 280 

the zip codes, we first mapped the total number of hospital patients per zip code for the months 
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March-July (first wave) and September-December (second wave) 2020 (Fig. 4A and 4B), only 

considering the fraction of patients from the canton of Zurich (Fig. S4A). We then investigated 

the fraction of seropositive hospital patients over the total number of hospital patients per zip 

code, for above time periods but restricting the analysis to municipalities with at least 50 patients 285 

in total, to avoid statistical variability. In line with the overall increased seroprevalence, we ob-

served more than double the number of municipalities (97) showing a prevalence higher than 2% 

during the second wave, compared to 45 in the first wave (Fig. 4C and 4D). This result is indicative 

of that that the epidemic outbreak in Zurich is not focal but extends throughout the canton, with 

similar rates of increase. The decrease of the fold-change of positive/total cases in the city of 290 

Zurich compared to the rest of the canton of Zurich from the first to the second wave (Fig. S7D) 

is substantiating the observation that after a slightly more localized first outbreak and a remission 

phase, the second wave is characterized by a non-focal spread. 

We have additionally analyzed the data by grouping multiple zip codes together, so that we could 

include all data and did not have to restrict ourselves to at least 50 patients per municipality. While 295 

this approach comes with its own set of technical challenges, it allowed us to ensure that we do 

not miss important information stemming from rural areas with low total patient counts. The results 

we obtained (see Fig. S7E) are consistent with the more rigorous approach detailed above. 

Association with demographic and medical data 

We then investigated the association between CoV2 seropositivity and disease. First, we retrieved 300 

the International Classification of Disease (ICD-10) codes entered by medical encoders of the 

hospital for insurance purposes, along with age and sex. Using multiple logistic regression in a 

Bayesian framework, we found positive associations between seropositivity and ICD-10 codes 

U99.0 (‘Special procedures for testing for CoV2’), J96.00 (‘Acute respiratory failure’), I48.3 (‘Typ-

ical atrial flutter’), U69.0 (‘Pneumonia acquired in the hospital, classified otherwise’), Y82.8 (‘Other 305 

medical devices associated with adverse incidents’), N17.83 (‘Other acute kidney failure’), D64.8 

(Other anemia‘’), E11.91 (‘Type 2 diabetes mellitus without complications’), E87.1 (‘Hypo-osmo-

lality and hyponatremia’), and male sex (Fig. 5A). However, only U99.0 and J96.00 displayed a 

consistently distinct positive association after regularization with horseshoe and LASSO priors. 

Negative associations were found with ICD-10 code Z11 (‘Special procedure to the diagnosis of 310 

infectious and parasite diseases’), while other codes did not persist after regularization and were 

probably spurious. Next, to better account for the hierarchically structured web of ICD-10 codes 

and their interdependencies, we employed a network-based representation 33, aiming to investi-

gate differentially structured nodes in ICD-10 codes, clinical departments, age, and sex, in CoV2-
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seropositive and seronegative USZ patients. We did not identify any distinctive motif of enriched 315 

ICD-10 codes between the seropositive and seronegative patients (Fig. S8A), based on topolog-

ical network scores derived from the Mcode algorithm 34, indicating no greatly altered disease 

networks as a function of a CoV2 infection. Furthermore, nonlinear Uniform Manifold Approxima-

tion and Projection for Dimension Reduction (UMAP), adjusted for binary data using a cosine 

metric as well as principal component analysis (PCA) did not reveal any separate cluster for se-320 

ropositive patients when projecting the variability of the dataset into two-dimensional space, nei-

ther when including sex as a feature alongside ICD-10 codes (Fig. S8B, C) nor upon exclusion 

of female/male sex (Fig. S8D, E). The exclusion of patients without ICD-10 codes did not change 

this, both applying a binary (Fig. S8F) as well as an Euclidean distance metric (Fig. S8G). Lastly, 

in a more targeted analysis, we split our dataset into (1) seropositive COVID-19 patients hospi-325 

talized in the Infectious Diseases or Internal Medicine units (n=240), (2) seropositive patients 

associated with other clinical wards (n=483), and (3) randomly selected seronegative patients 

(n=631), aiming to interrogate the three groups for differences in potential complications of CoV2 

infections recently discussed 17,35–38, in ICD-10 codes as well as in free-text medical reports. As 

control indications, we queried for known risk factors (e.g. type II diabetes, obesity, hypertension, 330 

COPD, chronic kidney disease) for hospitalization and COVID-19 disease severity 39–41 and for 

well-established CoV2 complications (respiratory insufficiency, dyspnea, ARDS, pulmonary em-

bolism, pneumonia).  

While the three groups did not display statistically significant differences (Fisher's exact test, p-

value adjusted for multiple comparisons) in the presence of risk factors, the seropositive COVID-335 

19 patients (group I) differed significantly from the seropositive patients from other clinical wards 

(group II, adjusted p-value<0.0001) and from the seronegative patients (group III, adjusted p-

value<0.0001) in known CoV2-associated diseases, illustrated in Fig. 5B. None of the neurolog-

ical or cardiocirculatory conditions investigated showed significant differences between the 

groups, except for hypertensive diseases that were more prevalent in COVID-19 patients com-340 

pared with seronegative patients (adjusted p-value=0.002). Age classes were slightly different in 

groups I compared to group II (p-value=0.0016, Mann-Whitney U test) but not in any other group-

wise comparison, with a median age of 58 (IQR: 46-66) years, 53 (IQR: 37-65) years, and 54 

(IQR: 39-68) years in the three groups. Male patients were much more prevalent among the se-

ropositive COVID-19 patients (69.6% male versus 30.4% female) than in the two other groups 345 

(Fig. 5B; adjusted p-value < 0.002). 
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Follow-up online health survey to investigate potential post COVID-19 condition 

Even if patients do not experience overt COVID-19-associated pneumonia or other severe symp-

toms during acute infection, CoV2-infected individuals may develop post COVID-19 conditions 42–

45. We invited hospital patients whose blood had been analyzed at least once by TRABI to partic-350 

ipate in a one-time online health survey, conducted from April to May 2022. In 1’354 database 

entries of hospitalized patients (n=723 seropositives with TRABI-based probability ≥ 0.5, n=631 

seronegatives with TRABI-based probability < 0.5), e-mail address was available for 666 allowing 

to send a survey invitation. Of those, 142 consented to participate and completed the question-

naire, of which 136 contained at least some information that could be used for analysis (partici-355 

pation rate 20.4% of invited, 10.0% of total; see Fig. 5C for flowchart and the respective supple-

mentary tables to document partial missingness of data). These 136 participants, of which 54 

(39.7%) were female and 82 (60.3%) were male, had a median age of 55 (IQR: 41-66) years (see 

Table 2 for population characteristics).  

71 individuals (52.2%) had a TRABI-based posterior probability ≥ 0.5 and were considered sero-360 

positive, 65 (47.8%) had a posterior < 0.5 and were considered seronegative. Within the sero-

negative population, 98.4% reported no infection prior to blood sampling, while 53.5% of the se-

ropositive individuals reported a known prior infection (Table S3). At the time of blood sampling, 

the agreement between seropositivity and knowledge of infection was moderate (Cohen’s Kappa 

0.51, percent agreement 74.8%). Over the full timeframe since the start of the pandemic, 77.6% 365 

(52/67) of seropositive individuals and 44.4% (28/65) of seronegative individuals reported an in-

fection up to April/May 2022. To explore the potential effects of CoV2 infection on participants’ 

post COVID-19 health status, we focused on these 80 individuals reporting an infection, using the 

56 individuals without known infection as a comparison. 

Amongst those with known CoV2 infection up to April/May 2022, 81.0% reported one or multiple 370 

symptoms at the time of infection, while 19.0% reported asymptomatic infection; a result that is 

consistent with findings by others 46,47. Cough, fatigue, and fever were the three most frequent 

symptoms that were reported during acute infection (Fig. 5D). We next assessed the time be-

tween the first reported infection and survey completion. The median time since first infection 

dated back 525 (IQR:57-571) days and the time frame included three pandemic peaks (Fig. 5E): 375 

in Spring/Summer 2020 (first WT CoV2 variant wave), in Fall/Winter 2020/2021 (second WT CoV2 

variant wave), and in Winter/Spring 2021/2022 (omicron CoV2 variant wave). 
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The proportion of hospitalized individuals decreased with time (41.7% in Spring/Summer 2020, 

23.5% in Fall/Winter 2020/2021 and 2.9% in Winter/Spring 2021/2022), with diagnosed pneumo-

nia being more frequent in Spring/Summer 2020 (25.0%) than in Fall/Winter 2020/2021 (15.2%) 380 

and Winter/Spring 2021/2022 (3.0%, see Table S4).  

In terms of recovery, 56.9% of the study participants with known infection by April/May 2022 stated 

to have fully recovered to their normal health status (45.5% in infected during first wave in 

Spring/Summer 2020, 61.3% in infected during Fall/Winter 2020/2021, 56.7% in infected during 

Spring 2022). Overall, 9.8% reported that they were still experiencing at least some of the initial 385 

symptoms at the time of survey completion. 90.2% stated that symptoms lasted up to 3 months, 

with no study participant experiencing symptoms lasting between 3 and 6 months. Among those 

infected with WT CoV2, 11.4% reported that they were still experiencing symptoms more than 12 

months after infection. The proportion with ongoing symptoms was comparable between infection 

waves, albeit slightly lower for the omicron wave (10.0% in Spring/Summer 2020, 13.0% in 390 

Fall/Winter 2020/2021 and 7.1% in Winter/Spring 2021/2022). Three individuals (8.3% of those 

with known infection during the first two waves) reported to have been diagnosed with post 

COVID-19 condition (long COVID).  

The prevalence of symptoms within the past seven days (before completing the survey) among 

the previously infected group was highest for fatigue, sleeping problems, reduced performance, 395 

cough, and concentration (Fig. 5F). Meanwhile, when comparing symptom prevalence among 

previously infected with those that had never experienced an infection, cough, gastrointestinal 

symptoms, skin problems, nervousness, myalgia, arthralgia and depression were reported more 

frequently by participants, among others (Fig. 5G, logistic regression, adjusted for age and sex). 

However, these differences did not reach statistical significance, with the exception of cough 400 

(odds ratio = 10.7, p-value = 0.026, adjusted for age and sex). A higher number of participants 

would likely clarify on some of the trends observed here. 

We next asked the patients to report on new medical diagnoses that they have obtained after 

2020. Here, we aimed to find out whether the prevalence of disease classes was fundamentally 

different in patients after infection with CoV2, while using the non-infected group as control. The 405 

most commonly medically diagnosed conditions of those with infection were related to skin, lung, 

thyroid, kidney, and immune system (Fig. 5H), while none of the comparisons with the non-in-

fected group reached statistical significance (logistic regression, adjusted for age and sex). Of 
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note, those who got infected during the first wave displayed a particularly high frequency of neu-

rological diagnoses, and a comparatively low proportion of participants with new medical diagno-410 

ses was observed in those infected during the Winter/Spring 2021/2022 wave. 

Then, we assessed the participants' health status using the EuroQol 5-dimension 5-level instru-

ment (EQ-5D-5L) and the EuroQol visual analogue scale (EQ VAS), where increased EQ-5D-5L 

and EQ VAS scores correspond to increased/better health. Overall, there was no statistically sig-

nificant difference in EQ-5D-5L and EQ VAS scores between individuals reporting a known infec-415 

tion (mean EQ-5D-5L: 0.87, standard deviation (SD): 0.19; mean EQ VAS: 75.00, SD: 15.83) than 

those not infected (mean EQ-5D-5L: 0.81, SD: 0.17, p-value=0.13; mean EQ VAS: 70.30, SD: 

20.88, p-value=0.15; logistic regression, adjusted for age and sex; see Table S5). 

Lastly, we repeated these analyses to compare the longer-term health impacts between individ-

uals with symptoms during acute infection (n=64) and individuals with asymptomatic infection 420 

(n=30). Both symptoms experienced during the last seven days (Fig. 5I) as well as new medical 

diagnoses (Fig. 5J) did not display statistically significant differences between the two groups. 

Similarly, EQ-5D-5L and EQ VAS scores between symptomatic (mean EQ-5D-5L: 0.87, SD: 0.19; 

mean EQ VAS: 77.54, SD: 11.73) and asymptomatic individuals (mean EQ-5D-5L: 0.86, SD: 0.17; 

mean EQ VAS: 69.00, SD: 21.41) did not differ significantly (p-value=0.879 for EQ-5D-5L and p-425 

value=0.02 for EQ VAS; logistic regression, adjusted for age and sex).  Due to the limited sample 

size, the findings regarding symptoms, new medical diagnoses and longer-term health impairment 

need to be interpreted with caution. We found no evidence for a difference in longer-term health 

outcomes between individuals with symptomatic and asymptomatic acute infection. These results 

suggest that post COVID-19 condition, with symptoms lasting longer than twelve months, occurs 430 

in approximately 10%.  

Prevalence of anti-CoV2 antibodies in prepandemic samples 

5’475 prepandemic plasma samples (4’379 USZ patients and 1’096 healthy blood donors) were 

examined for the presence of cross-reactive antibodies against S, RBD and NC of CoV2. Several 

individuals had a strong antibody response against a single antigen and an absence of binding to 435 

other antigens, reflected in a low posterior probability but high –log(EC50) value. We then directly 

compared prepandemic and copandemic samples in the USZ cohort on the basis of single anti-

gens and their respective posterior probabilities. When focusing on samples with high values for 

single assays, we observed an enrichment of high posterior probabilities in pandemic but not in 

the prepandemic group (Fig. 6A). Among samples with individual –log(EC50) values above 2 in 440 

May and June 2020, 76% (S), 80% (RBD), and 22% (NC) had a posterior probability > 0.5. In the 
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prepandemic samples, maximally 1 sample with an individual assay level above 2 had a posterior 

probability above 0.5. This enrichment is suggestive of a substantial performance improvement 

when using the combined metric in the USZ cohort.  

We then compared the immunochemical properties of six prepandemic samples with high binding 445 

to S, RBD or NC to two samples of confirmed COVID-19 (COVID 1 and 2, see annotation in Fig. 

6A). The COVID-19 samples, but not the prepandemic samples, recognized in Western blots the 

S and NC antigens of CoV2 expressed by Expi293F cells maintained as suspension culture (Fig. 

6B). Additional ELISAs performed on the same samples confirmed the initial findings (Fig. 6C) 

including intact binding to the RBD. The discrepancy between ELISA and Western Blot suggests 450 

that the RBD is a highly conformational epitope lost upon boiling and SDS denaturation. 

To further probe the specificity of the findings, we also carried out competitive ELISAs on pre-

pandemic and COVID patients. First, we determined plasma concentrations close to the EC50. 

Then we pre-incubated appropriately diluted samples with various concentrations of S and RBD 

(0.04-88 and 0.7-1350 nM, respectively). Samples were then transferred onto ELISA plates 455 

coated with S, RBD, and NC. The concentration-dependent displacement of the measured optical 

density was then interpreted and categorized into three distinct classes: (1) No binding to the 

target protein, no competition. (2) Binding to the target protein, no competition. (3) Binding to the 

target protein, competition (Fig. 6D). We found that both soluble S and the RBD caused a con-

centration-dependent depletion of the RBD in COVID samples. The S signal could not be depleted 460 

with RBD, indicating the presence of epitopes other than the RBD. One prepandemic sample (#1) 

displayed competition of the S signal with soluble S but not with soluble RBD. Other prepandemic 

samples did not show competition at all, suggesting that their reactivity was due to high concen-

trations of low-affinity antibodies cross-reacting with CoV2 S. 

Identification of seropositives in healthy donors and clonality of anti-S immune re-465 

sponse 

TRABI enabled the identification of 189 CoV2 seropositive blood donors that underwent regular 

blood donation at the blood donation service of Zurich (Fig. 2B, C) despite clear serological indi-

cations of past infection and antibody titers in the same range as those of PCR-confirmed conva-

lescent individuals (Fig. 7A). We assessed IgG and IgA antibodies to S, RBD, and NC as well as 470 

responses to multiple control antigens, in 4 healthy blood donors and 4 convalescent individuals 

recruited to the BDS. We observed binding of IgG antibodies in blood donors and convalescent 

individuals against S, RBD, and NC, with usually lower IgA titers. No binding against the CoV2 

non-structural-protein 1 (NSP1), or against bovine serum albumin (BSA) was observed.  
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To further validate the seropositivity in healthy blood donors, we employed an orthogonal meth-475 

odology which allows antibody/antigen interactions to be probed in solution, without any immobi-

lization of antigens to a surface 18. Samples of CoV2 convalescent individuals, healthy donors 

and controls were preincubated with fluorescently conjugated RBD protein. We then monitored 

the increase in the effective molecular weight of an Alexa647-labelled RBD construct in solution 

upon complex formation with an antibody present in the patient sample. This was achieved by 480 

measuring the associated decrease in its molecular diffusion coefficient upon binding using a 

microfluidic platform. While no change in diffusion coefficient or the associated hydrodynamic 

radius was observed in control samples, all ELISA-positive samples from convalescent and 

healthy donors indicated a clear binding of antibodies to RBD (Fig. 7B). We confirmed these 

findings by using the samples of several healthy blood donors and convalescent individuals as 485 

primary antibodies in Western Blot and detected bands for both S and the NC in the Expi293 cells 

overexpressing the viral proteins but not in the Expi293 control lysate (Fig. 7C).  

To obtain a rough estimate of the clonality and epitope specificity of the immune response raised 

against the S protein, we conducted an ELISA-based soluble antigen competition. Competition 

with the RBD lead to a decrease in ELISA signal for RBD but not for S or NC in both convalescent 490 

individuals and healthy blood donors (Fig. 7D). Conversely, competition with S decreased the 

signal for both S and the RBD, suggesting the presence of antibodies targeting multiple S 

epitopes, including RBD. Therefore, the immune response against S was polyclonal and involved 

multiple viral epitopes. 

 495 
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Discussion 

Using a high-throughput CoV2 serology pipeline, we draw a detailed picture of the evolution of 

CoV2 seroprevalence in a large central-European metropolitan area. If antibody titers were stable 

after infection, the seroprevalence would reflect the entirety of the population infected since in-500 

ception of the pandemic. However, anti-CoV2 titers were found to decay in multiple studies 11–

15,32, with a half-life of approximately 106 (CI95% 89 to 132) days 11, 76 to 156 days 32, and others 

suggesting an even shorter half-life of 26 to 60 days 13. This decrease in titers over time was 

confirmed in neutralization assays, shown in various studies 12,14,15. Indeed, between April and 

July 2020 the prevalence of seropositivity fell by ≈60% in our cohorts, which confirms the waning 505 

of humoral immunity at the population level. Using an extended SEIR model, we estimated that 

the population-wide half-life of seropositivity is 75 (CrI95% 55-103) days (unadjusted seropreva-

lence data) or 88 (CrI95%: 61-128) days (after post-stratification for age and sex). 

If our sampling methodology suffers from systematic errors, the cohorts sampled here may not 

be representative of the population studied. In order to minimize such issues, we surveyed two 510 

non-overlapping cohorts: hospital in- and outpatients and healthy blood donors. Neither cohort 

can be assumed to represent a representative random sample of the population. However, post-

stratification by age and sex led to only minor changes in seroestimates, indicating that our co-

horts are largely representative of the adult population of the canton of Zurich. However, we have 

not investigated the extent of CoV2 spread in children in the canton of Zurich, which was recently 515 

done by others 48. 

The dynamics of the seroepidemiology confirms that the outbreak followed three distinct phases. 

The cumulative incidence rose during the first wave in spring 2020, with 2.3% (CrI95%: 2.0%-

2.8%) having contracted CoV2 by June 2020. There was a modest increase over the summer 

months, followed by a rapid rise in late 2020. We estimate that 10.3-14.6% had undergone an 520 

infection with CoV2 by mid-December 2020.  

Thereby, we could delineate the precise serological status in the population of the canton of Zurich 

in a continuous manner, rather than on single points in time. These estimates of CoV2 antibodies 

were performed on a highly sensitive immunoassay (TRABI) that combines antibody measure-

ments against three CoV2 proteins in a QDA-based compound metric, a system developed in 525 

house. In view of the critique levelled at past serological studies 49,50, we have gone to great 

lengths to assess and validate our technology, using several orthogonal techniques. A recent 

publication 51 has shown pre-existing anti-CoV2 antibodies in unexposed humans. Antibody sizing 
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18,52 and immunoblots, however, point to fundamental differences between prepandemic seroposi-

tivity and the immune responses of CoV2-infected individuals. While the latter consistently 530 

showed high-affinity responses that were clearly visible in Western blotting, the few seropositive 

prepandemic sera were unanimously negative in Western blotting, and equilibrium displacement 

ELISA of one prepandemic plasma sample suggested a much lower affinity despite similar anti-

body EC50 titers. We conclude that any immune response in uninfected individuals, whether it 

represents cross-reactivity with common-cold coronaviruses or something else, is of inferior qual-535 

ity and may less likely be protective. A blinded comparison with commercial test kits showed that 

our approach was suitable for large-scale epidemiologic studies and that the compound metrics 

did indeed lead to a power gain, as shown by the enrichment of samples with high posterior 

probabilities in excess of the single assays during the epidemic. 

The comparably low seroprevalence of CoV2 in the canton of Zurich, in particular during the first 540 

wave, is compatible with other more affected regions, based on the reported IFR, in Switzerland 

53 and in European areas with similar medical infrastructure 54. While some large-scale serological 

surveys performed throughout the globe revealed CoV2 spread slightly exceeding the values we 

observed in Zurich 6,10,55, other studies identified regions with seroprevalence surpassing 50%, 

e.g. in some areas in the Amazonas state in Brazil 11 or in slums in Mumbai, India 56. Yet, since 545 

antibody waning has been reported in multiple instances 10–15,32, discrete seroestimates may re-

flect snapshots of the immunity status of a population at a certain time, rather than the true cu-

mulative case incidence. Conversely, we have accounted for antibody waning, using a model fit 

developed by data obtained through continuous CoV2 seromonitoring. Thereby, we were able to 

derive the cumulative incidence rate for both the first and the second wave of the epidemic in the 550 

canton of Zurich and have shown that the nation-wide antigen testing underestimates the true 

number of CoV2 infections by approximately factor 3, similar to what was found in France 57. 

By now, vaccination campaigns in the canton of Zurich, throughout Switzerland, and in multiple 

places across the globe have rapidly advanced, reaching a stage where novel booster candidates 

(e.g. Moderna mRNA-1273.211 and Pfizer COVID-19 Vaccine, Bivalent (Original and Omicron 555 

BA.4/BA.5), i.e. bivalent booster vaccines), with expected superior activity against many known 

variants of concern, have become available. Yet, the continuous monitoring of the antibody re-

sponse will remain a crucial component to epidemiologically assess the extent of immunity within 

our population over time 58,59, in children as well as in adults. Our TRABI assay may be particularly 

meaningful since we can distinguish between natural infections (eliciting an antibody response 560 
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also against the NC protein) and vaccination-induced immunity (targeting the S protein). Our co-

hort of hospital patients will be further surveyed for the surge of unexpected clinically relevant 

sequalae that may be associated with an infection of CoV2. Initial analyses performed on our 

dataset did not reveal clusters of disease entities associated with CoV2 infection, compared with 

patients with no history of CoV2 seropositivity. Along these lines, our data does not indicate an 565 

increased prevalence of Parkinson’s Disease upon CoV2 infection, an association suggested by 

recent case reports 60–62. Interestingly, male patients were overrepresented in the cohort with se-

vere disease requiring hospitalization although infections seem to be roughly equally distributed 

between female and male. As a clear limitation of our approaches, maladies that do not require 

treatment at a university hospital center may be altogether missed since the patients may be 570 

referred to a practitioner outside the university setting, whereby the occurrence of disease would 

not be entered in the hospital database system. Moreover, pseudonymized, i.e. linked-anony-

mised and de-identified, records of patient data, used for the protection of sensitive information 

from patients, do not allow to gain access to detailed non-parameterized files, such as e.g. full-

text reports including sensitive patient identity-related information, and the presence of a diagno-575 

sis may be missed.  

Meanwhile, we were able to provide additional depth regarding the post COVID-19 health status 

of patients whom we had identified as seropositive using the TRABI assay or who self-reported 

an infection with CoV2 up to April/May 2022 through a standardized online health survey. We 

found that 11.4% of those reporting an infection in the first two pandemic waves (Spring/Summer 580 

2020 and Fall/Winter 2020/2021) still complained about ongoing symptoms after >12 months after 

infection, and 8.3% had received a diagnosis of post COVID-19 condition (‘long COVID’). While 

numbers in the literature cover a wide range of about 14-75% potentially affected by post COVID-

19 condition up to one year after diagnosis 45,63–67, our findings are comparable to those of other 

population-based studies 45,68. Online health survey participants with known infection reported 585 

several symptoms and new medical diagnoses more frequently than those without infection, but 

differences were not statistically significant and no differences in health status (EQ-5D-5L and EQ 

VAS) were observed between these groups. Similarly, no significant differences in long-term out-

comes between individuals with symptomatic and asymptomatic infection were identified, sug-

gesting that the occurrence of post COVID-19 may be independent of symptoms during acute 590 

infection. Yet, these analyses are limited by the participation rate resulting in a relatively small 

sample size. Certain consequences of CoV2 infection – potentially CoV2 clade dependent 20 – 

may take more time to manifest and large numbers of patients may need to be assessed to per-

form solid statistical analyses due to the heterogeneous clinical picture 17,69–71 and the phenotypic 
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heterogeneity of post-acute COVID-19 sequalae 72. Furthermore, it cannot be excluded that se-595 

lection effects or potential residual confounding may have influenced the findings of the survey. 

However, our key findings – emerging from comparisons with a much needed control group 

(‘never infected’) often omitted in observational studies 73 – are consistent with the literature and 

underpin that longer-term symptoms and complications post COVID-19 are an important concern 

for patient care and public health. 600 

Ultimately, as much of a catastrophe as CoV2 has been, we are not immune to future epidemic 

outbreaks of other viral diseases potentially far worse. Yet, a multidimensional, comprehensive, 

i.e. evidence-based understanding of a public health threat, such as CoV2, to which this study 

contributes, may provide crucial epidemiological tools to prevent an epidemic at an early stage, 

to save lives and increase life quality throughout the world. 605 

Limitations 

The enrollment of participants in a prospective observational cohort study, thought to be repre-

sentative for the entire population, presents a set of challenges 74,75. While avoiding the conven-

tional enrollment bias 76 (which may have been particularly important in 2020), we made use of 

surplus samples collected for routine diagnostics (‘cross-departmental university hospital patient 610 

cohort’) and blood donations (‘cohort of healthy blood donors’). Limitations inherent to our prag-

matic study design 77 relying on ‘further use’ of biospecimens were addressed where appropriate, 

e.g. by adjusting the age and sex distribution of the study collective to the adult population of the 

canton of Zurich. The congruency between hospital patients and blood donors has boosted our 

confidence that these results provide an accurate picture of the cumulative incidence in the pop-615 

ulation of the canton of Zurich in the time frame reported. The conclusions drawn from the follow-

up health survey conducted in April/May 2022 are limited most importantly by the sample size. 

However, the observation that post COVID-19 condition, with symptoms lasting longer than twelve 

months, occurs in approximately 10%, is consistent with recent reports employing alternative en-

rollment schemes 45,68. 620 
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Resource availability 625 

Lead contact 

Further information and requests for resources should be directed to and will be fulfilled by the 

lead contact, Marc Emmenegger (marc.emmenegger@usz.ch). 

Materials availability 

Small amounts of the biological samples can be shared if available, upon reasonable request, 630 

and if an approval by an ethics committee as well as an MTA is in place. 

Data  and code availability 

• Specific data sets can be shared upon reasonable request and if an approval by an ethics 

committee as well as a data transfer agreement is in place. 

• Code used in this study is publicly available on Zenodo 81 and the DOIs are listed in the 635 

key resources table. 

• Any additional information required to reanalyse the data reported in this paper is available 

from the lead contact upon request. 

Experimental model and subject details 

Ethics statement 640 

All experiments and analyses involving samples from human donors were conducted with the 

approval of the ethics committee of the canton Zürich, i.e. Kantonale Ethikkommission Zürich 

(KEK-ZH-Nr. 2015-0561, BASEC-Nr. 2018-01042, and BASEC-Nr. 2020-01731), in accordance 

with the provisions of the Declaration of Helsinki and the Good Clinical Practice guidelines of the 

International Conference on Harmonisation. All human donors and patients included in this study 645 

provided a written general or informed consent. The concept and development of the written gen-

eral consent in the light of technical advancement and the growth of large data and sample re-

positories, and its distinction to the standard informed consent is nicely elaborated in Griessbach 

et. al. 82. 

Study design and sampling 650 

The seroepidemiological survey of CoV2 infection in the greater area of Zurich is a population-

based study to investigate the temporal evolution of seropositivity for CoV2 in two independent 
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cohorts. We made use of surplus plasma samples from inpatients and outpatients admitted to the 

University Hospital of Zurich (USZ) collected daily (Monday-Friday) and used for population-wide 

interrogations of the antibody repertoire 83. For the CoV2 seroprevalence study, we included 4’379 655 

samples prior to December 2019 (prepandemic samples) and 51’435 samples from December 

2019 to December 2020 (copandemic samples). The criteria for our study to include a sample 

into the analysis were: (1) The patients’ blood was sent to the Institute of Clinical Chemistry (at 

USZ), (2) there was enough residual heparin plasma (150 µl) for the automated generation of a 

research aliquot, (3) no aliquot from the same patient was already provided within the same 660 

month, (4) additional information (age, sex, clinical ward to which patient was admitted) was avail-

able. Point (3) led to the exclusion of 415 samples and point (4) to the exclusion of 30 samples 

for the calculation of the seroestimates. While not being completely representative for the entire 

population of the canton of Zurich sensu stricto, we have selected this patient cohort due to the 

depth of available medical data that will allow to trace long-term effects of CoV2 infections from a 665 

clinical stance. At the same time, many of the hospital patients are among the most susceptible 

within a population and are thus in need of substantial monitoring. 

Similar to others 11,84–87, we have investigated CoV2 IgG seroprevalence of a healthy adult popu-

lation, complementing the hospital patients, in blood donors of the Blood Donation Service of the 

Canton of Zurich. Overall, 16’291 samples (thereof 1’096 prior to December, 2019) from blood 670 

donors who consented to further use of their samples for research were randomly selected every 

month (on average: 1’170 samples/month from December 2019 to December 2020) and sent 

from the blood donation service to Neuropathology. The criteria to be admitted for blood donation 

are in line with international standards of blood donation services, see 88. Blood donors with a 

confirmed CoV2 infection are excluded from donating blood for four weeks, following the full re-675 

mission of symptoms. Blood donors have to be at least 18 years of age, weigh at least 50 kg, and 

feel healthy. In order to be included for blood donation, donors have not undergone a substantial 

surgery or pregnancy/birth in the past 12 months, have not been subjected to dental treatments 

in the past 72 hours, and have not received foreign blood since 01.01.1980. Moreover, the inclu-

sion mandates that blood donors have not been to an area at risk of malaria or another region 680 

with a high prevalence of infectious diseases. Blood donors are only admitted if they have not 

been tattooed or acquired a permanent make-up in the past four months. A positive test for HIV, 

syphilis, hepatitis C or B leads to a definite exclusion. Additionally, blood donors are excluded if 

they have had new sexual partners within the last four months and if they display sexual risk 

behavior. Lastly, donors have not been to the England, Wales, Scotland, Northern Ireland, Isle of 685 

Man, Channel Islands, Gibraltar or to the Falkland Islands for more than six months between 1980 
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and 1996. Blood donors over age 65, until maximally age 75, can continue donating blood if they 

have donated blood earlier (the last, complication-free donation has to date back no longer than 

two years) and the health survey does not indicate any particular health risk. The detailed inclu-

sion and exclusion criteria are enumerated here 89. In total, 72’250 samples from 54’153 individ-690 

uals were included in the seroprevalence estimation study. The USZ cohort was characterized by 

a median age of 55 (IQR: 40-68) years and a female:male ratio of 47:53. The BDS cohort was 

characterized by a median age of 42 (IQR: 28-54) years and a female:male ratio of 41:59. A 

cohort used for establishment of the serological assay (TRABI) was characterized by a median 

age of 62 (52-70) years and a female:male ratio of 37:63. Details are provided in Table 1. 136 695 

individuals previously included in the seroprevalence estimation and part of the USZ collective 

were included in the follow-up health survey conducted in 2022. This cohort was characterized 

by a median age of 55 (IQR: 41-66) years and a female:male ratio of 40:60 (see Table 2). 

Sample annotation and identification of condition positives 

Specimens were denoted according to the following conventions: prepandemic samples: samples 700 

collected before December 2019; COVID samples: samples from patients with clinically and/or 

virologically confirmed CoV2 infection; copandemic samples: any samples collected in December 

2019 or thereafter. 

Within the entire collective of copandemic samples (n=66’630, after subtraction of the 55 samples 

from individuals used for assay establishment and not included for the seroprevalence estimation, 705 

see Table 1), we identified condition positives, post-hoc, i.e. after performing the high-throughput 

serological screening. To be considered a condition positive, the following criteria needed to be 

fulfilled, (a) for USZ: (1) clinically manifest COVID-19 pneumonia and (2) positive RT-qPCR for 

CoV2 and (3) venipuncture occurring ≥ 14 days after the first positive qPCR to account for sero-

conversion. (b) for BDS: Blood donors of the BDS with (1) PCR-confirmed CoV2 infection and (2) 710 

convalescent survivors of COVID-19 recruited for a plasmapheresis study conducted with blood 

donors and part of the same pool of BDS samples sent to us for the seroprevalence study. Im-

portantly, while the condition positives from USZ (n=78) are part of the collective used for the 

estimation of seroprevalence in the USZ sample, the condition positives from BDS (n=76) are not 

part of the same collective and are not counted for seroprevalence estimation; as mentioned, BDS 715 

recruited convalescent donors outside the regular blood donation activities and the inclusion of 

specifically recruited COVID-19 survivors would have biased the seroprevalence estimation. The 
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condition positives (n=154), together with the condition negatives (n=5’475) were used for mod-

elling the seroprevalence (see section QDA, LDA, and Prevalence estimation), both for USZ as 

well as for BDS individually. 720 

Method details 

High-throughput serological screening 

In order to test the samples for the presence of IgG antibodies directed against CoV2 antigens, 

high-binding 1536-well plates (Perkin Elmer, SpectraPlate 1536 HB) were coated with 1 µg/mL S 

or RBD or NC in PBS at 37 °C for 1 h, followed by 3 washes with PBS-T (using Biotek El406) and 725 

by blocking with 5% milk in PBS-T (using Biotek MultifloFX peristaltic pumps) for 1.5 h. Three µL 

plasma, diluted in 57 µL sample buffer (1% milk in PBS-T), were dispensed at various volumes 

(from 1200 nL down to 2.5 nL) into pre-coated 1536-well plates using contactless dispensing with 

an ECHO 555 Acoustic Dispenser (Labcyte/Beckman Coulter). Sample buffer was filled up to 3 

uL total well volume using a Fritz Gyger AG Certus Flex dispenser. Thereby, dilution curves rang-730 

ing from plasma dilutions 1:50 to 1:6000 were generated (eight dilution points per patient plasma 

sample). After the sample incubation for 2 h at RT, the wells were washed five times with wash 

buffer and the presence of IgGs directed against above-defined CoV2 antigens was detected 

using an HRP-linked anti-human IgG antibody (Peroxidase AffiniPure Goat Anti-Human IgG, Fcγ 

Fragment Specific, Jackson, 109-035-098, at 1:4000 dilution in sample buffer). The incubation of 735 

the secondary antibody for one hour at RT was followed by three washes with PBS-T, the addition 

of TMB, an incubation of three minutes at RT, and the addition of 0.5 M H2SO4 (both steps with 

Biotek MultifloFX syringe technology). The final well volume for each step was 3 µL. The plates 

were centrifuged after all dispensing steps, except for the addition of TMB. The absorbance at 

450 nm was measured in a plate reader (Perkin Elmer, EnVision) and the inflection points of the 740 

sigmoidal binding curves were determined using the custom designed fitting algorithm described 

below. The secondary antibodies we have used were tested and validated previously 20 and rep-

licability as well as influence of different sample types (e.g. serum and heparin plasma) on the 

TRABI have already been reported 17,20. 

Counter screening using commercial and custom-designed platforms 745 

We used the following commercial tests for the detection of anti-CoV2 antibodies in 55 plasma 

samples of 27 patients who were diagnosed by RT-PCR  to be infected by CoV2 as well as 83-

90 plasma samples which were collected before December 2019 and, hence, before the start of 

the COVID-19 pandemics: The double-antigen sandwich electro-chemiluminescence immunoas-
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say from Roche diagnostics (Rotkreuz, Switzerland) was performed with the E801 of the CO-750 

BAS8000® system (Roche diagnostics, Rotkreuz, Switzerland). The test detects any antibody 

against the nucleocapsid antigen. The fully automated LIAISON® CoV2 chemiluminescence im-

munoassay from DiaSorin (Saluggia, Italy) detects IgG against the S1/S2 antigens. The CoV2 

chemiluminescent microparticle immunoassay from Abbott (Abbott Park, IL, USA) detects IgG 

against the nucleocapsid antigen and was performed on an Architect™ analyser. Two ELISAs 755 

from EUROIMMUN (Lübeck, Germany) detect IgA or IgG against the S1 antigen and were per-

formed by the use of a DSX™ Automated ELISA System (DYNEX Technologies (Chantilly, VA, 

USA). The high-throughput serology assay in Oxford (under development) was carried out in the 

Target Discovery Institute, University of Oxford. High-binding 384-well plates (Perkin Elmer, Spec-

traPlate) were coated with 20 µL of 2.5 µg/mL S o/n at 4°C, followed by 3 washes with PBS-T and 760 

by blocking with 5% milk in PBS-T for 2 h. Blocking buffer was removed and 20 µL of 1:25 sera 

diluted in sample buffer (1% milk in PBS-T) was dispensed into S-coated wells then incubated for 

2 h at RT.  The wells were washed five times with wash buffer and the presence of IgGs directed 

against S was detected using an HRP-linked anti-human IgG antibody (Peroxidase AffiniPure 

Goat Anti-Human IgG, Fcγ Fragment Specific, Jackson, 109-035-098) at 1:50,000 dilution in 20 765 

µL sample buffer. The incubation of the secondary antibody for one hour at RT was followed by 

three washes with PBS-T and the addition of QuantaRed™ Enhanced Chemifluorescent HRP 

Substrate Kit (Thermo Scientific, Waltham Massachusetts, USA) then incubated for four minutes 

at RT before the addition of the stop solution. The fluorescence at excitation/emission maxima of 

~570/585nm was measured in a fluorescent plate reader (Perkin Elmer, EnVision). 770 

Protein production 

The proteins were produced and purified at different sites in Zurich (CH), Oxford (UK), Lausanne 

(CH), and Yale University (USA). 

Oxford, SGC. Recombinant proteins were purified as reported previously with small modifications 

90,91. Mammalian expression vectors containing secreted, codon-optimized CoV2 S (pHL-Sec 92; 775 

aa. 1-1208, C-terminal 8His-Twin-Strep) and RBD (pOPINTTGNeo; aa. 330-532, C-terminal 6His) 

were transiently transfected with linear PEI into Expi239TM cells cultured in roller bottles in Free-

Style 293 media. Cell culture media was harvested after 3 days at 37°C for RBD or 3 days at 

30°C for Spike and then buffered to 1X PBS. Proteins were first pulled down on Ni2+ IMAC Se-

pharose® 6 Fast Flow (GE) with stringent washing (>50 CV with 40 mM imidazole). RBD was 780 

polished on a Superdex 75 16/600 column (GE) equilibrated with 1X PBS, while Spike was directly 
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dialyzed into 1X PBS using SnakeSkinTM 3,500 MWCO dialysis tubing. Proteins were concen-

trated with VivaSpin® centrifugal concentrators, centrifuged at 21,000 x g for 30 min to remove 

precipitates, and flash frozen at 1 mg/mL 

Lausanne, EPFL SV PTECH PTPSP and Zurich UZH. The prefusion ectodomain of the CoV2 785 

S protein (the construct was a generous gift from Prof. Jason McLellan, University of Texas, Aus-

tin; see 91) was transiently transfected either into suspension-adapted ExpiCHO cells (Thermo 

Fisher) or Expi293F (Thermo Fisher) cells with PEI MAX (Polysciences) in ProCHO5 medium 

(Lonza). After transfection, incubation with agitation was performed at 31°C and 4.5% CO2 for 5 

days.  The clarified supernatant was purified in two steps; via a Strep-Tactin XT column (IBA 790 

Lifesciences) followed by Superose 6 10/300 GL column (GE Healthcare) and finally dialyzed into 

PBS. The average yield was 15 mg/L culture.  

Yale, New Haven. Human codon optimized SARS-CoV (2003) RBD (pEZT containing H7 leader 

sequence; aa. 306-527, C-terminal Avi- and 8His tags) was transiently transfected into Expi293TM 

cells (Thermo Fisher) using the ExpiFectamineTM 293 Transfection kit (Gibco) according to the 795 

manufacturer’s instructions. Cells were cultured in a 37˚C incubator with 8% humidified CO2 for 4 

days after transfection. Culture supernatant was collected by centrifugation (500 x g for 10 

minutes) and RBD was captured using Ni-NTA Superflow resin (Qiagen), washed, and eluted in 

buffer containing 50 mM Tris-HCl pH 8, 350 mM NaCl, and 250 mM imidazole. RBD was further 

purified using an ENrichTM SEC 650 column (Bio-Rad) equilibrated in 1X PBS (Thermo Fisher). 800 

Peak fractions were pooled and the protein concentration was determined by 280 nm absorbance 

with a NanodropTM One Spectrophotometer (Thermo Fisher). Protein was snap frozen in liquid 

nitrogen and shipped on dry ice prior to experiments. 

Zurich, ETH. NSP1 carrying an N-terminal His6-tag followed by a TEV cleavage site was ex-

pressed from a pET24a vector. The plasmid was transformed into E. coli BL21-CodonPlus (DE3)-805 

RIPL and cells were grown in 2xYT medium at 30 °C. At an OD600 of 0.8, cultures were shifted 

to 18 °C and induced with IPTG to a final concentration of 0.5 mM. After 16 h, cells were harvested 

by centrifugation, resuspended in lysis buffer (50 mM HEPES-KOH pH 7.6, 500 mM KCl, 5 mM 

MgCl2, 40 mM imidazole, 10% (w/v) glycerol, 0.5 mM TCEP and protease inhibitors) and lysed 

using a cell disrupter (Constant Systems Ltd). The lysate was cleared by centrifugation for 45 min 810 

at 48.000 xg and loaded onto a HisTrap FF 5-ml column (GE Healthcare). Eluted proteins were 

incubated with TEV protease at 4 °C overnight and the His6-tag, uncleaved NSP1 and the His6-

tagged TEV protease were removed on the HisTrap FF 5-ml column. The sample was further 

purified via size-exclusion chromatography on a HiLoad 16/60 Superdex75 (GE Healthcare), 
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buffer exchanging the sample to the storage buffer (40 mM HEPES-KOH pH 7.6, 200 mM KCl, 815 

40 mM MgCl2, 10% (w/v) glycerol, 1 mM TCEP). Fractions containing NSP1 were pooled, con-

centrated in an Amicon Ultra-15 centrifugal filter (10-kDa MW cut-off), flash-frozen in liquid nitro-

gen, and stored until further use at -80 °C.  

Details of viral proteins used for this study. For high-throughput serology, the following pro-

teins were used: CoV2 S (pHL-Sec; aa. 1-1208, C-terminal 8His-Twin-Strep) and RBD 820 

(pOPINTTGNeo; aa. 330-532, C-terminal 6His) produced at the SGC in Oxford and the nucle-

ocapsid protein from AcroBiosystems (AA Met 1 - Ala 419, C-terminal his-tag, NUN-C5227). For 

competitive ELISA, we used: The prefusion ectodomain of the CoV2 S protein (Lausanne, EPFL 

SV PTECH PTPSP), the RBD from Trenzyme (C-terminal his-tag, P2020-001) and the nucle-

ocapsid protein from AcroBiosystems (AA Met 1 - Ala 419, C-terminal his-tag, NUN-C5227). For 825 

additional ELISAs following the high-throughput serology, we used: The prefusion ectodomain of 

the CoV2 S protein (Lausanne, EPFL SV PTECH PTPSP), the RBD from Trenzyme (C-terminal 

his-tag, P2020-001), the nucleocapsid protein from AcroBiosystems (AA Met 1 - Ala 419, C-ter-

minal his-tag, NUN-C5227), the CoV2 NSP1 protein (from Nenad Ban, ETH Zurich), the CMV 

pp65 protein (Abcam, ab43041), and BSA (Thermo Scientific). 830 

Assay validation 

High-throughput validation screen. For the validation screen, we picked 60 and 150 samples 

from BDS and USZ, respectively, that had the high average values when summing -logEC50 for 

both Spike and RBD. Additionally, we added 52 and 70 randomly selected prepandemic samples 

for the BDS and the USZ cohort respectively. We supplemented the three antigens used in the 835 

first screen (NC, S, RBD of SARS-COV2) with a SARS-CoV RBD antigen. Unlike for the primary 

screen, we ran all samples in duplicates spread over two independent plates. 

Western Blotting. Expi293F cells were obtained as a gift from Prof. Maurizio Scaltriti (Memorial 

Sloan Kettering Cancer Center, New York). Non transfected control cells and cells overexpressing 

either His-tagged S, His-tagged NC or His-tagged RBD domain were lysed in 0,1% Triton X-840 

100/PBS. Total protein content in the cellular fraction was quantified using bicinchoninic protein 

assay (Pierce BCA Protein Assay Kit, ThermoFisher).  For Western Blotting, 30 µg of ECD-ex-

pressing lysate, 10 µg of NC-expressing lysate and 10 µg of RBD-expressing lysate were loaded 

all in the same well of NU-PAGE 4-12% Bis-Tris gels (ThermoFisher). 50 µg of non-transfected 

cell lysate were loaded as negative control. Gels were run at a constant voltage (150 V) in MES 845 

running buffer for 50 minutes, then transferred onto PVDF membrane with a dry transfer system 

(iBlot 2 Gel Transfer Device, ThermoFisher). The membranes were blocked with 5% SureBlock 
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(Lubio Science) for 1 hour at room temperature, and then incubated overnight with a 1:100 dilution 

of patients’ plasma in 1% SureBlock, at 4 degrees. The day after, membranes were washed four 

times with PBS-T and incubated for 1 hours with an anti-human secondary antibody, HRP-conju-850 

gated, diluted 1:10000 in 1% SureBlock. The membranes were then washed four times with PBS-

T and acquired using Immobilon Crescendo HRP Substrate (Merck Millipore) and Fusion SOLO 

S imaging system (Vilber). As a positive control, one membrane was incubated overnight with 

mouse anti-Histag antibody (ThermoFisher, dilution 1:10000 in 1% SureBlock) and subsequently 

with anti-mouse secondary antibody, HRP-conjugated (Jackson, dilution 1:10000 in 1% Sure-855 

Block). 

384-well ELISA using multiple antigens. High-binding 384-well plates (Perkin Elmer, Spec-

traPlate 384 HB) were coated with 20 µL 1 µg/mL WT SARS-CoV-2 S (Lausanne, EPFL SV 

PTECH PTPSP), RBD (Trenzyme), NC (AcroBiosystems), BSA (ThermoScience), CMV pp65 

(abcam, #ab43041), or NSP1 (Zurich, ETH) in PBS at 37 °C for 1 h, followed by 3 washes with 860 

PBS 0.1% Tween-20 (PBS-T) using Biotek El406 and by blocking with 40 µL 5% milk in PBS-T 

for 1.5 h. Serum samples were diluted in sample buffer (1% milk in PBS-T) and a serial dilution 

(range: 0.005 – 3x10-7) was carried out (volume: 20 µL/well). After the sample incubation for 2 h 

at RT, the wells were washed five times with wash buffer and the presence of IgGs or IgAs di-

rected against above-defined antigens was detected using an HRP-linked anti-human IgG anti-865 

body (Peroxidase AffiniPure Goat Anti-Human IgG, Fcγ Fragment Specific, Jackson, 109-035-

098, at 1:4000 dilution in sample buffer) or HRP-linked anti-human IgA antibody (Goat anti-Human 

IgA (Heavy chain) Secondary Antibody, HRP, 31417, ThermoFisher Scientific, at 1:750 dilution in 

sample buffer), 20 µL/well. The incubation of the secondary antibody for one hour at RT was 

followed by three washes with PBS-T, the addition of TMB, an incubation of five minutes at RT, 870 

and the addition of 0.5 M H2SO4. The plates were centrifuged after all dispensing steps, except 

for the addition of TMB. The absorbance at 450 nm was measured in a plate reader (Perkin Elmer, 

EnVision) and the inflection points of the sigmoidal binding curves (pEC50 values of the respective 

sample dilution) were determined using the custom designed fitting algorithm referred to earlier. 

The pEC50 values for all samples and antigens was visualized using the ggplot2 package in R. 875 

The HRP-linked antibodies used have previously been validated in depth, see 20. 

Competitive ELISA. To perform competitive ELISAs, high-binding 384-well plates (Perkin Elmer, 

SpectraPlate 384 HB) were coated with 1 ug/mL S or RBD or NC in PBS at 37 °C for 1 h, followed 

by 3 washes with PBS-T and by blocking with 5% milk in PBS-T for 1.5 h. Meanwhile, plasma 

samples were diluted to a final concentration close to the EC50, incubated with either RBD (50 880 
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ug/mL) or S (12.5 ug/mL) and serially diluted (11 dilution points per patient sample, 25 uL per 

dilution) in low-binding 384-well plates (Labcyte 384 PP plates). After 2 h of incubation at RT, 20 

uL of all the samples were transferred to the previously coated plates and incubated for additional 

2 h at RT. Then, the plates were washed five times with PBS-T and the presence of IgGs was 

detected using an HRP-linked anti-human IgG antibody (Peroxidase AffiniPure Goat Anti-Human 885 

IgG, Fcγ Fragment Specific, Jackson, 109-035-098, at 1:4000 dilution in sample buffer). The in-

cubation of the secondary antibody for one hour at RT was followed by three washes with PBS-

T, the addition of TMB, an incubation of 5 minutes at RT, and the addition of 0.5 M H2SO4. The 

absorbance at 450 nm was measured in a plate reader (Perkin Elmer, EnVision). Data were in-

terpreted and the following qualitative categories were assigned: (1) No binding to target protein, 890 

no competition. (2) Binding to target protein, no competition. (3) Binding to target protein, compe-

tition. 

Microfluidic diffusional sizing. For the microfluidic binding measurements, 40% of human 

plasma was added to 10 nM antigen and PBS was added to give a constant volume of 20 µL. The 

antigen used was RBD labelled with Alexa Fluor 647 through N-terminal amine coupling. These 895 

samples were incubated at room temperature for 40 minutes and the size, hence molecular weight 

of the formed immunocomplex, was determined through measuring the hydrodynamic radius, Rh, 

with microfluidic diffusional sizing 18,20,52,93 using a Fluidity One-W platform (Fluidic Analytics, Cam-

bridge, UK). Following correction of fluorescence intensities for serum autofluorescence, the frac-

tion, fd, of RBD to diffuse into the distal channel is defined by: 900 

 

𝑓𝑑 =
[𝐴𝑏𝑅](1 − 𝜌𝑏) + ([𝑅]0 − [𝐴𝑏𝑅](1 − 𝜌𝑓))

[𝑅]0
 

 

Where [AbR] is the concentration of bound RBD, [R]0 is the total concentration of RBD, and ρb  

and ρf are the fractions of bound and free RBD to diffuse into the distal channel, respectively. 905 

Quantification and statistical analysis 

Analysis of data derived from high-throughput serological screen  

Data fitting. Eight-dilution points equally spaced on a logarithmic scale are fitted with an equation 

derived from a simple binding equilibrium. The inflection point (-log10EC50) is extracted from the 

fit. Baseline and plateau values are fixed by the respective positive and negative controls in a 910 

plate-wise fashion and the signal is fitted following these equations: 
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𝑐𝑏𝑜𝑢𝑛𝑑 = 1 −
1

2
(𝑐𝑎𝑐 + 𝑘𝑑 + 1 − √(𝑐𝑎𝑐 + 𝑘𝑑)

2 + 2(𝑘𝑑 − 𝑐𝑎𝑐) + 1)  , 

where cbound , ca and c are concentration of the antigen-antibody, antigen, and blood concentration 

respectively. 

ODsignal = 𝑐𝑏𝑜𝑢𝑛𝑑 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑝𝑙𝑎𝑡𝑒𝑎𝑢) + 𝑝𝑙𝑎𝑡𝑒𝑎𝑢 915 

Data preprocessing. Imagine a sample whose physical dilutions (from 1:50 to 1:6’000) do not 

show deviations in measured signal, i.e. are a straight line in the range of the negative control 

(absence of antibody binding independent of the dilution). The data fitting process enforces a 

sigmoid onto the data, resulting in a –log10EC50 value, no matter what the actual shape of the data 

might be. –log10EC50 values derived from near-straight lines are biologically meaningless when 920 

being three orders of magnitude above the non-diluted sample. Importantly, while this means that 

no samples/values were excluded from seroprevalence measurement, samples for which one or 

multiple (against S and/or against RBD and/or against NC) –log10EC50 values were below 3 auto-

matically had a posterior probability of 0. This approach was cross-validated by rescaling the –

log10EC50 values of affected samples to 0, yielding a posterior probability of < 0.1 in all instances. 925 

In total 82’130 –log10EC50 values were categorized as such. None of these sample has been used 

to train the QDA- or LDA-based TRABI model. Importantly, this means that no samples/values 

were excluded from seroprevalence measurement but that samples for which one or multiple –

log10EC50 values were below 3 had a posterior probability of 0. 

QDA, LDA, and Prevalence estimation. Assume that we have data for 𝑚 samples with known 930 

serostatus and antibody measurements, that is, we have (𝑋𝑖 , 𝑌𝑖), 𝑖 = 1, . . , 𝑚, where 𝑋𝑖 is the vector 

of size 𝑝 (in our case our antigen measurements) and 𝑌𝑖 is a Boolean variable defining group 

membership (in our case, whether the individual is seropositive or not). The QDA model assumes 

multivariate normal distributed 𝑋𝑖 given 𝑌𝑖: 

 935 

(𝑋|𝑌 = 𝑗)~𝒩𝑝(𝜇𝑗 , Σ𝑗), 

 

where j=0,1 is indexing the seropositivity state. Further, the model assumes that the prior, that is, 

distribution of 𝑌𝑖  , is known s. t. 𝑃[𝑌 = 𝑗] = 𝜋𝑗. The quadratic discriminant classifier simply assigns 

each sample to the group which has the larger posterior 𝑃[𝑌|𝑋], which is proportional to the joint 940 

probability 𝑃[𝑌, 𝑋]. Therefore, we assign sample 𝑖 to group 1 if  

 

log (𝑓𝑥|𝑦=1(𝑥𝑖)) +  log (𝜋1) > log (𝑓𝑥|𝑦=0(𝑥𝑖)) +  log (𝜋0), 
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and to group 0 otherwise. To set the prior, one option is to take the proportion of serostatus group 945 

membership in the dataset for which serostatus is known. However, this is not an ideal option in 

our case, where we have an additional 𝑛 samples with unknown serostatus to classify: The prev-

alence in the 𝑚 samples with known serostatus might deviate substantially from the prevalence 

in population with unknown serostatus. We therefore estimate 𝜋1directly from the data of unknown 

serostatus using a simple expectation maximization scheme. Proceeding in an iterative fashion, 950 

from a given estimate 𝜋1
𝑘, we define the posterior (E step): 

 

𝑡1
𝑘(𝑥𝑖) =

𝜋1
𝑘𝑓𝑥|𝑦=1(𝑥𝑖)

𝜋1
𝑘𝑓𝑥|𝑦=1(𝑥𝑖) + (1 − 𝜋1

𝑘)𝑓𝑥|𝑦=0(𝑥𝑖)
. 

 

Then, we update our estimate of 𝜋1 (M step): 955 

 

𝜋1
𝑘+1 = ∑

𝑡1
𝑘(𝑥𝑖)

𝑚

𝑖=𝑚

𝑖=1

, 

 

where m is the number of samples, i.e. the updated seropositive proportion prior is the average 

of the current estimates of posterior probabilities to be seropositive. After convergence, this yields 960 

our estimate of the positive serostatus prevalence in the samples. Note that the sample ordering 

according to this classifier is independent of the prior and therefore has no impact on an analysis 

via ROC curves. Further, note that evaluating QDA via ROC analysis, an out of sample scheme 

should be employed to avoid biased estimates of performance; we chose 10-fold cross-validation 

throughout, where the samples with known seropositivity status were split in 10 folds ensuring 965 

that known/condition positive and negative samples were distributed evenly across the folds. For 

each fold, the model was fitted on the data in the 9 remaining folds (and the data with unknown 

seropositivity status to derive the priors). Then, the estimated model parameters were applied to 

estimate the posterior probabilities of the samples in the left-out fold. Lastly, note that the strategy 

does not critically depend on the normality assumption but just requires an estimate for the density 970 

functions, 𝑓𝑥|𝑦=𝑗(𝑥𝑖). Even nonparametric estimates could be an option.  

For the LDA approach, we first collapse the antigen measurements per samples according to the 

linear discriminant classifier: 
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𝑧𝑖 = 𝑥𝑖
𝑇Σ0(𝜇1 − 𝜇0), 

 975 

Where Σ0 is the covariance estimated from the known negatives only and 𝜇1, 𝜇0 are the means 

of the known positives (condition positives) and known negatives (condition negatives) respec-

tively. The above algorithm is then applied on the resulting one dimensional variable 𝑧𝑖. 95% 

confidence intervals were derived by bootstrap drawing 1000 bootstrap samples, where the num-

ber of samples drawn from each annotation group (known positives/condition positives, known 980 

negatives/condition negatives and unannotated) was kept constant. All available known seroneg-

ative (i.e. prepandemic), known seropositive and samples with unknown serostatus were used in 

bootstrapping (see Table 1 for detailed listing). 

Epidemiological modelling 

Post-stratification of age and sex with distributional information of population of canton 985 

of Zurich. We adjusted the estimates for differences in age and sex between the population of 

the canton of Zurich and the samples of individuals hospitalized at UZH or blood donors using 

inverse probability weighting. The data for the population of the canton of Zurich were obtained 

from the statistical services of the canton of Zurich. 

Antibody waning and cumulative incidence. Without presuming the effects of antibody waning 990 

on immunity to CoV2 re-infection, it is important to account for it when estimating the infection 

attack rate or cumulative incidence from seroprevalence data. To this aim, we propose an exten-

sion to the classic SEIR model where the R compartment (R for removed) in the classical formu-

lation is split in 3: (1) Compartment R represents the subgroup of population that is removed from 

infectiousness and did not seroconvert yet. (2) Compartment A (for antibody) represents the sub-995 

group of population that is removed from infectiousness and did seroconvert. (3) Compartment W 

(for waning) represents the subgroup of population that is removed from infectiousness and 

whose antibodies waned. The model thus assumes the following form: 

 

𝑆
𝛽(𝑡)𝑆𝐼
→    𝐸

𝜎𝐸
→ 𝐼

𝛾𝐼
→ 𝑅

𝜆𝑅
→ 𝐴

𝜏𝐴
→ 𝑊, 1000 

 

where S stands for susceptible, E for exposed, I for infectious, and β, σ, γ, λ, and τ are rates. We 

select a rate λ of 1/14 days for seroconversion (14 days on average from R to A, see 27–29), and 

estimate the rate of antibody waning (τ) from data. The model also assumes an average genera-

tion interval of 5.2 days 30, and an average time from disease onset to death of 20.2 days 31. We 1005 
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include a time-varying transmission factor by month, β(t), with smooth transitions handled by lo-

gistic switch functions. The model is fitted to seroprevalence data from USZ and BDS jointly, and 

to weekly mortality data from canton of Zurich with an infection fatality ratio fixed over time with a 

prior distribution set to 0.5% (95% central range: 0.2 to 1.0%) 54. The model was fitted in a Bayes-

ian framework using Stan 80, by which the 95% credible intervals were computed through MCMC 1010 

sampling. From the fitted model we can estimate the rate of antibody waning (or its half-life, i.e. 

log(2)/τ, in days) as well as the infection attack rate/cumulative incidence corrected for antibody 

waning at any time point (1-S(t)), see Fig. 3E. We additionally investigated antibody decay longi-

tudinally. Over the study period, 65 individuals with a posterior probability of seropositivity above 

0.5 had a second measure of SARS-CoV-2 antibodies later. We used a hierarchical linear regres-1015 

sion model in Stan to assess the decrease of each -log10(EC50) S, RBD, NC, and the compound 

QDA-based posterior measurement (on the logit scale), see Fig. 3D. 

Exploratory correlation analysis of CoV2 seropositivity with ICD-10 codes using Bayesian 

logistic regression. We explored associations between the posterior probability of a positive 

serology in individuals consulting at USZ and medical conditions as measured by the ICD-10 1020 

codes entered by the medical encoders for health insurance-related purposes. Whenever availa-

ble, ICD-10 codes were extracted from our clinical data warehouse for all patients included in this 

study. Up to 100 different ICD-10 codes per case were annotated in a pivot table. We considered 

only the highest posterior probability for patients with multiple samples (some of which may be 

negative in the beginning and turn positive later on), and ICD-10 codes entered at any point. We 1025 

limited the analysis to ICD-10 codes present in more than 0.1% of cases, to avoid overinterpreta-

tion of rare events. The analysis was thus focused on 37’382 individuals and 199 variables, in-

cluding age, sex and 197 ICD-10 codes. We used multiple logistic regression after logit-trans-

forming the posterior probability. We placed ourselves in a Bayesian framework and conduct the 

analyses in the R package rstanarm 94. We started with standard regression, using uninformative 1030 

priors on regression coefficients (Normal(0,10)). With this large number of covariates, the esti-

mates were, as expected, very noisy and basically unusable. We thus used regularization tech-

niques (Bayesian LASSO and regularized horseshoe priors, see 95,96). We then showed the top 

ten positive or negative associations between ICD-10 codes and posterior probability of CoV2 

seropositivity (odds ratio with 95% credible interval), see Fig. 5. 1035 

Investigation of feature dissimilarity between seropositive and seronegative patients using 

linear and nonlinear dimensionality reduction mechanisms. The same dataset as described 

above (Bayesian logistic regression) was subjected to dimensionality reduction, with the following 
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deviations: (1) Age was not included as a feature. (2) Seropositivity was defined as posterior 

probability ≥ 0.5. PCA. PCA was carried out using the default implementation in the R stats pack-1040 

age (prcomp) and data was visualized using the factoextra package (https://cran.r-pro-

ject.org/web/packages/factoextra/index.html). UMAP. The following UMAP configuration param-

eters from the umap package in R (https://CRAN.R-project.org/package=umap) were used, all of 

which are default, except for the metric where cosine was used instead of Euclidean due to the 

binary nature of the data (n_neighbors: 15, n_components: 2, metric: cosine, n_epochs: 200, 1045 

input: data, init: spectral, min_dist: 0.1, set_op_mix_ratio: 1, local_connectivity: 1, bandwidth: 1, 

alpha: 1, gamma: 1, negative_sample_rate: 5, a: NA, b: NA, spread: 1, random_state: NA, trans-

form_state: NA, knn: NA, knn_repeats: 1, verbose: FALSE, umap_learn_args: NA). UMAP data 

was plotted using ggplot2 in R. The plots are shown in Fig. S8. 

Exploratory network analysis of ICD-10 codes, clinical departments, age, and sex for sero-1050 

positive and seronegative patients. Topological networks have been constructed using the Cy-

toscape version 3.8.2 (https://cytoscape.org), to visualize the patient-ICD-10 code relationship on 

the network level 33 and topological similarities between seropositive and seronegative USZ pa-

tients have been scored using the Mcode algorithm 34. ICD-10 codes were depicted as purple 

rectangles, male patients as diamonds and female patients as circles. The serological status is 1055 

encoded in red (seropositive) and blue (seronegative), see Fig. S8. A force directed layout was 

employed to represent the network. 

Assessing potential complications of CoV2 infection in three patient groups using ICD-10 

codes and free-text medical reports. Reports on complications of CoV2 infections beyond the 

classical COVID-19 pneumonia have accumulated over the past years. To investigate whether a 1060 

CoV2 infection is associated with diseases that have not been linked to the virus so far, we first 

split our dataset into (1) seropositive COVID-19 patients hospitalized in the Infectious Diseases 

or Internal Medicine units (n=240, group I), (2) seropositive patients associated with other clinical 

wards (n=494, group II), and (3) randomly selected seronegative patients (n=635, group III). 

Group I likely reflects the cases hospitalized because of COVID-19, while group II is comprised 1065 

of USZ patients that likely did not require hospitalization due to COVID-19 and some of the pa-

tients in this group may have been asymptomatic or paucisymptomatic. Our SQL databases con-

taining ICD-10 codes and free-text medical reports were then queried individually for the three 

groups, using the following disease classes/conditions: 1) CoV2-related diseases. ICD-10 codes: 

J80, U69.0-!, J96%. Free text: ARDS, COVID-19-Pneumonie, respiratorische Insuffizienz, Dysp-1070 

noe, Lungenembolie. 2) Risk factors for severe disease/hospitalization 39–41. Free-text: Diabetes 

Jo
urn

al 
Pre-

pro
of

https://cran.r-project.org/web/packages/factoextra/index.html
https://cran.r-project.org/web/packages/factoextra/index.html
https://cran.r-project.org/package=umap
https://cytoscape.org/


36 

 

mellitus, Diabetes, Obesity, Herz-Kreislauf, Obesität, Hypertonie, COPD, Arrythmie, Arrythmia, 

chronische Nierenerkrankung, ischämische, Übergewicht, chronische Atemwegserkrankung, Blu-

thochdruck, Herzfehler, Herzversagen, chronic kidney disease. 3) Mixed neurological/neuropsy-

chiatric 35. Free-text: Fatigue, Müdigkeit, Geschmack, Geruch, Verwirrung, Schwindel, Mood, Psy-1075 

chose, Enzephalitis, microbleed, Schlaganfall, Enzephalopathie, Delir, Epilepsie. 4) Extrapyram-

idal and movement disorders, therein Parkinson’s Disease. ICD-10: G20, G21, G22, G23, G24, 

G25, G26. Free-text: Parkinson, Dystonie, extrapyramidal, Chorea. 5) Inflammatory diseases of 

the central nervous system, therein encephalitis. ICD-10: G00, G01, G02, G03, G04, G05, G06, 

G07, G08, G09. Free-text: Enzephalitis, Enkephalitis, Enzephalomyelitis, Phlebitis, Meningitis, 1080 

Myelopathie. 6) Demyelinating diseases of the central nervous system, therein multiple sclerosis. 

ICD-10: G35, G36, G37. Free-text: Multiple Sklerose, Demyelinisation, Demyelinisierung, 

Hirnsklerose. 7) Hypertensive diseases. ICD-10: I10, I11, I12, I13, I15. Free-text: essentielle 

Hypertonie, Bluthochdruck, Hypertensive Herzkrankheit, Hypertensive Nierenkrankheit. 8) 

Ischemic heart diseases. ICD-10: I20, I21, I22, I23, I24, I25. Free-text: Angina pectoris, Myokar-1085 

dinfarkt, ischämische Herzkrankheit. 9) Pulmonary heart disease and diseases of pulmonary cir-

culation. ICD-10: I26, I27, I28. Free-text: Lungenembolie, Lungeninfarkt, pulmonale Herzkrank-

heit, Thromboembolie. 10) Other forms of heart disease. ICD-10: I30, I31, I32, I33, I34, I35, I36, 

I37, I38, I39, I40, I41, I42, I43, I44, I45, I46, I47, I48, I49, I50, I51, I52. Free-text: Perikarditis, 

Perikarderguss, Endokarditis, Mitralklappenkrankheit, Pulmonalklappenkrankheit, Trikuspi-1090 

dalklappenkrankheiten, Pulmonalklappenkrankheiten, Kardiomyopathie, Atrioventrikulärer Block, 

kardiale Erregungsleitungsstörungen, Herzstillstand, Paroxysmale Tachykardie, Vorhofflimmern, 

kardiale Arrythmie, Herzinsuffizienz. 11) Cerebrovascular diseases. ICD-10: I60, I61, I62, I63, 

I64, I65, I66, I67, I68, I69. Free-text: Subarachnoidalblutung, Intrazerebrale Blutung, Schlaganfall, 

Aneurysma, Hämorrhagie. 12) Diseases of arteries. ICD-10: I70, I71, I72, I73, I74, I77, I78, I79. 1095 

Free-text: Aortenaneurysma, periphere Gefäßkrankheiten, Arterielle Embolie und Thrombose. 

13) Diseases of veins. ICD-10: I80, I81, I82, I83, I85, I86, I87, I88, I89. Free-text: Thrombophle-

bitis, Pfortaderthrombose, sonstige venöse Embolie und Thrombose, Ösophagusvarizen, 

Varizen, Sonstige Venenkrankheiten, Lymphadenitis, Krankheiten der Lymphgefäße und 

Lymphknoten. 14) Other and unspecified disorders of the circulatory system. ICD-10: I95, I97, 1100 

I98, I99. Free-text: Hypotonie. The entries were then inspected and multiple entries per patient 

for a single disease class/condition were reduced into a single entry, to avoid overrepresentation 

of a single patient. The number of occurrences of unique patients per disease class/condition 

were then counted and assembled in a contingency table, with number of patients present for a 

given disease class/condition and with number of patients absent for a given disease class, for 1105 
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the three groups. Pairwise comparisons were then carried out whereby the data distribution of 

group I was compared to group II, group I to group III, and group II to group III, for above disease 

classes/conditions as well as for sex. This resulted in overall 3 x 15 comparisons. Statistical test-

ing was performed using Fisher’s exact test, with significance α at 0.01. P-values ≤ 0.01 were 

then corrected for multiple comparison using p-value adjustment 97 where the p-value was multi-1110 

plied by the number of comparisons performed (i.e. 45). Statistical testing of age was performed 

using Mann-Whitney U test in GraphPad Prism. Data was visualized with GraphPad Prism as 

frequencies, i.e. the number of occurrence divided by the total number for each group and each 

disease class/condition. 

Mapping the evolution of seroprevalence in two waves according to municipality in the 1115 

canton of Zurich. The maps of the canton of Zurich were produced using zip code (PLZ) infor-

mation of the USZ patients (based on their residency) binned by month for purposes to conserve 

anonymity. The seroprevalence map (Fig. 4C and D) displays the ratio of positive versus negative 

patient samples for each zip code in a given time trace. A threshold of minimally 50 samples per 

zip code was set in order to minimize statistical fluctuations due to under-sampling a region. This 1120 

threshold of 50 samples has been made arbitrarily as a tradeoff between the representativity for 

each zip code and having enough municipalities to represent the sample provenance within the 

canton of Zurich. In addition, and in order to be able to evaluate any discrepancy, a second map 

displaying the number of samples analyzed per zip code (independent of seropositivity) has been 

created (Fig. 4A and B). The representation of the first six and last six months of the year 2020 1125 

has been made in order to compare the evolution of the distribution of seropositivity in the canton 

of Zurich, between the first and second wave. However, the maps may display significantly lower 

values than at the seroprevalence peaks as they are averaged over several months. Moreover, 

we have considered grouping the zip codes together to overcome the limitation of minimally 50 

samples per zip code. However, the choice of groups is not trivial, and creates another new bias. 1130 

The most obvious choice would be to employ a similar population per area but this solution is not 

straightforward as the population data is provided for municipalities, and not by a zip code. Nev-

ertheless, a second map consisting of arbitrary groups of zip codes has been made in order to 

make sure we will not miss important information stemming from rural low-number areas (see 

Fig. S7E). The border of the area of the city of Zurich is surrounded by a dense red line while the 1135 

zip codes contained within the canton of Zurich, at the border to another canton, is displayed with 

a lighter orange line. Limitation of the zip code as representation of the canton of Zurich: A single 

unique zip code in Switzerland can be shared between several cantons. As the information col-

lected are represented by the zip code, the map generated can partially include municipalities 
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that belong to a canton other than Zurich. These parts are small, however, except for two regions 1140 

(Baar, Neuhausen am Rheinfall). These two regions contain an urban area belonging to cantons 

other than Zurich (Zug, Schaffhausen respectively) and most likely do not solely represent the 

Zurich area assigned to this zip code. The following document from the Swiss federal statistical 

office 98 has been used to find the zip code corresponding to the canton of Zurich; the zip codes 

5462 and 8363 have been manually added in order to complete the zip code corresponding to 1145 

the canton of Zurich. The geographical borders corresponding to the zip code border has been 

taken from the Swiss federal office of topology swisstopo 99. We have moreover calculated the 

averaged seropositivity rate of the city of Zurich (its boundaries are outlined in red in Fig. 4 and 

in Fig. S7E) and the regions of the Canton not within the city limits (outside the zone framed in 

red colour, see Fig. 4) binned by 3 months and evaluated the ratio between them (see Fig. S7D). 1150 

The analyses and the visualization were conducted in Python. 

Online health survey  

The online health survey was conducted using electronic questionnaires through the REDCap 

software (https://www.project-redcap.org/). The survey questions are provided here 81 within the 

codebook; they include questions related to specific symptoms experienced in the 7 days prior to 1155 

completing the questionnaire, relative health status, the EuroQol 5-dimension 5-level (EQ-5D-5L) 

and the EuroQol visual analogue scale (EQ VAS) instruments. To calculate EQ-5D-5L health 

state scores, the value set of the Netherlands was applied in lack of a corresponding value set 

from Switzerland. Questionnaires could be filled in German or English language. Invitations were 

sent to potential participants via email by the Clinical Trial Centre at the USZ. All study participants 1160 

provided electronic consent prior to their participation in the health survey. The implementation of 

the online health survey was approved by the responsible ethics committee of the canton of Zurich 

(BASEC-Nr. 2018-01042). Data was collected between 13 April 2022 and 30 May 2022 and a 

reminder was sent on 03 May 2022 to all participants who had not participated before that date. 

Data from 142 participants was collected. Data from six individuals was removed from analysis 1165 

as the survey form was almost entirely incomplete, resulting in a final analysis dataset consisting 

of 136 individuals. The participation rate was thus 20.4% for those invited via e-mail. While this 

participation rate may likely be comparable to other surveys, the limited participation may be ex-

plained by several factors: (1) we contacted participants by e-mail only, (2) we contacted partici-

pants several months after their last healthcare contact, (3) patients of our University Hospital 1170 

may have a higher baseline morbidity interfering with filling the questionnaires, (4) potential fatal 

events that may have meanwhile occurred in several patients, (5) expected and known language 
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barriers (the invitations to and the survey were available in German and in English but many of 

our hospital patients speak e.g. Albanian, Portuguese, French, Italian, Turkish, Ethiopian, or Tamil 

and other Dravidian languages). We attempted to minimize any selection bias by making the 1175 

survey as accessible and short as possible, using simple language, and by sending a reminder 

e-mail to those invited. It cannot be ruled out that some selection has still occurred. However, it 

is unclear if this would bias the results towards higher (hospital patients with higher morbidity & 

age included) or lower (younger patients with higher digital literacy included) estimates of post 

COVID-19 condition. We included all participants that included sufficient data that allowed the 1180 

assessment of at least part of the outcomes from the survey reported in the manuscript (i.e., 

current health and prior infection status). For most variables, there was little missingness (<5%) 

in the questionnaires. Tables 2 and S3-S5 report any missing data. 

Data was analysed in R 4.2.0 using descriptive statistics and multivariable logistic regression 

models adjusted for age and sex.  1185 
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Data and code availability 

• Specific data sets can be shared upon reasonable request and if an approval by an ethics 1190 

committee as well as a data transfer agreement is in place. 

• Code used in this study is publicly available on Zenodo 81 and the DOIs are listed in the 

key resources table. 

• Any additional information required to reanalyse the data reported in this paper is available 

from the lead contact upon request. 1195 
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Figure Legends 1595 

Fig. 1.  Study overview and establishment of serological pipeline. A. To estimate the preva-

lence of CoV2 seropositivity in the population, prepandemic and copandemic samples from two 

independent cohorts were analyzed by high-throughput microELISA (TRABI). IgG titers against 

S, RBD and NC were determined and the -log(EC50) was inferred by regression analysis. B. Vero 

cells infected with CoV2 (lane 2), but not uninfected cells (lane 1), showed signals corresponding 1600 

to S (black arrow) and NC (blue arrow, pointing at two bands) when immunoblotted with COVID-

19 patient plasma. NC protein undergoes a proteolytic cleavage in SARS-CoV infected VeroE6 

cells, resulting in two distinct bands of around 46 and 43 kDa. We confirmed the identity of the 

two bands by probing with an anti-NC antibody (Sino Biologicals, data not shown). Spiking of 

COVID-19 patient plasma with recombinant S and NC led to the disappearance of all signals. 1605 

C. Upper panel: Using 53 samples from confirmed CoV2 patients and 83 prepandemic samples, 

we assessed the specificity-sensitivity relationship for all antigens individually and after combining 

all results into a single score (TRABI) using QDA-based posterior probability. Between 7 and 13 

dpo, approximately 60% of samples were positive (posterior probability >0.5) at 100% specificity 

cutoff, whereas 100% sensitivity was reached at ≥ 14 dpo. Lower panel: COVID and prepandemic 1610 

samples were used to assess the performance of TRABI, commercial tests (Roche, DiaSorin, 

Abbott, Euroimmun) and an assay developed at the Target Discovery Institute (Oxford). While all 

tests scored equally at ≥14 dpo, TRABI outperformed all other assays at ≤13 dpo. D. Time course 

of IgG response in 55 samples from 27 COVID patients. IgG antibodies were reliably detectable 

at ≥13 dpo. Colors represent individual patients. 1615 

 

Fig. 2. Evolution of CoV2 prevalence in a cohort of Zurich University Hospital (USZ) pa-

tients and donors from the blood donation service (BDS). A-B. Inflection points of dilution 

curves, denoted -log(EC50), of plasma titrated against S and RBD in the USZ and BDS cohorts. 

Posterior probabilities were calculated using QDA assuming a multivariate Gaussian distribution. 1620 

C. Prevalence of CoV2 seropositivity in prepandemic (before December 2019) and co-pandemic 

samples (from December 2019 to December 2020) estimated using the posterior probabilities 

from the multivariate Gaussian distribution (QDA). Bar: 95% confidence intervals (CI). D. TRABI 

reproducibility was assessed using duplicates run in pairs of independent assay plates. E. To 

assess potential cross-reactivity of CoV2 seropositive individuals, we tested 200 high-scoring 1625 

samples and 112 random samples for binding to the RBD of SARS-CoV. CoV2 RBD binders with 

Jo
urn

al 
Pre-

pro
of



54 

 

a high posterior probability (same color maps as in B) segregated within the higher anti-SARS-

CoV-RBD titers. 

 

Fig. 3. Post stratification and antibody waning.  1630 

A. Seroprevalence in USZ patient cohort after post-stratification on age and sex using the age 

and sex distributions of the canton of Zurich. Bar: 95% confidence intervals. B. Seroprevalence 

in BDS cohort after post-stratification on age and sex using the age and sex distributions of the 

canton of Zurich. Bar: 95% confidence intervals. C. Seroprevalence in USZ patient cohort after 

removal of patients hospitalized because of COVID-19, for both raw seroprevalence and sero-1635 

prevalence data after post-stratification on age and sex. Bar: 95% confidence intervals. D. Anti-

body waning observed with longitudinal sampling. E. Dynamics of SARS-CoV-2 seroprevalence 

data in USZ and BDS samples between February and December 2020. The seroprevalence is 

shown in grey (median and 95% CrI). The corresponding model-predicted cumulative incidence, 

or infection attack rate (IAR), is shown in light blue, with highlighted values on June 1 and De-1640 

cember 1. 

 

Fig. 4. Seroprevalence maps for municipalities in the canton of Zurich. A. Samples of hos-

pital patients residing in Zurich sorted according to zip codes. Data from January 2020 to June 

2020, including first wave. B. Samples of hospital patients residing in Zurich sorted according to 1645 

zip codes. Data from July 2020 to December 2020, including second wave. C. Seropositive sam-

ples of hospital patients residing in Zurich sorted according to zip codes. Data from January 2020 

to June 2020, including first wave. D. Seropositive samples of hospital patients residing in Zurich 

sorted according to zip codes. Data from July 2020 to December 2020, including second wave. 

C and D: Only municipalities with at least 50 samples/zip code are displayed. The border of the 1650 

area of the city of Zurich is surrounded by a dense red line while the municipalities contained 

within the canton of Zurich, at the border to another canton, are displayed with a lighter orange 

line. 

 

Fig. 5. Exploratory analysis of CoV2 seropositivity with ICD-10 codes and free-text medical 1655 

reports. A. Multiple logistic regression after logit-transforming the posterior probability in a Bayes-

ian framework. Shown is the odds ratio with 95% credible interval. B. Group-wise frequencies 

(number of counts divided by total per group) of different disease classes/conditions. Fisher’s 

exact test was performed to test for deviations from expected frequencies. Male patients were 
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much more prevalent among the seropositive COVID-19 patients (69.6% male versus 30.4% fe-1660 

male) than in the two other groups, at statistical significance (adjusted p-values < 0.002). Hyper-

tensive diseases were more prevalent in COVID-19 patients compared with seronegative patients 

(adjusted p-value = 0.002). P-values were adjusted for the number of comparisons conducted 

(i.e.45) using post-hoc p-value adjustment 97. C. Flowchart for the inclusion of serologically tested 

individuals participating in the follow-up online health survey in April/May 2022. A total of 136 1665 

individuals provided informed consent and filled the electronic questionnaire, among which 80 

reported a known CoV2 infection up to questionnaire completion. D. Frequency of symptoms re-

ported by online health survey participants reporting a symptomatic infection prior to April/May 

2022 (n=64). E. Date of first infection reported by online health survey participants with a known 

infection prior to April/May 2022 (n=80, 2 participants with missing date). Three pandemic waves 1670 

were reflected in the data: Spring/Summer 2020 (first wildtype CoV2 wave), Fall/Winter 

2020/2021 (second wildtype CoV2 wave) and Winter/Spring 2021/2022 (omicron CoV2 wave). F. 

Proportion of online health survey participants reporting to have experienced within the last seven 

days prior to questionnaire completion, stratified by prior infection status and pandemic wave 

during which the infection occurred. G. Odds ratio of experiencing specific symptoms within the 1675 

last seven days prior to questionnaire completion in the group of online health survey participants 

with reported known prior infection compared to the group of participants without known infection, 

based on multivariable logistic regression models adjusted for age and sex (central estimate: 

odds ratio, error bars: 95% confidence interval (95%CI)). H. Proportion of online health survey 

participants reporting having received a new medical diagnosis after 2020, stratified by prior in-1680 

fection status and pandemic wave during which the infection occurred. I. Proportion of online 

health survey participants reporting to have experienced within the last seven days prior to ques-

tionnaire completion, stratified by symptoms during acute infection. J. Proportion of participants 

reporting having received a new medical diagnosis after 2020, stratified by symptoms during 

acute infection. Adjusted p-values ≤ 0.01: *. Adjusted p-values ≤ 0.001: **. Adjusted p-values ≤ 1685 

0.0001: ***. 

 

Fig. 6. Characterization of prepandemic samples. A. Posterior probability were calculated as-

suming a Gaussian distribution and visualized for individual antigens (S, RBD and NC) for pre-

pandemic samples vs. copandemic USZ samples drawn in May and June 2020. Prepandemic 1690 

samples exhibited a low posterior probability as they typically reacted against single antigens, 

leading to low rankings in a composite metric. For further testing, comparative samples were 
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chosen from the prepandemic era and from May and June 2020. Arrows point to samples of 

individuals used in (B), (C), (D). P1-6: prepandemic 1-6; C1-2: COVID1-2. B. Western Blot anal-

ysis of two samples from May/June 2020 (“COVID 1” or C1 and “COVID 2” or C2) and several 1695 

prepandemic samples (P1-6). Anti-his-tag antibody was included as a positive control. Lane 1 = 

non-transfected Expi293F cell lysate; Lane 2 = Expi293F cell lysates expressing his-tagged S, 

NC and RBD proteins. Black arrows: S; blue arrows: NC; purple arrow: RBD. The molecular 

weights (in kDa) are depicted on the left side and refer to the bands shown in all blots. C. ELISA 

assays on the same samples as in B, using CoV2 S, NC, RBD and NSP1 as well as control 1700 

proteins (BSA, CMV pp65), shown in the form of a heatmap where the -log(EC50) of the sample 

dilution is depicted. D. Competition assays were carried out in the same samples as in B and C. 

Competition (C) was performed with S (0.04-88 nM) or RBD (0.7-1350 nM) and plates were im-

mobilized (I) with S, RBD, or NC. Data from duplicates is depicted using the following qualitative 

categories: No binding to target protein, no competition (orange). Binding to target protein, no 1705 

competition (yellow). Binding to target protein, competition (turquoise). Soluble antigens sup-

pressed the ELISA signal in the COVID samples but not in the prepandemic sample (except for 

P1 where soluble S competed the immobilized S), showing that the antibodies present in the latter 

had lower affinities for CoV2 targets. 

 1710 

Fig. 7. Assay validation in solution and clonality of anti-S immune response. A. ELISA as-

says of healthy blood donors vs. convalescent individuals depicted as heatmap. The -log(EC50) 

depicts the sample dilution at which half-maximum binding occurs. S, RBD, and NC are strongly 

bound by both healthy donors (HDs) as well as convalescent (Conv) individuals. B. Microfluidic-

based assessment of binding between an Alexa 647-labelled RBD antigen and antibodies in so-1715 

lution. No change in diffusion coefficient or the associated hydrodynamic radius was observed in 

control samples, while all ELISA-positive samples from convalescent and healthy donors indi-

cated a clear binding of antibodies to RBD, confirming the ELISA-based results. Shown are mean 

+ standard error (SE). C. Western Blot analysis of the same individuals tested in (A). Lane 1 = 

non-transfected Expi293F cell lysate; Lane 2 = Expi293F cell lysates expressing his-tagged S, 1720 

NC and RBD proteins. Black arrows: S. Blue arrows: NC. The molecular weights (in kDa) are 

depicted on the left side and refer to the bands shown in all blots. D. Competitive ELISA using 

RBD or S for soluble competition with antibodies in plasma from the same individuals as in (A) 

and (C). Data is depicted using the following qualitative categories: Binding to target protein, no 

competition (yellow). Binding to target protein, competition (turquoise). Competition (C) with S or 1725 
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RBD did not change the signal upon immobilization (I) with NC, while competition with S resulted 

in a decrease in signal upon immobilization with S as well as with RBD. Conversely, competition 

with RBD only competed signal when immobilized with RBD, not with S, indicating the presence 

of antibodies against S domains other than RBD. 

  1730 

Jo
urn

al 
Pre-

pro
of



58 

 

Tables 

 

  
Assay estab-

lishment 

USZ co-

hort 
BDS cohort All cohorts 

Total 

Samples, number 145 55814 16291 72250 

Individuals, number 117 37745 16291 54153 

Mean samples/month (SD) / / / / 

Median age (IQR), years / 55 (40-68) / / 

Sex, female % / 47 / / 

Sex, male % / 53 / / 

Copandemic 

Samples, number 55 51435 15195 66685 

Individuals, number 27 33366 15195 48588 

Mean samples/month (SD) / 3957 (1801) 1169 (273) / 

Median age (IQR), years 62 (52-70) 55 (40-68) 42 (28-54) / 

Sex, female % 37 47 41 / 

Sex, male % 63 53 59 / 

Prepandemic 

Samples, number 90 4379 1096 5565 

Individuals, number 90 4379 1096 5565 

Mean samples/month (SD) / / / / 

Median age (IQR), years / 54 (39-68) / / 

Sex, female % / 48 / / 

Sex, male % / 52 / / 

 

Table 1. Characterization of total, copandemic, and prepandemic samples and individuals 

used in TRABI screening for assay establishment as well as for the seroprevalence esti-1735 

mation using the USZ and the BDS cohorts. Among the copandemic samples, n=78 samples 

were annotated as condition positives for USZ and n=76 samples for BDS. The USZ condition-

positive samples are part of the seroprevalence estimation while for BDS, the condition-positives 

are not counted owing to a separate recruitment scheme (see study design for details). 
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Individuals, number 136 

Median age (IQR), years 55 (41 to 66) 

Sex, female 54 (39.7%) 

Sex, male 82 (60.3%) 

 

Table 2. Population characteristics of serologically tested individuals participating in the 

online health survey. Indicated are the number of individuals, their median age with interquartile 

range (IQR), and the number and percentage of individuals of female or male sex. 
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• We continuously assessed SARS-CoV-2 seroprevalence in two cohorts (n=72’250). 

• Modelled cumulative incidence was 3 x higher than suggested by PCR-based testing. 

• On the population level, antibody half-life was 75 days. 

• 10% of individuals maintained symptoms one year post COVID-19. 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Goat anti-human IgG, 1:4000 
Jackson 109-035-098; RRID: 

AB_2337586 

Goat anti-human IgA, 1:750 
Thermo Fisher 

Scientific 

31417; RRID: 

AB_228253 

Chemicals, peptides, and recombinant proteins 

WT SARS-CoV-2 Spike ECD Oxford, SGC N/A 

WT SARS-CoV-2 RBD Oxford, SGC N/A 

WT SARS-CoV-2 NC AcroBiosystems NUN-C5227 

WT SARS-CoV-2 Spike prefusion ECD 

Lausanne, EPFL SV 

PTECH PTPSP and 

Zurich, UZH 

N/A 

WT SARS-CoV-2 RBD Trenzyme P2020-001 

WT SARS-CoV-2 NSP1 Zurich, ETH N/A 

CMV pp65 Abcam ab43041 

Bovine serum albumin (BSA) Thermo Fisher 

Scientific 

23209 

SARS-CoV (2003) RBD Yale, New Haven N/A 

Critical commercial assays 

SARS-CoV-2 nucleocapsid test on E801 of the 

COBAS8000® system 

Roche diagnostics N/A 

LIAISON® SARS-CoV-2 chemiluminescence 

immunoassay 

DiaSorin N/A 

SARS-CoV-2 chemiluminescent microparticle 

immunoassay on an Architect™ analyser 

Abbott N/A 

IgA or IgG against the SARS-CoV-2 S1 antigen on 

DSX™ Automated ELISA System 

EUROIMMUN and 

DYNEX 

N/A 

High-throughput serology assay in Oxford (under 

development) 

Final version of assay 

published by The 

National SARS-CoV-2 

Serology Assay 

Evaluation Group 78 

and described here 79. 

 

N/A 

Experimental models: Cell lines 
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Expi239F cells Thermo Fisher A14527 

ExpiCHO cells Thermo Fisher A29127 

Vero E6 cells ATCC CRL-1586 

Software and algorithms 

Python 3 Python Software 

Foundation 

N/A 

R 4.2.0 statistical software R Core Team N/A 

R Studio 2022.07.1 Build 554 R Studio, PBC N/A 

Stan 80 Stan development 

team 

N/A 

Code used in the current study Zenodo repository 81 https://doi.org/10.52

81/zenodo.7454292 

GraphPad Prism N/A 

Other 

1536-well high-binding ELISA plates (SpectraPlate) Perkin Elmer 6004500 

384-well high-binding ELISA plates (SpectraPlate) Perkin Elmer 6007500 

384-well low-binding PP plates Labcyte/Beckman 

Coulter 

001-14555 

ECHO 555 Acoustic Dispenser Labcyte/Beckman 

Coulter 

N/A 

El406 Washer/Dispenser Biotek N/A 

MultifloFX Biotek N/A 

Certus Flex dispenser Fritz Gyger AG N/A 

Microplate Centrifuge Agilent G5582AA 

PlateLoc thermal microplate sealer Agilent G5585BA 

XPeel automated plate seal removal Brooks/Azenta N/A 

EnVision multimode plate reader Perkin Elmer 2105-0010 

Fluidity One-W Fluidic Analytics N/A 

iBlot 2 Gel Transfer Device Thermo Fisher IB21001 

Fusion SOLO S imaging system Vilber N/A 
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