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Contagion dynamics 
in self‑organized systems 
of self‑propelled agents
Yinong Zhao1,2, Cristián Huepe3,4,5,7 & Pawel Romanczuk1,2,6,7*

We investigate the susceptible–infectious–recovered contagion dynamics in a system of self-propelled 
particles with polar alignment. Using agent-based simulations, we analyze the outbreak process 
for different combinations of the spatial parameters (alignment strength and Peclet number) and 
epidemic parameters (infection-lifetime transmissibility and duration of the individual infectious 
period). We show that the emerging spatial features strongly affect the contagion process. The 
ordered homogeneous states greatly disfavor infection spreading, due to their limited mixing, 
only achieving large outbreaks for high values of the individual infectious duration. The disordered 
homogeneous states also present low contagion capabilities, requiring relatively high values of both 
epidemic parameters to reach significant spreading. Instead, the inhomogeneous ordered states 
display high outbreak levels for a broad range of parameters. The formation of bands and clusters in 
these states favor infection propagation through a combination of processes that develop inside and 
outside of these structures. Our results highlight the importance of self-organized spatiotemporal 
features in a variety of contagion processes that can describe epidemics or other propagation 
dynamics, thus suggesting new approaches for understanding, predicting, and controlling their 
spreading in a variety of self-organized biological systems, ranging from bacterial swarms to animal 
groups and human crowds.

Contagion dynamics are ubiquitous in biological and social systems. They can encompass the spread of disease1,2, 
rumors3–5, behaviors6,7, or information8,9. These different types of phenomena are often modeled using generic 
descriptions that were developed to represent infection spreading and epidemic outbreaks, in which individuals 
can be in a susceptible, infectious, or recovered state. In these models, the contagion typically propagates through 
an interaction network that plays a decisive role in the spreading dynamics. In more realistic scenarios, the inter-
actions are time-dependent and determined by a proximity network that changes as a function of the positions 
of the individuals. In cases where these agents follow complex collective dynamics, the changing topology can 
depend in turn on their self-organized motion. To improve our modeling of real-world systems, it is therefore 
important to understand the relationship between the emergence of large-scale contagion processes and the 
evolving interaction networks that develop between agents that display collective behavior10.

In spatially explicit models of mobile agents, in contrast to the idealized mean-field or network models, 
the potential contagion interactions are determined by a switching proximity network that changes in time as 
the individuals follow a specific set of spatial dynamical rules11. The core parameters of a typical mean-field 
SIR-contagion process, such as the contact rate and contact duration, then become emergent features of the 
self-organized spatial dynamics, as it has been shown for gas-like systems of self-propelled active Brownian 
particles12–15. The properties of the spatial dynamics, such as the speed of the individual agents, can thus affect 
in nontrivial ways the global contagion process14. These previously studied examples, however, only considered 
the cases where the agents or particles do not form spatial structures, displaying instead homogeneous density 
and isotropic orientations, in contrast to what is known to occur in many models of self-propelled agents and in 
real-world systems. In particular, in models where spatial interactions such as velocity alignment forces between 
neighboring agents are introduced, we expect the formation of states that display long-range order leading to 
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coordinated collective movement at the scale of the system and a variety of slowly-evolving, long-lived spatial 
structures, such as large-scale, high density bands or clusters16–19, which results in dynamical irreversibility of the 
system’s behavior20. To properly describe the contagion process, we must therefore consider the various degrees 
of mixing and density distributions exhibited by different self-organized collective movement states.

In this work, we implement a susceptible–infectious–recovered (SIR) infection process2,21 in a system of 
self-propelled agents with alignment and repulsion interactions to explore the impact of self-organized spatio-
temporal structures on the contagion dynamics. Our results show that the epidemic outcome depends strongly on 
the specific emergent properties of each collective state. We observe that the outbreak thresholds are significantly 
lower in ordered states with large-scale clusters or band-like structures, and higher in ordered or disordered 
states with homogeneous density distributions. By comparing the contagion dynamics of different states, we 
find that the timescales of the emerging spatial structures and of the infection processes play an essential role 
in the epidemic outcome.

Results
We consider contagion dynamics in a system of self-propelled particles (agents). Individual particles are per-
forming active Brownian motion, advancing with a constant self-propulsion speed v0 while the heading angle 
θi is subject to noise of intensity σ . Neighboring particles interact through short-ranged alignment forces, that 
facilitate the emergence of collective movement, and through distance-dependent repulsive forces. The strength 
of the alignment force is set by the inverse alignment relaxation time τ−1 . For simplicity, we assume that both 
interactions have the same range rint , so that two particles i and j interact (are in “contact”) when their distance 
|�rij| = |�ri − �rj| is smaller than rint.

In addition to the spatial dynamics, we implement a simple contagion process that does not affect the agent 
motion, which corresponds to the standard SIR model in epidemiology. Each agent i can be in one of three states: 
susceptible ( si(t) = S ), infected ( si(t) = I ), or recovered ( si(t) = R ). A susceptible agent i can only become 
infected, with a base transmission rate βb , while it is in contact with at least one infected agent j. An infected agent 
recovers spontaneously with a recovery rate γ . Recovered agents cannot be reinfected. A detailed description of 
the full model is given in the “Methods” section.

The active Brownian particle model with interactions exhibits a rich phase diagram of different collective 
movement states as a function of two dimensionless parameters18,20,22: the Peclet number Pe, quantifying the per-
sistence of individual movement, and the dimensionless interaction strength g, quantifying the relative strength 
of alignment versus noise. The different collective states can be quantified by the degree of orientational order � , 
typically referred to as polarization, and by the degree of clustering � . Detailed definitions of all these variables 
are provided in “Methods” section, whereas a detailed analysis of the different self-organized collective move-
ment states has been recently presented by the authors22.

We begin by presenting in Fig. 1 the phase space of the spatial dynamics. Panels (a,b) display the values of the 
clustering � and polarization � for each parameter combination. Following our previous work22, we identify five 
different regions with distinct values of � and � , represented by the characteristic states labeled from (c–g) in 
panel (a). A snapshot of each corresponding state is presented in panels (c–g), where each particle is represented 
by a point that is colored according to its heading directions, as indicated by the color disk in the top-left corner. 
Panel (c) shows a typical snapshot of the disordered states found in the low � and low � region of the phase 
diagram, where there is no orientational order and the particles are homogeneously distributed in space. Panels 
(d,f) display the ordered state with bands (OB) and ordered state with clusters (OC), respectively. Both have high 
� and � values, but OB states form large density bands that are perpendicular to the heading direction, whereas 
OC states exhibit clusters that are elongated along the heading direction. Finally, panels (e,g) show two different 
ordered homogeneous states (OH-1 and OH-2), both of which are characterized by high � and low � values.

We now examine the effectiveness of the contagion process in different regions of the phase diagram, for vari-
ous values of the contagion parameters, by computing the fraction of agents that were infected at some point of 
the epidemic process, which is equal to the final fraction of recovered agents. The infection spreading will depend 
on the rate and duration of the contacts between infected and susceptible agents that result from the spatial 
dynamics, and on the SIR model parameters βb and γ . We will express the latter in terms of two quantities that 
determine the effective contagion rate between susceptible interacting agents: the infection-lifetime transmis-
sibility � = βb/γ (a nondimensional number that describes the average total transmission during the infectious 
period of an agent) and the mean duration of the infectious period of an agent Tinf = 1/γ . The interplay between 
these quantities and the spatial dynamics determines the effective infection spread.

Note that there are two limit cases of the spatial dynamics where the final epidemic outcome will only depend 
on � , and not on Tinf  : The well-mixed (mean-field) case, where agents are continuously exchanging neighbors, 
and the static interaction network case (if agents are close enough to form a connected graph), where the neigh-
bors remain fixed. In both situations, the newly infected agents are continuously interacting with other agents 
that are potentially susceptible, so the duration Tinf  of their infectious state will not affect the outcome. Even in 
these limits, however, the contagion process before reaching this final outcome will also depend on Tinf  and on 
the spatial dynamics of the system, which will affect its timescale13–15. In more realistic cases where the interac-
tions are determined by complex temporal networks23 or spatiotemporal dynamics, as in the model considered 
here, both the epidemic outcome and the contagion process will generally depend on all parameters.

Contagion effectiveness.  Figure 2 presents the effectiveness of the epidemic outbreak in different regions 
of the phase space for five combinations of the infection parameters. The final fraction of recovered agents 
ρR(∞) is displayed as a function of Pe and g, for three � values with fixed Tinf = 20 (top) and for three Tinf  
values with fixed � = 2.0 (bottom). Note that we repeat the same central panel in the top and bottom rows, for 
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completeness. We find that, in general, the regions with highest degree of contagion tend to match the regions 
with highest clustering in Fig. 1a, and that they grow as � or Tinf  are increased.

The central panels shows that, for an intermediate � = 2.0 value, the region with high epidemic spreading 
matches almost exactly the high clustering regions OB and OC in Fig. 1, although some simulations with rela-
tively high level of contagion can also be found in the disordered region. The top right panel shows that, for a very 
high � = 100 , almost the whole phase space displays high levels of epidemic spreading, with the homogeneously 
ordered (OH) regions presenting the lowest levels. The bottom row shows that we obtain equivalent results if we 
instead vary Tinf  , but with larger ρR(∞) differences between the regions with high and low epidemic spreading.

Figure 3 provides a more detailed view of the effectiveness of each epidemic outbreak and its onset points, 
plotting ρR(∞) as a function of � and Tinf  for the five collective states identified in Fig. 1. Each point displays 
the mean value obtained for the 50 simulations performed per parameter combination and the error bar shows 
the corresponding standard deviation.

Panel (a) confirms that outbreak onsets occur at the lowest � ≈ 0.5 values in the inhomogeneous (OB, OC) 
states and at higher � ≈ 1 values in the homogeneous disordered (D) and homogeneous ordered (OH-1, OH-2) 
states. The value of ρR(∞) then increases with � at a different rate for each case. At an intermediate � ≈ 10 , we 
find that the OB state has the highest mean ρR(∞) , followed closely by the OC and disordered states. For very 
large � � 200 , the disordered and OB states display the highest, very similar ρR(∞) ≈ 0.8 values, whereas the 
OC case seems to saturate at a slightly lower level. Instead, both OH states display a significantly lower level of epi-
demic spreading, with a fraction of recovered agents ρR(∞) ≈ 0.3 that is slightly higher for OH-1 than for OH-2.

Panel (b) shows that the outbreak onsets occur at very different Tinf levels in the disordered, OH-1, and OH-2 
states (order 101 , 102 , and 103 , respectively). These three homogeneous states eventually reach high infection levels, 
but only for very high Tinf  values. This panel also shows that, in the � = 2 case considered here, states OC and 
OB develop high levels of infection for all Tinf  values. Even at a very low Tinf = 10−2 we find that, remarkably, 
they still display significant outbreaks, with ρR(∞) � 0.4 . In the opposite limit, for a very high Tinf = 104 , both 
converge to a similar state of full epidemic spreading, with ρR(∞) ≈ 1.

Figure 1.   Spatial collective states of systems of self-propelled agents with alignment and repulsion. Top: Phase 
diagram as a function of Peclet number Pe and alignment strength g, showing the fraction of agents in the 
largest cluster � (a) and the polarization � (b). Bottom: Representative snapshots of the states labeled in panel 
(a). Disordered (Pe,g) = (32,1) (c); ordered with bands OB (Pe,g) = (32,2) (d); ordered homogeneous OH-1 
(Pe,g) = (512,16) (e); ordered with clusters OC (Pe,g) = (32,128) (f); and a different ordered homogeneous state 
OH-2 (Pe,g) = (32,1024) (g). Each agent is colored by its heading angle, according to the color disk (top-left 
inset).
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Analysis of the contagion process in different collective states.  The above results show that the 
infection parameters and the spatial dynamics both play an essential role in the contagion spread. In particular, 
we observe that complex self-organized states tend to result in higher levels of infection than the typically stud-
ied states with either well-mixed or static interactions. Furthermore, the specific nature of the spatial dynamics 
appears to play an essential role that cannot be captured by standard averaged network-based descriptions. In 
the following, we will analyze in detail the spreading process in the different identified collective regimes.

Figure 2.   Effectiveness of the epidemic outbreak as a function of the Peclet number Pe and alignment strength 
g for different values of the infection-lifetime transmissibility � = βb/γ and the mean agent infection duration 
Tinf = 1/γ . The colors represent the fraction of agents ρR(∞) that recovered from the infected state at the end 
of each run, averaged over 50 simulations. The red isolines highlight the regions with high relative infection 
levels. We observe that the contagion tends to be more effective in the inhomogeneous regions of the phase 
space, shown on Fig. 1, and that it covers a larger fraction of the phase space for higher � or Tinf values.

(a) (b)

Figure 3.   Effectiveness of the epidemic outbreak as a function of the contagion parameters for the five 
collective states identified in Fig. 1: Disordered (D), ordered with bands (OB), ordered with clusters (OC), 
and two ordered homogeneous states (OH-1 and OH-2). Each panel presents the fraction of agents that were 
infected and later recovered during the epidemic outbreak ρR(∞) as a function of either the infection-lifetime 
transmissibility � = βb/γ with fixed Tinf = 20 (a) or of the mean agent infection duration Tinf = 1/γ with 
fixed � = 2 (b). Each point shows the mean ρR(∞) value for 50 simulations and the error bars, its standard 
deviation.
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Disordered states.  We begin with the simplest case, the homogeneous disordered state, in which all agents are 
continuously mixing with similar contact dynamics that do not change over time. The contagion process is the 
closest here to a mean-field SIR system, where the final epidemic spreading can be predicted if Tinf  is sufficiently 
large14. In this regime, agents remain infectious for long periods, while they mix with the whole system. This 
implies that initially localized infections will quickly produce outbreaks throughout the simulation arena, as 
shown in Fig. 4, We can thus estimate the fraction of infected agents at the end of the run by using semi-analyt-
ical mean-field calculation. We present these results in the Supplementary Information, obtained by extending 
the analyses performed in13–15 for a similar case that considered the SIS model and active Brownian particles. For 
a smaller values of Tinf  , however, the mixing timescale can be comparatively too long for new susceptible agents 
to continue to be exposed to infected agents before they recover, since the front advances slower over time, and 
the infection will eventually die out. This can be overcome by increasing the spatial density of initially infected 
agents, as we also discuss in the Supplementary Information. In a scenario with a spatially homogeneous dis-
tribution of initial infections (or infection clusters), for example, we may observe a percolation-like merging of 
the different locally expanding fronts, which can result in almost the entire system being infected even for short 
Tinf  values.

Ordered homogeneous state.  In the ordered homogeneous states, OH-1 and OH-2, the high level of polariza-
tion results in slow mixing and thus in a low mean contact rate between new neighbors. Therefore, sufficiently 
high � and Tinf  values are both crucial for the contagion process to develop. For low Tinf  , the interaction network 
will not experience significant changes before the infected individuals recover, and can thus be approximated by 
a static network. In this case, the epidemic spreading can be viewed as a percolation process on this network. For 
a low mean density, the sparse connectivity can therefore place the system below the percolation threshold, stop-
ping contagion even for extremely high � values, as shown in Fig. 3a. For higher Tinf  , local velocity fluctuations 
will lead to the accumulation of contacts with different neighbors during this period, increasing the effective 
connectivity, given here by the time-averaged interaction network. This can result in higher epidemic spreading 
than in the disordered homogeneous state, as we can see in Fig. 3b. Note, however, that these fluctuations can 
also produce more mixing between susceptible and recovered agents at the infection propagation front, which 
would reduce the fraction of agents that are available for contagion at this interface and thus limit the epidemic 
growth. This effect has been observed in the literature24 for a system of particles moving in straight lines with 
random directions, where an optimal mixing speed that minimizes spreading was identified in a regime between 
quasi-static network percolation and high mixing. Although we did not detect this type of effect in our simula-
tions, it could be present for other parameter combinations.

A more detailed inspection of the contagion process in the ordered homogeneous states shows that it develops 
spatial dynamics that cannot be described by simple percolation or mixing approximations. In particular, in this 
regime the agents are known to display superdiffusive displacements perpendicular to the mean heading25,26, 
which will result in a faster propagation of the infection along this direction. Starting from a localized outbreak, 
we thus observe the rapid initial formation of a band-like infected region perpendicular to the mean agent orien-
tation, which is then advected by the mean flow, as shown in Fig. 5. This type of contagion process was identified 
in all our simulations of states OH-1 and OH-2; we expect it to also be present in any ordered homogeneous state 
of self-propelled particles with similar dynamics.

Although the two ordered homogeneous states seem to display a similar contagion process, the level of 
epidemic spreading is strongly conditioned by their specific spatial dynamics. Indeed, since OH-2 has a higher 
alignment strength g than OH-1, it will present a lower mean contact rate and longer typical contact duration22, 
which will result in a much smaller effective contagion rate. This explains its higher onset value ( Tinf � 103 ) and 
the fact that, even for Tinf = 104 , the effectiveness of the epidemic outbreak only reaches ρR(∞) ≈ 0.5 in Fig. 3b.

The details of the infection dynamics of the two ordered homogeneous states also appear to be different, as 
shown in the simulation videos in the Supplementary Material (OH-1.mp4, OH-2.mp4). The outbreaks in state 
OH-1 typically develop approximately homogeneously throughout the simulation arena. By contrast, the out-
breaks in state OH-2 appear to develop mainly inside large clusters that emerge sporadically during the simula-
tions and survive for relatively short periods of time, spreading less effectively outside of them. We note, however, 
that we only studied the OH-2 outbreaks for Tinf = 104 , where they become more prevalent. We did not explore 

Figure 4.   Infection dynamics in a disordered homogeneous state. The greyscale lattice displays the smoothed 
local mean density of all agents within each square bin. Overlaid dots, colored from white to red, show the 
density of agents in state I (i.e., of infectious agents) only on bins where I > 0 . The spatial dynamics corresponds 
to the disordered homogeneous state D presented in Fig. 1, with (Pe,g) = (32,1). The panels display the temporal 
evolution of a single infection process (with Tinf = 10

3 and � = 2 ) started by 10 agents at the center of the 
arena. We observe that the initial localized outbreak can quickly infect agents anywhere in the system.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2588  | https://doi.org/10.1038/s41598-022-06083-0

www.nature.com/scientificreports/

the asymptotic behavior in this state for larger Tinf ≫ 104 because this would require extremely long simulations 
that go beyond the scope of this work, given that the time needed to reach a final infection state grows with Tinf  
and that the dynamics for high coupling strengths can only be resolved with very small timesteps. Finally, we 
point out that the differences in the contagion processes of OH-1 and OH-2 are expected to disappear for large 
Tinf → ∞ , since the infection timescales will become so long that the spatial dynamics will effectively result in 
well-mixed systems over comparatively short timescales, and can thus be averaged over time.

Ordered band state.  In the ordered states with bands, or OB states, the system can be divided into two regions: 
the high density, high polarization regions within the bands, and the low density, low polarization, gas-like 
regions outside of the bands. The infections that develop outside the bands will thus take place in regions that 
are similar to the disordered states and have lower density than the system average. Therefore, for the contagion 
to spread in this region, � and Tinf  must be higher than the corresponding epidemic thresholds in the disordered 
state, since lower density implies less interactions between infected and susceptible agents. Otherwise, we find 
in simulations that the infection will die out quickly, unless it is transmitted to a band. Instead, the infections 
that develop within the bands take place in regions with higher local density and polarization. Agents will have 
more interactions that last longer while the combination of high density and repulsion will inhibit mixing, so 
the contagion process will be predominantly driven by percolation. Our simulations show that the successful 
propagation of infection within the bands requires a significantly lower � and Tinf  , as we can see in the left side 
of the OB curve in Fig. 3b.

In this context, in the OB states a contagion spreading process that starts within a band will typically develop 
as visualized in Fig. 6 and can be described as follows. The initial infections within the bands will propagate more 
efficiently, due to their higher local densities. Once a significant fraction of a band is infected, given that bands 
advance faster than the mean agent velocity between bands due to their higher polarization, it will develop a 
contagion process that can span the system by sweeping through the arena, reaching the susceptible agents in the 
gas-like state outside the band. Therefore, the epidemic spreading is initially controlled by � , which needs to be 
high enough to grow the infection within a band, and later by Tinf  , which will determine the level of contagion 
outside the band when compared to the time required for the band to swipe the system.

Ordered clustered state.  The ordered clustered states, or OC states, typically contain one or more large polar-
ized clusters that are elongated along their heading direction, surrounded by lower density regions. An example 
of an infection process observed in one of these states is displayed in Fig. 7. As in the OB states, the contagion 
develops differently inside and outside of these clusters. In contrast to the OB states, however, the low density 
regions outside of the clusters have relatively high levels of polarization, albeit smaller than within clusters. The 
contagion dynamics outside the clusters is thus similar to the percolation process in the homogeneous ordered 
states, but will require higher � and Tinf  values to propagate successfully, due to the lower density. Otherwise, 

Figure 5.   Infection dynamics in an ordered homogeneous state, visualized as in Fig. 4. The spatial dynamics 
corresponds to the ordered homogeneous state OH-1 presented in Fig. 1, with (Pe,g) = (512,16), here advancing 
to the right as indicated by the white arrow. The panels display the temporal evolution of a single infection 
process (with Tinf = 10

3 and � = 2 ) started by 10 agents at the center of the arena. We observe that the 
infection initially propagates forming a band perpendicular to the heading direction.

Figure 6.   Infection dynamics in an ordered band state, visualized as in Fig. 4. The spatial dynamics corresponds 
to the ordered band state OB presented in Fig. 1, with (Pe,g) = (32,2), here advancing to the right as indicated 
by the white arrow. The panels display the temporal evolution of a single infection process (with Tinf = 10

3 and 
� = 2 ) started by 10 agents within the band. We observe that the infection spreads first within the band, and 
then outside of the band.
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our simulations show that any infection that starts outside the clusters will die out quickly, unless it spreads into a 
cluster. We also observe that, in cases where contagion does develop outside of the clusters, the infection spreads 
faster perpendicular to the heading direction, as in the OH states. Inside the clusters, the contagion spreads pri-
marily through percolation on a quasistatic network, because of the weak local mixing. The densities are higher 
within these regions than in the homogeneous ordered states or inside the bands in the OB states, so the infec-
tion process is very effective and requires the lowest � and Tinf  values to spread. This explains the low � and Tinf  
behavior of the OC state in Fig. 3. However, the epidemic spread inside the clusters is significantly slower than 
within bands, as we can see by comparing the temporal dynamics of Figs. 6 and 7. This can be explained by the 
fact that particles exhibit much stronger diffusion within bands than inside clusters, especially perpendicular to 
the movement direction.

After a cluster gets infected in an OC state, the contagion process to other regions can be quite complex, as 
it involves two mechanisms. On the one hand, clusters do not frequently interact with new off-cluster agents or 
with other clusters, since all the particles in the system are approximately aligned. This implies that, for low or 
intermediate Tinf  , the infection inside a cluster may never spread outside. On the other hand, clusters exhibit 
rich fission-fusion dynamics at long timescales, through which an infected cluster that disaggregates can infect 
other clusters, if its resulting fragments aggregate into them, as shown in a simulation video in the Supplementary 
Material (OC-2.mp4). As a result, although the infection within a cluster can be very effective even for low � and 
Tinf  , its spreading to the rest of the system depends on the balance between these two processes that develops 
in each realization of the spatial dynamics. It is this lack of a reliable mechanism for spreading the infection 
throughout the system that makes the OC states reach a slightly lower ρR(∞) level than the disordered and OB 
states for intermediate and high � and Tinf  values in Figs. 2 and 3.

Discussion and conclusions
In this work, we investigated a simple SIR epidemic process in a system of self-propelled agents with alignment 
interactions. We showed that the contagion dynamics and the overall outbreak magnitude depend strongly on 
the spatiotemporal collective states. In particular, we found that effective infection spreading can be favored by 
self-organization. Our analyses followed a minimal modeling approach to show potential generic connections 
between emergent spatiotemporal dynamics and the spreading of epidemics that could have strong impact on 
a variety of real-world scenarios. Although our results were mainly expressed in terms of epidemic spreading, 
we note that they can also describe other processes, such as the propagation of different types of information 
within groups of agents. We note that self-organized spatial structures may appear due to different mechanisms. 
A prominent example is the emergence of dense stationary clusters for active Brownian particles with repulsion 
but without alignment interactions due to motility induced phase separation (MIPS)20,27. However, the temporal 
dynamics of such disordered, non-moving MIPS clusters is fundamentally different to the dynamical, moving 
structures formed by self-propelled particles with alignment interactions studied here.

The analyses carried out above can be summarized in terms of general contagion processes that develop on 
evolving networks. From this perspective, the emerging spatial structures (bands, clusters, and homogeneous 
fluid or gas states) correspond to different evolving contact networks. The resulting contagion spread is deter-
mined by the dynamics within these structures and by the interactions between them. On the one hand, the 
infection process is affected by the self-organized rewiring dynamics inside the corresponding sub-networks, 
which is driven by underlying processes such as (active) diffusion, convection, and density fluctuations. It may 
therefore exhibit very different � and Tinf  dependencies, as well as rich phenomena, such as asymmetric spread 
in the form of a “contagion band” in ordered homogeneous states. On the other hand, the self-organized contact 
dynamics between different spatial structures or sub-networks, such as fission–fusion processes that develop 
between clusters, plays a decisive role in determining large-scale contagion, thus introducing additional (long) 
time-scales that can lead to highly non-trivial spreading processes. This situation changes only in the limit of very 
long infection duration Tinf  , where all the timescales of the spatial dynamics become negligible, which results in 
an effective contagion process that is equivalent to the well-mixed case.

Revealing the impact of self-organized collective behavior22,28 on contagion processes is essential for under-
standing the functional aspects of a variety of behaviors exhibited by biological collectives (such as the risk-related 
behavior observed in fish7). In bacterial swarms, for example, the spreading of genetic information (through 
direct contacts or via bacteriophages29) is conditioned by the self-organized coordinated motion and cluster 

Figure 7.   Infection dynamics in an ordered clustered state, visualized as in Fig. 4. The spatial dynamics 
corresponds to the ordered clustered state OC presented in Fig. 1, with (Pe,g) = (32,128), here advancing to the 
right as indicated by the white arrow. The panels display the temporal evolution of a single infection process 
(with Tinf = 10

3 and � = 2 ) started by 10 agents within a cluster. We observe that the infection initially spreads 
within the cluster, slowly but robustly, and then reaches other clusters through their fission-fusion dynamics.
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formation that emerges from simple physical interactions30–32. These genetic propagation dynamics are believed 
to play an important role in key processes such as the spread of antibiotic resistance in bacterial populations33,34. 
A better understanding of this type of phenomena will thus require further studies of the interplay between infec-
tion spreading and collective spatiotemporal dynamics that could be built on the results presented in this paper.

At the macroscopic agent scale, the relationship that we analyzed here between spatiotemporal self-organ-
ization and contagion dynamics is expected to be highly relevant for a variety of systems, ranging from ani-
mal groups to human crowds, which are known to often form dense gatherings with complex fission–fusion 
dynamics35–37. This could affect processes that require containment, such as disease spreading, or that are typically 
beneficial, such as the diffusion of information.

Despite using highly idealized models, our work could have relevant implications in the development of 
strategies for the control of epidemics. For example, our results show that, for a broad range of parameters, out-
breaks are significantly reduced in the homogeneous ordered states when compared to other states with the same, 
relatively low, mean density. In the context of the current COVID-19 pandemic, this suggests the development 
of crowd control strategies that favor the homogeneous spreading of individuals to help minimize contagion 
during large gatherings. On a more general note, our minimal agent-based descriptions show that the contagion 
dynamics is often not adequately captured by the averaged network approaches commonly used to predict epi-
demic spreading. This is especially true in the presence of self-organized spatiotemporal features, which could 
help explain the very limited success that has been achieved in predicting outbreaks during this pandemic.

Future studies could improve the level of description considered in this paper by including other potential 
couplings between the spatial dynamics and the contagion process. In a recent study38, for example, flocking 
agents alter their motion when they get infected, which can strongly affect the contagion spreading. This type of 
additional considerations could help complete the characterization of simple systems that combine spatial and 
epidemic models, and will be left for future work.

Methods
Individual‑based model.  We consider a system of N self-propelled agents moving continuously in a two-
dimensional arena of size L× L , with periodic boundary conditions. At time t, agent i is located at position �ri(t) 
and tends to advance in its heading direction n̂i = [cos θi(t), sin θi(t)]

T with constant self-propulsion speed v0 , 
while also being displaced by local soft-core repulsion forces �Fi between neighbors. The corresponding equation 
for a system with overdamped dynamics is given by

We define the interaction set Si =
{

j||�rji| ≤ �rint
}

 , with �rji = �ri − �rj , as containing all neighbors within a range 
rint of the focal particle i. In order to reduce the parameter space, the alignment and repulsive interactions are 
defined as having the same range. These interactions are given by

Here, τ is a relaxation time that controls the strength of the alignment, mod∗(x) = mod(x + π , 2π)− π is a 
modified modulo function that produces values between −π and π , and σ is the strength of a δ-correlated Gauss-
ian white noise introduced through a random variable ξθ that satisfies �ξθ � = 0 and �ξθ (t1)ξθ (t2)� = δ(t2 − t1) . 
Each particle thus tends to align its heading angle θi(t) to its neighbors, while subjected to noise, and is displaced 
by repulsive forces Fi(t) that do not affect its heading direction.

We combine the above movement model with a standard SIR-model. Each agent i is assigned an internal ter-
nary variable si(t) ∈ {S, I ,R} , representing its current contagion state: susceptible ( si(t) = S ), infected ( si(t) = I ), 
or recovered ( si(t) = R ). A susceptible agent i can only become infected, with a base transmission rate βb , while 
it is in contact with at least one infected agent j (i.e., at a distance smaller than the interaction range |rij| ≤ rint).

Its infection probability when in contact with a single infected neighbor for a short time period �t will thus 
be given by pinf = βb�t . If a susceptible agent is in contact with multiple infected agents simultaneously, all 
pairwise interactions are assumed to be statistically independent and its infection probability is therefore given 
by the sum of the individual probabilities. Note that, for a sufficiently small numerical time step �t and a finite 
number of neighbors, the infection probability per numerical integration step is typically well below 1. On the 
other hand, an infected agent spontaneously recovers at a rate γ , that is, with probability equal to γ�t for a 
small enough �t . We consider here the recovered state to be an absorbing state of the contagion dynamics, so 
no infections can reoccur in recovered agents.

It is important to point out that the base transmission rate βb , as defined above, is different from the trans-
mission rate parameter in standard epidemiological compartment models, typically denoted as β . For a short 
contact duration �t the following relations holds β = βbν�t , with ν being the contact rate.

Following the SIR dynamics defined above, an initial number of infected agents can result in a contagion 
process that spreads to other agents, all of which will eventually recover spontaneously until no infected agents 
remain in the system, ending the outbreak. If we define ρI (t) , ρS(t) and ρR(t) as the fraction of the total popula-
tion that is infected, susceptible, or recovered at time t, respectively, this corresponds to reaching a state with 

(1)
d�ri(t)

dt
= v0n̂i(t)+ �Fi(t).

(2)
dθi(t)

dt
=
1

τ

〈

mod∗(θj − θi)
〉

j∈Si
+ σξθ ,

(3)�Fi(t) =
∑

j∈Si

rint − |�rji|

rint

�rji

|�rji|
.
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ρI (∞) = 0 and ρS(∞)+ ρR(∞) = 1 , where t = ∞ denotes any time t after the SIR dynamics has reached its 
final absorbing state. The effectiveness of the epidemic outbreak can then be measured by the value of ρR(∞).

Dimensionless parameters.  We investigate the contagion process for a system of self-propelled agents in 
different types of collective states22. These correspond to distinct regions of the phase space that is spanned by 
two nondimensional control parameters, the Peclet number Pe and the effective coupling strength g, defined as

The Peclet number quantifies the level of persistence in individual movement, with Pe → 0 corresponding 
to noise dominated Brownian motion and Pe → ∞ describing ballistic motion for vanishing angular noise. The 
effective coupling g , quantifies the strength of the alignment interaction relative to the angular noise.

Macroscopic state variables.  Each region in the (Pe,g) parameter space is characterized by different 
degrees of alignment and clustering, which is measured by two order parameter, � and � , respectively. More 
specifically, the degree of alignment is given by the polarization

where � = 1 if all particles are heading in exactly the same direction and � ≈ 0 if they are moving in random 
directions.

The clustering � is defined as the fraction of the total number of particles that conform the largest cluster 
in the system, where the members of a cluster are determined to be all particles within a distance rint of any 
other particle also in the cluster. Therefore, for the relatively low mean density value considered in this paper, 
� = 1/N ≪ 1 describes a homogeneous state in which the distance between all neighbors is larger than the 
interaction range, whereas � = 1 corresponds to a highly inhomogeneous state where all agents belong to a 
single cluster.

Numerical simulations.  We considered different collective states in the (Pe,g) phase space by varying the 
noise σ and alignment relaxation time τ , while keeping a fixed preferred agent speed v0 = 0.2 and interaction 
range rint = 1 , in order to limit the parameter exploration. We also fixed the mean density to a packing fraction 
of Nπ r2int/(4L

2) = 0.3 , by simulating N = 10, 000 agents in an arena of size L ≈ 161 . A detailed analysis of the 
different spatial dynamics and collective states obtained in this system was recently presented in22. Starting from 
statistically stationary states of the spatial dynamics, we implemented the SIR process by infecting 100 agents, 
which corresponds to 1 percent of all particles. For each parameter combination, we considered 5 independently 
converged stationary states and initialized 10 contagion processes, each starting from a different set of randomly 
selected infected agents. Hence, a set of 50 simulations was used to characterize the epidemic spreading for each 
case.

Code availability
The numerical simulation code is accessible at: https://​github.​com/​proma​nczuk/​flock​ingSIR.
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