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Abstract

In this thesis we study various aspects of correlation functions in the (dynamical)
fishnet theory. This theory can be derived as a strong-twist limit of N' = 4 super
Yang—Mills theory, and is conjectured to retain its integrability in the planar limit.

We begin with the study of one of the simplest correlators of the fishnet theory,
represented by the conformal box integral, in Minkowski space. While this integral is
conformally invariant in Fuclidean space, this symmetry is subtly broken in Minkowski
space. We demonstrate the mechanism behind this symmetry breaking, and explicitly
quantify the extent to which conformal symmetry is broken by analysing the functional
form of the box in each kinematic region. We find that there are up to four values of
the box integral on any conformal trajectory. We propose a new method to calculate
the box integral directly in Minkowski space, by introducing a family of configurations
with two points at infinity. These configurations help to expose the geometry behind
the breaking of conformal symmetry. Furthermore, we investigate the extent to which
the box integral is constrained by Yangian symmetry. We constrain the functional
form of the box integral in all kinematic regions up to twelve undetermined constants,
which we fix by three separate analytic continuations from the Euclidean region.

Next, we study the Basso—Dixon graphs, which are four-point conformal integrals
and represent higher-loop versions of the box integral. We derive and study Yangian
Ward identities for this class of integrals. These symmetry equations follow from
interpreting the respective Feynman integrals as correlation functions in the bi-scalar
fishnet theory. The Ward identities take the form of inhomogeneous extensions of the
partial differential equations defining the Appell hypergeometric functions. We employ
a manifestly conformal tensor reduction in order to express these inhomogeneities in
compact form, which are given by linear combinations of Basso—Dixon integrals with
shifted dimensions and propagator powers. The Ward identities naturally generalise
to a one-parameter family of D-dimensional integrals representing correlators in the
generalised fishnet theory of Kazakov and Olivucci. When specified to two spacetime
dimensions, the Yangian Ward identities decouple. Using separation of variables, we
explicitly bootstrap the solution for the conformal two-dimensional box integral. The
result is a single-valued linear combination of products of Legendre functions, which
reduce to elliptic K integrals for an isotropic choice of propagator powers.

Finally, we study the dilatation operator in a particular three scalar sector of the
dynamical fishnet theory, which has been dubbed the eclectic model. The dilatation
operator in undeformed N = 4 super Yang-Mills is one of the hallmarks of its planar
integrability, and can be mapped to integrable spin chain models. In the strongly-
twisted models various subtleties emerge: the dilatation operator is rendered non-
diagonalisable in various operator sectors, in particular in the three scalar sector we
consider. This leads to logarithmic spacetime dependence in the corresponding two-
point functions. Although the model is integrable in the Yang-Baxter sense, approaches
to solve it based on the Bethe ansatz have been shown to fail. Using combinatorial
arguments, we introduce a generating function which fully characterises the Jordan
block spectrum of a related model: the hypereclectic spin chain. This function is found
by purely combinatorial means and can be expressed in terms of the g-binomial coeffi-
cient. We provide further evidence for the universality hypothesis, which is the claim
that the Jordan block spectra of both models coincide under certain filling conditions.



Zusammenfassung

Wir untersuchen unterschiedliche Aspekte im Zusammenhang mit Korrelationsfunktio-
nen in der Fischnetz-Theorie. Dieses Model ldsst sich aus dem Grenzwert einer Defor-
mation aus der sogenannten N = 4 supersymmetrischen Yang—Mills-Theorie ableiten
und es wird vermutet, dass sie deren Integrabilitdt im planaren Grenzfall erbt.

Zunichst betrachten wir einen der einfachsten Korrelatoren der Fischnetz The-
orie, das konforme Box-Integral, in Minkowski Signatur. Wéhrend dieses Integral
in Euklidischer Signatur eine konforme Symmetrie aufweist, wird diese Symmetrie
in Minkowski—Raumzeit subtil gebrochen. Wir demonstrieren den Mechanismus, der
hinter dieser Symmetriebrechung steckt und beschreiben die Brechung der konformen
Symmetrie quantitativ, indem wir die funktionale Form des Box-Integrals in allen kine-
matischen Regionen untersuchen. Auf jeder konformen Trajektorie nimmt das Box-
Integral bis zu vier unterschiedliche Werte an. Wir entwickeln eine neue Methode zur
direkten Berechnung des Integrals im Minkowski-Raum, die auf der Einfiihrung von
kinematischen Konfigurationen beruht, bei der zwei externe Punkte im Unendlichen
liegen. Aufserdem untersuchen wir das Ausmaf zu dem das Box integral durch seine
Yangian—Symmetrie festgelegt ist. Wir fixieren die funktionale Form des Integrals in
allen kinematischen Regionen bis auf zwolf unbestimmte Konstanten, die wir dann
durch drei unterschiedliche analytische Forsetzungen bestimmen.

Als néchstes widmen wir uns den Basso—Dixon—Graphen, die ebenfalls konforme
Vier-Punkt-Integrale sind und Verallgemeinerungen des Box-Integrals zu hoheren
Schleifenordnungen darstellen. Wir leiten die Yangian—Ward—Identitdten ab, die
diese Klasse von Integralen erfiillen. Die Ward-Identitdten sind einhomogene Fr-
weiterungen der partiellen Differentialgleichungen, die im homogenen Fall durch
Appell-Hypergeometrische Funktionen gelost werden. Wir bringen die Inhomogen-
itdten in eine kompakte Form, explizit sind sie durch Linearkombinationen von Basso—
Dixon—Integralen mit verdnderten Dimensionen und Propagatorgewichten gegeben.
Die Ward—Identitdten konnen natiirlicherweise auf eine Ein—Parameter—Familie von
D—dimensionalen Integralen erweitert werden, die Korrelatoren in der verallgemein-
erten Fischnetz—Theorie von Kazakov und Olivucci darstellen. In zwei Raumzeit-
Dimensionen, entkoppeln die Yangian—Ward-Identitaten. Mit Hilfe der Methode der
Trennung der Variablen konstruieren wir die Losung der Identitét fiir das konforme
zwei-dimensionale Box-Integral mittels eines Bootstrap—Verfahrens.

Schlieklich untersuchen wir den Dilatationsoperator in einem Drei-Skalar—Sektor
der dynamischen Fischnetztheorie, der auch als Eklektisches Modell bezeichnet wird.
In diesem stark deformierten Modellen gibt es zahlreiche Subtilitdten, im Vergleich
zur undeformieren N' = 4 SYM Theorie: der Dilatationsoperator nimmt in unter-
schiedlichen Operator—Sektoren nicht—diagonalisierbare Form an. Das fithrt dazu,
dass die Zwei-Punkt—Korrelationsfunktionen eine logarithmische Abhéngigkeit von der
Raumzeitseparierung der Operatoren annimmt. Obwohl das Modell im Yang—Baxter—
Sinn integrabel ist, konnte es bisher nicht mit Bethe-Ansatz—Methoden geldst werden.
Unter Zuhilfenahme von kombinatorischen Argumenten fiihren wir eine generierende
Funktion ein, die das Jordan—Block—Spektrum eines verwandten Modells, der hyper-
eklektischen Spinkette, vollstdndig charakterisiert. Diese generierende Funktion l&sst
sich durch ¢—binomische Koeffizienten ausdriicken. Weiterhin liefern wir Indizien fiir
die Universalitdts—Hypothese, die besagt, dass die Jordan—-Block—Spektren fiir beide
Modelle unter bestimmten Fiillungsbedingungen tibereinstimmen.
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Chapter 1

Introduction

Feynman integrals lie at the heart of perturbative calculations in quantum field theory.
A prominent example is the Standard Model of Particle Physics, which is a gauge
theory based on the gauge group G = SU(3) x SU(2) x U(1). This theory unifies
the strong, weak, and electromagnetic forces, and is to this day the most well-tested
theory in all of theoretical physics. To test a theory, one must perform experiments
to measure observables. To compute observables in a theory, for example scattering
amplitudes! (or more generally correlation functions), one is usually forced to work
perturbatively in the coupling constant. In this case, the problem of computing the
observable in question to a given loop order is reduced to the problem of writing down
all the Feynman diagrams associated to that physical process and calculating and
further summing up the corresponding Feynman integrals as functions of the external
data. For scattering amplitudes of scalar particles the external data is the on-shell
momenta p7 = m? of the external particles. For position-space correlation functions
the external data is simply the positions x; of the operators.

The Feynman diagram approach to calculating observables is not without issues,
however. As we consider physical processes with higher numbers of contributing par-
ticles, at a higher number of loops, the number of contributing Feynman integrals
increases factorially. Furthermore, the individual integrals can be difficult to calculate.
For one, they are often plagued by UV/IR divergences, and must be appropriately
regulated to even be well-defined. When they are well-defined, they can still be very
complicated objects to calculate in terms of the appropriate function class, if it can
be identified. For decades it has been understood that many Feynman integrals can
be expressed in terms of a class of iterated integrals known as polylogarithms. More
recently, Feynman integrals have been identified which evaluate to more exotic func-
tions, for example harmonic polylogarithms and elliptic polylogarithms. The study of
the mathematical properties of Feynman integrals and efficient ways to evaluate them
is at the forefront of modern research in QFT. However, easier methods with which we
can calculate and understand observables are still very welcome.

When there is a simple way to calculate an observable which bypasses a brute-
force Feynman diagram calculation, it typically relies on a symmetry of the underlying
theory. There are several types of symmetry relevant to the action of a QFT: for
example gauge symmetry, spacetime symmetry, and internal symmetry. Therefore, if

!Technically the observable is the cross section M, related to the scattering amplitude A via

M~ A2,



one can identify a theory which has many of these symmetries, there is raised hope to
get a good grasp on the observables of the theory. A case in point is N’ = 4 super Yang—
Mills (SYM) theory in four spacetime dimensions, which is a gauge theory based on the
gauge group SU(N). This theory possesses a maximal amount of supersymmetry in
four dimensions. Furthermore, its spacetime symmetry is enhanced beyond the usual
Poincaré symmetry to a conformal symmetry, which combines with supersymmetry
into a superconformal symmetry. Conformal symmetry vastly constrains the kinematic
dependence of observables. Perturbatively these observables can typically be expressed
in terms of conformal Feynman integrals. These integrals represent a special point in
the space of Feynman integrals: they are more tractable than their non-conformal
counterparts and possess a number of interesting analytic properties.

Notably, the conformal group on four-dimensional Minkowski space Conf(R'?) is
incompatible with quantum field theory. This is because it does not respect causality:
timelike separated points can be mapped to spacelike separated points via a global con-
formal transformation, and vice versa. However, it is still possible for a Minkowskian
QFT to be locally conformally invariant, such that observables are constrained in each
kinematic region by conformal symmetry. A notable kinematic region is the so-called
Fuclidean region, where the values of the observables agree with those computed in
the corresponding Euclidean QFT. In Euclidean space there are no issues with global
conformal transformations, and a Euclidean QFT can be honestly conformally invari-
ant. Mapping between Minkowskian and Euclidean QFTs is a tricky business: often
when faced with a Feynman integral representing an observable in Minkowskian QFT,
one argues that it can be ‘Wick rotated’ in the Euclidean region to a Euclidean Feyn-
man integral, which is easier to calculate. On the other hand, there is a prescription
for analytically continuing Fuclidean correlation functions to Minkowskian correlation
functions via the Osterwalder-Schrader theorem. One way to avoid these subtleties is
to do computations directly in Minkowski space, which is of course the realm in which
physics takes place. However, computations in Minkowski space are usually tricky in
their own right, due to the ie prescription which regulates propagators and implements
causality.

Putting the subtleties with Minkowski space aside, N = 4 SYM has received great
attention due to its connection to holography and integrability. The AdS/CFT corre-
spondence remains the most successful realisation of the holographic principle. This
correspondence provides a duality between planar N' = 4 SYM and free strings on an
AdSs x S° background, and a potential window into the mysteries of quantum gravity.
In this thesis we are mainly concerned with integrability: this appears when a physical
system is so constrained by symmetry that the relevant dynamical variables can be
solved for analytically. A typical feature of integrable systems is the existence of a
large number of conserved quantities. There is by now a generally accepted definition
for integrability of classical mechanical systems via the Arnold-Liouville theorem. A
generally accepted definition of integrability for quantum mechanical models is still
missing. However, there are a wide range of quantum models, for example the su(2)
Heisenberg spin chain, which are generally accepted to be quantum integrable. This
is because they are related to an algebraic structure known as an R-matriz, which
satisfies the Yang—Bazter equation. This equation leads to a web of non-trivial alge-
braic relations, and using these the spectrum can often be solved for exactly using the
algebraic Bethe ansatz. There are various other Bethe ansétze that are used to solve



integrable models, for example the coordinate Bethe ansatz and the thermodynamic
Bethe ansatz. The Yang—Baxter equation is related to an intricate algebraic structure
known as the Yangian algebra, which is believed to play a central role in quantum
integrability.

There is a special limit in which N' = 4 SYM simplifies dramatically, called the
planar limit [5]. This is a double-scaling limit?

gym — 0, N — oo, g = gV fixed, (1.0.1)

where gy is the Yang—Mills coupling and N is the rank of the gauge group. N = 4
SYM is believed to integrable in the planar limit. This is because structures from quan-
tum integrability appear time and time again in the calculation of observables in this
theory. The most well-known is the calculation of the dilatation operator of the the-
ory, which encodes quantum corrections to the two-point correlation functions known
as anomalous dimensions. This operator can be calculated tediously by a Feynman
diagram approach. However, miraculously, this dilatation operator can be identified
in perturbation theory with an integrable (super) spin chain based on the supercon-
formal algebra psu(2,2[4). Restricting to a particular sector of operators one recovers
the su(2) Heisenberg spin chain at one-loop order. Yangian symmetry has also been
detected in various guises, for example in the amplitudes of the theory, the dilatation
operator, and even directly at the level of the action. There are many other places
where integrability can be used for calculations in this theory, for example the quan-
tum spectral curve for computing anomalous dimensions and the hexagon approach to
calculating three-point functions.

Although integrability is ubiquitous in N = 4 SYM, its origin is still shrouded in
mystery. It seems plausible that the large amount of symmetry of the theory is the
main mechanism behind this integrability. But which symmetry is responsible? Is the
combination of symmetries really required? An interesting simplification of N = 4
SYM which makes it possible to probe these questions was proposed recently in [7]. It
begins with an integrable deformation of the A" = 4 SYM Lagrangian by three complex
parameters ;, which breaks supersymmetry [8]. This is followed by a double scaling
limit _

g—0, v; — 100, ¢ = ge 27V fixed. (1.0.2)
After this limit the gauge field decouples and one recovers the so-called dynamical
fishnet theory. Setting & = & = 0 one recovers the remarkably simple bi-scalar fishnet
theory

Len = Ntr(0,X0"X + 0,Z0"7 + X ZX 7). (1.0.3)

Although supersymmetry and local gauge symmetry is absent from (1.0.3), a global
SU(N) symmetry still allows for the notion of a planar limit. Furthermore, the theory
(1.0.3) has conformal symmetry .> Despite this vast reduction in symmetry compared
to undeformed N = 4 SYM, the fishnet theory appears to be integrable in the planar
limit. In many cases, the integrability manifests itself in very simple ways. This is a di-
rect consequence of the simplicity of the planar Feynman diagrammatics of the theory

2There are several ways to take this double-scaling limit, which lead to two independent models [6].
3At least up to double trace terms which are introduced by renormalisation. There is a fixed point
where the beta functions corresponding to these couplings vanish, discussed in section 3.3.2.



(1.0.3). There are very explicit connections to integrable non-compact conformal spin
chains, and using this various correlation functions and scattering amplitudes of the
theory can be obtained analytically. Most of the integrability constructions of unde-
formed N = 4 SYM carry over, and they are typically more tractable mathematically.
There is a price to pay for this simplicity, however. The theory (1.0.3) is non-unitary,
since the interaction tr(XZX Z) has no Hermitian conjugate partner. Although non-
unitary models do appear in certain contexts in physics, this certainly renders the
theory unphysical in the conventional sense. This non-unitarity has very direct impli-
cations for the correlation functions of the fishnet theory. In certain operator sectors,
the form of the two-point functions of the theory differs from the conventional power-
like two-point functions of conformal field theory by the introduction of logarithms.
Therefore such non-unitary conformal field theories are referred to as logarithmic. This
non-unitarity and logarithmicity poses curious challenges for some aspects of integra-
bility in the fishnet theory, most notably for the spectral problem of the theory. In
particular the dilatation operator is non-diagonalisable in logarithmic sectors of opera-
tors [9]. The sizes and multiplicities of the corresponding Jordan blocks determine the
powers to which logarithms can appear in the two-point functions in this sector.

Yangian symmetry has been detected in the fishnet theory in a very explicit setting.
The so-called fishnet Feynman graphs

1 a
2(a+B) a+1
Ig = 5 : (1.0.4)
200+ B+ 1 a+pB
2a+p8 - a+p+1

represent the single contribution to a class of planar correlation functions in the fishnet
theory (1.0.3). In Euclidean signature they are annihilated by the conformal Yangian
generators J4 € Y[s0(1,5)], which take the form of second order differential operators in
the external coordinates z1, s, ..., Ta+p). This is a manifestation of the integrability
of the fishnet theory directly at the level of its Feynman graphs. Since integrability
is best used to calculate quantities, it was proposed in [10] to constrain these and
similar Yangian invariant integrals from this symmetry, in an approach dubbed the
Yangian bootstrap. In a four-point limit the fishnet Feynman graphs (1.0.4) reduce to
the Basso—Dixon graphs

(1.0.5)

The integrals (1.0.5) can be expressed in terms of polylogarithms via the elegant Basso—
Dixon formula: I,3 can be expressed as a determinant of a matrix, whose entries are
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proportional to the ladder integrals I,;. Although this formula has been proven via
matrix model techniques, its simplicity still begs for a derivation based purely on
integrability. Notably, the explicit function form of the fishnet integrals (1.0.4) is
known only for « = 8 = 1. Although the fishnet theory is a toy model, one can hope
that a deep understanding of its integrability can shed some light on the corresponding
problem in the mother theory A/ =4 SYM.

In this thesis we study various aspects of correlation functions in conformal fishnet
theory, and the interplay between Euclidean and Minkowski signature with respect to
conformal and Yangian symmetry. We discuss three main topics:

Conformal Box Integral in Minkowski Space. One of the simplest (time-ordered)
correlators in the fishnet theory is represented by the four-point box integral

T

T x 'z, ! (1.0.6)
4 — . U.
’ in? (22, + i€) (a2, + i€) (25 + i€) (22, + ic)

zs3

In Euclidean space, this integral is represented essentially by the famous Bloch—-Wigner
function D(z, z) of the conformal variables z and z, which are defined via
2 2 2 .2
u:%:zi, v:%:(l—z)(l—é). (1.0.7)
T13L24 T13%24
As already mentioned, conformal symmetry is incompatible with Minkowskian QFT.
In Minkowski space the integral further depends on the kinematic region, which is
specified by the signs of the kinematic invariants xfj In this thesis we do four main
things:

e We classify the set of conformally equivalent configurations of four points in
Minkowski space. In Euclidean space any two configurations of four points with
the same z and z are conformally equivalent. In Minkowski space it further
depends on the kinematic region, for which there are 2% = 64 possibilities. We
find that the kinematic regions split up into 8 groups of equal size, K, and K;
fori=1,...,4. We prove that if two configurations of four points with the same
z and z further have a kinematic region in the same set K; (or K;), then they
are conformally equivalent. We do this with the novel notion of Minkowskian
conformal planes.

e We analyse the expression for the box integral in each kinematic region, and write
it explicitly in terms of the conformal variables z and z. Combining this with our
classification of conformally equivalent configurations of four points, we conclude
that the box integral can assume up to four values on any conformal trajectory.
When the functional form of the box integral away from the Euclidean regions
differs from the Bloch-Wigner function, it differs by a discontinuity thereof in
one of the conformal variables, z or z. Therefore we understand for this very
simple example the extent to which global conformal symmetry is broken for the
box integral, and how the symmetry manifests locally in each kinematic region.



e We introduce a new method to calculate the conformal box integral directly in
Minkowski space, based on the introduction of double infinity configurations of
four points. These configurations make use of the rich structure of ‘infinity’ in
Minkowski space, where it is a three-dimensional surface rather than a single
point. These are ‘boundary’ configurations, in that their kinematic region can
change by a local conformal transformation. In these configurations the mech-
anism behind the breaking of global conformal symmetry is clear geometrically;
the value of the box integral can change if a conformal transformation moves a
point through infinity.

e We study the extent to which the box integral is constrained by Yangian sym-
metry, extending the Yangian bootstrap to Minkowski space. Due to the rich
structure of kinematic regions the permutation symmetry of the box integral at
the level of conformal invariants is reduced. We study these constraints and fix
the functional form of the box integral in all kinematic regions up to twelve unde-
termined constants. We fix these constants by an explicit analytic continuation
of the integral from the Euclidean region.

Yangian Symmetry for Basso—Dixon Correlators. While the many-point fish-
net integrals (1.0.4) are Yangian invariant, there are subtleties in taking the coincidence
limit to the simpler four-point Basso-Dixon graphs (1.0.5). If we take the four-point
limit of the level-one invariance equation

1 «
2(a+P) a+1
Je : - =0, (1.0.8)
20+ B+ 1 a+p
20+ - a+f+1

we find that the equation develops a non-zero right hand side. In this thesis we take the
first steps to understanding the implications of Yangian symmetry on the Basso—Dixon
graphs. In particular:

e We carefully analyse the limit of (1.0.8) to four external points, for the particular
case of the level-one momentum generator Pt An important part of our deriva-
tion is the interpretation of the equation (1.0.8) as a Ward identity for the corre-
sponding correlators in the fishnet theory. The consistency of our derivation hints
at a Yangian symmetry for the fishnet theory at the level of the action, although
this has not been shown yet. We find that the right hand side can be written as
a linear combination of correlators with a single field @ replaced by its conformal
descendant P#®. We analyse this equation at the level of the conformal function
das(u,v), related to the Basso Dixon integral (1.0.5) via 22x5: Ins = ¢as. We
dub the resulting equations the Yangian Ward identities:

[Dgg - d+Ao¢B]¢aﬁ = 07 (109)

where D27 is a certain second order differential operator in the conformal variables
u and v, d* is an operator which shifts the dimension of an integral from D to



D+2, and A,p is a linear combination of operators which modify the propagator
powers of an integral. We provide explicit examples of this equation for all
examples up to four loops.

e We generalise the equation (1.0.9) to an integrable two-parameter family of square
fishnet models £&8 [11], where D is the dimension of the model and w is an
anisotropy which is essentially the difference between the horizontal and vertical
propagator powers. For the special case D = 4,w = 1 this model reduces to
the ordinary bi-scalar fishnet model (1.0.3). The Ward identites for the two-
parameter model take a similar form to (1.0.9):

[DaP — d* Angldisf =0, (1.0.10)
i.e. only the differential operators D% are modified.

e We specialise the modified Ward identities (1.0.10) to two dimensions, and find
the remarkable property that they separate in the variables z, Z. For the special
case of the two-dimensional box integral, we use this separation to describe one
of the simplest incarnations of the Yangian bootstrap. We derive a new result
for the two-dimensional anisoptropic box integral as a single-valued combination
of Legendre functions, which reduce to elliptic K integrals in the isotropic case.

Dilatation Operator of the Dynamical Fishnet Theory. As already mentioned,
the dilatation operator in the dynamical fishnet theory is non-diagonalisable in certain
operator sectors, although it is still integrable in the sense that it can be derived
from an R-matrix which satisfies the Yang—Baxter equation. So far, there has been no
Bethe ansatz which fully describes the Jordan block spectrum of any non-diagonalisable
sector. In [6] this was shown very explicitly for a particular three scalar sector, where
the dilatation operator has been dubbed the eclectic spin chain. This is a spin chain
of three states: ¢1, @2, and ¢3. It was shown that the strong-twist limit of Bethe states
from the ~y-twisted model all reduce to a trivial locked state. We propose a method to
fully classify the Jordan blocks of the eclectic spin chain:

e Using combinatorial arguments we introduce a generating function Z(q), which
enumerates the spectrum of a model closely related to the eclectic model, namely
the hypereclectic model. In the hypereclectic model the ¢3 field is distinguished as
a non-mover. Our generating function is related to the sizes and the multiplicities
of the Jordan blocks via

Z(q) = 3 Nilila (1.0.11)

where N; is the number of Jordan blocks of length j, and [j], is a g-number
defined in (6.3.41).

e We provide explicit formulas for the generating function for various subsectors
of operators. For example, for operators of length L with L — M ¢, fields and a
single ¢3 field we find

Zrulg) =L L\L[_ll]q (1.0.12)
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coefficient (AL[j) as ¢ — 1. For higher numbers of ¢3 fields, the generating
function can be written as a sum of products of ¢g-binomial coefficients.

where {

] is a q-binomial coefficient, which reduces to an ordinary binomial
q

e The spectrum of the hypereclectic model was conjectured to coincide with the
spectrum of the eclectic model for generic couplings, provided special filling con-
ditions on the numbers of fields are satisfied. We provide further evidence for
this conjecture, and sketch a proof for the case of a single ¢3 field.

This thesis is structured as follows. In chapter 2 we review the foundational concepts
that make up this thesis. In particular, we review Euclidean/Minkowskian correlation
functions and their expansion in Feynman diagrams in section 2.1. In section 2.2
we review (logarithmic) conformal field theory, discussing constraints on correlation
functions and the distinction between the conformal group on Euclidean and Minkowski
space. In section 2.3 we discuss several aspects of Feynman integrals which are relevant
to this thesis, and in particular discuss conformal Feynman integrals. In chapter 3 we
discuss the (dynamical) fishnet theory and discuss its integrability. In section 3.1 we
give an overview of classical and quantum integrability, focusing on the example of
the Heisenberg spin chain in the quantum case. In section 3.2 we introduce N = 4
SYM theory and discuss its integrability. In section 3.3 we describe in detail how to
recover the dynamical fishnet Lagrangian from that of N' = 4 SYM, and discuss the
conformality and integrability of the theory. In chapter 4 we discuss various aspects of
the conformal box integral in Minkowski space described above. In chapter 5 we derive
the Yangian Ward identities for the four-point Basso—Dixon graphs. In chapter 6 we
introduce the eclectic spin chain and describe its integrability and solution. Finally,
we conclude and give some outlook in chapter 7.



Chapter 2

Correlation Functions in Conformal
Field Theory

We begin with a review of the core concepts that underlie this thesis. These are
correlation functions, conformal field theory, and Feynman integrals.

2.1 Correlation Functions in Quantum Field Theory

First, we will discuss time-ordered correlation functions of scalar fields in Minkowskian
quantum field theory:

(@(x1) -+ d(2n)) = (QUTP(x1) - - P(2n) |€2), (2.1.1)

where z1, ..., x, are external points in Minkowski space R'3 |Q) is the vacuum of the
theory, and T is the time-ordering operator. Such objects are naturally defined in the
path integral formulation of QFT. They are quite general objects; for example they con-
tain all the information of the scattering amplitudes A of a theory, which describe inter-
actions between asymptotic on-shell states, via the Lehmann-Symanzik-Zimmermann
(LSZ) reduction formula. The structure of scattering amplitudes can be directly probed
in collider experiments through the scattering cross section M ~ |AJ?, and their calcu-
lation is currently a huge field of study [12]. Correlation functions are often calculated
perturbatively, as a sum over Feynman diagrams. This can be done in either momen-
tum space or position space. In this thesis we will mainly focus on the position space
picture, where correlation functions are naturally defined.

There is an important distinction between correlation functions in Euclidean space
and those in Minkowski space. Euclidean correlators are more relevant for statistical
mechanical systems, for example the Ising model. In Euclidean space there is no notion
of time ordering, and there are no light cone singularities (except at coincident points).
As such, Euclidean correlation functions are simpler in structure, and are single-valued,
permutation invariant functions of the external positions. Quantum field theory is for-
mulated in Minkowski space, however, and the analytic structure of the correlation
functions is more intricate. There is a well-defined procedure to analytically continue
Euclidean correlators to Minkowski space, however, via the Osterwalder—Schrader re-
construction theorem [13,14].



In this section we will define correlation functions of scalar operators in Minkowski
space, and outline how to calculate them perturbatively as a sum over Feynman di-
agrams. We will then discuss Wick rotation and the issue of analytically continuing
Euclidean correlators to Minkowski space. Much of what we describe here is available
in the standard textbooks on quantum field theory [15-18|. Therefore we will be fairly
brief in our discussion and only give salient details.

2.1.1 Correlators and Feynman Rules

In the path integral formulation of quantum field theory, a theory of a single scalar
field ¢ is defined by the partition function!

Z[0] = /D¢> e'59), (2.1.2)

where the integration measure D¢ is a formal sum over all classical configurations of
the field ¢(z) = ¢(t, ), where t € R and & € R?. S(¢) is the classical action of the
theory

S(o) —/d4x L, (2.1.3)

where L is the Lagrangian. The sum over configurations (2.1.2) is formal because
strictly speaking the sum is highly oscillatory and even divergent at large times t. To
regulate the divergences there are a couple possibilities. One would be to begin with
a partition function defined in Euclidean space, which is exponentially damped, and
analytically continue results obtained in this theory to Minkowski space. We discuss
this option in section 2.1.2. Another option is to shift all times by a small imaginary
part:
t — t(1 —ie). (2.1.4)

Although (2.1.4) is a formal way to make the sum converge, it is still extremely difficult
to show that the sum over configurations exists in a strict mathematical sense. Indeed,
there is so far no Minkowskian partition function in four dimensions which has been
shown to exist mathematically. For the remainder of the thesis we ignore this subtle
question of existence and simply assume it, as all physicists do.

A key fact in the path integral formulation is that the time-ordered correlation
functions (2.1.1) can be calculated as path integrals:

z1) - d(x,,) 5@
(O(e1) - b)) = L 22O )Z[O]qb( )

We stress that while the fields ¢(z;) on the left hand side of (2.1.5) are quantum fields
in the Heisenberg picture, the fields ¢(z;) on the right hand side are purely classical.

There is a convenient way to calculate path integrals, using an auxiliary current
J(x). We define the generating functional

ZlJ] = / D¢ exp (iS(qb) +i / d4g;J(a:)¢(x)) : (2.1.6)

. (2.1.5)

LOf course there are more complicated theories than (2.1.2), containing for example gauge fields or
fermions. Moreover, the fields could transform in a non-trivial representation of some matrix group,
and have extra index structure. In these cases the basic results of this section hold true, with some
modifications to the Feynman rules.
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which coincides with the partition function (2.1.2) when J(x) is the zero field, which
justifies the notation Z[0]. Moreover, the correlation function (2.1.5) can be calculated
using functional derivatives of the generating functional:

(i) 62

<¢($1) .. ¢($n>> = Z[O] (5J(x1) . §J(£Cn) - (2.1.7)
The functional derivatives 0/.J(x;) satisfy
0J(x)
570y 6 (r —y), (2.1.8)

where 6*(z — y) is the four-dimensional Dirac delta distribution. From (2.1.7) we see
that if we can calculate the generating functional Z[J] of a theory, we can access all
the correlation functions just by taking functional derivatives, and then sending the
currents J(z;) to zero.

Free Theory. It is possible to calculate the generating functional Z[.J] for the free
theory, Zy[J], using simple (formal) Gaussian integration. The free theory is defined
via the Lagrangian

1
Lo=—5¢ (0,0" +m?) ¢, (2.1.9)
where m is the mass of the scalar field. The result is
Zy[J] = Z[0] exp <—% /d4ac d'yJ(z) (-0,0" —m® + 2'6)_1 J(y)) (2.1.10)

= Zo[0] exp (—% / d'z d*yJ(2)Ap(z —y)J (y))

where the ie originates form the time shift (2.1.4), and we denoted the inverse func-
tional by Ap(z — y). We note that the factor Z;[0] contains a divergent functional
determinant, which cancels when considering correlation functions (2.1.5). The inverse
functional Ap(z — y) should satisfy

(—=0,0" —m® +ie) Ap(z — y) = 6*(z — y). (2.1.11)

This equation is solved by the Feynman propagator

dip ey
Ap(z —y) —/(%)4])2 — (2.1.12)

which is (up to a factor of i) exactly the time-ordered two-point function encountered
in canonical quantisation. This propagator can be evaluated in terms of the Bessel
function [19]?

_im Ki(imy/—(x — y)? + ie)
Am? /(v —y)2 +ie

1 1
S
A2 (z — y)? — i€ + Omlogm),

Ap(r —y) =

(2.1.13)

2This equation is valid for spacelike separations (z —y)? < 0. For timelike separations (z —y)? > 0
the propagator can be evaluated in terms of Hankel functions of the first kind. These results agree in
the massless limit m — 0.
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where we note that for massless scalar fields the sign of the infinitesimal regulator
changes ie — —ie, with respect to (2.1.12).

Using (2.1.7) and (2.1.10) all of the correlators in the free theory can be calculated.
For example, the two-point function is

) 0 7
— (4 2 v 4 4 A o
(oanotealo = (it e (= [ dst et ) I0)
(2.1.14)
= iAp(11 — 33),
as expected. This equation can be expressed diagrammatically as
(P(z1)p(22))0 = = z2 (2.1.15)

which is the simplest example of a Feynman diagram. The three-point function, or
more generally any correlator with an odd number of points, is easily seen to vanish in
the free theory. This is because an odd number of functional derivatives will necessarily
leave at least one factor of the current J in front of the exponential, which vanishes upon
sending the current to zero. When there is an even number of functional derivatives, it
is possible for one functional derivative ¢/0.J(z;) to ‘pull down’ a factor of J(x;) from
the exponential, and another functional derivative §/6.J(x;) to annihilate this factor,
resulting in a propagator Ap(z; —x;). The next non-trivial correlator in the free theory
is the four-point function, given by

(P(21)P(22)0(23)P(74))0 = A1aAsy + A13 Aoy + A1y Aos (2.1.16)
X1 X9 €1 / 9 X1 €2
= + \\ + ,
T4 I3 T4 / xIs T4 I3
where we abbreviated A;; = iAp(z; — ;). We see that calculating the correlation

functions in the free theory is essentially a combinatorial problem; one just needs to
find all the possible ways to contract the external points in pairs. The 2n-point function
is a sum of (2n — 1)!! products of n propagators. This can be summarised with Wick’s
theorem.

Interacting Theory. In an interacting theory, it is no longer possible to calculate
the generating functional Z[J] analytically. However, it is possible to proceed pertur-
batively. As an example, take the scalar ¢* theory, defined by the Lagrangian

zwzg—%&, (2.1.17)

where L is the free Lagrangian (2.1.9) and g is the coupling constant. For small g the
generating functional can be expanded

—i s WO Z I (=ig\P L [ o s OSZ[T
Z[J] :ZO[J]+4—!g/d x(—1) §4J(Ev)]+( 4!9) ﬁ/d xd y(—1) W(%—I—---

(2.1.18)
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and the correlation function can be calculated order by order in ¢ using (2.1.7). For
example, at order g the correlation function is calculated as

(—i)" 9" —1g 4 . 454ZO[J]
_(_nt520[0] 0" g o 1 4, 14
=(—1) + Z[0] 570z - 5J<xn)a/d x54J(1‘> exp (—5 /d xd yJ(x)AIyJ(?J)) .

which is combinatorially much more intricate to calculate than in the free theory.
Miraculously, the whole correlation function (2.1.7) can be calculated at each order
in g by adding up all connected Feynman diagrams with n external points compatible
with the Feynman rules at this order in g, and multiplying by appropriate symmetry
factors for each diagram. This fact is non-trivial and we simply state it here. The reason
is that the Z]0] factor in the denominator of (2.1.7) can be written as the exponential
of the sum of connected vacuum bubbles, i.e. Feynman diagrams with no external
points, and the numerator of (2.1.7) factors into a product (exp of connected vacuum
bubbles) x (sum of connected diagrams). As an example, the two-point function in ¢*

theory is

(p(z1)p(x2)) = =

The diagrams in (2.1.20) are associated to functions of the external points z1,zs via
the Feynman rules as follows:

e For each internal four-vertex at position z, include a factor —ig [ d*z.
e For each line joining points z and y, include a factor D,, = iAp(x — y).
e Include the symmetry factor of the diagram.

The symmetry factor of the diagram accounts for contractions of fields which give
rise to the same Feynman diagram. We do not give details how to calculate it; it is
explained for example in [15]. As an example of these rules, we have?

T & To T d4xDx1xDxxDxx2, (2121)

where the symmetry factor of this diagram is % We note that this integral and the other
integrals in (2.1.20) are divergent, and the theory (2.1.17) requires renormalisation for
a finite two-point function.

For a general theory, the interaction Lagrangian determines the vertices which ap-
pear in the Feynman rules. For example, a scalar interaction ¢™/n! will produce an
n-valent vertex. The propagators are different for particles of different spin, but they
still represent functional inverses of the kinetic part of the Lagrangian, as in (2.1.11).

3Note that we will typically not label internal points.
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Then correlation functions for a given number of external fields can be calculated by
drawing all Feynman diagrams with these external fields, compatible with appropriately
modified Feynman rules. Correlation functions can also be calculated in momentum
space, using the momentum space Feynman rules. We will mainly use the (massless)
position space rules in this thesis, and so we omit them from the discussion here.

2.1.2 Wick Rotation

The structure of correlation functions in Minkowski space is quite intricate: the e pre-
scription, which is used to regulate the path integral (2.1.4), appears in the Feynman
rules as a regulation of the propagator Ar(z—1vy), which turns out to implement causal-
ity by time ordering the correlation functions. Since things are much more convenient
to calculate in Euclidean space, physicists often do calculations there, with the promise
that results can be ‘Wick rotated’ to Minkowski space. We will discuss this issue a bit;
first the problem of mapping a Minkowski space calculation to a Euclidean one at the
level of Feynman integrals, and then the problem of mapping a Euclidean calculation
to a Minkowski one at the level of the full correlation function. One way to avoid these
subtleties is to proceed with a calculation directly in Minkowski space, while keeping
careful track of the 7e factors at each stage of the calculation. We do such a calculation
explicitly in section 4.3.2.

Minkowski to Euclidean: Rotating Contours. In Minkowski space Lorentz in-
variant squares can be calculated®

r=(tx) — 2°=t'—-x- =z (2.1.22)

where x - « is the usual Euclidean dot product. By making the change of variables
t — —iT we see that

r— (—it,x) — 2*=-7T'—-=x =z, (2.1.23)

which is now a square of definite Euclidean signature. This is an analytic continuation
of the time variable, which has to be justified in any given calculation, for example
if £ is an integration variable. If it can be justified, we are left with a calculation in
Euclidean space, which is usually more convenient than the corresponding calculation
in Minkowski space. In practice this is most commonly seen at the level of Feynman
integrals. A common example is a one-loop integral of the form

/ (d4p ! (2.1.24)

2m)4p? — A+ e’

where A > 0 is an effective mass. The denominator of (2.1.24) can be factorised
PP — Atie=(p" —w+id)(p®+w—id), (2.1.25)

where w = /p-p+ A and € = €/2w is a new infinitesimal regulator. Due to this
singularity structure, one can safely rotate the integration contour anticlockwise onto

4Throughout this thesis we use the mostly minus (+ — — —) spacetime signature.
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the imaginary p° axis, without crossing any poles of the integrand:
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One can achieve this exactly by the substitution p° — ip°. In the integral (2.1.24)

the Lorentz square becomes p* — —(p°)? — p - p = —p% and the measure transforms
d*p — id*pg, where pg is a Euclidean momentum. Overall we have
d* 1 d? 1
/ s — , :—i/—pig—, (2.1.26)
(2m)4p? — A +ie (2m)iph + A

where the regulator ¢ can now safely be ignored because there are no poles on the
integration contour. (2.1.26) can be straightforwardly integrated using hyperspherical
Euclidean coordinates. There is a tradeoff: one could also compute the integral (2.1.24)
by using an appropriate semicircular contour and the residue theorem for the p° inte-
gral, and then integrating over the remaining Euclidean degrees of freedom in spherical
coordinates. This is slightly more technical than computing the integral (2.1.26), how-
ever one must be careful to justify the Wick rotation properly. For example, one would
get a wrong result for the integral if they made the substitution p® — —ip®, which ro-
tates the contour anticlockwise through the poles. For higher numbers of integrations
the singularity structure becomes more intricate. More complicated examples of Wick
rotations are discussed in [20].

Euclidean to Minkowski: Osterwalder—Schrader Theorem. There is the natu-
ral question: if we compute some correlation function in a Euclidean quantum field the-
ory, is it possible to analytically continue this result to the corresponding time-ordered
correlator in Minkowski space? The answer is yes for sufficiently well-behaved Eu-
clidean correlators, and it can be done using the Osterwalder—Schrader reconstruction
theorem [13,14]. A modern summary of these results is given in [21]. Loosely, it states
that well-behaved Euclidean correlators can be analytically continued to Lorentzian
correlators which satisfy the Wightman axioms. We will not go into detail on what
‘well-behaved” means or what the Wightman axioms are, and simply sketch the results.

First, we should describe how correlation functions are calculated in a Euclidean

quantum field theory. Under a formal Wick rotation 2° = —iz%,, the action of ¢* theory
transforms
1 1
S = / diz (iawa#qs — 5m* - % 4) (2.1.27)

. 1 1 g .
— —z/d4xE (—58’%)8,@ — §m2gb2 — Z¢4) = 1iSg.
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Therefore, under this Wick rotation the Minkowskian partition function transforms

Z= /D¢ e — /m e 5% 1= Zp, (2.1.28)

We see that Zg is the partition function encountered in statistical mechanics, which
explains the colloquial statement that QFT and statistical mechanics are related by
Wick rotation. Since Zg is exponentially damped, it has a better chance of being
mathematically well-defined, although it may still require some kind of regulation to
be finite.

One can define a Euclidean quantum field theory beginning with the partition
function Zg. In this case there is no notion of time ordering, and correlation functions
should be permutation invariant functions of the positions z;. For scalar field theories
the correlation functions can be defined

x1) - d(xy,) e 5@
($(a) - o(w,)) = 122 ¢(f 2)>¢ : e _ (2.1.29)

These correlation functions can be calculated in complete analogy to the Minkowski
case, as a sum over connected Feynman diagrams with n external legs. The only
difference is that we should of course integrate over Euclidean space in the Feynman
rules, and Euclidean propagators should be used:

dip e® @y

which similarly to (2.1.13) can be evaluated in terms of a Bessel K function, and in
the massless limit m — 0 behaves as

1
App(z —y) = yr p—r + O(mlogm). (2.1.31)
Consider a FEuclidean correlator
G<x17"'7'rn) = <¢<$1)¢<ZL’”)>, T, = (Ti,JI},IIJ?,(L’?) € R47 (2132)

where we suggestively denote the first component of the coordinates x; as the Fuclidean
time 7; € R. This function is analytic away from coincident points x; = x;. If we
analytically continue 7; away from the real axis, the function G has an intricate branch
cut structure. To obtain a Minkowski correlator, the hope would be to safely rotate
the Euclidean times to Lorentzian times 7; — it;, so that

T, = (Ti,xg,x?,x?) — (iti,xﬁ,x?,w?) =y (2.1.33)

Given the branch cut structure of GG, there may be ambiguities in how to perform
this analytic continuation, for example one could pass through a branch cut, picking
up a discontinuity, or around it. In fact, the choice of which analytic continuation to
make is equivalent to the choice of time-ordering of the Minkowskian correlator [21].5

SWhile we have only mentioned time-ordered correlators so far, other time orderings are possible.
Out-of-time-order correlators have received much interest recently, see for example [22].
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This branch cut structure depends sensitively on the causal order of the points in
Minkowski space, i.e. the signs of (y; — y;)? = yfj Notably, if all the Minkowskian
points are spacelike separated y% < 0 for ¢ # j, then there are no branch cuts and
all time-orderings of the Lorentzian correlator are equal to the Euclidean correlator.
This is the so-called Fuclidean region of kinematics. If some of these variables are
timelike, for example y%, > 0, then there is the possibility that analytically continuing
the Euclidean correlator to the time-ordered Minkowskian correlator yields some extra
discontinuities obtained from continuing through a branch cut. We will see examples
of this explicitly in section 4.4.3.

The Osterwalder—Schrader theorem, as well as guaranteeing a safe analytic continu-
ation of Euclidean correlators to Minkowski correlators, also gives an explicit algorithm
to compute this continuation. In particular, we have

(d(t1, 1) - O(tn, Tp))r1s = el_iEa)0 G((ity + €1, @1), ..., (ity + €n, ) (2.1.34)

where the limit is taken with €; > e; > --- > ¢, > 0. Depending on the order of the
t;, this order of the €; encodes the way the 7; are continued through the branch cuts of
the function G(xy,...,x,). If t; >ty > t3 > t4 then the correlator is time-ordered.

In practice, the limit (2.1.34) may be tricky to calculate. In particular it depends
sensitively on the causal order of the points in Minkowski space. It can be useful
to calculate the correlator directly in Minkowski space, rather than computing it in
Euclidean space and performing the analytic continuation. The direct computation
in Minkowski space can also serve as a check that the analytic continuation from
Euclidean space was performed correctly. In chapter 4 we will look at a particular
four-point correlator, which is represented by a single Feynman diagram, from many
different perspectives. This will allow us to investigate the relationship between the
Euclidean correlator and the Minkowski correlator in detail.

2.2 (Logarithmic) Conformal Field Theory

An important class of quantum field theories are those which are invariant under the
conformal group, which is an extension of the Poincaré group. Classical conformal
symmetry is present in some of the most famous equations in physics, for example the
massless Yang—Mills equations of motion in four dimensions:

D'Fe, =0, (2.2.1)

where D = 0" + g [A*, ] is a gauge covariant derivative. (2.2.1) includes as a special
case Maxwell’s equations in the absence of sources, which was noticed to have conformal
symmetry in the early 1900s [23,24].

A necessary condition for conformal symmetry is invariance under both Poincaré
transformations x* — A* ¥ + a* and dilatations

a — cat, c>0, (2.2.2)

6

which is a uniform scaling of space(time). In many cases® invariance of a physical theory

6Conformal invariance has been shown to follow from scale invariance in two dimensions under a
few technical assumptions, including unitarity [25]. Under similar assumptions it is expected to be
the case in four dimensions. A scale invariant theory without conformal symmetry has been proposed
by Cardy and Riva [26], however this model is non-unitary.
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under these two transformations implies invariance under so-called special conformal
transformations
ah — x2bH

7 —2x - b+ 22b?’
where b* is a fixed vector, with dimensions of inverse length.

Notably, invariance under dilatations requires a theory to have no length scale, and
hence only involve massless particles. At the quantum level, renormalisation in general
introduces an energy dependence to the coupling constants, which necessarily breaks
conformal invariance. Crucially, conformal invariance can be restored at fixed points
g* where the beta functions corresponding to these running couplings vanish:

Bi(g") = 0. (2.2.4)

(2.2.3)

xH

In this case the couplings do not depend on the energy scale. Therefore it is the
machinery of conformal field theory which describes QFTs at fixed points (2.2.4), which
should already be more than enough motivation for their study. They also play a
prominent role in the AdS/CFT correspondence, one of the most fruitful frameworks
for understanding theories of quantum gravity at strong coupling [27-29].

Conformal symmetry places very stringent constraints on the correlation functions
in these theories. In many cases this allows for their calculation non-perturbatively.
In particular, the two-point functions of scalar operators (after an appropriate rescal-
ing) are completely determined by the operators’ scaling dimensions A. Similarly,
the spacetime dependence of the three-point functions is fixed by these scaling dimen-
sions, up to an overall normalisation A\. Higher-point functions can be reduced to sums
of three-point functions via the operator product expansion, and thus all correlation
functions can be characterised by the set of CFT data {{A,R},\}. Here R is the
representation of the Lorentz group under which the operator with dimension A trans-
forms, and \ represents the aforementioned three-point normalisations. In recent years
there has been enormous progress in the conformal bootstrap, a method to constrain the
conformal data of a CFT using the operator product expansion as well as consistency
conditions coming from crossing symmetry [30]. This has been most famously applied
in the case of the 3D Ising model [31].

There is an important distinction between the conformal group Conf(RP) in Eu-
clidean space and the conformal group Conf(R“P~!) in Minkowski space.” The Eu-
clidean conformal group is more relevant to statistical mechanics and the Minkowskian
conformal group is more relevant for QFT, although locally they have a similar struc-
ture. In many cases we will consider the Fuclidean conformal group, even in the case
of QFT, with the understanding that the obtained results can be analytically contin-
ued to Minkowski space after an appropriate Wick rotation, see section 2.1.2. For
D = 4 these conformal groups are 15-dimensional and we have Conf(R?) ~ SO™(1,5)
and Conf(R'?) ~ SO*(2,4)/Z,. For D = 2 however we have Conf(R?) ~ SO*(1,3),
whereas for Minkowski space the conformal group is infinite-dimensional Conf(R!!) ~
Diff, (S!) x Diff, (S') and is essentially a direct product of orientation preserving dif-
feomorphisms on the circle. In this thesis we mainly consider dimensions D > 2, with
an exception in chapter 5.

"We will always use the symbol Conf to denote the component of the group of all conformal
transformations on a given space which is connected to the identity.
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One of the holy principles in quantum field theory is unitarity, which roughly states
that sum of the probabilities of all outcomes in any experiment is unity. In conformal
field theory unitarity imposes lower bounds on the scaling dimensions of operators in
the theory, for example A > % for scalar operators. Notably, this bound is saturated
for scalar primaries.® There are certain conformal theories where the assumption of
unitarity can be given up, which leads to many new features. Notably, the represen-
tation of the conformal group no longer needs to be decomposable?, which can lead to
a non-diagonalisable dilatation operator in certain operator sectors. In such cases the
spacetime dependence of the two-point functions can contain logarithms of the space-
time separation x; — x5. Therefore such theories are often referred to as logarithmic
conformal field theories. Logarithmic conformal field theories play an important role
in two dimensions [32]. There, due to their direct connection with two-dimensional
statistical mechanics models, they are of great physical interest. Important examples
include models of self-avoiding walks, polymers, and percolation. In higher dimensions,
logarithmic CFTs have been much less studied, although some reviews exist [33]. The
fishnet theory, one of the main subjects of this thesis, is non-unitary and contains
sectors of operators which are logarithmic.

A vast literature exists on the subject of conformal field theory. [34] gives a com-
prehensive review of mathematical aspects of the conformal group. [35] is the standard
textbook on conformal field theory, but focuses mainly on two dimensions. There are
several reviews on the conformal group in higher dimensions, which also explain the
exciting recent developments of the conformal bootstrap [36-39].

In this section we give a review of the basic concepts of conformal field theory which
are relevant for this thesis. We define conformal transformations, both globally and
locally, and describe their action on scalar fields. We discuss the constraints of global
conformal transformations on correlation functions. Locally these take the form of the
conformal Ward identities, which are explicit differential constraints on the correlation
functions in terms of the generators of the conformal group. We discuss geometrically
the constraints of conformal symmetry on four-point functions in the conformal plane
picture. We describe the necessary modifications to the Ward identities for logarithmic
CF'Ts, and the explicit form their solution takes. Finally, we describe the subtle issue
of the conformal compactification of Minkowski space.

2.2.1 Conformal Symmetry

In this section we describe the basics of conformal symmetry. We consider a spacetime
in D dimensions with metric g,, and a transformation of the coordinates = — 2/(x).1°
Such a transformation is conformal if it acts as a Weyl transformation on the metric

Oz Oz”
o g 98 = M@) g (), (2.2.5)

9 (2') =

where A(z) is the conformal factor. (2.2.5) implies that the angle between curves
crossing at any point is preserved. Indeed if a* and b* are tangent vectors to some

8These are scalar fields ¢(z) which are annihilated by the special conformal generator K* at z = 0.

9A representation is decomposable if it can be brought into block diagonal form by a change of
basis.

10We consider only Euclidean space g = diag(+ + - - - +) and Minkowski space g = diag(+ — -+ —).
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curves A\, and )\, intersecting at x, then the angle ¢ between them is

cos(¢) = g (¥)a"D" (2.2.6)

 VIas(@)aaP g (w)70°

which is invariant under © — 2/(x) when (2.2.5) is satisfied. Conformal transforma-
tions form a group under composition, and indeed successive conformal transformations
with conformal factors Aq, Ay correspond to a conformal transformation with conformal
factor AjAy. If the conformal factor A(x) = 1 for all x, then the conformal transforma-
tion is a Poincaré transformation, i.e. a combination of a translation and a (Lorentz)
rotation.

In order to determine the set of possible conformal transformations, it is useful to
first work locally. Considering infinitesimal coordinate transformations

= o't = a2t + € (x), (2.2.7)
then (2.2.5) takes the form
G = Guv — (Opes + Ove,) + O(€7). (2.2.8)

Therefore the vector e*(x) determines a local conformal transformation, provided

Ouen + 0vey = f(2)g, (2.2.9)
for all x. In this case we have

G = (1= [(2)) gpo- (2.2.10)
Clearly (2.2.9) is satisfied from constant vectors ¢/ (z) = a*, and €(x) = m"”x, when-
ever mM* = —m"*. These cases correspond to infinitesimal translations and rotations

respectively, whereby f(x) = 0. If e#(x) = d" 'z, with d" arbitrary, then it is straight-
forward to show that the symmetric part of d*¥ must be proportional to the metric if
(2.2.9) is to be satisfied. €“(z) = $ag"z, = jaa* corresponds to infinitesimal dilata-
tions (2.2.2), and in this case f(x) = a. Finally, and perhaps least intuitively, it is
possible for (2.2.9) to be satisfied when e*(z) = ¢*?x,z, is quadratic in . One can
check that

e'(r) = MPx,x, = 2(x - b)x" — 2°b" (2.2.11)

is the most general quadratic solution to (2.2.9). This transformation is the in-
finitesimal version of the special conformal transformation (2.2.3), and in this case
f(z) =4z -b. There are no further solutions to the equation (2.2.9), and in summary
we have the infinitesimal conformal transformations

Translation : at — ot 4+ et (2.2.12)
Rotation : ot =t +mx,, mt = —m"H. (2.2.13)
Dilatation : o — (14 fa)zt. (2.2.14)
SCT : ot — ot 4 2(x - b)at — 27Dt (2.2.15)

These transformations are parametrised by constant vectors ¢* and b, an antisym-
metric matrix m*”, and a positive real number «. Therefore the conformal group has
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D+D+D(D—-1)/241= (D +1)(D + 2)/2 parameters. The corresponding finite
transformations are given by

Translation : at — at 4 a. (2.2.16)

Rotation : = AP x”, ATgA = 1. (2.2.17)

Dilatation : at — cat. (2.2.18)
B p2pH

SCT R (2.2.19)

1—2x-b+ 22b%

Note that (2.2.19) already appeared at the beginning of the section (2.2.3). These
are just the conformal transformations which are connected to the identity. A notable
transformation which is not connected to the identity is the conformal nversion

ok

T:at—a"(x) = pex (2.2.20)

Under (2.2.20) the metric transforms

ox® OxP 1 e, 2P 1
o 4 5 v _
G =0 Gt g I8 T A (5 "o 2?) (5 v 2 g2 ) 908 = gt (2.2.21)

showing that the inversion is indeed a conformal transformation, with conformal factor
Ainy(z) = 1/2*. Notably, a special conformal transformation can be expressed as an
inversion, followed by a translation, followed by another inversion:

Z — b o at =2t
(i—g—b“)2 1 —2x-b+ 220

(2.2.22)

From this we see explicitly that the parameter b* has units of inverse length, since
it represents a translation in the inverted space. Using (2.2.21) and (2.2.22) one can
show that a special conformal transformation is conformal with Ager(z) = 1/(1 —
2z - b+ 2?b*). There can be further conformal transformations not connected to the
identity depending on the spacetime signature. In Minkowski space the space and time
reflections P and 7T are examples.

2.2.2 Conformal Algebra

Since we are concerned with field theories invariant under the conformal group, we
need to describe the representations under which the fields transform. The precise
representation depends on the properties of the particle which the field represents. For
example, a scalar field ¢(x) transforms trivially under the Lorentz group

at — A ¥ o(z) = d(A '), (2.2.23)

where the transformation is considered in the active sense. On the other hand, a spin-
% particle can be represented by a Dirac spinor 1*(z), and under the same Lorentz
transformation transforms

() = S[A] g (A ), (2.2.24)
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where S[A]%; constitute the spin- representation of the Lorentz group, built from
the Clifford algebra. In this thesis we will mostly consider scalar representations of
the conformal group. However, scalar fields still transform with a non-trivial scaling
dimension A.

At the local level, there is the notion of a generator of a transformation of fields.
Suppose we have an infinitesimal transformation

gij o(x) = ¢'(2') = oa) + wa%;ix)),

= ot 4w, (2.2.25)
where w, are infinitesimal parameters and the function F parametrises the transfor-
mation of the field ¢(x) — ¢'(2’) = F(¢p(x)). The generators J, corresponding to this
transformation are defined by

0u0(2) = ¢/ (x) — P(x) = —iw,J.0(2), (2.2.26)
where J, can be expressed in terms of the variations as
, dxt OF
lJagb = 6—%6#@5 — 5—%. (2227)

For the conformal group we denote by P* the generators of translations, L*” the gen-
erators of rotations, D the generator of dilatations, and K" the generators of special
conformal transformations. A scalar field transforms under scaling as follows:

T —cx, o(x) = ¢'(cx) = c 2 p(z), (2.2.28)

where A is the scaling dimension, or simply dimension, of ¢. A scalar field with
dimension A transforms under special conformal transformations as
ot — 22t

ot — = " on b5 220 o(x) = ¢'(2') = (1 — 22 - b+ 2% p(x). (2.2.29)

The transformation rule (2.2.29) ensures that the field ¢(x) does not feel the effect
of the variation of the scale factor Agcr(z) = 1/(1 — 2z - b + z%b*). Using (2.2.27),
(2.2.28), and (2.2.29), the generators of the conformal group for scalar fields with
dimension A can be calculated. For example, for an infinitesimal dilatation we have

* — (1 4+ w)z* + 0(w?), 0(z) = (1 +w)¢(z) = (1 — Aw)o(z) + O(w?), so
ozt (5._7-" _

eal——

ow dw
Using (2.2.27) we calculate the dilatation generator to be D = —i(z - 9 + A). Simi-
larly, the rest of the generators of the conformal group in this representation can be
calculated, and constitute a set of first order differential operators in x:

—A¢(z). (2.2.30)

Pt = —io",

LM = i(x"0” — " 0"),

D= —i(z-0+ A4),

K' = —i(20"(x - 0 4+ A) — 220").
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(2.2.31)-(2.2.34) generate the infinitesimal transformations (2.2.12)-(2.2.15) acting on
scalar fields ¢(z). These generators are closed under commutation and make up the
conformal algebra with scaling dimension A. For example, we can calculate [D, P*|¢
as

D, P¥¢ = i*(2,0” + A)O*¢ — i*0"(1,0"¢ + Ap) = 0"¢ = iP"¢, (2.2.35)
and so we see [D, P#] = ¢P#. The full algebra reads
[D, P#] = iP*, (2.2.36)
D, K] = —iKH*, (2.2.37)
[K*, P"] = 2i(g"'D — L"), (2.2.38)
[K? L] = i(g"K” — g”"K*), (2.2.39)
[PP L] = i(g”*PY — g"™'PH), (2.2.40)
[LM 1F7] = i(g"PLH + "L — g*L,, — g"7L*P). (2.2.41)
This algebra can be recast into a more recognisable form via the definitions
1 1
L= §(P“ - K", L% = é(P“ +K*), L Y:=D. (2.2.42)

Then the commutation relations (2.2.36)—(2.2.41) can be summarised
[L L] = i(n*°L +nLbe — poeL? — n*1L%) for a,b,c,d = —1,0,1,...,D, (2.2.43)

where 1, = diag(+ F — — ---—) for Euclidean and Minkowski space respectively.
(2.2.43) is recognised to be the defining relations for the special orthogonal algebra
s0(1,D+1) (so(2, D)) in Euclidean (Minkowski) space. Therefore conformal transfor-
mations, which act rather non-trivially on our D-dimensional spacetime, act simply as
rotations on a larger (D + 2)-dimensional space. This observation forms the basis of
the embedding space formalism [36,40|, which is a very neat arena to do computations
in a CFT.

2.2.3 Constraints on Correlation Functions

As already mentioned, correlation functions are vastly constrained by conformal sym-
metry. In this section we first discuss these constraints for Fuclidean CFTs, and de-
scribe the functions which solve them. The Minkowski case is more subtle, and indeed
time-ordered correlation functions are not invariant under global conformal transfor-
mations, although they are invariant locally. We discuss this subtlety at the end of
this section.

We first consider a Fuclidean quantum field theory of some scalar fields ¢;, defined
by an action S|[¢;], which is invariant under conformal transformations x — 2/, ¢;(xz) —
Fi(¢i(x)). Recall that the precise form of F; for a given transformation depends on
the scaling dimension A; of the field ¢;. Moreover, we assume that the path integral
measure | [, D¢; is invariant under these transformations. The n-point correlation
function of operators ¢; can be expressed in terms of the path integral as

(D5 (1) -+~ 05, (20)) = % / (H D¢i> by (1) -+ - 04, (xn)efs[@], (2.2.44)
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analogously to (2.1.29). Z is the partition function of the theory:

Z= / <HD¢Z»> e~ (2.2.45)

Consider a conformal transformation of the external points x; — x}. Using conformal
symmetry, one can show that the transformed correlation function is related to the
original:

(@5 (1) - B () = (Fi (D32 (1) - - Fjo (g () (2.2.46)
As an illustration, we consider the constraints that (2.2.46) imposes on the two-point
function (¢1(z1)¢p2(x2)). Translation and Lorentz invariance imply that

(D1(21 + a)pa(z2 + a)) = (d1(x1)P2(22)), Va € RP, (2.2.47)
(01(A" 2T )da (N 25)) = (@1(21)P2(2)), VA € SO(D). (2.2.48)
(2.2.47) and (2.2.48) imply that (¢1(z1)P2(x2)) can only be a function of the separation
(d1(21)¢2(22)) = f(ay), (2.2.49)

where afy == a2 — 2. Scale invariance leads to the constraint

et f(Paty) = f(cahy), (2.2.50)

for all ¢ > 0, where 4, is the scaling dimension of ¢;. This implies that

d12

(P1(z1)@2(22)) = 2 >M’ (2.2.51)

where dj5 is a constant. We now compute the constraints imposed by invariance under
special conformal transformations. Under an SCT the squared distance between points
x2, transforms as

2
22, 22 9.2.52
12 b(l’l)b<ilf2) ( )

where b(x) = 1/Ascr(z) = 1 — 2z - b+ 2?b%. (2.2.52) can be proven by proving the
analogous relation for inversions z# — x#/x? with by, (z) = 1/Ajpy = 22

I B 2 _ 2 — 2
(@, —ap)? = (L -2) = (@ - ?) _ () , (2.2.53)
Iy X3 LTy biny (71)biny (72)

and then using the fact that SCT = inversion o translation o inversion. Thus, using
(2.2.29), (2.2.46) for SCT invariance reads
Ar+A d d
(b(x1)b(@s)) ™2 e = b(@1) A b(x2) -
2

A1+A
(37%2) (55%2) ER

for all x1,xy, which is only satisfied for A; = Ay, provided di5 # 0. For general
scalars ¢;, ¢; we can normalise our fields so that d;; = d;;, and the two-point function
is diagonal

(2.2.54)

(6x()05(22)) = (2:2:59

12
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A similar procedure can be followed for three-point functions. The final result is

>\123

(P1(21)P2(2)P3(x3)) = A1t AR5 AytAs—Ay ATAs—Ag’ (2.2.56)
Ty Tog T31

Importantly, the coefficients A\ are undetermined after the normalisation of the two-
point functions has been fixed. For higher points, conformal symmetry is no longer
sufficient to constrain the spacetime dependence of the correlation functions. Indeed,
with four points it is possible to form two independent conformally invariant cross
ratios s -

_ T12%3 p — F1ata3 (2.2.57)

2 .2 2 .2 -
T13L24 Li3T24

These are clearly invariant under translations and rotations, since they only depend on
the squared differences :Efj Under dilatations x; — ¢ x; we have

2.2 2.9 2 9
C"ToC" T3y T1oT3y

u— = u, (2.2.58)

Catyctry,  wiyad,
and similarly v — v. Under special conformal transformations we use (2.2.52) to see
that

2 .2
L1234

2,2
U s b(zl)b(zz)i(;S)b(m) _ x;2x34 =u, (2.2.59)
13%54 T13L24
b(z1)b(x3)b(x2)b(x4)

and similarly v — wv. Therefore four-point functions in a conformal quantum field
theory can a priori have an arbitrary functional dependence on the cross ratios u and
v. We can express this as

Aj—A4Ag

<¢1(x1)¢2(x2)¢3<x3)¢4(x4>>:(L§4> 2 (@)A?“ ) g 60)

2
T14 T12 13 Ty

In this thesis we will often consider primary scalars in four dimensions, whereby (2.2.60)
reduces to

(61(2) ) da(zs)u(za)) = L) (2.2.61)

13124
We stress that all expressions in this chapter apply to conformal correlation functions of
scalar operators. For spinning operators there can be different tensor structures which
contribute to the correlation function, see for example [36]. We will often consider
another pair of conformal variables z, Z, which are functions of the cross ratios (2.2.57).
They are defined by the equations

u=zz v=(1-2)(1-2). (2.2.62)

Many correlators take a simpler form in terms of the variables z, z. In Euclidean space
z is a complex number, and Z is its complex conjugate. This fact is non-trivial and
is proven in section 2.2.4. For N > 4 it is possible to form N(N — 3)/2 independent
cross ratios. For example, at five points there are five cross ratios uy, us, ..., us. This
is dependent on the spatial dimension being large enough, namely D > N — 2. If
D < N — 2 then there are DN — (D + 1)(D + 2)/2 independent cross ratios, due to
extra non-trivial algebraic relations between the cross ratios. For example, if D =1
then there are always N — 3 independent cross ratios for N > 4.
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Conformal Ward Identities. Above we have discussed the constraints global con-
formal symmetry imposes on correlation functions, summarised in equation (2.2.46).
Often it is useful to consider this equation for infinitesimal transformations (2.2.25),
which implies constraints on the correlation functions in terms of the generators of the
conformal algebra J* = {P# L* D,K*}. To see this, one should insert (2.2.25) into
(2.2.46), expand to first order in the infinitesimal parameters w,, and then use the
definition of the generators (2.2.27). This leads to the conformal Ward identities''!?

(Jio(z)lg(x2) .- dan)) + (D(w1)[J5d(x2)] . ) + -+ (d(1)(x2) - .. [J{d(wn)]) = O,

(2.2.63)
where J¢ denotes the action of the conformal generator on the i coordinate, and is
henceforth referred to as a generator density. In (2.2.31)—(2.2.34) we saw that these
generators densities are simply first order differential operators in these coordinates.
The total conformal generator can be defined as a sum over generator densities

Jr =T (2.2.64)
=1

Then the conformal Ward identities can be summarised
o). Saa)) =0, I € (P41 D, KA, (2.2.65)

where we have further assumed that the action of the generators commutes with the
path integral. For example, invariance of the two-point function under infinitesimal
translations leads to the Ward identity

Pﬁﬂmw@ﬁ%:4(£%+§%)WWQM@»:Q (2.2.66)

which implies that the two-point function can only depend on the difference x/,. Indeed,
further invariance of the two-point function under L#, D, K* fixes in a new way the
form (2.2.55) for suitably normalised scalars ¢;, ¢;.

Conformal Correlators in Minkowski Space. In Minkowski space time-ordered
correlators are defined by the formula (2.1.5), where the imaginary time shift (2.1.4)
is required if Z[0] is to have a chance of converging. The ie time shift further imposes
causality by time-ordering the fields, and appears at the level of Feynman diagrams in
the Feynman propagator (2.1.12).

Notably, the conformal group on Minkowski space is known to be incompatible with
causality. In particular, finite special conformal transformations can change the signs
of the kinematic invariants z7;. We recall (2.2.52), which implies that under SCTs the

kinematics transform as

x2.

R R— 2.2.
0 b (o) (2267

"'For notational convenience we state the identities for identical fields ¢. The story is the for fields
with differing scaling dimensions, one should just be careful to use the correct representation of the
conformal group on each field.

12This result requires the assumption that a certain surface integral at infinity vanishes, see [35].
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where 1 — 2z - b + 2%b*. In Minkowski space b(z;) can be positive, negative, or zero.
In particular, if b(z;) and b(z;) have different signs then z7; changes sign under this
SCT. Geometrically this corresponds to a point ‘crossing infinity’, as we will describe
in section 2.2.6, and see an explicit example of in section 4.3.2.

The question of formulating a globally conformally invariant QFT in Minkowski
space was considered already in the seventies [41,42], and is reviewed nicely in [43].
We state the result for D = 4. If the correlators in a Euclidean QF T are invariant under
the Euclidean conformal group Conf(R?), then the time-ordered correlation functions
(more generally the Wightman functions) of the corresponding theory in Minkowski
space can be analytically continued to an infinite sheeted covering of the conformal
compactification of Minkowski space, Riﬁ, in a way that is consistent with causality.
These analytically continued correlation functions are invariant under the universal
covering group of the conformal group on (compactified) Minkowski space Conf*(R!3).
It is only possible to define globally conformally invariant Minkowskian QFTs in this
more abstract setting, due to the issues with causality in regular Minkowski space.

However, if a Euclidean theory is conformally invariant, the corresponding theory in
Minkowski space will still be locally conformally invariant. This is because local special
conformal transformations are still consistent with causality, and cannot change the
signs of the kinematic invariants. This implies that in each kinematic region, defined
by an assignment of signs to the x?j, the correlation function depends only on the cross
ratios u;, and moreover satisfies the conformal Ward identities (2.2.65). For example,
a four-point correlation function in a locally conformally invariant QFT depends only
on the conformal variables z and z, defined in (2.2.62), in each kinematic region. In
chapter 4 we will see this explicitly in the case of the box integral, which represents a
four-point correlation function in the fishnet theory. In different kinematic regions the
correlation function differs by discontinuities of the correlation function in Euclidean
space. This reflects the fact that the Minkowski correlation function can be obtained
from the Euclidean one by analytic continuation, cf. (2.1.34).

2.2.4 Euclidean Conformal Plane Configuration

Here we introduce the notion of the conformal plane configuration for conformally
invariant four-point functions in Euclidean space. We argued above that the only non-
trivial spacetime dependence of such four-point functions is through the conformal cross
ratios u, v, or equivalently the conformal variables z, Z. Here we will see this fact from
a geometric perspective. This discussion will also set the stage for the Minkowskian
conformal plane configurations, a new result of this thesis, discussed in section 4.2.2.

Consider a four-point function f(xy,zs,x3,x4) which is invariant under conformal
transformations:

f($1,l'2,$37l'4) = f(AZEl,AZE27AZL‘3,A£L'4>, (2268)

for any conformal transformation A : RP — RP. Because of this invariance, we can
make arbitrary conformal transformations to the points x4, ..., z4, and not change the
value of f. We can use this fact to put the points into a canonical position. Firstly,
we translate all points by —x, and then make a conformal inversion Z (see (2.2.20)).
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This maps the point z, to 00!, and the other points to y; == Z(x; — z4),i = 1,2,3.14
We then make a translation by —y;, so that the configuration becomes

{xlax27x37x4} — {07y2 — 91,43 _ylaoo}- (2269)

The points 0 and oo are invariant under SO(D) rotations. The point y3 — y; has some
magnitude |y3 — y1| = p > 0. Considering an orthogonal coordinate system of R?, it
is always possible to find a rotation R € SO(D) such that R(ys —y1) = (p,0,...,0).
We can then make a dilatation by 1/p to map this point to (1,0,...,0) == e;. Under
these transformations yo — ; will be mapped to some arbitrary point ws. We note
that 0,00, and e; are all invariant under the SO(D — 1) subgroup of SO(D), which
acts on the space spanned by the unit vectors e, ..., ep. We can thus find a rotation
R’ € SO(D — 1) which maps ws into the two-dimensional plane spanned by e; and es:

wy — Rwy = (wi,w3,0,...,0) = (rcos¢,rsing,0,...,0). (2.2.70)

Thus conformal transformations can be used to map any four points to a two-dimensional
subspace of RP
{0, (rcos ¢, rsing,0,...,0), e, 00}, (2.2.71)

where r and ¢ represent the only remaining degrees of freedom of the configuration.
Since the conformal cross ratios are invariant under conformal transformations, we can
just as well compute them for the configuration (2.2.71):

2 92 2 .2
TioT Ti4T
;2 34 r2, v — ;4 33 =72 —2rcos¢d+ 1. (2.2.72)
T13T5y L13L24

Computing the conformal invariants z and z, we see the interesting fact
z=re, Z=re ", (2.2.73)

from which we see that z is generically not real’®, and that z is the complex conjugate
of z. We also notice that the non-zero coordinates of the second point in (2.2.71) are
Re(z) and Im(z). We can therefore alternatively represent this point as a complex
number in the e; + ie; plane. Note that since z and z are calculated as the roots of a
quadratic equation depending on u,v, we could alternatively take z = re™*, z = re®.
We can use this freedom to place z in the closed upper half-plane H, i.e. Im(z) > 0.
We will call the complex e; +ies plane the Fuclidean conformal plane, and the con-
figuration (2.2.71) the Fuclidean conformal plane configuration, visualised in figure 2.1.
Any four points with conformal invariant z € H \ {0, 1} can be mapped to the config-
uration (2.2.71). This shows that any two configurations of four points with the same
conformal invariant z can be mapped into each other by conformal transformations.
Indeed, if A; and Ay are the respective conformal transformations which map these
configurations to the conformal plane configuration (2.2.71), then the transformation

13Gtrictly speaking co only makes sense in the conformal compactification, we discuss this in sec-
tion 2.2.6.

14We assume the points z; are initially distinct, so that y; are distinct.

15Tf it so happens that ¢ = 0, then z = Z = r € R. This is not, however, a generic situation.
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Figure 2.1: Euclidean conformal plane configuration.

A5'A; maps configuration 1 into configuration 2. Mathematically this fact can be
formulated as follows. Define the set of four-point configurations

V. = {]}' ) RD 1%21‘%4 _ * $%2$§4 = (1= 1 — »* 2.9.74
z — 1,.T27I3,$4} T; € ) 9 9 = zz, 2 92 _< Z)( < ) ) ( ce )
L3224 L3224

together with the action of the conformal group on V,
{1, 29, 23, 24} — {Axy, Axg, Axg, Axy}, A € Conf(RP). (2.2.75)

Then the above argument with the conformal planes implies that Conf(R”) acts tran-
sitively'® on the set V.. In section 4.2.2 we will investigate whether Conf(RP~1) acts
transitively on the analogously defined sets in Minkowski space. This will be used
to describe the invariance properties of the conformal box integral under conformal
transformations in Minkowski space.

2.2.5 Logarithmic CFT

In the previous sections we silently assumed unitary representations of the conformal
group, where dilatations act diagonally on our operators

d(z) = ¢ 2¢(x). (2.2.76)

For non-unitary theories it is possible for the dilatation operator to be non-diagonalisable
in certain operator sectors, leading to logarithmic multiplets of fields. In a logarithmic
multiplet {¢, }q=1,. » of rank r, dilatations act as

ha(x) — ¢ by (), a=1,...,r7, (2.2.77)

where A, is a non-diagonalisable matrix, with all eigenvalues equal to the scaling
dimension A of the multiplet. In general we can change the operator basis such that
Agp is in Jordan normal form

A1l 0
A1l
Agy = A . (2.2.78)
S
0 A

16Recall that a group G acts transitively on a set X if for all =,y € X, there exists g € G such that
gr =y.
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In these logarithmic sectors, the dilatation and conformal generators D and K* now
mix different fields in the multiplet:

Doy (2) = —i(AL + 62 (x - 0))gw(2), (2.2.79)
Kl (z) = —i(22"(8%2 - 0 + AL) by () — 220" ¢a()). (2.2.80)
The deviation of the generators (2.2.79) and (2.2.80) in the logarithmic multiplet from
the original generators (2.2.33) and (2.2.34) has striking implications on the solution

of the conformal Ward identities. We consider the two-point function of operators in
the same logarithmic multiplet of rank two

(Da(x1)Pp(72)) = far(zla),  a,b=1,2. (2.2.81)

For this multiplet the dilatation generator acts explicitly as
iD¢1(x) = [A+ (2 0)|p1(z) + ¢o(2), (2.2.82)
iDgo(x) = [A+ (z-0)]pa(x). (2.2.83)

The conformal Ward identities corresponding to translations and rotations are un-
changed, and ensure that the correlator (2.2.81) depends on the squared separation
x%,. The Ward identities corresponding to dilatations and special conformal transfor-
mations lead to the four constraints

0= (2101 + 2202+ 24) o1 + foo, (2.2.84)

0= (210 + a2 0+ 24)f11 + fiz + far, (2.2.85)

0= (2(z! + 25) A + 228 (2 - 01) + 22 (w3 - D) — 2701 — 150s) for + 205 f2o,  (2.2.86)
= (

0= (2(z% + 25)A + 22K (xy - O1) + 22k (w5 - Oy) — 220, — 230s) f11 + 225 fra + 224 for.

(2.2.87)

The solution of the system (2.2.84)-(2.2.87) is fairly technical, and is described for
general logarithmic multiplets in [33], see also [44]. The result for the two-point function

of the multiplet is
_ ¢ [—log(p*zl,) 1

Notably, two point functions in a logarithmic multiplet can contain logarithmic de-
pendance on the spacetime separation, with a scale .17 For higher rank logaritmic
multiplets, the two point functions can be brought into a canonical form. For example,
the corresponding rank three multiplet can be written

o o [3log(Hieh) —log(al,) 1
19 = = | =~ logiata) 1 0, (2.2.89)
12 1 0 0

where we notice that for higher rank multiplets, higher powers of logarithms can appear.
In [33], many more aspects of logarithmic CFTs are described, including the constraints
on higher-point functions, the logarithmic OPE, and conformal blocks. However in this
thesis we will only be concerned with two-point functions, in particular the dilatation
operator in logarithmic sectors of the dynamical fishnet theory.

"The appearance of such a scale in a CFT seems troubling at first, but it can be removed by a
further change of operator basis, see [33].
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2.2.6 Conformal Compactification: Euclidean vs. Minkowski

There is a slight subtlety in defining the action of the conformal group on Euclidean
space R1. Since the inversion operation Z : #* — z# /2% is not well-defined on the origin
x = 0, we should add a point ‘0o’ to R* which corresponds to the image of the origin
under Z. The conformal group is well-defined and acts transitively on the conformal
compactification RY == R* U {oo}.

The situation is more subtle in Minkowski space R'3. Defining the light cone of
the origin

Lo = {z e R"? | 2° = 0} (2.2.90)

we note in this case that Z not well-defined on the entire space Lo. We thus are
interested in a compactification R'® — RI3 such that the conformal group is well-
defined and acts transitively and continuously on R!*. The points ‘at infinity’ will be
identifiable!® with the image Z (L), and so will constitute a 3—dimensional surface.

The most common way of compactifying Minkowski space is the Penrose compacti-
fication [45] and replaces R'? — R}3 .= RM¥UOIR]?, where OR? == 17U~ UL UTTUT ™.
1V is called spatial infinity, and in spherical coordinates (¢, 7, 6, ¢) corresponds to r — oco.
1/ are called future and past infinity, and correspond to t — 4+00. Both (° and ¢* cor-
respond to individual points on 81[{11;3. J* are called future null and past null infinity
and correspond to t +r — oo with ¢ T r constant. J* are 3-dimensional submanifolds
of 8R11;3, parametrised by the coordinates (¢t Fr, 0, ¢). Useful coordinates for describing
R} are

X = arctan(t + r), X_ = arctan(t — r), (2.2.91)

and 7 = x_ + X4+, p = X+ — X—. The range of the 7, p coordinates in R}® is 7 €
[—m, 7], p € [0,7]. We visualise R)* in (7, p) coordinates using an extended Penrose
diagram (figure 2.2).

We want to consider conformal transformations on the Penrose compactification
]R]l)’?’. There are a few issues at (?R;;B’ . Using infinitesimal special conformal transfor-
mations it is possible to move between (= and (°, and also between J*(x=, 6, ¢) and
IF (x+, A0, ¢)), where A is the antipodal map on S%. An example of such a conformal
trajectory is

¢ Jt 4 \ Jt+

(2.2.92)

AT

18Up to an extra ‘null sphere at infinity’ S*, see (2.2.106) and figure 2.3.
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Figure 2.2: Extended Penrose diagram of Minkowski space. Every two-sphere S2(7, p > 0) is
represented by two points, one on the left and one on the right, which are exchanged by the
antipodal map 4. The dotted lines represent the light cone of the origin [46].

(2.2.92) is not a continuous operation, and indeed it represents a point crossing in-
finity. The fact that it is possible is the basic reason the conformal group does not
preserve causality, as discussed in section 2.2.3. In order for the conformal group to
act continuously on compactified Minkowski space, we must make the identifications®®

=1 =10 =, Jt=AJ" =17. (2.2.93)

We define IR} := + U J as IR}® subject to the identifications (2.2.93). JR}® can
be visualised as a ‘pinched torus’ or croissant (figure 2.3), and can be parametrised in
terms of x € (—n/2,7/2] and a 2—sphere angle (0, ¢) for x # 0 [47]. We define the
conformal compactification R}? := RY3 U OR!3.

R!3 can be identified with the group U(2), on which the conformal group acts
naturally by SU(2,2)/Z,. To see this, we first note the bijection H : R — Hyyo
between Minkowski space and the space of 2 x 2 Hermitian matrices?”

204+ a2? 2t — z'xQ)

ot +ir? 2 — 23 (2.2.94)

H:z= (22" 2% 2% — H(x) = (

In what follows we will label the Hermitian matrices corresponding to points x,y, z in
Minkowski space by X, Y, Z. The inverse map is given by

1
H': X — ot = Etr(Xa“), (2.2.95)

19The identification J* = AJ~ resembles boundary conditions on fields in asymptotic symmetries
[46].

20This is the same identification used in the spinor helicity representation of on-shell momenta
in scattering amplitudes. However, here we do not consider light-like points in general, and so the
matrices are not rank 1.
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x=m/2

Figure 2.3: Conformal infinity in terms of ¢ and J. Surfaces of fixed x are 2—spheres. The
parameter x € (—m/2,7/2] is chosen as x = 7/2 — x4+ mod 7, so x = 0 corresponds to ¢.

where o = (I, 0!, 02, 03) is the covariant vector of Pauli matrices. In spherical coor-
dinates x = (¢, 7 sin 6 cos ¢, r sin 0 sin ¢, r cos #), the Hermitian matrix corresponding to
T is

= Q(0,¢) M (t,r)Q(0, 8), (2.2.96)

x _ (t+reosd re~" sin 6
T\ re®sinf t—rcosé

where

_ cos(8/2) e *sin(0/2) N [t 0
2(0,9) = (—ei¢sin(9/2) cos(6/2) ) € 5U(2), M{t,r) = ( 0 t(r) )
2.2.97

M (t,r) represents the event in Minkowski space at a time ¢, and spatially on the north
pole (# = 0) of a sphere of radius r. The adjoint action of €2(6, ¢) rotates this point
from the north pole to a general angle (6,¢) on the sphere. In terms of Hermitian
matrices we can calculate spacetime intervals via determinants

(r —y)* =det(X —Y). (2.2.98)

To compactify, we use the injective Cayley map?! J : Hoyo — U(2) defined by

To — X
T X — J(X) = 22

o (2.2.99)

which is well-defined because det(ily + X) # 0 and [iI, — X, (i1, + X) '] = 0 for all
X € Hyyy. The map (2.2.99) is not surjective. The inverse is given

I,—-U
J1U ]
_”]I2+U’

(2.2.100)

which is not well-defined for those U € U(2) which satisfy det(Iy + U) = 0. Im(J) can
be identified with Minkowski space R'? and U, == U(2)\Im(J) = {U € U(2)| det(Iy+
U) = 0} can be identified with the conformal boundary OR!? defined above. If z; and

[

i+x”

21This is analogous to the one-dimensional Cayley map R — U(1), z —
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X9 are points in compactified Minkowski space represented by unitary matrices U; and
U,, their spacetime interval can be calculated

B det(U1 - U2)
det(Ly + Uy) det(Iy + Us)’

(11 — 29)* = (2.2.101)

We can define the spacetime interval between arbitrary unitary matrices Uy, Uy using
the formula (2.2.101), noting that the expression is of course infinite if either U; or Us
are on Uy so that the interval is not well-defined. To define a finite interval between
all unitary matrices an unphysical metric (Uy, Us) := det(U; — Us) must be used.

Conformal transformations can be implemented on R!? ~ U(2) by SU(2,2) frac-
tional linear transformations [47,48]:

U —» €U == (AU + B)CU + D)™, G = (é lB)> € SU(2,2),  (2.2.102)
SU(2,2) = {G € SL(4,C) | 'KG = K}, K = (% " ) L (2.2.103)
— 42

¢ is the fourfold covering homomorphism € : SU(2,2) — Conf(R"?). € acts trivially
on the centre Z(SU(2,2)) = {+l, +ily} ~ Z, and Conf(R"3) ~ SU(2,2)/Z4. For
example, translations x — x + b can be implemented by the SU(2,2) matrices

: N\ —L
i _]IQ ’L]IQ ]IQ B —Hg Z]IQ
= (B B e
where B is the Hermitian matrix constructed from b € R via (2.2.94).
The set U, can be parametrised explicitly

Uy, = {Q(e,w (‘01 _SZZ.X) 00, 6) € U(2) ‘ = (—7r/2,7r/2]} . (22.105)

where Q(0,¢) is as defined in (2.2.97). With the U(2) formalism it can be checked
that OR!® = U, and U, = Z(Ly) U S*. S* is the null sphere at infinity and can be
parametrised

g* — {9(9, 81 (_01 ?) (6, 0) € U(Q)} . (2.2.106)

S* is stable under inversions ZS5* = S*. It corresponds to the largest sphere (x = 7/2)
on the pinched torus (figure 2.3) and can be reached from the bulk of Minkowski space
by taking limits to infinity along the light cone L. ¢ is the image of the origin under
7 and corresponds to the U(2) matrix U = —Is.

This picture of the conformal compactification of Minkowski space is useful when
considering the invariance properties of the conformal box integral, as discussed in
chapter 4. It is also used explicitly in the double infinity configurations which we
introduce in section 4.3.
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2.3 Conformal Feynman Integrals

As described in section 2.1, calculations of correlation functions (and scattering am-
plitudes) can be done perturbatively at weak coupling, by summing over Feynman
diagrams. The calculation can be expressed as a power series in the coupling, with the
dominant effects occurring at tree-level and the sub-leading effects being representable
by integrals of certain functions over multiple copies of space(time).?? The number of
such copies is the loop order ¢ of the integral.?®> Such integrals are referred to as Feyn-
man integrals. These integrals can be put in one-to-one correspondence with Feynman
diagrams, with the Feynman rules providing a dictionary between the two. A typical
example of a position space Euclidean Feynman integral in a massless theory and its
corresponding Feynman diagram is

xr1 T2

I ) d*z, d*z, 1

T1,T2,T3,Ty4,T5,Tg) = = T T3 .
2 2 2.2 .2 2.9, 9 9
T T T1Ta5Ta6L apLhaLp3Lpa

Ts5 T4

(2.3.1)
In general the propagators 1/x7; can have masses 1/x7; — 1/(x7; +m7;).** However, in
this thesis we only consider diagrams with massless lines m?j =0.

One issue with Feynman integrals is their complexity, both in how they appear
in QFT calculations and in their own right as integrals to be calculated. In non-
abelian gauge theories the Feynman rules can be quite complex, and the number of
Feynman diagrams contributing to a given process proliferates very quickly with the
loop order and particle number. For example, the tree-level 4-gluon amplitude in
QCD has four diagrams, whereas the 6-gluon amplitude has 220 diagrams at tree-level.
Moreover, the representation of scattering processes in terms of Feynman integrals
spoils gauge invariance in each individual Feynman integral, and is only restored thanks
to (possibly complicated) cancellations in the sum. As such, there have been attempts
in many different contexts to mitigate the use of Feynman integrals to calculate physical
quantities, and rather use symmetries of the model and other consistency conditions.
These can lead to more efficient methods to constructing integrands which should then
be integrated, or in some cases bypass integration entirely. A prototypical example of
this spinor-helicity formulation of QFT, which is on-shell by design. This formalism
led to a huge progress in calculations in N' = 4 super Yang—Mills and related theories,
thanks to methods like on-shell recursion relations and generalised unitarity, see [12] for
a recent review. Other examples of using symmetry techniques to constrain observables
include the conformal bootstrap, referred to in the previous section, and the Steinmann
cluster bootstrap for amplitudes in N' =4 SYM [49].

As mathematical objects, Feynman integrals are quite complicated in general. For
one, they can suffer from UV- and IR-divergences which require regularisation and/or

22Tn this section we mostly restrict to Euclidean space.

23In momentum space there are as many integrations as there are loops in the corresponding Feyn-
man diagram. This is not true in position space, where internal points are integrated over, although
we will still conveniently refer to the number of integrations as the loop order.

24This is the form of massive propagators in dual momentum space, see section 2.3.1. In position
space massive propagators are more complicated, cf. (2.1.13), however as m — 0 they are proportional
to 1/x7;.
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renormalisation. UV-divergences occur when the integrand is singular at large values
of the loop momentum, and IR-divergences arise from singularities arising at small
values of the loop momentum. In both cases, a regularisation is required to make the
integral well-defined. There are many methods one can use: For UV-divergences there
is cutoff regularisation, where an integral over all momentum is replaced by an integral
over a large momentum sphere |k| < A. IR-divergences can be cured by giving a finite
mass to propagators which diverge in the low energy limit. A very common approach
to regularising both UV- and IR-divergent Feynman integrals is the use of dimensional
reqularisation. This is the replacement of the dimension d in which the integral is
divergent, with a general dimension D = d — 2¢.25 The divergence of the integral can
then be studied as e — 0. When a physical quantity in a QFT is represented by a sum
of Feynman integrals which is divergent, a renormalisation of the theory is required.
In this case the behaviour of the Feynman integrals as a function of the regulator is
necessary to calculate the beta functions of the couplings.

The evaluation of Feynman integrals as functions of the kinematic data is a field of
study in its own right. There is no method to calculate a Feynman integral in general,
and the complexity increases with both the loop order and kinematical complexity.
However, many strategies have emerged over the years. The first thing to try would be
a direct integration of the so-called Feynman parametric representation of the integral,
which replaces an integral over ¢ copies of space(time) with a projective integral over
N Feynman parameters aq, s, ..., ay, where N is the number of lines in the corre-
sponding Feynman diagram. Sometimes (possibly after some sophisticated changes of
variables in the Feynman parameter space) the integral can be integrated into polylog-
arithms. This can be a difficult task, however, and indeed sometimes there are explicit
algebraic obstructions in the Feynman parameter space to obtaining polylogs. In these
cases the integral may be representable in terms of elliptic polylogarithms [50, 51], or
even more complicated functions associated to higher-genus surfaces [52|. Another op-
tion is to pass to a Mellin-Barnes representation of the integral, which trades integrals
over spacetime with integrals over infinite imaginary lines in Mellin space. The general
hope is then to compute the Mellin integrals as a sum over poles of the appearing
gamma functions. We will use the Mellin-Barnes representation occasionally in this
thesis. Finally, one of the most powerful techniques for calculating Feynman integrals
in dimensional regularisation is the differential equations method. This involves consid-
ering a large class of integrals in the same topology, with generic values of propagator
powers and dimension. Using so-called integration by parts (IBP) relations these inte-
grals can be efficiently related to each other, and a set of master integrals identified.
The vector of master integrals can be related to each other via a set of differential
equations in the kinematic space. If these differential equations can be brought to a
certain canonical form, then they can be directly integrated into polylogs [53|. By now
there are several computational packages available for performing this IBP reduction,
for example FIRE [54] and LiteRed [55]. A detailed summary of each of these methods
is contained in [56,57]. While these are the most common techniques for the evaluation
of Feynman integrals, there are other approaches which can work for isolated classes
of diagrams.

25Using Poincaré invariance it is possible to express a Feynman integral in terms of the kinematic
invariants xfj and define them in non-integer dimensions.
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In this thesis we focus on a special class of Feynman integrals, namely conformal
Feynman integrals. These are Euclidean Feynman integrals in D dimensions which are
covariant under simultaneous conformal transformations of the external points xz; —
Ax;. As such, up to a conformal weight, these integrals have a reduced dependence
on the kinematics z7;, and are expressible in terms of cross ratios of these kinematics.
These integrals tend to be finite, i.e. they do not suffer from UV- or IR- divergences.
In Minkowski space the corresponding Feynman integrals depend locally on the cross
ratios, although global conformal transformations can change the value of the integral.
This situation is discussed in detail in section 4.2 in the case of the box integral, and
so we focus here on the Euclidean case.

This section is organised as follows. We first define the notion of a massless Feyn-
man integral in position space, and explain the dual space picture. We define the
Feynman/Schwinger parametrisations, and explain how these can be read off from the
topology of the Feynman graph. We explain the tensor decomposition of Feynman
integrals with vector insertions of the loop momenta, which will be relevant in chapter
5. We then define conformal Feynman integrals and explain a method to recover the
conformal Feynman parametrisation. We give several examples of conformal Feynman
integrals and discuss their relevance.

2.3.1 Feynman Integrals and Parametric Representation

We begin by defining Feynman integrals in position space with massless internal lines.

Such integrals are defined by a connected graph G with n external vertices z1, ..., x,,
¢ internal vertices z,,,...,%,,, and N lines. The Feynman integral in D dimensions
with propagator powers vy, ..., vy corresponding to G is defined by
dPz 1
G a;
]V7D(l'1,..., /H 7TD/2 Tgk’ (232)
(jk)eG x]k’

where (jk) is the line joining points z; and z; in G. In other words, given a graph
G, we insert a factor of 1 / xz; for each line connecting points z; and x;, and integrate

over the internal points z,,, . . ., ¥4,, including a factor of 77°/2 per integration.?® For
example, if the graph is?”
T i)
G = —o( (2.3.3)
T4 I3
then
d*z, d*z; 1

12:17D:4(1‘17$27$37x4) = / (234)
Integrals of the form (2.3.2) are invariant under translations z; — z; + a and rotations
xt — M* x¥ of the external points, and therefore depend only on the kinematics xfj
We can alternatively represent the Feynman integrals (2.3.2) in dual position space.
This space is labelled by coordinates pq, ..., p,, which are related to the position space

2 2 .2 .2 .2.,2. 2"
T T T T T, Loy

26This factor is inserted to cancel a corresponding factor which appears in the Feynman parametri-
sation.
2TNote that we typically will not mark the external vertices by dots.
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coordinates via
Di = Ti — Tit1, (235)

where we take summation in the indices mod n, i.e. z,4; = z;. Note that the p
coordinates automatically satisfy p; + ps + - -+ + p, = 0. We could alternatively start
from a momentum space Feynman diagram depending on momenta pq,...,p, and
define dual momentum space coordinates xi, ..., z, via (2.3.5). In this case there is a
redundancy in defining the z’s due to momentum conservation, which can be fixed, for
example by taking x; = 0. The change of coordinates (2.3.5) can often reveal hidden
symmetries in physical quantities, for example the scattering amplitude/Wilson loop
duality in planar N' =4 SYM [58].
Letting ky := x41, ko := T3y, the integral (2.3.4) in dual position space reads

d*k; A2k, 1
/ 72 w2 k(K1 + pras)? (ki — ko + p1)2k3 (ko + pa)?
where pia3 = p1 + pa + p3 = —ps. The integral (2.3.6) can be associated to the dual
graph G of GG, and is extracted from G using momentum space Feynman rules:

(2.3.6)

p1

k k
4/17 V‘&

G = P,
?Ps

Specifically, G is extracted from G by placing a point in each region determined by G,
and then connecting these points. Furthermore, points in the region between x; and
x;y1 are assigned an incoming momentum p;. A line in each loop of the resulting graph
is assigned a loop momentum k;, and the remaining lines can be assigned momenta via
momentum conservation. While they are reminiscent, we stress that dual position space
is not momentum space, i.e. it is not related to = space via Fourier transformation.

(2.3.7)

Feynman Parametrisation. Any integral of the form (2.3.2) can be written in its
Feynman parametrisation, also called its parametric form. This representation exposes
the dependence of the integral on the kinematics x?j, and replaces the (-fold integra-
tion over D-dimensional space with a projective integral over Feynman parameters
a1, ...,ay. The key formula for deriving the Feynman parametrisation is

1 _ 5 /°° don daka;’l—l N (h(a) = 1)
AllllAZk F,/...Fuk 0 (a1A1+---—|—akAk)V

1

, (2.3.8)

where we abbreviate I, == I'(x) and v == v; + -+ + 4. h(a) is any polynomial in
the Feynman parameters which is homogenous of degree one, i.e. rescaling a; — Aoy
maps h(a) — Ah(a). Common choices are h(a) = ag + -+ - + ay and h(a) = «; for
some i € {1,2,...,k}. The identity (2.3.8) can be applied to a product of propagators
corresponding to a single integration variable z,, in (2.3.2), and that integral can then
be performed straightforwardly. This procedure can be carried out loop by loop.

As a simple example, consider the four-dimensional cross integral

x1
d*z, 1
I= = Ty = . (2.3.9)
w2 22 a2 al.a?
al*a2*a3*" a4
€3
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Using (2.3.8) we can rewrite the product of propagators as an integral over Feynman
parameters oy, oo, (g, (4:

4 _
= / 4z / dandasdasday Ohla) — 1) . (2.3.10)

2 2 2 2
(22, + anx?y + ax?y + ayx?y)?

By completing the square the denominator of (2.3.10) can be written as (a1 + ag +
as + ayg)4 (12 + A)*, where
P =t — Z?:l Oéixéi Zi<j a/iaszzj

. A= . (2.3.11)
&1+C¥2+O&3+OJ4 (CK1+CY2+OJ3+OJ4)2

Exchanging the order of integration and introducing hyperspherical coordinates, the
integral can thus be written

> w2 2d]> d(h(a) — 1)
I = dajdasdasd . 2.3.12
/0 rdaztas a4/ w2 (g + ag + ag + a2+ A ( )

Performing the integral over [? leads to the Feynman parametrisation
o d(h(a) — 1) o 1
I = / dodasdasday = / [d®a] ,
0 (Zz’<j O‘iajx?j)2 0 (Zi<j oziozjx?j)2

where we defined the projective integral [;*[d*a] = [° daydagdagdasd(h(a) — 1).
Remarkably, it is possible to extract the Feynman parametrisation for a Feynman
integral ISD just from the topology of the dual graph G [59,60].2 To do this, we

(2.3.13)

associate to each internal line in G with propagator power v, a Feynman parameter oy,
l=1,...,N. (2.3.2) can be rewritten

N Ll” (¢+1)D/2

I'y_ipy2 —
IS(a) = ——1= / | | ) s (2.3.14)
v, i 1/ l ’
’ | li:l L, i b

=1

where here v = vy + - -+ +vy. U and F(z? ) are the Symanzik polynomials of the dual

graph G, and are polynomlals in the Feynman parameters. To define them we need
some notions from graph theory. A tree of G is any connected subdiagram of G' which
contains all vertices of G and is free from loops. A chord of a tree is any line that
is in G, but not in the tree. Clearly, any tree has ¢ chords, where ¢ is the number of
loops in G. A two-forest of G is a subdiagram which contains all vertices of G, is free
from loops, and has two connected components. A two-forest can be obtained from
a tree by deleting an appropriate edge, and so necessarily contains ¢ + 1 chords. The
polynomials &/ and F can then be defined as

U=> 1] & 7= >, & [ o (2.3.15)
trees chords two-forests j chords @

where ¢; is the Feynman parameter corresponding to chord ¢ and ¢; is the momentum
flowing into each of the trees in the two-forest j. As an example we consider the graph
(2.3.7), to which we assign Feynman parameters as follows:

G = . (2.3.16)

281t is not clear to the author whether there is an efficient way to extract the Feynman parametri-
sation directly from the position space graph G.
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There are eight trees associated to this graph, for example one obtained by removing
the legs corresponding to Feynman parameters a; and as:

\,\, (2.3.17)

which gives a contribution ajag to U. Overall the U polynomial is
U= (a1 + ay)(ag + az) + as(ag + as + as + ay). (2.3.18)

There are ten two-forests, for example one obtained by removing the legs corresponding
to aq, as, and as:
¢P1

&»\\J’i : (2.3.19)
?pS
In this case there is momentum (p; + p2)* = (p3 + pa)* = 2!y flowing into each tree,
and so this two-forest gives a contribution z%;0qa3a5 to F. Overall we have
F(a3;) = afyonaas + isan03a5 + 274 (0100ay + arasoy + onasas) (2.3.20)
+ 235 (100as + asasoy + apazas) 4 T5,000405 + T3, 0304005

Therefore using (2.3.14) the integral (2.3.4) can be rewritten

9 ) _ /[d4a] ((Oél + a4)(a2 + Oég) + @5(&1 + o + a3 + 044))_ (2321)

G
Il/j:l,D:4<'rij ]:(:U?j) )

where F(z7;) is defined in (2.3.20).

Schwinger Parametrisation. Another way to express the integral (2.3.2) in terms
of its U and F polynomials is via its Schwinger parametrisation:

N vi—1
* daja exp(—F(22,)/U)
I5,(x3) = (H/O = ) R (2.3.22)
j=1 K

(2.3.14) can be obtained from (2.3.22) via some integration tricks, see [61], or can
alternatively be derived started from the formula analogous to (2.3.8):

11 [
W_Fy/o dz 2" te ™A, (2.3.23)

The formula (2.3.23) allows one to convert products of propagators into an exponential

of sums of propagators. The loop integrations can then be performed as Gaussian
integrals.
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2.3.2 Tensor Decomposition

A natural generalisation of the family of integrals (2.3.2) are those with tensor insertions
of integration variables in the numerators. For example, one could consider the integral

/ dz, d'a Ty . (2.3.24)

2 2 .2 .2 .2 2 4,22
T T T T3 aaT Ty Tpaly3

Such integrals occur in gauge/higher-spin theories where the Feynman rules have a
tensor structure. They can also occur in correlation functions of conformal descendants
of scalar fields, as we will see in chapter 5.

There are several approaches in the literature for decomposing such integrals into
scalar integrals. The most well-known is the Passarino-Veltman reduction, which de-
composes one-loop integrals with arbitrary tensor insertions of loop momenta in the
numerator into a sum of equal and lower-point scalar integrals [62]. Some more general
approaches have appeared; in particular Tarasov proposed a procedure to decompose
{-loop integrals with arbitrary insertions of the loop momenta into a sum of higher-
dimensional scalar integrals, which we will use in this thesis [63,64]. In chapter 5 we
will mainly focus on the case with a single vector insertion:

dPz,, 1
/H 7TDI/QL H S (2.3.25)

(JkYeG ik
forsomem =1,...,fandl =1,...,n. By considering its properties under translations
and rotations, (2.3.25) can be decomposed as
Ip(at ) == alifrim(@l) (2.3.26)
k#l

and the result of Tarasov is that fklm(:cf]) can be expressed as a linear combination
of (D + 2)-dimensional scalar integrals with the same topology G as (2.3.25), but with
modified propagator powers.

To compute the functions f;,, from the graph G, where each edge is labelled by a
Feynman parameter «y, ..., ay, one should proceed as follows. We first form an ¢ x ¢
symmetric matrix B and an f-vector c. B;; and ¢; are indexed by the integration points
ai,...,ae. B;jis minus the sum of the Feynman parameters corresponding to the legs
connecting internal point ¢ and internal point j for ¢ # j, and it is the sum of the
Feynman parameters corresponding to all legs connected to internal point ¢ for ¢ = j.
¢; is the sum of Feynman parameters connecting internal point i to some external point
x;, multiplied by that external point. Using these one should compute the quantity

(B_l : C)am Z xlkpk;’l’m (2327)
k;ﬁl

where Py ;. () are polynomials in the Feynman parameters. Then at the level of the
Schwinger parametrisation we have

doja m(a) exp(—F(z3
L?D L Zmlk (H/ = ),Pk# ( )u(l§+(2);72:( J)/u>' (2'3-28)

k£l
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Comparing (2.3.28) and (2.3.26) with (2.3.22) we see the vector coefficients f jm(7;)
are linear combinations of scalar integrals of dimension D + 2, with propagator powers
modified appropriately by the polynomials Py ..

As an example, consider the integral (2.3.24), which has double ladder topology

T

vy V2

Ve V3 To

Gaouble ladder = 4 : (2.3.29)

vs\ /4

T3

where we have indicated how we assign Feynman parameters to the legs. From the
dual graph we can use (2.3.15) to extract the & and F polynomials as

u =10 + 13 + oy + Qs + i3y + Qs + Qiavg + Qi3

+ a6 + apar + asar + azar + gy + asar + aga, (2.3.30)

F =1l (ranas + asasas + asasag + ajasar + asasar) + 235 (aasay
+ a1ty + aagas + Q1 Qs + Qo + Qo + gy
+ gy + aqasay + apasar) + o1, (aanag + arasag + g agag
+ ara6a7 + asagar) + 255 (arasay + asagas + asauag + asagar
+ azasar) + 25, (50607 + Qs + 3G + Qs + Qudgar)
+ 234030607 (2.3.31)

For this topology we have

B (m + a5 + g + ag -y ) o (ozlx‘f + azah + aﬁxff)
K —oy g+ a3+ o+ aq)’ aoxl + azxh + gk )’

(2.3.32)
and using these we compute (2.3.27) for the integral (2.3.24) to be

U[(B™! - ¢), — 2t] = —aly(aras + azas + azag + asar)

— ahs (o + s + auag + auar + asar) — oo, (2.3.33)

Using this we can expand (2.3.24) as

d*z, d*z, xt
bl _ M I %
2 2 92 92 4 92 9 — _x12f2 - :L'13f3 - $14f4? (2'3'34)
I ) N LI ) el e 1
al*a3*ad*ab** b1 b2 b3

where fs, f3, f4 can be written as a sum of six-dimensional double ladder integrals with
modified propagator powers:

16 6 6 6

Jo=I3591111Ft Ho21011 T 1001121+ Ho21112 (2.3.35)
16 6 6 6 6

J3=IDo11212t 13010111 T 1210211t 1012121 T 11219112 (2.3.36)
16

Ji=I1511199 (2.3.37)

where we adopt the notation

[6 = [Ggoublc ladder . (2338)

Vl,..,V7 v, D=6
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2.3.3 Conformal Invariance

A Feynman integral I, (x7;), defined in (2.3.2), is a conformal Feynman integral if after
multiplication by some approprlate function of the kinematics w(x ), it is invariant
under conformal transformations of the external points x; — Ax;, for 1=1,...,n. We
will call the function w(x ) a conformal weight of the integral.?® Note that Whlle only
massless Feynman 1ntegrals have a chance of being conformally invariant, an extension
of conformal symmetry which applies to some classes of massive diagrams was proposed
in [65].

Since it is a central part of this thesis, we will show that the box integral®’ is
conformally invariant, with a conformal weight x?;x3,. After multiplication by this
weight, this integral is

d4xa 2,02
13 24
alxa2$a3xa4

The strategy to show that this function is invariant under conformal transformations
is to map all the points z; — Axz;, where A is a translation, rotation, dilatation, or
SCT, and integrate over a new variable

=Ala,. (2.3.40)

This ensures that x, — Axy under this conformal transformation, i.e. the external
points and integration point are on the same footing. One should just be careful to
include the Jacobian of the transformation (2.3.40) in the integration measure.

Let’s see how this procedure works with translations. If we translate all points
r; — x; + a, and further define a translated loop variable x;, = x, — a, we see that
under this translation

AdY(zy +a)  a}ad dizy 222
gb%/ (;2 ):)32 g —/ e e} (2.3.41)

2
b1 52 Lp3Lps T Ty TpaTpg Ly

because x;; — (z; +a — (x; + a)) = x;; and x4 — (xp + a — (x; + a)) = xp;. Similarly,
¢ is invariant under rotations of the external points z! — M* a¥, which is clear
after introducing the rotated loop variable zi = (M~1)* 2% and using the fact that
d*z, = d*z;, since det M = 1. Then each of the x?j are clearly invariant under rotations
and 22, — z7.. Invariance of (2.3.39) under translations and rotations is not a surprise,
and indeed any Feynman integral of the form (2.3.2) is invariant as such.

As general Feynman integral is not invariant under dilatations however, and here
the conformal weight 23,73, is necessary for invariance. Under dilatations z; — ¢ ;,

we integrate over a scaled variable z;, = %ma. Then we have

¢ — / ;“’ . ”130 T / L TR (2.3.42)
™ C

2 2 2 2 .2 .2.,2 .2
x C%QC wb3c xb4 T Ty TpaTpz Ly

29The conformal weight w(xfj) is not unique. Indeed, given a conformal weight w(xfj) one can
multiply it by any rational function of the cross ratios to get a new conformal weight.
30We will mainly refer to this integral as the box integral, since the dual graph resembles a box. It

is also referred to as the cross integral.
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Finally, we should show that ¢ is invariant under special conformal transformations
(2.2.3). Since we saw in (2.2.22) that SCT = inversion o translation o inversion, it
suffices to demonstrate the invariance of (2.3.39) under inversions ! — z!'/z*. We
integrate over an inverted variable zf = z# /22, so that 2 = 21 /x7. The integration
measure transforms

L 4
d4z, = det (gi ) d4ap = det (5*3 . %) dtz, = % (2.3.43)
b b

where the determinant was evaluated using

u K o Iz
det (ax ) = \/det (ax“ ax“) \/det (5 > = ig (2.3.44)
ozy Oxy Oy :L“b xy

which is essentially the relation det M = v det MMT. We also recall the equation
(2.2.53), which implies that

n ©wy\ 2 72
xb X; bZ .
b ) =1,2,3,4. 2.3.45
( % .7/'12) % 27 t y &y, ( )

Combining these facts, we conclude that under inversions ¢ transforms

2 2

Ti3 Tog
d*z, 242 722 d*zy, 2222
¢%/ e A =0 (2.3.46)
; ‘

2 2 .2 .2 .2
T Ty Lo Lpz Ly

2227 T2a] ohal wha]
Since ¢ is invariant under conformal transformations, it depends only on the conformal
cross ratios u and v defined in (2.2.57), or equivalently the conformal variables z, z
defined in (2.2.62). It has been evaluated in terms of a combination of logarithms and
dilogarithms known as the Bloch—Wigner function. This function has many interesting
properties, and is discussed in detail in section 4.1.2.

In general, an integral (2.3.2) is conformal if given any integration point x,, the
sum of the propagator powers for the propagators attached to x, is equal to the spatial
dimension D. In this case, the part of the integral containing x, transforms

Va 21/ Va 2v
1 dPzx ! x;
D a 2 (vi+4vag) I
4"z, H 2y D xZD ‘ H 21/1 H 2up0 (2'3'47)
=1 Lol a =1 Lo

if vy +--- + 1, = D. The factors [[,; ; 2 which appear for each integration variable
can be cancelled by choosing an appropriate conformal weight.?! If we only consider
unit propagator powers, then a D-dimensional Feynman integral (2.3.2) can only be
conformal if the graph G is built from vertices which are D-valent. In particular, in
four dimensions the vertices must be four-valent and any conformal Feynman integral
with unit propagator powers has a fishnet topology. An n-point conformal Feynman
integral depends on n(n — 3)/2 cross-ratios.??

31Note that x; could be another integration variable x;. In this case it will simply be cancelled by
the Jacobian of dPxy if the conformal condition is also satisfied at this vertex.
32Provided the spatial dimension is large enough, see the discussion below (2.2.62).
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Conformal Feynman Parametrisation. The Feynman parametrisation (2.3.14)
exposes the dependence of a Feynman integral on the kinematics xfj It is natural to
ask whether there is a corresponding representation for conformal Feynman integrals;
one which exposes their dependence on the conformal cross ratios. In most cases it
is possible to derive such a representation. A few examples were discussed in [66],
although the basic mathematical tricks in deriving it were already seen in [67]. There
does not appear to systematic way for deriving this representation, however, and there
is certainly no graph-theoretic representation analogous to (2.3.14). The general spirit
is to introduce Feynman parameters, integrate over one of the Feynman parameters for
each loop in the integral, and rescale the remaining Feynman parameters by an appro-
priate kinematic factor. We will show how the derivation goes for the box integral. We
state the conformal Feynman parametrisations relevant for this thesis in appendix A.

We start from the Feynman parametrisation for the conformal function of the box,
taken from (2.3.13):

T
¢ 2 .2 4 T /Oo[d:} ] 1‘%338%4 (2 3 48)
= T{3x 4 2 = o 3.

e 0 (ZK]‘ aio‘jx?j)2
T3
o} 2 .2 ) -1
_ / danydasdaday T12210(02 - 3 (2.3.49)
0 (Zz’<j ;05 T)

where we picked a specific de-projection as = 1. Localising as and performing the ay
integration, we are left with

o] 2 .2
b — / daydas 1524 . (2.3.50)
0

2 2 2 2 2 2

This integral can be made manifestly conformal invariant by a judicious rescaling of
2 2

Feynman parameters.?® Indeed, letting o = %ﬁl and oy = %ﬁg, we have

o0 1
Hu,v) = /0 AodBs (B1 + B1Bs + B5)(Brv + 1 + Byu)’

which exposes the dependence of ¢ on u and v.

Conformal Feynman parametrisations are quite robust to work with numerically,
especially at lower loops, and the Mathematica function NlIntegrate is sufficient for
their numerical integration. The precision of the agreement between analytic results
and numerical integration of conformal Feynman parametrisations depends on the loop
order of the appearing integrals. We find that at one, two, three, and four-loop orders
there is a typical relative precision of 107?,107%,1073, and 107!, respectively. When
there is no analytic form available, numerical integration of the conformal Feynman
parametrisation is valuable, since it is a convenient way to extract numerical values for
the conformal integral.

In the following sections we provide a few examples of families of conformal integrals,
and discuss some of their properties. The box integral (2.3.39) is a member of all of
these families.

(2.3.51)

33Picking the right rescaling requires some experience. At higher loops when there are many Feyn-
man parameters it can be tricky.
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2.3.4 Conformal n-gons and the Star-Triangle Relation

In n dimensions the canonical conformal vertex is n-valent. We can therefore consider
the one-loop integral built from one of these vertices:

d"z 1 > 1
I, = - =1, dn! , 2.3.52

where we also wrote the corresponding Feynman parametrisation. In dual position
space the graphs for this family of integrals are regular polygons, and so they are also
referred to as the conformal n-gons, which up to a conformal weight depend on n(n —
3)/2 cross ratios. Mathematically, the n-gons (2.3.52) (and massive generalisations) are
known to compute volumes of hyperbolic manifolds [68,69]. The conformal invariance
of these integrals can be enhanced to conformal Yangian symmetry, described more in
section 3.3.3.

For n = 2 the integral is divergent and requires regularisation. For n = 4 this is
the box integral already discussed. For n = 3, we recover the conformal star integral.
After multiplication by the conformal weight /3,727,273, this integral is completely
fixed by conformal symmetry to be a constant:

d3a:a 2,12 x2
1271373

\/$12x13x23 Yo e (2.3.53)
T T TonTi

o] /1’2 1’2 5132
— Fg/g/ [dzOé]( 12 13 23
0

2
a1aerl, + aya3Tis + anazr3s)d

By performing the a3 integral and making an appropriate rescaling of Feynman pa-
rameters, the kinematic dependence of the integral disappears and we are left with a
constant:

o0 1
=20 d — 4T tan " — 73/2 2.3.54
. 3/2/0 e o T aa) e — ot () =m0 (2359

where the final integral was easily performed using the de-projection ay = 1. The fact
that (2.3.53) is a constant reflects the fact that one cannot form a conformal cross ratio
with n = 3 external points.

The conformal star in D dimensions is built from propagators with propagator
powers vy, Vs, 3 which sum to the dimension D. This integral is also a constant, up to
a conformal weight:

dPx, 1 X123
= =D, 2.3.55
/ 7D/2 Zlfxigzlegs x%gsxfgszgl e ol L ( )
where we defined 7; := D/2 — v; and
I, 11
X123 = —F1F2F3. (2356)
vid vl g

Graphically, the identity (2.3.55) can be represented
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1 ol

141 — X123 s %) , (2357)

3 T2 L3 = T2

and is thus referred to as the star-triangle relation. This relation is useful for the

computation of many integrals which contain conformal three-point vertices, and is

central to various integrability constructions involving conformal integrals [70-73].
For n = 5 we have the conformal pentagon

€1

5
. . d’z, 1 @5 (u1, u2, us, Ua, us)
T2 X1 Ta2L 3% 4% 5 \/55133314332437253335

L4 T3

(2.3.58) is a rare example of a conformal integral computed at higher than four points.
In [74] the authors derived a recursion relation for the symbols of the conformal n-gons,
and in [75] the symbol of the pentagon was integrated to recover the expression®!

b5 = (2.3.59)

\/7 Z log R;;.

1<j

The conformal variables vV —A®) and R;; are defined from the gram matrix Qs, whose
entries are simply the external kinematics:

(Qs)iy =%, i,j=1,...,5. (2.3.60)
In particular we have
jo 1 deQs @ V0@~ @@
2yt tls (@5 + /(@5 )3~ (Q3)ul(@3 )

From the recursion relation for their symbols it is clear that the conformal n-gons
can be expressed as harmonic polylogarithms of the conformal varibles, times a leading
singularity, which is the value of the integral when all propagators are sent on-shell [76].
These leading singularities can be expressed as 1/v/—A®, where A™ is calculated
from the n-point gram matrix @,, analogously to (2.3.61). At four points this leading
singularity is simply 1/(z—Z), where z, z are the conformal variables defined in (2.2.62).

The explicit polylogarithmic representation of the conformal n-gons for n > 5 is
not known. The conformal hexagon

6
d[L’a 1 ¢6(U17...,UQ> (2362)
w2 2. x2, a2 a2, xiaad. o
al a2* a3 a4 ab" ab 1442536

34This expression is only valid provided the correct branch of the logarithm is chosen. The author
is not aware of a systematic procedure to determine this branch for a given configuration of points
L1y.e..,T5.
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evaluates to a currently-unknown combination of weight three polylogs times a lead-
ing singularity, although a formal series representation has been identified [77]. This
integral would be very interesting to calculate: it is related to the conformal six-point
elliptic double box, described in the next section, by a simple differential equation.
Six-dimensional hexagons are also known to contribute to tensor integrals appearing
in amplitudes in N' =4 SYM [78]. Several on-shell limits of (2.3.62) have been calcu-
lated [79-81]|, although the fully off-shell case remains an open problem.

2.3.5 Fishnets and Basso—Dixon

Another interesting class of conformal Feynman integrals are the fishnet integrals in
four dimensions, which are built from conformal four-point vertices. These are known to
contribute to amplitudes in N' = 4 SYM, and like the conformal n-gons they have been
shown to have an enhanced conformal Yangian symmetry, discussed in section 3.3.3.
The fishnet Feynman integrals are defined by an a x 3 lattice of conformal vertices:

1 . Loy

e o8 on aa =it
= b (2.3.63)
T2a4B+1 ——+——+—+— —+—— Ta+p

T2a4+8 -~ Tatp+1

where we also indicated the graph in dual position space. jag is a conformal integral

depending on n = 2(« 4 ) external points. For a = = 1 we recover the conformal

cross/box integral, which we have already mentioned. It can be expressed in terms

of weight two polylogs of the conformal variables, and is discussed more in chapter 4.

This is, however, the only integral in the family (2.3.63) which is known analytically.
For a = 2, 5 = 1, we recover the six-point conformal double box:

xr1 T2
4 4
f — oz 3 _/d$ad Ty 1 _@/ng(ul,...,u9)
21 = = — )
2 2 .2 .2 .2 2 9 9 9 2.2 .2
T T T Ta5LaeL b LpaLp3Lha L14%35T36
Irs X4

(2.3.64)

This integral has been evaluated in terms of elliptic polylogarithms [82,51] in a seven
cross-ratio limit, where the integral contributes to a ten-point amplitude in N = 4
SYM [83]. The result for the fully off-shell integral has not been expressed as such,
although a formal power series representation was derived in [77]. It is also related to
the six-dimensional hexagon integral discussed in the previous section:

8u8¢21 = —7T§Z56, (2365)

where ¢g is defined in (2.3.62), and the cross ratios have been defined appropriately,
see for example [10].

The sub-family of fishnet Feynman integrals (2.3.63) with one-dimensional lattice
structure, which generalises the above box and double box integral to 2(n+ 1) external
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points, has been dubbed train tracks due to the shape of their graphs in dual position
space:

__+__+_1.+__+__ , (2.3.66)

For on-shell kinematics, these integrals were conjectured to be associated with Calabi—
Yau geometries [84|. For off-shell kinematics, the integrals (2.3.63) (except for the box
and perhaps the double box) appear to be beyond the reach of modern methods of
Feynman integral calculation.

An interesting simplification of the integral family (2.3.63) is the four-point limit:

Z1

Log = 1 <—+—+—+—+—>x2 T 2.3.67
A 229520 ( )

T3

For general o and f = 1 we recover the ladder integrals, named after their form in
dual position space. These integrals have been known analytically since the work of
Usyukina and Davydychev [85]. They can be expressed as

Pa1(z,2) = — ! ~Lo(55, 55), (2.3.68)

where L, denotes the ladder functions, which are single-valued polylogarithms of z and
zZ, see [86:

«

La(z7) =3 O @Ol o) (Lisas (2) — Lina_s (2)) (2.3.69)

— rl(a—r)lal

Remarkably, for general «, 3, the functions ¢,s can be expressed as a determinant of
these ladder integrals, which was conjectured first in [87] by Basso and Dixon and
proven recently in [88]. The result is

¢a6 = det]\4o¢67 M;;ﬂ = C?'quﬁ—a—l-f—i-i-j,l) (2370)

J

where the coefficients cf‘jﬁ are defined according to

gf =45 1, for i = j, (2.3.71)
[Ticiialpie(pie — D], fori < j,

iJ ’

{ HZ:]-H pik(pjx — 1), for i > j,

with
pr=0—a—1+j+k. (2.3.72)
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The formula (2.3.70) is colloquially known as the Basso—Dizon formula, after its dis-
coverers. As an example, if & = = 2 then we have

Z1

b11 2¢m
%%1 P31

P22(z,2) = lel3$4214 T4 T2 =

= drs — é(¢21)2. (2.3.73)

T3

In fact, (2.3.73) was already calculated via a differential equations approach in [89],
although its expression in terms of ladder integrals was probably not known at this
point.

Both integral families (2.3.63) and (2.3.67) represent exact correlation functions in
the fishnet theory, as will be described in section 3.3. Due to their simple analytic
structure the integrals (2.3.67), especially the ladders, have received a lot of attention
in many different contexts, even very recently [90,91|. The first few ladder integrals
have famously been related to other four-point conformal integrals via so-called ‘magic
identities’ [92]. Fascinatingly, the sum of all ladder diagrams been computed at strong
coupling via a Bethe-Salpeter approach [93].

We conclude our discussion of correlation functions in conformal field theory, and
proceed to discuss the conformal fishnet theory and its integrability.
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Chapter 3

Fishnet Theory and Integrability

In this chapter we introduce the main QFT we study in this thesis, namely the dy-
namical fishnet theory. This theory can be obtained via a specific double-scaling limit
of N' = 4 super Yang-Mills theory. In the most degenerate limit we recover the bi-
scalar fishnet theory, often referred to as simply the fishnet theory. The fishnet theory
is believed to be an example of an integrable logarithmic conformal field theory. We
have already discussed logarithmic CFT, so we begin this section with a discussion
of integrability in the context of quantum mechanics. We then discuss the N = 4
SYM theory, and explain why it is believed to be an integrable conformal field theory.
Finally, we explain how the fishnet theory is obtained from N = 4 SYM, and describe
how integrability manifests itself in this theory.

3.1 Integrability

Physicists have long been fascinated by models which are ezactly solvable. These are
models which are so constrained by symmetry that the dynamical variables thereof can
be solved for analytically. Such models have been very fruitful for mathematics, as the
powerful tools developed for their solution have proven very interesting from a theo-
retical standpoint. Usually such models are idealised versions of more physical models,
however they can often be perturbed/deformed to represent more realistic models. In
these cases the exactly solvable model represents a zeroth order approximation to the
more realistic one, and the corrections to this model may be calculated perturbatively.

In many cases the reason for the exact solvability of a system can be explained by
integrability. What it means precisely for a model to be integrable depends on what type
of model it is. We will first discuss the case of classical mechanical models, for which
there is a generally accepted definition of integrability, via the Arnold—Liouville theorem
[94]. The main requirement for a model to be integrable in this case is the existence
of sufficiently many conserved quantities along the flow of the Hamiltonian. This
constrains the motion sufficiently such that the equations of motion can be integrated
by quadratures.

For quantum mechanical models, there is no analogous criterion for the integrability
of a system. However, there are numerous common features which appear in the

I This is a historic term, which roughly means that the solutions can be obtained by solving a finite
number of algebraic equations and computing a finite number of integrals.
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solution of quantum models which are called integrable. We will discuss these features
in the case of the most famous quantum integrable model, the Heisenberg XXX spin
chain. This model has an su(2) algebra symmetry, and it can be diagonalised using
a so-called Bethe ansatz, which encodes the eigensystem of the Hamiltonian in a set
of Bethe equations. The two most well-known forms of the Bethe ansatz are the
coordinate Bethe ansatz and the algebraic Bethe ansatz. The algebraic Bethe ansatz
is usually more powerful, and it is based on the fact that the Hamiltonian can be
expressed in terms of a so-called R-matrix which satisfies the Yang-Baxter equation.
This equation encodes a Yangian algebra, which is a structure believed to be at the
heart of quantum integrability. Fascinatingly, these features have also appeared in the
calculation of observables in certain quantum field theories. In these cases the field
theory can be argued to be integrable in its own right. We will discuss this more in
section 3.2 and section 3.3.

There are numerous resources which discuss integrability from different perspec-
tives. The book [94] gives a mathematical formulation of classical mechanics and formu-
lates the notion of Arnold-Liouville integrability. [95] provides an overview of classical
integrability and the relevant mathematical concepts, with several examples. [96] is the
canonical introduction to techniques in quantum integrability, where the Bethe ansatz
approach to solving various integrable spin chains is described. More recent reviews
on various aspects of integrability have appeared [97-101], as well as the book [102].

3.1.1 Classical Integrability: Arnold—Liouville and Lax Pairs

A classical mechanical model of n particles has a 2n-dimensional phase space M, with
generalised coordinates qi, ..., ¢, and corresponding canonically conjugate momenta
P1y---,Pn- The model is defined by a Hamiltonian function H : M — R. Together
with a set of initial conditions ¢;(0), p;(0), the Hamiltonian generates a time flow on
M via Hamilton’s equations?

o oH . oH
ql_ apz7 pl_ aqz7

i=1,2,...,n. (3.1.1)

Typical examples of such models are the harmonic oscillator (n = 1)

2 2.2
p mw-q
Hip. ) — 3.1.2
(pa) =5 -+ —5— (3.1.2)
and the Kepler model (n = 3)
2 2 2
pitp;+p B
H(pi, qi) = ——F—=+ (3.1.3)

2m N R R

A classical mechanical model is exactly solvable if the equations of motion (3.1.1) can
be integrated by quadratures. It is for this reason that exactly solvable models are also
referred to as integrable models. There is a well-defined criterion of when this is possible
in the case of classical mechanics, given by the Arnold-Liouville theorem [94]. It relies

2This is most elegantly formulated in the language of symplectic geometry [94]. Here we state it
for the usual symplectic structure on R?".

92



on the existence of enough conserved quantities. A dynamical variable F' : M — R is
conserved on the flow generated by the Hamiltonian if the Poisson bracket of F' and H
is zero:

OF OH 8F8H):0. (3.1.4)

dF =
dt {F 1) = <a%’ Ip; B Ip; Og;

i=1
More generally, F; is invariant under the flow generated by F; (and vice versa) if
{Fi, F;} = 0.

One of the conditions of the Arnold—Liouville theorem is that there are n indepen-
dent mutually Poisson-commuting functions F; : M — R, of which the Hamiltonian is
one Fy = H. Then all of these functions are constant F;(p;,q;) = f; under the Hamil-
tonian’s flow. If the functions F; are independent, then the 2n-dimensional phase space
M reduces to an n-dimensional level manifold My, defined by

For example, in the case of the harmonic oscillator (3.1.2), the phase space is M = R
spanned by the coordinates p and ¢q. The Hamiltonian is conserved under its own flow

PP mutq(t)
2m 2

= E, (3.1.6)

for all times ¢. (3.1.6) determines a one-dimensional submanifold of R?, diffeomorphic
to the circle St.

The Arnold—Liouville theorem states that if a system has n independent mutually
commuting quantities F;, and the level manifold M} is compact and connected, then

e My is invariant under the flow generated by the Hamiltonian Fy = H, and the
flows generated by Fy, ..., F),.

e M; is diffeomorphic to the n-torus T™ ~ S (1) x -+ x S'(¢,).

e There exists a canonical transformation to action-angle variables (p;, ¢;) — (1;, p:)-
The equations of motion in these variables take the form

i = w, I; =0, (3.1.7)
and so can be integrated trivially.

The angle variables ¢; represent coordinates on the torus, and the action variables are
functions of the conserved quantities Fj, chosen appropriately so that the transforma-
tion (p;, ¢;) — (I, ;) is canonical.> We do not go through the proof here, although we
mention that the action variables can be constructed as

1
I; = 2—/ (p1dqr + -+ + pndan), (3.1.8)
s vj

where v; is the 5" cycle on the torus, parametrised by the angle ©j.

3A change of coordinates on M is canonical if it preserves the symplectic structure. This means
that the form of the Poisson brackets and Hamilton’s equations are unchanged.
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In the Hamilton—Jacobi formulation of classical mechanics, canonical transforma-
tions are typically defined through a generating function S. This can also be done
for the canonical transformation (p;,q;) — (I;, p;), where the generating function is

defined
St = [ (a4 + pudan) (3.1.9)
C(q0,9)

where C'(qo, ¢) is an open, not self-intersecting path on My, which begins at ¢o € R"
and ends at ¢ € R". Then we have

os a5
aIZ - (pzv aqz _p’l'

(3.1.10)

Example: Kepler Model. The Kepler model (3.1.3) is a Liouville integrable model.
In spherical coordinates (7,0, ¢) the Hamiltonian reads

1 2 2
H=_— (pf+@+ Ps )+é. (3.1.11)
2m

r2 " r2ginf r

For this model H is conserved, as well as the components of the angular momentum
Ji. These are not independent quantities, as they satisfy {.J;, J;} = €;xJi. The inde-
pendent conserved quantities are typically chosen to be

Js = pg. (3.1.12)

The generating function S defined in (3.1.9) can be found by writing the momenta
Dry Do, Pe 10 terms of the conserved quantities using (3.1.12):

S:/dr\/2<H—§ +—+/d9\/J2 J2 /d¢J3 (3.1.13)

Then the angular coordinates can be recovered using (3.1.10):

Los o _es oS
YH = 8H7 Y2 = 8J27 PJs = 8J3

(3.1.14)

Fascinatingly, there are a further two independent conserved quantities for the Kepler
model, which reflects a hidden enhancement of the symmetry group SO(3) to SO(4).
The Hamiltonian (3.1.11) commutes with the components of the Laplace-Runge-Lenz
vector ff, defined as

—

A=jxL—mp. (3.1.15)
T

The components of this vector satisfy {4;, A;} = €;;5Ak. Systems with more than n
conserved quantities are called super-integrable. The maximum number of independent
conserved quantities a system can have is 2n — 1, and such systems are called mazxi-
mally super-integrable. The Kepler model is a example of a maximally super-integrable
classical model, with independent conserved quantities H, J?, J3, A%, As.

Classical integrable systems are few and far between in physics, and as such they
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are treasured when found. The harmonic oscillator (3.1.2) is the simplest example of
a classical integrable system with n = 1. For this model this transition to action angle
variables is very natural, since the phase space is already an ellipse. There is also the
Neumann model, which describes n particles moving on the surface of a sphere, con-
strained by harmonic forces of various frequencies [103]. The existence of sufficiently
many conserved quantities was exhibited by Uhlenbeck [104]. There are also several
examples of integrable spinning top models, for example the Euler top, summarised
n [95]. Moving towards systems with an infinite number of degrees of freedom, the
classical closed Toda lattice with N particles is an integrable model:

HZ<

where we identify gyy1 = qn. In the limit N — oo we can obtain an integrable two-
dimensional field theory. The conserved quantities of (3.1.16) are best described in the
Lax pair formalism.

- Qn+1)) ; (3.1.16)

Lax Pairs. The existence of sufficiently many conserved quantities is one of the keys
for a system to be integrable. One way to find conserved quantities for a system is to
construct a Lax pair. These are a pair of matrices L, M, whose entries depend on the
phase space variables ¢;, p;, such that the equation

%_[L M] =0 (3.1.17)

is equivalent to the equations of motion (3.1.1). For example, if

1 P mwq w0 1
N\ F

then the combination (3.1.17) evaluates to
dL 1 mwlq+p  w(—p+mq)
— —[L,M]=— : 2. 1.1
dt L, M] vm (w(—p+ mq) —mw?q—p (3.1.19)

The vanishing of (3.1.19) is equivalent to the equations of motion of the harmonic
oscillator (3.1.2), ¢ = p/m and p = —mw?q.
Given a Lax pair, one can easily generate conserved quantities. Indeed, for any
k € N the quantity
Oy, == tr L" (3.1.20)

is conserved under the flow of the Hamiltonian. This is because
k
— tr LF = Zt (L" 1= ) = te(L[L, M]LF) =0 (3.1.21)
i=1

by the cyclicity of the trace. A priori, it might seem that this generates an infinite
number of of conserved quantities. However, the operators O, are of course not inde-
pendent. For example, for the Lax pair of the harmonic oscillator (3.1.18), we have

Oy, = 2P HF, Ospyr =0, k=0,1,2,..., (3.1.22)
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where H is the Hamiltonian (3.1.1). This is not surprising, as a one-dimensional system
can only have one conserved quantity.

Lax pairs form the algebraic foundation for classical integrable models. The con-
struction of such a pair is a non-trivial task and must be done on a case by case basis.
Notice that the equation (3.1.17) makes no reference to the Poisson bracket structure
underlying the corresponding Hamiltonian system. This can be incorporated by intro-
ducing an algebraic structure known as the r-matriz. Specifically, the eigenvalues of
the matrix L will poisson commute if and only if the classical Yang-Baxter equation
is satisfied [95]. We will discuss the quantum version of this equation in section 3.1.2.

Lax pairs are also central to integrability constructions for classical field theories.
Although we do not discuss integrable classical field theories here, they constitute a
large number of the integrable models which are known. They are typically defined
in (1 + 1) spacetime dimensions, for a field ¢(¢,z). The model can be defined by a
Lagrangian, and it is integrable if the field equations can be written in terms of an
operatorial Lax pair, analogously to (3.1.17). Often it is the field equations themselves
that are called integrable. Famous examples are the sine-Gordon equation and the
Korteweg—de Vries equation. That these equations admit solitonic solutions is typical
for integrable field theories.

3.1.2 Quantum Integrability: Heisenberg Spin Chain

While the notion of Arnold-Liouville integrability is the generally accepted definition
for a system for be classically integrable, there is no corresponding theorem for quantum
mechanical models [105]. One reason for this is provided in [106]: in general a quantum
mechanical system is defined on a (possibly infinite-dimensional) Hilbert space H, and
it is not easy to find a consistent definition for ‘degree of freedom’. Therefore it is
difficult to know how many conserved quantities one should expect for a system to be
integrable. Moreover, a theorem by Von Neumann states that given commuting oper-
ators A and B on a Hilbert space H, there necessarily exists an operator C' such that
both A and B are functions of C'. Therefore, it is less clear how to define independence
of operators.

Nevertheless, many quantum models have been discovered which deserve to be
called integrable. This is because there exist powerful algebraic methods to extract
the spectrum of these models, i.e. the eigenvectors and eigenvalues of the Hamiltonian
H.* This is best described in the case of the famous quantum spin chain models.
A possible working definition for quantum integrability is the following: a model is
quantum integrable if the Hamiltonian can be derived from a R-matrix which satisfies
the (quantum) Yang-Baxter equation.” In this case a transfer matrix t(u) : H —
H can be constructed from the R-matrix, where u € C is the spectral parameter.
These form a one-parameter family of commuting operators [t(u),t(u')] = 0. The
Hamiltonian can be identified from this transfer matrix, typically as a logarithmic
derivative thereof. The transfer matrix can be diagonalised using a Bethe ansatz,
named after Hans Bethe’s solution of the spin-3 XXX (also known as Heisenberg) spin
chain [109]. The eigensystem is encoded is a set of rational equations known as Bethe

4In this section we will discuss operators acting on Hilbert spaces, however we will not use the
usual ‘hat’ notation for operators commonly seen in quantum mechanics.
°In fact, this definition of integrability was used to bootstrap new integrable models [107,108].
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equations. This simultaneously diagonalises the Hamiltonian as well as an infinite
tower of operators which appear in the expansion of logt(u). There is a weaker form
of the Bethe ansatz known as the coordinate Bethe ansatz. A priori this diagonalises
only the Hamiltonian, however it is a much more direct approach to deriving the Bethe
equations of the integrable model.

In this section we focus on models which are diagonalisable. In chapter 6 we will
discuss non-diagonalisable models, derived from broken algebra symmetries. The dis-
cussion in this section will be useful to compare to later, as we discuss the integrability
of these non-diagonalisable models.

Heisenberg Spin Chain. We will describe all of the basic concepts of quantum
integrability for the case of the spin—% Heisenberg spin chain of length L. This model
is defined on the Hilbert space H = (C?)®L, where we take a local basis {|1), |)} at
each site. A general state is then defined as linear combination of lists of up and down
arrows. As an example, for L = 2 we could have

1
7 (114 + 1) € H, (3.1.23)

where [1]) is shorthand for 1) ®|]). The Hamiltonian for the Heisenberg spin chain is
H =Y (1= 4(SEST + SYS%y + S787,)), (3.1.24)

where 5% are spin operators acting non-trivially only on site i of the Spin chain, and

we identify S¢,, = S{. They are related to the Pauli matrices via S* = 10, where

. (01 L, (0 —i . (1 0
0—(1 0), a—(i O)’ O'—(O _1>. (3.1.25)

These spin matrices furnish a local representation of su(2) at each site:

(52, 52) = i6,jeteSe. (3.1.26)

177

The Hamiltonian (3.1.24) is also conveniently written in terms of raising and lowering
operators S := S¥ £+ 4SY. Then the operators {S*,S~, 5%} act on local states as

SN =0, ST=l, ST =g, (3127
ST =1, S =0, S =30

In terms of these operators the Hamiltonian (3.1.24) reads
L
H=> (1-2(587, + 87 Sihy) — 45757, (3.1.28)
=1

From (3.1.28) one can see that Heisenberg spin chain, as defined, is a rudimentary
quantum model of ferromagnetism, since the spins will tend to align. Although not as
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physical, probably the most transparent representation of the Hamiltonian (3.1.24) is
in terms of the permutation operator P : C? ® C?> — C? ® C?, which acts as

Proy=y®x. (3.1.29)

Similarly, P acts on any tensor product space V ® V by swapping the order of terms.
In terms of P the Hamiltonian (3.1.24) is simply

H=2> (1-Pp). (3.1.30)

(3.1.30) is very simple to work with computationally, although some of the symmetries
of the Hamiltonian are obscured in this representation. For example, all of the operators

L
S = Z St a=umx1,z (3.1.31)
i=1

commute with the Hamiltonian:
[H,S5% =0, a=2x9,2, (3.1.32)

which is easily proven using the algebra (3.1.26). S* is the operator which counts (half)
the difference between the number of up spins and down spins in a state. Therefore,
when diagonalising H one can consider states with a fixed number of down spins. More
concretely, we can grade the Hilbert space

L
"= Hu, (3.1.33)
M=0

where H,; is the vector subspace of H spanned by states with M flipped spins, or
magnons. By simple combinatorics the dimension of H,, is ( AL4) H, is spanned by a
single state, the ferromagnetic vacuum [0) == |11 --- 7). This is an eigenstate of the
Hamiltonian with eigenvalue 0

H|0) = 0. (3.1.34)

Because of (3.1.32) H further commutes with the total spin lowering operator [H, S™] =
0. Therefore if 1) € H,s is an eigenstate of H, so is S™¢ € Hu—1.%5 This causes the
eigenstates of H to arrange in su(2) multiplets. For example, for L = 2 the eigenstates
arrange into a spin-1 representation and a spin-0 representation

1) — 1) + ) — ), (3.1.35)
115 — 1), (3.1.36)

respectively. We proceed to describe two methods for the diagonalisation of the Hamil-
tonian (3.1.24), the coordinate and algebraic Bethe ansétze.

6Note that S~1 might be the zero vector.
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Coordinate Bethe Ansatz. The coordinate Bethe ansatz makes use of the fact
that rather than diagonalising H on the whole Hilbert space H, we can diagonalise
it on the restriction to each H,;,, M = 0,1,..., L. It searches for eigenstates of H in
the form of discretised plane waves, motivated by the interpretation of magnons as
particles moving along the spin chain, with a definite momentum p.

The first non-trivial case is M = 1, where we look for eigenstates using the plane

wave ansatz
L

Yy =Y €™S|0) € Hy. (3.1.37)

n=1

Acting with H on this state, we see that it is an eigenstate with eigenvalue
E(p) = 4sin g, (3.1.38)

provided p satisfies .
el =1, (3.1.39)

(3.1.39) is imposed by the periodicity along the spin chain, and is the simplest example
of a Bethe equation. Its L solutions in terms of the L' roots of unity exhaust the space
H; of eigenvectors. Note that if p = 0 we recover the su(2) descendant of the vacuum

pmo = W D)+ L)+ 1 1) = 57)0). (3.1.40)

The structure becomes much more intricate for the case of two magnons M = 2. In
this case we make the modified plane wave ansatz

Vpip2 = Z (Ara(pr, pa) PP 4 Aoy (py, po)e 22 S0 S 10). (3.1.41)

ni1<ng

The summand of (3.1.41) behaves as two independent M = 1 eigenstates under H if
ne > ny + 1, and thus has eigenvalue E(p;) + E(p2). For this to remain true even in
the case ny = ny + 1, a quick calculation shows that we must have

A cot Bf —cot 22 — 24
21 2 2
A Cot%—cot%%—%'

A=

(3.1.42)

A is interpreted as a scattering matriz, and is the factor the wavefunction picks up
when a magnon of momentum p; moves past a magnon of momentum ps. Periodicity
along the chain implies the Bethe equations

et = A(ps, 1), et = A(p1, pa). (3.1.43)

In summary, the state ,,,, € Hso is an eigenstate of H with eigenvalue E(p;) + E(p2),
provided the Bethe equations (3.1.43) are satisfied. It is less clear that these states

exhaust the (g) = # states in Hy. This is the question of completeness of the

Bethe equations (3.1.43) [110].
Fascinatingly, the eigenstates in H,; for general M can be established using only
the equations written down so far. The general coordinate Bethe ansatz is

wpy..pM = Z Z .Ag(pl, . ’pM)ei(paln1+~~+ngnM)’ (3144)

ni<ng<---<npys O'ES]\/[
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where S) is the symmetric group on M letters. The coefficients A, can be factorised
into two-particle scattering processes:

As =[] Acio,. (3.1.45)

i<j

Then v, ,,, is an eigenstate of H with eigenvalue E(p;) + - -+ E(pa), provided the
Bethe equations are satisfied

e?t = T] Alpj. pi). (3.1.46)
j#i

The factorisation of a many-body scattering process into two-body processes is indica-
tive of integrability.

Algebraic Bethe Ansatz. The main objects for the algebraic Bethe ansatz are the
Lax operator and the R-matrix.” We denote the quantum spaces of the spin chain as
V, = C%*n =1,...,L and introduce an auxiliary space V, = C2. The Lax operator
Lo V,®V, = V,®V, intertwines the phyiscal and auxiliary space, and is defined as

u+ 157 1S, > _ (u_ %) I+iP,,, (3.1.47)

Lo(u) = ull,®1,+1 Z SZ@U(CZ:( igt oy ig

C=X,Y,z

where u € C is the spectral parameter and P is the permutation operator defined in
(3.1.29). Depending on the calculation, one of the representations of the Lax operator
given in (3.1.47) may be more convenient than the others. The R-matrix Ry, : V,®V, —
V, ® V, acts on two copies of the auxiliary space, and is defined

Rap(u) = ul + iPgy = Loy (u+ %) . (3.1.48)

As a matrix on V, ® V},, Ry, can be written as

u+i 0 0 0
0 w i 0

Ru=| o 5w o (3.1.49)
0 0 0 u+i

From the Lax operator (3.1.47), one may build a monodromy along the spin chain

Ty(u) : HoV, = H®V,

Ta(u) = ‘CLa'CL—l,a e ‘Cla = (éézg ggz%) s (3150)

which is interpreted as a matrix in the auxiliary space V,, whose entries act on the
whole spin chain A, B,C,D : ‘H — H. From (3.1.47) we notice that each of these

"In this case the operators are simply related by a shift of the spectral parameter. However, for
more complicated spin chains the auxiliary space does not coincide with the physical spaces of the
spin chain, and these operators act on different spaces.
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operators are polynomials of degree L in the spectral parameter u. Taking the trace
over the auxiliary space, we can recover the transfer matriz t(u) : H — H

t(u) = tr Ty(u) = A(u) + D(u) = Zujtj(u). (3.1.51)

The operators A, B,C, D appearing in (3.1.50) obey a number of intricate algebraic
relations, which stem from the fact that the R-matrix satisfies the quantum Yang-
Baaxter equation:

Rab(ul — UQ)RGC<U1)R[,C(U2) = Rbc(UQ)RaC(Ul)Rab(ul — Ug). (3152)

(3.1.52) can be verified explicitly by expressing each operator as a matrix in V, ®
Vi, ® V. and performing the matrix multiplication, for example with Mathematica. For
example, we have

wt+i 0 0000 0 0
0 wu+4i 0000 0 0
0O 0 wO0OioO 0 0
0 0 0woOi 0 0
Rp()®L=1 " o 7 040 0 0
0O 0 0iO0Owu 0 0
0 0 0000 uti 0
0 0 0000 0 wu-ti

R,. can be obtained with the help of the permutation operator P, more details on this
are given in section 6.2.4. The Yang—Baxter equation lies at the heart of all algebraic
relations which appear in the algebraic Bethe ansatz, and is crucial to the integrability
of a quantum model. For one, it implies that the monodromy matrix (3.1.50) satisfies

Rap(uq — ug)Ty(uy)Ty(ug) = Tp(ug) Ty (uq) Rap(ur — us), (3.1.53)

which can be established by expressing the monodromy matrix (3.1.50) in terms of R-
matrices using (3.1.48), and repeatedly applying (3.1.52). Taking the trace over both
auxiliary spaces, one can then establish that

[t(ur), t(uz)] =0,  uy,ug €C, (3.1.54)

i.e. the transfer matrix ¢(u) constitutes a one-parameter family of commuting operators
on H. Remarkably, the Heisenberg spin chain Hamiltonian (3.1.24) is a member of this
family. It can be obtained from the logarithmic derivative of the transfer matrix:

H
S — (3.1.55)

zi log t(u) s 5

du

= ( /2)%75@)

u=i/2
Specifically, the logarithmic derivative of ¢(u) at u = /2 is proportional to the inter-
acting part of the Hamiltonian (3.1.30):

% log t(u)

=—i) Py (3.1.56)

u=i/2
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Other logarithmic derivatives of ¢(u) at u = i/2 give rise to interesting operators on
the spin chain. The transfer matrix at u = i/2 is proportional to the shift operator

t(i/2) = i*U, (3.1.57)

where U maps any state |iqi---iy) — |igiy---ir_1). In general the logarithm of the
transfer matrix can be expanded

log t(u Z u—1i/2)"7'Q;, (3.1.58)

where @); : H — H are commuting operators on the spin chain. For j < L, @); is an
operator of range j. For example we have

L

Qs = Z[Pi,i—&-l? Pit1,i42]. (3.1.59)

=1

If one can diagonalise the transfer matrix ¢(u) at all values of the spectral parameter u,
then the operators (); are automatically diagonalised. All of the above equations can
be derived by expanding the expression (3.1.50) for the monodromy matrix and using
simple properties of permutation opertors P. Notice that the Lax operators simplify
substantially at u = i/2; we simply have £;,(i/2) = iP;,. We give more details for
similar calculations appearing in section 6.2.4.

The ground state |0) is an eigenstate of the transfer matrix:

Hw)|0) = [Aw) + D@)[0) = [(u+ $)" + (u= )] o). (3.1.60)

The algebraic Bethe ansatz is an ansatz for eigenstates of ¢(u) with M flipped spins
with respect to the vacuum |0), i.e. eigenstates in H,,. It is heavily based on the
algebra of the operators A, B, C, D appearing in the monodromy (3.1.50), which follows
from the Yang-Baxter equation (3.1.52). To motivate the ansatz, we first notice that
the state B(uq)]0) is a linear combination of states with exactly one flipped spin, i.e.
B(u1)|0) € H;y. This is because when expanding the (1,2) entry of the monodromy
matrix (3.1.50), if there is more than one occurrence of S—, there is necessarily an
occurrence of ST, which annihilates |0). For example, for L = 3 we have

1BW)[0) = [(u—£)2S7 + (u— L) (u+ )8y + (u+ £)2°S5 ] |[111) € Hi.  (3.1.61)

This motivates the idea to search for eigenstates of ¢(u) of the form |ui) == B(u4)[0).
We investigate the action of £(u) on this state:

t(w)|w) = [A(w) + D(w)]B(u1)|0). (3.1.62)

We would like to ‘commute’ A(u) and D(u) past B(uy), since these operators have a
very simple action on the vacuum:

Aw)|0) = (u+3)"0),  D(u)|0) = (u— $)"10). (3.1.63)
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To do this, we use the following algebra of the entries of the monodromy matrix:

B(u)B(v) = B(U)B(u.), | (3.1.64)
A(u)B(v) = %B(U)A(u) + ——B(WA(v), (3.1.65)
D(u)B(v) = “u%“jifz(v)p(u) - - ! ~B(u)D(v), (3.1.66)

which can be derived with the help of the Yang-Baxter equation (3.1.52). Using
(3.1.63), (3.1.65), and (3.1.66), we can compute (3.1.62) to be

B LU~ U~ LU Ut
t(u)|ur) = l(u +35) ET— +(u—3) T |uq) (3.1.67)
i\L i\L :
" —(u—3 B(u)|0).
e = = 9Y B
Therefore |u;) is an eigenstate of t(u) if
iN L
(u1 ha f) = el =1, (3.1.68)
uy — 5
where we denoted
1 Pi

The equation (3.1.68) is solved by the L™ roots of unity p; = exp(2wik/L), k =
0,1,...,L —1, which exhausts the L eigenstates in H;. Note that p; = 0 corresponds
to u; = 00.8

The story proceeds analogously for higher numbers of excitations. For eigenstates
in Hys, we make the ansatz

|1, ..., up) = B(ug) -+ - Blup)|0). (3.1.70)

By using the algebra (3.1.64)-(3.1.66), we can similarly show that

M : M .
. U—U; — 1 . U—Uj +1
t = HEe ——— —HE] ————
<u>|u17 JU‘M> (u_'_g) H u— +(U 2) H u— u; |u17 JU‘M>7
Jj=1 7j=1
(3.1.71)
provided uq, ..., uys satisfy the Bethe equations
w4\ " Uj — U +1
(u) == (3.1.72)
uj_§ k#uj—uk—z

This set of equations coincides with the Bethe equations obtained from the coordinate
Bethe ansatz (3.1.46), which can be seen by using the change of variables (3.1.69).
Notice that the operator D(u) did not appear in this construction. This operator
would be used if we had chosen the vacuum |0’) := ||} --- ]). The eigenvalue of the

8Bethe states with finite Bethe roots are highest weight states, satisfying S*|u) = 0. In the case
u; = oo the state is an su(2) descendant |u;) = S~10).
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XXX Hamiltonian can be derived by taking the logarithmic derivative of the eigenvalue
in (3.1.71):

M
1

where E(p) is defined in (3.1.38). Therefore the eigenvalues derived from both Bethe
ansitze coincide.” The algebraic Bethe ansatz can be modified to solve more complex
spin chains. There are various ways to construct different spin chains, the simplest
being to mimic the definition of the Heisenberg spin chain (3.1.24), but use a spin-s
representation of su(2) and take the physical spaces to be C**!. For these models,
the form of the Hamiltonian derived from the transfer matrix differs slightly from the
spin-3 case (3.1.24). For example, for s = 1 we have [96]

L
Hey ) Y 8058, — (5057 (3.1.74)

i=1 a=x,y,2

The XXX spin chain can be deformed in many ways, for example by adding an inho-
mogeneity in one of the spin axes. This leads to the XXZ spin chain, and the algebra
symmetry su(2) is replaced by a quantum group symmetry U,(su(2)). In this case the
Lax operators contain trigonometric functions of the spectral parameter. One can also
consider spin chains with symmetries corresponding to higher rank gauge groups, for
example su(n) with n > 2. In this case the algebraic Bethe ansatz can be modified to
a nested Bethe ansatz, which is based on solving a nested system of n — 1 su(2) Bethe
equations [100,111]. Not all integrable spin chains admit a known algebraic description.
For example, the Inozemtsev model is a long-range elliptic spin chain which admits a
coordinate Bethe ansatz, although there is no known algebraic Bethe ansatz [112].

3.1.3 Yangian Algebra

Yangian symmetry is an extension of the common Lie algebra symmetry of physi-
cal models. It is intimately tied to the Yang—Baxter equation, already discussed in
section 3.1.2, which was first discovered in a one-dimensional scattering problem by
Yang [113], and independently discovered by Baxter in the context of the eight vertex
model [114]. Later, Drinfel’d did work on the algebraic foundations of the Yangian
algebra as a Hopf algebra, in an effort to better understand solutions of the Yang—
Baxter equation [115-117]. He introduced three realisations of the Yangian algebra,
which are equivalent descriptions of the algebra, each useful in different contexts. Yan-
gian symmetry appears in many quantum integrable models, commonly in spin chains
and two-dimensional quantum field theory. A prime example is the two-dimensional
chiral Gross—Neveu model [118]. More recently Yangian symmetry has been exhibited
in four-dimensional planar N' =4 SYM, both at the level of observables [119] and the
action [120].

In this section, we will first review some concepts from Lie algebras, and then
describe the first of the realisations of the Yangian algebra proposed by Drinfel’d.
This realisation is in terms of abstract generators. The second realisation is based

9The eigenstates differ by a normalisation which depends on the Bethe roots u; [101].
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on the Chevally—Serre basis of the underlying Lie algebra, and the third is based on
the so-called RTT relation, an example of which we already saw in (3.1.53). We will
not discuss the second and third realisations in this thesis. We will then explain the
Hopf algebra structure of the Yangian, and its evaluation representations. We finally
describe how the Yangian algebra appears in the context of spin chains, focusing on
the example of the Heisenberg spin chain. Later, in sections 3.2.2 and 3.3.3 we will
describe how Yangian symmetry manifests itself in integrable quantum field theory. We
will be brief in our discussion, since in this thesis we are mainly focused on applying
the Yangian for a very specific algebra (the conformal algebra) in specific evaluation
representations. A modern review of Yangian symmetry is given in [97].

Lie Algebras. We first briefly introduce some concepts of Lie algebras, mainly to
fix notation. A nice review of Lie algebras in the context of particle physics is given
in [121]. There are many textbooks which offer a more mathematical treatment, for
example [122].

A Lie algebra g is a vector space over some field (typically R or C) spanned by
generators J4, A = 1,2,...,dim(g), together with a bilinear bracket operation [,] :
g X g — g, which is antisymmetric and satisfies the Jacobi identity:

[J4,J8] = —[JB, J4], J4 I8 eg,  (3.1.75)
(34,137, 39 + [3€, 134, 3¢ + [I7, 139, 4] = 0, J4IP )% eg. (3.1.76)

The bracket can be defined by a set of structure constrants f4Z, which take values in
the field K underlying the Lie algebra. The Lie bracket then takes the form

[J4,J8] = 48,3, (3.1.77)

A representation p of g is a Lie algebra homomorphism p : g — gl(V'), where V
is a vector space of dimension n € N (for finite-dimensional representations), which
is possibly the vector space underlying g. gl(V') is the general linear algebra over V',
which is isomorphic to Mat,, «,, over the corresponding field. Specifically, p associates
to each J4 € g a linear map p(J4) : V — V, in a way compatible with the Lie bracket:

p([J4, 7)) = [p(IM), p(3P)), I JP ey, (3.1.78)
where the bracket on gl(V') is taken as the usual matrix commutator

[A,B] = AB— BA, A Begl(V). (3.1.79)

A representation is reducible if it has no non-trivial invariant subspaces. °

One of the simplest examples of a Lie algebra over R is su(2). This is generated by
three elements J!, J%, J3 which satisfy

[JE, J9] = €9k JF. (3.1.80)
This algebra can be represented by the Pauli matrices (3.1.25) via
Ji=—Lo" (3.1.81)

z
2

0T he trivial invariant subspaces are the zero vector space and V itself.
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General representations of this algebra are best expressed in terms of its complezifica-
tion sly ~ su(2) + isu(2). The algebra can be rewritten in terms of generators e* and
h, where the commutators are defined as

[h,e*] = e*, [et,e7] = 2h. (3.1.82)

For this algebra there is a single finite-dimensional irreducible representation for each
dimension n € N, dubbed the spin—"T_1 representation, which can be constructed as
highest weight representations. For n = 2 we have the spin—% representation, which
can be realised in terms of Pauli matrices:

+ 1 T : 1 z

e = —(o" oY), h=—-0° (3.1.83)

2 2

c.f. (3.1.25) and the discussion below. A typical representation of a Lie algebra is
a fundamental representation. These are highest weight representations possessing a
highest weight vector with a single non-zero component. Every Lie algebra acts on
itself via the adjoint representation, with V' = g. Here the representation maps are
defined via p(J4) = adya = [J4, ].

Note that while we can multiply representation matrices p(J*)p(JB), there is no
notion of multiplication in g. One way to allow for this is to embed g in the universal
enveloping algebra U(g). This is defined to be the space of formal polynomials of
elements in g, modulo the identifications JAJZ — JBJA ~ f48 J¢ Formally this can be
expressed as the tensor algebra over g, modulo the Lie bracket:

Ulg) = (é g®"> /(I @ I8 —JB @ J4 - [J4,J5)), (3.1.84)

where g®° := K, the underlying field. For example, we have the following identification
of elements in U (sly):
ete"h ~e eth+2h% (3.1.85)

where we used the algebra (3.1.82).

A Lie algebra is semisimple if it is a direct sum of simple Lie algebras, i.e non-abelian
Lie algebras with no non-trivial ideals. We mention that semisimple Lie algebras over
C admit a root space decomposition

s=bho P 0., (3.1.86)

a€Ry

where b is a Cartan subalgebra of g, i.e. a maximal commuting Lie subalgebra of g. The
dimension of § is called the rank of g. Ry is the root system of g, which is a geometrical
object underlying the Lie algebra. The decomposition (3.1.86) can be made explicit
in the Cartan-Weyl basis of g. This can be refined to a Chevally—Serre basis of g,
where the generators are expressed in terms of simple roots o? i = 1,... rank(g).
The whole algebra is exhausted by a set of extra relations known as the Serre relations.

First Realisation of the Yangian and Hopf Algebras. In this section we describe
Drinfel’d’s first realisation of the Yangian algebra Y[g]. This is an extension of the
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enveloping algebra U(g) by level-one generators jA, where the original generators J4

are referred to as level-zero generators. Ylg| is the algebra generated by JA JA, with
the relations

(4,08 = FAEJC, [JATE] = fAE O (3.1.87)

In particular, J4 generate g, and J4 transform in the adjoint representation of g. The
generators J4 and J4 are subject to additional Serre relations

~A ~p = 1
[JA’ [JB’ JC’H . [JA7 [JB’ JCH _ EfADIfBEJfCFKfIJKJ(DJEJF)- (3188)

Since the algebraic structure is rather involved, checking whether a given algebraic
structure is isomorphic to a Yangian algebra is a non-trivial task.

Note that the commutation relations (3.1.87) do not specify the commutator of
two level-one generators in terms of existing generators. Therefore from the level-
one generators we can form independent level-two generators J(Az) ~ fA I8, J¢,
and similarly for higher generators J(f;). In this way one can obtain an infinite set of
generators, such that the Yangian algebra is infinite-dimensional.

The Yangian, as defined above, can be upgraded to a so-called Hopf algebra. Hopf
algebras appear in many contexts in mathematics and physics, and have an elegant
representation theory [123]. A Hopf algebra A has the structure of both an algebra
and a coalgebra. Because of its algebra structure, it admits an associative product
m: A® A — A. There is a corresponding unit map ¢ : C — A which maps ¢ — ¢l
where the identity element I € A satisfies

Izx =21 VreA (3.1.89)

Due to the coalgebra structure, A admits a coassociative coproduct A : A - A® A.
Coassociativity implies that

(ARDA(z) = (I A)A(x) Vo € A. (3.1.90)
There is a corresponding counit ¢ : A — C, which satisfies
(ex@DA(z) =1=(I®e)A(x) Vo e A. (3.1.91)

The coproduct and counit should be compatible with the multiplication in the algebra:

Azy) = A(x)Ay), z,y €A, (3.1.92)
A =11, (3.1.93)
e(zy) = e(x)e(y), x,y € A. (3.1.94)

So far we have discussed the condition for A to be a bialgebra. A Hopf algebra is a
bialgebra together with an antipode map S : A — A, which satisfies the consistency
conditions

mo(S®I)oA(zx)=mo(I®S)oAlx) =ioe(zx), Vo e A. (3.1.95)
More concretely, if A(z) = ¢;;2° ® 27, then (3.1.95) implies

cijS(z")x? = c;;a'S(27) = e(z)L. (3.1.96)
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The coproduct which extends the Yangian algebra (3.1.87) to a Hopf algebra is
AN =1 J +I4 0l AN =IxJ +J eI+ %fABCJB ®J°, (3.1.97)
and the antipode is defined to act on J* and J4 via
Sy = —JA, S = —FA— % A LTPIC, (3.1.98)
and we furthermore note S(I) = I. The counit acts trivially as

e(J4) = e(JY) =0, (3.1.99)

with ¢(I) = 1. By using (3.1.97), (3.1.98), and (3.1.99) it is easy to verify that the
consistency conditions (3.1.95) are satisfied for z = J4 and 2 = J4.

In the context of Hopf algebras there is the notion of a universal R-matriz R €
A® A, which relates the coproduct A of the Hopf algebra with the ‘opposite’ coproduct
A°P = PAP:

RA = APR. (3.1.100)

R should further satisfy a quasitriangularity property, which implies that it satisfies a
generalised Yang-Baxter equation in A ® A ® A [124]

R12R13R23 = R23R13R12. (31101)

After specifying the Hopf algebra to a particular representation, one can obtain an R-
matrix for a specific physical model, for example (3.1.48). The power of the universal
R-matrix is that it doesn’t refer to any representation; it is a more general object. If
a Hopf algebra possesses such a universal R-matrix then it is called a quasitriangular
Hopf algebra. Drinfel’d showed, by introducing a so-called boost automorphism, that
given a Yangian algebra, one can construct such a (pseudo-) universal R-matrix R(u)
which solves the Yang—Baxter equation (3.1.101) [115]. This construction underlines
the connection of the Yangian algebra to the Yang—Baxter equation.

Evaluation Representations. Due to its complicated algebraic structure it is non-
trivial to construct representations of the Yangian. We discuss a simple example,
namely evaluation representations. These can be constructed from representations
of the underlying Lie algebra p : g — gl(V). Evaluation representations are a one-
parameter family of representations p, : Y[g] — gl(V), defined via

ps(IY) = p(IM),  p(I%) = sp(JY), (3.1.102)

where s € R is the evaluation parameter. It is easy to see that if p is a representation
of g, then p(J4) and p,(J4) satisfy the Yangian algebra (3.1.87).

We will be interested in representations of the Yangian on tensor product spaces
V@L  These are relevant in the context of spin chains and multi-leg Feynman diagrams.

Given evaluation representations ps, of the Yangian, i = 1,2,..., L, we can construct
a representation on V¥ by an iterated coproduct
L L 1
_1/1A A —1/7A TA A C
AR =30 AN =3 +5 so > IR, (3.1.103)
k=1 k=1 k<l
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where Ji' denotes the action of J* on the k™ copy of V. The corresponding L-site
representation then reads

L | L

() =2 o), oY) =S %0 D pUIDP7) + D sip(IF),  (3.1.104)
k=1 k<l i=1

where s; are a set of L evaluation parameters which characterise the representation.

Heisenberg Spin Chain. Here we briefly show how the Yangian algebra appears
in the context of integrable quantum spin chains, for the example of the Heisenberg
spin chain [125]. The Yangian is often only an exact symmetry of the Hamiltonian
for spin chains of infinite length, and thus eigenstates do not typically arrange into
representations of the Yangian.!!

Consider the expansion of the monodromy matrix (3.1.50) of the Heisenberg spin
chain in powers of the spectral parameter u:

L
T(u) = u"T+u""" Y Se@os+u %) 85, 91@ (i€aae0+0eall) +O(u"~?), (3.1.105)
n=1 n<m
where we used the identity for Pauli matrices 0¢c? = ie“®g® + §°I, and the explicit
representation of the Lax operators (3.1.47). We consider an evaluation representation
(3.1.102) with s = 0 of Y[su(2)] at each site of the spin chain, where the underlying
representation p of su(2) is taken as the spin-1 representation. Then we have

L

~ 1

=38 I=g ) Sish (3.1.106)
n=1 n<m

where here f%, = ie%,.. Therefore, the expansion of the monodromy matrix (3.1.105)

can be rewritten

T(u) = "l + (u"~iJ¢ + 2u"%%)°) @ o¢ (3.1.107)
+ub 7Y 88T @ begll + O(ul ).

n<m

We see that the level-zero generators J® appear at the order u“~! in the expansion of
T(u) about u = oo, and the level-one generators appear at order ul~=2. Similarly, the
higher generators J{, ) will appear at lower orders in u. The second line of (3.1.107) is
less interesting algebraically, see [97].
While the level-zero generators commute with the Heisenberg Hamiltonian (3.1.24),
we have R
[H,J =2(J¢ = J9). (3.1.108)
The terms on the right hand side of (3.1.108) can be regarded as ‘boundary’ terms.
These are boundary terms dictated by this particular representation of the Yangian,
and are not distinguished by the periodic boundary conditions of the spin chain. For
a spin chain model to have an exact Yangian symmetry, we thus typically need to
take the length of the chain L — oco. However, such models are less physical than
finite-length models.

HThere are still examples of periodic spin chains of finite length with an exact Yangian symmetry,
for example the Haldane—Shastry model [126].
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3.2 N =4 SYM as an Integrable Field Theory

N = 4 super Yang-Mills (SYM) theory is one of the most widely studied quantum field
theories in theoretical physics. It possesses a maximal amount of supersymmetry and
is furthermore a conformal field theory, due to a vanishing S function for its coupling
gym [127,128]. Assuch N =4 SYM is a finite theory, free from UV and IR divergences.
This finiteness was one of the original motivations for the interest in the theory.

More recently, N' = 4 SYM has received a surge of interest in the context of the
gauge-gravity duality, or AdS/CFT correspondence [27-29|. This correspondence is
arguably the most inspiring and most cited conjectures of contemporary mathemati-
cal physics. Its structural deepness can be seen in the quantum integrability of free
AdS-strings on the string theory side, and in planar N' = 4 SYM on the field theory
side [129]. Although conjectural from a rigorous, non-perturbative point of view, in-
tegrability has allowed for the computation of numerous quantities on both the string
and the gauge theory side. These include string spectrum /scaling dimensions, Wilson
loops and defect lines, various correlation functions, scattering amplitudes, and much
more. One of the crowning achievements in A/ = 4 SYM integrability is the quantum
spectral curve [130], which presumably encodes the anomalous dimensions of all local
single-trace operators of the theory. This has since been generalised to other integrable
field theories, such as the ABJM model [131].

In this section we briefly review the particle content of N' =4 SYM and its symme-
tries. Although an exact definition of an integrable quantum field theory is missing, we
explain how integrability manifests itself in this theory in two ways. We first describe
the spectral problem of the theory, focusing on the case of the su(2) sector. We also
describe the Yangian invariance of the theory, which is visible both at the level of the
action and at the level of specific observables. This will be useful to compare to later,
when we consider the fishnet theory.

3.2.1 Action and Supersymmetry

N = 4 super Yang—Mills is a four-dimensional gauge theory based on the gauge group
SU(N). The particle content is six massless real scalars ¢;, a gauge field A, and four
chiral fermions )¢ and their conjugates ¥, all transforming in the adjoint representa-
tion of the gauge group. As such, each field is an N x N traceless matrix. The index
1 = 1,...,6 labels the scalar fields, and the index a = 1,...,4 labels the fermions.
The indices o, & = 1,2 are the left- and right- handed spinor indices of the Lorentz
group SO(1,3) ~ SU(2) x SU(2). There is a global SU(4) ~ SO(6) R-symmetry,
under which the scalar fields ¢; transform in the 6 representation, the fermions %
transform in the fundamental 4 representation, and their conjugates transform in the
anti-fundamental 4.
The action of the theory is

2 1 1 -
S=— [dztr [— “FuF" — =D, D'y + — D" (3.2.1)
IIm 4 2 2

1- “ 1
§¢af [P, "] + Z[Cbiaﬁbj][cbi,%] :

This action can be obtained by dimensionally reducing an N = 1 supersymmetric
theory in ten dimensions [132]. The I'* are ten-dimensional gamma matrices which
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describe the coupling of the ten-dimensional fermion to the bosons. F},, is the field
strength tensor
F,., =0,A, — 0,A, + gym[Au, A, (3.2.2)

and D, is the gauge covariant derivative
DN = 8H — igYM[A;m ] (323)

The action (3.2.1) enjoys an enhancement of conformal symmetry by supersymmetry,
which is known as superconformal symmetry. The conformal algebra {P,,L,,,D,K,}
described in section 2.2.2 can be extended by supersymmetry generators Q% and
QZ‘ A dual set of charges gg,Sg can be obtained by commuting Q and Q with
the special conformal generator K#. The algebra of (anti)commutation relations of
(P, L, D,K,, Q% Q% S% S} is closed after the addition of the R-symmetry gen-
erators RV, 4,5 = 1,...,6. The full algebra is known as the N' = 4 superconformal
algebra psu(2,2[4), and it is written down for example in [133].

The fields of ' = 4 SYM arrange into representations of psu(2,2[4). As such,
operators can be characterised by a finite set of labels associated to the representa-
tion. There is the classical scaling dimension 4, the Lorentz spins s, ss, and the
R-symmetry labels g1, g2, g3 of su(4).

Due to the large number of fields in the theory, the Feynman diagrammatics can get
out of hand very quickly. There is an interesting simplification of the theory (3.2.1),
namely its planar limit, first proposed in [5] in the context of pure Yang—Mills theory.
This is the limit

gym — 0, N — oo, g = gayN fixed. (3.2.4)

The combination g = ¢g,,N is known as the 't Hooft coupling. In this limit only the
planar Feynman diagrams contributing to a given observable contribute, and the non-
planar diagrams are suppressed by powers of 1/N. This limit simplifies the Feynman
diagrammatics somewhat, although it can still be quite involved. However, the large
amount of symmetry holding the theory together renders many of the observables
computable to a large number of loops, or even non-perturbatively. One example of
this is the planar six-gluon amplitude, which is known by now to seven loops [134].
The corresponding calculation in for example the standard model would be unthinkably
complex.

3.2.2 Spectral Problem

Techniques of quantum integrability have time and time again proved crucial in the
computation of numerous quantities in planar N' = 4 SYM, and correspondingly in
type IIB string theory on AdSs x S° via the AdS/CFT correspondence. As such, it has
been conjectured to be an integrable field theory. In the next sections we describe two
manifestations of this integrability. Firstly we describe the spectral problem, which is
the problem of calculating quantum corrections to the dilatation operator D. Fascinat-
ingly, this operator at one loop can be put in correspondence with a nearest neighbour
integrable spin chain [135,136]|. For the case of a very particular sector of operators,
this spin chain is precisely the Heisenberg spin chain discussed in section 3.1.2. In the
next section, we mention a few ways in which the Yangian algebra has been realised
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on the theory. This algebra has been realised on observables such as the dilatation
operator [137], scattering amplitudes [119]|, and Wilson loops [138]. Furthermore, the
theory has been shown to be Yangian invariant in the planar limit at the level of the
action (3.2.1) [120].

As discussed in section 2.2.3, two point functions in a conformal field theory take
the form

c
(OO} = N, (3.2.5)
where A is the scaling dimension of the operator 0. Here we explicitly included the
dependence on the coupling constant gyy, because in general A will receive quantum
corrections. The tree-level scaling dimension A(0) is simply the classical dimension of
the operator O, and the difference A(gym) — A(0) is the anomalous dimension.
An important class of local, gauge invariant operators for the theory (3.2.1) are
single-trace operators

O(z) = tr(F1Fy -+ Fr(z)), Fy € {¢s, 0% tha, Fuu }- (3.2.6)

The calculation of the anomalous dimensions simplifies upon restriction to a specific
sector of operators. For example, we could consider the so-called su(2) sector, where
we consider single-trace operators built from two complex scalars X = ¢ + i¢y, Y =

P2 + i¢s:
O = tr(Xhylxbyl...) (3.2.7)

where lists of X and Y fields related by a cyclic permutation are identified because
of the trace, for example tr(XY X) = tr(XXY). Since X and Y are scalar primaries
in four dimensions, they have a unit classical dimension A(0) = 1. Restricting to
operators in the su(2) sector with length L (and hence classical dimension A(0) = L),
a general operator takes the form

O(z) = vl 4p(F, F, - F, (2)), F, e {X,Y}, (3.2.8)

where ¥/ = @lii2ic} are complex coefficients which specify the operator ©. We have
gliizicy — glivivic—1} by cyclicity of the trace. The two-point function'?

can be derived via an explicit Feynman diagrammatic calculation [139]. There are
a couple important features. Firstly, the correlation functions are not finite and a
regularisation is required. One approach is to use dimensional regularisation

2 2
S=——[d%L— S = —2/d42€x£, (3.2.10)
9ym (1egym)

where 4 is a mass scale. Secondly, there is the phenomenon of operator mixing: at
the quantum level the two-point function between single-trace operators in no longer
proportional to the delta function, as in (2.2.55). Therefore a different basis of operators
should be used to render the two-point function diagonal. This is the problem of

120 is the Hermitian conjugate of O.
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diagonalising the dilatation operator. Carrying out the computation at one-loop, one
finds

m) (3.2.11)

(O1(21)Oy(x2)) = LA* " ( =2

Li2

< lT = 7 (7 + e + loeln(o — 1)) ) HI) +7°0() + 0@,

where g% = ¢/167? is related to the 't Hooft coupling g. This computation is nicely
reviewed in [101]. Remarkably, H is precisely the Heisenberg Hamiltonian (3.1.30):

L

H=2> (1-P;p). (3.2.12)

=1

In this case, H acts on the indices of W12} where we identify the field X = 1 and the
field Y = |. (W,|0) = (W{2)1@] is the standard inner product on C**. For example, if
O, = tr(XYXY) and Oy = tr(XXYY), we have

4
(W | H|Wy) = 2NN (1 =y )T (3.2.13)
=1
— _2(@{TN¢})T4¢{TTH} — _8.

The divergence in (3.2.11) can be removed purely by a wavefunction renormalisation;
no counterterms need to be added to the Lagrangian. We can change the operator
basis

O[ — Z]J(QYM,€>OJ, (3214)

and tune the coefficients Z;; to remove the divergent terms in e. It is convenient to
use an MS scheme, which removes the (1/e + 1 + v + log 7) factor from (3.2.11).

After dealing with these subtleties, diagonalising the dilatation operator and find-
ing the spectrum of anomalous dimensions for this sector is equivalent to finding the
spectrum of the Heisenberg spin chain. As described in section 3.1.2, this can be done
using various techniques in quantum integrability, for example the coordinate or al-
gebraic Bethe ansétze. This rather unexpected application of techniques of quantum
integrability to the calculation of planar observables in N’ = 4 SYM is why the theory
is conjectured to be quantum integrable in the planar limit.

For more complicated sectors of operators, the one-loop dilatation operator can be
put in correspondence with integrable spin chains based on higher-rank (super)algebras.
For example, the sector of single-trace operators built from all six of the scalar fields
¢1,-..,Ps can be put in correspondence with an integrable so(6) ~ su(4) spin chain
[136]. For sectors of operators including fermions, we find integrable spin chains based
on Lie superalgebras. The full one-loop dilatation operator of N' = 4 SYM has famously
been identified with a psu(2,2]4) spin chain [140,141]. At higher loops longer range
integrable spin chains can be identified [142,143|, and even dynamical ones which do
not preserve the number of spin sites [144]. Other integrable field theories have since
been identified, with one-loop dilatation operators identifiable with integrable super
spin chains. One example is the ABJM theory, whose one-loop dilatation operator
takes the form of an 0sp(2,2|6) spin chain [145].
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3.2.3 Yangian Symmetry.

Yangian symmetry, introduced in section 3.1.3, appears in planar N' = 4 SYM in
multiple instances. The relevant Yangian algebra in this case is that of the N’ = 4 su-
perconformal algebra Y [psu(2,2[4)]. We briefly describe how this symmetry manifests
at the level of the action, scattering amplitudes, and the dilatation operator.

Action. The action (3.2.1) has been shown to be exactly Yangian invariant in the
planar limit [120]:

JeS =0, J°S=0,  J*J e Y[psu(2,2[4)]. (3.2.15)

Care must be taken to define the representation of J“,j“ on the fields appropriately,
since the action is a sum of terms with different numbers of fields:

S = S5+ S35+ Sy, (3.2.16)

and the superconformal generators contain terms which either preserve the number of

fields or increase it by one
J*=J§ + J7. (3.2.17)

The full representation of the superconformal generators on the fields is given in [120].
There, they show that the level-one generator on the action S is proportional to the
dual Coxeter number ¢ of the underlying Lie algebra g, defined by f4 5. f2¢, = ¢ 5.
For psu(2,2]4) this is zero, and so the action is invariant. This is also true for the
algebra 0sp(2,2|6), and so the ABJM theory action is also Yangian invariant. Yangian
invariance at the level of the action is interesting because it affords the oppurtunity to
derive corresponding Ward identities for this symmetry.

Scattering Amplitudes. Furthermore, certain planar amplitudes of N' = 4 SYM
have been shown to be Yangian invariant. Amplitudes in gauge theories depend on a
set of helicities h;, colours a;, and on-shell massless momenta p? = 0. This on-shell
condition can be resolved conveniently in terms of the spinor helicity variables [146]

Pyt =plo® = ATAY (3.2.18)
The kinematical invariants can be expressed in terms of the spinors \, \ as
(i) = eap PN, [i4] = eaphiN, (3.2.19)

where we have (p; + p;)* = 2p; - p; = (ij)[ji]. The tree-level n-particle scattering
amplitudes A,, decompose into colour-ordered components A, [147]:

An({Xihiyaid) = D Au({Ao)s he}s - - (o) ho }) tr(Te D - T (),
Sn/Zn
(3.2.20)
where T are the generators of the gauge algebra su(N) and S, is the symmetric group
on n letters.
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All of the amplitudes in N’ = 4 SYM are conveniently described by packaging the
particles of differing helicities into a chiral on-shell superfield

_ _ _ 1 _
DN N) =GTN ) + 0T\, N) + §nAnBSAB(A, A) (3.2.21)

+ éGABCDUAnB NP (A A) + 2l4€ABCD77A773 n“n G (A N),

where the R-symmetry indices A, B, C, D take the values 1,...,4. The fields G de-
scribe the gauge boson with helicity h = £1. I'4, I'* describe the fermions of helicity
h =+1/2 and h = —1/2 respectively, and Syp = —Sp4 describes the six scalars with
helicity h = 0. 7 are auxiliary Grassmann variables. A given on-shell state can be
accessed from (3.2.21) by acting with appropriate 1 derivatives. It is then useful to
consider the colour-ordered superamplitude

An(@r, o, @0) = An, (3.2.22)
k=0

which has been expanded so that A, is a polynomial of degree 4k in the n*.** The
component amplitudes can be extracted from the superamplitude by taking derivatives
in 7. The superconformal Ward identities imply that A, o = A1 = Anpno1 = Apne =
0, and A, 9.5 is known as the NEMHV (maximal helicity violating) amplitude. The
K = 0 MHV amplitude is given by the remarkable Parke-Taylor formula [148,149|

_ 0*(P)5*(Q) af ayp QA a, A

Ao = 3 (23) - (L) PP = Z)\ QA = Z)\ i, (3.2.23)
where the delta functions §*(P) and §°(Q) impose conservation of momentum and
supermomentum respectively, and the spinor brackets were defined in (3.2.19).

The amplitude (3.2.23) can be shown to be exactly invariant under the superconfor-
mal Yangian Y [psu(2,2[4)]. The representation of the level-zero algebra J# was given
in [150]. The local algebra can written as polynomials in the spinor variables A*, A%, the
Grassmann variables 4, and their derivatives. For example, the Dilatation generator
D reads

1 1.
D = S0\ + ;10 (3.2.24)

and the superconformal generators S, S$ read

SA=nt0,, 5% =0%.. (3.2.25)

In (3.2.24) and (3.2.25) we used the abbreviations 0, = /0N, 04 = 9/0Ns, and
Ja = 0/0na. The n-site representation of the level-zero algebra under which the
amplitude A, » is invariant is given simply by

J*=>"J:,  J*€{P,L..DK, Q1 Q% S 8% R}, (3.2.26)
=1

13The order of the polynomial in 7 must be a multiple of four, so that the amplitude is an R-
symmetry singlet.
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The level-one n-site representation is simply the iterated coproduct of the evaluation
representation (3.1.102) with s = 0, c.f. (3.1.104):

Je= oy g (3.2.27)

j<k

In [119] it was shown that the full tree-level superamplitude (3.2.22) is invariant under
Y [psu(2,2[4)]:
J9A, = JUA, = 0. (3.2.28)

Interestingly, /J\aAn was found to be proportional to the dual Coxeter number ¢ of the
algebra, which vanishes in the case of psu(2,2|4). This level-one Yangian symmetry
was first understood as a so-called dual superconformal symmetry [151]. Thisis N/ =4
superconformal symmetry in the dual space (z,0), defined via

Ti — Ti+1 = Dis 0; — 01 = Nini, (3~2-29)

where we suppressed (super)spatial indices. Note that the bosonic part of this is
simply dual conformal symmetry, which we already discussed at the level of Feynman
integrals in section 2.3.1. That the superconformal and dual superconformal algebras
close into a Yangian was a surprising realisation of [119]. At one-loop the Yangian
symmetry is anomalous, although it can be restored via a deformation of the symmetry
generators [152].

Dilatation Operator. The one-loop dilatation operator of planar N' = 4 SYM in
the su(2) operator sector is precisely the Heisenberg spin chain (3.1.30). As described
in section 3.1.3, the level-one generators in Y[su(2)] commute with this Hamiltonian

up to boundary terms R
[H,J =2(J7 = J9). (3.2.30)

In the spin chain framework the Yangian generators appear as subleading powers in
the expansion of the mondromy matrix 7'(u) at u = oo, c.f. (3.1.107). The full one-
loop dilatation operator is a psu(2,2|4) spin chain. In [137] it was shown that the
level-one superconformal Yangian Y[psu(2,2]4)] commutes with this spin chain up to
boundary terms, analogously as (3.2.30). This is actually consistent with the exact
Yangian symmetry of the S-matrix (3.2.28), as shown in [153].

3.3 (Dynamical) Fishnet Theory from N = 4 SYM

Although integrability is firmly associated to planar N' = 4 SYM, there is no formal
proof of it at finite coupling, and no clear indication of what its origin may be. One
approach to understanding this origin is to consider an integrable deformation of the
theory, that is modify the theory by some parameters Lsyy — Lsym (i), such that the
modified theory can still be argued to be integrable, and coincides with the original
theory Lsym at specific values of the parameters ¢;. By tuning the parameters to values
which considerably simplify the theory, one can hope to gain some more insight into
the mechanisms underlying the integrability of the full theory.

One such integrable deformation of N' = 4 SYM is the so-called v-deformation.
This is a deformation of Lsyy by three complex parameters 7y, y2,y3 which appears
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preserve the integrability of the theory. This deformation was first proposed in [§],
demonstrating a non-supersymmetric incarnation of the AdS/CFT correspondence. On
the string theory side, this corresponds to strings on AdSs x S°, where three separate
TsT transformations with angular parameters ~; have been applied to the S® factor of
the background [154]. When all of these parameters coincide v, = v = 3 = —7f3,
one recovers the so-called 8 deformation, which preserves N’ = 1 supersymmetry. This
was historically the first deformation that was introduced [155,156]. Despite its lack of
supersymmetry, the y-deformed theory appears to preserve integrability, see [157] for a
review. This fact refutes the plausible conjecture that supersymmetry is a prerequisite
for the integrability of a quantum field theory. More precisely, various integrability
constructions that go through for the undeformed theory also go through for the ~-
deformed theory. This includes the Bethe ansatz approach to computing anomalous
dimensions [158|, as well as the quantum spectral curve [159]. These constructions
naturally tend to be more involved than those for the undeformed theory.

However, there is a special point in the v; parameter space where many interesting
simplifications occur. This is a double scaling limit, where each ; — ico and the 't
Hooft coupling g = Ng2,; — 0, while the double-scaled couplings &; = ge_%’“ are held
fixed.'* In this limit the gauge field decouples and we recover the dynamical fishnet
theory, which is a theory of three scalars ¢; and three fermions 1;, all N x N matrices
in su(N)'® |7]. The interactions which survive are chiral Yuakawa-type interactions
between the fermions and the scalars ~ 1@, and chiral quartic interactions between
the scalars ~ ¢*. Explicitly, the interaction Lagrangian is given by

by = Netr (€3010}0%0" + o}l ™" + olols'o?) (33.1)
+ Notr (VG070 0 + g lih) + eyclic)

In the case where two of the couplings &, & are set to 0, one recovers the bi-scalar
fishnet theory. This is a theory of two complex scalar fields ¢; = X and ¢ = Z, which
interact via a chiral quartic interaction:

Lex = Ntr(0,X0"X + 0,20"Z + X ZX7), (3.3.2)

where X := Xt and Z .= Z.

The chiral nature of the interaction vertex tr(X ZXZ7) leads to vast simplifications
in the Feynman diagrammatics. Therefore many observables can be more easily un-
derstood in perturbation theory than in full ' = 4 SYM, especially in the planar
limit. Sometimes there is an iterative structure in the Feynman graphs that repre-
sent the observable at each loop order, and the corresponding graph-building operator
can be directly connected to integrability via a description in terms of non-compact
conformal spin chains [160, 161]. In very special situations quantities can be repre-
sented in perturbation theory by a single Feynman graph. In these cases integrability
can be understood at the level of singular Feynman integrals. A prominent example
are the fishnet correlators which are represented by the many point fishnet graphs faﬁ

14 Although this is the most common, there are other ways to take this limit, which leads to one
other independent theory, see [6].

15Gince the gauge field decouples in the limit, there is no notion of a gauge transformation or gauge
Syminetry.
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discussed in section 2.3.5. These have been shown to possess a conformal Yangian sym-
metry [162]. Recently, it has been proposed to leverage this symmetry to compute the
Feynman integrals from scratch, in an approach called the Yangian bootstrap [163,10,2].

The fishnet theory has also been argued to possess at strong coupling a holographic
dual known at the fishchain [164-166]. This potentially provides a way the understand
the mechanism behind the AdS/CFT correspondence. The current status for the inte-
grability of the full dynamical fishnet theory is less clear, however various exact results
for four-point correlators have been found [167].

There is a price to pay for these simplifications. We note from inspection of the
Lagrangian (3.3.2) contains the quartic interaction tr(XZXZ7), but not its Hermitian
conjugate tr(ZX ZX). Consequently, the fishnet theory is a non-unitary field theory.
This leads to the theory being a logarithmic CFT, c.f. section 2.2.5, and the dilatation
operator becomes non-diagonalisable in certain operator sectors. In fact, the strict
conformality of the fishnet theory has been under debate; the renormalisation of (3.3.2)
and (3.3.1) leads to double trace counter terms which break conformality [168]. Indeed,
these are already present in the y-twisted theory [169]. However, in the consideration of
longer length operators in the planar limit these double trace interactions can often be
discarded. Furthermore, a fixed point has been identified, apparently up to seven loops,
where the beta functions corresponding to these double trace couplings vanish [170].

In this section we give the 7-deformed Lagrangian of A/ = 4 SYM, and show
how the fishnet Lagrangian emerges in the double scaling limit. We discuss various
features of the fishnet theory, namely how its Feynman diagrammatics simplify and
its renormalisation. We finally discuss the various incarnations of integrability in this
theory, focusing on the case of Yangian symmetry, which is relevant to the later part
of this thesis.

3.3.1 ~-Deformation and Double Scaling Limit

The Lagrangian of y-deformed A/ = 4 SYM can be obtained by replacing all products
of fields in the action (3.2.1) with star products of these fields:

AB — A% B = ¢35 AR, (3.3.3)

where g4 € C3is a U(1) x U(1) x U(1) charge vector associated to the field A, and the
wedge product is defined [169]

qaNgp = (QA)TCQB, Ci; = — €5k Vk- (334)

We see that the v dependence in the deformation comes through the matrix C. In
(3.2.1) we wrote the action explicitly in terms of six real scalars ¢q,...,¢. It is
convenient here to write the action in terms of three complex scalars

b1 =1 +idy, Goi=do+ids, B3 = b3+ ide. (3.3.5)

Henceforth we will drop the tildes and refer to the complex scalar fields as ¢1, ¢o, ¢3.
The charge vectors for the fields {¢¢, S, VS, V¢, Ay, ¢1, 2, ¢3} can be summarised in
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the following table:!6

P YT |V | Y5 | UF | Ap| @1 P2 | O3
g | +5 -] -3l+i[of1fo]o
2 [ 1| 1| _1]_ 1 (3.3.6)
dp | =5 | t3 | —5 | T3 0 110
g3 | —3|—3|+5|+3| 00|01
For example, the product ¢;9{ in the SYM action gets deformed
O = 1T = o3 g1y (3:3.7)
In the conventions of |7], the full y-deformed Lagrangian is
1 1 . _.
L, = Ntr (_ZF‘“’FW — §D”¢3DM¢Z + iwﬁ“Dng‘) + Lint, (3.3.8)
with
L =Ngtr (${0],6'Ho, ¢/} — ge o7l 6] 0’/ (3:3.9)
+ 7B Iy + €73 Pygie; + deige s im Ik iyl
+ €25 Pagl; + e Py + z’emke%”’”’”ﬁ‘@kd@j),
where we abbreviated
Y2ty T3t mEy
E=-2 =R, = (3.3.10)

2 2 2

The Lagrangian (3.3.8) coincides with the Lagrangian of undeformed N' = 4 SYM
when 71 =72 =73 =0.

Remarkably, many of the integrability constructions for N = 4 SYM also go through
for the y-deformed theory (3.3.8). However, these constructions are naturally more
intricate since they depend on the deformation parameters 71, vs, 3. In [7] the following
double scaling limit was proposed, which eliminates the v-dependence of (3.3.8) while
preserving its integrability:

g=0, M,y —ico, &= ge #V fixed. (3.3.11)

In this limit, only some of the interactions in (3.3.9) survive. The first term in (3.3.9)
clearly goes to zero

2
L tr({ol, 0 Hel. o'} = 0 (3:3.12)

because of the ¢ — 0 limit. Half of the second term survives:
g* tr(e” " plole'e)) ~ & tr(9loie’e’) + & tr(dfel¢’e!) + & tr(o]ole'¢%). (3.3.13)

Notably, the ‘anti-chiral” analogues of the surviving terms in (3.3.13) vanish in the limit
(3.3.11). For example

g tr(e 3 glol 921y = g2 tr(e plo] p*e') — 0. (3.3.14)

6For the conjugate fields the charge vector is reversed, i.e. ¢ = —¢a.
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Therefore the scalar fields in the strongly-twisted theory have to appear in a certain
chirality. All terms involving 14 or ¥4 go to zero in the limit (3.3.11), because they all
contain a 7~ ~ 7; — 7; factor. For example

gtr(e_%wl_l/_zlqbll/_q) = gei(”_%) tr(Y10'y) ~ fgeiw tr(Y10y) — 0. (3.3.15)

However, some of the terms involving 4" ~ 7; + v; do survive. For example, we have

igea tr(Y3ey?) = ige 12T tr(Y3p ) ~ i/ tr(v3p ?). (3.3.16)

Similarly to (3.3.14), the ‘anti-chiral’ analogues of (3.3.16) vanish in the limit. For
example, we have

— 'ige’%”*2+ tr(yip?yt) = —ige%(mﬂg) — 0. (3.3.17)

Therefore the surviving Yukawa-like interactions are also chiral. Finally, in the limit
(3.3.11), all interactions involving the gauge field A, vanish:

DH = @L + igYM[A“, ] ~ 8#‘ (3318)

In this sense the gauge field ‘decouples’ from the strongly-twisted theory, and can be
disregarded. Overall, the strongly-twisted theory reads 7

Comy = Nt (=50010,0 + i04(0")30,00) + L. (3319
where £t was defined in (3.3.1). In the original paper, the authors argued that the
model (3.3.19) with & = & = 0,& = £ is integrable. For this choice of parameters all
of the fermions and one of the scalars decouple, and we recover the bi-scalar fishnet
theory given in (3.3.2). In the next sections we discuss some features of the fishnet
model; namely the chiral Feynman graphs it generates, as well as its integrability. The
dynamical fishnet theory is currently not as well understood from the perspective of
integrability. However in chapter 6 we discuss one aspect of its integrability: namely
its dilatation operator for a particular sector of operators.

3.3.2 Chiral Graphs and Renormalisation
We describe a few features of the fishnet theory, whose Lagrangian we repeat here:

Lin = N tr(8,X0"X + 0,Z0"Z + X ZX 7). (3.3.20)

Feynman Rules. The Lagrangian (3.3.20) generates a very simple set of Feynman
rules. In single-line notation'® and omitting factors of N, the position space rules are

Z
1
LTj —p—— T — ;1;_2’ XA%—VX 252/d4x, (3321)
ik

Z

1"Note that the o here are defined in a non-standard way, see [7].
180One can also make the matrix indices of the fields explicit, for example X = X% T°, where T, are

the generators of su(/N), and use a double line notation to express the propagators (X% (z1)X¢;(x2)) ~
6a06hd
& pua

Tig
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where as usual x?k = (z; — x1)%. The corresponding momentum space rules are

Z

1
_r, = - X »—1—»)( =2 (3.3.22)

Z

The chirality of the interaction vertex vastly reduces the number of possible Feynman
diagrams, especially in the planar limit. To illustrate this, we consider the two-point
function

D(x) = (tr(Z3(x)) tr(Z2%(0))) (3.3.23)

in the planar limit. At tree-level, this correlator is represented by a single graph

1
x@o =5 (3.3.24)

Due to the chirality of the vertex, the next non-zero contribution to D(z) occurs at
three loops

d _ —2/ . —2(0 -2
e o= [atn g, 0= ) 2 0
4 LopLpeLcalqlpLe

(3.3.25)
(3.3.25) is obtained from (3.3.24) by adding a X-field ‘ring’ whose orientation is con-
sistent with the chirality of the vertex in (3.3.21). In general D(z) takes the form

D(x) =Y &*I(x), (3.3.26)

k=0
where I3;(z) is the 3k-loop integral formed adding k& X-field rings to the tree-level graph
(3.3.24). A more general form of the two-point function (3.3.23) is discussed in [160],
and various anomalous dimensions are calculated using integrability. Explicit examples
of Feynman graph computations for amplitudes in fishnet theory can be found in [171].

Renormalisation. The restricted nature of the Feynman graphs in the fishnet theory
has interesting consequences for the renormalisation of the theory in the planar limit.
The first interesting fact is that there is no renormalisation for the coupling &2 or the
masses of the scalars X and Z. This is because there are simply no planar graphs
which can generate quantum corrections. For example, the first planar graph which
corrects the quartic coupling would be

Z Z
(3.3.27)
X X
However, this diagram requires the existence of the vertex
Z
tr(ZXZX) ~ X + X, (3.3.28)
Z
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which is absent from the Lagrangian (3.3.20). Furthermore, the first planar graph
which corrects the mass of the scalar Z would be

z, @ > Z, (3.3.29)

which is similarly absent since it requires the vertex (3.3.28). The same considerations
apply to the scalar X and higher-loop diagrams, and therefore the coupling &2 and
the masses myz, mx remain uncorrected to all loops. This is encouraging if the fishnet
theory is to retain the conformal invariance of undeformed N =4 SYM.

However, as pointed out in [169], in the y-twisted theory (3.3.9) double trace cou-
plings are introduced by renormalisation, which persist for the strongly twisted fishnet
theories [168] and spoil conformality. These double trace terms take the form

Lap = af(tr(X?) tr(X?) + tr(22) tr(2?)) — a5 (tr(X 2) tr(X Z) + tr(X Z) tr(X Z)).
(3.3.30)
Despite the introduction of extra energy scales via af and a3, the beta functions cor-
responding to these couplings can be made to vanish by appropriately tuning o? as a
function of ¢2 [170]. a2 is one-loop renormalisable, and indeed the fixed point where
the beta function vanishes is simply

as = &2, (3.3.31)
The Feynman diagrams contributing to the renormalisation of the coupling o? are
slightly more intricate, which leads to more complicated fixed points. Currently it is
known to order £'2, where there are two possible options for a?:

i &3¢

65i¢10  19¢12
o T2t -

8
+
& 48 10

af = o3, af ==+ +O(e").  (3.3.32)
At the fixed points a? = a2, a2 = £? the fishnet theory becomes a true logarithmic
conformal field theory.

3.3.3 Yangian Symmetry

The fishnet theory is believed to be integrable in the planar limit, at the fixed points
discussed in the previous section. This integrability appears to be intimately tied to
the conformal group. For example, the correlation function (3.3.26) can be expressed
in terms of a graph-building operator B [160]:

o0

D(x) ~ Y &*BFI,, (3.3.33)

k=0

where B adds a ring to the tree-level graph (3.3.24). Fascinatingly, B can be explicitly
realised as the Hamiltonian of an integrable non-compact conformal spin chain. Its
R-matrix is a special case of the ones already considered in [70], and the corresponding
Yang-Baxter equation is related to the star-triangle relation.

As discussed in section 3.1.3 and section 3.2.2, the Yangian algebra is central to
many aspects of integrability. In the fishnet theory it appears as the conformal Yangian
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Y[s0(1,5)].1 Unlike the case of full N' = 4 SYM, this Yangian symmetry has not
yet been realised at the level of the action of the fishnet theory. However, it has
been realised for a large class of fishnet Feynman graphs representing amplitudes and
correlators in this theory [172,162], a subset of which we discussed in section 2.3.5.
Moreover, the fact that the fishnet action is recovered from the strong twist limit of
the y-deformed N/ = 4 SYM action provides hope that its Yangian symmetry may
survive this limit.

Fishnet Feynman Integrals. In [172] and [162| Yangian symmetry was proven for
a large class of fishnet Feynman graphs. In this thesis we will focus on the case of the
square fishnet integrals, discussed in section 2.3.5:

1 Loy

e A
Is = —— . (3.3.34)
T2a4B+1 ——+——+—+— —+—— Ta+p

T2a4+8 - Ta+tp+1

which represents the following correlator in the fishnet theory:

<tf Z2(xa) X (Tas1) X (Tarp) Z(Tarsi1) - Z(T2045) X (X204 541)" 'X($2a+26))>
(3.3.35)
in the planar limit. The Yangian symmetry is formulated as follows:

J4s =0, J4 5 =0, (3.3.36)
where J4 € {P* L* D,K*} are level-zero generators, explicitly realised as differential

operators in the coordinates x1, ..., Za@+5). They are constructed as an n = 2(a + 3)
site representation of the conformal algebra so(1,5):

=> I (3.3.37)
j=1

where the densities Jj‘ read

P = —id, LY = iah oy — m;’@j”,
D; = —iz;, 0 — il K/ = —z(2:L’ —n"a})8;, — 24, (3.3.38)

with 8;.‘ = 8:‘;],. These densities also furnish the building blocks for the corresponding
level-one generators, which are realised in the evaluation representation (3.1.104) as

n k—1

=3 e > ) I +Zsj (3.3.39)

k=1 j=1

90ne can also consider the theory in Minkowski space, where the Yangian Y[s0(2,4)] appears.
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Here the f4pc denote the structure constants of the conformal algebra so(1,5). The
symbols s; represent the evaluation parameters of the representation and are tuned to
guarantee Yangian invariance (3.3.36) according to the rules of [172]:

s;i=0(0,...,0,—=1,...,—1,—2,...,—=2,=3,...,=3);, j=1..,n  (3.3.40)

a B a B

Notably, the Basso—Dixon graphs (2.3.67) have different properties under the Yangian
generators, i.e. they do not satisfy (3.3.36) and develop a non-zero right hand side. The
study of the extension of (3.3.36) to the Basso—Dixon graphs represents a large part of
this thesis, and is discussed in chapter 5.

The Yangian invariance of the correlators (3.3.35) was proven in [172| using the
RTT realisation of the conformal Yangian, where the Yangian generators are packaged
into a monodromy matrix

1 1~
Tu) ~I+-J+—=J+--- 3.3.41
(w) = I+ —J+ =T+ ( )

which satisfies a Yang-Baxter like (RTT) equation
Rop(u — )T, (u)Tp(v) = Ty(v)To(u) Rap(u — v). (3.3.42)

The proof of Yangian invariance relies on the so-called ‘lasso’ method, which involves
moving products of Lax matrices through integration vertices. In (3.3.42) R(u) = I4+ulP
is the R-matrix, and P is the permutation operator. Here the auxiliary space V, is the
defining representation of so(1,5), and so is isomorphic to C®. The physical space
representations are principal series representation of the conformal group, and can
roughly be viewed as a space of functions of x € R*, on which the differential operators
(3.3.38) can act. T,(u) can be viewed as a matrix in the auxiliary space, whose entries
are differential operators in the external coordinates. It can be built as a product of
Lax matrices

1
Lop(u) = ull,s + Esg%Jfb, (3.3.43)

where Sg% is a spinor representation of the conformal group [70] and J,;, contain the
generators J4 defined explicitly in (3.3.38). The indices o, 3 = 1,...,6 are matrix
indices in the auxiliary space. The level-one generators built from this monodromy
matrix via (3.3.41) are equivalent to the ones defined in (3.3.39) up to the addition of
extra level-zero generators, see [172].

Yangian Bootstrap. It is natural to ask what constraints the Yangian invariance
equations (3.3.36) impose on the fishnet integrals jag, given that integrability is typi-
cally very constraining on physical quantities.

Conformal symmetry, i.e. invariance under the level-zero generators J#, implies that
the above integrals can be written in the form

Log = Vap bap(u;), (3.3.44)

where Vi is the conformal weight of the integral and depends only on the kinematics
3:22] ®ap denotes a conformal function which only depends on a number of conformal
cross ratios u;, cf. section 2.2.3.
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The level-one invariance equation jAfag = 0 leads to differential constraints for the
conformal functions qgag. Since J4 is a second order differential operator in the external
coordinates x1,...,x,, and [Nag = Vi3 qgaﬁ(uj) depends on these coordinates through
the cross ratios u;, one can use the chain rule to determine PDEs in terms of the cross
ratios which the function QZ;ag should satisfy. As a toy example of this procedure, for
n = 4 points with two cross ratios u and v defined as in (2.2.57), the derivative 0%
acts on functions of u, v as

0 _ Oudgp v 9

1 I i i
Lo T3 Ty T3
= 2u (—2 - —2> Oug + 20 (—2 - —2> 0.

T2 T13 Tis  T13

The calculations to determine the full differential constraints on gzgaﬁ are more tedious
versions of (3.3.45), although they are straightforward. To see the structure in more
detail, let us specify the level-one generator J# to the level-one momentum generator:

n
~

Pr=1 N (PDp+ Py L — (e k) + ) s;Pl= Y Ph+d 5P (3.3.46)
j=1

j<k=1 j<k=1 j=1
Here, using the densities for the conformal generators given in (3.3.38), one finds
Pl = 5 (T7°0; y0k + 4,08 — AdY), T = 2! + 2l — xlyn”?. (3.3.47)

Now the invariance of the above diagrams under the level-one generators can be written

as
n

. ak -
0=P'log="Vos Y_ ijPDEjk Gop (1), (3.3.48)
j<k=1 "7k
where PDEj;, denotes some differential operators in the conformal cross ratios u;. At
least for lower numbers of points it can be argued that the vectors 2%, /2%, are inde-
pendent such that Yangian invariance implies a system of differential equations for the
conformal function [10]:

PDE;. ¢up = 0, 1<j<k<n. (3.3.49)

Specifying to level-one generators different from P* will lead to equations like (3.3.48)
with different tensor structures. However, the resulting PDEs in the cross ratios will
not be independent from (3.3.49). This is because all the other level one generators
can be accessed from P* by commuting it with appropriate level-zero generators, via
(3.1.87).

Notably, many more examples of conformal Feynman integrals in various dimen-
sions D have been shown to be invariant under the appropriate conformal Yangian
Y[so(1, D + 1)]. This includes the conformal n-gons in D = n dimensions discussed in
section 2.3.4, as well as examples with generic conformal propagator powers. This was
further extended to some classes of massive Feynman diagrams [65, 163] which repre-
sent correlators in a massive extension of the fishnet theory [173]. In all of these cases
Yangian invariance implies PDEs in the cross ratios (or massive extensions thereof),
analogous to (3.3.49), for the respective conformal functions.
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The Yangian bootstrap approach to computing Yangian invariant Feynman integrals
was initiated in [10]. The goal is to compute the conformal function ¢ of a Yangian
invariant integral by solving the PDEs in the cross ratios resulting from Yangian in-
variance, analogous to (3.3.49). The solution space to these equations is spanned by a
set of Yangian invariants f;(u;), which are functions of the cross ratios. The conformal
function can then be expanded as

¢ = Zcifi(uj), (3.3.50)

where ¢; are some numerical coefficients. The precise linear combination which repre-
sents the Feynman integral in question must be fixed by some extra input, for example
permutation symmetry in the external legs or numerical input. Systems of PDEs in
several variables are in general very complicated, and there is no general method to
solve them. Nevertheless, a few examples of Yangian invariant integrals depending on
a small number of conformal invariants have been successfully bootstrapped. The first
was the conformal box integral I1;, the bootstrap of which we discuss in section 4.1.1.
The box was also generalised to the case with generic conformal propagator powers,
and the Yangian bootstrap succeeded to fix this conformal function to a linear combi-
nation of Appell F; functions. In the massless case the next simplest example is the
double box 1:21, which is simply related to the conformal hexagon in six dimensions
via (2.3.65). In this case Yangian invariance implies a system of 15 PDEs in 9 cross
ratios uq, . .., ug, which were argued to be solved by a set of generalised Lauricella func-
tions [10]. However, the problem of identifying the integral as a linear combination of
these functions remains unsolved. It is an interesting question whether there exists a
change of variables in cross ratio space which renders this system solvable in terms of
the appropriate elliptic polylogarithms. In the massless case, the number of indepen-
dent cross ratios goes up quickly with the number of points 2 -5 — 9 — 14 — ---.
When some propagators are turned massive, it is possible to smooth out these transi-
tions and study integrals with three cross ratios or even one. Several examples were
studied in these cases, allowing for a better understanding of what is possible with the
Yangian bootstrap approach [163].

This ends our review of integrability in the conformal fishnet theory. We proceed to
describe the results of this thesis, beginning with the box integral in Minkowski space.
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Chapter 4

Conformal Box Integral in Minkowski
Space

An important class of Feynman integrals are the box integrals with massless internal
lines. These have the general form

D
aD o d Lq 1
]box ’L] = 4 [ T2 —/ 7TD/2 2a1_2az 2a3 2a4’ (401)
Tl La2 Ta3 Laq

\pi % ‘p}’
T 4Pk 1
[GD Q’S t) = as a4 :/ )
box (P75 8, 1) v 7D/2 201 (K 4 py)22 (k + p1g)23 (k 4 prog)2ea
% R

(4.0.2)
where z; — z;41 = pi,k = T, and s = x%;,t = x3,. When this is interpreted as
momentum space, the on-shell conditions for the external particles are p; = z7,,, = 0.
In D dimensions the integral (4.0.1) has not been evaluated as an explicit function of
the external kinematics.

It has, however, been computed for conformal propagator powers a; +as+az+aq =
D in terms of Appel F} functions [10,174], and for on-shell kinematics p? = 0 in terms
of hypergeometric 3F, [175]. Interestingly, the integral (4.0.1) with D = 4 and unit
propagator powers a; = ay = a3 = a4 = 1 represents non-perturbatively a single
correlator in the fishnet theory:

(tr(Z(21) X (22) Z (23) X (4))). (4.0.3)

In Minkowski space, we consider the time-ordered correlator, where the propagators
are regularised via the Feynman prescription 1/2% — 1/(2%,+1€). In Euclidean space,
the integral is conformal and can be represented in terms of the famous Bloch-Wigner
function of the conformal variable z. In Minkowski space, the precise branch of the
Bloch—Wigner function on which the box integral lies depends sensitively on the signs
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of the external kinematic invariants xfj As mentioned around (2.2.67), global special
conformal transformations can change the signs of these invariants, spoiling the global
conformal invariance.

In this chapter we provide a detailed overview of the conformal box integral in four
dimensions. We provide a brief historical overview and outline a few ways in which the
Euclidean box integral can be calculated. We give an overview of the Bloch-Wigner
function D(z), and review its main properties in relation to the box integral. We study
in detail the breaking of conformal invariance in Minkowski space, at the level of sev-
eral representations of the Minkowskian integral. To quantify the breaking of conformal
invariance, we provide a full classification of conformally equivalent configurations of
four points in Minkowski space. To this end, we introduce the notion of Minkowskian
conformal plane configurations, which are generalisations of the Euclidean conformal
plane configuration discussed in section 2.2.4. By explicitly rewriting a result in the
literature for the Minkowski box integral in terms of z and z in each kinematic region,
we find that there are up to four values for the Minkowski box integral on any confor-
mal trajectory. This is a convenient alternative to simply analytically continuing the
Euclidean box integral via the Osterwalder—Schrader prescription (2.1.34).

We further propose a new method to calculate the box integral in Minkowski space,
by introducing double infinity configurations in Minkowski space. These configurations
make good use of the fact that the conformal boundary of Minkowski space is a three-
dimensional manifold, as opposed to Euclidean space where it is a single point co. By
using conformal transformations to place two points on the conformal boundary, the
Minkowski box integral simplifies substantially, such that it can be calculated by simple
contour integration techniques. We discuss the extent to which these double infinity
configurations cover the full kinematic space.

Finally, we explore the possibility that the Minkowski box is fully fixed by integra-
bility, namely its Yangian symmetry. We find that Yangian symmetry, together with
permutation symmetry, is sufficient to fix the functional form of the box integral in all
kinematic regions up to four undetermined constants. These constants can be fixed by
analytic continuation from the Euclidean sheet.

4.1 Euclidean Box Integral

One of the simplest four-point correlators in the fishnet theory

(tr(Z(z1) X (x2)Z (23) X (24))) (4.1.1)

is represented by the conformal box integral in four dimensions:

Ty
[ « 2 /d4“”"“ ! L o(27) (4.1.2)
= T4 2 = = z,2), 1.
w2 33'3133323;333724 9‘?%33;%4
3

which is the integral (4.0.1) for a; = 1 and D = 4. (4.1.2) appears ubiquitously in
four-dimensional conformal field theory. In this section we describe a few ways this
integral can be calculated, and discuss properties of the Bloch—-Wigner function, to
which it evaluates.
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4.1.1 Methods of Calculation

The box integral was calculated first in [176] for general Minkowskian kinematics, by
a careful integration of the Feynman parametrisation in each kinematic region. There
some features under conformal transformations were already described, although full
invariance under these transformations was first discussed in [177]. Several calculations
have followed [178-180,67,10,1,2|, in both Euclidean and Minkowskian kinematics. In
this section we collect a few methods of calculating the integral (4.1.2).

Direct Integration. One approach to calculating a Feynman integral is the direct
integration of its Feynman parametrisation. In section 2.3.3 we proved the conformal
invariance of (4.1.2) and derived the conformal Feynman parametrisation, see (2.3.51):

1 |
= 1313, /o dhdfs (B1+ BiBs + B3)(Brv + 1 + Bu) (4.1.3)
1 1
= -1 d d )
), a1 B0 (B + BB+ )

where u and v are the usual four-point cross ratios defined in (2.2.57). The integral
over 33 can be performed to recover

I =

1 /00 log(1 + ,6’%) + log(1 + B1v) — log(u)
0 ! U(Bl + 1i2)(ﬁ1 + 1i2) 7

where 2z = u, (1 — z)(1 — z2) = v. The remaining j; integral can be computed using
the integral identities

(4.1.4)

2.2
L1334

> 1 _ logr —log K
/ dﬂﬂ—l—/ﬁ)(ﬁ—i—ﬁ)_ p— (4.1.5)
/ ﬁﬁ—i-li (B+E) Kk — K ’ (4.1.6)

where A > 0 and k € C,k = £*. In (4.1.5) and (4.1.6) the logarithms have the usual
branch cut on the negative real axis, and the dilogarithms have a cut on (1, 00). They
can be proven easily by using an appropriate keyhole contour around the branch cuts
and the residue theorem. Using (4.1.6) the first two integrals in (4.1.4) both evaluate

to
1 LIQ(Z) — LlQ(E)

2 .2 >

, (4.1.7)

where for the first integral the substitution 5 — 1/ was required. Using (4.1.5) the
third integral in (4.1.4) evaluates to

1 logu(log(l— 2) —log(1 — 2))

4.1.8
T35T5, z—z ( )

Putting all of these results together, we arrive at
I 1 2Liy(z) — 2Lis(2) + log(22)(log(1 — z) — log(1 — 2)) (4.1.9)

2 .2 >
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Yangian Bootstrap. An alternative approach for calculating (4.1.2) was proposed
in [10], which exploits the Yangian invariance of this integral

~ ~ 1
J¢ x4 + Ty = J¢ o(z,2) =0, (4.1.10)
x%$%

discussed in section 3.3.3. (4.1.10) implies that the conformal function ¢(z, z) satisfies
the differential equations

D;(2) = Dy(2))é(=2) =0, j=1,2, (4.111)
where differential operators D; are defined

Di(2) = 2(z — 1)?0? + (32 — 1)(z — 1)0, + z, (4.1.12)
Dy(2) = 2*(z — 1)0? + (32 — 2)20, + z. (4.1.13)

(4.1.11) is a system of two PDEs in two variables z, z. Such systems are difficult to
solve in general. The authors of [10] first solved the equations on the boundary z = Z,
where they identified a four-dimensional space of functions consistent with (4.1.11).
These could be extended away from this boundary, to yield four Yangian invariants

fi = fi/(z — %), where
f1 = 2Liy(2) — 2Liy(Z) + log 2Z(log(1 — z) — log(1 — %)), (4.1.14)
fo= log z — log 2,
fs =log(1 — 2) — log(1 — %),
fi=1.

Therefore the conformal function can be expanded

4

$(2,2) = Y _cifi(z2). (4.1.15)

=1

¢; are constants which can be partially fixed using the permutation invariance of the
full integral. Let us denote by (ij) the transposition which exchanges x; <+ z;. While
(1j) leaves the integral I invariant, it does generate a transformation of the conformal
invariants z — 2/, Z — Z’. For example, we have

2 .9 2 .9 2 .9 2 .9
(13) 1 u = L1oT3y Lo3liy X453 L3427
Ty = —

= u. (4.1.16)

2 .9 2 .2 = T2 .2 2 .2
L1334 L1334 L1334 L1324

Since u = zz,v = (1 — 2)(1 — 2) the transposition (13) maps {z,z} — {1 — 2,1 — z}.
Similarly, the transposition (14) is found to map {z,z} — {1/z,1/z}. There is a
subtlety in this action however. z and Z are recovered from u and v as the roots of a
quadratic equation

l4+u—v+/(1—u—0)?—4duw
2 9

(4.1.17)

2,2 =
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and so there is an ambiguity of which of the solutions we call z, and which we call
Z. We showed in section 2 that in Euclidean space we have that z € C,z = z*. For
definiteness we will always take z to be the solution of (4.1.17) with positive imaginary
part. Then the transpositions (13) and (14) act in a well-defined manner on z, z:

1
V2= —. (4.1.18)
z

Q| =

(13):z2—=>1—-%2,z—1—z, (14) : z —

The invariance of I under these transposition leads to functional equations for the
conformal function ¢:

b(l—51—2)=¢(=7), o (% %) _ 220(2,3). (4.1.19)

The Yangian invariants are mapped into each other under these transpositions. For
example

_logz —logz R log(1 —z) —log(l —2z) log(l—2)—log(1l — z)

(13)3f2 S _ (1—2—(1—z)) zZ—Z

——fs

(4.1.20)
Overall we have

(13): fi—= fi, faor —f3, fa— fu, (4.1.21)

(14) : f1 — ngl, f2 — Zng, f3 — 22(f2 — f3 — 27Tif4), f4 — Z2f4. (4122)

Using (4.1.21) the first constraint in (4.1.19) fixes ¢ = —c3 = ¢ in the expansion
(4.1.15). Using (4.1.22) the second constraint in (4.1.19) can be expanded to give

lel + C(fg - f3) + C4f4 = lel + C(fg - f2 + f3 + 27Tlf4) + C4f4 (4123)

=c1fi +cfs + 2mic+ cy) fu (4.1.24)

for all z,z, which implies that ¢ = 0. Using the star-triangle relation the remaining
constants can be fixed ¢; = 1,¢4 = 0 [10].

Orthogonal Polynomials and Quaternions. We briefly mention a cute calcula-
tion of the box integral, based on its representation in terms of quaternions [181]. Any
vector x = (a,b, c,d) € R* can be represented as a quaternion

r=a+bi+cj+ dk, (4.1.25)

where the symbols i, j, k obey the algebra i? = j? = k? = ijk = —1. The norm squared
of x is still given by 22 in this representation. Representing the external points of the
box integral as such, the box integral can be transformed into the form

1 1 1
j /d Ta (4.1.26)

w3y ) T (e — 1) (wa — 2)*

The integral [ d*z, is interpreted as a fourfold real integral over the quaternionic
components of z, = x} +x2i+x3j+24k. 2 is a quaternionic conformal variable related
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to the usual z seen in the rest of this thesis. The denominators can be expanded over
the Gegenbauer polynomials

: IxHyI ZC (’J;‘) o< = min(z, 1/z), (4.1.27)

(as—yQ Y|

and the integral (4.1.26) performed using orthogonality properties of C,,(x, y) to recover
a result equivalent to (4.1.9).

4.1.2 Bloch—Wigner Function and Single-Valuedness

The box integral in Euclidean space is simply related to the Bloch—Wigner function
D(z). This function has numerous fascinating mathematical properties, and was dis-
covered first by Bloch in the context of algebraic K-theory [182]. Its properties are
reviewed in depth in [183], and here we describe a few. D(z) is a real-valued function
of a complex variable z, and is defined by

D(z) == Im(Liy(2)) + arg(1 — 2) log |2|. (4.1.28)

Since z = z* in Euclidean space, see section 2.2.4, the result for the box integral can
be rewritten

5 2ia(2) = 2Lip(%) + logzzi*iiog(l —z) —log(1—2%)) _ ?ﬁ((;) (4.1.29)

While typical expressions involving polylogarithms have branch cuts (and discontinu-

ities across these cuts), D(z) is a continuous function of z on C\ {0,1}. To see this,

we investigate the possible discontinuities of D(z) and show that they are 0. For def-

initeness we define the complex logarithm with the usual branch cut on the negative

real axis, so that the corresponding dilogarithm has a cut on (1, 00) (see figure 4.1).
For these choices of branch cuts we define the discontinuity operations

disco f(z) = f(z +i€) — f(z — ie), z € (—00,0), (4.1.30)
disc1 f(2) == f(z + i€) — f(z —ie), z € (1,00), (4.1.31)
where € < 1, so that discolog z = 27w and disciLis(z) = 2wilogz. If a function f is
continuous across a branch cut then we clearly have discf = 0 for the appropriate dis-
continuity. When z crosses a branch cut in a clockwise manner, z = z* crosses the same

cut anticlockwise. For functions f(z) satisfying f(z*) = f(z)* (like polylogarithms),
we thus have

disco f(2*) = —disco f(2), discy f(2%) = —discy f(2). (4.1.32)

Since D(z) is built from Liy(z), log z, and log(1 — z) and their complex conjugates, the
only possible branch cuts of D(z) are (—o00,0) and (1, 00), with corresponding branch
points 0 and 1 respectively.! We thus compute the discontinuities

1
discoD(z) = EdiSCO(LiQ(z) — Lig(2") + 5 log 22" (log(1 — 2) — log(1 — 2*))) (4.1.33)
=% (log(l — z) —log(1 — 2"))(discq log z 4 discy log 2*) = 0 (4.1.34)

Tn both cases there is also a branch point at oco.
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Figure 4.1: Complex plots of log z and Liz(z). Colour indicates argument of function value,
with red indicating Arg(f(z)) = 0 and blue indicating Arg(f(z)) = m. Intensity indicates
magnitude of function value, with very bright spots indicating singularities, and black spots
indicating zeros. The respective branch cuts on (—o0,0) and (1, 00) are easily seen.

because of (4.1.32). Similarly, we have

2idisc; D(z) = disciLiy(z) — disciLis(2*) 4 3 log 22" (discy log(1 — 2) — discy log(1 — z%))

(4.1.35)
= 2disc; Liy(2) + log z%disc; log(1 — z) = 0, (4.1.36)
where we used z = z* on the cut, and disc;Lis(2) = — log z discy log(1 — z) = 2milog 2.

Since the only possible discontinuities of D(z) vanish, it is continuous throughout
the complex plane. We will also refer to it as being single-valued, because it takes
unambiguous values throughout the complex plane, independently of the chosen loga-
rithm branch. This single-valuedness is illustrated in figure 4.2, where we plot ¢(z2) =
2D(z)/Im(z).

D(z) is also a real analytic function of z, except at the points z = 0 and z = 1
where it has logarithmic singularities. At the level of the box integral, these singularities
correspond to coincident points in Euclidean space, and lightlike separated points in
Minkowski space. Furthermore, D(z) satisfies the six-fold symmetry

D(z):—D(l—z):D(l—%):—D(%):D<1i2>:D(Zil>, (4.1.37)

which at the level of the box integral ensures its invariance under permutations of the
external points. The Bloch-Wigner function is also known to compute the volume of
an ideal tetrahedron in hyperbolic 3-space. This is exposed at the level of the box
integral in a momentum-twistor formulation [67].

The fact that the box integral is represented by a single-valued function of the con-
formal variable z is not an accident. It is a consequence of the Steinmann relations
applied to the momentum space interpretation of the integral, where it can represent
massive scattering [87]. The Steinmann relations forbid double discontinuities in over-
lapping channels.
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2D(z)
Im(z)

Re(z)

Figure 4.2: Complex plot of the box conformal function ¢(z) = ilz((j)) The function is

manifestly positive and continuous throughout the complex plane, with singularities at z = 0
and z = 1.

The Bloch—Wigner function is perhaps the simplest example of a single-valued com-
bination of polylogarithms representing a Feynman integral. In section 2.3.5 we intro-
duced the ladder functions

1) )

La(z,2) = ; ( rll()a(f‘);) !O:"!)' log(22)" (Lisa_» (2) — Liza_y (2)), (4.1.38)
which are similarly single-valued in the complex variable z, as are the Basso—Dixon
functions (2.3.70). The class of single-valued polylogarithms can be generalised to a
wider class of single-valued harmonic polylogarithms, reviewed in [86] in the context of
scattering amplitudes in the multi-Regge limit. How to understand single-valuedness
in more kinematical variables is a much more difficult question, and currently not very
well understood. For example, it would be interesting to constrain the functional form
of the six-point double box integral (2.3.64) using considerations of single-valuedness.

An investigation of single-valued polylogarithms in two complex variables was initiated
in [184].

4.2 Minkowski Box Integral

We consider the correlator (4.1.1) again, but this time as a time-ordered correlation
function for the fishnet theory in Minkowski space:

(tr(T[Z (21) X (29) Z(23) X (24)])), (4.2.1)

where T denotes the time-ordering of fields. This correlator is represented by the box
integral in Minkowski space, where the Feynman ie prescription is now applied to the
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propagators?

I= = Ty = d', ! (4.2.2)
- T ) i (@2t ie) (a2, £ ie) (12 + i) (02, + ie) -

In this case the ie prescription breaks global conformal invariance of the integral, as
mentioned at the end of section 2.2.3 and further described below. This leads to the
integral depending on not only the conformal variables z and Z, but also the precise
kinematic region k, which is defined by the signs of the Poincaré invariants xfj We will
first discuss the breaking of conformal invariance at the level of three representations
of the integral (4.2.2), namely its original representation, its Feynman parametrisation,
and its Mellin—Barnes representation. We then describe precisely the set of four-point
configurations in Minkowski space which can be mapped into each other under confor-
mal transformations, using the notion of Minkowskian conformal planes. Unlike the
Euclidean case, we find that the conformal group does not act transitively on the set of
four-point configurations with the same z, z. We then specialise the result of [178| for
the Minkowski box integral to write it explicitly as a function of z, z in each kinematic
region k. Using this result and the classification of conformally equivalent configura-
tions, we conclude that the box integral can take at most four values on any conformal
trajectory.

4.2.1 Breaking of Global Conformal Invariance
Here we discuss the conformal invariance properties of the Minkowski box integral for

three different representations.

Position Space Representation. The position space representation for the confor-
mal function ¢ = z2,22,1 is

Ty
6= o v = [ 4 , UCL TR . (4.23)
im? (22, + i€) (22, + i€)(a25 + ie) (a2, + i€)
z3

Let us consider its properties under translations, rotations, dilatations, and special
conformal transformations. Clearly it is invariant under translations and Lorentz rota-
tions, and the e prescription has no effect. Under dilatations z; — cx;, we also make
the change of variables on the integration variable x, — cz, and find

d'z, 11373

b= | = s s e T = (4.2.4)
in? (x5, +ie/c?)(xay + i€/ c?)(xas + i€/ c?)(x2, + i€/c?)

because ¢ > 0 and ¢ is an infinitesimal regulator. Therefore the Minkowski box in-

tegral is invariant under dilatations. The situation is trickier with special conformal

transformations

B 200
u Ty —xib

C T

T

(4.2.5)

2For notational convenience we still refer to the integral as I in this section.
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where b(z) =1 —2b -z + b*z% In this case we have

d*z, ! 1

im2 P (22; +i€a;)’

¢ — xfgxi/ €ij = b(x;)b(x;)e. (4.2.6)

We mention that b(z) can be positive or negative depending on b and z. From (4.2.6)
we see that depending on the configuration {1, x5, x3, 24} the signs of the infinitesimal
regulators €,; can change, and they even change throughout the integration because of
the b(x,) factor. This makes it clear that there are subtleties with the invariance of the
Minkowski box integral when it comes to special conformal transformations, although
the exact details are better exposed in the Mellin—Barnes representation.

Feynman Parametrisation. The Feynman parametrisation exposes the dependence
of the box integral on the kinematics?

2 .2
L1394

¢ = olwg) = /[d3a] (> aiax?y, +i€)?’ (42.7)

where [[d3a], denotes a projective integral over the Feynman parameters o, as, as, ay.
We also notice that complex conjugation reverses the signs of the kinematics:

¢(x22])* = ¢(_5Uz2g) (4.2.8)

For Euclidean kinematics x?j < 0 there are no singularities on the integration contour.
Then the ze regulator can be safely ignored and the integral is manifestly real-valued.
However if any of the xfj > 0 then this regulator is important and the integral can
take complex values. The representation (4.2.7) makes manifest the invariance of the
integral under translations, Lorentz rotations, and dilatations. However in this repre-
sentation the behaviour under special conformal transformations is obscured. Indeed,
even for the Euclidean kinematics it is not clear how to show invariance under special
conformal transformations in this representation. It is of course not possible to obtain
a conformal Feynman parametrisation analogous to (4.1.3), as the calculation to ob-
tain this representation depends on the signs of the kinematics mfj One would have to

proceed on a case-by-case basis for each possible sign assignment.

Mellin—-Barnes Representation. The most useful representation for our analysis
is the Mellin—Barnes representation [178§]

o g [t (B2 (B (b ()
(27mi)? Je Cy T3+ x5, +i€ Ti3+1i€ x5, +i€
(4.2.9)

where I, , = I'(2)I'(y)I'(1—x—y). The complex power is defined as z° := exp(slog z),
where the logarithm has the usual branch cut on the negative real axis. C; are infinite
imaginary lines in the complex plane

Cj ={v;+it|t € (—o0,00)}, (4.2.10)

3We refer to the Jc?j interchangeably as Poincaré invariants and kinematics.
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where 71, 72 satisfy 0 < 71,72 < 1,0 < y1 + 2 < 1. Under special conformal transfor-
mations (4.2.5) we have ¢ — ¢/ =

1 / 2 l'%z‘i‘iﬁlg - $§4+i€34 - $%4+Z.€14 - $%3+i623 -
oy | ds| dsS'(Ise)" | 5—— — - -
(27m)? Jo, o, Tis+i€13 x5, +i€24 Ti5+i€13 x5, +i€2q

(4.2.11)

where the €;; were defined in (4.2.6). From (4.2.11) we see the extent to which conformal
invariance is broken is encoded in the signs of the infinitesimal imaginary parts ie;;.
Given a configuration of four points in Minkowski space w = {x1, x5, x3, 24}, there is a
possible branch jumping of the integral under finite special conformal transformations
Cy for which at least one of the ¢; < 0. ¢; changes from positive to negative when
Cyay crosses infinity for some k € {i,j} (see (2.2.92)) and the kinematics x%, for [ # k
change sign, i.e. the kinematic region changes. In computing (4.2.11) the i¢;; select
the correct branch of the logs/dilogs which appear in the computation, after which
the result depends only on the cross ratios u and v, or equivalently z and z. The
computation of the integral (4.2.9) was completed for arbitrary signs of kinematics
in [178], and we specialise it in section 4.2.3 to give the box integral as a function of z
and z in each kinematic region sgn(k(w)) (defined below). While from (4.2.11) there
are naively eight values of the integral which can be reached under SCTs, corresponding
to the eight possible sign assignments for ¢;;, it is actually up to four. The dependence
of the box integral on only the conformal invariants z and z as well as the kinematic
region sgn(k(w)) will be referred to as pseudo-conformal invariance.

4.2.2 Minkowskian Conformal Planes

In this section we develop the theory of conformal plane configurations in Minkowski
space. The purpose of this is to classify which configurations of four points in Minkowski
space can be mapped into each other under conformal transformations. It was shown
in section 2.2.4 that in Euclidean space the conformal invariants z, zZ are sufficient to
determine whether two configurations can be conformally mapped into each other. The
situation is more subtle in Minkowski space R"?, where the squared differences xfj can
be positive or negative!. The conformal structure is much richer, and we will see that
z and Z can be complex conjugate pairs, or independent real numbers. As such we
will be more mathematically formal in this section. We define the set of non-singular

four-point configurations
V={{z1,z2,23,24} | x; €RY 2} #0}. (4.2.12)
and the set of configurations with conformal variables z, z:
V.e={{z1, 20,235,204} €V | u=zz,o=(1-2)(1-2)}. (4.2.13)

Since z and z appear as the roots of a quadratic equation (4.1.17), without loss of
generality we will always take z > Z when z,Z € R and Im(z) > 0 when z,z € C\ R.

4In [1] we took care to perform this analysis in conformally compactified Minkowski space R13,
where the conformal group is well-defined. For ease of notation/discussion we refer here only to
Minkowski space, with the understanding that special conformal transformations can map us through
infinity in a manner which is well-defined in the compactification, see section 2.2.6.
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Based on the possible values for z and z, we have the decomposition®

V= |J Ve:ul Ve:=WUL, (4.2.14)
2,2€R\{0,1} z€H
2>z zZ=z

where H C C is the upper half-plane Imz > 0. Note that the ‘boundary’ between Vg
and V¢ occurs when z = Z, and we have chosen to include it in V.

Given a configuration w = {1, 22, z3, 24} € V, we define the kinematics k(w) of w
to be the 6-tuple®

$%27 ‘%%4
k(w) = |x3;, 23, . (4.2.15)
13, T3y
We define the sign of the kinematics
I%27 1%4
sen(k(w)) = sgn |3, 23, | , (4.2.16)
2 2
135 L4
where sgn(x) = + if x > 0 and sgn(xz) = — if x < 0. Since we consider non-singular

configurations (4.2.12) none of the z7; vanish and so sgn(z7;) € {—, +} for each i < j.
Therefore depending on w € V there are 2° = 64 possibilities for sgn(k(w)). We denote
by P;; the operator which flips the sign of x?j, so for example Pi3 HH = [H] . Moreover

we define P = []._ ; Pij as the operator which flips the sign of all kinematics, so for
“+

example P Hﬂ = [:ﬂ.

We ask the question: Does Conf(R"?) act transitively on each V, ;, as was the case
in Euclidean space? In this case the answer is no in general, and the existence of A €
Conf(R"?) connecting configurations w,y € V, ; depends on k(w) and k(y). Inversions
and special conformal transformations change the kinematics of a configuration, in such
a way that the cross ratios are fixed. However they can only change the signs of the
kinematics in a restricted way. For the rest of this section we refine (4.2.14) such that
Conf(RY?) acts transitively on each set in the decomposition. This is possible provided
the discrete transformations P, 7T are also used.

Let b € RY3 w = {xy, 29, 23,24} € V. We saw in (2.2.52) that under a special

conformal transformation w — Cyw the kinematics transform

w2 san(s?)

7 pablay)’ sgn(xj;) — b))’ (4.2.17)

where b(z) =1 —2b-x + b*z%. As b changes, b(x;) passing through 0 corresponds to z;
‘crossing infinity’ (2.2.92). For a fixed configuration w € V and b € R'? there are up
to 2% = 16 possibilities” for

sgn(b(w)) == sgn(b(z1), b(xs), b(x3), b(xy)), (4.2.18)

°In Euclidean space we showed that only z € H\ {0, 1} was possible, here the cross ratios can also
be independent real numbers.

6This notation underlines the different roles of the three rows in the block, cf. the definition (2.2.57)
of the conformal cross-ratios

"Note that it is not always 16, e.g. if the configuration contains z = 0 then b(z) = 1 for all b.
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and up to eight possibilities for the 6-tuple sgn(ky(w)), where

)
b(z1)b(z2), b(z3)b(24)
ky(w) == |b(z2)b(x3), b(x1)b(xy) | . (4.2.19)

b(z1)b(3), b(22)b(z4)

These eight possibilities can be deduced easily by calculating sgn(k,(w)) for each of
the sixteen possibilities for (4.2.18). Letting S = [H], the possibilities are

S, Py Py P38, Py Po3 Poy S, P34 Po3 P38, P3Py Py, S, (4.2.20)

Po3 P14 P13 Py S, P1o P34 Po3 P1yS, P13y P34 P13 Py S.
For example, if sgn(b(w)) = (+ — +—) or (— + —+) then sgn(ky(w)) = [57]
Py P3y Py3PyS. Denoting these eight elements in the order they appear in (4.2.20)
by g; for i = 0,1,...,7, collecting them in a set G = {g;}]_,, and introducing the
composition law

b17 bQ dla d2 b1d17 b2d2
sgn b37 b4 - Sgn dg, d4 = sgn b3d3, b4d4 (4221)
59 d6 55, V6U6

then (G,-) is an abelian group of order eight, with identity element go = S. Note
that g? = go for all i = 0,...,7, and so we conclude that G ~ Zy x Zy X Z,. This
composition law is compatible with the action of SCTs on any initial kinematics, in
the sense that

sgn(k(Cyw)) = sgn(ky(w)) - sgn(k(w)).

Therefore the group G encodes the action of SCTs Cj, on sgn(k(w)). We define the
eight sets

K, =G, Ky = PG, K3 = PpG, Ky = PiG, K; = PK;,
(4.2.22)

where P,G = {Plggi}zzo, and similarly for the others. Each of these sets has eight ele-
ments, and together they account for the 8 x 8 = 64 different possibilities for sgn(k(w))
for a configuration w € V. They are listed explicitly in appendix B.1. Furthermore
they are each invariant under the action® of G, and so the eight sets of signs of kine-
matics K;, K; are invariant under SCTs®. In other words, given a configuration w € V
such that sgn(k(w)) € K; (or K;) then sgn(k(Cyw)) € K; (or K;) for any b € RY3. We
define the refined subsets of V. >

Viez = {w € Vo ; | sgn(k(w)) € Ki}, Viez = {w € V. [ sgn(k(w)) € K},
(4.2.23)

which are each separately invariant under the conformal group by the above discussion.
Investigating the sets V; . > and V; . > in detail we find that there are different constraints

8The action of G on these sets is defined analogously to the action of G on itself.
9A similar argument holds for inversions.
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2,z for non-empty Vi .z, Vi.:
zZ € (—00,0) OR (0,1) OR (1, 00)
zZ € (—00,0),z € (0,1)
z€(0,1),z € (1,00)
zZ € (—00,0),z € (1,00)

Table 4.1: z,Z such that V; , > is non-empty for z, zZ € R. Note for 7 = 1 we always take z > Zz.

W N = .

on z and z for each i. The first fact is that a configuration w € V can only have
z2,z€ C\Rifwe V), and so

Ve=|J Vi (4.2.24)
Note that K includes the Euclidean sign assignment PS = [”} and the seven other
possible signs of kinematics are found by acting with G on PS. (4.2.24) is proven
using Minkowskian conformal plane configurations, introduced below, in appendix B.2.
Furthermore, given w € V. (or V;,:) with 2,2 € R then z and Z are constrained
to different intervals of R depending on i (table 4.1). For example, let w € Vj, ; so
that sgn(k(w)) € K4. Going through all the possibilities for sgn(k(w)) in table B.1 we
deduce that the cross ratios satisfy u < 0 and v < 0. Since v = 2z, v = (1 — 2)(1 — 2),
and we take z > Z we conclude that z € (1,00),z € (—00,0). Conversely, given a
configuration w € V with a known z and z we immediately have information about
the signs of the kinematics of w. For example, if we are told w has z = —1,2 = 2,
we see from table 4.1 that there are two possibilities w € Vjo 1 or \_/4727_1, and so
sen(k(w)) € Ky or Ky. We define V; (V;) as the union of all V. (V;_;) over the
possible real z, z in table 4.1. For example

Vi= |J Vies Va= {J Vaes (4.2.25)
z,2€(—00,0) z€(0,1)
2,2€(0,1) z€(00,0)
z,2€(1,00)
2>z

The question remains: Does Conf(R'?) act transitively on each non-empty V;, -
(and V;.;)? The answer is yes up to the discrete transformations P, T. The proof
relies on Minkowskian conformal planes. We define the five Minkowskian conformal
plane configurations we(r, ¢) and wy.(a,n) for b,c € {4+, —} in table 4.2. They are
expressed in terms of the unit vectors ¢y = (1,0,0,0) and e3 = (0,0,0,1). Similarly
to the Euclidean case we can always find A € Conf(R"®) and possibly a discrete
transformation P, 7, or PT to map configurations in Vg, V;, and V; to one of the five
configurations in table 4.2.

The case of V¢ is totally analogous to the Euclidean case, and indeed any config-
uration w € Vg with 2 = re’ .z = re™™ can be conformally mapped (no need for
discrete transformations) to the pseudo-Euclidean configuration we(r,¢) € Vi, for
r>0,¢ € (0,7), see appendix B.2 for the proof.
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{x17x27'r37x4} ‘ Z72
0, r(0,sin ¢, 0, cos @), es, )

(
0, a(coshn,0,0,sinhn), eq, ¢

’ Configuration ‘

we(r, ¢)

re’¢, re”i

ae” " ae’

(0, a( ) )

(0, a(sinhn,0,0,coshn), es, ) | ae™ ae"
(0, a(sinhn,0,0,coshn), ey, ¢) | —ae™", ae”
(0, a( ) )

—ae™ ", ae

Wy (0,7
w__(a,n
w- +(CL U

)
)
)
+—(a,n)

Table 4.2: Minkowskian conformal plane configurations.
inversions, see figure 2.3.

0, a(coshn,0,0,sinhn), es3, ¢

¢t is the image of x = 0 under

The eight remaining sets V;, V; can be conformally mapped to the four sets wy.(a, n).
This is a bit more subtle, and care must be taken to restrict the range of a and 7 in such
a way that each w € V;,; (or V;, ;) is mapped to exactly one configuration wy.(a,n)
for the appropriate b, c. This can be done provided the discrete transformations P, T

are used. The results are summarised in table 4.3.

V' | Mapped to Configuration bounds 2, Z bounds
Ve | we(r, ¢) r>0,¢€(0,m) zeH, z=2z*
€ (0,1),e" € (1,1/a) 0<z<z<l1

Vi | wii(a,n) € (1,00),e" € (1,a) l1<z<z<

a € (—00,0), e" € (1,00) —00<z2<2<0
Vo | w_i(a,m) a € (0,00),e" € (0,1/a) —o<z<l<z<1
Vs | w__(a,n) | a€(0,00),e"€ (max(a,l/a),o0) 0<z<l<z<o
Vi | wi_(a,n a € (0,00),e" € (1/a,00) —0<zZ<0<l<z<o0

Table 4.3: Conformal plane structure for V¢ and V;. For V; the only change is that the signs
on wpe(a,n) reverse. For example, V; gets mapped to w__(a,n), and all other columns with
respect to V7 are unchanged.

We explain the argument for V5, so let w = {1, x9, x3, 24} € V5. Asin the Euclidean
case we can translate each point by —x4 and make a inversion Z to map

W — Wy = {07 Y2, Ys, l’}7 (4226)

where y; .= Z(x; — x4) for i = 2,3. The stabiliser of 0 and ¢ is generated by dilatations
and Lorentz rotations SO*(1,3) C SO*(2,4). How we proceed next depends on the
signs of the remaining free kinematics. We compute

2 2 2
L12 13 23
(y§7y§7y§3) — ( s , ) , (4227)
13423, 21423, 15,75
where we used the property that under inversions the kinematics transform
x?
I: ZL‘ L = 32. (4.2.28)
;X

101



Since w € V5 we have information about the signs of the kinematics, namely that
sgn(k(w)) € K, (see table B.1). For example, we could have sgn(k(w)) = PppS = [11].
In this case we have that

sen(ys, v3, yas) = (— + +). (4.2.29)

In fact going through all the cases in table B.1 it turns out that (4.2.29) holds for any
sgn(k(w)) € Ky, and hence w € V3. We have that y2 = ¢* > 0, so we can use a Lorentz
rotation L to map y3 — (£¢,0,0,0) and then rescale to +ey. This will map the point
Yo to some point ry = %Lyg, and the configuration

wy — wi = {0, 7y, Feq, t}. (4.2.30)

The stabiliser of 0, £ey, and ¢ is generated by rotations SO(3) acting on the Euclidean
coordinates of R, We use an SO(3) rotation R to eliminate the second and third
component of rq, s0 19 — (r9,0,0,73). We know from (4.2.29) that (r9)* — (r3)? < 0,
SO we map

wy — w(a,n) = Rwy = {0, a(sinhn, 0, 0, coshn), +eq, ¢}, (4.2.31)
for some a € R\ {0},7 € R. We compute the conformal invariants of w*(a,n) to be
2 = max(—aeT", ae™), z = min(—ae™, ae™"). (4.2.32)

Note we have the issue that starting with a configuration w € V5, we have two possible
configurations (4.2.31) we can end up with, @w*(a,n) and @~ (a,n). Moreover we know
from table 4.1 that z € (0,1),z € (—00,0). We need our final configuration w_, (a,n) to
contain each possible set of conformal invariants exactly once. This is because we want
to be sure we are mapping all w € V5, > to the exact same configuration, to prove that
Conf(R"?) acts transitively on V5, ;. A priori there could be multiple configurations
with the same z,Z in our final w_y(a,n). To resolve these issues we need to use
the discrete transformations P and 7. We first note that w*(a,n) = Tw ™ (a, —n).
Therefore if we end up at W~ (a,n) we simply apply a time-reversal transformation and
relabel n — 1’ = —n to arrive at w*(a,n). We can invert (4.2.32) to recover a and n
for w*(a,n)

1
a=+V-22, n= ii log(—2/2). (4.2.33)

We see from (4.2.33) that indeed multiple configurations @™ (a,n) give the same z, z,
which we want to avoid. We note that @w*(a,n) = Pw"(—a,—n). Therefore any
configuration with a < 0 we can apply a parity transformation and relabel n — ' = —n
at no cost, so we can assume a > 0. In this case we have that

1
z = ae", zZ=—ae ", a=+—z2z, n=3 log(—z/%). (4.2.34)

From (4.2.34) we see that we have exactly one configuration w*(a > 0,7n) = w_(a,n)
for each z,Zz, as required. To get z,Zz in the correct range —0c0 < z < 0 < z < 1,
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T3¢

=

Figure 4.3: Minkowskian conformal plane configuration w_4 (a,n) for V5, z € (0,1), 2 €
(—00,0). x2 can be anywhere in green region depending on z,z. We show the full conformal
infinity to emphasise that this is a configuration with a single point at infinity.

or equivalently enforce the y3; > 0 condition of (4.2.29), there is a further constraint
e" < 1/a. The final configuration w_, (a,n) in terms of z, z is

w_(2,7) = {0, (Z;rz,o,o, Z;'z) eo, L}, (4.2.35)

and is shown in figure 4.3.

These arguments can be repeated analogously for the other sets V; . > and ‘72‘,Z75 to
show that up to the discrete transformations P,7 all configurations in these sets are
conformally equivalent to a single Minkowskian conformal plane configuration wy.(a, n)
or we(r, ¢), as summarised in table 4.3. Note that for 1717372 there are two cases, one
where z,Z € R and one where z,zZ € C\ R. Therefore up to the discrete transfor-
mations P, 7 Conf(R'?) acts transitively on each non-empty Vi.z and ‘Z:’Zj. Given
configurations wy,wy € V. (or Vi.:) we deduce from the above the existence of
A; € Conf(R"?) and discrete transformations D; € {I,P,T,PT} for i = 1,2 such
that Dy Ajw; = DyAswy = w(z, Z) for exactly one Minkowskian conformal plane con-
figuration w(z, z) given in table 4.2. Then if we let A := (D;A;)"'DyA; we see that
wy, = Aw,.

Overall we have shown that all configurations w € V,; with 2,z € C\ R are
conformally equivalent, and that for w € V,; with 2,z € R there are two conformal
equivalence classes of configurations (up to P, T') exchanged by a reversal of kinematics
Viez — Vi,z,z = PV, . > for a fixed 1.

4.2.3 Functional Form in Different Regions

In [178] the Minkowskian box integral (4.2.2) is calculated as a function of the kine-
matics xfj We rewrite this result in each kinematic region, where it can be expressed
explicitly in terms of the conformal invariants z,z. This is straightforward to do,
but a bit tedious. To reduce our work, we first note that given a configuration
w = {xy,x9, 23,24} € V with real z,z it is always possible to find a permutation
o € Sy such that ow either has z,z € (0,1), or Z € (—00,0),z € (0,1). Since the
box integral I is invariant under permutations, we can focus our attention on restricted
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configurations w with 2,z € C, 2,z € (0,1), or z € (—00,0),2 € (0,1) so that w is
either in Vg, Vi, Vi, Va, or V5 as defined in section 4.2.2. We recall the four Yangian
invariant functions f;(z, z) defined in (4.1.14):

fi = 2Liy(2) — 2Liy(Z) + log 2Z(log(1 — 2) — log(1 — %)), (4.2.36)

fo=1logz —logz,

fs =log(1 — z) — log(1 — 2),
fi=1.

Remarkably, the result for the box integral can be expressed in each kinematic region
as a linear combination of these Yangian invariants. This suggests that it may be
possible to bootstrap the Minkowskian result directly from Yangian symmetry: this
direction is explored in section 4.4. We evaluate arguments on the branch cut of
the logarithms (the negative real axis) slightly above the cut, so we implicitly take
log z — log(z + i€). Due to the way we organised things with permutations, we never
need to consider arguments on the branch cut (1,00) of Liy(z). In section 4.4 we will
be more systematic with the branch choices, but here this is sufficient. Note that fl is
proportional to the Bloch-Wigner function when z = z*, but is slightly more general
since we also allow for the possibility of real z,z with z # Z. In this section, given
a configuration w € V, we abbreviate the kinematic region k = sgn(k(w)). For any
restricted configuration we can write the box integral (4.2.2) in terms of f;(z, 2):

6(z2, 2, k) = Z afilz2) _ Z Ffi(2, 2), (4.2.37)

where ¢ € C depend on the kinematic region k. We specialise the result of [178| to
restricted configurations, i.e. those in V¢, V; with 2,z € (0,1), Vi with 2,z € (0,1), V3,
and V5.

We take a configuration w € V; with 0 < zZ < z < 1, so that k € K; (see table B.1).
Firstly we conjecture that such configurations w cannot have k£ = k* = Eﬂ, when
there is a priori no reason this is not possible. We demonstrate this fact numerically
in appendix B.3. We call this the ‘missing’ kinematic region. Note it is possible for
a configuration w € Vj to have k = k* if 2,2 € (—00,0) or z,Z € (1,00). It is also
possible to pick kinematics x?j such that k = k* and z, z € (0, 1), however we conjecture
such kinematics cannot be realised by configurations w € V. While the Minkowskian
integral can be defined in the missing region k* via the Feynman parametrisation
(4.2.7), we omit this case in table 4.4 because these kinematical configurations cannot
be accessed by applying a conformal transformation to physical configurations.

We list the results for the box integral ¢(z, z) as a function of the kinematic region
k € K; in table 4.4. Since Conf(R'?) acts transitively'” on each V; , ; we see that given
any configuration w € V; with 2,z € (0,1) one can reach three branches of the box
integral using SCTs. If w € Vg or Vi with 0 < 2 < 2z < 1, then k € K;. In this case
the kinematics reversed version of the missing region Pk* = Eﬂ with z,z € (0,1) is
realisable, although numerically it is found to be much rarer than the other regions
(appendix B.3). We list the results for the box integral ¢(z,z) as a function of the

10Up to P, T which doesn’t change I(w).
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kinematic region k € K; in table 4.5. In this case starting with any configuration
w € Vg or Vi with 0 < Z < z < 1 one can reach four branches of the box integral
with SCTs. For a fixed 2,z € (0,1) there are six possible values of the box integral,
corresponding to the four functions in table 4.5 and the two differing functions in table
4.4.

We list the corresponding results for configurations w € V' with z € (—00,0),2 €
(0,1), so that k € Ky or k € Ks, in tables 4.6 and 4.7 respectively. In both cases
starting with any finite configuration w € V5 (or V) one can reach four branches of
the box integral using SCTs. Since the functions in tables 4.6 and 4.7 overlap given
any finite configuration with z € (—o00,0), z € (0,1) there are four possible values for
the box integral.

o

¢(z, 2, k)

s [ f
J1—2mifs
fl + 27Tif2

Missing region

IR E
L[|

Y

Table 4.4: ¢

—~

z,Z2,k)for 0<z<z<1, keK;.

N

o(z,z, k)
] H fi
Ji+2mif3
f1 — 27T2'f2
fi +2mi(fo — f3 + 2mify)

Table 4.5: ¢(z,z, k) for0<z<z<lorze€H,z=2* k€ K.

R T
FH 1
L N S ==

—f——

k o(z,z, k)
], =] (] h
5] f1— 2mifs
E‘j:] fi+2mi(fo — f3 + 2mify)
Table 4.6: ¢(z, z, k) for Z € (—00,0), z € (0,1), k € K.

4.3 Double Infinity Configurations

In this section we introduce the double infinity configurations. These are a family of
configurations of four points in Minkowski space, where we place two points on the
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k qb(z, zZ, k;)
ESRESE [ﬁ} fi —2mifs
1] ] fi
[+4] fi+2mi(fo — fs + 2mifa)
= fi — 2rifs

Table 4.7: ¢(z, z, k) for z € (—0,0), z € (0,1), k € Ko.

conformal boundary OR!3, defined in section 2.2.6. These provide another canonical
position for four points in Minkowski space, in addition to the single infinity config-
urations defined in table 4.2. We analyse these configurations in the context of the
classification of the previous section, and find that they cover the vast majority of the
kinematic space where z, z are real. Interestingly, the box integral (4.2.2) simplifies
vastly in these configurations, and can be calculated by a simple application of the
residue theorem.

4.3.1 Two Points at Infinity

Here we define the double infinity configurations. We consider eight configurations
X% Y% of four points in Minkowski space, where a,b € {+, —}, defined by the Her-
mitian matrices (related to usual Minkowski vectors by (2.2.95))

xor— (U0} oy (S O xe o (DY) xe o (e 0 )
0 0 0 01 0 ¢

Y = 0 0 L Y = & 0 L L0 ,Y® = Na 0 , (4.3.2)
0 0 0 —mn 0 —1 0 —&

where £, ,¢_ € R\ {0, 1} and we take the limit 7. — +o0o. For each a, b we see that X
and Y% correspond to the origin in Minkowski space, while X$* and Y correspond to
the unit vectors ey = (1,0,0,0) and e3 = (0,0, 0, 1) respectively. The remaining points
live on J* or - depending on the choice of a or b, and are parametrised by a degree of
freedom &.. The configurations X1t~ and X~ are visualised on an extended Penrose
diagram in figure 4.4. In the limit 7. — 400 X correspond to the same configuration
in terms of unitary matrices Ux (see section 2.2.6), and similarly Y correspond to
the same configuration Uy

1.0 Zfi 0 ¢t 0 -1 0

UX:{<O 1)( 0 _1>’<0 z’)’(o zﬁé_)}, (4.3.3)
1.0 zfi 0 v 0 -1 0

UY:{<O 1)( 0 —1)’(0 —i)’(o f—ﬁ‘)} (4.3.4)
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Figure 4.4: Left: Configuration X~ — x4 and x5 on J7 (6 = 0) and J=(§ = 0). Right:
Configuration X~ — 24 and g on J7(f = w) and I~ (# = 0). In terms of unitary matrices
X~ and X coincide due to the identification J* ~ AJ~.

Note that even though each X corresponds to the same configuration in terms of
unitary matrices U x, the value of the box integral qS(X“b) depends on a, b, i.e. the
direction X, and X, are sent to J (and similarly for Y'*). This is because the box
integral is singular for configurations with points on J, and we should think of X5, Y5
and Xy, Yy as being slightly off J so that J* and I~ are distinguished. We take the
kinematics to be large, but finite. We compute the kinematics k(X") and k(Y ),
defined in (4.2.15), in the limit ny — oo to be

ey, ma(é- —1)
X)) = Im(&—1),  &ma | (4.3.5)
17 —Na"b

E(Y) = —k(X®). (4.3.6)
We also compute the conformal cross ratios in the limit
w(X?) =u(Y?) =& (1-¢), V(XD =o(Y) =€ (1—&),  (4.3.7)

so that the cross-ratios u and v are the same for each of the eight configurations X
and Y'®. Written in terms of z and Z the cross-ratios for each configuration are

z=max(&,1— &), Z=min(&,,1 —¢& ), (4.3.8)

since by convention we take z > Z. Note that since &, ,&_ € R\ {0, 1}, the configura-
tions (4.3.1) and (4.3.2) can be tuned to give any real z and z with z > z. Depending
on &, & and the choice of configuration X® or Y the kinematics of the configu-
ration can vary widely. In fact most configurations w with real z and z and a given
sgn(k(w)) can be conformally mapped to one of the double infinity configurations we,
i.e. (4.3.1) or (4.3.2) (possibly permuted) with the same z and Z and the same signs
of kinematics so that ¢(w) = ¢(we) by pseudo-conformal invariance. Specialising
to the restricted kinematics considered in tables 4.4—4.7, the only kinematic regions
which cannot be realised by a double infinity configuration are the missing kinematic
region k* described in section section 4.2.3, and the corresponding region obtained by
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Kinematic region £ | we &, & range
[+4] Xt | & €(0,1), & €(1,00)
[+] Y | € €(-00,0), & €(0,1)
[+] X &6 €(0,1),& €(1,00)
Eﬂ Y™ 5—1— € (_0070)7 f— € (07 1)
-] X 7] & €(0,1),8 €(1,00)
=7 Y & €(—00,0),6 €(0,1)
-] Xt &,€(0,1), 6 €(1,00)
[+5] Y ' | & €(=00,0),& €(0,1)

Table 4.8: How to realise all kinematic regions in V5 (2 € (—00,0),z € (0,1)) with double
infinity configurations. No need for permutations in this case.

reversing all kinematics Pk* (which can be realised by physical configurations). For
example, we show how to realise all kinematic regions in V5 in table 4.8. What makes
these wy configurations particularly interesting is that the box integral (4.2.2) with
these configurations can be calculated directly in Minkowski space, without reference
to Feynman parameters or a Mellin-Barnes representation. For each configuration the
integral depends only on the choice of £, and £_, and so we define

K6 &) = o(X™), V(€ &) = o(Y™), (4.3.9)

where we recall ¢(w) = x2;23,I(w) is the conformal function of the box integral. How

we make sense of the limit . — +o0o in the calculation will be described shortly. First
we note that we can use symmetries to reduce the number of integrals to compute from
eight to two. We can immediately combine (4.2.8) and (4.3.6) to conclude

V(&) = 0% (&4, 6" (4.3.10)

We can also note relations between the configurations (4.3.1) using permutations, dis-
crete transformations, and translations. We have

Po(2) X =X 1 < &), (4.3.11)
T, o PTo(13) X~ = XtH(eL » 1 —¢&4). (4.3.12)

Since the conformal function is fully invariant under each of the transformations used
in (4.3.11) and (4.3.12) we see that

ox (§+,6-) = dx (6-,&4), ) =ox (1—€0,1—¢€). (4.3.13)

In section 4.3.2 we describe our results for ¢% (&4,¢ ) and ¢ (€4,& ), leaving the
details of the calculation to appendix B.4. We can then use (4.3.10) and (4.3.13) to
recover the value of the integral for each of the configurations (4.3.1) and (4.3.2).
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4.3.2 Calculation of Minkowski Box Integral

We describe how to compute the conformal box integral (4.2.2) in the double infinity
configurations (4.3.1) and (4.3.2). The conformal function takes the form

d4 u 2 .2
b= / i T — (4.3.14)
im? (g + i€) (g, + 1€) (g3 + i€) (25, + ie)

We write the integration variable x, in spherical coordinates

i i ; t cos 0 —i@gin @
xq = (t,rsinf cos a, rsinfsina, rcosb), X, = ( +r re in )

re'“sin t—rcosf
(4.3.15)

Integration over all of Minkowski space corresponds to integration over —oo < t <
oo, > 0, € [0,27), and 6 € [0, 7]. For definiteness we consider the configuration
X"~ defined in (4.3.1), although the calculation proceeds similarly for the others. The
Lorentz squares z2, for i = 1,2,3,4 in the denominator of (4.3.14) are calculated in the
appropriate limit, for example:

(4.3.16)

x(212 = |Xa - X2| = det €+ - t_ 7?COS€ —7'6_7:0( San
—re'“sing  n- —t+rcost

=n_(&. —t—rcosh) +On%).
Overall we compute all of the quantities appearing in (4.3.14) in the limit to be

22 =1 -1 (4.3.17)
a2y =1 (& —t —1rcosh), (4.3.18)
i, = (t—1)* —r? (4.3.19)
(4.3.20)
(4.3.21)

22y = (6 —t +7cos),

aly =1, a3 =—nn.
Letting x = cos 6, for this configuration the box integral becomes ¢% (£,,& ) ~
21 r2n.n_
T Jorr @2 —12+de)((t —1)2 =12 +ie)n_ (&4 —t —ra + ;—i)mr(f_ —t+re+ ﬁ)
(4.3.22)

Y

where fxmt = f_ll dx fooo dr ffooo dt and the trivial « integration has been performed.
Note that in the limit no — 400 the integral is well-defined, as factors of ni cancel
in numerator and denominator. We define an ¢ by n& ~ +€', and throughout the
calculation we treat ¢ < € in the limit 7. — Zoo. This is essential to properly
regulate the poles of the integrand.

We note that integrand of (4.3.22) is a meromorphic function of ¢, with 6 poles
in the complex t-plane. This integrand also decreases sufficiently quickly as t — oo,
and thus the t integral can be computed using a large semicircular contour (closed in
the upper or the lower half-plane) and the residue theorem. The r integral can then
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computed using a Hankel contour, which produces logarithms. The 6 integral is then
simply a sum of integrals which can be written in terms of dilogarithms. We plot these
contours and describe the full details of this calculation in appendix B.4. The answer
can be expressed in terms of four integrals

et [ do— ! SO S CTC)
hi(ab) = (a b)/o o s ()= b)/o d (x_a)(x@%);3)
hs(a,b) = (a_b)/o dx(xlo_gil)(;i)b), hy(a,b) = (a—b)/o dx(xlo_gél)(—;i)b),

which are all expressible as simple combinations of logs and dilogs of a and b. These
are all well-defined in our case as each a, b will have a small imaginary part. The final
result for the integral is

(€ ) = (13.21)
Dgl_ 1 <log(1/2)(h1(r1+, roy) = hi(=ri-, —r2_))

+log(—1/2 —ie)(—hi (=114, —1oy) + hi(r1_,1m9-)) — log(—A&/2 + ie)hl(sir, s§+)
Flog(A/2 — ie)hn(s3-. 53) + 5(ha(s%,. 53,) — ol 53.) + (los(€s — ie)x
(ha(=r1s =s12) = ha(r1y, 814)) +log(=&- —i€)(ha(ra—, s1-) — ha(=T2y, —514))

+ h3(r1g, s14) + ha(=roy, —=s14) — ha(=r1-, —=s1-) — ha(ra—, 1) — ({4 — 1 — 51)))

where L€ =&, + &, A8 =&, — &, and r and s, for ¢ = 1,2 are functions of &, , &
defined in (B.4.7) and (B.4.8). (4.3.24) is invariant under £, — 1 — &;. Note that the
overall prefactor agrees with our expectation

1 1

=+ ) 4.3.25
e —1 z2—Z ( )

For the configuration X~ the integral becomes ¢ (£4,£_) =

21 r?
T ory (=12 4i0e)((t—1)2 =12 +ie) (& —t —rz —i€) (- —t+ra —ie)
(4.3.26)
The calculation proceeds similarly, and the final result for the integral is
ox (§+,6-) = (4.3.27)

Dfl_ 1 (10g(1/2)(h1(7“1+77“2+) — hi(—=ri_,—ry_)) +log(—1/2 — ie) x

(ha(ri—,ro-) — ha(=rip, —r24)) + (—10g(£+ —i€)h1(riy, s14)+log(§- — i€)hi(ray, s14)
+log(—=1+ & —i€)hi(—riy, soy) +log(—=1+ & —i€)hyi(—ray, s24)

+ h3(7“1+, 51+) - h3(—7’1+, 52+) + h4(—7“2+7 82+) - h4(7“2+, 31+) + (§+ AN 5—)>>7
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and is invariant under &, <> £_. Using (4.3.10) and (4.3.13) an expression for the
box integral for each of the eight configurations in (4.3.1) and (4.3.2) can be recovered
from (4.3.24) and (4.3.27). These results were numerically verified in each accessible
kinematic region with tables 4.4—4.7 as well as with the package [185]. Note there are
numerical issues when A = 0,006 = 0,1,2, £, = 1/2, or £ = 1/2. These are easily
remedied however by adding a small correction to &, or &_.

Figure 4.5: Configurations w (left) and y (right). The blue and green curves show the trajec-
tories of z2 and x4 respectively under the SCT C(g ) for b € R. x4 crosses infinity again
at b=3/2+e.

Numerical Example. As a concrete example, consider the configuration w := X~
which has &, = 1/4,§_ = 2/3. For this configuration we have z = 1/4,2z = 1/3,
sgn(k(w)) = [17], and w € Vi. The value of the box integral is ¢ (1/4,2/3) ~
5.88 — 21.69¢, which can be calculated using (4.3.24) and (4.3.13), table 4.5, or for
example the package [185]. Under the infinitesimal SCT Cigg,, w is mapped to
y=X""(& =1/4,& =2/3) withsgn(k(y)) = [+1] and ¢% (1/4,2/3) ~ 5.88—8.88i.
Under the SCT C(g0,0,3/2+¢) w is mapped to a configuration r with sgn(k(r)) = Eﬂ
and I(r) ~ 5.88. This example shows three of the four branches of the box integral
accessible in ‘_/171 /1,173 (table 4.5). In figure 4.5 we show the configurations w and y and

the orbits of x5 and x4 under the SCT parametrised by (0,0,0,b).

4.4 Yangian Bootstrap for the Minkowski Box

In section 4.1.1 we showed that Yangian symmetry implies that the conformal function
for the Euclidean box integral ¢ is a linear combination of four Yangian invariant
functions f; = f;/(z — z), where

fi = 2Liy(2) — 2Lis(2) + log zZ(log(1 — z) — log(1 — %)), (4.4.1)
fg =logz —log Z,
fs = log(1 — z) —log(1 — 2),
fi=1
We then argued using permutation symmetry and some mild extra input that the
integral is just equal to f;. Remarkably, we saw in section 4.2.3 that in each kinematic
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region the Minkowski box integral is still a linear combination of these invariants. We
thus naturally investigate to which extent the box integral in Minkowski space can be
calculated, starting with only the assumption of Yangian invariance and a few further
discrete symmetries.

In this section, we choose to work with a slightly different function basis

gi(z, %) = g;(i’ ? , (4.4.2)
with
g1 = 2Lis(2) — 2Lis(Z) + (log z + log 2) (log(1 — z) — log(1 — %)), (4.4.3)

go = logz —logz,
g3 = log(1 — z) — log(1 — 2),
ga =log(1 — 1) —log(1 — ).

This basis is motivated by the fact that the three functions ¢s, g3, g4 can be understood
as single discontinuities of the highest transcendentality function ¢;.'! Note that while
we argued in section 4.1.2 that the discontinuities of the function g; vanish, this was for
Euclidean kinematics where z = z*. Here z and Z can also be independent real numbers.
Therefore in this case we mean discontinuities in one of the conformal variables, with
the other one held fixed. In (4.4.3) we also explicitly split up the log 2z factor in ¢,
which is convenient for taking discontinuities.

In this section we use the Yangian plus further discrete symmetries to severely
constrain the final result for the box integral in Minkowski space. Since there are
2% = 64 kinematic regions, labelled by the signs of the six kinematical invariants x7%,,
there are a priori 64 x 4 = 256 undetermined parameters, as each region comes with a
specific linear combination of the four-dimensional solution space (4.4.3). We end up
with twelve parameters that are currently undetermined by our use of integrability and
symmetry. These still need to be fixed by other means. We show here how these can be
fixed by analytic continuation in the x?k, although they can also be fixed by numerical
input. Finally we present a compact formula (4.4.32), from which the result for the
box integral can be easily read off in all kinematic regions. This is analogous to tables
4.4-4.7, but it fits in a single equation and is valid beyond the restricted configurations
defined in section 4.2.3.

4.4.1 Yangian Invariant Ansatz and Discrete Symmetries

Given the Yangian invariance of the box integral in Minkowski space and local confor-
mal invariance in each kinematic region k, we can expand the solution in terms of the
invariants!?

4
Oz, 2,k) =Y _clgi(z 7. k). (4.4.4)
=1

In the Euclidean region k& = Eﬂ, any permutation of the external points will result
in a configuration also in the Euclidean region. This implies that the integral can be

"' The function g4 can be understood as a single discontinuity of g; about z = oo, with Z fixed.
12There is still a subtlety in defining the functions g; when z or z lies on a branch cut of these
functions, and so we refine this ansatz appropriately in section 4.4.2.
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fully bootstrapped using its Yangian and permutation symmetries to be proportional
to one of the above Yangian invariants:

¢(=7) = ga(2, 2). (4.4.5)

Clearly, at least parts of the permutation symmetries are broken once the kinematic
region k takes a less symmetric form than in the Euclidean region, and thus, imposing
permutation symmetries will be less restrictive. For example, if we take a configuration

wy = {x1, T9, 3, x4} with kinematic region k = [H], then applying the transposition
(14) : wy — wy = {xy4,x9, 73,21}, we see that wy is in the kinematic region k' =

Eﬂ Therefore rather than imposing a condition on the full conformal function, as in
(4.1.19), the transposition (14) establishes a relation between the conformal function
in regions k and k'

220(2,2, k) = ¢ (%, é, k') . (4.4.6)

We will use three different types of discrete symmetries to fix the constants in (4.4.4).
For this purpose it is useful to repeat the the Feynman parametrisation and Mellin—
Barnes representation of ¢, given also in (4.2.7) and (4.2.9). These take the form

o) = [0l B (147
(Zj<k ooy + i€)
and
b= 1. /ds/ 05/ (I o) x§2+z:e - x§4+z:e - x§4+z:e - $§3+Z:E 75'
(278)? Je, Oy ’ xi3+ie x5, i€ ri3+ie x5, +i€

(4.4.8)

Shuffling Symmetry. There is a large redundancy in the space of kinematic regions
k, which we will denote as ‘shuffling’” symmetry. The box integral has a symmetry
under the separate exchange of the kinematic variables

2 2 2 2 2 2
Tip 7 X3y, Tag <7 Ty, Ti3 <7 Toy, (4.4.9)

which is clear from the representation (4.4.8). This means that given a kinematic

region k, represented by a sign block (4.2.16), the box integral is invariant under the

operation of swapping the signs in any row of the sign block, for example [:ﬂ — [*;}.

If k£ and k' are related by such a shuffle, then we have ’ !

&z, 2|k) = b(z, 2|k). (4.4.10)

Conjugation Symmetry. It is clear from (4.4.7) that simultaneous reversal of the
signs of the kinematic invariants x?j is equivalent to complex conjugation of the integral:

6z, 2|k) = oz, 2| — k). (4.4.11)
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Permutation Symmetry. As is clear from (4.4.7), the box integral ¢ is covariant
under permutations o € Sy of the external points

0 1 (71, T, 3, 24) = (To(1), To(2)s To(3), To(4))- (4.4.12)

o induces a few transformations. First of all the conformal weight x%;23, transforms
1303, — fo(u,v)xi;73,. The conformal invariants transform z — h,(2),z — h,(2).
We note that since we always take z > zif 2, Z € R\{0,1} and Imz > 0if Z = 2* € C\R,
the conformal invariants may swap roles after the permutation ie. z — h,(2),z —
hy(z). Finally, modulo shuffling, permutations permute the rows of the sign block:

k — k,. For example, 0 = (12) swaps rows 2 and 3 of the sign block:

2 .9 2 .9
Ty, T3y Ti9, T34

: 2 .2 : 2 .2

sign | z3,, 27, | — sign |1y, 23, | - (4.4.13)
2 .9 2 .9
L3, Loy Lo3, L14

These facts are summarised in table 4.9. The overall constraint permutations impose
on the conformal function in different kinematic regions is

17 0o () ha)ka) i = holz)

(4.4.14)
[l 0(ha(2), ho(2)|ks) if 2" = ho(2)

¢(z, 2|k) = {

o fo | ho(2) ko
(),(12)(34),(13)(24), (14)(23) | 1 k
(24), (13),(1234), (1432) 1 11—z row 1 < row 2
(23), (14), (1243), (1342) u % row 1 <> row 3
(12), (34), (1423), (1324) | v | = row 2 <> Tow 3
(234), (124), (132), (143) | v | == | row 1,2,3 = row 2,3,1
(243), (123), (134), (142) u | 1—121|row1,23— row 3,1,2

Table 4.9: Transformation of conformal invariants and kinematic region under permutations.

4.4.2 Constraints From Symmetries

In this section we impose the constraints of the above symmetries. We will find that
this reduces the computation of the box integral in all kinematic regions to fixing only
twelve constant parameters. These will be determined in section 4.4.3.

Yangian Symmetry. Although we already wrote the constraint on ¢(z, z, k) from
Yangian symmetry in (4.4.4), there are a few technicalities to mention. In Euclidean
space the conformal invariants are always constrained via z = z*. However, in Minkowski
space z and z can also be independent real numbers. The possible range of z and z
depends on the kinematic region, and is summarised above in table 4.1. The functions
g; have branch cuts on various intervals of the real axis, which are fixed after specifying
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the usual branch of the logarithm on the negative real axis. In order to consistently
define the functions g; appearing in the ansatz (4.4.4) for all possible values of z, z, we
regularise them according to

9; (2,2) = gj(z — 10, z + i), j=1,2,3,4, (4.4.15)

where ¢ is an infinitesimal positive real number. We similarly define regularised func-
tions g;-r identically to the above, but with the replacement 6 — —4§. Note that such
regularisations break the antisymmetry of the functions g; in z and z. As such, we
explicitly specify z and Z in terms of the cross-ratios v and v as

(I4+u—2)+iv/(1—u—0)?—4du,

(1+u—v)—%\/(1—u—v)2—4uv, (4.4.16)

z =

= N=

z =

so that in particular z > z when z,z € R\{0,1} and Im(z) > 0 when z € C\R, z = z*.
Then the exchange z <+ z is equivalent to g;“ < g; . As already mentioned, fixing z, 2
as (4.4.16) can lead to them swapping roles after a permutation of the external points,
see the discussion above table 4.9. For example, o = (13) generates the transformation
of conformal invariants z — 2/ = 1 — 2z and Z — 2z’ = 1 — z. In general, whether
z and Z swap after a permutation depends on both the range of z and z and the
permutation. For example, under the permutation ¢ = (14) with h,(z) = 1/z, the
conformal variables swap roles if z, Z > 0, but not if 2 > 0,z < 0.

Since we are imposing permutation symmetry on our final function ¢, we allow
for the appearance of both functions g;.“ and g; in our ansatz derived from Yangian
invariance. In the end we can always express the functions gf in terms of gji to get
an expression for the integral in terms of just four regularised functions g; or g;.r, see
Appendix B.5. Our refined ansatz is

4

o(k) = (akg; +Blal), (4.4.17)

i=1

where of and ¥ are complex numbers depending on the kinematic region k. In total
there are 64 x 4 = 256 constants of to fix. ¥ can be expressed in terms of af using
the transition matrix (B.5.1).

Permutations, Shuffles, and Conjugation. A priori we have 2° = 64 functions
o(k) to fix, one for each of the possible kinematic regions k. However, permutation,
shuffling, and conjugation symmetry already give very large constraints on the linear
combination (4.4.17). Under these three operations there are siz equivalence classes of
sign blocks. We list a representative from each equivalence class:

S B 4 e R O e B
(4.4.18)

Using shuffling symmetry, we can identify —+ ~ +— in any row of the sign block: we
will always choose the order —+ when possible. This already restricts the number of
independent signatures to 3° = 27. These remaining 27 signatures organise themselves
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into six equivalence classes A, Ao, ..., Ag under permutations and conjugations. A;
contains k; and —k;, and Ay contains only ky. Explicitly, these equivalence classes

read
—1 [++
A1: — | +-+ )
—1 [+
L
A2:{ —+ },
[+
=+ [++] [++] [=+] [==] [-—]
Ag=3 14+, = [ = =+ =] ¢
R e o I e o B e I e B
=1 [=+] [=+] [++] [=+] [—+]
A4: — PN N ) -+ s | T ) + ) — )
e B e B e B e o B e e B R
[——1 [++] [++] [++] [—=] [—]
As=3 1+t == | == | ] = g
R B e e B e B e R e R R
[—+1 [++] [==] [-+] [-=] [++]
Mo =3 |+ = [+ 2 et | = g (4.4.19)
e B e B e B R S R R S R

When the box integral is known in the representative kinematic region k;, it can be
deduced for each of the remaining signatures in A; using (4.4.14) and (4.4.11). Therefore
we only need to fix 4 x 6 = 24 constants, 4 for each of the k;. We can eliminate some

of these constants by using the fact that some of the k; are invariant under a subgroup
of S4.

Region k. Fk; is fully invariant under permutations. For example, invariance under
the transposition (13) gives a constraint on the ansatz (4.4.17):

aflg[(z, z) + Bflgf(z, z) = aflg;r(l —2z,1-2)+ ﬁflgi’(l —z,1—2), (4.4.20)

where summation over ¢ is assumed. In (B.5.5)-(B.5.8) we list the behaviour of the
regularised functions g;t under permutations. Only ¢g; and g4 are compatible with the

functional equation (4.4.20), which forces a5' = g5 = of' = g5 = 0. Furthermore,
invariance of k, under the transposition (14) forces of* = g% = 0. Therefore (4.4.17)
reduces to

(k1) = o' g1 + B gf - (4.4.21)

For the possible values of z, Z in the kinematic region k; (see table 4.1), we could use
(B.5.1) for example to deduce g = g; . Therefore we can rewrite (4.4.21) as

¢(k1) = argy = argy, (4.4.22)

where a; = of' + ¥ € C. The box integral for the other signature in A, can be
calculated using (4.4.11):

b(—k1) = algi = aigr . (4.4.23)

Therefore, for the equivalence class A;, there is only a single constant a; left to be
fixed.
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Region k;. ks is also fully invariant under permutations, and similarly to k; we
constrain

P(ka) = azg; = azgy. (4.4.24)

Therefore, in the equivalence class Ay there is also just a single constant a, to fix.

Region k3. k3 is not completely invariant under permutations, and so we expect the
functional form of ¢ to be less restricted. We do have invariance under the transposition
(12) however. Under this permutation we have z — 2 = %7 and z — z’ = 5. Since
oks = ks we have the constraint on the expansion (4.4.17):

1 z z 1 z z
g7 (2, 2) + BBg (2, 2) = ;afz”gf ( ) + Eﬁfg’g[ (

z—1"z-1 z—1z-1
(4.4.25)
Because of (B.5.5) and (B.5.7) this gives no constraint on a1, 1, ag, B3, however we do
have af* = 53 = o = gk = (. Therefore we have
o(ks) = o’ gy + a5’gs + B9 + B3’g3 (4.4.26)
For the kinematic region k3 we have z € (0,1),z € (—00,0), and
g =g +2migs, g5 =93 (4.4.27)

Therefore we can write (4.4.26) in terms of either g; or g
¢(ks) = asgy + 2micsg; = azgy” + 2mi(cs + as)gy (4.4.28)

where we take ag = af* + 8 and 2mics = ok + B8 — 2mi3¥ . The rest of the sector
A3 can be reached from k3 via permutations and conjugation. Therefore in A3 there
are two constants az and c3 to fix.

Region k4. k4 is also invariant under the transposition (12). Analogously to ks this
leads to
d(kq) = asgy + 2micagy = asg + 2mi(cq + aq)gs, (4.4.29)

so that there are two constants a4 and ¢4 to fix in Ay4.

Region k5. ks is also invariant under the transposition (12), which leads to
P(ks) = asgy + 2micsgy
= a5gy + 2micsgy + 4mics0101(g5 — 95 + 91 ), (4.4.30)

where 6; = 6(z — 1) and 0, = 0(z — 1). Therefore there are two constants as and cs
to fix in A5. Note the appearance of the theta functions in the second line of (4.4.30)
renders the g, basis perhaps slightly more natural.

Region kg. The region kg has no symmetry under non-trivial permutations, and
therefore we cannot derive a constraint as easily as in the previous cases. We thus have

B(ke) = agg, + 2mibsgy + 2micegy + 2midggy
= agg] — 2midggy + 27?2'669; — 2mibsgy, (4.4.31)

where ¢g = ag + bg + c¢ + dg. Therefore there are still four constants ag, bg, cg, dg to fix
in A6-
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Combined Symmetries. To summarise, combining the above symmetries yields the
following form for the box integral that depends on twelve unfixed parameters:

¢z, 2k) = + argy
+2migy (= 30 4+ E50= — cabf—+ + E0+F — 5077 + 50+
+ b0t + dof T — o0+ — dgbrT — beb" T — co01)
+ 2migy (+ c36FF — G077 + 677 — 07T + 5071 — 5077
+ g0+t + el — befF + bgf++ + dof T — dgb-7)
+2migy (= E30H + 30-7 — &0+ + 30T — cs0H + c50

+ dgO+F + bgb—~ + dgb=F — o0+ — Gob- + bb—1).  (4.4.32)

Here ay € {a;,a’} depends on the kinematic region, e.g. ax, = a, and we abbreviate
¢; = ¢; + a;. Moreover, we have introduced the above theta-functions such that

1 if K=k
Ok (k) =< ’ (4.4.33)
0 otherwise.
For instance we have
ot ++—+
0 (37) =1, 0-:(33) = 0. (4.4.34)

4.4.3 Analytic Continuation

After exhausting the available symmetries of the box integral, we are left with twelve
independent constants that remain to be fixed. For instance, we could calculate the
box integral for a set of arbitrary numerical configurations in the relevant regions to
fix these numbers. In the present section we explicitly demonstrate how to obtain the
twelve parameters using analytic continuation.

To connect the box integral in different kinematic regions, we note that it is always
represented by the same Feynman parametrised integral (4.4.7) which gives a natural
analytic continuation beyond real kinematics. In particular, this tells us that away
from its poles, (4.4.7) is a continuous function of the xfj Hence, we can relate the
value of the box integral in different regions by connecting them via paths in x?j space
on which the integral is regular. Since the integral diverges at points where one of
the xfj vanishes, to change the signature of the kinematics on a regular path, we will
have to continue the function through the complex plane. In this process, for generic
complex x?j, z and Z will cross branch cuts of the function basis g;. Carefully tracking
the movement of z and Zz and adding or subtracting the corresponding discontinuities
will therefore allow us to deduce the functional representation of the box integral in
any of the regions.

As a practical definition of the discontinuity of a function we use

disc.—af(2) = lim (f(7(€)) = f(n(1 =€), (4.4.35)

e—0

where ~y(¢) is a complex contour that encircles the branch point a once on a clockwise
path and starts and ends at z, i.e. 7(0) = (1) = z. For branch cuts of f on the real
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Function | Branch cut in z, z
g1 (—O0,0], [1700)
g2 (_007 O}
g3 [17 OO)
94 [07 1]

Table 4.10: Location of branch cuts for the function basis g;.

axis, this definition implies for a,z € R and z on a branch cut starting at a:
disc,—.f(z) = lir% (f(ztie) — f(z Fie)), (4.4.36)
€E—

Here the sign of the ie depends on the ordering of a and z. This expression is easy
to evaluate and sufficiently general for the set of functions g;. We choose the branch
cuts of our function basis to lie on the real axis, which is consistent with taking the
principal value of the appearing logarithm and dilogarithm functions. To be precise,
we have listed the branch cuts in table 4.10.

For convenience, we explicitly note the non-vanishing discontinuities of the g; around
their branch points

disc,—pg1 = +discs—gg1 = +27igs, disc,—1g1 = +discz—191 = —27igo,

disc,—ggo = —discz—ggs = +2m1, disc,—1g3 = —discs—193 = +271,
diSCZ:194 = —diSC5:1g4 = —271'1', diSCz:()g4 = —d1805:og4 = —2mi. (4437)
In the Euclidean region k; = [Eﬂ the remaining coefficient a; is fixed by the star-

triangle relation for generic propagator powers [10], such that

o(k1) = g = g1, (4.4.38)

ie. a; = 1. We will use this region as a starting point of the paths leading into
the five other equivalence classes. Since for real kinematics, z and z are either real
or a pair of complex conjugates in the Euclidean region, we can always set up an
entirely real path in kinematics space that sends all a:?j to —1 without picking up any
discontinuities: any possible branch cut passage will happen simultaneously for z and
Z and give cancelling contributions. Hence to connect regions where some of the xfj
differ in sign, for simplicity we can restrict ourselves to paths of the form

xl = e (4.4.39)
To ensure that we do not encounter any poles of the integrand of (4.4.7) we further
demand 0 < ¢;; < m, i.e. we always rotate the x?j through the upper half of the
complex plane. This prescription is inherited from the positive ze-shift in the original
expression (4.2.2) for the box integral, which in turn translates into a positive ie-shift
of the z7; in the Feynman parametrisation (4.4.7), c.f. [186]. Then, the paths on which

we analytically continue from a region k,, to another region k,, can be parametrised
by
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Figure 4.6: The path of z (solid green) and Zz (dashed red) under the continuation from k; to
(a) k3 or k4, (b) ks and (c) ke. In the last case we further introduce a factor of 1/2, i.e. we
set xgg = €23 /2 to avoid the degenerate point z = z. We denote the point where the paths
begin by a dot in the respective color. Note that for (a) and (b) the branch cut of the square
root in (4.4.16) is passed immediately at the beginning of the path. Since away from the real
line, gii(z,i) = gii(,%, z) this does not change the result for ¢. We also include the branch
cuts of g1 as solid black lines.

- 3 5y — _
py=q T Cemnnleg) = ey =1 (4.4.40)
2 if Sgnm<xij) = _Sgnn($ij) =+1
™=, if Sgnm<x?j) = _Sgnn(mgj) =-1

where ¢ € [0, 7] and sgn,, (z7;) is the sign of z; in the region k.

ij
Region k. For ky = Eﬂ we have

P34 = P14 =Pu =T — ¢ (4.4.41)

and all other ¢;; equal to m. Hence, u and v are actually inert under this analytical
continuation and so are z and z. Therefore, we find

o(ka) = g = g7, (4.4.42)

fixing ay = 1.

Region k3. For k3 = Eﬂ we have
P12 =T (4443)

as the only constant phase and all other equal to m — ¢. The path that z and Zz trace
out under this continuation is shown in Figure 4.6a). Since the path for zZ ends on the
negative real axis, the concrete expression in terms of g; depends on the regularisation
procedure. For the g, the branch cut in Zz lies slightly above the negative real axis,
whereas for g; it lies slightly below. Therefore, we introduce the operators §* that act
according to

0~ =g, 097 = 0. (4.4.44)
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Then, we can compactly write the result in the region k3 as
¢(ks) = (1 + 0" discz—0)p(k1) = g; = gi + 2migy, (4.4.45)

fixing a3 =1+ c3 = 1.

Region k4. In order to move from k; = EE] to ky = Eﬂ, we choose

P14 = Pou =T — @, (4.4.46)

and all other angles equal to m. Interestingly, this induces the very same path for u
and v (and hence for z and z) as the continuation in the previous paragraph. Hence,
we conclude

¢(ks) = ¢(ks) = g = gi + 2migy, (4.4.47)

fixing ay =1+c¢4 = 1.

Region ks. For the region k5 = Eﬂ we find
P13 = Poa = P23 = Pa1 =T — @, (4.4.48)
and all other angles equal to 7. From the z, zZ path shown in Figure 4.6b), we conclude
d(ks) = (1 + discs—o) (k1) = g7 + 2migs, (4.4.49)

independently of the regularisation.

Region kg. Finally, for kg = Erﬂ the non-constant phases are

P34 = P23 = P14 =T — Q. (4.4.50)

The corresponding path for z, z in Figure 4.6¢) implies

&(ke) = (1 — 0~ discz—g)(1 — disc,—1) (k1)
= g +2migy = gy + 2mi(gy — g5 + 2mi)
o (4.4.51)

fixing ag = —dg = 1 and bg = ¢ = ¢ = 0.

Summary. In summary, we find
(ZR:L C(j:é@:b@':O, 1+63:1—|—C4:C5:—d6:1, (4452)
such that the ansatz (4.4.32) yields the full result for the box integral:
¢(R) =+g1
+2migy (+0-+ + 0+ — 075 + 0+ — 0=+ + 0+1)
+2migy (—0-F — 071 4+ 01 — 075 — 075 + 6-7)
+2migy (—0H — 0=F — 0H + 0.~ — 05 — 0-7). (4.4.53)

+
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This compact formula for the box integral is valid in all 64 kinematic regions of
Minkowski space, as verified by explicit comparison with the one-loop evaluation pack-
age [185]. This compact formula is one of the main results of this thesis; it is a
computationally efficient result which makes manifest the breaking of global conformal
invariance of the integral. We conclude our discussion of the conformal box integral in
Minkowski space and proceed to discuss one of our other main directions: the study of
Yangian Ward identities for fishnet four-point integrals.
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Chapter 5

Yangian Ward Identities for
Basso—Dixon Correlators

In section 3.3.3 we explained that the fishnet Feynman integrals faﬁ, which represent
specific correlators in the fishnet theory, are Yangian invariant. The four-point limit of
these correlators are represented by the Basso-Dixon integrals /,5. However, it turns
out that in taking the coincidence limit jag — I, the level-one Yangian invariance
is destroyed. Nevertheless, we study this coincidence limit to determine the imprint
that integrability (in this case level-one Yangian invariance) leaves on the Basso—Dixon
conformal functions ¢,s(u,v). Their functional representation (2.3.70) as a determi-
nant of ladder integrals is so simple that it is tempting to conjecture that it can be
determined by methods of integrability. In order to understand this coincidence limit,
we interpret the Yangian invariance of the fishnet integrals iag as Ward identities for
the corresponding correlators. Since the Yangian generators are second order differen-
tial operators in the external points, there are subtleties which come from identifying
points corresponding to different fields. By performing this somewhat technical limit,
we find that the Yangian level-one momentum generator P* does not annihilate the
Basso—Dixon correlators, but rather returns a specific linear combination of analogous
correlators, where one of the fields is replaced by a descendant @ — 9% @. At the level
of Feynman integrals, this leads to vector integrals contributing on the right hand side
of the Yangian Ward identity. We devised a conformal tensor reduction to express
the Yangian equations as formal identities for the conformal Basso—Dixon functions
¢ap(u,v). Schematically these take the form

Duvtap = At Adas. (5.0.1)

Here D, is a differential operator in the conformal cross ratios v and v (or alternatively
z,Z), d* is a dimension-raising operator which shifts the dimension D — D + 2, and
A is a linear combination of operators which raise specific propagator powers of the
integral. For the ladders we provide an algorithmic way to describe the operators A.
For the case of the box integral (o« = = 1) the inhomogeneity on the right hand side
of the above Ward identity vanishes.

This chapter is organised as follows. We first formulate the Yangian invariance of
the fishnet integrals jag as a Ward identity for correlation functions in fishnet theory,
and describe how to take the four-point limit of this Ward identity. We then explain
what this identity means at the level of vector Feynman integrals and the correspond-

123



ing conformal functions, giving several explicit examples. Then we use the technology
introduced in section 2.3.2 to rewrite the appearing vector integral coefficients in terms
of higher dimensional scalar integrals, and describe a method to conformalise the re-
sulting expressions. Using this, we can then express the Yangian Ward identities as
single operatorial equations (5.0.1) for the Basso—-Dixon functions. We explain the nat-
ural generalisation of our equations to the D-dimensional fishnet theory [11]|. Finally,
we describe the separability of the equations in D = 2.

5.1 From Fishnets to Basso—Dixon Correlators

5.1.1 Yangian Invariant Fishnets

Our starting point is the Yangian symmetry of fishnet Feynman integrals l:aﬁ [172,162],
which we described in section 3.3.3. We recall that these integrals are represented by
square fishnets, with lattice of propagators with o x ( integration vertices:

1 @
2(a+8) at1
Ip = : S (5.1.1)
20+ B +1 a+ 8
2+8 - a+pB+1

which represents the following correlator in the fishnet theory:

<tf Z(20)X (Ta+1) X (Ta+8)Z (Tarpi1) 2 (T2045) X (T20+541) - 'X($2a+2ﬁ))>
(5.1.2)

The integrals (5.1.1) are annihilated by the conformal Yangian level-zero and level-one

generators J4 and jA, which act as differential operators on the coordinates xé‘ c R4
for j=1,2,....,n:=2(a+ [):

J4Ts =0, JA s = 0. (5.1.3)

Explicit expressions for the level-zero and level-one generators are given in (3.3.39) and
(3.3.39). For convenience we repeat them here:

=> " J (5.1.4)
j=1

Pt = —idl, LY =il 0 — a0y,
D; = —ix;,0f —iA;, Kt = —@(235% — " a?)0;, — 22k, (5.1.5)
n k—1
= 1fpe ZJ]CJBjLZsj (5.1.6)
k=1 j=1
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where f45c denote the structure constants of the conformal algebra so(1,5), and the
evaluation parameters s; are chosen as

s;=1(0,...,0,—1,...,—1,=2, ..., —2,=3,...,=3);, j=1..n (517

a B a B

We recall that invariance under the level-zero generators J4 implies that the above
integrals take the form

]Nag = Vag anﬁ(u]‘), (518)

with V.5 being the conformal weight of the integral and gEaB denoting a conformal
function which depends on the cross ratios u;. After specifying the level-one invariance
condition to the level-one momentum generator

n

Pr=1 3" (PiDy + Py Ly — (j ¢ k) +ZSJP“— Z P +Zs]P’~‘ (5.1.9)
j<k=1 j<k=1

the structure is
n "

~ ~ [E-k_ ~
0=P'log="Vos Y —5 PDEji das(uy), (5.1.10)
j<k=1"7k
where PDEj;, denotes differential operators in u;. One should then argue that the
vectors x;.‘k / x?k are independent such that Yangian invariance implies a system of dif-
ferential equations for the conformal function [10]:

PDE; s =0, 1<j<k<n. (5.1.11)

We stress that these are homogeneous partial differential equations, a fact that will
change when considering coincidence limits of the external points.

We choose to use the level-one momentum generator P* because calculations with
this generator are easiest. However, acting with the other level-one generators will pro-
vide no independent PDEs in the cross-ratios, i.e. no new constraints on the conformal
functions (bag For instance, we could extract the action of D and L* from contractions
of the following algebra relation evaluated on Iag.

2@( wp L‘“’)Iw = [K*, D)L, = K'D" L. (5.1.12)

Here we have used the Yangian algebra (3.1.87) and K*I,3 = 0. Hence, for example
the analogue of the invariance equation (5.1.10) for the level-one dilatation operator D
can be obtained from the P identity by action with K# and contraction with n*. It
is clear that this cannot modify the PDEs which gz;aﬂ, only the coefficient functions.

5.1.2 Four-Point Coincidence Limit

Now we investigate the imprint that the Yangian invariance equation (5.1.10) for the
fishnet correlators leaves on Basso—Dixon correlators, which emerge from the former in
a coincident point limit. While the limit can be carried out straightforwardly for the
correlators, there is a subtlety in the limit of the invariance equation, which is due to
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the fact that the Yangian generators in their differential form do not commute with
the coincidence limit.

In order to tackle these issues with the coincidence limit, it is useful to interpret
the above Yangian symmetry of Feynman integrals (5.1.3) as Ward identities for the
corresponding correlation functions (5.1.2) in the bi-scalar fishnet theory:

I Z(@1) - Z(20) X (Tas1) X (Tass) Z(Tarsr1) - Z(T2018) X (T204511) X (T20128))
=0, (5.1.13)

where for brevity we have omitted the trace from the correlation function (5.1.2). Note
that (5.1.13) is a somewhat formal identity, since Yangian symmetry of the Fishnet
action has not yet been proven. However, it is still a true identity at the level of
Feynman integrals.

In order to elucidate the coincidence limit, it is necessary to distinguish the rep-
resentation of the conformal algebra on coordinates J4 and the representation on the
fields J4. On a single leg, the field and coordinate representation are essentially related
by a minus sign, *

JA®(x) = —JHA)®(x), (5.1.14)

where the scaling dimension A in the coordinate representation generator is dictated
by the scaling dimension of the field @.

However, when acting on multiple fields, the field representation carries an ad-
ditional label that encodes on which of the fields the operator acts (in contrast to
the coordinate representation which carries a label that encodes which coordinate the
operator acts on), i.e.

IND(x)) ... Pp(0)) = —=P1(21) ... (T Dp(r)) . .. Pp(), (5.1.15)

where &; € {X, Z, X, Z}. The distinction between these two representations becomes
non-trivial as soon as we consider products of fields that are evaluated at the same
coordinate. As an example, consider the action of an operator in the field representation
on the product of two fields that depend on the same coordinate:

TPy (21)Po(21)) = — (TP (21)) Py (21). (5.1.16)

In contrast, an operator in the coordinate representation cannot distinguish between
the two fields in this product and by the Leibniz rule naturally acts on both fields?

JHA+25) (@1 (1) Do (1)) = (I3 (A1) D1 (1)) P (1) +P1 (1) (1 (A2) P (1)) (5.1.17)

Therefore, the field representation allows us to act separately on different fields that
depend on the same coordinate. As we will discuss next, this provides us with a natural
extension of the above Yangian symmetry of square fishnet diagrams to diagrams with
coincident external legs.

!This ensures consistent commutation relations due to JAJB® = —JAJBd = JBJA (see [187] for
more details).

2Note that the scaling dimensions only ever appear multiplicatively in the conformal generators
(5.1.5). Hence, while they could be shuffled around on the right hand side of this equation, we have
picked a physically sensible representation for this identity.
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Before the coincidence limit, the Yangian level-one symmetry may be written in
two equivalent forms of the following level-one Ward identity for the fishnet correlator:

JA =74 = 0. (5.1.18)

Here the level-one generator in the field representation takes the form

n n k-1 n
TV =I5 50t =380 Y Y ITIE - siT0 (5.1.19)
Jj=1 k=1 j=1 j=1

Naturally, since all fields in the fishnet correlators depend on separate coordinates, the
field and coordinate representation are virtually indistinguishable.

We now take the limit of the Yangian Ward identity for fishnet correlators (5.1.18) to
a Ward identity for Basso—Dixon correlators. This limit consists of taking the external
points x; on each of the four sides of the square fishnet to be coincident according to

T; — T, for j=1,...,¢q, (5.1.20)
Tj — To, for j=a+1,...,a+ 0,

T; — T3, for j=a+p8+1,...,2a+ 0,

T — Ty, for j=2a4+08+1,....2(a+ ).

Graphically the limit is illustrated by the following figure:

2(a + B) a1
x2(o¢+6) Ta+1
. = (5.1.21)
2aa+ B8+ 1 a4+ B
T2a+B+1 Ta+p
20 + B a+B+1

T20+8 -+ Tatf+l

Importantly, while the limit of the Yangian Ward identity in the coordinate rep-
resentation suffers from the subtleties due to the identification of points, it trivially
commutes with the level-one generators in the field representation:

(5.1.22)




However, translating the Ward identity into a differential equation for Feynman inte-
grals, analogously to (5.1.10), becomes more subtle. To illustrate this point, consider
the level-one generator acting on the product of two fields whose coordinate arguments
are taken to be coincident:

TAD, (11) o (1) = L fApe[ICP, (21)][TF Py (1)) # TAD, (1) Po (1) (5.1.23)

The last inequality implies that we cannot simply replace the field representation J
of the conformal (Yangian) generators by the coordinate representation J. However,
we can replace the generators in the middle term of the above equation, where each
conformal generator acts on a single field:

5/ e IT D1 (20)][I3 Pa(21)] = 54 o lIT Pa(w1)][I7 Pa(a1)]. (5.1.24)

When inserting the above identities into a correlator, this will lead to correlators in-
cluding descendant fields. Since the conformal generators are represented by first-order
differential operators with vector indices, we will thus find true vector integrals con-
tributing to the Ward identity, where these derivatives act on single propagators, but
cannot be pulled in front of the whole integral.

Notably, in other contributions to the Yangian Ward identity, the field representa-
tion of the level-one generators can be replaced by the coordinate representation, for
instance

3/ oI @y (1))@ (1) [JF D3 (w2)] + 5 e®i (21)[J5 Po(21)][T5 Ps(2)]

= 3 peIT P (1) P (1)) [T Ps(a2)], (5.1.25)

which is due to the fact that the generators J 3-4 are first order differential operators and
where we assume that the A; are equal for fields evaluated at equal points.

Similarly, local contributions to the Yangian level-one generator, like the terms
multiplying the evaluation parameters s,, can be replaced by the coordinate space
generators as e.g.

a+1
Z Sa;ﬂf@l(ml) Ce ¢a<x1)@a+l($2) = (Slj‘fx + 32‘]124)@1(3:1) e @a($1)@a+1(x2),
a=1
(5.1.26)
as long as the evaluation parameters associated with fields situated at the same point
xr1 are equal, i.e. in the above example s; = - -+ = s,.

With these points in mind, we can now write the above Ward identity for an a x
Basso-Dixon graph in the form?

0 = I 1 (1 (1) Po(21) . . . P (22) P (4)) = T 1a(B1 (1) P (1) . . . Py (24) Py (24))

+1 Z fAae(®i(z1) .. [JPu(2)] ... [JB®y(21)] ... Po(1)Pasr(22) . .. Pp(4))

aj—lﬁ
—f-% Z fABc<€p1(I'1) e ¢a(x1)§pa+1(5p2) e [Jg@a(J?Q)] Ce [J2B¢b(l‘2)] Ce (pn<l'4)>
+(two similar). (5.1.27)

3We always consider single-trace correlation functions. Here we omit the trace for brevity.
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Here the notation |;, indicates the range of the summations in the definition of the
level-one generator (5.1.19). This is the consequence of Yangian symmetry for the
infinite class of Basso—Dixon integrals.

In order to understand what this identity means explicitly, let us again specify the
generators J4 and J4 to the level-one momentum operator P* and P“ respectively, see
(5.1.9). With these expressions the above level-one Ward identity becomes

= 13“|14<¢1(a:1)d52(x1) Dy (24) D (14)) (5.1.28)

—|— Z { @1 l’l A ® ( )] e [8{‘@17(:51)] ce ¢a($1)¢a+l($2) Ce @n($4)>

— (D1 (1) ... [0 Do (1)] . . . [AsPp(21)] . . . P (1) Py (22) . .. Pr(z4)) }
a+p
+2 Y {(@1(31) - Pa(@1)Pasi (22) . . [AuDy(@2)] .. [05Dy(2)] . . Dr(4))
a<b=a+1

- <¢1(l’1) e @a($1)¢a+1($2) [N [82“45@(372)] Ce [Ab@b(xg)] Ce Qpn(I4)>}
+(two similar).

Notably, due to the anti-symmetrisation j <> k in (5.1.9) and the symmetry of 7"
in v and p, the T"*’-contribution to pr drops out of the last four lines of the above
equations.

If we assume that the above fields have distinct scaling dimensions 4A,, the above
is the final form of our Ward identity. Note, however, that this does not correspond
to the above bi-scalar fishnet theory. However, this finds application in the case of the
D-dimensional generalisation of the fishnet theory of [11], as we describe later.

In the four-dimensional fishnet theory we consider ordinary scalar fields with A, =
1. Then the coincidence limit implies that the scaling dimensions A; entering the
coordinate representation §”|14 in the above expression take the values

a B
=Y A, =0, Ny=Ay=) A= (5.1.29)
a=1

a=1

This is consistent with the choice of scaling dimensions that implies level-zero invariance

of the Basso—Dixon integrals:
JNA) s = 0. (5.1.30)

Using A, = 1 (and multiplying by an overall factor 2i), we evaluate one sum of each
double sum to find

2P|, (B (11)Bo (1) . . . By (24) Dy (24)) = (5.1.31)

67

D 2a—a—D{(Di(x1). .. [0 Pu(21)]. . Pol(a1)Pata(22) ... Dy(24))

a=1

FAP1(21) - Parpir (w3) - [0 Payars(w3)] - - - Poarp(w3) . Pulwa)) }
8
37— 8= D{(@1(e1) .. Ba(1)Pass(2) - [HPura(2)] . By () . By (2)

a=1

+ (D1(21) ... Poayp(3)Praspr1(2a) . . [0 Patoars(Ta)] . .. Poarpy(2a) }-
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Hence, the Yangian Ward identity implies that acting with the four-point coordinate
space level-one momentum generator on a Basso—Dixon graph yields a combination of
correlators of n — 1 scalar fields @, and a single descendent field 0/, (z). We will refer
to the left hand side of (5.1.31) as the differential contribution to the Ward identity,
and the right hand side as the vector contribution. In section 5.2 we explicitly evaluate
both sides of the equation as a constraint on conformal functions.

5.1.3 Examples
To illustrate (5.1.31) let us display a few simple cases graphically.

Box. In the simplest case of the box integral with a = = 1 the vector contribution
on the right hand side of (5.1.31) vanishes identically and we recover the statement [10]

x
PH|yy 4 +x2 = 0. (5.1.32)
T3

Double Ladder. The next simplest example is the double ladder integral with a =
2,8 =1, for which the Yangian Ward identity reads

T

T
~ H
2@PM|14 Tq T2 = — T4
Zs3 Zs3
T
n
Zs3

Ty 4+ T4

Ty 4+ T4

5.1.33)

T
W
1)
€3
T
Z2 (
7!
€3

Here we use slashed lines to denote propagators that carry an additional derivative.
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Window. As a final example, the Yangian Ward identity for the simplest integral
with a two-dimensional lattice of integration points, the window integral,* reads

il 1 gl
7 7
2iPH|1y 24 Tog = — T4 T2 + @4 T2
xs T3 Zs3
1 il
I
— T4 T2 4 T4 z2 F (4 more).
1
T3 €3

(5.1.34)

5.2 From Correlators to Feynman Integrals

In order to understand the above relations in terms of Feynman integrals, let us ex-
plicitly evaluate the different contributions. Due to conformal level-zero symmetry, we
can write the Basso—Dixon correlator in the form

« Ve 7Q g ) 52(15
RS <tr(Z (1) X7 (22)Z (xs)Xﬁ(M)» = 2= ﬂ¢a5<uvv)7
L13L24
(5.2.1)
where u and v are the four-point conformal cross ratios
2 .2 2,2
u = 12t v = 21403 (5.2.2)

2 20 2 2 ¢
T13L24 T13L24
I3 can be expressed as a single a8-loop Feynman integral

52@5

a B
o= 5 [ T (M o T ) G2

(Tjp—x
Lm=1 J=1 k=0 Ik jh+1) =0 k=1 VIR

where x,0 = X1,Taq1,; = T2, Tipgy1 = ¥3,To; = X4, for @ = 1,2,...,a and j =
1,2,..., 3. As described in section 2.3.5, the functions ¢,z are known in closed form,
via the Basso—Dixon formula (2.3.70).

4This diagram is referred to as the window because of its form in dual position space. In position
space it resembles a shuriken.
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In the Yangian Ward identity we also encounter a version of this integral where one
external leg carries an additional derivative, i.e.

=S It (22 I L1
I“’ = / Az, ’%—
s 7-['2045 I,m=1 xn,l - $1)2 j=1k=0 ($] k= z] k+1 2 =0 k=1 x] k — xj+1 k)
(5.2.4)
where n = 1,2,..., a. Integrals containing derivatives acting on points different from

xq are related to [ g; via permutations of the external points. For convenience we
henceforth omit the dependence on the fishnet theory coupling constant 2 in expres-
sions for I,5 and [ (’jﬁ"

5.2.1 Ward Identity in Terms of Feynman Integrals

Here we analyse in detail the left and right hand side of the Yangian Ward identity for
generic Basso-Dixon integrals (5.1.31).

Differential Part of Ward Identity (Left Hand Side). Using the following values
for the scaling dimensions and evaluation parameters entering the level-one momentum
generator

A= (o, B8,0,8);, s;=—(0,1,2,3);, j=1,....4, (5.2.5)
we act with P*, defined in (5.1.9), on (5.2.1) and find the general expression
- 4
2iP' o5 = ——55 Km + ”“"34)@35%5(%1}) + (”“"23 + x‘“)vDﬁf%ﬁ(u?v)},
2152 vlo @ x33 TG
(5.2.6)

with the differential operator

D = af + (a+ B+ 1)vd, + ((a + B+ Du — 2E2)9, + 0?02 + (u — 1)ud?2 + 2uv0,0,.

(5.2.7)
This result, if tedious to derive, is a simple consequence of the chain rule. In the
following we will use the shorthand

H; = 2iP"L,5. (5.2.8)

Using conformal symmetry one can argue that the coefficients of the vectors x?k / x?k
are in fact independent in the Yangian Ward identity [10]. Let us thus investigate
these coefficients on the right hand side of the equation (5.1.31) in the following. For
completeness we note that D2 and D2 are the special cases v = 7' = (a+ 3)/2 of the
differential operators that are known to annihilate the Appell hypergeometric function
F42

Dg‘fw, :(aﬁ +(a+ B+ Dud, + ((a+ B+ 1w —~)0, +u?02 + (v — 1)vd? + 21)u8u8v),

DY =aB + (a+ B+ 1)vd, + ((a+ B+ D)u — )8, + v?0% + (u — 1)ud? + 20ud,d,).
(5.2.9)

Notably, the conformal box integral for generic propagator powers satisfies homogenous
Ward identities, and so is annihilated by D297 and D2%77". Therefore it can be
expressed in terms of Fy, with the parameters «, 3,7y, relating to the four propagator
powers [10].
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Vector Part of Ward Identity (Right Hand Side). Just like the scalar inte-
grals (5.2.3), all vector integrals of the form (5.2.4) satisfy (level-zero) conformal Ward
identities:

DIl (w1, ... 2q) = 0, (5.2.10)

(K“n,,p + 2i(0bxy , — 5;%1’1,)) Iggl(azl, coyxy) = =208 g (2, . ., 24), (5.2.11)

with scaling dimensions A; = (a+ 1, 3, «, ). These identities can be derived straight-
forwardly by commuting the homogeneous Ward identities for the scalar integrals with

the extra derivatives contained in the vector integrals. The general solution to (5.2.10)
and (5.2.11) takes the form

20 28 x‘fz 8 x‘1‘3 8 l’ﬁ 8
n e} [} leY
w3y Loy = =5 Fon (u,v) — =2 Fyy (u,0) — = Fii(u, v), (5.2.12)
T L3 L1y

where the coefficient functions further need to satisfy
F;g(u, v) + Fgaf(u, v) + Fzg(u, v) = Ius(u,v), (5.2.13)

foreachn=1,2,..., a.

5.2.2 Examples

We present here explicitly the form of the Yangian Ward identity for all Basso—Dixon
graphs up to four loops.

Double Ladder. We consider the correlator (5.2.1) for a = 2,5 =1

T

(t2(Z(21) 2 (00) X (22)Z () Z 3) X (22))) = «% B, (5214)

T3

which is represented by the well-known double ladder integral

diz, d*z 1 1
121:/ e 75 = 13 ¢2(u,v). (5.2.15)

2 w2 (%1%3%4)%31)(9551%21%3) L1334

We would like to understand what the Yangian Ward identities (5.1.18) imply for the
double ladder integral. Therefore we specialise (5.1.31) to compute the action of the
level-one generator P# on the four-point correlator (5.2.14):

HY = 2iP*|}, (tr(Z%(21) X (22) 2 (23) X (24))) - (5.2.16)

The Yangian Ward identity implies that

: (5.2.17)



which is another representation of (5.1.33). Explicitly, we see that evaluating the
four-point coordinate space level-one momentum generator on the four-point corre-
lator (5.2.14) yields a linear combination of correlation functions involving a single
descendant field. Let us focus on the single contribution

2182 = (t2(Z (1) |04 Z (1)) X (22) Z2(23) X (24))) (5.2.18)

where the vector integral I%;” is a specialisation of (5.2.4):

o [112 /d%a d*xy 1 (8“ 1 ) 1
21 — 2 2 2 .2 .2 .2 1,2 2 .2
TS T T T 3T 54Ty Tp1/) LhoLps

d4 ad4 M
:2/ TaC T Zb (5.2.19)

2 2 2.2 .2 .2 4.2.2°
T T T T3T sl Ty LTpoTh

We can then represent Hj| in terms of antisymmetrisations of 1'51’2:
HYy = (2157 — my 4 m4) — 1 4 23, (5.2.20)

Moreover, using (5.2.12) we find the following vector decomposition for I4;*:

4 2 2 I/fQ x’f:s xlf4
T1305, 17" = ——Fa(u,v) — 5= F3(u,v) — = Fy(u,v). (5.2.21)
T12 I1s L1y

By an explicit Feynman parametrisation one can obtain integral expressions for the
conformal functions F;(u,v) which were useful for numerical checks, see appendix A.
From (5.2.13) the vector coefficients Fj(u,v) further satisfy

Go1(u,v) = Fy(u,v) + F3(u,v) + Fy(u,v). (5.2.22)

This can also be seen by contracting both sides of (5.2.21) with —z{ and sending
x1 — 0o with a conformal transformation. Under the transpositions of points x; <> x3
and xo <> x4 the cross ratios are exchanged u <> v. Using this fact and (5.2.21) we
calculate HY| in terms of the F; as

402 HY =9 x_/f? x_g4 F —_F
T13Toylly = 5+ —5 | [Fa(u,v) 4 (v, )]
Tia T3y
5553 1321
=2\ =5 + = | [Fa(v,u) — Fy(u,v)]. (5.2.23)
Ta3  Tn

Comparing (5.2.23) and (5.2.6) we recover the following constraint on the components
of the vector decomposition Fj:

2uD%,h21 = Fa(u,v) — Fy(v,u), (5.2.24)

and the same equation with v and v swapped. So the Yangian differential operator
acting on the conformal double ladder is a combination of the coefficient functions in
the vector decomposition (5.2.21). The left hand side of (5.2.24) can be calculated
exactly by acting with 2uD?2! on the ladder function (2.3.68). We obtained explicit
Feynman parametrisations of F; in order to check agreement with the right hand side
numerically, see (A.2.13) and (A.2.15).
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Triple Ladder. We consider the correlator (5.2.1) for a = 3,5 =1

(tr(Z°(21) X (22) Z°(23) X (24))) = 24 T2, (5.2.25)

T3
which is represented by the triple ladder integral

/ d*z, d*z, dz, 1
I3 =

T 7w 7 (val-’Bigfvimib(96519323)%50(%31%32:533)'

(5.2.26)

Again specialising (5.1.31) to this case will lead to information about certain vector
Feynman integrals, which represent correlators containing a descendant field. In this
case there are a priori two independent vector integrals which can appear

I = / d4f“ d4"§b d4fc 5 Lo : (5.2.27)
™ 7T (%1%3%4)952{;($g1x§3)$zc($§1$§2x§3)

I = / d4f“d4fbd4f” s i . (5.2.28)
™ 7w (%1%3%4)%%&;(xg1xz3)$§c($21$229533)

These are independent in the sense that they cannot be mapped into each other under
permutations of the external points. However upon computing

HY = 2iP*|y, (tr(Z* (22) Z° (23) X (24))) (5.2.29)
using (5.1.31) we find that only I%; contributes
HY = (A5 — 2y > 14) — 1 > 3. (5.2.30)

We expand I£;” in a vector decomposition (5.2.12)

@ u
a2, I = 2 Go (u,0) — s 13 Gy (u, 0) — 2 Ga(u,v). (5.2.31)
Lo x13 Lig

Comparing (5.2.30) and (5.2.6) we find the constraint
uDy,¢31 = Ga(u,v) — Ga(v,u), (5.2.32)

and the same equation with u and v swapped. Integral expressions for G;(u,v) are
given in appendix A, which were used to numerically confirm (5.2.32).

Quadruple Ladder. For a = 4,5 =1 we have the correlator

(tr(Z*(21) X (22) Z*(23) X (24))) = 24 Ty (5.2.33)

€3
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which is represented by the quadruple ladder integral

I / d*z, d*zy dx,. d*xy 1 (5.2.34)
41 = . (5.2.
mtomt P w (05 hahg) Ty (05 0 ) Wh. (1 025) 2 (05 T Ts)
In this case there are also two independent vector integrals which can appear:
e _ / d*z, d*zy dz,. d*xy zh
. mromt o w (05w, vy (U5 0t ) The (12 025) 2 (0 T Ts)
(5.2.35)
s / d*z, d*xy diz. d*zy xty
. mtomt o w (0w, vy (U ) vh (v 1) 12 (0 050 T)
(5.2.36)
We compute R B B
HY| = 2iPP| 1y (tr(Z*(21) X (22) 2 (23) X (24))) (5.2.37)

using (5.1.31) and this time we find that both vector integrals contribute
HY = (615" 4+ 2I1% 4+ (2I15° 4 29 <5 4) — T > T4) — Ty > T3
= (61" + 210 — 1y > 14) — 11 & 23 (5.2.38)
We decompose (5.2.35) and (5.2.36) as (5.2.12)

8 2 pid _ mlfzv xlfsv xl Ny, 9
w3040y = ——5Va(u,v) — 5 Vs(u,v) — 1(u, v), (5.2.39)
12 $13 3,
w3 Thy o 13 Ty
a3 107 = =2 Va(u,v) — 2Va(u,v) — 52 Va(u, v). (5.2.40)
L2 x13 9514

Then comparing (5.2.38) and (5.2.6) leads to the following constraint between V;(u,v)
and V;(u,v)

2uD;, da1 = 3(Va(u,v) — Va(v,u)) + Va(u, v) — Vi(v,u), (5.2.41)

and the same equation with v and v swapped. This was numerically verified using the
Feynman parametrisations in appendix A.

Window. For a = 8 =2, we consider the correlator (5.2.1) which reads

Z1

(6r(Z°%(21) X*(22) 2% (23) X (24)) ) = 24 T2 . (5.2.42)

T3

The corresponding window integral takes the form

I /d4xa d*z, dx. dizy 1 (5.2.43)
22 = 2.
G R T A CiA oY A R R B Cr e W
1
= —— P22(u,v).
1’%39524
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Let us write (5.1.31) specialised to this case in full:

Hiy = 2iPH) 1y (Z22(21) X P (29) 2% (23) X2 (4) ) (5.2.44)
= (Z(21)[0) Z (1)1 X*(w2) Z*(3) X*(w4) ) — ([0F Z (21)] Z (1) X (22) Z*(03) X (4))
(Z%(21) X (s a“X(@)] *(3) X2 (24)) — (Z%(21)[05 X (22)] X (22) Z*(23) X*(24))
(7 1’1)5( )Z(3)[05 Z (23)] X* (w4)) — (Z° (1) X*(202)[05 Z (23)] Z (w3) X (4))
)

+ (2% Xz(xz)Z2(xs) (24)[04 X (24)]) — (Z°(21) X*(2) Z*(w5) (0§ X (24)] X (24)) ,

~ +

where in this equation we omitted traces for brevity. We focus on the first correlators
in the second and third lines of (5.2.44) which read

21557 = (tr(Z(21) [0} Z (21)] X2 (w0) Z*(23) X *(24)) ) , (5.2.45)
27[5232 = <tr(Z2(x1))_((:v2)[GSX(xQ)]ZZ(xg)XQ(m)» ) (5.2.46)
Here I is the vector integral
d*z, d*zy diz,. d*xy xh
152’2:/ 2 2 2 2 (2 2 \.2 (42 2b12 N a o o (0-247)
T w owt o w (@ @) T (T T ) T (051 ) Tog (T35, ) T,

and 7 is the cycle which maps z; — x;11, where we identify x5 = z;. In fact, all
integrals appearing in (5.2.44) can be recovered from [5‘22 by a permutation of points,
which at most exchanges u and v. Computing Hb, in full we find

Hby = 2(I55° + T1I5° — 1y < m4) — 11 45 3. (5.2.48)

We expand I%? in terms of its vector components

4 4 rp Ty 3 why
X3y by = _x_2W2(u7’U) - $—2W3(u, v) — x—2W4(u, v). (5.2.49)
12 13 14

Under the cycle 7 and transpositions x; <> x3, x9 <> x4 we have u <> v. Using this and
(5.2.49) we compute (5.2.48) in terms of the W;(u,v) to be

T)amy, Hyy = —4 (% + %) (Wa(u,v) — Wy(v,u)) + (21 <> x3). (5.2.50)
12 T3y

Comparing (5.2.50) and (5.2.6) we have the constraint
uDy as = Wa(u, v) — Wi(v,u), (5.2.51)

and the same equation with u <+ v. The structure of (5.2.24) and (5.2.51) persists for
general Basso-Dixon correlators: uD?¢,4 is equal to a linear combination of coeffi-
cients in the vector decomposition of vector integrals related to ¢,s. For higher o, 8
more vector integrals "', and hence more independent vector coefficients, contribute
to the Ward Identity.
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5.3 Yangian Ward Identities

In the previous section we saw that the Yangian differential operator uD2? acting on
the conformal function ¢,z is equal to a combination of coefficients of the conformal
expansion (5.2.12) of certain vector integrals. As described in section 2.3.2, such coeffi-
cients can be written as linear combinations of higher dimensional scalar integrals with
modified propagator powers. We exploit this fact to rewrite the vector coefficients as
such, and reformulate the Yangian equations in the form of (5.2.24) as a formal identity
for ¢ap.

Doing this for the double ladder vector integral (5.2.19), the vector integral coeffi-
cients Fy, F3, Fy defined in (5.2.21) can be expanded as

_ 4.2 2 (76 6 6 6
Fy(u,v) = 27325427, (]2,2,2,1,1,1,1 1901010 T lo21121 ]1,2,2,1,1,1,2)7 (5.3.1)
_ 6.2 (16 6 6 6 6
Fy(u,v) = 2313, (11,2,1,1,2,1,2 + 12,2,1,2,1,1,1 + [1,2,1,2,2,1,1 + [1,2,1,2,1,2,1 + [1,2,1,2,1,1,2)7
(5.3.2)
_ 4.2 2 716
Fy(u,v) = x13=73249514[1,2,1,1,1,2727 (5.3.3)
. . 6 .
where propagator powers are assigned to the integral I)) . as follows:
T1
V1 Vo
Ty 2 =2 (5.3.4)
Vs V4
T3

Note that essentially the same calculation to arrive at (5.3.1)-(5.3.3) was described in
section 2.3.2, see (2.3.35)-(2.3.37). Interestingly, Fy(u,v) is given by a single mani-
festly conformal 6-dimensional scalar integral. Note that Fy(u,v) and Fj(u,v) are not
manifestly conformal when expressed as (5.3.1) and (5.3.2).

5.3.1 Conformalisation

In general, performing a vector decomposition on the integrals appearing on the right
hand side of the Yangian Ward identities will lead to expressions for the vector coef-
ficients which are not manifestly conformal. However, they can always be rewritten
using manifestly conformal 6-dimensional integrals, as will be described in the follow-
ing. To explain the method, let us consider some conformal function of four external
points

f(z1, 29,23, 24) = f(u,v), (5.3.5)

with the usual conformal four-point cross ratios (5.2.2). If we consider the limit of
one point going to infinity, e.g. x1, we see that the cross ratios remain finite and the
function is given by

hi)n f(xla %2,%3,1‘4) = f(av f(’}) (536)

with the reduced cross ratios

a=1% 5=12 (5.3.7)
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The same function of reduced cross ratios can be reached by performing a translation

f($1,$27373, 374) = f(07372 — X1,X3 — T1,Tq4 — 1‘1) = f(O, Y2, y37y4)7 (5-3-8)

and then an inversion on s, y3, y4

Y2 Ys Y [
F(0,92,y3,y1) = f (0, y—ﬁ, y—?;, y—‘é) = f(a, ), (5.3.9)
2 Y3 Ui

where the last equivalence uses the identity

AN 2
(y—2—y—g> = (5.3.10)
Y; Y; Yi'Y;

Since all of these operations are linear, we can perform them for all integrals in (5.3.1)
and (5.3.2) separately, keeping in mind that they will lead to an identity between
integrals only when summed together. To turn this observation into a recipe for con-
formalisation, note that the steps in (5.3.8) and (5.3.9) are invertible, whereas sending
one point to infinity is not. Hence, starting from a non-manifestly conformal sum of
integrals, we can reach a manifestly conformal expression for the same quantity via the
following steps:

e Send one of the points x; to infinity.
e Perform an inversion on the remaining points and the integration variables.

e Restore the eliminated point by translating the remaining external points by x;.

Example: Double Ladder Conformalisation. As an example, consider the inte-
gral a1503,03,1% 55 5, 4, which appears in the sum (5.3.1). Taking the limit z; — oo,
we are left with

2
x
. 4,2 2 716 _ 6,. 16 24
hin T35, 1907 001911 —/d v Ty (5.3.11)
T1700 LopT3pl3aLaaL ah
Following the above recipe, we now perform an inversion
w5
= = (5.3.12)
j 22
J

on this integral. To rewrite it in terms of squared differences of z-variables, we also
n
x

a,

perform the substitution z,, — —* for which
’ a,b
d633 b
ey = —5 (5.3.13)
x
a,b
Then using (5.3.10) the integral becomes
2 26,2
T raasSy
/d6xad6xb YR 24 55 —>/d6xad6xb T 4223 i4 5 (5.3.14)
LopT3pL3aTiaL ab aloLopl3pTL3a 10T al
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Now we restore the point x; by substituting x; — x; — x; and arrive at the final
replacement

4.2 2 16 6 .2 2 16
L1304 201 991211 = T13T24% 1209021211 (5.3.15)

Graphically, the steps we have performed can be represented by

1 2 2 2
1 2 1 2

—s 13, =1 — 282507, —L 2— . (5.3.16)
2\/1 2§;1 2\/ 1

Let us stress again that this is not an identity between integrals but only valid if the
integral on the left-hand side appears as a summand in some conformal expression.
The full conformalised result for Fy and Fj in (5.3.1) and (5.3.2) reads

4 2 2
L13L94L12

_ 2.2 4 (76 2 16 2 16
Fy(u,v) = 235054213131 51102 + T13l20212100 + T1al2221,121) (5.3.17)

_ .2 6 (16 6 2 76 2 76
Fy(u,v) = 34275l 5 10010 + Ion12002 + Tisl2010010 + Tlals10121)-  (5.3.18)

5.3.2 Double Ladder Ward Identity

In the previous section we discussed how to make a tensor decomposition of the vector
integrals appearing in the right hand side of the Yangian Ward identities, and con-
formalise the resulting expressions. We proceed to present the refined Yangian Ward
identities for the Basso—Dixon integrals up to four loops, starting with the double
ladder.

Let us introduce operators A; which raise the propagator power v; by 1, and also a
dimension-raising operator d* which increases the dimension of an integral D — D + 2
and adds a factor of 1/7 per loop. Then using (5.3.1)-(5.3.3) the Yangian constraint
(5.2.24) for the double ladder can be written as

[2’&1)12“1] - x%2d+A3(A2(A1 -+ A5 + Aﬁ + A7) — A1A7>:| ¢21 == O, (5319)
(20D}, — 2%,d" Ag(AL(Az + A3 + As + A7) — AsA7)] o = 0,

where we recall the propagators are labelled as

T

vy V2

Vol ti (5.3.20)

Vs V4

T4
x3

The above equations (5.3.19) are mapped into each other under =y <+ x4, which cor-
responds to u <> v. One can obtain two more equations of this type by swapping
x1 <> x3. There are two ways to proceed to simplify (5.3.19). Firstly, one can use the
manifestly conformal version (5.3.17) of Fy(u,v). This leads directly to

[2uD2! — 2,dT Ay g 3(233A5 + 27, Ag)]pa1 = 0, (5.3.21)
[20D2, — 27,d* Ay 5 6(275 A4 + 27, A5)] g1 = 0.
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Secondly, (5.3.19) can be simplified by acting with 0,2, on the Schwinger parametrisa-
tion (2.3.22)

a ﬁ/oo d()éja?jil eXp( .F/Z/{ H/ dOé] ax§2FeXp(—f/u>
m%z ey 0 ij /o Z/{S

(5.3.22)

vi—1
B (ﬁ /°° daja’ ) (a3 asaias +asazag+aasar+asazar) exp(—F /U)
us ’

Where U and F are the Symanzik polynomials for the double ladder, given in (2.3.30)
and (2.3.31). Using (5.3.22) for v; = 1 we can write (5.3.19) as

[2@21 + 230, + 202, Ay A3A7} o1 = 0, (5.3.23)

[21)1)21 + a7,0,2, + 2$14d+A2A6A7:| ¢ = 0.

Here one should take the xfj in the Schwinger parametrisation to be all independent.
Replacing 27,0,2, ¢(u,v) — udy¢ and 23,02 ¢(u,v) = vd,¢ and dividing by 2 we have
finally

up + ;‘@ + ahdt A AgAr | o1 =0, (5.3.24)

[ D21 + = 0 + $14d+A2A6A7] ¢21 = 0.

Interestingly, (5.3.24) reveals that Fy(v,u) = z%,d" A; A3A7¢9;, a 6-dimensional con-
formal integral, can be expressed as a (shifted) Yangian differential operator acting on
the double ladder function ¢9;. Both (5.3.21) and (5.3.24) are manifestly conformal
representations of the Yangian Ward identities for the double ladder. We find that
in general acting with 9, on ¢,s3 leads to the most compact Ward identity. However,
we still find the representation (5.3.21) useful in the context of separability in two
dimensions, see section 5.4.

5.3.3 #¢-Ladder

We can write down the Ward identities for the general ladders algorithmically. Recall
the first double ladder equation with the insertion of a derivative 0, reads

D21 + 8 + xud A137 §Z§21 = 0 (5325)

where we abbreviate A, ;, i = Aj; A;, ... A; . We define the generalised triple ladder
as

(5.3.26)

D /deadDa:bdDmc 1
.[37 =

D/2 -D/2 ~D/2 2uv1 2v7 2ug\ 2v9( 2v2 2ug)\ .2V10( .23 2V4 2U5
T T T (Tt was o )y (T 2 15 )y (2w iy )
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which can be represented in diagrammatic form as

v,
Ty 8

T3 . (5.3.27)

We define the conformal function in the unit-propagator four-dimensional limit as

4 4 4 6 .2
d31(u,v) = / o oy A aties : (5.3.28)

2 7w 72 (w219€§3$§4)xib@%ﬁf?g)wic(wilwizl“?s)

Applying the same methods on the Ward identity (5.2.32), the triple ladder equation
takes the form

[uDiqu + u@u —|— 2$%2d+A17479710 + $%2d+A274710(A1 + A7 + Ag + Ag)] §b31 - O (5329)

The general ¢-ladder has 3¢ 4+ 1 propagators, to which we assign propagator powers
analogously to (5.3.20) and (5.3.27):

1P = : (5.3.30)

€3

from which the conformal function is defined as
do = a2ad 1P (5.3.31)

The quadruple ladder equation takes the form

3
UD;&, + iuau + 3$§2d+141,5,11,12,13 + 2$%gd+A2,5,12,13(A1 + Ag+ Ao+ A11) (5.3.32)
+ $%2d+A3,5,13 (A1A2 + AgAy + AgAs + A1 Ag + A1 Ag + AgAg + AgAjo+
A1 An + AgAn + AgAnr + AroAnr + ArAre + AgAre + Aoz + A11A12)] ¢a1 = 0.

Note the 15-term expression on the second two lines of (5.3.32) is the ¢ polynomial for
a double ladder with Feynman parameters (aq, ag, ag, ag, aqg, @11, 12), cf. (2.3.30). If

UY) is the U polynomial for the j-ladder where we replace o — A then we can rewrite
(5.3.32) as

3
(5.3.33)

where 1/11(’19),10711 = Ay + Ag + Ajp + Ayq is the U polynomial for the box, or 1-ladder.
This pattern persists for the higher ladders

0—2
(-1 | |
[UDﬁINL 5 Uau+x§2d+§ (C=1=7)Aji1011.204315,... 3f+1u1(,j.?.7j72£—j+2 ..... 2z+j+2]¢1z1=0,
Jj=0

(5.3.34)
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where we take //(?) = 1. This has been verified explicitly up to the sextuple ladder. One
can apply the algorithm presented in section 5.3.1 to render the expression manifestly
conformal and more compact. For example, the triple ladder equation (5.3.29) becomes

[ D31 + Ua + 32(312(31 Al ,4,9,10 + $12d Al 2,4 10($13A7 + .T14A8)} (,b31 = 0, (5335)
and the quadruple ladder equation (5.3.33) becomes

3
[ D41 + u@ + 61’12(1 A151112,13 + 39612(1 A12512 13(96’13A9 + 35141410) (5.3.36)

+ a3,d* A3,5,13(3313A2,9,11 + 273 A1 + 214 As 1001 + 21341280 + 1571, A12810) | P41 =0.

5.3.4 Window

We also present the Yangian Ward identities for the conformal window integral, given
by

by = T4 yli vio o (5.3.37)
T3
with the conformal function defined as
oo (u, v) = alyat, Iy~ P! (5.3.38)
The Yangian equation takes the form
[WD? 4+ udy, + 222" (Avainiolhs 5o 10 + Ao 1ol 1 1)+ (5.3.39)

w3 d T USH 1112 (Arz9(As + As + Aro) + Asaio(Ar + Ag + Ag))+
(A13 4+ A2a)(A11(Ag(As + A7) + A1a(Ag + Aro)))
+ As 4(As + A7) (Ar0.12 — Ag11)) |22 = 0.

5.3.5 Momentum Space Conformal Anomaly

In this section we give a brief overview of how the above Yangian Ward identities can
be mapped to the dual position space. Here the dual x- and p-coordinates are related
by

P = — k. (5.3.40)

We will also refer to the p coordinates as momentum space coordinates, since that is how
they are most commonly seen. To translate the Yangian generators into momentum
space it suffices to follow the arguments of [163] with masses set to zero. There it was
shown that the bi-local Yangian level-one generator P* as given in (5.1.9), maps to
the local special conformal generator in momentum space, i.e. on quantities obeying
momentum conservation we have

Z K. (5.3.41)

wl@
VIEH
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Here the ~ implies that by use of momentum conservation the momentum p,, is elimi-
nated in the quantity acted on, which allows to drop derivatives 8,,.° The generator K;‘
forms part of the following momentum space representation of the conformal algebra:

P?:pé‘7 K?: Naap]— 8pjap —QAjé;;,
Dj =p;-0p, + 4, LY = pfoy —pior, . (5.3.42)

Hence, we can alternatively understand the Yangian Ward identities for P* as anomaly
equations for a momentum space special conformal symmetry. Note that according to
the prescription given in [163], with (5.2.5) for the Basso-Dixon integrals, we here use®

Aj=1+2  j=1,... 4 (5.3.43)
Example: Double Ladder. The Yangian identities for the double ladder Feynman

integral were given in (5.1.33). Due to the above arguments we can formulate them in
momentum space:

1 P4 1 Y& P1 P4
\{A k1 ko / \{A k1 16.2 / \ k'.l ko /

% TR % I IR
\plA k1 ko A]\M/ \mA k1 ko Ap4/

— 5.3.44

+ " ' ( )
Z N 4 IS

where the momentum flowing through unlabelled lines can be determined by momen-
tum conservation. Here the respective momentum space Feynman integrals (green
lines) are explicitly given by

I /d4k1 / d*ksy 1
2 72 k3 (ko + p12)? (ko + p1a3)?(ka — k1)2k3 (k1 + p1)% (k1 + ply)’
(5.3.45)

2 / d'ky / dky u
21 T2 k3 (kg + p12)? (ko + pras) (ke — k1)?ki (k1 + p1)2 (k1 + p1o)’
(5.3.46)

where p;; = p; + p; and pjr = p; + p; + pr. Note that in order to act with K#
on the Feynman integral, we eliminate one (arbitrary) momentum using momentum

®Note that using the definition (5.1.9) of ﬁ, the nth momentum is distinguished on the left hand
side.

6Note that from [163] we deduce the formula A; = (A; + A;41)/2+ s; — sj4+1, which using (5.2.5)
yields Aj =(1 + #, 14 O‘Qﬂ, 14 azﬂ, -3+ O‘Tﬂg)j Eliminating the last momentum using momentum
conservation, A4 does not contribute to the action of K* and we can use the homogeneous prescription
(5.3.43).
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conservation, e.g. ps. Then using (5.3.43) we find the momentum space version of
(5.2.6),

R0 = = [ (B Y uDigonatu ) + (2 + B )uptoustunn)] . 5347
PiSpss L\PT D3 P5 Pl

where py is understood to be replaced by —p; — po — p3. This can then be compared
with the right hand side of (5.3.44).

5.3.6 D-Dimensional Generalisation

Above we have derived Yangian Ward identities for Basso—Dixon integrals with unit
propagators in D = 4. In this section we consider a natural generalisation of that
derivation for integrals with generalised propagator powers in D spacetime dimensions.
Following the derivation of (5.1.31) naturally leads to a two-parameter family of D-
dimensional Basso—Dixon integrals. Remarkably, these integrals can be identified with
Basso-Dixon correlators in the D-dimensional fishnet theory proposed in [11], defined
by the Lagrangian

£2D = N, tr [—X(—f)“c’)“)“X — Z(-9,0M37 + §2XZXZ], (5.3.48)

with the anisotropy w € (0, D/2). Like the original fishnet theory, this is a non-unitary
theory of scalars X, Z. It is also non-local, except for very special choices of D,w,
namely when D € 4N for isotropic w = D/4. Despite this, the theory appears to
be integrable, and the corresponding fishnet Feynman integrals still enjoy a Yangian
symmetry. At the level of Feynman integrals, the vertical propagator powers are w,
and the horizontal ones are w = D/2 — w.

We show how the derivation goes for the generalised double ladder integral. We
consider the four-point correlator

<tr(Z2(a:l))_((a:Q)Zz(xg)X(x4))>wD: Ty — L3 (5.3.49)

which is represented by the modified double ladder integral

D D
21— D/2 —~D/2 (..2w.,.2w.D—2w\ .D—2w D—2w, 2w\  dw..D—2w
mb/2 b/ (229228 oy ) g (2 2y, rig) 5Ty
(5.3.50)

We use the generic expression (5.1.28) with A, = w to obtain the action of P* on the
four-point correlator (5.3.49):

HY, oy =20 |1 (tr(Z2 (1) X (22
=+ w (tr(Z(21)[0)' Z (1)

72 (23) X (24))), (5.3.51)

A\_/._.\_/
—~

8

[N}
WET ~— —
N

[}

(24)))
—w<tf( (01 Z (21))Z (21 (1))
+w (tr(Z%(21) X (2) Z(3)[05 Z (23)] X (24)))
—w<tr(22 (21) X (22)[05 Z (23)) Z (3 X(x4))>wD.



Let us first evaluate the right hand side of this expression. The correlator appearing
in the second line of (5.3.51) can be represented by the integral

dPzx, dPx, x)
2wl :2w/ . ol (5.3.52)
21,wD 1D/2 7D/2 (ﬂﬁgfﬁz‘gfxi_%)]?ﬁ;zw($§£w+l)$£_2w$§§)
2w <xlf2 D T3 why
= —————— | SRFYP(u, ) + “RBFYP (u,0) + AP (w,v) ), (5.3.53)
wlgal 0\, ? oy T

where the conformal vector decomposition (5.2.12) still holds in this case. The other
three correlators are related to this expression by the transpositions x; <> x3 and
zy ¢+ x4. Computing Hy) 5 in full we thus find

p p
:L"llgxﬁ_%HQLLWD = —2w? (% + %) (FeP(u,v) — F¥P(v,u)) — oy <> 3. (5.3.54)
12 T3

In order to obtain the left hand side of (5.3.51) we act with 2iP" on the generic
conformal integral of the form

1
| e p—y (TIETA 5.3.55
21 ‘rzllgxﬁ_Qw 21 ( ) ( )
which yields
=R 4 o 7 H H
P15 = — e (D S upe o (224 T8 )| 5P ),
Ti3 Loy Tip T3y Toz Ty
(5.3.56)

Here the differential operator D2« takes the form

D2P —aB + (a+ B+ 1)wd, + ((a + B+ Du — )0, + v?0% + (u — 1)ud? + 2vud,0,
(5.3.57)

with
a=2w, pf=L-w y=1+% (5.3.58)

Comparing (5.3.54) and (5.3.56) we thus obtain the following Yangian Ward identity
for the (w, D) generalisation for the double ladder:

2uDL P 5P = WH(FSP (u,0) — FPP (v, u)), (5.3.59)

and the same equation with u <+ v. Performing a tensor decomposition as in sec-
tion 2.3.2, this equation can be written in the form

W
(D27 + Sy + e (B - w)* Asr) 650 =0 (5.3.60)

Currently there is no known functional form for the conformal function ¢4. However,
we can use the conformal Feynman parametrisations (A.1.3) and (A.1.5) to verify
(5.3.60) numerically. There is a further representation of the Ward identity which is
analogous to (5.3.21):

2uD2P — 2],dTw? (2 — w) A ps(waiyds + (2 —w) 23, 46)]057 =0, (5.3.61)

and the same with x5 <> 4.
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Generalised ¢-Ladder. The Yangian Ward identity (5.3.34) for the ladders gener-
alises to the D-dimensional theory (5.3.48) as follows:

-1
wD | YT 2 1+ . ~7G-1) wD __
uD,, "+ o wudy,+wriyd E (E_])Aj7f+1,2€+2+j7---73f+1u1,...,j71,2€fj+3,..‘,2€+j+1 i =0
=1

3 (5.3.62)
where U is the U polynomial for the j-ladder where we replace a; - A;j =vjA;, and

DL =af + (a+ B+ 1)vd, + ((a + B+ Du — )0, + 0?0 + (u — Dud? + 20ud,0d,
(5.3.63)

with
a = lw, B=L—w, 4=1+{-1% (5.3.64)

5.4 Separation of Variables in 2 Dimensions

In the previous section we derived the Yangian Ward identities for the ladders in the
generalised fishnet theory ££8. Here we present the fact that these equations separate
in two dimensions.” We begin with the Ward identity for the 2D box integral with
anisotropy w and conformal function ¢,(z, z), which has an exact Yangian symmetry.
The separated Yangian equations for this function represent ordinary differential equa-
tions (ODEs), which can be solved straightforwardly. We then present the separated
inhomogeneous equations for the two-dimensional double ladder.

5.4.1 Separated Ward Identities for the 2D Box

We consider the 2D Yangian invariant box integral with anisotropy w:

T
W Tq 1 1
X = X e _ _
4 — 2 T 2w 22w 2 22w mgwxg_%(bw(Z,Z), (5.4.1)
N al®a2  “a3”ad 13T24
T3

where here w = 1 — w. The homogeneous Yangian Ward identities can be derived by
using (5.3.62) for £ = 1. In terms of z, Z these are

D2, = D Jbu(2,2) =0,  i=1,2. (5.4.2)
Here the differential operators Dy, take the explicit form
D7y =w(l —w)z+2(22 - 1)0. + 2(z —1)02, (5.4.3)
DYy =w(l —w)z + (22 — 32 + 1), + 2(z — 1)°07.
These operators can be linearly combined into a separated form

z

s 1
D=
z—Z

['D‘;1 — D;J — [DZ2 - D‘Z-”’Q} =w(w—1)+ (1 -22)0, + z(1 — 2)0?,

(5.4.4)

zZ—Zz

"The reason for this can be traced to the fact that the Euclidean conformal algebra in two dimen-
sions splits s0(1,3) ~ sl(2) x s[(2), such that the corresponding Yangian algebra factorises [188].
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and analogously for z <> Z. The function ¢, thus satisfies the ODEs

D2, =0, DL, = 0. (5.4.5)

5.4.2 Bootstrapping the 2D Box for w = 1/2: Elliptic K

The next goal is to solve the above differential equations, first for w = 1/2 and subse-
quently for general w, in order to determine the 2D box integral. In two dimensions
the isotropic box is given by (5.4.1) with w = 1/2:®

€
% 1 d2{E 1 1

P S :/ a _ (2. 2). 5.4.6
ét r alzalalzal  Tewlzal ) (5.4.6)
T3

Here we have |z;;| = 4 /xfj. Yangian invariance implies that ¢(z, z) satisfies the sepa-
rated equations (5.4.5) with w = 1/2:

D.¢ =D =0, D, =1+4(22 — 1)0, + 42(z — 1)92. (5.4.7)

Note that these equations are manifestly symmetric under z — 1—2, Z — 1 — 2. These

equations are ordinary differential equations which can be solved straightforwardly to
find

6(2,2) = AEK(2) + fa(D)K(L - 2), (5.4.8)

and the same with z <> Z. Here the complete elliptic integral of the first kind is defined
by

/2 1
K(2) :/ df——. (5.4.9)
0 V1 — zsin?6
Acting on (5.4.8) with D;, and solving the resulting ordinary differential equation for
fi1(2) and f2(2), we conclude that in general ¢(z,Z) is a linear combination of four
factorised Yangian invariants:

0(2,2) =1 K(2)K(2)+cK(2) K(1—-2)+c3 K(1—2) K (2)+cs K (1—2) K (1—2). (5.4.10)

Fixing Constants. We can fix the constant prefactors ¢; by using reality conditions
and the permutation covariance of the integral (5.4.6). We first note some properties
of the function K(z). K(z) has branch points at z = 1 and z = oo, and we take the
usual branch cut on (1,00). It satisfies the identities®

K(1-12)=vzK(1-2), (5.4.11)

K(L) = VE(K (=) F iK (1 - 2), (5.4.12)

8 Although the propagators |z,;|~! are not those arising from two-dimensional quantum field theory,
this integral still appears in conformal field theory contexts [32,189].
9We consider the case where z = z* and Im(z) # 0, so that in particular z # z.
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where we take the negative sign if Im(z) > 0 and the positive sign if Im(z) < 0. We
also have K(z) = K(2)* if Z = z*. For definiteness we take z to be the solution of
zz=w and (1 — 2)(1 — z) = v with positive imaginary part.

We now proceed to fix the constants ¢;. Firstly, since (5.4.6) is a Euclidean,
real-valued integral we must have co = ¢3 = ¢. This is because K(z2)K(1 — z) =
(K(1—2)K(z))*, and this choice ensures that the imaginary parts in these terms can-
cel. Furthermore, (5.4.6) is invariant under the transposition of points x; <> x3. This
transposition maps z — 1 — Z and z — 1 — z. Therefore we should have

d(z,2) = (1 — 2,1 — 2), (5.4.13)
which fixes ¢; = ¢4 := ¢. The transpositon x; <+ x4 implies the condition
Vup(z,2) = 6(£, ). (5.4.14)

This equation can be expanded

V2zZ[e(K(2)K(2) + K(1 — 2)K(1 = 2)] + ¢[K(2)K(1 — 2) + K(1 — 2)K(Z))]
(5.4.15)

(KK + (1= )E(1 = )] +e[KEK(1 -3+ K(1-)K()],

(@}

and using (5.4.11), (5.4.12) this gives the constraint
AK(1—-2)K(1-2)4+iK(1—-2)K(z2) —iK(2)K(1—-2%2)) =0, (5.4.16)

which is only consistent for generic z, z if ¢ = 0. Overall we have fixed the solution up
to an overall constant c¢. We fix the constant ¢ = 4/7 using numerical input, so that
the final result is

$(2,7) = %[K(z)K(l S A4 K(1— 2K (). (5.4.17)

This result agrees with the one given in [190|, obtained by a direct simplification

of hypergeometric functions arising from their separation of variables approach, see

also [189,191]. They use a slightly different conformal variable 7, related to our variable
z by

1 1

n=1--, 7=1-
z z

(5.4.18)

We chose to use z, z since the expression for the conformal function (5.4.17) takes a
slightly simpler form in terms of these variables.

Cuts and Discontinuities. Let us consider discontinuities of the solution (5.4.17),
which are related to cuts of the integral [186|. Cuts of the integral obey the same
Yangian equations [172,2], and so these discontinuities can be expressed as a linear
combination of the four Yangian invariants K(z)K(z), K(1 — 2)K(z), K(2)K(1 — 2),
and K(1 —z)K(1 —2).

The conformal function (5.4.17) is single-valued in z,z if Z = 2*, which is true
for Euclidean kinematics. It can be thought of as a 2D version of the Bloch-Wigner
function (4.1.28), which is similarly single-valued. However, as discussed is chapter 4,

149



z and z can also be independent real numbers in Minkowskian kinematics. Conformal
invariance is broken globally in this case, and the result for the integral in kinematic
regions away from the Euclidean sheet can be obtained by taking discontinuities of
(5.4.17).

We proceed to calculate these discontinuities. For this purpose we only need to
calculate the discontinuity of K (z) across the cut on (1,00). We have

disci K (2) = K(z +ie) — K(z —ie) = 20K(1 — 2z), z> 1. (5.4.19)

Using this we can fix z € C, 2z > 1 and calculate

disc1¢(z, 2) = ¢p(z + i€, 2) — p(z — i€, 2) = —%K(l —2)K(1-2). (5.4.20)
Similarly fix z < 0 and z € C. Then
discop(z, 2) = ¢(z + i€, 2) — Pp(z — i€, Z) = %K(z)K(Z) (5.4.21)

Notably, both disc;¢(z, Z) and disco¢p(z, Z) are solutions to the Yangian PDEs (5.4.7), as
expected. We can also consider double discontinuities of ¢(z, z). Fix now z < 0,z > 1.
Then we have

1
discgdiscy¢(z, 2) = disc1¢(z, Z + i€) — disc;¢(z, Z — i€) = —6K(1 —2)K(z), (5.4.22)
m

and similarly if we fix Z > 1, 2 < 0, we can find

discidiscop(z, z) = EK(l — 2)K(2). (5.4.23)

™

Again, the double discontinuities are solutions to the Yangian PDEs (5.4.7).

Transcendentality. For the isotropic box in 2D we identified four Yangian invariants
gi:

g = K(2)K(2), g = K(1—2)K(2), (5.4.24)
g3 = K(2)K(1 - 2), g1 =K1 —2)K(1-2).

In comparison, for the 4D conformal box we have the four Yangian invariants f; =
fi/(z = 2):

f1 = 2Lis(2) — 2Lis(2) + (log z + log z)(log(1 — 2z) — log(1 — 2)), (5.4.25)
fg = logz —log Z,

fs =log(1 — 2) —log(1 — 2),
fi=1.

The respective conformal functions are proportional to the Yangian invariants as fol-

lows: N
$ap ~ %2 - 93, ¢ap ~ fi1. (5.4.26)
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$2p ®4p
disc1¢ —%94 +7i fo
disco¢ +%91 +mif3

discgdisc1¢p | +1go | —(mi)%fy

discidiscog | +1gs | +(mi)f1

Table 5.1: Discontinuities of isotropic box functions ¢op and ¢4p in two and four dimensions,
ignoring numerical constants.

We note the differences in the transcendentality of the Yangian invariants in each case.
Here 7 is assigned transcendentality 1. While polylogs of order n have transcendentality
n, the elliptic K integral has been argued in [192] to have transcendentality 1, because

) T

lim K(z) = —. (5.4.27)

x—0 2
Therefore each g; has transcendentality 2, while the f; have transcendentality ranging
from 0 to 2. Furthermore, the conformal functions ¢op and ¢4p have transcendentality
1 and 2 respectively. In table 5.1 we present the discontinuities of these functions. We
notice a curious difference between the two cases. Taking discontinuities of ¢4p reduces
the functional transcendentality by 1 in each case, such that any further discontinuities
will simply vanish. However, since all the Yangian invariants for the 2D case have the
same transcendentality 2, one can continue to take discontinuities of ¢9p, and remain
within the family of functions g;. This shows, at least in this very simplified setting, a
fundamental difference between taking discontinuities of polylogs and elliptic integrals.

5.4.3 Bootstrapping the 2D Box for Generic w: Legendre P
and @

For generic w the separated differential equations for the box conformal function ¢,
read

[ww—=1) + (1 —22)0. + 2(1 — 2)07] ¢, (5.4.28)
[ww—1) + (1 —22)0: + 2(1 — 2)07] ¢, (5.4.29)
which are still symmetric under z — 1 — 2z and z — 1 — Zz, respectively. The above
ODE:s are solved by the Legendre functions

0
0

(S

buw(2,2) = c1(Z)Poo1(22 — 1) 4+ 2(2)Qu-1(22 — 1), (5.4.30)
and similarly for z <+ z. We note that
Poa(22=1)| 1 =2K(1—2), (5.4.31)

Qua(22=1)| 1= K(2), (5.4.32)

1
2
1
2
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from which we see that Legendre P has an apparent lower transcendentality than
Legendre (). With the above solutions for the separated equations, the generic ansatz
for the full parametric box reads

gzﬁw(z, 2) =+ CIPw—1<2Z — 1)Pw—1(22 - ].) + CQPW_1(2Z - 1)Qw_1(22 — 1)
-+ Cgwal(QZ — 1>Pw71(22 — 1) -+ C4Qw,1(22 — 1)@(.‘)71(22 — 1) (5433)

Using numerical input we can fix these constants, and find

Gu = % Qw—l(T)lf’wA(f) + Qw—1(7_')lﬁw_1(7) — 2c0t(7rw)]5w_1(7')ﬁw_1(f) , (5.4.34)

where 7 := 22z — 1 and -

Pooy(7) = 5 wo—1(T). (5.4.35)

Using (5.4.31) and (5.4.32) this reduces to (5.4.17) in the limit w — 1/2. This represen-
tation differs from the hypergeometric one given in [190], and this one is perhaps slightly
more natural since it expresses a one-parameter integral in terms of one-parameter
functions P,_; and Q,_1.

Discontinuities. Again we can verify that the discontinuities of the solution (5.4.34)
are given by linear combinations of Yangian invariants. We first give the discontinuities
of P,_1(22 — 1) and Q,-1(22 — 1):
dislew (22 —1) = 2iP,_1(22 — 1), (5.4.36)
dlSC1 — 1(22 — 1) =
discoQu_1(22 — 1) = 2i cos(mw)(cos(mw)P,_1(2z — 1) — sin(7w)Qu_1(2z — 1)),
discoP,_1(22 — 1) = 2isin(mw)(cos(mw) Py_1 (22 — 1) — sin(mw)Qu_1(2z — 1)).

Using these we have

diserdu(2,2) = — P, (22— 1)y 1(25 — 1), (5.4.37)
T
and
8 - N -
discogu(2,2) = — [ﬁLwa_l(Zz )Py (22 = 1) + BB (22 — 1)Qu_i(22 — 1)
(5.4.38)

+ 5370.)@0.)—1(22 - 1)pw—1(22 - 1) + B4,wa—l(2z - 1)@0.)—1(22 - 1) )
where the coefficient functions 3;,, are given by
B, = cos®(mw), Baw = B30 = — sin(mw) cos(mw), Buw = sin®(rw). (5.4.39)

In the limit w — 1/2, equations (5.4.37) and (5.4.38) reduce to (5.4.20) and (5.4.21),
respectively. The double discontinuities take the form

discy 16z, 5) = — 19T B (9, 1) [cos(ﬁw)ﬁ’w_l(22 — 1) — sin(7w)Qu_1(22 — 1)],
discy gpw (2, 2) = 1631H(W)P 1(22 — 1) [cos(ww)f’w_l(Zz — 1) —sin(mw)Q,-1(22 — 1)],
where disc; ; == disc;disc;, which reduce to (5.4.22) and (5.4.23) as w — 1.
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5.4.4 2D Double Ladder
Consider the Yangian equations for the double ladder

1
Ty =2 AR T3 (5.4.40)
w v w

as given in (5.3.61) in D = 2 with generic w:
[2uD2 P — A,,d*] 57 =0, (5.4.41)
[20D24P — A, dT] ¢ = 0. (5.4.42)

Here we have introduced the shorthand

Ay = 25w (2 — w) Ay 03 (wats s + (2 — w)ai, A), (5.4.43)
Ay = 23w (2 — w) A6 (wais Ay + (£ — w)ai,As). (5.4.44)

Now we switch to z, Z such that

[Av(1 = v) + (v +2)(22 — 1)0. + 22(z — 1)07]d(2, 2) = (25 Auu + 2 Au)d V(2 2),

Again we see that the equations separate into a z and z dependent piece. However,
the operators A,, and A,, including the shifts of propagator powers are a priori only
defined on a Feynman integral. It is thus not obvious how to solve or interpret these
equations as purely mathematical identities for some generic functions in analogy to
the above box equations in 2D. We leave the further exploration of this interesting
point for future endeavours, and conclude this chapter.
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Chapter 6

The Spectral Problem for Dynamical
Fishnet Theory

In this chapter we summarise the recent progress made in the spectral problem of
strongly-twisted N' = 4 super Yang—Mills theory. This problem is well-understood in
the case of full N' =4 SYM, where the one-loop dilatation operator takes the form of
a psu(2,2]4) spin chain [135]. At higher loops the dilatation operator can be expressed
in terms of higher-range spin chains, see for example [193,142]. The operator for the
strongly-twisted theory was first investigated in [194]. There it was calculated in the
fishnet case by an explicit Feynman diagrammatic calculation up to four loops for a
diagonalisable sector of operators. The anomalous dimensions can be calculated by
solving a set of asymptotic Bethe ansatz equations.

The study of the one-loop dilatation operator in strongly-twisted N/ = 4 SYM was
initiated in |9]. This operator was calculated by explictly taking the double-scaling
limit of the dilatation operator of S-twisted N' = 4 [195,169]. It was found that this
operator is non-diagonalisable in many operator sectors. As described in section 2.2.5,
this leads to logarithms in the corresponding two-point functions for these sectors,
which reflects the fact that the strongly-twisted theory is a logarithmic CFT. In the
non-diagonalisable sectors, the dilatation operator has a rich structure of Jordan cells.
The sizes and multiplicities of these cells determine the exact form of the logarithms
appearing in the two-point functions, cf. (2.2.88) and (2.2.89).

In [9] several diagonalisable sectors of operators were identified, and the correspond-
ing dilatation operator could be diagonalised by means of a Bethe ansatz. However, sev-
eral sectors of non-diagonalisable operators were also found, and the description of the
corresponding Jordan block spectra by means of integrability or combinatorics was un-
clear. To elucidate this problem, the authors of [6] studied a simple non-diagonalisable
sector of operators in the full strongly ~-twisted theory, i.e. the dynamical fishnet
theory (6.2.1), namely the sector of three holomorphic scalars ¢1, ¢o, ¢3. In this sec-
tor the one-loop dilatation operator takes the form of a generically non-diagonalisable
spin chain depending on three couplings &1, &5, &3, which was dubbed the eclectic spin
chain. In [6] it was pointed out that taking a naive limit of the eigenvectors of the
finitely ~-twisted model obtained from the Bethe ansatz fails to describe the (gener-
alised) eigenvectors of the eclectic spin chain. In fact, this limit only reproduces the
most trivial eigenvector, called the locked state. The limit can be modified to exhaust
more of the generalised eigenvectors [196,197|, by taking careful linear combinations

154



of eigenvectors of the finitely-twisted model, although this approach does not directly
appeal to integrability.

The eclectic Hamiltonian is still integrable, however, at least in the sense that it
can be derived from an R-matrix which satisfies the quantum Yang-Baxter equation.
It is still an open problem how to derive the generalised eigenvectors of the eclectic spin
chain directly from integrability. It is not even clear that the eclectic model deserves
to be called integrable. Even though the transfer matrix ¢(u) built from its R-matrix
constitutes a one-parameter family of commuting operators, the expansion of logt(u)
around a special point (the point where the R-matrix reduces to the permutation
operator, in this case v = 0) is finite, i.e. it is simply a polynomial in u. Therefore it is
not clear that there are ‘enough’ commuting operators to guarantee its integrability.

It was conjectured in [6] that a simpler version of the eclectic spin chain, namely
the case with & = & = 0, reproduces the Jordan block spectrum of the full eclectic
model for special ‘filling conditions’ i.e. constraints on the occupancy numbers of the
fields ¢1, @9, p3. Looking towards its solution this is encouraging, as the resulting
hypereclectic spin chain is combinatorially much less intricate than the eclectic spin
chain. A detailed combinatorial analysis of the hypereclectic spin chain was carried
out in [3|, where we found an exact solution for the Jordan block spectrum of the
hypereclectic model. We obtained an elegant generating function for the spectrum of
Jordan blocks. It is reminiscent of a partition function, since it can be obtained by
computing a trace over the state space

Z(q) = trq”, (6.0.1)

where S’ is a certain counting operator, which is diagonal in the canonical basis of
tensor product states of the spin chain. It uniquely encodes in full generality the sizes
and multiplicities of the Hamiltonian’s Jordan block decomposition:

q) = ZNj[j]q = N ¢° + N, (q‘% + cﬁ) +N; (¢ ++4d)+..., (6.0.2)
j

where N; is the number of Jordan blocks of length j, and [j], is a g-analog of j, cf.
(6.3.41). It is easy to see that the {N;} are indeed uniquely fixed once one knows Z(q).
We also derive formulas expressing Z(g) more explicitly than (6.0.1) in terms of ¢-
binomial coefficients. For example, for the case corresponding to the fishnet interaction
Lagrangian (3.3.2), with L — M fields ¢y, M — 1 fields ¢», and a single, non-interacting
third field ¢3, we find for the one-loop spectrum of Jordan blocks in the cyclic sector
the (shifted) g-binomial coefficients

M—1 L-k 71:71@
:| o
k=1

Zrm(q) = { . (6.0.3)
q2 —_ q 2

In this section we describe in detail this combinatorial solution of the eclectic spin chain,
which represents the most recent progress in understanding the one-loop dilatation
operator in strongly twisted N = 4 SYM. We firstly review non-diagonalisable matrices
and Jordan normal form. We then introduce the (hyper)eclectic spin chain, discussing
its basic structure and integrability. We finally describe our approach to fully enumerate
the Jordan block spectrum of the hypereclectic spin chain in terms of a generating
function Z(q).
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6.1 Jordan Blocks and Jordan Normal Form

An important class of n x n complex matrices M € Mat,, (C) are Hermitian matrices,
which satisfy
M= M, (6.1.1)

where M is the Hermitian conjugate of M. Such matrices are especially relevant in the
context of (finite-dimensional) quantum mechanics, where they represent observables.
Via the spectral theorem, there exists an invertible matrix B € Mat,,(C), such that

B™'MB = diag(A1, ..., \n), (6.1.2)

where A1,..., A\, € C are the (possibly degenerate) eigenvalues of M. In other words,
M is diagonalisable by a change of basis B. The vector space C™ splits into one-
dimensional subspaces, each spanned by an eigenvector v; € C", i = 1,2,...,n, which
satisfy

In non-unitary theories such as strongly twisted N' = 4 SYM, non-hermitian operators
can appear, which are not necessarily diagonalisable. For example, the matrix

11
w1 o

is not diagonalisable. M; has a single eigenvalue A = 1 with algebraic multiplicity 2.
However, the eigenspace corresponding to this eigenvalue is only one-dimensional:

dim ker(M; —I) = 1. (6.1.5)

Therefore there is only a single eigenvector, given by

€1 = <é> s (Ml — ]I)el == O, (616)

and so M is not diagonalisable. The standard basis {e;, e} of C? is a Jordan chain
of length two, corresponding to the eigenvalue A = 1. This is because

(Ml - H)€2 = €1, (Ml — H)61 =0. (617)

As such the matrix M; is already in Jordan normal form, and is a Jordan block of size
two My = Jo(1), see the definition (6.1.9) below. The number of Jordan blocks corre-
sponding to an eigenvalue A of a complex matrix M is called the geometric multiplicity
of A\, and is equivalently calculated as dim ker(M — AI).

In general, any matrix M € Mat, (C) can be brought uniquely to Jordan normal
form by a change of basis:

Jll ()‘11)
B'MB = = T (M) @@ J (M), (6.1.8)
Ji, (Ni,)
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where [; + --- 4+ 1, = n and each J;(\) is the Jordan block of size [ corresponding to
the eigenvalue A:

Al 0
Al

J(A) = AT . (6.1.9)

o1

0 A

We note that for each Jordan block there is a Jordan chain vy, ..., v;, such that

(Jl()\) —)\]I)Uk = Vg—1, k= 2,...,[, (6110)
(J;(A) = AD)vy = 0. (6.1.11)
Henceforth we will refer to v; as the top state of the Jordan block. We note that the top
state of J;(A) is an eigenvector with eigenvalue \. vs, ..., v; are generalised eigenvectors
of rank 2,...,l. Generalised eigenvectors of rank 1 are simply eigenvectors. If all of

the Jordan blocks are of size [ = 1, then M is diagonalisable.

There is a well-established algorithm for computing the Jordan normal form of ma-
trices, found in any textbook on linear algebra, for example [198]. It consists of finding,
for each eigenvalue \, the vectors in the kernel of (M — AI)* but not in (M — M)k,
until (M — AI)* becomes the zero matrix. In particular, the generalised eigenvectors
of rank k span the space

Up(N) /U1 (M), Up(\) = ker(M — M), (6.1.12)

where / refers to the usual quotient of vector spaces. From this we can easily deduce
that the number of Jordan blocks of length [ corresponding to the eigenvalue A can be

computed as
N,(AN) =2dimU;(A) — dim Uj;1(A) — dimU;_1 (). (6.1.13)

Nilpotent Matrices. In the next section we are particularly interested in nilpotent
matrices. A matrix M € Mat, (C) is nilpotent if there exists some positive integer k
such that

MF = 0. (6.1.14)

In this case all the eigenvalues of M are zero. Indeed, let v be an eigenvector of M
with eigenvalue A:

Muv = . (6.1.15)
Then applying M to (6.1.15) k — 1 times we see that
M*y = My = 0. (6.1.16)

Since eigenvectors are non-zero by definition, this implies that A = 0. If M is non-
zero this implies that it is non-diagonalisable. Therefore given any non-zero nilpotent
matrix M € Mat,,(C), there exists an invertible matrix B such that

l
B™'MB =P J,,(0), (6.1.17)
i=1

where n; +---4+n; =n and [ # n.
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6.2 The (Hyper)eclectic Spin Chain

In this section we define the one-loop dilatation operator for the dynamical fishnet
theory, with interaction Lagrangian

Lt = Netr (61616205 + Galolossr + 01610, ) (6.2.1)
+ Netr (i\/ &G0 P10” + Pspliy) + CyChC) ,

for a particular 3-scalar sector of operators. This model becomes the bi-scalar fishnet
theory when & = & = 0,& = &, cf. section 3.3. The one-loop dilatation operator
for this sector has been dubbed the eclectic spin chain He. [9]. As described below,
this Hamiltonian commutes with the translation operator U, and therefore it can be
diagonalised in separate cyclicity classes, defined by their eigenvalue under the trans-
lation operator. Notably, the hypereclectic spin chain is non-diagonalisable when we
consider sectors of operators containing all three scalar fields. Therefore the spectral
problem is replaced with the problem of counting and classifying the Jordan blocks of
the model. The eclectic Hamiltonian is integrable, in the sense that it can be derived
from an R-matrix which satisfies the Yang—Baxter equation. We demonstrate this fact,
and discuss the notion of an integrable, non-diagonalisable model.

6.2.1 Hamiltonian

We consider local single-trace operators in the holomorphic 3-scalar sector of the theory
(6.2.1)

Oy jovenis (x) = tr (¢j1¢j2 Qg (%)), ji € {1,2,3}. (6.2.2)
In N = 4 SYM the one-loop dilatation operator in the analogous sector can be written
as a sum over permutation operators and enjoys an su(3) symmetry [136]. In the
strongly twisted theory (6.2.1) this symmetry is broken and the one-loop dilatation
operator He, : (C3)®" — (C3)®" is a sum over chiral permutation operators [6]

L
Hee = Hi+ Hy+ Hy =Y (&GP + &Py + 6Py (6.2.3)

i=1
The chiral permutation operators P; : C3 ® C3 — C3 ® C3 act as follows:
P|32) =|23), P,|13) = |31), Ps3|21) = [12), (6.2.4)

and annihilate all other pairs of states. Periodic boundary conditions are implemented,
i.e. PP = Pl We have simplified the notation for the states of the spin chain by

|¢j1¢j2 U ¢jL> — ’jle e ]L> (6'2'5)

Therefore the Hamiltonian (6.2.3) scans a state for neighboring fields in chiral order
132), |13), or |21), and swaps them to anti-chiral order |23),|31), and |12) respectively.
For example we have

Hee|321) = &]231) + &(312) + &|123), (6.2.6)
H|123) = 0.
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Setting & = & = 0 we recover the hypereclectic model
L . .
Hhec = 53 Z Pyz)’“rl- (627)
i=1

The Hamiltonians (6.2.3) and (6.2.7) are block diagonal with respect to sectors of fixed
numbers K of ¢5 fields, M — K of ¢, fields, and L — M of ¢, fields. We define VMK

to be the subspace of (C3)®L corresponding to these numbers of fields. Clearly we have
L!

. LMK _ :
dim V (L — MM — K)IK!

(6.2.8)

Hj corresponds to the one-loop dilatation operator in the fishnet theory, where we
consider K non-dynamical insertions ¢3, which act as walls. For K = 0 this opera-
tor, although non-Hermitian, is diagonalisable via a coordinate Bethe ansatz [9]. It
corresponds essentially to a chiral version of the XY-model [199].

6.2.2 Translation Operator and Cyclicity Classes

We can further reduce the state space by considering the translation invariance of these
Hamiltonians. Each H; commutes with the translation operator U

[H;,U] =0, 1=1,2,3, (6.2.9)
where U generates a shift along the chain

Uljije -+ jr—1jr) = ljcjijz - jr-1)- (6.2.10)
This further implies [He., U] = 0. Therefore we can choose to work in a basis where U

is diagonal. U has L distinct eigenvalues given by the L™ roots of unity
wh = e2mik/L k=0,1,...,L —1. (6.2.11)
The U-eigenstates in VEME with eigenvalue w# are said to be in the k™ cyclicity
class VkL’M’K. The k = 0 cyclicity class VkL:’g“( is known as the cyclic sector. The
states in the k" cyclicity class are easily generated by acting repeatedly on a reference
elementary state! with kaU . For example, given [123) € V3! we can form the cyclic

state
|123> + U]123> + U2\123> = \123) + ]312) + \231>, (6.2.12)

and states with k=1 or k=2
1123) + wy 'U[123) + w3 2U?|123) = |123) + e 27/3|312) + ¢ *™/3]231),  (6.2.13)
1123) + w3 2U[123) + w3 tU?|123) = |123) + e *™/3|312) + e 5/31231).  (6.2.14)

For a given L, M, K counting the number of states in V5™ with a given cyclicity k
requires Polya counting, see for example [200]. We denote the states in the &*® cyclicity
class by

J1je - jL)y = (w ) |1j2 - - - jr) = Cilgrja - - - jr), (6.2.15)
]

~
[asry

i
=)

'We call single ket states |j1ja2 . ..j1) elementary. General states are linear combinations of these.
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where Cy, is an (unnormalised) projector? C? o Cj, onto the k'™ cyclicity class V,CL’M’K.

For the hypereclectic spin chain we find it more natural to consider a so-called static
basis, which we describe at the beginning of section 6.3.1.

6.2.3 Spectrum

The eclectic Hamiltonian (6.2.3) is nilpotent in sectors where all three particles are
present i.e. in VEME when L — M, M — K, K # 0. This fact is not immediately
obvious, although it follows straightforwardly from the combinatorial considerations
we introduce in the following sections. Therefore, by the discussion at the end of
section 6.1, in these sectors all the eigenvalues of H.. are zero. Furthermore, there
exists a change of basis matrix B such that H.. acts as a direct sum of Jordan blocks
(6.1.9) with eigenvalue zero.

Let HEMK he the restriction of the eclectic Hamiltonian to cyclic (k = 0) states in
VEME - Then, by the above discussion, there exists a change of basis matrix B LMK
such that

l
By i HE M B = €D 7, (0). (6.2.16)
=1

For example, consider the cyclic sector of VMK for [ =5 M = 3, K = 1. This sector
is spanned by six states

111223),, [12123),, [12213),, (6.2.17)
21123),,  [21213),, [22113),,

where |- --), is defined by (6.2.15), for example
22113), = |22113) + [32211) + |13221) + |11322) + |21132). (6.2.18)

The eclectic Hamiltonian can be calculated explicitly by acting with H,. on each of the
states in (6.2.17). For example

H..|22113), = £[21123), + £,]12213), + £3]21213),. (6.2.19)

The full matrix is calculated to be

0 & & & 0 0
00 & & &+& 0
e B (6.2.20)
00 00 & &
00 0 0 0 &
0000 0 0

where the basis is ordered as in (6.2.17). One can verify that defining the change of

2Note that this projection may also result in the zero vector.
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basis matrix

(€1+62) (€3 +186261+€3)

- €3 265 3(&+&)& &+ 0
_ 2
(6125?) 0 2¢3 2(6+&)& 0 0
Bsg = —izggi 0 0 33 & 0 [ (6.221)
22531 0 0 3 él 0
0 0 0 0 & 0
0 0 0 0 0 1
we have that
00 0 O 0 O
0/01 0 0 O
0/0 01 0O
Bl H>' Begy = = J1(0) & J5(0). 6.2.22
5314lec D531 olo o0 1 0 1(0) @ J5(0) ( )
0/0 0 O 01
0/0 OO OO

Therefore the eclectic Hamiltonian H2%! is similar to a direct sum of Jordan blocks of
length one and five. We write this as

INFE? =1@5. (6.2.23)

The Jordan normal form is identical in the other cyclicity classes k = 1,2, 3,4. There-
fore the full Jordan normal form in the sector L =5 M =3, K =1 is

INFs3; = 1° @ 5° (6.2.24)

Note that the change of basis (6.2.21) is not well-defined at €3 = 0. This reflects the fact
that the couplings of the eclectic model can be fine tuned to give different Jordan block
decompositions. Indeed, if & = 0 then the Jordan normal form of H3!' is 1 & 2 & 3.
Therefore, when referring to ‘the’ Jordan normal form of H.. in a specific L, M, K
sector, we mean the Jordan normal form for generic couplings, away from these special
points.

The ‘spectral problem’ for the eclectic Hamiltonian is the following: given a particle
sector labelled by L, M, K, what is the Jordan normal form i.e. the integers n; in
(6.2.16). This Jordan spectrum is exactly what determines the logarithmic structure
of the two-point functions in the operator sector (6.2.2), c.f. (2.2.88) and (2.2.89). In [6]
various patterns were noticed in the Jordan block spectra by explicit computation, for
example

INFEY =1@5909, (6.2.25)
INFE?=1050 9 13. (6.2.26)

Together with (6.2.23), these lead to the natural conjecture

n

INFEDS, 50 = EPi + 1), (6.2.27)

Jj=0
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however these and more complicated patterns were unexplained by methods of inte-
grability. In section 6.3 we show how to understand these patterns by combinatorial
methods. In fact, we do this for the case of the hypereclectic model Hyee = Hee(&1 =
& =0,& = 1). In [6] a certain universality was hypothesised; namely that the Jor-
dan normal form of the hypereclectic Hamiltonian for particular filling conditions is
precisely that of the eclectic Hamiltonian for generic couplings. We discuss and pro-
vide evidence for this hypothesis in section 6.3.3. Assuming the universality hypothesis,
solving the hypereclectic spin chain is equivalent to solving the eclectic chain for generic
values of the couplings &;.

6.2.4 Integrability

In section 3.1.2 we discussed the integrable Heisenberg su(2) spin chain. The key to
its integrability was that the Hamiltonian could be derived from a transfer matrix
t(u) which constitutes a one-parameter family of commuting operators on the spin
chain. This commutativity stemmed from the fact that ¢(u) could be built from an R-
matrix which satisfies the quantum Yang—Baxter equation. The transfer matrix could
be diagonalised by means of an integrability construction know as the algebraic Bethe
ansatz.

Eclectic R-matrix. In fact, the eclectic Hamiltonian (6.2.3) is also integrable, in the
sense that it can also be derived from a transfer matrix ¢(u) built from such an R-matrix.
In this case the Hilbert space is H = (C*)®L, and we take an auxiliary space V, ~ C3.
The R-matrix can be built from the the chiral projectors p; : C* @ C* — C* @ C3,
1 =1,2,3. These operators each have a single non-trivial action:

ps|21) = &s)21),  paf32) = &[32),  po[13) = &[13), (6.2.28)
and annihilate all other pairs of states. The sum of these operators
P = py +py +py (6.2.29)

tests whether a pair of fields are in chiral order. The chiral projectors p; are related to
the chiral permutation operators P; (also defined in (6.2.4))

Pi32) = [23),  P|13) = [31),  Psf21) = [12), (6.2.30)

via the standard permutation operator P¥ : Vi@ VJ — Vi ® V7, which simply swaps
vectors in a tensor product PYv; ® v; = v; ® v;. The precise relation is

&P = Pl = piipii, (6.2.31)
or equivalently
o — PP — PP 623

The fact that the order of the indices in P,ij and p;,j are of strict importance in (6.2.31)
and (6.2.32) reflects their chirality. Note that the chiral permutation operators P; are
the densities with appear in the eclectic Hamiltonian (6.2.3).
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In terms of P and p the eclectic R-matrix R (u) : V; ® V; — V; ® V; is defined

R (u) = up” 4 P9, (6.2.33)
where u is the spectral parameter. In matrix form this is
10 00 O0O0[0 0 O
00 O 1 0 0[O0 0 O
0 0 &Lu| 0 0 0|1 0 O
01 0 |&u 0 0|0 0 O
Ruy=100 0[]0 10[0 0 0 (6.2.34)
00 O0}]0 0O0O|0 1 O
00 1 0 000 0 O
00 0] 0 01]0 &Lu O
00 O0}]0 0O0]0 0 1
This matrix satisfies the quantum Yang—Baxter equation:
RYZ(u — v )R¥(u)R®(u) = R®(u )R (u)R™(u — ). (6.2.35)

Let us give a few more details on how to verify this equation explicitly. (6.2.35) is an
identity between linear operators in V! ® V? @ V3, where each V¢ ~ C3. Each R¥ acts
non-trivially on V* and V7 via the definition (6.2.33). They can be defined explicitly
as

RY¥(u) = R(u) ® I, (6.2.36)
R*(u) =15 ® R(u), (6.2.37)
RBu) = (12P)R*(w)(IxP). (6.2.38)
Each RY can be defined as a 27 x 27 matrix in Mathematica using (6.2.36)-(6.2.38)
and the KroneckerProduct function, and the equation (6.2.35) can be easily verified

symbolically.
The transfer matrix is built from the R-matrix (6.2.34) via

t(u) = try (R R> 1. .. R, (6.2.39)
At u = 0, the transfer matrix evaluates to
t(0) = trg (PEPel=t. .. pod), (6.2.40)
The permutation operator obeys the identity
Piepie = PUP, (6.2.41)
In particular, if a = 7 we see that
(P7)? = PP = 1. (6.2.42)
Applying (6.2.41) repeatedly to (6.2.40), we find
t(0) = tr,(PHL1PERL-2 .. pHpel) (6.2.43)

— ]P)L,L—I]P)L,L—Q . ]P)Ll
— ]P)IZ]P)23 . ]P)L—LL =U
where we also used that tr, P** = I*. Therefore the transfer matrix evaluated at u = 0

coincides with the shift operator U : |jij2 - jr—1Jr) — |jrjije - jr—1)-
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Hamiltonian. The transfer matrix and its logarithm can be expanded in powers of
u:

tu) = wi S = Sy +uSy +ulSy+ -, (6.2.44)
J
logt(u) = ZuijH = Q) +uQy +u*Qz+ -, (6.2.45)
J

where S; : H — H and @); : H — H are operators on the spin chain. We have already
established that S; = U. The calculation of S, is similar. We expand the transfer
matrix (6.2.39) to linear order in u using (6.2.33), and find

52 — tra<paLIP>a,L—1 . ]P)al) + tra(]P)aLpa,L—l . IP)al) 4ot tra(PaLPa’L_l . pal)'
(6.2.46)

The first term in (6.2.46) can be calculated as
tr (ptPeE—t P = gy, (PPl PRl Pt (6.2.47)
—tr (IP)aLPa,L—IPL—1,LIP)a,L—1Pa,L—1 L. Pal) = ir (PaLPa,L—lpL—LLPa,L—Q L. Pal)
—tr (]P)a,L—Q L ]P)al]P)aL]P)a,L—IPL—l,L) — tr (Pa,L—IPL—LL—Q L. ]P)L—I,IIPJL—I,LPL—LL)
:]PL_LL_2 . PL—I,IPL—I,LPL—LL — ]PJIQ]P)Q3 . IP)L—I,LPL—LL
:UPL—I,L
where we denoted
P = &P+ &Pr+ &Ps. (6.2.48)

In this calculation we repeatedly used (6.2.41), as well as (6.2.32) and (6.2.42). Using
cyclicity of the trace each term in (6.2.46) can be calculated analogously, so we have

L
Sy =U> P =UH,. (6.2.49)
i=1
Knowing S5, one can easily calculate (05 as
dlogt(u) o dt(w) 1
= — =1 = - Heca 2.
Q2 o . (0) o . U5, (6.2.50)

so that (), is precisely the eclectic Hamiltonian.

Higher Charges. The calculation of the higher charges becomes slightly more in-
volved. For example, for L = 4 we calculate

S3 = tr,(p™p PP + tr, (p™ P ®p™P*!) + 4 terms. (6.2.51)

We calculate the two written terms in (6.2.51), as they are the two qualitatively different
terms which can appear. The first term is where both p’s are beside each other
tra(paz}paBPaZPal) — tra<Pa4Pa4Pa3Pa3Pa2Pal) (6.2.52)
— tr, (PHpa3padpaipadpazpazpadpazpal
= tr, (PUP3 P3P pBpal) — ¢y (PUlPUpIpI2p3ip23)
_ PUPIBPI2P3Ap23 _ 7 p3dp23.
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We see that this term is a range 3 term, because it connects site 2 and site 4 of the
spin chain. Such calculations can be sanity checked by explicitly calculating the trace
for a given state. For example, the operator UP3*P?® should map the state [1211) to
£212111). We can calculate the first term in (6.2.51) on this state explicitly:

3
tr (p™p™ PP [1211) = > o (i[p™p™ PP [1211) @ |i), (6.2.53)
i=1
3

3
=Y Wil i) @ 12), = & ) lil11) @ (i2),
=1

=1

3
=& Splilll) = [2111), (6.2.54)
=1

as expected. The second term in (6.2.51) is similarly calculated to be
trg (p“'PpP*) = UPHPY, (6.2.55)

which is a bilocal operator, with each piece being range 2. Overall, S3 splits into a
local range 3 piece, and a bilocal piece:

Sg — U(P34P23 + P23P12 + P12P41 + 73417334) + U(P34P12 + P23P41) (6256)
— U(S:l))OC + 532—10(:).

Interestingly, ()3 is actually a local operator. Computing the second logarithmic deriva-
tive, we find that

d*t(u)
du?

u=0 B <t_1 (O) %

Terms in U~1S,U~1S, = H2 term cancel the bilocal terms in S3, and overall we find
that

2Q3 = t1(0)

2
0) =2U 1S —UtSU 1S, (6.2.57)

u=

2@3 — P34P23 o P23P34 + 7)417)34 o 7)347)41 + 7)127)41 o P41P12 + 7)237)12 o 7)127)23.

(6.2.58)

For general L this pattern persists, and we have
Q3 = li[rpi,i-i-l pili], (6.2.59)

235 ’

The calculation is essentially the same for the Heisenberg spin chain discussed in sec-
tion 3.1.2, however in the eclectic case one needs to be careful with the chirality of the
operators. In general S; contains a local range-j piece, and products of lower-range
terms, c.f. (6.2.56). @; is a purely local range-j operator.

In the case of the Heisenberg spin chain, there are an infinite number of non-zero
local commuting operators ();. One can then query whether they are ‘independent’
enough to render the model integrable, and indeed this seems plausible. In the case of
the eclectic spin chain, there are only a finite number of non-zero operators ¢);. This
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means that there exists an integer N, which depends on the length of the spin chain,
such that
Q=0 Vj > N. (6.2.60)

For example, consider the cyclic sector for L =5, M = 3, K = 1. The charge Q)3 = H,.
was given in (6.2.20). The next local charges are given explicitly by

00 -% € 0 L@-¢g 0000 -§ o
00 0 00 0 00000_%3
o0 o 00 -8 0000 0 0
pr— 2 pr—
“=1o0 0 0 o0 St 90000 0 0|
00 0 00 0 0000 0 0
00 0 00 0 0000 0 0

(6.2.61)

and ); = 0 for j > 5. Moreover, just like the Hamiltonian ()2, all of the operators are
nilpotent, i.e. there exists some integer M such that

(@)"=0, Vax>M, Vj>2 (6.2.62)

For example, in the case described above we have (Q2)° = (Q3)® = (Q4)* = 0. There-
fore each (), is non-diagonalisable for j > 2.

Because of these facts, it is possible that the eclectic model does not deserve to
be called an integrable model, as there may not be enough conserved quantities to
constrain the system. In [6] the authors were unable to determine the Jordan block
spectrum of Q)9 = H,. using techniques of integrability, which may not be a surprise if
the model is not actually integrable. Despite this, there still exists a number of non-
trivial algebraic relations in the Yang-Baxter equation (6.2.35). It is an interesting
open question whether it is possible to use this algebra to determine the Jordan block
spectra of () and the higher charges. It is possible that the model is integrable, but
the integrability manifests itself in a novel way.

6.3 Combinatorial Solution of the Hypereclectic Spin
Chain

In this section we demonstrate a combinatorial approach for the solution of the eclectic
model. The combinatorial solution is for the Hamiltonian of the hypereclectic model
Hye, which is argued to also apply to the eclectic model He. by universality. The
solution is elegant; it takes the form of a generating function Z(q) which enumerates
the full spectrum of Jordan blocks for any particle sector labelled by L, M, K. The
elegance of the solution raises the hope that it can be related to an integrability based
approach in the future.

We first describe the solution for a single ¢3 field, also called a wall, because this
field is non-interacting for the hypereclectic model. These insights then are generalised
to an arbitrary number of walls, i.e. K > 1, to obtain the master generating function.
We finally comment on the universality hypothesis, which asserts that the spectrum of
the hypereclectic model coincides with the spectrum of the eclectic model for generic
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couplings, for special filling conditions L — M > M — K > K. We provide further
evidence that this hypothesis is valid.

6.3.1 Solution for One Wall

We first describe a method to determine the full Jordan block spectrum for the hy-
pereclectic spin chain in sectors where K = 1, i.e. there is a single, non-moving ¢3
field, which acts as a fixed wall. In these sectors the model is equivalent to a chiral
XY spin chain with open boundary conditions. Throughout this section we denote the
hypereclectic Hamiltonian defined in (6.2.7) Hype. = H and set {3 = 1. We recall that
the only non-trivial action of the Hamiltonian density H;,;; is on |21):

H|21) = |12), (6.3.1)
H|12) = H|23) = H|32) = H|31) = H|13) = H|11) = H|22) = H|33) = 0.
Since the ¢ field does not move under the action of H, we can further restrict to sectors
with a fixed position of ¢3. We will restrict to static states of the form |12 --jr-13),
where ji, jo,...,jr-1 € {1,2}. We will refer to the subspace of V™! gpanned by

states of this form as WM. We can access states where ¢ is in a different position
by acting with the translation operator U, so that the Hilbert space decomposes

L—-1
VEML = (B UIWEM, (6.3.2)

J=0

We begin with a few simple examples, before describing the general solution for the
Jordan block spectrum of H in WHM,

Example: L, M = 2, K = 1. The simplest situation is when M = 2 and K = 1.
This means there is a single ¢3 field, a single ¢, field, and L — 2 ¢, fields. A natural
basis for W2 is given by L — 1 states

|211---113),[121---113),...,[111---123). (6.3.3)

In this sector the states clearly form a single Jordan block of length L — 1, as can be
seen by acting with H repeatedly on |211---113)

1211---113) 2y [121---113) 5 oo Iy 111+ 123) D o, (6.3.4)

We will refer to any state of the form |[2M =K 1L=M3KY a5 anti-locked, and |12~ MM =K 3K
as locked. Similarly, for the spaces U'W5M j =1, ... L — 1, there is a single Jordan
block of length L — 1. Therefore for M = 2 and K = 1 we have

INFpo1 = (L —1)%, (6.3.5)

meaning there are L blocks of length L — 1.
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Example: L = 7,M = 3, K = 1. The situation becomes more intricate with
increasing M, which we illustrate with the example L = 7, M = 3, K = 1. In this
sector there are 4 ¢, fields, 2 ¢, fields, and a single ¢3 field. In W73 there are 15
states. We use the important observation that the anti-locked state is always a top
state for the longest Jordan block

|2211113) H° (6.3.6)
—|2121113) H'
—|2112113) + [1221113) H?
—[2111213) + 2|1212113) H?
—[2111123) + 3|1211213) + 2[1122113) H*
—4[1211123) + 5[1121213) H®
—5[1112213) + 9]1121123) H
—14[1112123) HT
—14[1111223) H®
—0, H?

so we have identified a Jordan block of length 9, whose eigenstate is proportional to
the locked state |1111223). However, since there are 15 states in the sector there must
be additional Jordan blocks.

We note that each of the 15 elementary states appear in the tower of states (6.3.6).
We classify these 15 states by where in this state tower they appear, by defining the
level S of an elementary state. We give the anti-locked state [2211113) S = 8 and the
locked state |1111223) S = 0. In general, if an elementary state appears in the row
H* of (6.3.6), we give it S = 8 — k. Combinatorially, the S-value for a state is the
total number of 1’s to the right of each of the 2’s. We definine Wg’g to be the vector
subspace of W73 spanned by states with level S. Then we have

8
W = Pwe?, (6.3.7)
S=0

and it is clear that
H:-W =W, HW? =0. (6.3.8)

In light of this, the next natural place to look for a top state of a Jordan block is in
VV67 3. This is because a single state from each W;’?’ is already contained in the largest
Jordan block, and Wg 3 is the space with largest S with dimension larger than 1. We
thus deduce that the top state for the next Jordan block must be of the form

a|2112113) + 4]1221113) € W, (6.3.9)

where a # [ as we want the state to be linearly independent from the corresponding
state in the length 9 block. We act repeatedly on this state with H until there is a

168



possible choice for o and # which makes the state vanish

«|1221113) + (]2112113)

— [(]2111213) + (o + /5)|1212113)

— B|2111123) + (a + 26)[1211213) 4 (a + B)[1122113)
— (a4 36)[1211123) + (2a + 33)]1121213)

— (2 + 38)[1112213) + (3 + 63)|1121123)

— (5 4 98)[1112123).

We see that this yields the zero vector if ba + 98 = 0, for example a = —9,3 = 5.
Therefore this chain of states determines a Jordan block of length 5, with top state
5/2112113) — 9]1221113) € W and eigenstate —3|1112213) + 3|1121123) € W3 =
w,2.

There must be a single Jordan block of length 1 remaining, and by state counting
this must be contained in VV47 3 since this is the only space with dimension greater
than 2. We make the ansatz for the top state

o/ [2111123) + B/|1211213) 4 +/[1122113) € W,*°. (6.3.10)

This is easily checked to be an eigenstate of H for o/ = —3 = 4/ = 1 and thus
determines a Jordan block of length 1. The story is identical for the remaining spaces
UIW7™3, 5 =1,...,6, so the overall Jordan normal form for L =7, M =3, K =1 is

INF75, = (97,57,17). (6.3.11)

Let us step back and look at the state tower (6.3.6), from which we can see the dimen-
sions

dim W52, S=0,1,...,8 (6.3.12)

by counting the number of elementary states in each row. We note that these dimen-
sions form a diamond, in that they start from 1 at S = 8, increase to a maximum of 3
at S =4, and decrease symmetrically to 1 at S = 0. We encode these dimensions in a
generating function

8
Zrs(q) = dmWI® =1+ q+2¢" +2¢° +3¢* + 24" +2¢° + " + ¢°.  (6.3.13)
S=0

Because of this diamond structure it is actually possible to deduce the Jordan block
structure in W73 from the generating function, a purely combinatorial object, up to
some possible subtleties described in the next section. Given the generating function
(6.3.13) we identify the Jordan block of length 9 by the degree of the polynomial plus
1. We then subtract 14 ¢+ ¢®> + --- + ¢® to represent the fact that there is one state
at each level in this largest block. We then normalise the resulting polynomial to have
lowest power ¢°, to arrive at the polynomial 1 + g + 2¢® + ¢® + ¢*. This polynomial
represents the states in the length 5 Jordan block. We subtract 1 + ¢ + --- + ¢* to
exclude this Jordan block and normalise again. The resulting polynomial is simply 1,
and represents the Jordan block of length 1. Overall the procedure is

1+q+2¢2+2¢@ +3¢* +2¢° +2¢° +¢" + ¢ (6.3.14)
—14+q+2¢+¢ +¢*
—1,
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from which we deduce the Jordan block spectrum (9, 5, 1). We proceed to generalise
these arguments and compute the generating function Zy y/(q) for arbitrary L, M.

General L, M, and K = 1 - Generating Function. For general L, M we simi-
larly grade the vector space in the static sector by the action of H

Smax

whM = G wet, (6.3.15)
S5=0

H-weM s wh o HwM =o. (6.3.16)
We have in general S,.x = L1M7, where L, := L — M is the number of 1’s in the sector
and M; = M — 1 is the number of 2's. The anti-locked state is [2*11%13) € W™ and
the locked state is |1112M13) € WOL M n general, an elementary state takes the form

N1 na, . mag) =]1---121-+-121---1---21---13), (6.3.17)

no ni n2 nary

where n; is the number of 1’s between the j™ and (j + 1)™ 2. Clearly they should

satisfy
M,

> nj=L-M=L. (6.3.18)
§=0
In this notation we can define the level S of a state, which counts the number of 1’s

on the right hand side of each of the 2’s. Explicitly the state |ny,ng,...,ny,) defined
in (6.3.17) has

My
S=>ijn;. (6.3.19)
j=1

As before we define WSL M 60 be spanned by elementary states with this level S. The
Hamiltonian acts on (6.3.17) as

My
H:|ni,ng,...,nn )  — Z|n1,n2, coonjor+Ling =10 ). (6.3.20)
j=1

(6.3.19) and (6.3.20) make it clear that H decreases S to S — 1, i.e. if one acts on a
level-S elementary state with H, a linear combination of level-(S —1) elementary states
is returned.

We now consider the problem of determining the dimensions of the spaces W; M
We would like to determine a generating function

Smax

Zim(q) =Y dimWwgte®. (6.3.21)
S=0

These dimensions dim Wé: M are given by the number of partitions of the integer S into
at most M, parts, each less than or equal to L;. Expressing (6.3.19) as

S=(mi+ne+-+np)+ o+ +na)+- -+ (6.3.22)
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one can notice that there is one-to-one correspondence between an elementary vector
in (6.3.17) and such a restricted partition of S in (6.3.22). For example, consider the
same example as above, L =7, M = 3, K = 1. There are 3 elementary states in WZ’?’:

12111123),  (ny + ng,n2) = (4,0), (6.3.23)
‘1211213>, (n1 + No, TLQ) = (3, 1),
11122113), (g + no,no) = (2,2).

These correspond to the partitions of the integer 4 into at most M; = 2 parts, where
each part is less than or equal to Ly = 4. There are 3 such partitions 4 =4=3+1 =
2+ 2.

The restricted partitions described above can be generated in general by Gaussian
(or g-) binomial coefficients [201]

k=1

B Smax L -1 M*ll_qL_k,
S=0 q

which is always a polynomial in ¢q. Note that if we send ¢ — 1, the ¢g-binomial reduces
to the ordinary binomial coefficient and we have

Smax L _ 1
}:mmwﬁM:( ):mmw%% (6.3.25)
P M—1

as expected because of (6.3.15). Properties of the g-binomial coefficient (6.3.24) can be
used to understand the structure of graded spaces Wé; M For example, the property

L—1 L—1
k — [(L=M)(M~1)—k _

where [¢*]f(q) is the coefficient of ¢* in the polynomial f(q), explains the symmetric
structure of the state tower (6.3.6). We also have

Mﬂ<éij>q:MuAMM1q<éia)q:L (6.3.27)

which reflects the fact that WsLmZ and WOL M- are one-dimensional, being spanned by
the anti-locked and locked states respectively.
(6.3.24) generates a list of dimensions® dg := dim WSL M

(dsmax7 dStnax_17 e ,dl, dg) Wlth d() = dsmax =1. (6328)

By a further property of the g-binomial coefficient, the dimensions are increasing from
the left to the right until the midpoint. After that they decrease symmetrically to 1,
because of the symmetry

ds=dg, S := Smax — 95, (6.3.29)

3dg = dg(L1, M;), we suppress the Ly, M; dependence for now.
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which reflects (6.3.26). For the space Wéﬂ’ﬁ, there is only one elementary state iy =
|2M11113) " the anti-locked state. By successive action of H, a Jordan string of states
is generated

Wo —2 Hipy —0 H2pg —s + -« Ly HSmaxypy Ly 0. (6.3.30)

Therefore, this generates a Jordan block of size Sp,.x + 1, which is the largest block in
this sector.

The next dimension dg,_, 1 in (6.3.28) is also one, which can be computed from
(6.3.24). This means WSL;,ZA is spanned by H1g, the first descendant of the anti-
locked state in (6.3.30). Therefore there is no other independent vector in I/VSLrﬁf1
which can generate a new Jordan string.

The top state of the second Jordan block arises at the first level S = S; below
Smax Whose dimension is bigger than 1. We can form dg, — 1 linearly independent
potential top states in W[fl 7M, which are linearly independent from the H-descendant

of the anti-locked state. We denote these states by @D](.Sl) (j=1,...,ds, — 1), and make

the ansatz
ds,

wj(&) _ Z@z)éﬁ)) (6.3.31)
=1
(S1)

%

(i)
J
by the condition that each wj(&) constitutes a top state for a new Jordan block. Each
of these states generates a Jordan string

: LM : .
where e;”"" are the elementary states in Wg'™ . «;” are constants which are determined

i I gy A g0 I sieSiyS) g =1, dg, — 1
(6.3.32)
The condition H1—51 1/1](51) L, 0leads to a linear system of equations for the a§i) which
can be solved to determine the ds, — 1 new top states. These new Jordan blocks each
have size S; — S; + 1. The only possible subtlety is the potential for an ‘unexpected
shortening’ of the Jordan block, that is the possibility for the equation H k¢§sl) =0

to admit a solution in the ozg-i) for some k < Sy — S; 4+ 1. While we did not rigorously
disprove shortening in full generality, we verified for a large number values of L and M
that it does not happen, see appendix C.1.

The third set of Jordan blocks occurs at a level Sy, which is the largest integer
satisfying dg, > dg,. Then, as before, we can form dg, — dg, linearly independent
potential top states which are linearly independent from H-descendants of the previous
vectors, 1y and @/J](-Sl). We make a similar ansatz for these potential top states

ds,

5 = Zﬁ](i)egsz)’ (6.3.33)

i=1

where BJ@ are constants. These states create new Jordan strings

R - N T T FUUUY: [Fy:

and the final condition H 52_52%(-52) .0 is solved to determine the constants @@.
This leads to dg, — dg, Jordan blocks of size Sy — Sy + 1. This procedure can be
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continued until it reaches the maximum value of the dimension dg which occurs at
S = [Smax/2]-

We note that for a given L, M, the dimensions dg are sufficient to determine the
sizes and multiplicities of the Jordan blocks. For example, for L = 9, M = 5 we
compute using (6.3.24)

Zy5(q) =1+ q+2¢° + 3¢* + 5¢* + 5¢° + 7¢° + 7" + 8¢° (6.3.35)
£ 7¢° + 70" 4 5™ + 50" 4+ 3¢ + 2¢™ + ¢15 + ¢'°
from which we can identify the Jordan normal form of H in W to be (17,13,11,9% 5% 1)

using the same procedure as (6.3.14). We can exhaust the Hilbert space by application
of U7,j =1,...,8, so that overall we have

JI\IFQ,&I = (1797 1397 ]-197 918a 5187 19) (6336)

For higher K, see the next section 6.3.2, it is necessary to work with a slightly modified
generating function for the dimensions of WSL M This modified generating function is
symmetric under ¢ — ¢

M— L ]W+k _L-—M+k

= 2
Zrm(q) = g~ = Z, i (q) r:[ ] H e _m . (6.3.37)

For example, (6.3.13) and (6.3.35) are modified to

Zrg(@) =q '+ a7 +2077 + 207 +3+20+2¢° + ¢ + ¢, (6.3.38)
Zos(@) =q 8 +q T +2¢7 5 +3¢° +5¢ +5¢ 2 +T7q 2+ g7 (6.3.39)
+8+T7q+7¢* +5¢° +5¢* + 3¢° +2¢° + ¢" + ¢°.

The modified function provides an elegant way to determine the sizes and multiplicities
of the Jordan blocks in a sector uniquely. We have

Zia(q) =D Njlilg = Nig® + N (q*% + q%> + N3 (¢ +¢"+4¢') +..., (6.3.40)
J

where N; is the number of Jordan blocks of length j. [j], is a modified g-number

qj/2 —q —j/2

U= s = Z q". (6.3.41)

k= *J+1
For example Z; 3(q) and Zy5(q) can also be written

Z13(q) = [Uq + 5] + 9], (6.3.42)
Zos5(q) = [1]g + 2[5y +2[9]y + [11], + [13], + [17],, (6.3.43)
reflecting the Jordan block structures (9,5,1) and (17,13,11,9% 5% 1) respectively.

Interestingly, a generating function which generates the Jordan block spectrum of
all of VLM can be obtained as a trace over the Hilbert space.

; L—1
Zru(q) = trg® Sme/2 = L[ 1 : (6.3.44)
M—1],
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This trace implements the counting of states explicitly, rather than using the g-binomial
coefficient. S is a counting operator which acts on elementary states with well-defined
values of S

S1S) = S|9), (6.3.45)

and is extended by linearity.

Cyclicity classes. We briefly note that instead of considering states in UJW &M
where the ¢3 field is in a fixed position, we could have considered states in any cyclicity
class k. If we replaced the states |ji1j2---jr-13) — Ckljij2---jr—13) for any k =
0,1,...,L —1 the arguments of this section are unchanged because [H,Ci| = 0, where
Cy, is the unnormalised projector defined in (6.2.15). Therefore the Jordan normal form
of H is the same in W™ and V}{L’M’l for any k. The distinction between static and

cyclic bases is more intricate for K > 1.

6.3.2 Generalisation to Many Walls

Here we discuss the extension of the previous section to sectors with many walls, i.e.
K > 1. The main observation is that K > 1 states behave essentially like a tensor
product of K states with K = 1. Any elementary state v € VZ™X ending in a 3 can
be written

V=01 Q0 Q- R Uk, (6.3.46)

where v; € Whtmitlmitl are elementary states themselves. We defined W5 above
(6.3.2). ¢; denotes the number of 1’s in v; and m; denotes the number of 2’s. The
hypereclectic Hamiltonian H acts on states of the form (6.3.46) as

Ho=Hu®@uu® Qug+0 @H,®@ - Qug+- -+ 11 Q-+ ® Hug. (6.3.47)

We define £ := (¢4,...,0lk) and m = (mq, ..., mg), which should satisfy
K K
li=L-M=L, Y m=M-K=M,. (6.3.48)
i=1 i=1

We will denote the spaces ®fi1 Whitmitlmitl a9 subsectors, and picking the vectors
£, m corresponds to a choice of subsector. We consider subsectors (£,m) satisfying
(6.3.48) which are unique up to application of the translation operator U”. In practise
this means we identify (£,m) ~ (£, m’) if £,£ and m, m’ are related by the same
cyclic permutation o™

L,m)~ . m) +— £ m)= ("L c"m), (6.3.49)

0'(61,62,...,£K) = (ﬁg,...,f[{,gl). (6350)

In this way we can describe all the states in V"X using the translation operator U.
Overall we have

L/Slﬁm K
yLME _ @ @ 8 ® ng+mi+17mi+1’ (6.3.51)
(em)/~ j=1 i=1
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where we introduced the symmetry factor for a subsector Sy ,,. The symmetry factor
reflects the fact that some subsectors are especially symmetric with respect to cyclicity.
This occurs when there is an n < K such that

(6", 0"m) = (€, m), (6.3.52)

where o is the cyclic permutation defined in (6.3.50). In this case we give the subsector
a symmetry factor Sg,, = K/n. For example, let L = 14, M = 8 K = 4 and take
the subsector £ = (2,1,2,1),m = (1,1,1,1). We have 0%£ = £ and 0?m = m and so
Sem = 4/2 = 2 in this case.

Example: L =7, M = 4, K = 2. We begin with the simple example L =7, M =
4, K = 2. In this sector there are three ¢; fields, two ¢y fields, two ¢3 fields and
3,;—:2, = 210 total states. In table 6.1 we show the 6 inequivalent choices of (£, m),
which corresponds to the 6 ways to decompose the states into K = 1 states, on which

H acts block diagonally.

Form of state | Number of states L,m JNF
1]111223) ®[3) | 10 x 1 =10 (3,0),(2,0) | T3
2| [11123) ®23) | 4x 1 =4 (3,0),(1,1) | 4
3| [11223)®[13) [6x1=6 (2,1),(2,0) | 5 1
4| 1123) ® [123) | 3 x2=6 (2,1),(1,1) | 3®2
51(1223) ®[113) [ 3x1=3 (1,2),(2,0) | 3
6| [1113)®[223) | 1x1=1 (3,0),(0,2) | 1

Table 6.1: Decomposition of L = 7, M = 4, K = 2 states into K = 1 states. The 3’s should
be regarded as fixed, whereas the 1’s and 2’s can be permuted within their ket.

All subsectors except for 4 behave trivially as a single K = 1 sector under the action of
H. Their Jordan normal forms were determined in the previous section and are listed
in the table. We look at states of the form 4 in a bit more detail. These states have
the form of an L = 4, M = 2, K = 1 state and an L = 3, M = 2, K = 1 state glued
together, which consist of a single Jordan block of size 3 and 2 respectively. The natural
‘anti-locked’ state comes from gluing together the anti-locked states of the respective
K =1 parts |2113213). We act successively on this state with H

2113213) — |1213213) + |2113123) (6.3.53)
5 [1123213) + 2|1213123) — 3|1123123) — 0,

which is a Jordan block of length 4. There is a further Jordan block of length 2 obtained
by making the ansatz for a new top state

71[1213213) + 75[2113123), (6.3.54)

and similarly to the last section this gives a Jordan block of length 2 for 7y = =1,y =
2. Thus the Jordan decomposition of the subsector 4 is (4,2). Since the Jordan
decompositions of the K' = 1 sectors are (3) and (2) respectively, we denote this as
3R2=4®2.
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At the level of generating functions, we can deduce the Jordan normal form of the
‘tensor product’ sectors by multiplying the generating functions of the corresponding
K =1 sectors. For example, for the subsector 4 we have

Z345(0) = Za2(@) Zs2(a) = (67" + 1+ ) (a7 +¢'7%) (6.3.55)
— 2 og 2 ol 4 2
from which the Jordan normal form (4,2) can be easily deduced using (6.3.40). To

obtain the full generating function for each of the subsectors in L =7, M =4, K = 2
we can simply add the generating functions for each of the subsectors 1,2,...,6

6
Z7,4,2<Q) = Z Z;,4,2(Q)
i=1

= 34207242073 4 4 + 37+ 64 3¢ +4q + 267 + 25 + ¢°. (6.3.56)
Using (6.3.40) leads to the following Jordan normal form:
INF7 40 = (7,5,4%,3%2,1%). (6.3.57)

In this sector there are no subtleties with cyclicity and the rest of the Hilbert space can
be exhausted by application of the translation operator U7, j = 1,...,6. For each j we
have the same argument as before, so the full Jordan block structure can be obtained
as seven copies of (6.3.57)

INFP1, = (77,57,41, 31,27, 11). (6.3.58)

At the level of the generating function this can be obtained by multiplying (6.3.56) by
L = 7. However, there are cases where cyclic symmetry leads to some subtleties, as we
discuss next.

Example: L = 8 M = 4, K = 2. Let us consider the case of L =8 M =4, K =
2. There are %ﬁz! = 420 states in this sector. Therein one finds an (€, m) subsector
that is symmetric with respect to cyclicity. In table 6.2 we break the states into K =1

states as in the previous section, where we replaced 4®2 =5@3 and 3®3=503d1

Form of state Number of states lL,m Jordan decomposition
11111223y ®[3) | 15 x 1 =15 (4,0),(2,0) | 95® 1
2 | [111223) ®|13) | 10 x 1 =10 (3,1),(2,0) | T® 3
3| [111123) ®123) | 5x1=5 (4,0),(1,1) | 5
4] |11123) ® |[123) | 4 x2 =8 (3,1),(1,1) | 4®2=5®3
5| [11223) @ [113) | 6 x 1 =6 (2,2),(2,0) | 51
6| [11113) ®|223) | 1x1=1 (4,0),(0,2) | 1
7 1123) ®[1123) | 3x3 =9 (2,2),(1,1) | 3®3=5&3a1
8 | [1223) ® [1113) | 3 x 1 =3 (1,3),(2,0) | 3

Table 6.2: Decomposition of L = 8, M = 4, K = 2 states into K = 1 states.
by multiplying the appropriate K = 1 generating functions and naively extracting the
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resulting Jordan block structures using (6.3.40). We see that 7 is the subsector where
the issues with cyclicity emerge. For the other subsectors we can exhaust the rest of
the state space by acting with U7, j = 1,...,7. However for subsector 7 applying the
translation U4 maps the states to a state in the same subsector, which reflects the fact
this subsector has a symmetry factor Sg, = 2. Therefore acting with U7, j = 0,1,...,7
leads to a double counting by a factor of 2. We can realise this at the level of an overall
generating function for the L = 8, M = 4, K = 2 sector by multiplying by 1/S¢, = 1/2
for the subsector 7

1
Zs42(0) = 8(Ziup + Z8ao + Zap+ Ziao+ Lz + Do + 5 %02+ Zap)- (63.59)

We compute (6.3.59) to be
Zs42(q) =8¢ * +16¢ 7 +52¢72 +80g~ ' + 108 + 80q + 52¢° + 16¢° + 8¢*. (6.3.60)
Using (6.3.40) we identify the Jordan normal form to be
INF, = (9%, 7°,5%0,3%1%%). (6.3.61)
General L, M, K. Here we generalise the above observations to arbitrary L, M, K

sectors. Given an L, M, K sector we consider a subsector ®fi1 Whitmitlmitl defined
by the vectors £, m. The anti-locked state takes the form

Q=1(2---21---1)13(2---21---1)23---(2---21---1)g3), (6.3.62)
where (¢;,m;) are the numbers of 1’s and 2’s in the j*™ bracket. Recall that we have
K K
lj=Li=L-M, Y mj=M=M-K. (6.3.63)
j=1 j=1
As for K = 1, we can grade the vector space by the action of H
K Smax
® Wfi-i-mi-i-l,mr‘rl — @ Wé’m7 (6364)
i=1 5=0

where Wé;::x is spanned by the anti-locked state and H lowers the level S — S —1. By
acting successively with H on €2, we will arrive at the locked state

|[(1-+-12+--2);3(1---12--+2)93 -+ (1---12---2)3). (6.3.65)

There will be many different configurations in the middle with lower values of S. For
the anti-locked state we have

K
S = Smax =L-m =Y _;my, (6.3.66)

=1

and so the size of the largest Jordan block in each subsector is Sp.x + 1. If we define
the number of actions of H on the j™ bracket as n;, a general state has a level
K K
S = Sj :Smax_Np Sj zéjmj—nj, N:an, with Ogn] Séjmj.
j=1 j=1

(6.3.67)
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The anti-locked state has S = Spax (or N = 0) and the locked state has S = 0 (or
N = Smax)-
Now consider states obtained by acting with H N times on the anti-locked state,

l1ma lgmi
HYNQ = Z Z |[H™(2---21---1)3H"(2---21---1)3--- H"™(2---21---1)3).
n1=0 n=0

(6.3.68)
The number of elementary states generated by each H™(2---21---1) was found in
section 6.3.1 to be dy,m,—n,(€;,m;), which appeared as a coefficient of the g-binomial

(Ej;mf) as defined in (6.3.24). Therefore we can compute the number of elementary
J
states at each level S to be

l1ma lgmig K K
£Lm 9 £m - : _
Dg" _y=dimWg™ = E e g Hdljmj_nj (¢;,m;), with E nj =N
i=1

n1=0 n=0 j=1
(6.3.69)
This can be recast into a generating function

Smax Smax [ £1m1 lrkmk
Zz’m(Q) = ZDg;ZX—Nq Z [Z Z 5NZK ]‘_[dl]mj n](gjvm])] qN
N=0 N=0 Ln1=0 nx=0
Lomy txmi K K 1 — glitmiti-k
S IEED 9 | EUPURTIRSY | [H e
n1=0 ng=0 j=1 =1 Lk=1 q

using the expression for K = 1 in (6.3.24). This may be expressed through g-binomials
g p y p gh g

) Z4™(q) = ﬁ (lj ;jm])q (6.3.71)

j=1
This proves that the generating function for an £, m subsector is simply a product of

the corresponding K = 1 generating functions. For example, if we take L = 13, M =
7, K = 3 and consider the subsector £ = (3,2,1),m = (2,1,1) we find

24m(0) = (3), (1), (), = Zhmo D"va" (6.3.72)
=1+43¢+6¢°+9¢° + 11¢* + 11¢° + 9¢° + 6¢" + 3¢® + ¢°.

Analagously to the K = 1 case, we can use (6.3.14) to determine the Jordan block
spectrum in this subsector

INF = (2%,4%,6%, 82, 10). (6.3.73)

Since the states belonging to a given partition £, m of (L;, M;) are not mixed with
those in a different partition, the total Jordan block spectrum is just direct sum of all
the spectrum sets.

One can sum over all inequivalent partitions formally. For this purpose, it is nec-
essary to use the modified ¢-binomial coefficients defined in (6.3.37)

K
m i +m; —vomara (U My
Ztm(q) = {J | J} =[[a" M?(J J) : (6.3.74)
1 q q



For each £, m subsector we can exhaust the rest of the state space by acting with the
translation operator U7,j = 1,..., L — 1. The arguments of this section do not change
in these cases, and so the overall generating function for a subsector can be obtained
by simply multiplying it by L. The only exception is £, m subsectors which have a
symmetry factor Sp,, # 1. Adjusting for this possibility, we can define the generating
function for a whole L, M, K sector as a sum over inequivalent partitions

Ziux(@) = D iZe”"(q). (6.3.75)

(€m)/~ TE™

This total generating function gives the complete Jordan block spectrum, as in (6.3.40):

Zranx(@) =Y Niljly = Mg’ + Ny (q‘% + q%) +N; (¢ ¢+ qY) ... . (6.3.76)
J

As for the K = 1 case, 2y x(q) can alternatively be computed as a trace over the
entire Hilbert space

Zranic(q) = trg 52, (6.3.77)

where S measures the level S of an elementary state and Smax measures Spax = £€-m
of a state in an £, m subsector. Both operators are extended to the full Hilbert space
by linearity. We can define S" = S — Sy /2 for brevity.

Cyclicity classes. The expression (6.3.77), which can also be expressed as (6.3.75),
gives a generating function that describes the Jordan block spectrum of the hypereclec-
tic model in an arbitrary sector of operators defined by L, M, K. However, in certain
circumstances it might be useful to compute the Jordan block spectrum in a specific
cyclicity class k, for example the cyclic sector k£ = 0 relevant to quantum field theory.
In this case, the formula (6.3.77) still applies

28 x(a) = toeg”, (6.3.78)

where we take care to trace only over states of a fixed cyclicity k.

6.3.3 Universality

In the previous sections we described a method to find the full Jordan block spectrum
of the hypereclectic model, as opposed to the more interesting eclectic model. However,
we claim a universality hypothesis: The Jordan block spectrum of the eclectic model
for generic couplings &1, &s, &3 is identical to that of the hypereclectic model, provided
L, M, K satisfy

Li=L-M>K, M, =M-K>K. (6.3.79)

(6.3.79) implies that the number of ¢3 fields in the sector does not exceed the number
of ¢1’s or ¢o’s. Without loss of generality we can further take

L-M>M-K>K. (6.3.80)

In this section we provide evidence that this conjecture is true, and in appendix C.2 we
prove it for K = 1. Throughout this section we will consider (6.3.80) to be satisfied,
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otherwise we can simply relabel the fields so that it is. It is possible to fine-tune
the couplings to break down the Jordan block structure in certain cyclicity classes, as
discussed in appendix C.3. Since the ¢3 fields no longer act as walls it is useful to work
with states of a fixed cyclicity k, see section 6.2.2. For definiteness in the following
examples we will restrict to the cyclic sector £ = 0, the case relevant to single trace
operators in quantum field theory.

Eclectic Spin Chain and Level S. Recall that for elementary states in K = 1
sectors we defined a level S, which corresponds to the total number of 1’s to the right
of each of the 2’s in a state. Here we work with cyclic states

L1
J1j2+Jr-13)g = Coljij2 -+ - jr—13) = Z U1z - - - jr-13)- (6.3.81)
=0

We define S in an analogous manner for states of the form (6.3.81). For example
the state [1211213), has S = 4. Let us define Vs to be the vector subspace of V!
spanned by cyclic states with level S.* We saw previously that the hypereclectic Hamil-
tonian maps states in Vg to Vg_;

Hg : VS — stl, Hg% =0. (6382)

Let us investigate the action of the full eclectic Hamiltonian H.. = H; + H, + H3 on
the vector spaces Vs. We find that

Hi: VS — VS,LI, H,: VS — stMl- (6383)

Since Ly > M; > 1 (6.3.83) implies that H; and Hy decrease S for a state by a greater
than or equal amount to Hs. This already makes plausible that they will not affect
the Jordan normal form of Hj, since Hy and H; will annihilate states faster than Hj.
For example, consider the anti-locked state [221113), € Vi for L =6, M = 3, K =1,
so that Ly = 3, My = 2. Then

H,|221113), = [211123), € V5, (6.3.84)
H,|221113), = |122113), € Vi,
Hs|221113), = [212113), € V5.

Example: L = 7,M = 3, K = 1. Let us consider the eclectic model for L =
7,M = 3, K = 1. In the hypereclectic model this sector has the Jordan block spectrum
(9,5,1) in W?°. Here we show that the eclectic model has the same Jordan block
spectrum in the cyclic sector.

The anti-locked state in the cyclic sector [2211113), € V5 again determines a Jordan
block of length 9. The first descendant of the anti-locked state is

H,|2211113), = £[2111123), + £]1221113), + &[2121113),,. (6.3.85)

4We suppress the L, M dependence of V.
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Note that the coefficients of &7, &, and &3 are states with S = 4,6, and 7 respectively,
which reflects equations (6.3.82) and (6.3.83). In general acting with a power of He.
on [2211113), gives

H™|2211113), = H}|2211113), + lower S states. (6.3.86)

It is then easy to see that H”|2211113), = 0 and thus [2211113), is the top state for a
Jordan block of length 9, as before.
In the hypereclectic case the top state of the next Jordan block is

@ = —9]1221113), + 5[2112113), € Vj, (6.3.87)

which satisfies H39(© = 0. Thus ¥®) determines a Jordan block of length 5 for H.
However, in this case things are a bit trickier in the eclectic model. We have

He ' = 156,¢3]1111223),, # 0. (6.3.88)

It is however possible to modify the top state (6.3.87) by adding states of lower S, such
that the residual term (6.3.88) vanishes. In this case it is sufficient to add states with
S =5 to ¥®. Since dim Vi = 2 we can add 2 states, to arrive at a new top state

X = 9© 4 ~1[1212113), + 72]2111213). (6.3.89)
This state satisfies
Ho X' = (=158 + (571 + 472)63)€5[1111223),, (6.3.90)

which vanishes for 5y; 4+ 4, = 15&5/£3. Note that this defines a one-parameter family

of top states. Therefore the eclectic model also has a Jordan block of length 5 in this

sector, with a slightly modified top state (6.3.89) which contains lower S = 5 states.
In the hypereclectic model the top state for the final Jordan block is

YW = 12111123), — [1211213), + [1122113), € V4, (6.3.91)

which satisfies H31® = 0 and thus determines a Jordan block of length 1. The action
of the eclectic Hamiltonian on this state gives a residual

Hop™W = —€,]1111223), — £]1112213),, — &[1121123), # 0, (6.3.92)

which consists of states with S = 0 and S = 2. As before we can eliminate this residual
by adding states of lower S to the top state (6.3.91). We first try to add states with
S =3, and since dim V3 = 2 we add 2 states

X =@ 4 01]1121213), + a5|1211123),,. (6.3.93)
We check that for ay = & /&, a0 = —2&, /& the S = 2 states in the residual (6.3.92)

vanish )
Hoex™ = —&|1111223), + é;—2\1112123>0, (6.3.94)
3

however we find a new residual consisting of an .S = 1 and an S = 0 state. These can
be removed by adding S = 2 states into the top state ansatz

W =W+ £1|1112213), + (2|1121123),,, (6.3.95)
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and setting 8; = & /&, Bo = —&1 /& — €3 /€2, With these choices for «; and 3; we have
Hex™ =0, (6.3.96)

and so we have identified the Jordan block of length one in this sector of the eclectic
model. In summary, by taking a top state for the hypereclectic model at a level S,
we can manufacture a top state (of a Jordan block of the same length) for the eclectic
model by adding appropriate combinations of states with lower values of S. We will
argue that it is always possible to add these states of lower S, thus rendering the Jordan
block spectra of the hypereclectic and eclectic models equivalent.

General Argument for K = 1. Here we sketch a proof of universality for K =
1, where the filling condition (6.3.79) is trivially satisfied, if all three particles are
present. We find it useful to first introduce the notion of supereclectic models. These
are intermediate models between the eclectic model H,. and the hypereclectic model
Hj, defined by setting only a single coupling &; or & equal to zero

Hypers = Hi+ Hs,  i=1,2. (6.3.97)

For both of these cases it is possible to prove rigorously that Hgyper; has the same
Jordan normal form as Hj for generic couplings. The general strategy of the proof is
reminiscent of the example given in the warmup example above. For the hypereclectic
model, at a level S satisfying dg > dg;1 we can construct dg — dgy; top states

ds

S) (S
P =3 "ol (6.3.98)

j=1

where Ozg»s) are known coefficients and e§s are the elementary states at level S. (%) is

the top state for a Jordan block of length S — S + 1

)

Hy =541 = 0, (6.3.99)

where we recall S = Sy — S = (L — M)(M — 1) — S. We show that it is always
possible to modify the state by adding a linear combination of states with lower S

5-1
MG %(S) G Z o™ (6.3.100)

n=0

where ¢ € V,. The modified state is a top state for a Jordan block of the same
length in the supereclectic model Hg,per,i

HS-5H1,9) — g, (6.3.101)

super,i

which renders the Jordan normal forms of Hgyper; and Hj equivalent for generic cou-
plings. The technical details of this proof are given in appendix C.2. This argument
can then be slightly modified to motivate that the Jordan normal forms of H.. and Hj
are also equivalent.
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Universality for K > 1. It is more complicated to show universality for K > 1.
One main difference from the K = 1 case of the supereclectic models, as explained
in appendix C.2, is that the action of h; on ©®) in general generates several states
with differing S-values. If we interpret S(h;(®)) in (C.2.4) as the largest among these
and replace L; with the associated /;, the same logic should be valid, so that one can
construct for the supereclectic models all subleading states in (6.3.69).

For the eclectic model, however, the critical simplification used in (C.2.22) is not
valid. While we obtained numerical evidence for universality in the general case, we
were unable to provide a proof.

This concludes the portion of the thesis which describes our main research results.
We conclude with a summary of our work and some outlook.
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Chapter 7

Conclusions and Outlook

In this thesis we studied several aspects of Feynman integrals and correlation functions,
all of which have some connection to the (dynamical) fishnet theory, which represents
a strong-twist limit of the celebrated NV = 4 super Yang—Mills theory.

After a detailed review of the core concepts, we studied the action of the conformal
group on Minkowski space, in the explicit setting of the conformal box integral. We
gave a geometric explanation of the breaking of conformal invariance, and explicitly
quantified it by classifying the set of conformally equivalent configurations of four
points. We showed explicitly that the functional form of the box integral in kinematic
regions different from the Fuclidean region can differ from the Bloch-Wigner function
by discontinuities thereof. In view of the Osterwalder-Schrader theorem this is not a
surprise, and indeed the functional form of any locally conformally invariant correlation
function should differ from its form in the Euclidean region by some discontinuity
thereof. However, in which variable the discontinuity should be taken probably needs
to be studied on a case by case basis. The conformal box integral is a very simple
setting to see this mechanism in detail.

We also investigated the extent to which the box can be constrained using its Yan-
gian invariance. The space of Yangian invariants in this case turned out to be spanned
by the Bloch—Wigner function and its discontinuities. Using discrete symmetries we
were able to get surprisingly far in constraining the box integral in each kinematic
region, and indeed we could fix it up to twelve undetermined constants. It would be
interesting to find a way to fix these constants without resorting to an explicit analytic
continuation from the Euclidean region, as we did. Can it be done in a way more in line
with integrability, for example by studying the star-triangle relation in each kinematic
region?

Although in this chapter we focused on the case of the one-loop box integral, it
would be interesting to look at higher-point/higher-loop conformal integrals directly
in Minkowski space, study their analytic properties in different kinematic regions, and
analyse the extent to which conformal symmetry is broken. Is there a systematic way
to determine which discontinuities in the cross-ratios one needs to take to recover the
functional expression away from the Euclidean region? Can higher-point analogues
of the double-infinity configurations we introduced be useful in this regard? Natural
examples to look at would be the higher loop Basso—Dixon graphs and the conformal n-
gons. The conformal pentagon would be an interesting place to start, since its analytic
form is already known, see (2.3.59). Since there are five independent cross ratios in
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this case, the analytic structure is certainly more intricate.

We proceeded to study the Basso—Dixon integrals, which represent exact correlators
in the fishnet theory, and contribute to several observables in N' = 4 SYM. Although
they have a very elegant functional form in terms of polylogs, this has not yet been
derived purely using integrability. If the fishnet theory is integrable in the planar limit
(and there is much evidence for this) then a derivation of the Basso—Dixon formula
based on integrability would be very natural. We initiated the study of the action
of the Yangian algebra on the Basso-Dixon graphs. While the higher-point fishnet
graphs are exactly Yangian invariant, there are issues in taking the four-point limit
to the Basso—Dixon graphs, which lead to an inhomogeneity on the right hand side of
the invariance equation. We analysed this inhomogeneity in detail, and derived the
Yangian Ward identities for the Basso—Dixon integrals, which we numerically verified
up to four loops.

We generalised these identities to the integrable two-parameter family of fishnet
models proposed by Olivucci and Kazakov. We found that these equations separate
neatly when specified to two dimensions, which lead to one of the simplest incarnations
of the Yangian bootstrap, in the case of the two-dimensional conformal box integral.
In particular, we solved the resulting ordinary differential equations by separation
of variables in terms of Legendre functions. In fact, the Basso—Dixon graphs were
calculated in 2D using Sklyanin’s separation of variables in [190]. It would be very
interesting to investigate whether there is a link between these facts, and how to make
this explicit.

At the moment it is unclear how to solve our Yangian Ward identities for the con-
formal functions ¢,s3, due to the presence of the inhomogeneity. It would be very
interesting to devise a method to solve these identities, for example using a hyperge-
ometric ansatz for a family of Basso-Dixon graphs with general propagator powers.
Another direction to explore is the action of the higher-level Yangian generators on
the Basso—Dixon graphs. Although level-one invariance is destroyed beyond the box
integral, it is still possible that the higher-loop graphs are annihilated by the higher-
level generators. If this is the case, this would lead to higher-order PDEs in z and z
which ¢, satisfy. A natural conjecture would be that ¢,s is annihilated by J‘(’n), where
n = max(a, 8).

Notably, our derivation of the Ward identities relies on the Yangian invariance of
correlation functions in the fishnet theory. Since we verified the resulting equations on
many Feynman integrals, there is strong evidence for their validity. Still it would be
important to derive the initial invariance of correlators from first principles, e.g. from
a Yangian invariance of the action. This would require to extend the methods of [120]
developed for N/ = 4 SYM, such that they can also be applied to the class of fishnet
theories.

Interestingly, our results for the two-dimensional box integral are single-valued in
the complex variable z. Although a theory of single-valued harmonic polylogs is by
now well-developed, there is no such theory for functions of an elliptic nature. It would
be interesting to construct a class of elliptic functions which are single-valued in the
sense of Bloch—-Wigner, as these would likely play an important role in the blossoming
subject of elliptic Feynman integrals.

We then changed direction and looked at a different aspect of correlation functions
in strongly-twisted N' = 4 SYM: namely we studied the one-loop dilatation operator in
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a three scalar sector of the dynamical fishnet theory. This operator, although integrable
in the Yang—Baxter sense, is non-diagonalisable and has so far resisted all attempts at a
solution from a Bethe ansatz approach. Using combinatorial arguments, we introduced
an elegant generating function which fully classifies the Jordan block spectrum of the
related hypereclectic model. For a single ‘wall’, this function can be expressed as a
g-deformation of the binomial coefficient ( AL/[__ll), where L is the length of the spin chain
and L — M is the number of excitations of type 2. For higher numbers of walls the
generating function can be written as a sum of products of g-binomials. This sum
involves an unwieldy sum over subsectors with a symmetry factor Sy,,. The formula
was already improved in [202] to remove this factor, and which used Poélya counting
explicitly to describe the cyclic states.

The elegance of these formulas suggests that there is some connection to integrabil-
ity, which was not used in their derivation. Is the ¢ of the generating function related
to the spectral parameter u of the transfer matrix? The ¢ parameter of a quantum
deformed group? Can the non-trivial algebraic relations generated by the Yang—Baxter
equation be used in any way?

It is important to note that our derivation for the Jordan block structure of the
eclectic model relies on the universality hypothesis and the lack of so-called unexpected
shortening. While we have good evidence that both of these points are valid, it would
be valuable to provide a rigorous proof.

Since the sizes and multiplicities of the Jordan blocks determine the form of the
two-point functions in logarithmic conformal field theory, it would be interesting to
explicitly calculate, using Feynman diagrams, the two-point functions in a logarithmic
multiplet, and verify that logarithms appear in the precise manner predicted by [33].
One could start by looking at the rank-two multiplet which appears in the cyclic sector
for L = 3,M = 2, K = 1. One could then study if wrapping has any effect on the
Jordan block structures for lower lengths.

It has been suggested in [203| that logarithmic multiplets in fishnet theory are pro-
tected i.e. they do not receive any corrections beyond one loop. It would be interesting
to prove this explicitly in the case of the eclectic model. It seems plausible, given that
the dilatation operator at higher loops appears to decrease the S value of states faster
than the one-loop dilatation operator, and so doesn’t affect the Jordan normal form.

A final interesting conceptual question is whether the Jordan block spectrum of
other non-diagonalisable spin chains, integrable or not, can be described by similar
generating functions. Or is this particular to the (hyper)eclectic spin chain? There
would be a few natural ways to test this. For example, one could study the dilatation
operator in other non-diagonalisable sectors of (dynamical) fishnet theory. These sec-
tors could contain derivative fields/fermions, and would be more intricate to analyse.
There are also different strong twist limits of AV = 4 SYM available, which should
contain new non-diagonalisable models, see [6]. One could also consider the dilatation
operator in the strong twist limit of ABJM theory [194]. In this case the first quantum
correction to the dilatation operator appears at two loops, and this would probably be
a chiral version of the alternating spin chain given in [145].

Finally, it would be important to leverage all the insights obtained about the in-
tegrability of the bi-scalar fishnet theory, and apply this to understand the origin of
integrability in N' = 4 SYM. It seems plausible that conformal symmetry is the driving
force behind the integrability of this theory, given that this is the only symmetry re-
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tained in the strong-twist limit to the fishnet theory. A starting point to understanding
how to transport this information is to understand it for the three-parameter dynamical
fishnet model. A study of the correlation functions of this theory was initiated in [167],
although an interpretation in terms of integrable conformal spin chains is missing.
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Appendix A

Conformal Feynman Parametrisations

In this appendix we give explicit Feynman parametrisations for scalar ladder integrals
and the vector ladder integrals appearing in this thesis, particularly in chapter 5. We
show some details of the calculation for the vector double ladder integral but otherwise
we just state the results.

A.1 Scalar Ladders

We give conformal Feynman parametrisations for the scalar ladders ¢,;, obtained as
specialisations of (5.2.1) and (5.2.3), and cases with more general propagator powers.

Box. The Feynman parametrisation for the conformal box function reads

00 1
_ £ Al1
é11(u,v) /0 @ (14 a1u+ asv)Daya,’ | |

where Dy, a0, = 1 + @2 + ays.

Double Ladder. For the double ladder, the Feynman parametrisation of the con-
formal function is

00 B 1
U, v) = d? / d*a , A12
¢21( ) /0 B 0 (1 + ﬁlu + B2U)D5132Da1a2 ( )

where foﬁ d®a = [ day foﬁ >day. For the modified double ladder defined in (5.3.50)

we have

wD(

u,v) =

/ dQB/ Lo B =) (P —ag)arag]™h (A.1.3)

F2F2 1 + Blu + BZU)D/2 w<Dﬁ1,32D041062)

D/2—w
The double ladder for fully generic conformal propagator powers (5.3.4) can be written

as
T

V1 179

I;’iD: x4 =28 Y3 _V21 ¢21 (u,v), (A.1.4)

Vs V4

T3

188



D U —Uo— U —yo— o
where ‘/2'/,1 — xlzl/l V2 V3+V4+V5+V6x141/1 V2 V6+V3+V4+V5x137/4 Vs

conformal function can be Feynman parametrised as

oo B vs—1 v1i—1,va—1 _vo—1
v.D v,D 2 o (Br—on)? By — )"0y ay
T (u,v) = ¢y d d“a )
A ( ) A /0 B/O (1 + 61“ + BQU)VG (Dﬂlﬁz)D/2_V6 (DOqOéQ)D/Q_V?

x2_4V3_V4_V5_V6 +vi+v2 . The

(A.1.5)
where the prefactor is written as
I'po_v. Iy,
D = s D/ﬁ R (A.1.6)
i#6 1 vi

Triple Ladder. The triple ladder Feynman parametrisation is given by

00 Y B 1
31 (u,v :/ d27/ dQB/ d*a . A7
31( ) 0 0 0 (1 +nu+ 72U)D7172D5152D0¢1042 ( )

For the modified triple ladder which appears in the theory (5.3.48) we have

wD —L . T 7 2 (71— B1) (v2a—B2) (Br— 1) (Be — g ) vy cvg )t
s (u,v) = FSFE/O d 7/0 d 5/0 d“«a (1+’71u+’YQU)W(D%WQDﬁlﬂzDoanX |
1.8

where we remind w = D/2 — w.

£-ladder. The pattern persists for general ¢-ladders whose conformal functions are
Feynman parametrised by

¢ ( ) /oo d2 nr_[l /'ai+1 d2 1 (A )
u,v) = [67% Qy - , 19
/1 0 i=1 0 <1 + UOénJ + Uan72)(Hj:1 Daj,laj,z)

and in the generalised case we have

w—1
1 . n=1 gy {H (ak,l - Oék—l,l)(Oék,z - Oék—l,2)al,1041,2
wD 2 2 k=2
frg d Oén / d Oéi — n
“ rirs /0 (g 0 ) (1 + uo, + Uanﬂ)w(nj:l Doy 1a;)*
(A.1.10)

A.2 Vector Ladders

Here we provide Feynman parametrisations for the vector ladder integrals.

Double Ladder. We derive the conformal Feynman parametrisations of the vector
integral coefficients of I#®, defined in (5.2.19). We start with

4 4 4,2 4
g2 2 / d*z, d*xy T13L24Ty;
13%To4do1 = D) 2 2 .2 .2 2 4.2 .2
T T T T3LasT Ty TpaTlys
4 4.2 1 4
[ P azanry, [ dir, 1 (A.2.1)
N w2 o a2 w2 2222 2.2, o
p1Lp2Lh3 abLa1Ta3%q4
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The second integral is just a scalar box. With Feynman parameters (and subsequently
evaluating one of the parameter integrals) it evaluates to [67]

4
/ d*z, 1
2 2 .2 .2 .2
m $abxa1xa3$a4
1

o0
d%a
/0 [l (nxf) + aswiy + ouryy) (o asaty + oyt + asoyrs,)

. (A22)

where [d%a] denotes a projective integral over «y,as,ay. For example we could take
[d%a] = dajdasd(ay — 1). The second factor of the integrand does not depend on x; so
we omit it for now. We need to compute

4 W
/ 'z o1 (A.2.3)

2 4 2 2 2 2 2y’
T2 Ly Tppys(Qr Ty + Qslyy + aaty)

where we freely exchange loop and parametric integrals. Using Feynman parameters
this is

s / %] / s s (A2.4)

2 2 2 2 2 2 2\\5°
m 1Thy + V2Thy + V3Ths + Yalouxy, + asxyy + uxyy))

The denominator of (A.2.4) can be written as

o° (F + A)S : (A.2.5)

o2
where
o =71+ + 7+ v + az + aq), (A.2.6)
=gt _ o (y1 + yaon) + ahye + 25 (3 + asya) + Ty vaon
=} ,
o

A =(m1 + )21y + (1 + va00) (93 + Yaos)xls + (71 + yaon) sy
+ Yo (V3 + Va3)T3s + Voya0ata, + (3 + Ya0s) YT,

The numerator xgl can be written

4
1
vy =1 — > B, (A.2.7)
=2
where
By =72, Bs = 3 + a0, By = may. (A.2.8)
The integral over the I* piece vanishes because it is an odd integrand, so (A.2.3) reduces
to
4
- x“/ d? / dl————, A29
iZQ 14 0 [ fY] 0 0_6<12+%) ( )

where we integrate over [ := |[*|. Performing the integral over [ leads to

2 2 2
Q103775 + apourt, + azoyrs,) A3

4

1 4 .2 Bz

§m§13x§4151’2 == b /[onz] [d?’ﬂ( TsTou ]t . (A2.10)
=2
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We choose to perform the 7, integral, and make the rescaling of Feynman parameters

2 2 2
2 2
T T 1
34 14
Y1 5 5 Vs V3 5 5 V3 V4 — 55 V4 (A.2.11)
T13Ly T13La4 T13L24

This rescaling ensures that the resulting integrands are manifestly conformal invariant
[66]. We finally de-project ay = 74 = 1 and make the change of variables v; = §; — «;
for + = 1,3. This leads to the required form

7 p
whaal I = T2 (g ) — 1 213 Py (u, ) — 2 Fy(u, v), (A.2.12)
L2 T35 Ty

with (we further relabel az, 53 — g, 52)
F - 28 [ da fi-a A.2.13
2(“ U> u/ /8/ 1 + ﬂlu + 62U>2D51ﬁ2Da1a2 , ( )
Fy(u,v) 42 / A2 BolBr = ) , A2.14
3( / ﬁ 1 + 61u + 62U>(Dﬂ152)2Da1a2 ( )
Fi(u, v) 42 / d2a b= , A2.15
4( / 6 1+ 51“ + 62,0)(Dﬁ1,32)2D041042 ( )

where we remind that foﬁ d%« is shorthand for fo Ydoy fO’BQ dag and Dyy0, = aq + g +
1009,

Triple Ladder. Here we have

x xt
233w 157 = =2 G (u,v) — Iis = Gs(u,v) = 52 Galu,v), (A.2.16)
Lo x13 L1y
6 2 T2 wlf2 = 13 = xﬁ A
T3wo, I3 = __QGQ(U’7 U) - _2G3(U> U) - _2G4(Ua v),
5p) L3 L1y

where

> ” g u(n — B)
Golu, v :/ d? /d2 /d% L : A2.17
2( ) 0 7 0 B 0 (1 +um + U72)2D7172D5152D011042 ( )
> ! g (1 = B)
Gs(u,v :/ d2’y/ d2ﬁ/ da SEAE ! ,
3( ) 0 0 0 (1 +uy + U72>D3172D5152D041a2

G4(u,v)=/md27/7d2ﬁ/5d2a %_fl :
0 0 0 (1 +un +U72)D7172D5152Da10&2

For G; we have

_ o0 E.
J— 2 2 2.1
Gi /0 [d"a][d°f][d 7]A1A2A§A4, (A.2.18)
where

FEy = uyp, E3 = v3 + uBsy + vas?y, Ey = vyas, (A.2.19)
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and

Ay = s + aaz + asag, (A.2.20)
Ay = 5183 + B1Bs + B3,

A3 = y3 +v7(az + az) +uy(Bs + Ba),

Ay = (781 + o) Fs + (73 + wyfBs + vyas) (Yaz + vB4) + yyob.

Quadruple Ladder. Here we can write

pd Thy Th3 Ty
aiyxi I = = =2 Va(u,v) — S2Va(u,v) — 52 Va(u, v), (A.2.21)
Lo x13 x14
8 2 3 33#2 > 13 513'14
r3ro, L7 = __QVQ(Ua v) — V3( v) — V4(U v),
5p) x13 x14
where
o — 71)
Vo (u,v) /d25/d2/d2/d2 U ,
( 6 1 + U51 + U52) D5152D’71’Y2Dﬂ1ﬁ2D041042
(A.2.22)

X oo [P [ ’ 02(01 — 1)
Va(u,v) = d25/d2/d2/d2 EASC L ,
(1) / 7 & “ (14 udy +052)D§162Dv172D,31/32Da1a2

U 'U d2 / d2 / d2 / d2 ( )
/ p (14 udy + UdZ)D(;l(SQD’Yl’YQDﬁIﬁQDalOCQ

For V; we have

Ve [ ol e (A.2.23)

where here
Ey = uwvdyfBa,  Es=v(03+v(asd + 0v3) + udyBs), By =v*ay,  (A.2.24)
and morevover

Ay = aqas + aqay + azay, (A.2.25)
Ao = B1B2 + B153 + B2/,
Az = udy (B2 + Bs) + v(azd + 03 + ud) + J3,
Ay = 4fBov66 + Barydu (0415 + 0 (Biy + 71)) + 8276 (53 + B370u + azdv + 7351))
+ ayd (53 + Byyou + azdv + 7351)) + ayov (a15 +0(Biy + 71))
+ (8 + 6 (Bry +m)) (05 + B3vou + asdv + y30v)
As = wy((n +781) (B2 + Bs) + 1P25) + vy3(n + VB + 7B2).
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Appendix B

Box Integral Extras

B.1 Kinematic Regions

We list explicitly in table B.1 the elements of K; for i = 1,2,3, 4. The elements of K
can be obtained by flipping all the signs of K;.

Table B.1: Explicit signs of kinematics in K;.

B.2 V¢ C ‘71,z,5 proof.

We prove that configurations w € V¢ are necessarily contained within V; ... By fol-
lowing the arguments leading to (4.2.29) we can find A; € Conf(R"3) such that

Alw = {an2>y37b}' (BQl)

There are eight possibilities for (sgn(y3),sgn(y3), sgn(y3;)), corresponding to the eight
possibilities for the signs of kinematics K; or K;. The only sign assignment which can
possibly lead to a conformal plane configuration with 2,z € C\ R is (— — —), which
occurs when w € Vj. In this case we can rotate/rescale y3 using Ay € Conf(R13) to be
the spacelike unit vector ez = (0,0,0,1)

A2A1w = {O, 22, €3, L}, (B22)

where z5 = (t,p,q,r) = Asys. The stabiliser of 0, e3, ¢ is SO1(1,2) acting on the first
three coordinates of R, The final transformation Az € Conf(R'?) mapping w to a
Minkowskian conformal plane depends on the sign of ¢ := > — p? — ¢?, which is as yet
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undetermined because z¢ < 0. If sgn(c) > 0 then w can be mapped to w__(a,n) (see
table 4.2), which has z,z € R. If sgn(c) < 0 then w can be mapped to we(r, ¢), which
has z,z € C\ R. If (sgn(y3),segn(y3), sgn(ys;)) is not (— — —) it is always possible to
find a permutation o € S; and a conformal transformation A to map (0, ys,ys,¢) to a
Minkowskian conformal plane with real z, z. Therefore w can only have z,z € C\ R if
w € Vy, and so Vg C ‘717Z72.

B.3 Missing Kinematic Region

We show our numerical procedure for excluding the possibility of configurations w €
Vi with sgn(k(w)) = k* = [77] and 2,z € (0,1). We can bring such an w =
{1, 29, 23,24} € V] to a simpler form using conformal transformations which do not
change the signs of the kinematics. We translate z; to the origin and rotate/rescale x5y
to e3. We can then use an SO™(1,2) transformation to rotate x3 into the eg, e3 plane.
We can finally use an element of SO(2) to eliminate one of the spatial coordinates from

x4. The resulting configuration is

1 1
we = {y1,y2, Y3, ya} = {0, €3, 5(03 + u3,0,0,v3 — ug), 5(?14 + 4,0, h,v4 — U4)} )
(B.3.1)

where u;, v; are light cone coordinates and h is the residual spatial coordinate of yy.
The kinematics of w, are

—1, (ug — uy)(v3 — v4) — hzz

k<wa> = (1 + Ug)(—l + ’U3),U4U4 — % . <B32)
U3vs, (]. + U4)(—1 + U4) — hT

w, is subject to the constraint sgn(k(w,)) = [77]. For h = 0 w, is a two-dimensional
configuration and it is easy to prove that z,z € (—00,0) or (1,00). In this case we have

us(L+us) | va(l—vy) (B.3.3)

z,z=1-— , .
U3(1 —|—U,4) U3(1 —U4)

Imposing the constraints sgn(k(w,)) = [77] for h = 0 one can see that z,z € (—00,0)
or (1,00), in particular z,z ¢ (0,1). For h # 0 this fact is checked numerically (figure
B.1). It was also checked numerically by taking random configurations w € V; with
2,z € (0,1), making on the order of 10" SCTs to these, and checking sgn(k(w)) after
each iteration. Indeed sgn(k(w)) = [-] was never observed, as expected.

It is also worth commenting about the ‘kinematics reversed’ case, where w € V4
and sgn(k(w)) = [+1] = Pk*. In this case z,z € (—00,0), 2,2z € (0,1), 2,2 € (1,00) or
2,z € C are all possible. Similarly to above, any such configuration can be conformally
mapped to a simpler configuration w;, without changing the signs of the kinematics

1 1
wy = {21, 22, 23, 24} = {0, 5(”2 + u9,0,0, vy — uz), €3, 5(?14 + 4,0, h,v4 — U4)} .
(B.3.4)
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Figure B.1: Configuration w,. y3 can be placed anywhere in yellow region, after which y4 must
be placed in green region to enforce sgn(k(w,)) = k*. The left picture corresponds to h = 0
and the right picture to h # 0. In both cases for this choice of y3 placing y4 in the upper green
region gives z,z € (—00,0), and placing y4 in lower green region gives z,z € (1,00). In the
right picture the red, purple, and blue dashed lines correspond to the curves y?, = 0,2, = 0,
and y§4 = 0 respectively and reduce to light cones at h = 0.

Figure B.2: Configuration wj. y2 can be placed anywhere in yellow region (which overlaps
with green region), after which y4 must be placed in green region to enforce sgn(k(wy)) = Pk*.
The left picture corresponds to h = 0 and the right picture to h # 0. For h = 0 for this choice
of yo placing y4 in the left green region gives z,z € (—o0,0), and placing y,4 in right green
region gives z,z € (1,00). For h # 0 the green regions merge and z,z € (—0,0),2,z €
(0,1),2z,z € (1,00) and z,z € C are all possible. The red, purple, and blue dashed lines
correspond to the curves y3, = 0,92, = 0, and y3, = 0 and reduce to light cones at h = 0.
z,z € (0,1) is found to be ‘rare’ and occurs only when y, is placed near the intersection of
the red and purple curves.

When h = 0 in this case it is again easily proved that only z,z € (—00,0) and z,z €
(1,00) are possible (figure B.2 left). For h # 0 each of 2,z € (—0,0), 2, Z E (0,1),2,z €
(1,00) or z,z € C are all possible (figure B.2 right). Conﬁguratlons with 2,z € (0, 1)

are observed to be much rarer than the other cases.
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B.4 Double Infinity Calculation

20

Im(t)

0.5

0.0+ X

—05L 1

Figure B.3: Semicircular contour in the complex ¢ plane, the radius is taken to infinity. The
poles are indicated by red crosses, and the parametric poles are indicated schematically.

After a simple factorisation the box integral (4.3.22) becomes ¢% (£4,£.) =

2.2
s

/x,r,t (t—r—+ie)(t+r—ie)(t—1—r+ie)(t—1+r—ie)(t+ra—& +ie') (t—ra—&_—ie')
(B.4.1)

There are six poles of the integrand in the ¢ plane, three in the upper half-plane
and three in the lower half-plane. We take a positively oriented semicircular contour,
closed at infinity in the upper half-plane (see figure B.3), so that only the poles ¢; =
—r i€, tg = —r + 1 + i, t3 = rx + £_ + i€’ contribute to the integral. The integrand
decreases sufficiently fast as [t| — 0o, so we can use the residue theorem to recover

et [ (e e e

11—z
r

(r— (5 +ie)(r — (55 (r = ((557)

(B.4.2)

2r?
(r— (352D — ) (r = (52559)(r — (5229)(r — (%)))’

11—z 11—z

where fw,r = fjl de [ dr and A ==&, — . To perform the r integral we use a key-
hole contour C', which comes in from —oo to 0 below the real axis, travels anticlockwise
in an infinitesimal circle around 0, and leaves from 0 to —oo above the real axis, see
figure B.4. If f(r) is a function such that log(r)f(r) vanishes sufficiently quickly near
the origin and at infinity, and log(z) is the complex logarithm with the branch cut
chosen on the negative real axis, then

0

/C F(2)log()dz = /_ (log(r) + i) F(r)dr+ /O " llog(r) — im) f(r)dr =2mi /_ dr f(r).
(B.4.3)
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Furthermore, using the residue theorem we can deduce a formula for the integral to be
0
/ Fr)dr = 3" Res—, £(r) logr, (B.4.4)
oo -

where the sum is over all poles in the complex r plane. There are a number of

2k

-2 -1 0 1 2
Re(r)

Figure B.4: The Hankel contour in the complex r plane is recovered by sending the radius of
the large circle to infinity. The poles are indicated by red crosses, and the parametric poles
are indicated schematically.

cancellations upon computing the residues. Indeed making the substitution 7" = —r
the contributions from the two poles at r' = % cancel, as well as those from the
poles at 1’ = 5*1_ Jrlx_“ Therefore after performing the " integral the expression becomes

reasonably compact

. e log(3)
Ox (6 6-) = 2/1 da:( (o — (1= 264 4 iex))(x — (—1 + 26_ + iex)) (B-4.5)

B log(—3 — ie)
(x — (=142 —iex))(x — (1 —2¢ - iex))
L (A 12 log(~4554)
[CEP (0 — 27 (a2 — (i ) (g2 — (i)
& log(5=°)
" (‘:‘5 (w = (1= 264 +iex))(z — (F555))
& log(==5")

TOE (1= 2% —ien) (@ - E=c) + (=1 - fx))>,

where we defined [J¢ == &, + £_. Note that this expression is checked to be invariant
under & — 1—&4 after noting that under this replacement A — A and € — 2—LI€.
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It would be nice to directly integrate the above expression into logs/dilogs, however
there is still a small subtlety. The terms zex are not of definite sign over the integration
range, which is not desirable as the ie should specify the branch of our final expression.
Therefore we split the x integral from —1 to 0 and from 0 to 1. As a toy example we

replace
1 0 1
/ I / v, / dr__ (B.4.6)
2 — (a+iex) 1 x—(a—1ie) o T — (a+ie)

:/Old”“" (:c—(:;me)*x—(;ﬂe))'

We perform this procedure to each of the five terms in the integral above. It is useful

to introduce a shorthand for the combinations that appear in the denominators, so we
define

e =1 — 28, £ e, ror = —1 42§ + ie, (B.4.7)
—AE £+ e —AE + e
S14+ = é—g, So4 = % (B48)

Furthermore for the third term we change variables 22 = y and split up the logarithm.
The resulting expression for the box integral is

- o[ —log(3) —log(3) —log(—3 — ie)
Ox (64,6-) = 2/0 d ((a: — ) (T —1roy) * (x+r_)(x+re) i ( +7r14)(@ + ray)

+

(AE)? (210g(—% +i€’) — log(x) N —2log(5* — i) + log(x))
(2O =2\ (z—si)(w—s3y) (= st )(z —s3)

B log(—3 — ie) &+ [log(&y —ide) —log(l —x)  log(§y —ie) —log(1 + )
—r)@—r) (Ds{ @—r)@—ss) | (@tr)@+s) }

f__ log(—=¢_ —ie) —log(1 —z) = log(—¢_ —ie) —log(1 + x) -
+D§{ (x + 1o )(x + 514) + &= 1o @ = 51 } +(§x =1 &)))_

(B.4.9)

The remaining integrals may now be safely computed in terms of logs and dilogs, and
the final answer is given in (4.3.24). The calculation for the configuration X~ is easier,
because if we perform the ¢ integral by closing the contour in the upper half-plane, there
are only two poles to consider. The final answer is given in (4.3.27).
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B.5 Properties of Regularised Yangian Invariants

In the main text, we regularised the functions g¢; that span the space of Yangian in-
variants by adding infinitesimal imaginary shifts to their arguments. The purpose of
these shifts is to clarify on which side of a branch cut the function is supposed to be
evaluated. Of course, different choices of the sign of the shifts do not change the value
of the basis element but merely its functional representation. We therefore summarise
the relations between the basis elements in different regularisations as

9 (2,2) L 01 — 517]0 Oomn — éom 0160 — 9179_0 91 (2, 2)

g;(z, 2) - 0 1-— 00 t 90 00 + 90_ —90 —_00 92_(2’, 2)
g;(Z,Z) 0 ‘91+(91 1 —61 —91 914_-61 - gg(Z,E) 7

91 (2,2) 0 —nom — Mo Mo + o —1+0g+0+01+601) \gs (2 2)
(B.5.1)

where for compactness we use the notation

No =1 — 0, Oy = 0(—=2), 01 =0(z—1), (B.5.2)
Mo =1—10,, Oy = 0(—2), 0, =0(z —1). (B.5.3)

The relation (B.5.1) is for 2,z € R\ {0,1}; of course ¢g;” and g; are indistinguishable
when z € C\ R, z = z*. We also note the relation between the function basis f; and g;

gi = fif — f5 £ 2mify, (B.5.4)

which is valid for all z,Z € R\ {0,1}. We also list some functional relations satisfied
by the functions g;" and g; , for all possible z, z. Here g; transforms very nicely:

N N 1

1 1 1 : s
:;g% (1iz7 112) - ﬂgf(l - %a 1 - %) = ;giF (z—l’ 2—1) ) <B'5'5)

On the other hand ¢s, g3, and g4 have a reduced symmetry under permutations:

N
9 (,2) = —g5 (3, 2); (B.5.6)
> 1 z z
ggt(Z’ Z) = ;gf:iF (2,17 ﬂ) ) <B57)
9i(z2) =gf(1—21-2). (B.5.8)

In general g;t are mapped into each other under permutations for ¢ = 1,2,3. For
example
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Appendix C

Eclectic Details

C.1 Unexpected Shortening

Here we reformulate the conditions for the unwanted ‘unexpected shortening’ described
in section 6.3.1. In a sector with general L, M, K = 1, we argued for the existence of
a top state in WSL’M, where S was such that dg > dg.1 :

ds
) — Z&iegsx (C.1.1)
=1

s
where «; are constants and e§ )

power of H on this state gives

are the elementary states in Wif M Acting with a

ds—k ds ds_x

H O = 3% APa;el™ = 3 (AWa)el™, (C.1.2)

=1 j=1 =1

where A®) is a dg_j x dg matrix, and « is a vector of length dg with entries «;. The
top state ¥ defines a Jordan block of length k if H*(®) = 0, or equivalently the
homogeneous linear system

AP =0 (C.1.3)

admits at least one non-trivial solution in . We conjecture that the rank of A®)
always maximal:

rank(A®) = min(dg_, dg). (C.1.4)

In this case, it is well-known that (C.1.3) can only admit a non-trivial solution in « if
and only if rank(A )) < dg. Moreover, the number of independent non-trivial solutions
isdg — rank(A ) Therefore a non-trivial solution only exists when dg_; < dg. This
occurs precisely when £ = 5 — S+ 1, as can be deduced from (6.3.24). Therefore, if
the rank of A% is always maximal, the top state ¥(®) determines dg — dg4; Jordan
blocks, each of length S — S + 1. We checked the rank of A® for all top states and for
all values of k, up to L = 30, M = 6, and always found it to be maximal, in line with
our conjecture.
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C.2 Universality Details

In this section we prove that Hgyper;, defined in (6.3.97), has the same Jordan block
structure as the hypereclectic model H3 for K = 1, under the assumption discussed
in appendix C.1. Then we describe how to modify these arguments to include the full
eclectic Hamiltonian, and sketch a universality proof for K = 1.

Universality for Hgyper,1- We start with the first supereclectic model defined in
(6.3.97), Hguper,1- Consider a top vector S for the hypereclectic model at a level S.
This vector determines a Jordan block of length ng =S5 — S5+ 1

Hys ) = 0. (C.2.1)
We can expand H(7 . | as
ng ns ng k rrns—k ng ng—1 ns(ng — 1) 2 1 rng—2
Hsuper,l :Z k H1H3 :H3 +nsH1H3 —|——H1H3 +oee,
k=0
(C.2.2)

where we have used [H;, H3] = 0. We introduce a shorthand notation

ns

ns
His ooy =Y hj ho=Hy®, hj= (k>H{H§S—j, j=1,...,ng. (C23)
j=0

Because of (6.3.82) and (6.3.83) each h; lowers the S-value of a state by j(L; — 1) +ng.
In other words, given a vector ®) € Vg we have

S(hjp®) =8 = j(Ly = 1) —ng = (5 = 1) = j(L — 1). (C.2.4)

In particular, hjgp(s) = 0 if this value is negative. Now let us consider the S value of a
top vector to be in an interval

UL —1)<S—1<({+1)(L; —1). (C.2.5)

In this case, all operators h; with j > ¢ will annihilate the top vector and its descen-
dants. Therefore, we may consider only operators hg, hy,...,h, and disregard others
in (C.2.3).

For this S value of the top vector of the hypereclectic model 1%, we claim that
we can construct a corresponding top vector @D%S) of the supereclectic model Hgyper,1,
defined by

HZS 0 =0, (C.2.6)

su

Via the ansatz
S — {

if the top vector has S which satisfies (C.2.5). The condition (C.2.6) can be written as

= (howo) + (howr + hiwo) + -+ + (howe + hipe—1 + - - + hepo) + -+ - =0,
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where we have grouped terms in a very particular way. The first term hopg in (C.2.8)
vanishes due to (C.2.1). Now we want to find ¢; in the second bracket from the
restriction that it vanishes

h0g01 + hlﬁpo =0. (029)

Since S(hipy) = (S —1) — (L; — 1) from (C.2.4), this equation should be expressed by
elementary vectors with this S value. There are dg_1)—(r,-1) of them, which becomes

the number of constraints.® This equation also determines S(p1) = S(h1gg)+ng = S—
(L1—1). Therefore, 7 can be expressed as a linear combination of dgs_(z,-1) elementary
states. Since ds—(r,-1) = dgy(z,_1) > d(g_1)_(z,-1)» one can solve coefficients of the
linear combination from (C.2.9) (not always unique). This proves that we can always
find the solution ;.

We require the next bracket in (C.2.8) to vanish:

hogDQ + h1g01 + hg(po = 0. (0210)

Again, one can find that S(hyp1) = S(hago) = (S — 1) — 2(Ly — 1), from which we
determine S(p9) = S —2(L; —1). Since the maximum number of constraints is smaller
than that of the coefficients due to dg_a(r,-1) > d(g_1)_9(z,-1)» One can find @, from
the known vectors ¢; and g using (C.2.10).

One can easily generalise this argument up to the ¢-th bracket in (C.2.8):

howe + hipe1 + -+ + hupo = 0, (C.2.11)

where the vectors ¢;, 7 =0,...,¢—1 have already been found in previous steps. Since
S(p;) =S —j(Ly —1) we have S(hjpp_;) = (S8 —1) — €(Ly — 1) for j =1,...,¢. This
determines S-value of the unknown vector ¢, to be S(¢g) = S — ¢(Ly — 1). Again, the
maximum number of constraints in (C.2.11) is smaller than the number of coefficients
in the expansion of ¢, in terms of elementary states, which guarantees that we can
always find its solution.

There are more terms which we did not include in the second line of (C.2.8), but it
is easy to show they all vanish. For example, the (¢ + 1)-th bracket would be

Their S-values should be (S — 1) — (¢ + 1)(Ly — 1), which is negative due to (C.2.5).
This means that all these vectors vanish.

This proves our universality conjecture for the supereclectic model Hgyper,1 by con-
structing the top vector explicitly as

1/1§S) — 2b(s) + o1+ + @y, (C.2.13)

for S in (C.2.5). .
Because S < Shax/2 (S < S by definition), the interval (C.2.5) is limited by the
maximum value of ¢ which is
LMy
gmax = |57 1~ |>
2(Ly — 1)

where [z] is the largest integer not exceeding .

(C.2.14)

In fact, this is the maximum number of constraints since some of the elementary vectors may not
appear.
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Universality for Hgyper,2. The second supereclectic model Hgyper 2 defined in (6.3.97)
can be analysed in exactly the same way. Again, one can express

ns
ng —
n . m n m _ _ _ n
Hsui)er,2: E 9m; Gm = (m)H2 H3S ) mfoa'-'anSW gO*hO*Hgs-
m=0

(C.2.15)
Each g, lowers S-values as follows:

S(gmd'™) = S —m(My — 1) — ng. (C.2.16)
In the same way as before, a top vector with level S (and corresponding S ) with
m(M; —1) < S —1< (m+1)(M, — 1), (C.2.17)

we only need to consider terms in (C.2.15) up to gy,.
The remaining procedure is identical to the previous case. One can always find ¢
from @, ..., Pr_1 using

9oPr + G1Pr—1+ -+ g0 =0, k=1...,m. (C.2.18)

This proves the universality conjecture for Hgper2 by constructing the top vector ex-
plicitly as
P =S 1 @+ B, (C.2.19)

for S in (C.2.17), where m should be limited by the maximum value

Ly M, ]

=) (C.2.20)

Mmax = |:

Universality for General Eclectic Model. Powers of H,. can be written as

ng
Hy =) (n]:) (Hy + Hy)*Hys ™", (C.2.21)
k=0

This expression can be simplified greatly by observing that HiHy, = HyH; = 0 in
sectors where K = 1. This can be seen by acting with H; on any state

Hi21---121--+1-+-21---13) = [1---121---1---21---123). (C.2.22)

Then, H, will annihilate the resulting state since it cannot contain 13. Therefore we
can remove any terms with both H; and Hj in the expansion (C.2.21), which leads to

HS =ho+(gi4+ g2+ 4 gng) + (hi+ho+ -+ hyy). (C.2.23)

We can restrict the interval for S by the two relations (C.2.5) and (C.2.17). Since
Ly > M, for a given ¢ we can find m such that

m(M; —1) <ULy —1) < (m+1)(M; —1). (C.2.24)
In this case, the intersection of the two intervals is given by

m(M; —1) <ULy —1) < S —1< (m+1)(M, —1). (C.2.25)

203



For these values of S, the expansion of power of the eclectic Hamiltonian is truncated
to

Hef =ho+(g1+ g2+ +9gm)+ (hi+hat -+ hy). (C.2.26)

We now claim that the top vector of the eclectic model can be always constructed from
the hypereclectic top state (%) = ¢, as follows:

m ¢
VD =0+ Y Gt ) @ (C.2.27)
i=1 j=1

Let us provide the detailed proof for the simplest case m = 2,/ = 1, with
oMy —1) < (L1 —1) < S—1<3(M; —1). (C.2.28)
We will show that the top vector for the eclectic model can be constructed as
P = o+ @1+ Ga + 1. (C.2.29)
One can expand H[$ 1[)60 =0 as

(ho + g1+ g2 + h1)(wo + P1 + @2 + 1) = (howo) + (goP1 + g1p0) +
+ (90P2 + 9181 + g2900) + (Gop1 + 91P2 + GgoP1 + hipo) +---=0.  (C.2.30)

The first three brackets in (C.2.30) have already been solved for Hgyper 2, therefore we
only need to consider the fourth term and ellipsis. The S-values of each term have
already been computed as

S(g1@a) = S(gapr) = (S — 1) — 3(M; — 1) < S(hugo) = (S — 1) — (L, — 1). (C.2.31)

Therefore, ¢, can be determined from ¢y in the same way as for Hgper,1 With additional
subleading terms in S from the known ¢, Po. The terms in the ellipsis in (C.2.30) are

- = g1p1 + G2P2 + h1P1 + gap1 + hipa + hipr. (C~2-32)

The S-values for these vectors are given by

S(gips) = Shy@i) = (S = 1) = j(Ly = 1) =i(My = 1),
S(hip;) = (S = 1) = (i +j)(Li = 1), S(g:5) = (S — 1) = (i + j)(M, (€13.33)
It is not difficult to see from (C.2.28) that all these vectors should vanish since their
S-values are all negative.
This procedure can now be generalised in principle to any value of (¢, m), although

it is hard to give general, explicit expressions, since the mixed interval depends closely
on explicit vaues of Ly, M.

C.3 Fine Tuning and Cyclicity Classes

Although we have proven the universality hypothesis for generic values of the couplings
& for K = 1, it is possible to fine-tune the couplings to destroy the Jordan block
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structures in a particular cyclicity class. We give a simple example of this occurring,
for the sector L =5, M = 3, K = 1. There are 30 states in this sector:

Cel22113), Ci|21213), Cj|12213), (C.3.1)
Cel21123), Ci|12123), Cj|11223),

where Cj is the unnormalised projector defined in (6.2.15) and k£ = 0,1,2,3,4 labels
the cyclicity class. In each cyclicity class k the hypereclectic model H3 has Jordan
decomposition (5, 1), so that the overall Jordan decomposition is (5°,1%). The other
models related to H3 by permutations of the fields H; and H, have Jordan decompo-
sition (3,2,1) in each cyclicity class. For generic & we have argued that the eclectic
Hamiltonian H,. = H; + H, + Hj also has the Jordan decomposition (5°, 1°), since
this sector satisfies the filling conditions (6.3.80). Setting &3 = 0 leads to a Jordan
decomposition (3°,2° 1°). Interestingly, this decomposition can be further refined by
tuning &; and &. Let us act with Hec|e,—o on the top state Ci|22113):

Cr|22113) — w€1C|21123) 4 w7¢,C,|12213) (C.3.2)
— (WHE 4w EN)C,]11223) — 0,

where w = €2™/5 and we used C, U = w**Ci1p, [H;,Ci] = 0. For generic couplings
this gives a length 3 block in each cyclicity class. However, if we tune the couplings
such that £2 = —w*¢2 the block splits into a 2-block and a 1-block in this cyclicity
class k. There are two further top states in this sector:

Cr|21213) — (& + &uw™)Cp[12123) — 0, (C.3.3)
Eaw™FCL|21123) — £,WFC,[12213) — 0.
The first of these is a 2-block, which can be broken into two 1-blocks in a single cyclicity
class if & = —w?*¢;. The next of these is always a 1-block. From this example we see

explicitly that finer Jordan block decompositions can be obtained in specific cyclicity
classes by tuning the couplings appropriately.
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