Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib



# Data Article

# Novel land uses shape meta-community structures in neighbouring native forests: Dataset across Uruguay



# Ina Säumel\*, Leonardo R. Ramírez

Integrative Research Institute THESys<sup>1</sup> Transformation of Human-Environment-Systems Humboldt-Universität<sup>2</sup> zu Berlin, Unter den Linden 6, Berlin 10099, Germany

### ARTICLE INFO

Article history: Received 16 March 2022 Revised 5 May 2022 Accepted 10 May 2022 Available online 16 May 2022

Keywords: Campos region Clementsian structure Dispersal limitation Landscape configuration Nestedness Spacial heterogeneity Species turnover

# ABSTRACT

The presented datasets relate to the research article entitled "Native forest meta-community structures in Uruguay shaped by novel land use types in their surroundings" [Ramírez and Säumel; Ecology and Evolution, 2022]. The datasets include field survey data on woody species presence and absence from 384 plots at 32 permanent monitoring sites of native forests across the Oriental Republic of Uruguay (South America). We compiled different methods from meta-community studies, remote sensing and landscape ecology to explore how woody species communities are influenced by land use change from local to regional scale. We describe the diverse woody species composition in native forests across Uruguay and structure of metacommunities of woody species. Data on woody species diversity inform landscape planning, land-use management, policy and governance and can be used for further meta-analysis with other local, regional or global data sets.

> © 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

\* Corresponding author.

- E-mail address: ina.saeumel@hu-berlin.de (I. Säumel).
- <sup>1</sup> @IRI\_THESys
- <sup>2</sup> @HumboldtUni

#### https://doi.org/10.1016/j.dib.2022.108267

2352-3409/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

# **Specifications Table**

| Ecology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecology of Metacommunities; Remote Sensing; Species composition analysis; Land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| cover change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Table; Image; Chart; Graph; Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Identification and mapping of woody species during two fieldwork campaigns<br>(from December 2015 to April 2016 and from October 2016 to January 2017) across<br>32 permanent monitoring sites inside native forest patches of Uruguy;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| presence based on forest type.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Calculation of absolute frequency, relative frequency and cumulative relative<br>frequency of species, elements of Meta-community structure (coherence, turnover<br>and Morisita overlap index) using Matlab [1], distance between sites using ArcGis<br>v.10.3.1 for Desktop [2], Jaccard Index (J) using Past 3.16 [3].<br>Calculation of landscape metrics using Fragstat v.4 [4]: at Landscape scale: number<br>of patches; Landscape shape index, Shannon's evenness index, Aggregation Index;<br>at land use type level: Percentage of the landscape occupied by each land use<br>type; Number of native forest patches within the landscape; Interspersion and<br>juxtaposition index of native forest; Euclidean nearest neighbor distance of native<br>forest; at native forest patch, Shape index of the native forest patch; Perimeter<br>area ratio of native forest patch, Shape index of the native forest patch in a buffer |
| or 3 km from central point of permanent monitoring site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| We surveyed woody species diversity at 32 plots of native forests across Uruguay<br>(South America).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Oriental Republic of Uruguay (South America)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Repository name: Edoc Server of the Humboldt Universität zu Berlin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Data identification number (DOI number): 10.18452/24,171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Direct Link: https://doi.org/10.18452/24171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L.R. Ramirez, I. Säumel, 2022, Native forest meta-community structures in Uruguay shaped by novel land uses in their surroundings. Ecology and Evolution, 12, e8700.<br>https://doi.org/10.1002/ECE3.8700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# Value of the Data

- The dataset provides relevant information about the main effects of land use change from extensively used grassland to intensively used *Eucalyptus* plantation and agricultural crops on composition of woody species in neighbouring native forests.
- Data on meta-community structure and diversity of woody species are the base to describe the state of the art of the different native forest types and to evaluate how land-use change impacts on these forests.
- Insights from the interactions and influences between meta-community patterns and landuse change inform actors involved in territorial planning, land-use management, policy and governance.
- Data can be used for example for meta-analysis on land-use change impacts on woody species communities with other data sets regarding changes of woody species diversity and land-use change.

## 1. Data Description

The data described in this article show woody species presence and absence, absolute frequency, relative frequency and cumulative relative frequency of species, elements of metacommunity structure (coherence, turnover and Morisita overlap index) from 384 plots at 32 permanent monitoring sites of native forests across Uruguay. Native forests cover around 6% of the country's total surface area [5].

Table 1 shows the absolute, relative and cumulative frequency and traits of woody species recorded at 32 permanent monitoring sites across Uruguay. Species are ordered according to absolute frequency (AF) of all species (Total) from higher to lowest values.

Frequency and traits of woody species recorded at 32 permanent plots across Uruguay (Ramirez and Säumel 2022). AF: absolute frequency, RF: relative frequency (%) and CRF: cumulative relative frequency. Species are ordered according to absolute frequency (AF) of Total from higher to lowest values. \* shrub, + mistletoe and  $\circ$  liana.

|               |                                |          | Total |     |    | Adults |     |    | es |     |
|---------------|--------------------------------|----------|-------|-----|----|--------|-----|----|----|-----|
| Family        | Specie                         | AF       | RF    | CRF | AF | RF     | CRF | AF | RF | CRF |
| Sapindaceae   | Allophylus edulis              | 31       | 97    | 6   | 28 | 88     | 8.7 | 30 | 94 | 6.8 |
| Rhamnaceae    | Scutia buxifolia               | 30       | 94    | 6   | 26 | 81     | 8.0 | 22 | 69 | 5.0 |
| Myrtaceae     | Blepharocalyx salicifolius     | 29       | 91    | 6   | 20 | 63     | 6.2 | 28 | 88 | 6.4 |
| Celastraceae  | Maytenus ilicifolia            | 21       | 66    | 4   | 1  | 3      | 0.3 | 21 | 66 | 4.8 |
| Cannabaceae   | Celtis tala                    | 19       | 59    | 4   | 10 | 31     | 3.1 | 18 | 56 | 4.1 |
| Euphorbiaceae | Sebastiania brasiliensis       | 18       | 56    | 3   | 16 | 50     | 5.0 | 15 | 47 | 3.4 |
| Myrtaceae     | Myrcianthes cisplatensis       | 18       | 56    | 3   | 16 | 50     | 5.0 | 11 | 34 | 2.5 |
| Thymelaeaceae | Daphnopsis racemosa*           | 18       | 56    | 3   | 1  | 3      | 0.3 | 18 | 56 | 4.1 |
| Euphorbiaceae | Sebastiania commersoniana      | 17       | 53    | 3   | 16 | 50     | 5.0 | 16 | 50 | 3.7 |
| Sapotaceae    | Pouteria salicifolia           | 17       | 53    | 3   | 15 | 47     | 4.6 | 13 | 41 | 3.0 |
| Myrtaceae     | Eugenia uniflora               | 16       | 50    | 3   | 12 | 38     | 3.7 | 16 | 50 | 3.7 |
| Myrtaceae     | Myrrhinium atropurpureum       | 14       | 44    | 3   | 8  | 25     | 2.5 | 8  | 25 | 1.8 |
| Anacardiaceae | Lithraea brasiliensis          | 12       | 38    | 2   | 11 | 34     | 3.4 | 8  | 25 | 1.8 |
| Primulaceae   | Myrsine laetevirens            | 11       | 34    | 2   | 9  | 28     | 2.8 | 10 | 31 | 2.3 |
| Anacardiaceae | Schinus longifolia             | 11       | 34    | 2   | 8  | 25     | 2.5 | 6  | 19 | 1.4 |
| Arecaceae     | Syagrus romanzoffiana          | 11       | 34    | 2   | 3  | 9      | 0.9 | 10 | 31 | 2.3 |
| Myrtaceae     | Eugenia uruguayensis           | 10       | 31    | 2   | 10 | 31     | 3.1 | 9  | 28 | 2.1 |
| Verbenaceae   | Citharexylum montevidense      | 9        | 28    | 2   | 5  | 16     | 1.5 | 9  | 28 | 2.1 |
| Cannabaceae   | Celtis iguanaea*               | 8        | 25    | 2   |    |        |     | 8  | 25 | 1.8 |
| Smilacaceae   | Smilax campestris <sup>o</sup> | 8        | 25    | 2   | 1  | 2      | 0.2 | 8  | 25 | 1.8 |
| FaDaceae      | Califanara tweedit"            | 7        | 22    | 1   | I  | 3      | 0.3 | 7  | 22 | 1.0 |
| Lythraceae    | Freithring prints galli        | <i>'</i> | 22    | 1   | c  | 10     | 10  | 2  | 22 | 1.0 |
| FaDaceae      | Erythrina Crista-galli         | 6        | 19    | 1   | 6  | 19     | 1.9 | 3  | 9  | 0.7 |
| Lorantinaceae | Ocotog agytifolia              | 6        | 19    | 1   | 0  | 19     | 1.9 | E  | 16 | 11  |
| Cleasease     | Ucolea acultjolla              | 6        | 19    | 1   | 4  | 13     | 1.2 | 2  | 10 | 1.1 |
| Murtaceae     | Murcianthas nungans            | 6        | 19    | 1   | 4  | 12     | 1.2 | 4  | 12 | 0.9 |
| Berberidaceae | Berberis laurina*              | 6        | 19    | 1   | 4  | 6      | 0.6 | 5  | 15 | 11  |
| Rubiaceae     | Cuettarda uruguensis*          | 5        | 15    | 1   | 4  | 13     | 12  | 5  | 16 | 1.1 |
| Salicaceae    | Saliy humboldtiana             | 5        | 16    | 1   | 4  | 13     | 1.2 | 3  | 9  | 0.7 |
| Sanindaceae   | Cupania vernalis               | 5        | 16    | 1   | 3  | 9      | 0.9 | 5  | 16 | 11  |
| Salicaceae    | Xvlosma tweediana              | 5        | 16    | 1   | 2  | 6      | 0.5 | 4  | 13 | 0.9 |
| Fahaceae      | Gleditsia triacanthos          | 4        | 13    | 1   | 3  | g      | 0.0 | 4  | 13 | 0.9 |
| Lamiaceae     | Vitex meganotamica             | 4        | 13    | 1   | 3  | 9      | 0.9 | 4  | 13 | 0.9 |
| Malvaceae     | Luehea divaricate              | 4        | 13    | 1   | 3  | 9      | 0.9 | 3  | 9  | 0.7 |
| Lauraceae     | Nectandra megapotamica         | 4        | 13    | 1   | 2  | 6      | 0.6 | 4  | 13 | 0.9 |
| Verbenaceae   | Aloysia gratissima*            | 4        | 13    | 1   | 1  | 3      | 0.3 | 4  | 13 | 0.9 |
| Fabaceae      | Acacia caven                   | 3        | 9     | 1   | 3  | 9      | 0.9 | 2  | 6  | 0.5 |
| Fabaceae      | Vachellia caven*               | 3        | 9     | 1   | 3  | 9      | 0.9 | 2  | 6  | 0.5 |
| Quillajaceae  | Quillaja brasiliensis          | 3        | 9     | 1   | 2  | 6      | 0.6 | 3  | 9  | 0.7 |
| Polygonaceae  | Ruprechtia salicifolia         | 3        | 9     | 1   | 2  | 6      | 0.6 | 3  | 9  | 0.7 |
| Oleaceae      | Ligustrum sinense              | 3        | 9     | 1   | 2  | 6      | 0.6 | 3  | 9  | 0.7 |
| Sapindaceae   | Matayba elaeagnoides           | 3        | 9     | 1   | 2  | 6      | 0.6 | 2  | 6  | 0.5 |
| Lauraceae     | Ocotea puberula                | 3        | 9     | 1   | 2  | 6      | 0.6 | 2  | 6  | 0.5 |
| Styracaceae   | Styrax leprosus                | 3        | 9     | 1   | 2  | 6      | 0.6 | 2  | 6  | 0.5 |
| Primulaceae   | Myrsine coriacea               | 3        | 9     | 1   | 1  | 3      | 0.3 | 3  | 9  | 0.7 |
| Polygonaceae  | Ruprechtia laxiflora*          | 3        | 9     | 1   | 1  | 3      | 0.3 | 3  | 9  | 0.7 |
| Rosaceae      | Prunus subcoriacea             | 3        | 9     | 1   | 1  | 3      | 0.3 | 2  | 6  | 0.5 |
| Fabaceae      | Acacia bonariensis             | 3        | 9     | 1   |    |        |     | 3  | 9  | 0.7 |
| Rutaceae      | Zanthoxylum rhoifolium         | 3        | 9     | 1   |    |        |     | 3  | 9  | 0.7 |
| Primulaceae   | Myrsine parvula                | 2        | 6     | 0.4 | 2  | 6      | 0.6 | 2  | 6  | 0.5 |
| Fabaceae      | Parapiptadenia rigida          | 2        | 6     | 0.4 | 2  | 6      | 0.6 | 2  | 6  | 0.5 |
| Anacardiaceae | Schinus mole                   | 2        | 6     | 0.4 | 2  | 6      | 0.6 | 2  | 6  | 0.5 |
| Anacardiaceae | Lithraea molleoides            | 2        | 6     | 0.4 | 2  | 6      | 0.6 |    |    |     |
| Anacardiaceae | Schinus lentiscifolius         | 2        | 6     | 0.4 | 2  | 6      | 0.6 |    |    |     |
| Salicaceae    | Azara uruguayensis             | 2        | 6     | 0.4 | 1  | 3      | 0.3 | 2  | 6  | 0.5 |
| Rhamnaceae    | Colletia paradoxa*             | 2        | 6     | 0.4 | 1  | 3      | 0.3 | 2  | 6  | 0.5 |

#### Table 1 (continued)

|                   |                                              |    | Total |     |    | Adults | 5   | Juveniles |    |     |  |
|-------------------|----------------------------------------------|----|-------|-----|----|--------|-----|-----------|----|-----|--|
| Family            | Specie                                       | AF | RF    | CRF | AF | RF     | CRF | AF        | RF | CRF |  |
| Santalaceae       | Jodina rhombifolia                           | 2  | 6     | 0.4 | 1  | 3      | 0.3 | 2         | 6  | 0.5 |  |
| Primulaceae       | Myrsine venosa                               | 2  | 6     | 0.4 | 1  | 3      | 0.3 | 2         | 6  | 0.5 |  |
| Aquifoliaceae     | llex paraguariensis                          | 2  | 6     | 0.4 | 1  | 3      | 0.3 | 1         | 3  | 0.2 |  |
| Myrtaceae         | Myrceugenia glaucescens                      | 2  | 6     | 0.4 | 1  | 3      | 0.3 | 1         | 3  | 0.2 |  |
| Salicaceae        | Casearia decandra                            | 2  | 6     | 0.4 |    |        |     | 2         | 6  | 0.5 |  |
| Rubiaceae         | Psychotria carthagenensis*                   | 2  | 6     | 0.4 |    |        |     | 2         | 6  | 0.5 |  |
| Fabaceae          | Senna corymbose                              | 2  | 6     | 0.4 |    |        |     | 2         | 6  | 0.5 |  |
| Symplocaceae      | Symplocos uniflora                           | 2  | 6     | 0.4 |    |        |     | 2         | 6  | 0.5 |  |
| Myrtaceae         | Calyptranthes concinna                       | 1  | 3     | 0.2 | 1  | 3      | 0.3 | 1         | 3  | 0.2 |  |
| Salicaceae        | Casearia sylvestris                          | 1  | 3     | 0.2 | 1  | 3      | 0.3 | 1         | 3  | 0.2 |  |
| Rubiaceae         | Cephalanthus glabratus*                      | 1  | 3     | 0.2 | 1  | 3      | 0.3 | 1         | 3  | 0.2 |  |
| Boraginaceae      | Cordia americana                             | 1  | 3     | 0.2 | 1  | 3      | 0.3 | 1         | 3  | 0.2 |  |
| Asteraceae        | Gochnatia polymorpha                         | 1  | 3     | 0.2 | 1  | 3      | 0.3 | 1         | 3  | 0.2 |  |
| Moraceae          | Morus alba                                   | 1  | 3     | 0.2 | 1  | 3      | 0.3 | 1         | 3  | 0.2 |  |
| Myrtaceae         | Myrcia palustris                             | 1  | 3     | 0.2 | 1  | 3      | 0.3 | 1         | 3  | 0.2 |  |
| Phyllanthaceae    | Phyllanthus sellowianus*                     | 1  | 3     | 0.2 | 1  | 3      | 0.3 | 1         | 3  | 0.2 |  |
| Fabaceae          | Prosopis affinis                             | 1  | 3     | 0.2 | 1  | 3      | 0.3 | 1         | 3  | 0.2 |  |
| Myrtaceae         | Acca sellowiana                              | 1  | 3     | 0.2 | 1  | 3      | 0.3 |           |    |     |  |
| Fabaceae          | Bauhinia forficate                           | 1  | 3     | 0.2 | 1  | 3      | 0.3 |           |    |     |  |
| Arecaceae         | Butia odorata                                | 1  | 3     | 0.2 | 1  | 3      | 0.3 |           |    |     |  |
| Cardiopteridaceae | Citronella gongonha                          | 1  | 3     | 0.2 | 1  | 3      | 0.3 |           |    |     |  |
| Escalloniaceae    | Escallonia bifida                            | 1  | 3     | 0.2 | 1  | 3      | 0.3 |           |    |     |  |
| Bignoniaceae      | Handroanthus impetiginosus                   | 1  | 3     | 0.2 | 1  | 3      | 0.3 |           |    |     |  |
| Phytolaccaceae    | Phytolacca dioica                            | 1  | 3     | 0.2 | 1  | 3      | 0.3 |           |    |     |  |
| Euphorbiaceae     | Sapium naematospermum                        | 1  | 3     | 0.2 | 1  | 3      | 0.3 |           |    |     |  |
| Anacardiaceae     | Schinus engleri*                             | 1  | 3     | 0.2 | 1  | 3      | 0.3 |           |    |     |  |
| Rutaceae          | Zantnoxyium Jagara                           | 1  | 3     | 0.2 | 1  | 3      | 0.3 | 4         | 2  | 0.2 |  |
| Euphorbiaceae     | Actinostemon concolor                        | 1  | 3     | 0.2 |    |        |     | 1         | 3  | 0.2 |  |
| Arecaceae         | Butia yatay                                  | 1  | 3     | 0.2 |    |        |     | 1         | 3  | 0.2 |  |
| Cannabaceae       | Ceitis enrenbergiana*                        | 1  | 3     | 0.2 |    |        |     | 1         | 3  | 0.2 |  |
| Solallaceae       | Cestrum purqui                               | 1  | 3     | 0.2 |    |        |     | 1         | 3  | 0.2 |  |
| Cardiontoridaceae | Citropolla papiculato                        | 1  | 2     | 0.2 |    |        |     | 1         | 2  | 0.2 |  |
| Rhampagaaa        | Discaria amoricana*                          | 1  | 2     | 0.2 |    |        |     | 1         | 2  | 0.2 |  |
| Coloctrococo      | Mautanus daguslados                          | 1  | 2     | 0.2 |    |        |     | 1         | 2  | 0.2 |  |
| Moliaceae         | Malia azadarach                              | 1  | 2     | 0.2 |    |        |     | 1         | 2  | 0.2 |  |
| Dhutalaceae       | Deutolassa amorisana*                        | 1  | 2     | 0.2 |    |        |     | 1         | 2  | 0.2 |  |
| Phytolaccaceae    | Phyloluccu untericunu<br>Poncinus trifoliata | 1  | 2     | 0.2 |    |        |     | 1         | 2  | 0.2 |  |
| Murtaceae         | Policius injoliata<br>Psidium luridum*       | 1  | 3     | 0.2 |    |        |     | 1         | 2  | 0.2 |  |
| Myrtaccae         | Deidium calutare*                            | 1  | 3     | 0.2 |    |        |     | 1         | 3  | 0.2 |  |
| Possesso          | Puracantha coccinea*                         | 1  | 2     | 0.2 |    |        |     | 1         | 2  | 0.2 |  |
| Solanaceae        | Solanum mauritianum                          | 1  | 2     | 0.2 |    |        |     | 1<br>1    | 2  | 0.2 |  |
| Solanaceae        | Vassohia hreviflora                          | 1  | 3     | 0.2 |    |        |     | 1         | 2  | 0.2 |  |
| Salicaceae        | Xulosma schroederi                           | 1  | 3     | 0.2 |    |        |     | 1         | 2  | 0.2 |  |
| Jaillaled         | Ayiosinu schroeuen                           | 1  | ر     | 0.2 |    |        |     | 1         | ر  | 0.2 |  |

In total, we registered 41 families, 77 genera and 101 woody species across native forests of Uruguay (Table 1). The species with higher relative frequency (RF) for adults (A), juveniles (J), and individuals from both age-classes (AJ) were *Allophylus edulis* (Sapindacea, RF: AJ = 97%; A = 88%; J = 94%), *Scutia buxifolia* (Rhamnaceae, RF: AJ = 94\%; A = 81%; J = 69%) and *Blepharocalyx salicifolius* (Myrtaceae, RF: AJ = 91%; A = 63%; J = 88%). Of all species, 35 percent occurred only once across all sites.

In total, we registered 41 families, 77 genera and 101 woody species across native forests of Uruguay. The species with higher relative frequency (RF) for adults (A), juveniles (J), and individuals from both age-classes (AJ) were *Allophylus edulis* (Sapindacea, RF: AJ = 97%; A = 88%; J = 94%), *Scutia buxifolia* (Rhamnaceae, RF: AJ = 94%; A = 81%; J = 69%) and *Blepharocalyx salici*-

*folius* (Myrtaceae, RF: AJ = 91%; A = 63%; J = 88%). Of all species, 35 percent occurred only once across all sites.

The total number of woody species per native forest fragment was, for adults, between 4 and 16 (mean = 10.1; SD = 3.4); for juveniles, between 1 and 35 (mean = 13.4; SD = 7.2); and for both age-classes together, between 7 and 37 (mean = 16.3; SD = 6.9). Riverine forests harbor between 7 and 34 (mean = 16.4; SD = 6.6), and hill forests between 10 and 37 species (mean = 17.7; SD = 8.8).

Of all recorded species, 93 percent are native, except seven exotics (i.e. *Gleditsia triacanthos, Ligustrum lucidum, Ligustrum sinense, Morus alba, Melia azedarach, Poncirus trifoliate, Pyracantha coccinea*). More than 70 percent of all species are classified as zoochore (N = 72). Nine species are anemochore and eight autochore. Eight species have conservation priority status (i.e. *Ilex paraguariensis, Casearia decandra, Prosopis affinis, Butia odorata, Actinostemon concolor, Maytenus dasyclados, Phytolacca americana, Xylosma* schroederi; [6]; Table 1).

We recorded adults of thirteen native species without any presence of juvenile individuals, among them *Butia odorata*, which is categorized as high priority for conservation (Table 1). All occur with low frequency, except the hemiparasitic mistletoe *Tripodanthus acutifolius*.

Of the species, 26 were recorded only in the regeneration layer but not among adults. All are native to the region, except the South-East Asian Melia azedarach, the Chinese Poncirus trifoliata and the European Pyracantha coccinea (Table 1). Most frequent species are the climbing Celtis iguanaea, Smilax campestris and the shrubby Heimia salicifolia. Five of the native species that only occurred in the regeneration layer have conservation priority (i.e. Casearia decandra, Actinostemon concolor, Maytenus dasyclados, Phytolacca americana and Xylosma schroederi). In addition, we recorded 27 species only at one site as adults (i.e. Acca sellowiana, Bauhinia forficata, Butia odorata, Citronella gongonha, Escallonia bífida, Handroanthus impetiginosus, Phytolacca dioica, Sapium haematospermum, Schinus engleri, Zanthoxylum fagara), 17 species only at one site in the regeneration layer (i.e. Actinostemon concolor, Butia yatay, Celtis ehrenbergiana, Cestrum parqui, Chrysophyllum gonocarpum, Citronella paniculata, Discaria americana, Maytenus dasyclados, Melia azedarach, Phytolacca americana, Poncirus trifoliata, Psidium luridum, Psidium salutare, Pyracantha coccinea. Solanum mauritianum, Vassobia breviflora, Xvlosma schroederi), and 9 species only at one site but as adults and juvenile (Calyptranthes concinna, Casearia sylvestris, Cephalanthus glabratus, Cordia americana, Gochnatia polymorpha, Morus alba, Myrcia palustris, Phyllanthus sellowianus, Prosopis affinis; Table 1).

Fig. 1 shows a scheme of idealized pattern of species distribution (checkboard, random, clementsian, gleasonian, evenly-spaced, nested clumped, nested random, nested evenly-spaced and QS or quasi-structures) where columns represent sites and rows represent species, gray square mean specie presence and white mean specie absence (based on [7,8]). Species distribution among sites can follow a discrete or Clementsian pattern [9], a continuous or Glesonian pattern [10], a random pattern [11], a checkboard pattern [12], evenly-spaced patterns [13], nested subset [14], and mixed pattern between nested-random or nested evenly-spaced [8]. Steps to determine the pattern of species distribution are shown: (1) observation of species coherence, (2) evaluation of species turnover and (3) analysis of boundary clumping using Morisita overlap index. NS = non-significant, "+" = significantly positive, "-" = significantly negative.

Fig. 2 shows the distribution of native forests and the 32 permanent monitoring sites in different native forests across Uruguay, South America. photographs show a riverine forest surrounded by grassland and timber plantation (b), a hill forest (c) and an example for park forests (d). Moreover, Fig. 2e shows the non-metric multi-dimensional scaling (NDMS) using Jaccard distance between native forest.

In Figs. 3–6 we show the matrix ordination by reciprocal averaging of the different frequencies of juveniles, adults and of both age classes together (juveniles and adults) for riverine (23), hill (7) forests and for all (32) native fragments under study (rows) and species recorded (columns). Black cells indicate presence and white cells absence.

Table 2 shows the linear distance matrix between permanent plots (or sites) in kilometer (below of diagonal) and Morisita index (above of diagonal). ID number represents each forest





**Fig. 1.** Scheme of idealized pattern of species distribution (checkboard, random, clementsian, gleasonian, evenly-spaced, nested clumped, nested random, nested evenly-spaced and QS or quasi-structures) where columns represent sites and rows represent species, gray square mean specie presence and white mean specie absence (based on [7,8]). Steps to determine the pattern of species distribution are (1) observation of species coherence, (2) evaluation of species turnover and (3) analysis of boundary clumping using Morisita overlap index. NS = non-significant, "+" = significantly positive, "-" = significantly negative.

fragments. The matrix was ordered according linear distance between 1 and 32 sites (see column 1) and Fig. 2.

Table 3 shows the scores of first axis of ordination generated by reciprocal averaging.

Table 4 shows the department and sites of each permanent plots (ID) across Uruguay and overview on metadata of landscape metric per site. ID = code native forest fragments (Fig. 1). Means are given at landscape scale for number of patches (NP): number of patches (NP); Landscape shape index (LSI), Shannon's evenness index (SHEI), Aggregation Index (AI) and at land use type level: Percentage of the landscape (P) occupied by each land use type (NF: native forest; GL: Grassland; TF: Timber forest; C: crops); Number of native forest patches within the landscape (NNF); Interspersion and juxtaposition index of native forest (IJI); Euclidean nearest neighbor distance of native forest (ENN) in a buffer of 3 km from central point of permanent monitoring site.

Raw Data are uploaded in the Open Access repository of the Humboldt Universität zu Berlin (https://edoc.hu-berlin.de) as Säumel, I. and Ramírez, L. 2021: Land use change impacts on metacommunity structures in Uruguayan native forests.

#### 2. Experimental Design, Materials and Methods

Woody diversity datasets were obtained from two fieldwork campaigns (from December 2015 to April 2016 and from October 2016 to January 2017) across 32 permanent monitoring sites inside native forest patches of Uruguay (Fig. 2).



**Fig. 2.** (a) Distribution of the 32 permanent monitoring sites of native forests across Uruguay, South America, (b) Riverine forests surrounded by grassland and timber plantation, (c) hill forest, (d) park forest and (e) NDMS (non-metric multi-dimensional scaling) using Jaccard distance between native forest. Numbers in (a) and (e) indicate the ID of permanent monitoring sites, ellipses in (a) and (e) indicate the visual grouping based on minimum spanning tree algorithm.

In general, we used a stratified randomized design. In a first step, we randomly selected monitoring sites across the country and then stratified by different land use types (i.e. native forests, grassland, timber plantation, crops). Second, we asked the potential land owners for their willingness to establish long term monitoring sites. In total we established 32 long-term monitoring plots (100  $\times$  100 m) in different native forests fragments across Uruguay (23 sites with riverine and seven hill forests; Fig. 2).

In the vegetations periods 2015/2016 and 2016/2017, we recorded all woody species in two size-classes based on diameter at breast height (dbh). We take the size-classes as a non-invasive proxy measure for tree age to differentiate in adults (dbh  $\geq$  5 cm) recorded in 3 plots of 10  $\times$  20 m and juveniles (dbh < 5 cm) recorded in 9 plots of 3  $\times$  3 m. Thus, juvenile plots were nested within adults. The woody species in the local forests comprise also multi-stem species, that there are 64 species categorized as trees, 21 as shrubs and 32 that form the growth habit as shrubs or trees depending on site conditions (*e.g. Blepharocalyx salicifolius, Eugenia uniflora or* 



**Fig. 3.** Matrix ordination by reciprocal averaging of both age classes together (juveniles and adults) for all native fragments under study (Ramirez and Säumel 2022; (a), riverine forest (b) and hill forest (c). Rows = monitoring sites, columns = species, black cell = presence and white cells = absence. Numbers indicate the ID of permanent monitoring sites (see Fig. 2a).



**Fig. 4.** Matrix ordination by reciprocal averaging of adults for all native fragments under study (a), riverine forest (b) and hill forest (c). Rows = monitoring sites, columns = species, black cell = presence and white cells = absence. Numbers indicate the ID of permanent monitoring sites (see Fig. 2a).



**Fig. 5.** Matrix ordination by reciprocal averaging of juveniles for all native fragments under study (a), riverine forest (b) and hill forest (c). Rows = monitoring sites, columns = species, black cell = presence and white cells = absence. Numbers indicate the ID of permanent monitoring sites (see Fig. 2a).

*Maytenus ilicifolia*). Classification in shrubs, trees and those species that can have both growth habits are indicated in Table 1. All names of species identified were updated using the online database from [15].

The meta-community structure was described by different elements of meta-community structure (EMS; Fig. 1; [7,8]): coherence (i.e. number of interruptions in species distribution across the sites), species turnover (i.e. number of species replacements between two sites) and boundary clumping (i.e. boundaries in species composition across two or more sites based on Morisita overlap index). When coherence is negative or not significant, the meta-community follows a checkboard or random pattern respectively. When coherence is statistically significant and positive (p < 0.05; less embedded absences than expected by chance), the meta-community is classified into six basic structures evaluating turnover and boundary clumping. When turnover is statistically significant and negative (p < 0.05; less replacements than expected by chance), the meta-community can follow some nested pattern (i.e. evenly-spaced, clumped or random). When turnover is statistically significant and positive (p < 0.05; with more replacements than expected by chance), the meta-community is classified as a Clementsian, Gleasonian or evenlyspaced pattern (Fig. 1). The Morisita index (MI) needs to be evaluated to determine boundary clumping between different woody communities (if MI > 1, a Clementsian structure and if MI < 1, an evenly spaced structure; [7,8]). The EMS were calculated with Matlab [1], using a script developed by Presley and Higgins [16].

We determined the elements of meta-community structure (EMS) for matrix of adult individuals, juvenile individuals of the regenerating layer and total species (sum of adult and juvenile woody species). The models for matrix ordination were set by reciprocal averaging (Fig. 3–11; [17]), the null model with fixed species richness per site and equiprobable species occurrence (random 0). The models ran with 1000 iteration and extraction of the scores from first axes of ordination based on reciprocal averaging.

For Table 2 we created a matrix distance-species distribution pattern to explore whether geographic distance influenced the species composition between sites. The distance between sites was calculated using ArcGis v.10.3.1 for Desktop [2] and boundary clumbing between different



ID of permanent monitoring sites

Fig. 6. Scores of first axis of ordination generated by reciprocal averaging for adults, juvenils and for all woody species versus ID of the monitoring sites. For ID of monitoring sites (see Fig. 2a).

communities was calculated based on Morisita index (MI; see Fig. 1) using Past 3.16 [3]. The matrix distance- species distribution pattern was calculated to both age-classes together.

For Fig. 2 the Jaccard similarity coefficient matrix was subjected to non-metric multidimensional scaling ordination (NMDS) to assess species assemblage among different native forest types. We used a matrix distance-similarity to explore whether geographic distance influenced the similarity of species composition between sites. The distance between sites was calculated using ArcGis v.10.3.1 for Desktop [2] and composition (di)similarity was calculated based on Jaccard Index (J) using Past 3.16 [3]. The matrix distance-similarity was calculated to both ageclasses together.

We classified land use from Landsat 8 OLI satellite image for the year 2017 [17] in a buffer zone of 3 km from central point of each permanent plot, processing atmospheric and geometric correction by Landsat image using Matlab [1]. We combined two techniques of classification: we first used supervised classification using ground control points collected in field across different land uses to capture signature spectral of each land use type, then used tree classification technics based on signature spectral of each land use type with Envy v.5.3 [18]. The land use maps were set to six land use types (i.e. native forest, grassland, timber plantation, agriculture, water

Linear distance matrix between permanent plots (or sites) in kilometer (below of diagonal) and Morisita index (above of diagonal). ID number represents each forest fragments (Fig. 2a). The matrix was ordered according linear distance between 1 and 32 sites (see column 1).

| ID | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1  |     | .40 | .29 | .15 | .53 | .32 | .45 | .41 | .31 | .44 | .18 | .86 | .77 | .41 | .83 | .31 | .38 | .41 | .05 | .11 | .10 | .03 | .34 | .50 | .04 | .05 | .21 | .55 | .01 | .01 | .02 | .01 |
| 2  | 4   |     | .83 | .36 | .39 | .14 | .83 | .85 | .83 | .57 | .55 | .51 | .14 | .71 | .15 | .13 | .06 | .75 | .11 | .00 | .01 | .06 | .01 | .23 | .01 | .00 | .00 | .74 | .00 | .00 | .01 | .00 |
| 3  | 7   | 3   |     | .35 | .24 | .06 | .94 | .94 | .96 | .58 | .62 | .41 | .00 | .74 | .01 | .08 | .08 | .80 | .16 | .01 | .01 | .00 | .04 | .22 | .01 | .00 | .06 | .76 | .01 | .01 | .00 | .00 |
| 4  | 23  | 21  | 23  |     | .12 | .15 | .46 | .36 | .33 | .49 | .24 | .26 | .05 | .46 | .15 | .21 | .18 | .32 | .26 | .77 | .79 | .55 | .06 | .10 | .04 | .01 | .04 | .53 | .06 | .01 | .81 | .00 |
| 5  | 64  | 62  | 62  | 42  |     | .56 | .31 | .40 | .32 | .38 | .27 | .48 | .33 | .36 | .42 | .14 | .17 | .29 | .17 | .05 | .04 | .48 | .16 | .39 | .01 | .03 | .12 | .36 | .00 | .00 | .01 | .00 |
| 6  | 114 | 114 | 115 | 92  | 60  |     | .06 | .26 | .09 | .60 | .15 | .10 | .03 | .47 | .09 | .61 | .76 | .24 | .05 | .16 | .17 | .40 | .47 | .29 | .07 | .07 | .50 | .25 | .01 | .01 | .04 | .01 |
| 7  | 151 | 147 | 144 | 138 | 112 | 145 |     | .92 | .93 | .63 | .64 | .56 | .19 | .76 | .20 | .13 | .07 | .77 | .28 | .13 | .14 | .09 | .02 | .34 | .03 | .00 | .00 | .79 | .01 | .00 | .14 | .00 |
| 8  | 151 | 147 | 143 | 148 | 143 | 194 | 74  |     | .94 | .73 | .59 | .45 | .04 | .85 | .06 | .18 | .25 | .87 | .12 | .07 | .06 | .13 | .19 | .26 | .02 | .03 | .17 | .84 | .00 | .00 | .01 | .01 |
| 9  | 159 | 154 | 151 | 155 | 146 | 196 | 68  | 11  |     | .57 | .68 | .44 | .04 | .77 | .06 | .04 | .08 | .78 | .20 | .00 | .01 | .03 | .01 | .27 | .01 | .00 | .14 | .76 | .00 | .00 | .01 | .00 |
| 10 | 180 | 178 | 177 | 159 | 117 | 98  | 104 | 176 | 172 |     | .42 | .30 | .03 | .90 | .08 | .70 | .65 | .64 | .18 | .31 | .38 | .25 | .38 | .37 | .11 | .04 | .29 | .65 | .05 | .06 | .18 | .01 |
| 11 | 184 | 180 | 178 | 169 | 138 | 160 | 37  | 102 | 94  | 95  |     | .31 | .00 | .67 | .02 | .16 | .19 | .52 | .71 | .01 | .01 | .00 | .04 | .68 | .03 | .00 | .21 | .50 | .00 | .00 | .01 | .00 |
| 12 | 210 | 206 | 202 | 210 | 207 | 258 | 127 | 64  | 62  | 231 | 143 |     | .73 | .37 | .79 | .05 | .07 | .49 | .15 | .11 | .10 | .07 | .09 | .46 | .02 | .02 | .07 | .67 | .01 | .00 | .15 | .00 |
| 13 | 218 | 214 | 211 | 221 | 224 | 279 | 156 | 86  | 88  | 260 | 176 | 34  |     | .02 | .88 | .03 | .02 | .00 | .02 | .04 | .04 | .04 | .01 | .30 | .01 | .01 | .00 | .18 | .00 | .00 | .05 | .00 |
| 14 | 221 | 220 | 221 | 199 | 162 | 107 | 201 | 268 | 266 | 101 | 195 | 327 | 354 |     | .07 | .47 | .54 | .75 | .27 | .21 | .24 | .15 | .28 | .42 | .07 | .03 | .37 | .76 | .05 | .04 | .13 | .01 |
| 15 | 225 | 222 | 219 | 232 | 241 | 298 | 184 | 111 | 116 | 288 | 207 | 68  | 34  | 379 |     | .06 | .08 | .04 | .05 | .15 | .15 | .13 | .06 | .35 | .01 | .01 | .08 | .25 | .01 | .00 | .16 | .00 |
| 16 | 251 | 249 | 248 | 229 | 187 | 158 | 161 | 234 | 228 | 71  | 137 | 280 | 312 | 104 | 343 |     | .76 | .15 | .20 | .17 | .25 | .03 | .39 | .38 | .14 | .04 | .25 | .13 | .10 | .08 | .04 | .01 |
| 17 | 272 | 271 | 271 | 250 | 210 | 163 | 216 | 289 | 284 | 113 | 199 | 341 | 371 | 66  | 400 | 70  |     | .29 | .04 | .22 | .23 | .03 | .63 | .33 | .09 | .09 | .63 | .30 | .02 | .04 | .05 | .02 |
| 18 | 277 | 274 | 272 | 260 | 224 | 227 | 134 | 190 | 180 | 132 | 97  | 211 | 245 | 216 | 279 | 120 | 189 |     | .10 | .17 | .06 | .01 | .35 | .28 | .02 | .06 | .23 | .91 | .00 | .01 | .05 | .01 |
| 19 | 283 | 278 | 275 | 274 | 254 | 286 | 143 | 140 | 129 | 219 | 128 | 116 | 144 | 319 | 177 | 241 | 310 | 134 |     | .22 | .23 | .16 | .03 | .74 | .05 | .00 | .02 | .15 | .02 | .00 | .25 | .00 |
| 20 | 283 | 281 | 280 | 262 | 221 | 200 | 170 | 241 | 233 | 105 | 139 | 278 | 312 | 151 | 344 | 48  | 108 | 87  | 219 |     | .80 | .51 | .26 | .10 | .03 | .03 | .23 | .31 | .17 | .15 | .76 | .01 |
| 21 | 310 | 308 | 308 | 288 | 247 | 216 | 211 | 283 | 276 | 130 | 182 | 323 | 356 | 144 | 388 | 60  | 85  | 131 | 264 | 46  |     | .50 | .16 | .09 | .06 | .03 | .15 | .26 | .10 | .10 | .74 | .03 |
| 22 | 317 | 313 | 311 | 304 | 273 | 288 | 166 | 197 | 186 | 201 | 135 | 193 | 225 | 291 | 259 | 196 | 265 | 76  | 86  | 161 | 202 |     | .02 | .01 | .01 | .00 | .01 | .16 | .04 | .00 | .58 | .00 |
| 23 | 335 | 332 | 330 | 315 | 275 | 262 | 204 | 266 | 257 | 164 | 168 | 290 | 324 | 217 | 358 | 114 | 168 | 79  | 207 | 66  | 86  | 130 |     | .29 | .03 | .12 | .60 | .35 | .38 | .23 | .03 | .02 |
| 24 | 349 | 345 | 342 | 343 | 325 | 359 | 215 | 200 | 191 | 290 | 201 | 158 | 177 | 389 | 203 | 306 | 375 | 191 | 73  | 278 | 322 | 122 | 252 |     | .06 | .07 | .20 | .34 | .01 | .01 | .02 | .19 |
| 25 | 349 | 345 | 342 | 342 | 322 | 353 | 211 | 203 | 193 | 281 | 194 | 165 | 186 | 379 | 215 | 293 | 363 | 177 | 68  | 264 | 307 | 106 | 236 | 18  |     | .00 | .02 | .02 | .01 | .01 | .03 | .00 |
| 26 | 357 | 353 | 350 | 353 | 339 | 377 | 232 | 206 | 198 | 315 | 222 | 155 | 168 | 415 | 190 | 335 | 404 | 223 | 96  | 310 | 354 | 156 | 287 | 35  | 53  |     | .07 | .06 | .00 | .00 | .00 | .01 |
| 27 | 364 | 360 | 358 | 352 | 324 | 342 | 215 | 234 | 222 | 255 | 186 | 216 | 244 | 345 | 277 | 248 | 316 | 129 | 101 | 210 | 248 | 54  | 168 | 100 | 82  | 134 |     | .28 | .36 | .36 | .04 | .01 |
| 28 | 371 | 366 | 364 | 359 | 332 | 351 | 222 | 237 | 226 | 266 | 194 | 216 | 243 | 356 | 275 | 260 | 328 | 141 | 101 | 222 | 261 | 65  | 181 | 91  | 73  | 125 | 13  |     | .02 | .00 | .28 | .01 |
| 29 | 376 | 372 | 368 | 372 | 358 | 397 | 252 | 225 | 217 | 334 | 242 | 172 | 182 | 434 | 203 | 353 | 423 | 239 | 115 | 327 | 371 | 171 | 301 | 49  | 65  | 20  | 144 | 134 |     | .71 | .06 | .00 |
| 30 | 405 | 401 | 398 | 395 | 371 | 394 | 259 | 265 | 254 | 311 | 235 | 234 | 257 | 402 | 286 | 306 | 375 | 187 | 125 | 268 | 306 | 111 | 225 | 84  | 71  | 111 | 59  | 46  | 113 |     | .01 | .00 |
| 31 | 413 | 409 | 407 | 401 | 372 | 387 | 263 | 282 | 271 | 297 | 233 | 262 | 289 | 382 | 320 | 281 | 347 | 166 | 147 | 239 | 273 | 99  | 188 | 128 | 112 | 159 | 49  | 46  | 163 | 52  |     | .00 |
| 32 | 414 | 410 | 407 | 406 | 386 | 415 | 275 | 267 | 257 | 339 | 255 | 226 | 243 | 434 | 268 | 342 | 412 | 223 | 132 | 308 | 348 | 147 | 269 | 68  | 65  | 80  | 101 | 88  | 75  | 49  | 100 |     |

The scores of first axis of ordination generated by reciprocal averaging for adults, juvenils and all age classes together. Numbers indicate the ID of permanent monitoring sites (see Fig. 2a) and the approx. latitude and longitude. We cannot publish the exact location as we agreed to protect owner privacy.

| ID | Latitude | Longitude | Adults and Juveniles | Adults    | Juveniles |
|----|----------|-----------|----------------------|-----------|-----------|
| 1  | -32      | -54       | 0.527167             | 0.414966  | 0.647240  |
| 2  | -32      | -54       | 0.660633             | 0.764692  | 0.775401  |
| 3  | -32      | -54       | 0.245467             | 0.431703  | 0.040260  |
| 4  | -32      | -54       | 0.239254             | 0.267534  | 0.325141  |
| 5  | -33      | -54       | 0.475965             | 0.458633  | 0.541064  |
| 6  | -33      | -54       | 0.491153             | 0.464190  | 0.582062  |
| 7  | -33      | -55       | 0.049349             | 0.082344  | 0.108956  |
| 8  | -32      | -55       | 0.222261             | 0.083222  | 0.329336  |
| 9  | -32      | -55       | 0.306056             | 0.354837  | 0.322345  |
| 10 | -34      | -55       | -0.002515            | 0.205924  | 0.047635  |
| 11 | -33      | -55       | 0.200543             | 0.469457  | 0.015936  |
| 12 | -32      | -56       | 0.043390             | 0.295778  | 0.030319  |
| 13 | -31      | -56       | -0.687450            | -0.585130 | -0.284849 |
| 14 | -34      | -54       | 0.177360             | 0.204617  | 0.119347  |
| 15 | -31      | -56       | -0.037545            | 0.036918  | 0.185851  |
| 16 | -34      | -55       | 0.002131             | 0.118208  | -1.083550 |
| 17 | -35      | -54       | 0.280042             | 0.254687  | 0.181019  |
| 18 | -34      | -56       | 0.193801             | 0.003753  | 0.290895  |
| 19 | -32      | -57       | -0.052246            | 0.131023  | -0.246512 |
| 20 | -34      | -56       | 0.043060             | -0.137313 | -0.025985 |
| 21 | -35      | -55       | -0.275978            | -0.571120 | -0.270884 |
| 22 | -33      | -57       | -0.098342            | -0.050924 | -0.244235 |
| 23 | -34      | -56       | -0.007416            | -0.150409 | 0.005323  |
| 24 | -32      | -57       | -0.619125            | -0.591702 | -1.211210 |
| 25 | -32      | -57       | -0.156738            | 0.002066  | -0.642816 |
| 26 | -32      | -58       | -3.537520            | -4.259300 | -1.449460 |
| 27 | -33      | -57       | -0.022680            | -0.132921 | -0.019935 |
| 28 | -33      | -58       | 0.008329             | 0.060685  | 0.000694  |
| 29 | -32      | -58       | -0.431746            | -0.139724 | -0.693187 |
| 30 | -33      | -58       | -0.638588            | -0.444915 | -1.141800 |
| 31 | -33      | -58       | -0.450609            | -0.710617 | -0.348537 |
| 32 | -32      | -58       | -1.392330            | -3.112280 | -2.462570 |

body and urban areas). Due to the small area covered by water bodies and urban areas, these land uses were not considered in the analysis. For details see Ramírez and Säumel (2022).

At landscape level, we calculated total number of patches (total number of patches in the landscape without considering the identity of the land use type), landscape shape index (standardized measure of total edge that adjusts for the size of the landscape, where index increases without limit as landscape shape becomes more irregular and/or as the length of edge within the landscape increases), Shannon's evenness index (distribution of area among patch types where larger values mean higher landscape diversity), and Aggregation Index (frequency with which different pairs of patch types appear side-by-side on the map). At class level, we calculated percentage of the landscape occupied by each land use type and the metrics of native forests without considering other land use types within of each buffer. We thus determined number of native forest patches (number of native forest patches within the landscape), interspersion and juxtaposition index (measure at class level based on patch adjacencies), Euclidean nearest neighbor distance (mean of the shortest straight-line distance between all native forest patches by landscape). Finally, at patch level, we only considered the native forest fragment where the permanent plots were established, thus calculating total area, perimeter area ratio as a measure of shape complexity, and shape index of patch as a measure of compactness. All spatial metrics were calculated for the 3 km buffer using Fragstat v.4 [4].

Department and site each permanent plots (ID) across Uruguay (Fig. 2a) and overview on metadata of landscape metric per site. ID = code native forest fragments (Fig. 1). Means are given at landscape scale for number of patches (NP): number of patches (NP); Landscape shape index (LSI), Shannon's evenness index (SHEI), Aggregation Index (AI) and at land use type level: Percentage of the landscape (P) occupied by each land use type (NF: native forest; GL: Grassland; TF: Timber forest; C: crops); Number of native forest patches within the landscape (N<sub>NF</sub>); Interspersion and juxtaposition index of native forest (IJI); Euclidean nearest neighbor distance of native forest (ENN) in a buffer of 3 km from central point of permanent monitoring site.

| Department     | ID | NP  | LSI  | SHEI  | AI   | $\mathbf{P}_{\mathrm{NF}}$ | $\mathbf{P}_{GL}$ | $\mathbf{P}_{\mathrm{TF}}$ | P <sub>C</sub> | P <sub>TP&amp;C</sub> | $N_{\text{NF}}$ | IJI  | ENN   |
|----------------|----|-----|------|-------|------|----------------------------|-------------------|----------------------------|----------------|-----------------------|-----------------|------|-------|
| Cerro Largo    | 1  | 133 | 7.7  | 0.394 | 92.6 | 15.6                       | 82.0              | 0.0                        | 0.0            | 0.5                   | 100             | 33.2 | 104.7 |
| Cerro Largo    | 2  | 96  | 3.5  | 0.127 | 97.3 | 2.7                        | 96.0              | 1.0                        | 1.0            | 1.3                   | 62              | 20.5 | 211.9 |
| Cerro Largo    | 3  | 143 | 6.0  | 0.351 | 94.6 | 5.6                        | 83.9              | 1.3                        | 1.3            | 1.4                   | 81              | 42.9 | 152.2 |
| Cerro Largo    | 4  | 128 | 7.6  | 0.427 | 92.8 | 15.7                       | 8.4               | 3.9                        | 3.9            | 3.9                   | 76              | 41.0 | 131.3 |
| Treinta y Tres | 5  | 100 | 7.4  | 0.583 | 93.1 | 9.9                        | 61.6              | 27.5                       | 27.5           | 27.9                  | 27              | 58.2 | 200.2 |
| Treinta y Tres | 6  | 236 | 14.4 | 0.827 | 85.3 | 36.8                       | 21.5              | 0.0                        | 0.0            | 39.6                  | 32              | 53.1 | 87.3  |
| Cerro Largo    | 7  | 177 | 8.6  | 0.475 | 91.8 | 11.4                       | 76.8              | 9.9                        | 9.9            | 1.7                   | 89              | 40.1 | 112.1 |
| Tacuarembó     | 8  | 175 | 8.1  | 0.688 | 92.4 | 45.7                       | 4.5               | 0.4                        | 0.4            | 7.8                   | 59              | 60.8 | 125.6 |
| Tacuarembó     | 9  | 147 | 8.7  | 0.698 | 91.8 | 46.8                       | 36.1              | 0.1                        | 0.1            | 13.1                  | 30              | 59.7 | 184.4 |
| Lavalleja      | 10 | 161 | 9.7  | 0.615 | 90.5 | 13.5                       | 67.7              | 18.8                       | 18.8           | 18.8                  | 52              | 25.8 | 150.8 |
| Durazno        | 11 | 250 | 9.5  | 0.477 | 90.6 | 9.2                        | 79.5              | 2.0                        | 2.0            | 11.3                  | 158             | 56.3 | 93.9  |
| Tacuarembo     | 12 | 158 | 8.4  | 0.493 | 91.9 | 11.5                       | 72.0              | 16.4                       | 16.4           | 16.3                  | 92              | 40.7 | 139.3 |
| Tacuarembo     | 13 | 115 | 6.6  | 0.721 | 94.1 | 13.8                       | 49.3              | 36.8                       | 36.8           | 36.9                  | 43              | 55.9 | 189.7 |
| Rocha          | 14 | 117 | 7.8  | 0.512 | 92.7 | 7.4                        | 79.6              | 11.5                       | 11.5           | 13.6                  | 59              | 9.0  | 209.0 |
| Rivera         | 15 | 148 | 9.4  | 0.708 | 91.0 | 15.0                       | 28.5              | 51.9                       | 51.9           | 56.9                  | 51              | 57.1 | 162.0 |
| Lavalleja      | 16 | 253 | 13.6 | 0.848 | 86.1 | 22.3                       | 61.3              | 16.4                       | 16.4           | 16.4                  | 153             | 69.3 | 101.8 |
| Rocha          | 17 | 247 | 14.6 | 0.658 | 84.9 | 7.3                        | 63.9              | 26.6                       | 26.6           | 28.8                  | 67              | 49.8 | 148.3 |
| Florida        | 18 | 101 | 8.1  | 0.523 | 92.3 | 8.9                        | 67.2              | 0.2                        | 0.2            | 24.4                  | 19              | 41.9 | 285.0 |
| Rio Negro      | 19 | 329 | 15.2 | 0.652 | 84.4 | 12.8                       | 54.4              | 31.2                       | 31.2           | 33.3                  | 172             | 50.7 | 85.9  |
| Florida        | 20 | 93  | 7.2  | 0.580 | 93.3 | 5.8                        | 66.5              | 0.0                        | 0.0            | 27.6                  | 29              | 33.5 | 236.8 |
| Lavalleja      | 21 | 397 | 13.5 | 0.684 | 86.3 | 6.7                        | 25.3              | 12.0                       | 12.0           | 67.9                  | 65              | 71.9 | 193.9 |
| Flores         | 22 | 131 | 10.0 | 0.701 | 90.3 | 14.9                       | 63.1              | 11.3                       | 11.3           | 18.4                  | 67              | 61.1 | 123.6 |
| Florida        | 23 | 258 | 14.0 | 0.924 | 85.8 | 18.5                       | 32.5              | 0.0                        | 0.0            | 38.8                  | 83              | 74.9 | 121.7 |
| Paysandu       | 24 | 119 | 8.0  | 0.589 | 92.5 | 56.6                       | 34.5              | 0.8                        | 0.8            | 7.6                   | 43              | 45.2 | 103.1 |
| Paysandú       | 25 | 203 | 13.9 | 0.673 | 85.7 | 8.5                        | 52.6              | 38.5                       | 38.5           | 38.8                  | 76              | 54.5 | 89.5  |
| Paysandu       | 26 | 306 | 13.8 | 0.712 | 85.8 | 7.5                        | 35.7              | 54.3                       | 54.3           | 56.9                  | 173             | 66.7 | 111.4 |
| Soriano        | 27 | 146 | 8.7  | 0.589 | 91.7 | 0.7                        | 23.8              | 18.6                       | 18.6           | 19.2                  | 30              | 54.9 | 289.2 |
| Rio Negro      | 28 | 154 | 11.7 | 0.837 | 88.5 | 26.6                       | 46.3              | 12.7                       | 12.7           | 21.1                  | 32              | 56.7 | 134.5 |
| Paysandú       | 29 | 232 | 11.2 | 0.883 | 88.9 | 14.4                       | 4.9               | 36.1                       | 36.1           | 44.7                  | 113             | 67.1 | 95.8  |
| Rio Negro      | 30 | 189 | 11.1 | 0.827 | 89.0 | 13.7                       | 56.9              | 18.7                       | 18.7           | 29.4                  | 80              | 33.6 | 106.4 |
| Soriano        | 31 | 182 | 10.8 | 0.784 | 89.4 | 9.4                        | 61.9              | 13.4                       | 13.4           | 29.5                  | 32              | 50.7 | 236.7 |
| Paysandú       | 32 | 203 | 12.1 | 0.572 | 87.8 | 1.1                        | 19.5              | 0.0                        | 0.0            | 67.9                  | 34              | 69.6 | 200.0 |

The landscape shape index (LSI) by land-use type is given by:

$$LSI = \frac{0.25 \sum_{k=1}^{m} e_{ik}^*}{\sqrt{A}}$$
(1)

Where  $e_{ik}^*$  is the total length of edges in the landscape between patches types of land-use type i and k, A is the total area of landscape and 0.25 is the factor of adjustment for raster format.

The Shannon's evenness index (SHEI) is given by:

$$SHEI = \frac{-\sum_{n=1}^{m} (P_i * \ln P_i)}{\ln m}$$
(2)

Where  $P_i$  is the proportion of the landscape occupied by patch type belonging to land use tipe *i* and m number of patches of land use type in the landscape

The aggregation index (AI) expressed in percentage is given by:

$$AI = \left\lfloor \frac{g_{ii}}{\max \to g_{ii}} \right\rfloor (100)$$
(3)

Where  $g_{ii}$  is the number of joins between pixel of patches belonging to land-use type i, max  $\rightarrow$   $g_{ii}$  is the maximum number of joins between pixels of the same land-use type i.

The percentage of landscape occupied by each land-use type is given by:

$$P_{i} = \frac{\sum_{j=1}^{n} a_{ij}}{A} (100)$$
(4)

Where  $P_i$  is the proportion of the landscape occupied by patches belonging to land-use i,  $a_{ij}$  is the area of patch ij, A is the total area of the landscape.

The Interspersion and juxtaposition index (IJI) of native forest is given by:

$$IJI = \frac{-\sum_{k=1}^{m} \left[ \left( \frac{e_{ik}}{\sum_{k=1}^{m} e_{ik}} \right) ln \left( \frac{e_{ik}}{\sum_{k=1}^{m} e_{ik}} \right) \right]}{ln (m-1)} (100)$$

Where  $e_{ik}$  is the total edge lenght (m) in the landscape between native forest patches i and k, m is the number of native forest parches present in the landscape

The Mean Euclidean nearest neighbor distance (ENN\_MN) is given by:

$$ENN_MN = \frac{\sum h_{ij}}{n}$$
(6)

Where  $h_{ij}$  is the distance (m) from ij to nearest neighboring patch of same type and n is the number of nearest neighbouring distance The ENN\_MN is based on patch edge-to-edge distance and computed from cell to cell center of patches

The Perimeter area ratio (PARA) is given by:

$$PARA = \frac{P_{ij}}{a_{ij}}$$
(7)

Where Pij is the perimeter (m) of patch ij and aij is the area  $(m^2)$  of patch ij.

The Shape index of patch (SHAPE) is given by:

$$SHAPE = \frac{0.25 P_{ij}}{\sqrt{a_{ij}}}$$
(8)

Where Pij is the perimeter (m) of the native forest patch ij and aij is the area  $(m^2)$  of the native forest patch ij.

#### **Ethics Statements**

The authors comply with the ethical guidelines of the journal. Humans, animals or data from social media are not involved in this research.

#### **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### **Data Availability**

Land use change impacts on metacommunity structures in Uruguayan native forests (Original data) (Edoc HU Berlin).

# **CRediT Author Statement**

**Ina Säumel:** Conceptualization, Methodology, Investigation, Visualization, Writing – original draft, Validation; **Leonardo R. Ramírez:** Conceptualization, Methodology, Data curation, Writing – original draft, Visualization, Investigation, Validation.

#### Acknowledgment

We are very grateful to Nicolas Silvera, Matias Zarucki, Jeannne Marie Terzieff, Manuel Garcia † – we would love to have shared this manuscript with you - and Andres Gonzalez for their assistance in field work and support in species identification. We also thank Aida Eyvaz Zadeh, Barbara Martins Carneiro, Julia Santolin and Sarah Tietjen for their support with completing the database. Thanks also to Sergio Lopez-Hidalgo, for support with remote sensing and running the scripts in Matlab. We also thank to all local actors that supported the implementation of the RuralFutures project. We are very grateful to the private landowner for permission to farm and for hospitality. We thank two anonymous reviewers for helpful comments on an earlier version of the manuscript. The study was funded by the German Federal Ministry of Education and Research (BMBF; 01LN1305A).

#### References

- [1] Matlab, The Mathworks Inc., Natick, MA, USA, 2017.
- [2] ESRI, ArcGIS Desktop: Release 10.3.1, Environmental Systems Research Institute, Redlands, California, USA, 2018.
- [3] Ø. Hammer, D.A.T. Harper, P.D. Ryan, PAST: paleontological statistics software package for education and data analysis, Palaeontol. Electron. 4 (2001) 1–9. Access online 1, 2001. https://palaeo-electronica.org/2001\_1/past.pdf.
- [4] K. McGarigal, S.A. Cushman, E. Ene, 2012. FRAGSTATS v4: Spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at: http://www.umass.edu/landeco/research/fragstats/fragstats.html.
- [5] MGAP (Ministerio de Ganadería, Agricultura y Pesca), Actualización del Manual de Manejo de Bosque Nativo en Uruguay: Versión 2018, Ministerio de Ganaderia, Agricultura Y Pesca, Montevideo, Uruguay, 2018 1a. ed.2018b; ISBN 978-9974-9194-1-9.
- [6] A. Soutullo, C. Clavijo, J.A. Martínez-Lanfranco, Especies prioritarias para la conservación en Uruguay. Vertebrados, moluscos continentales y plantas vasculares. Montevideo: SNAP/DINAMA/MVOTMA y DICYT/MEC 2013. Available at: https://www.gub.uy/ministerio-ambiente/politicas-y-gestion/especies-prioritarias-para-conservacion.
- [7] M.A. Leibold, G.M. Mikkelson, Coherence, species turnover, and boundary clumping: elements of meta-community structure, Oikos 97 (2002) 237–250, doi:10.1034/j.1600-0706.2002.970210.x.
- [8] S.J. Presley, C.L. Higgins, M.R. Willig, A comprehensive framework for the evaluation of meta-community structure, Oikos 119 (2010) 908–917, doi:10.1111/j.1600-0706.2010.18544.x.
- [9] F.E. Clements, Plant Succession, an Analysis of the Development of Vegetation, Carnegie Institution of Washington, Washington, 1916.
- [10] H.A. Gleason, The individualistic concept of the plant association, Bull. Torrey Bot. Club 53 (1926) 7–26, doi:10.2307/ 2479933.
- D. Simberloff, Competition theory, hypothesis testing, and other community ecological buzzwords, Am. Nat. 122 (1983) 626–635 http://www.jstor.org/stable/2460845.
- [12] J.M. Diamond, M.L. Cody, J.M. Diamond, Assembly of species communities, in: Ecology and Evolution of Communities, Harvard University Press, Boston, 1975, pp. 342–444.
- [13] D. Tilman, Resource Competition and Community Structure, Princeton University Press, 1982.
- [14] B.D. Patterson, W. Atmar, Nested subsets and the structure of insular mammalian faunas and archipelagos, Biol. J. Linn. Soc. 28 (1986) 65–82, doi:10.1111/j.1095-8312.1986.tb01749.x.
- [15] The Plant List, 2013. The Plant List, 2013. Version 1.1. Published at http://www.theplantlist.org/. Accessed December 22, 2019.
- [16] S.J. Presley, C.L. Higgins, Meta-community structure. available at https://hydrodictyon.eeb.uconn.edu/people/willig/ Research/meta-community%20page.html. Accessed January 5, 2018.
- [17] H.G. Gauch, R.H. Whittaker, T.R. Wentworth, A comparative study of reciprocal averaging and other ordinations techniques, J. Ecol. 65 (1977) 157–174, doi:10.2307/2259071.
- [18] U.S. Geological SurveyScience for a Changing World -Landsat Missions, USGS, 2017 Retrieved from https://landsat. usgs.gov.