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ABSTRACT	
We	introduce	a	new	protocol,	mutational	sequencing	or	muSeq,	which	randomly	deaminates	

unmethylated	cytosines	at	a	fixed	and	tunable	rate.	The	muSeq	protocol	marks	each	initial	template	
molecule	with	a	unique	mutation	signature	that	is	present	in	every	copy	of	the	template,	and	in	every	
fragmented	copy	of	a	copy.	In	the	sequenced	read	data,	this	signature	is	observed	as	a	unique	pattern	of	
C-to-T	or	G-to-A	nucleotide	conversions.	Clustering	reads	with	the	same	conversion	pattern	enables	
accurate	count	and	long-range	assembly	of	initial	template	molecules	from	short-read	sequence	data.	
We	explore	count	and	low-error	sequencing	by	profiling	a	135,000	fragment	PstI	representation,	
demonstrating	that	muSeq	improves	copy	number	inference	and	significantly	reduces	sporadic	
sequencer	error.	We	explore	long-range	assembly	in	the	context	of	cDNA,	generating	contiguous	
transcript	clusters	greater	than	3,000	bp	in	length.	The	muSeq	assemblies	reveal	transcriptional	diversity	
not	observable	from	short-read	data	alone.	

INTRODUCTION	
Long-read	sequencing	platforms	such	as	PacBio	and	Oxford	Nanopore	are	costly	and	error-

prone,	but	provide	the	long-range	information	required	for	high	quality	assemblies	(1).	Short-read	
sequencers	are	relatively	inexpensive	and	have	excellent	precision;	however,	the	reads	lengths	are	
sufficient	only	for	simpler	assemblies.	We	tested	a	theoretical	idea,	random	template	mutagenesis,	
which	bridges	this	gap:	it	converts	short-read	sequencers	into	virtual	long-read	sequencers.	Greater	
precision	and	accurate	counting	are	added	benefits	of	the	method.	

The	specific	problems	with	short-read	sequencers	are	readily	enumerated.	Whenever	the	
distinguishing	variants	in	the	template	molecules	are	more	than	one	read	length	apart,	multiple	distinct	
assemblies	are	equally	consistent	with	the	read	data.	This	prevents	resolving	haplotypes,	observing	
transcript	isoforms,	and	assembling	complex	repetitive	regions.	Although	sequence	fidelity	is	good,	low-
frequency	variants	are	not	distinguishable	from	PCR	and	sequencing	error.	Finally,	distortion	during	PCR	
amplification	makes	for	an	unreliable	estimate	of	count	in	RNA	expression	and	DNA	copy	number.	

Recently,	we	proposed	a	theoretical	solution	to	these	problems	(2).	By	marking	each	initial	
template	molecule	with	a	random	mutation	pattern,	all	subsequent	copies	of	the	original	molecule	will	
carry	the	same	pattern.	This	enables	both	accurate	counting	and	low-error	sequencing.	Further,	
overlapping	copies	from	the	same	initial	template	can	be	joined	computationally	if	they	have	compatible	
patterns	that	far	exceed	chance	agreement.	With	sufficient	coverage,	this	property	would	enable	the	
long-range	assembly	of	each	mutated	template	molecule.	Such	information	is	also	useful	for	problems	
of	haplotype	phasing,	measuring	repeats,	and	detecting	rare	variants	with	confidence.		

Here	we	introduce	an	implementation	of	this	idea,	which	we	call	mutational	sequencing	or	
muSeq.	We	use	partial	sodium	bisulfite	conversion	to	mark	template	double-stranded	DNA	molecules	or	
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first-strand	cDNAs.	The	bisulfite	reaction	deaminates	unmethylated	cytosines,	and	it	is	typically	used	for	
studying	cytosine	methylation	patterns	in	the	genome	(3).	In	that	application,	the	deamination	reaction	
is	run	to	completion,	converting	nearly	every	unmethylated	cytosine	to	uracil.	For	randomly	marking	
templates,	however,	we	require	partial	conversion.	By	adjusting	the	time	and	temperature	of	a	step	in	
the	bisulfite	reaction,	we	can	reliably	control	the	rate	of	conversion.	Reflecting	the	binary	nature	of	the	
conversion,	we	refer	to	cytosines	in	this	context	as	“bits.”	

To	test	the	operating	characteristics	of	the	muSeq	protocol,	we	conducted	two	series	of	
experiments.	In	the	first	we	studied	the	application	of	muSeq	to	a	genomic	representation.	Our	
experiments	show	that	the	rate	of	deamination	is	independent	of	position	and	uncorrelated	within	the	
template.	We	observe	that	fragment	counts	are	linear	with	copy	number	and	that	allele	ratios	follow	the	
expected	binomial	distribution.	We	determine	that	the	method	does	not	contribute	any	measurable	
sequence	error.	In	the	second	series	of	experiments,	we	applied	the	muSeq	protocol	to	cDNA	derived	
from	reverse	transcribed	poly(A)+	cellular	RNA.	Applying	a	simple	algorithm,	we	clustered	sequence	
reads	into	a	longer	consensus	template.	The	resulting	consensus	templates	compare	favorably	to	
reference	transcript	assemblies.	Analyses	of	the	data	demonstrate	the	ability	to	reconstruct	splicing	
patterns	at	the	level	of	individual	transcripts.	

MATERIALS	AND	METHODS	

Representations	
Genomic	DNAs	were	extracted	from	whole	blood,	cleaved	with	PstI,	end-repaired	and	ligated	to	custom	
Illumina	sequencing	primers.	The	primers	are	rendered	conversion-resistant	by	substituting	5-methyl-
cytosine	(5mC)	for	cytosine	during	oligo	synthesis.	The	complete	conversion	protocol	uses	the	
MethylEasy	Xceed	Rapid	DNA	Bisulphite	Modification	Kit	Mix	(Human	Genetic	Signatures/Clontech)	
according	to	standard	instructions.	The	partial	conversion	protocol	uses	the	same	kit	and	instructions,	
but	we	reduce	the	temperature	and	time	during	incubation	with	the	combined	Reagents	1	and	2	(step	5	
in	the	instructions).	We	started	with	75	ng	of	input	DNA	for	each	reaction	and	carried	out	both	complete	
(45	min,	80°C)	and	partial	conversion	at	3,	6	and	9	minutes	at	73°C.	After	conversion,	we	sampled	4%	
from	each	converted	sample	and	PCR-amplified	using	Illumina	P5	and	P7	sequencing	adapters	(for	the	
complete	conversion	library,	we	sampled	40%).	The	resulting	libraries	were	sequenced	on	an	Illumina	
MiSeq	(~17	million	paired-end	reads	per	sample).	We	also	sampled	2%	from	the	6	minute	conversion,	
then	amplified	for	five	linear	rounds	with	just	one	primer	(P7);	we	then	completed	the	PCR	as	above,	
sequencing	the	resulting	libraries	on	two	lanes	of	an	Illumina	NextSeq	(~800	million	paired-end	reads).	
All	sequencing	on	Illumina	instruments	was	in	paired-end	150-bp	read	mode,	except	where	stated	
otherwise.	

The	conversion	process	operates	on	single	stranded	molecules	and	as	such,	we	distinguish	the	two	
strands	by	their	orientation	and	sequence	as	“reference	top”	(RT)	or	“reference	bottom”	(RB),	adapting	
earlier	usage	(4).	Because	the	sequencing	adapters	are	attached	asymmetrically,	the	initial	template	
strand	is	always	read	1	and	its	complement	is	read	2.	Consequently,	the	conversions	read	by	the	
sequencer	should	appear	as	C-to-T	conversions	in	read	1	and	G-to-A	conversions	in	read	2.	Adapting	the	
approach	of	the	Bismark	mapper	for	bisulfite	data	(4),	we	first	generate	auxiliary	read	files	that	convert	
all	C	to	T	in	read	1	and	all	G	to	A	in	read	2.	These	modified	reads	are	then	mapped	by	Bowtie2	(5)	to	two	
modified	versions	of	the	reference	genome	(hg38	assembly):	one	with	all	C	converted	to	T	(hg38_CT),	
and	one	with	all	G	converted	to	A	(hg38_GA).	Selection	of	the	best	mapping	determines	the	strand	of	
origin.	By	referencing	the	original	read	pair,	we	determine	the	conversion	pattern.		
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From	the	reference	genome,	there	are	162,353	expected	PstI	fragments	between	150–400	bp	in	length.	
We	convert	these	fragments	in	silico,	both	C-to-T	and	G-to-A,	and	map	them	to	hg38_CT	and	hg38_GA.	
Those	in	which	both	top	and	bottom	strands	map	unambiguously	(MAPQ	≥40)	comprise	135,262	high	
quality	representation	fragments	(HQRFs).	We	further	consider	only	those	reads	that	map	with	high	
quality	alignments	to	HQRFs.	These	reads	account	for	about	50%	of	the	raw	sequence.	

Read	pairs	are	binned	by	restriction	fragment	and	the	RT	or	RB	of	the	initial	template.	Each	bin	is	
analyzed	separately	to	determine	the	set	of	initial	template	conversion	patterns.	While	many	read	pairs	
from	the	same	initial	template	fragment	bear	identical	conversion	patterns	and	sequence,	sequencing	
and	PCR	errors	are	sufficiently	frequent	to	require	methods	for	inferring	their	consensus,	or	common	
ancestral	template.	Consequently,	we	extract	all	bits	from	each	read	pair,	establishing	a	bit	string	where	
0	indicates	that	a	position	is	unconverted	and	1	indicates	that	a	position	is	converted	by	sodium	
bisulfite.	To	cluster	read	pairs,	we	use	transitive	propagation	(6),	an	algorithm	we	developed	to	find	an	
optimal	clustering.	Given	a	model	for	base-calling	error	and	a	model	for	conversion	rates,	transitive	
propagation	identifies	a	clustering	solution	that	optimizes	pairwise	probabilities	of	belonging	to	the	
same	cluster	(a	=	b)	or	not	(a	≠	b)	under	the	condition	that	belonging	to	the	same	cluster	is	a	transitive	
relation.	

cDNA	
We	extracted	total	RNA	from	3	million	fibroblasts	from	a	line	derived	from	the	same	donor	as	the	whole	
blood	sample.	We	sampled	3.3%	of	the	RNA	for	conversion	to	cDNA	by	reverse	transcriptase	(100	U;	
SMARTScribe	reverse	transcriptase;	Clontech),	employing	custom	oligo	d(T)	primers	and	template	switch	
primers,	each	with	a	sample	tag	and	random	barcode.	We	made	two	such	samples	with	distinct	pairs	of	
sample	tags.	We	subjected	the	first	strand	cDNA	to	6-minute	partial	bisulfite	conversion	as	above.	We	
selected	2.5%	from	each	sample,	amplified	by	PCR,	mechanically	fragmented	(Covaris),	end-repaired,	
adapted	for	sequencing	with	distinct	library	tags,	and	amplified.	The	two	libraries	were	pooled	and	
sequenced	in	two	runs	on	a	MiSeq	(20	million	reads).	

Reads	were	mapped	to	the	genome	much	as	described	above	with	a	few	key	differences.	First,	primer	
and	barcode	sequences	are	trimmed	from	the	reads	(if	present).	Second,	because	sequencing	adapters	
are	added	after	the	library	is	amplified,	we	cannot	know	if	the	conversions	are	C	to	T	on	read	1	and	G	to	
A	on	read	2,	or	the	reverse.	Consequently,	we	have	four	mappings	to	consider:	two	read	conversions	to	
two	genome	conversions.	Finally,	because	Bowtie2	is	not	designed	for	mapping	cDNA,	we	employed	the	
STAR	mapper	(7).	Reads	that	map	to	hg38_CT	(RT	reads)	correspond	to	transcripts	that	match	the	
opposite	(minus)	strand.	Conversely,	RB	reads	correspond	to	the	plus	strand.	For	a	reference	
transcriptome,	we	used	GENCODE	release	21	(8).	We	restrict	our	attention	to	reads	that	have	at	least	20	
base	pairs	mapped	to	annotated	transcription	positions	on	the	correct	strand.	

We	first	split	reads	by	whether	they	map	to	RT	or	RB.	We	then	partition	those	reads	into	connected	
components:	two	reads	are	in	the	same	component	if	they	overlap	at	one	or	more	positions,	or	if	they	
are	from	the	same	read	pair.	Within	a	partition,	our	initial	clusters	are	comprised	of	read	pairs.	Then,	
restricting	to	bit	positions	in	annotated	genes	on	the	proper	strand,	we	record	matches	and	mismatches	
of	bits	between	overlapping	clusters.	From	these	values,	we	apply	the	same	noise	and	conversion	model	
as	in	the	representation	to	measure	the	pairwise	probability	that	the	clusters	derive	from	the	same	
initial	template	(blue	edge)	or	different	initial	templates	(red	edge).	Starting	with	the	most	confident	
pairs	(for	either	red	or	blue),	we	add	edges	that	do	not	conflict	with	current	information	and	do	not	
violate	the	transitivity	of	blue	edges	and	stop	when	pairs	cease	to	be	confident	(probability	>1	in	10-4).	
Clusters	joined	by	blue	edges	are	then	merged	into	a	single	new	cluster.	
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Large	partitions	with	many	pairwise	comparisons	can	push	the	limits	of	memory.	In	those	cases,	we	
subdivide	the	partition,	consolidating	no	more	than	1000	clusters	at	a	time	and	iterating	until	the	
number	of	clusters	is	unchanged.	Finally,	to	minimize	false	joins,	each	cluster	is	then	tested	in	isolation	
and	subjected	to	clustering	as	though	within	its	own	partition.	For	each	cluster	of	reads,	we	record	
information	including	the	most	common	5´	and	3´	tags,	the	counts	of	those	tags,	the	total	number	of	
tags	for	each	end	of	the	molecule,	consistency	of	tag	orientations	with	a	transcript,	positions	covered,	
and	the	number	of	reads	with	each	library	tag.	

RESULTS	

Conversion	and	clustering	for	genomic	representations	
	 We	first	chose	to	test	muSeq	on	genomic	DNA.	Obtaining	high	depth	of	coverage	on	the	entire	
genome	over	many	templates	would	make	the	study	expensive	to	perform.	We	therefore	chose	to	
reduce	sequence	complexity	by	making	genomic	representations,	in	which	short	restriction	fragments	
are	selected	and	amplified	to	create	a	reproducible	subset	of	the	genome.	The	adapters	are	‘bisulfite-
resistant,’	i.e.	with	all	cytosines	methylated.	The	representation	is	comprised	of	many	distinct	sets	of	
identical	templates	that	are	indistinguishable	without	bisulfite	conversion.	This	allows	us	to	measure	
conversion	rates	at	many	identical	loci	and	within	many	identical	templates.	We	chose	a	male	donor	so	
we	could	examine	copy	number	by	comparing	the	X	chromosome	to	the	autosomes.	We	also	selected	
one	particular	donor	for	which	we	had	whole	blood	for	extracting	genomic	DNA,	fibroblast	cell	lines	for	
preparing	RNA,	and	the	complete	genomic	sequence	with	haplotype	phasing	from	family	information	
and	single-cell	sperm	sequencing.	

	 Based	on	initial	results	with	PhiX	as	a	template,	we	derived	conditions	for	partial	bisulfite	
conversion,	and	tested	these	on	PstI	representations	at	incubation	times	of	3,	6,	and	9	minutes	at	73°C.	
We	compared	this	to	the	standard	conditions	for	full	conversion,	45	minutes	at	80°C	(Figure	1A).	After	
making	libraries,	sequencing,	and	mapping,	we	examined	the	frequency	of	conversion	by	position	and	
template.	The	three	time	points	show	a	mean	conversion	rate	of	19,	41	and	55%	per	template,	
respectively,	demonstrating	that	the	conversion	rates	over	this	range	are	roughly	linear	with	time.	We	
chose	the	six-minute	incubation	for	the	remainder	of	our	experiments.	

	 We	made	a	deep-coverage	library	over	an	estimated	100	templates	at	an	average	of	30	reads	
per	template.	We	first	partitioned	reads	by	mapping	to	PstI	fragments	in	the	expected	length	range.	
Within	a	partition,	we	clustered	the	reads	by	conversion	patterns	alone	using	transitive	propagation	(6).	
We	determined	that	the	clusters	had	correctly	aggregated	reads	by	template	by	analyzing	the	known	
heterozygous	sites.	>99%	of	clusters	covering	a	heterozygous	site	had	almost	exclusively	sequence	reads	
with	only	one	of	the	two	alleles	(see	also	section	on	sequence	fidelity).	This	process	is	illustrated	in	
Figure	2.	Panel	A	shows	the	first	60	reads	for	a	single,	arbitrary	restriction	fragment	in	IGV	(9).	A	single	
heterozygous	site	is	indicated	in	the	figure.	Panel	B	shows	these	same	reads	re-ordered	and	grouped	by	
conversion	pattern.	The	heterozygous	site	segregates	by	cluster:	every	read	in	cluster	1	shows	the	T	
allele,	whereas	every	read	in	cluster	2	shows	the	C	allele.	In	panel	C,	a	‘collapsed	view’	brings	about	40	
clusters	into	view,	each	composed	of	approximately	30	reads;	within	a	cluster,	all	reads	report	the	same	
base	at	the	heterozygous	locus.	

Conversion	follows	a	random	uniform	distribution	
We	used	the	deep	coverage	library	to	characterize	randomness	and	independence	of	conversion	

events.	We	call	a	template	‘well-covered’	if	it	is	supported	by	at	least	10	reads,	and	we	call	a	position	
‘well-covered’	if	it	is	covered	by	at	least	20	well-covered	templates.	Of	the	9	million	well-covered,	
homozygous	bit	positions,	580,000	are	CpG	dinucleotide	motifs	that	are	predominately	unconverted	and	
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account	for	nearly	all	unconverted	positions	(Figure	1B).	For	each	of	11	million	well-covered	templates,	
we	computed	the	proportion	of	bits	converted	in	the	template	with	and	without	CpG	bits	(Figure	1C,	
blue	and	green	respectively).	There	is	a	marked	overabundance	of	under-converted	template,	with	0.5%	
of	templates	showing	fewer	than	1	in	20	bits	converted.	Excluding	these	poorly	converted	templates,	
conversion	rates	per	template	are	well-approximated	by	a	fixed,	independent	probability	of	conversion	
for	each	non-CpG	bit.	

Moreover,	conversion	patterns	are	uncorrelated,	either	by	position	or	template.	To	
demonstrate	this,	we	first	looked	at	a	randomly	selected	restriction	fragment	(Supplementary	Figure	1A)	
and	considered	a	pair	of	bit	positions	(yellow	arrows).	In	each	template	of	that	fragment,	either	both	
bits	are	unconverted	(0,0),	both	bits	are	converted	(1,1),	or	only	one	of	the	two	bits	is	converted	(0,1	
and	1,0).	Counting	these	values	over	each	of	these	templates	produces	a	2x2	contingency	table	
(Supplementary	Figure	1B,	yellow	box),	which	yields	a	probability	that	the	observed	counts	are	
independent	(using	Fisher’s	exact	test).	We	computed	this	probability	over	all	pairs	of	bit	positions	for	
1000	randomly	selected	fragments,	accounting	for	2.9	million	pairwise	comparisons.	The	empirical	
distribution	of	Fisher	exact	p-values	corresponded	to	the	theoretical	expectation	assuming	all	pair	
comparisons	are	independent,	as	is	seen	in	a	Q-Q	plot	(Supplementary	Figure	1C,	circles).	

Similarly,	we	tested	whether	two	templates	from	the	same	fragment	have	independent	bit	
patterns	by	looking	at	conversions	across	templates	(the	green	arrows,	boxes,	and	crosses	in	
Supplementary	Figure	1).	In	both	cases,	the	Q-Q	plots	were	nearly	linear,	suggesting	that	the	observed	
distributions	do	not	diverge	for	the	null	expectation	and	that	deamination	events	are	random	and	
independent.	The	small	deviation	from	expectation	may	reflect	CpG	methylation,	which	tends	to	occur	
in	clusters.	We	conclude	that	the	conversion	rate	is	easily	controlled,	and	the	conversions	themselves	
are	independent	and	random.	

Counting	the	numbers	of	templates	
Because	our	representation	is	drawn	from	a	male,	we	can	readily	observe	copy	number	

difference	by	comparing	the	X	chromosome	with	the	autosomes.	In	a	representation,	read	counts	per	
fragment	vary	widely,	reflecting	varying	rates	of	amplification	due	to	restriction	fragment	length	and	
base	composition.	However,	if	we	exclude	fragments	containing	heterozygous	fragment	lengths,	
fragments	with	low	coverage,	and	fragments	with	very	different	counts	for	the	top	and	bottom	strands,	
we	find	that	template	counts	accurately	reflect	copy	number.	Supplementary	Figure	2A	shows	the	
distribution	of	template	counts	over	the	autosomes	and	X	chromosome,	excluding	the	pseudoautosomal	
regions.	The	median	template	count	is	91	over	the	autosomes,	but	half	that	(44	total)	over	the	X	
chromosome.		

An	orthogonal	comparison	of	the	relation	of	template	count	to	copy	number	can	be	made	at	
heterozygous	loci.	In	these	situations,	the	sequence	context	is	virtually	identical	and	we	expect	that	the	
templates	from	either	allele	will	have	the	same	PCR	efficiency	and	enzymatic	representation.	Our	
representation	contains	6310	heterozygous	SNPs	with	sufficient	coverage	to	determine	the	counts	for	
each	allele.	Since	our	sample	is	a	normal	diploid	genome,	theory	suggests	that	the	template	count	of	
one	allele	should	reflect	a	binomial	distribution,	B(N,	p),	where	N	is	the	total	number	of	templates	and	p	
=	0.5.	Indeed,	the	observed	allele	counts	match	the	expected	distribution	and	show	no	excess	dispersion	
or	deviation	from	the	null	expectation.	In	Supplementary	Figure	2B,	the	histogram	depicts	the	
distribution	of	template	counts	for	one	allele	at	each	locus	and	the	black	curve	shows	the	theoretical	
expectation	assuming	the	template	counts	match	the	observed.	
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Sequence	fidelity		
As	with	other	methods	in	which	initial	templates	are	tagged,	muSeq	can	be	used	to	reduce	

sequence	error	(10,11).	Multiple	independent	reads	derived	from	the	same	template	should	consistently	
support	the	same	sequence;	inconsistency	is	evidence	of	error.	To	provide	a	measure	of	fidelity,	we	
restricted	attention	to	positions	in	the	genome	that	are	known	to	be	homozygous	in	the	donor	and	in	
agreement	with	the	reference	genome.	Looking	at	well-covered	templates,	with	20–100	reads	and	in	
which	the	clustering	by	conversion	pattern	was	confident,	we	recorded	the	proportion	of	total	reads	at	
each	position	that	match	the	reference	base	(“reference-base-ratio”).	Restricting	to	such	positions,	this	
yields	information	from	200	million	template	positions	covered	by	a	total	of	6.4	billion	read	bases.	We	
plotted	the	frequency	distribution	of	the	reference	base	ratio	for	bit	(red)	and	non-bit	(blue)	positions	
(Figure	3).	As	expected,	the	reference-base	ratios	at	known	homozygous	bit	positions	are	bimodal,	with	
60%	of	bases	unconverted	(ratio	near	1)	and	40%	(ratio	near	0).	For	non-bit	positions,	we	set	a	
consensus	rule	that	a	cluster	‘reports’	a	base	position	when	at	least	80%	of	reads	are	in	agreement.	With	
that	rule,	99.93%	of	high	confidence	clusters	reported	the	reference	base	at	the	previously	determined	
homozygous	reference	positions.	The	method,	therefore,	allows	unambiguous	recovery	of	both	bit	and	
non-bit	genomic	sequence	without	introducing	significant	new	variation.		

Among	the	non-bit	positions,	99.93%	had	a	reference	base	ratio	greater	than	0.8.	We	refer	to	
these	as	“type	A”	positions.	Positions	with	a	reference	base	ratio	between	0.2	and	0.8	are	called	“type	
B”	and	accounted	for	0.065%	of	non-bit	positions.	Lastly,	0.003%	of	non-bit	positions	had	at	least	80%	
reporting	a	non-reference	base.	These	comprise	“type	C”	positions.	Type	A	and	type	B	positions	
occurred	at	rates	consistent	with	machine	error	and	polymerase	error,	respectively,	and	each	is	
consistent	with	a	template-error	symmetry	signal	consistent	with	that	interpretation	(Supplementary	
Figure	3).	The	incidence	of	type	B	falls	off	in	log-linear	fashion,	until	there	is	a	rise	in	incidence	of	type	C.	
Type	C	positions	could	be	the	result	of	somatic	variation,	first-round	synthesis	polymerase	error,	or	
template	damage.	These	have	different	expected	symmetry	signals,	but	from	the	actual	observed	
symmetries,	we	infer	that	type	C	positions	arise	mostly	from	template	damage.	

Transcript	assembly	from	cDNA		
We	next	tested	whether	muSeq	could	aid	in	transcript	assembly	when	applied	to	cDNA.	cDNAs	

were	prepared	from	a	fibroblasts	using	conventional	oligo(dT)	and	template-switching	primers	that	were	
modified	to	include	random	barcodes	and	bisulfite-resistant	PCR	primers.	After	reverse	transcription,	
cDNA	was	split	into	three	equal	batches.	The	first	batch	was	prepared	for	libraries	in	the	usual	manner:	
PCR	amplified,	sheared,	and	adapted	with	batch-specific	(barcoded)	Illumina	sequencing	primers.	The	
second	and	third	batches	were	first	treated	with	the	muSeq	protocol	for	40%	conversion,	and	then	
libraries	were	prepared	with	different	batch-specific	primers.	To	survive	the	bisulfite	conversion	
reaction,	the	custom	primers	lacked	G,	and	additionally	all	cytosines	in	the	3´	primers	were	methylated.	
The	batches	were	then	pooled	together,	sequenced,	and	mapped	to	the	genome.	The	two	muSeq	
libraries	and	the	unconverted	library	had	similar	coverage.	

For	this	application,	we	used	a	simplified	clustering	algorithm	(Materials	and	Methods).	Reads	
were	mapped	using	a	reduced	alphabet,	then	partitioned	by	chromosome	and	strand	into	non-
overlapping	connected	components.	Each	component	was	clustered	using	only	the	expected	bit	
positions	within	annotated	transcripts,	followed	by	applying	a	greedy	algorithm.	Although	not	as	
exhaustive	as	the	previous	clustering	algorithm,	the	clustering	was	robust.	Clusters	rarely	contained	
mixed	reads	from	separate	batches	(Supplementary	Figure	4),	generally	had	no	more	than	a	single	
barcode	at	the	5´	and	3´	ends,	had	consistent	nucleotides	at	heterozygous	positions,	and	heterozygous	
sites	separated	by	at	least	150	bp	were	in	the	proper	phase	(Supplementary	Figure	5).		
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A	study	of	the	alignment	file	annotated	with	cluster	index	and	tag	information	(available	for	
download	at	http://wigserv2.cshl.edu/web/museq/)	shows	many	genes	are	well-covered	and	properly	
clustered	with	a	consistent	conversion	pattern	spanning	multiple	read	lengths.	To	provide	some	
measure	of	success	in	assembly,	we	examined	the	maximal	length	per	gene	for	all	‘proper	and	complete’	
clusters.	These	are	clusters	that	1)	have	conversion	patterns	that	match	the	complementary	strand	of	
the	gene	transcript,	2)	contain	unique	barcodes	for	both	the	5´	and	3´	ends,	and	3)	have	properly	
oriented	5´	and	3´	ends.		

Each	gene	is	represented	by	a	single	point	in	the	scatter	plot	(Figure	4A).	Average	lengths	of	the	
annotated	transcripts	are	on	the	x-axis,	and	maximal	length	in	muSeq	clusters	is	on	the	y-axis.	For	those	
genes	with	non-trivial	coverage	in	muSeq	and	average	annotated	transcript	lengths	between	300–6000	
bp,	47%	have	muSeq	clusters	greater	than	the	average	transcript	length	and	79%	are	within	half	the	
average	transcript	length.	This	comparison	is	intrinsically	noisy,	as	the	longest	transcripts	present	in	our	
sample	may	not	reflect	the	average	transcript.	As	an	illustration,	we	highlight	three	specific	genes	
RPS15A,	RP11-1035H13.3	and	ARL6IP1	(Figure	5,	green,	red	and	blue,	respectively).	The	RPS15A	gene	
has	many	annotated	transcripts	with	unspliced	introns	that	are	longer	than	the	observed	muSeq	
transcripts.	The	RP11-1035H13.3	has	exactly	one	known	transcript	and	our	one	observed	cluster	covers	
every	annotated	position.	Lastly,	the	longest	ARL6IP1	muSeq	cluster	matches	the	longest	known	
transcript	of	that	gene.	Figure	5B	displays	the	distribution	of	lengths	for	genes	in	both	muSeq	and	
GENCODE.	The	distributions	for	the	longest	observed	muSeq	cluster	(green)	and	the	average	annotated	
transcript	length	(blue)	are	shown.	The	distributions	are	well-matched,	with	a	slight	skew	and	a	longer	
tail	to	the	annotated	transcripts.	

Next,	to	determine	if	clusters	detect	distinct	splicing	patterns,	we	surveyed	genes	with	at	least	
one	proper	and	complete	cluster	>500	bp	in	length.	There	are	approximately	5000	such	genes	(detailed	
plots	for	each	are	included	in	Supplementary	Data).	The	plots	elide	over	intergenic	and	intronic	regions	
and	indicate	direction	of	transcription.	Some	genes	express	a	range	of	isoforms,	with	different	exon	
skipped,	varying	transcription	start	and	termination	sites,	and	transcripts	that	do	not	conform	to	known	
annotations.	We	use	one	example	(Figure	5)	to	explain	the	plots	and	to	illustrate	the	richness	of	the	
observed	transcript	variation.	The	transcribed	regions	from	two	adjacent	genes	are	displayed,	with	gray	
vertical	stripes	denoting	compression	of	intergenic	and	intronic	regions.	ARL6IP1	(blue)	and	RPS15A	
(green)	have	ranges	of	known	isoforms	depicted	in	the	lower	half	of	the	figure	and	one	hybrid	transcript	
(RP11-1035H13.3,	red)	that	includes	exons	from	both	genes.	The	upper	panel	shows	all	proper	and	
complete	clusters	in	the	muSeq	data.	Clusters	are	colored	to	best	match	the	annotated	gene.	The	
ARL6IP1	clusters	are	very	similar	to	each	other	and	well-matched	to	known	transcripts,	but	with	a	small	
offset	in	the	5´	start	position	and	some	variability	at	the	3´	end.	ARL6IP1	is	well-covered	with	a	muSeq	
cluster	of	2253	bp	and	a	longest	annotated	transcript	of	2409	(Figure	4A).	The	observed	transcripts	of	
RPS15A	differ	more	from	the	annotated	transcripts,	having	a	few	variations	in	the	5´	start	position,	a	
variant	length	of	the	first	exon,	and	two	major	variants	at	the	3´	end.	RPS15A	has	a	longest	muSeq	
cluster	of	529	bp,	and	the	longest	annotated	transcript	is	3828	(Figure	4A).	However,	the	latter	is	due	to	
an	unspliced	form	that	was	not	observed	in	this	cell	line.	

Finally,	we	observe	a	cluster	(red)	that	spans	exons	from	both	genes	much	like	RP11-1035H13.3,	
and	that	is	predicted	to	encode	a	fusion	protein	that	skips	the	last	coding	exon	of	ARL6IP1.	Unlike	the	
known	annotation,	however,	this	cluster	extends	an	additional	two	exons	to	the	common	end	of	
RPS15A.	While	identification	of	the	hybrid	splice	junction	would	be	possible	from	unassembled	reads,	
the	full	length	of	the	transcripts	and	the	deviation	from	the	GENCODE	annotation	could	not	be	properly	
inferred	from	a	standard,	short-read	protocol.	
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DISCUSSION	
	 Previously,	using	simulation	and	theory,	we	demonstrated	that	prior	mutation	of	initial	
templates	could	enable	new	sequencing	applications,	such	as	accurate	count	and	assembly.	Here	we	
realize	the	promise	of	that	theory.	We	show	that	by	minor	modification	of	existing	protocols	for	sodium	
bisulfite	conversion,	we	can	generate	partial	conversion	patterns	with	a	tunable	rate.	Mutations	are	
uniform	and	randomly	distributed.	After	amplification	and	fragmentation,	the	conversion	patterns	
emergent	from	sequencing	and	mapping	unambiguously	identify	the	initial	template.	This	property	
enables	a	range	of	powerful	applications	including	accurate	counting,	low-error	sequencing	and	long-
range	assembly,	all	from	relatively	inexpensive,	short-read	sequencing.	

	 Our	experiments	on	genomic	representations	demonstrate	that	the	mutation	rates	are	tunable	
within	the	range	of	20–60%	conversion	for	unmethylated	cytosines.	Moreover,	the	conversions	
observed	are	consistent	with	an	independent	probability	of	mutation	at	each	convertible	position.	We	
did	observe	a	slight	overabundance	of	completely	unconverted	templates	beyond	the	expectations	of	
methylation	and	chance.	This	may	be	due	to	factors	such	as	insufficient	mixing,	protein-DNA	complexes,	
or	contamination	from	unconverted	template.	Additionally,	we	examined	the	mutational	profile	of	all	
positions	and	found	no	evidence	of	increased	template	damage	or	PCR	error	as	a	result	of	the	
conversion	process,	suggesting	that	the	resulting	sequence	is	highly	consistent	with	the	true	template	at	
all	but	the	convertible	positions.	

	 In	our	theoretical	work	and	simulations,	we	employed	simple	algorithms	for	template	identity	
and	assembly.	These	algorithms	assumed	that	the	reads	had	no	errors	and	were	perfectly	mapped	to	a	
reference	genome.	Analyzing	experimental	data	required	new	methods	to	cluster	and	assemble	actual	
sequencing	data.	To	cluster	reads	from	the	same	template	that	differ	by	sequencer	and	PCR	error,	we	
developed	‘transitive	propagation,’	a	novel	clustering	algorithm	designed	to	handle	multi-scale	
differences:	reads	in	the	same	cluster	differ	according	to	an	error	rate	(≤1%),	whereas	reads	in	different	
clusters	differ	according	to	the	conversion	rate	(50%).	We	direct	the	interested	reader	to	the	transitive	
propagation	manuscript	(6).		

	 To	demonstrate	sequence	assembly,	we	chose	the	important	application	of	transcriptome	
profiling.	We	designed	a	preliminary	computational	pipeline	applied	to	cDNA	that	leveraged	methods	
developed	in	the	genomic	representation.	These	methods	first	map	reads	to	the	reference	genome	and	
identify	convertible	positions,	then	use	the	match/mismatch	of	reads	across	converted	positions	to	
score	the	likelihood	that	pairs	of	reads	derive	from	the	same	template.	The	few	failures	in	the	cDNA	
assembly	were	most	often	attributable	to	mis-mapping	of	oligo(dT)	primers	to	CT	dinucleotide	repeats	
in	the	genome.	Our	procedure	is	capable	of	generating	assemblies	up	to	3	kb	in	length	from	reads	that	
are	150	bp	long.	An	atlas	of	well-covered	transcript	assemblies,	many	showing	non-canonical	splicing	
patterns,	are	included	in	the	Supplement.	

We	are	presently	developing	tools	that	can	assemble	initial	templates	even	in	the	absence	of	a	
reference	genome	or	reference	transcript	map.	This	will	be	useful	not	only	for	de	novo	assembly	of	
genomic	loci	and	whole	genomes,	but	also	for	making	precise	transcriptome	maps	from	known	
organisms	absent	prior	knowledge.			

	
AVAILABILITY	
1)	Mapped	and	clustered	sequence	files	for	cDNA	data	and	2)	a	compilation	of	4975	genes	with	one	
‘proper	and	complete’	cluster	>500	bp	in	length	(including	depictions	of	the	muSeq	transcripts	observed	
in	the	neighbourhood	of	each	gene)	are	available	for	download	at	http://wigserv2.cshl.edu/web/museq.	
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The	directory	includes	a	“read_me”	file	with	details	on	the	user-specified	.bam	fields.	The	format	of	each	
plot	in	the	compilation	mirrors	that	of	Figure	5.	Known	transcripts	are	in	color	and	labeled,	whereas	the	
muSeq	sequences	are	in	black.	
	
SUPPLEMENTARY	DATA	
Supplementary	Figures	1–5	are	available	as	a	single	.docx	file	at NAR online.	
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Figures	
	

	

Figure	1.	Sodium	bisulfite	conversion	rates.	
(A)	Using	a	kit	for	sodium	bisulfite	conversion	(Materials	and	Methods),	the	standard	protocol	(cyan)	
involves	a	step	with	a	45-minute	incubation	at	80°C.	This	converts	(on	average)	79%	of	cytosines,	
consistent	with	expected	rates	of	genomic	cytosine	methylation.	Reducing	the	temperature	to	73°C	and	
the	time	to	3,	6	and	9	minutes	results	in	mean	conversions	of	19%,	41%	and	55%,	respectively.	(B)	A	
high-depth	sequencing	library	from	the	6-minute	conversion	shows	a	mean	conversion	rate	42%	per	
cytosine	position	with	near	zero	conversion	of	cytosines	in	the	CpG	context.	(C)	The	per-template	cluster	
mutation	rate	is	shown	as	a	histogram.	The	majority	of	template	clusters	are	consistent	with	
independent	conversion	at	a	fixed	rate,	whether	or	not	we	exclude	CpG	from	the	count.	However,	there	
are	some	templates—about	0.5%—that	largely	escape	conversion.	
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Figure	2.	Read	clustering	by	sodium	bisulfite	conversion	pattern.	
We	display	IGV	screenshots	of	muSeq	reads	from	a	320-bp	restriction	fragment	from	chromosome	1.	(A	
and	B)	show	an	expanded	view	of	the	first	60	read	pairs	mapped	to	the	reference-top	(RT)	strand	of	this	
restriction	fragment.	Nucleotides	matching	the	reference	sequence	are	grey,	with	differences	marked	in	
colors	reflecting	the	base.	Notably,	the	red	marks	are	homozygous	C	positions	that	converted	to	T.	An	
arrow	marks	a	heterozygous	T/C	position	in	our	sample	genome	that	is	recorded	as	a	T	in	the	reference	
genome	(grey)	and	the	C	allele	is	shown	in	as	a	blue	mark.	(A)	Initially,	the	reads	are	randomly	ordered.	
(B)	We	then	cluster	the	reads	by	transitive	propagation	(Materials	and	Methods)	to	recover	the	initial	
template	sequence.	The	first	cluster	includes	30	reads	with	nearly	identical	conversion	patterns.	(C)	We	
show	a	collapsed	IGV	view	of	the	first	37	clusters,	each	comprised	of	about	30	reads.	Clusters	1	and	2	
are	indicated	in	both	panels.	The	heterozygous	T/C	position	is	observed	as	either	all	T	or	all	C	in	every	
cluster.	
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Figure	3:	Sequencing	error	rates.	
At	genomic	positions	where	our	sample	is	homozygous	for	the	reference	base,	we	expect	all	reads	to	
report	the	reference	base	unless	(1)	the	position	is	a	C	that	converts	to	T,	(2)	there	is	machine	error	in	
the	read,	(3)	there	is	an	error	introduced	during	PCR,	(4)	the	initial	template	is	damaged,	or	(5)	the	
template	records	a	rare	somatic	variant.	From	200	million	homozygous	template	positions,	we	record	
the	proportion	of	reads	from	template	clusters	(with	at	least	20	reads	per	cluster)	reporting	the	
reference	base	(“reference	base	ratio”,	x-axis).	The	y-axis	is	a	log-scaled	normalized	histogram	of	
reference	base	ratios	for	both	bit	positions	(red)	and	non-bit	positions	(blue).	Bit	positions	show	a	
bimodal	distribution	with	a	60:40	split	of	unconverted	to	converted	positions.	Among	non-bit	positions,	
99.93%	confidently	report	the	reference	base	with	a	ratio	greater	than	0.8	(type	A).	Another	0.065%	of	
positions	have	an	uncertain	consensus	within	the	cluster	with	the	reference	base	accounting	for	
between	20%	and	80%	of	reads	(type	B).	About	0.0030%	of	reads	are	confidently	non-reference	(type	C).	
Patterns	of	base	substitutions	between	these	three	types	(Supplementary	Figure	3)	suggest	that	type	A	
are	primarily	machine	error,	type	B	are	primarily	PCR	error,	and	type	C	are	somatic	mutation	and/or	
initial	template	damage.	
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Figure	4:	muSeq	cluster	length	compared	to	annotated	genes	
(A)	For	each	gene,	we	compared	its	average	annotated	isoform	length	(x-axis)	with	the	longest	‘proper	
and	complete’	muSeq	cluster	covering	it	(y-axis).	The	plot	is	subdivided	into	regions	with	red	numbers	
indicate	the	number	of	genes	in	each	region.	The	highlighted	blue,	green	and	red	circles	correspond	to	
the	genes	ARL6IP1,	RPS15A	and	RP11-1035H13.3,	respectively	(described	in	detail	in	Figure	5).	The	
longest	transcript	for	ARL6IP1	is	observed	in	the	muSeq	library,	and	its	length	far	exceeds	the	average	
transcript	length	(blue	dot	above	y	=	x).	We	also	observe	the	full	length	of	the	only	annotated	RP11-
1035H13.3	transcript	in	the	muSeq	library	(red	dot	on	line	y	=	x).	Whereas	we	observe	many	full-length	
muSeq	transcripts	of	RPS15A,	the	GENCODE	database	includes	many	long,	unspliced	isoforms	that	are	
not	present	in	the	muSeq	library	(green	dot	on	line	y	=	0.5x).	(B)	A	histogram	of	the	maximal	muSeq	
cluster	length	per	gene	is	shown	in	green,	and	the	average	length	over	all	GENCODE-annotated	
transcripts	of	that	gene	in	blue.	The	distributions	are	well-matched,	with	a	slight	shift	and	heavier	tail	to	
the	annotated	transcripts.	
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Figure	5.	Coverage	from	proper	and	complete	clusters.		
Annotated	and	inferred	muSeq	transcripts	for	genes	in	a	20-kb	region	of	chromosome	16	are	shown.	
There	are	three	annotated	genes	in	the	region:	ARL6IP1	(blue)	and	RPS15A	(green),	as	well	as	the	fusion	
gene	RP11-1035H13.3	(red).	Genomic	segments	that	are	intronic	or	intergenic	are	compressed	as	grey	
columns	labeled	by	length	at	the	bottom.	The	lower	plot	(below	black	line)	shows	transcripts	of	the	
genes	that	appear	in	the	ENCODE	database.	Thick	lines	are	exons	and	UTRs,	thin	lines	are	introns,	and	
the	arrows	point	5´	to	3´.	The	upper	plot	(above	the	black	line)	shows	the	inferred	transcripts	from	the	
observed	muSeq	clusters.	The	clusters	shown	have	consistent	tags	at	both	ends	of	the	assembly	and	
conversion	patterns	that	match	the	strand	of	transcription.	Each	cluster	is	colored	to	match	the	most	
similar	annotated	gene.	Both	ARL6IP1	and	RPS15A	have	one	major	splice	pattern	with	variability	in	the	
3´	and	5´	ends.	RPS15A	also	shows	a	minor	splice	variant	for	the	first	to	second	exon	junction	(lowest	
four	clusters).	Additionally,	there	is	a	novel	transcript	that	matches	the	fusion	gene	RP11-1035H13.3,	
but	includes	an	additional	two	exons	from	RPS15A.	
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