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Abstract

There is a lot of effort currently being poured into the development of quantum technologies in

the hope that they will speed up certain tasks significantly. Boson sampling is a task that can

be run on a near-term device and so was proposed as a promising candidate for a demonstration

of quantum advantage. As experiments are performed of a variant, Gaussian boson sampling,

claiming to have demonstrated this, it is increasingly important to know where that boundary lies

and to improve classical algorithms for simulating Gaussian boson sampling. Furthermore, there

has been a wealth of applications of Gaussian boson sampling suggested beyond just a method for

reaching quantum advantage. These applications raise the question of whether a quantum-inspired

classical algorithm could be used to improve current methods of solving these problems. In this

thesis we explore approximate Monte Carlo and chain-rule algorithms for simulating Gaussian boson

sampling to minimise the complexity of sampling under perfect conditions with the aim that they

can be applied to quantum-inspired algorithms. They could also be adapted to include experimental

imperfections for simulating experiments.
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Chapter 1

Introduction

“Many of life’s failures are people who did not realize how close they were to success

when they gave up.” - Thomas A. Edison

Quantum mechanics is not only useful to describe the world around us but can have technological

applications with a rising interest in the development of universal quantum computers. There

are many proposed platforms to achieve this, notably superconducting [1], trapped ions [2] and

photonics [3]. However, the experimental challenges this involves in any platform are huge and we

are still far off a realisation of such a device.

A first milestone in the assurance of the potential of quantum technologies is to experimentally

demonstrate a task on a quantum device that vastly outperforms a classical computer. There are

two terms commonly used in literature to describe this milestone: ‘quantum advantage’ and ‘quan-

tum supremacy’. Sometimes these terms are used interchangeably, but often quantum supremacy

is reserved for more significant progress. In general, an improvement of many orders of magnitude

will be required for a convincing demonstration. A few near-term devices have been proposed as

promising candidates for a demonstration of quantum advantage where the hardware is designed

for a specific task reducing the experimental requirements. One example is random circuit sam-

pling [4], a near-term task for superconducting qubits with the only known application being for

a quantum advantage demonstration which was claimed by the Google team [5]. In the field of

quantum photonics, boson sampling is a task that samples from a probability distribution deter-

mined by matrix functions that are classically intractable to evaluate [6]. The original proposal

of boson sampling involves sending single photons through a linear interferometer and measuring

the resulting entangled state in the number basis. Since its conception, various alternatives have

been proposed with Gaussian states (appropriately called Gaussian boson sampling) [7], Gaussian

measurements [8], and heralded input photons [9], motivated by reduced hardware constraints. In

order to determine whether an experiment is sufficiently difficult to pass the threshold of quantum

advantage, it is important to find the best possible classical algorithms with which to compare.

In recent years, there have been two claims of quantum advantage by Gaussian boson sampling

(GBS) [10, 11] and so it is important to be able to simulate the experimental conditions for a fair
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CHAPTER 1. INTRODUCTION

comparison. The main imperfections that occur are photon loss and distinguishability. These have

been researched extensively in the context of the original boson sampling proposal [12, 13, 14] but

as GBS is a more recent area, the equivalent in GBS is somewhat behind albeit progressing [15, 16].

Although boson sampling was originally proposed for the sole purpose of demonstrating quan-

tum advantage, many potentially useful applications have been suggested, particularly for Gaus-

sian boson sampling, such as for simulating vibronic spectra [17, 18], molecular docking [19], graph

matching [20], graph similarity [21, 22, 23], and point processes [24]. This raises the question of

whether the quantum technology can motivate quantum-inspired algorithms to improve upon exist-

ing classical algorithms for these applications. Therefore it is an interesting problem to optimise the

classical simulations of quantum devices. The first problem when optimising sampling algorithms is

to find a method of sampling that does not involve the calculation of the whole sample space and is

limited only by the complexity of a single or polynomial number of probabilities. This is applicable

to all uses of classical simulations of GBS whether to push the limit of quantum advantage or for

a quantum-inspired algorithm and is the focus of this thesis.

1.1 Outline of thesis

In this thesis we look at several ways to simulate GBS, using both Monte Carlo approximate methods

and tricks to sample directly from the probability distribution. The aim is to find the classical

complexity of GBS in the same way that it was found for standard boson sampling [25, 26]. With

the applications of Gaussian boson sampling in mind, we choose to simulate the exact case without

experimental imperfections but allowing for the inclusion of displacement in the input states. These

methods can be extended to include experimental imperfections, but we do not cover that in this

thesis. The structure is as follows:

In chapter 2, we introduce the terminology and theoretical concepts used throughout this thesis.

We cover the important foundations of quantum optics, focussing on the description of Gaussian

states and transformations, as well as matrix functions that underpin the boson sampling probability

distributions. Finally, a detailed review of many variants of boson sampling is provided.

In chapter 3, we study the first Monte Carlo method, rejection sampling, as a tool to sample

from the GBS distribution. We consider two proposal distributions and analyse the efficiency

and accuracy of using these. A method to estimate the accuracy of the sampling in retrospect

is developed with numerical tests to confirm its use. In chapter 4, we apply a second Monte

Carlo method, a Metropolis-Hastings algorithm, to simulate GBS. Here we suggest more proposal

distributions motivated by the states in the quantum device to try to find a closer match to the

GBS distribution. We numerically test the requirements on the parameters to ensure good accuracy

and observe the efficiency for the problem sizes we are able to fully calculate.

In chapter 5, we move away from approximate algorithms instead exploring the chain rule

of probability to sample more efficiently. We introduce a new algorithm that reduces the time

complexity from the previous best of O(N32N ) for N photons to O(N32N/2). Furthermore, we

apply an algorithm that samples each mode at a time in GBS to standard boson sampling to find

6



CHAPTER 1. INTRODUCTION

an algorithm of O(N22N ) for N photons. Finally, in chapter 6, we summarise our findings and

provide an outlook of open problems.
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Chapter 2

Discrete and Continuous Variable

Photonics

“Only a Sith deals in absolutes.” - Obi-Wan Kenobi

In this chapter we introduce the foundations that the rest of this thesis builds on. We begin with an

overview of the description of photons both with discrete and continuous variables, with a particular

focus on Gaussian states. Then we discuss matrix functions that arise in boson sampling and their

role in graph theory, culminating in a thorough description of boson sampling, the focus of this

thesis. Although it is largely a literature review, we hope that there is significant personal insight

and potentially novel interpretations.

2.1 Quantum states

A photon is an excitation of a normal mode of the electromagnetic field and so can be described

by a quantum harmonic oscillator. The Hamiltonian of a quantum harmonic oscillator for a single

mode is given by [27, 28]

Ĥ =
−ℏ2

2m

∂2

∂2Q̂
+

1

2
mω2Q̂2 =

P̂ 2

2m
+

1

2
mω2Q̂2, (2.1)

where m is the mass of the particle, ω is the angular frequency of the oscillator, ℏ is the reduced

Planck’s constant and P̂ is defined as −iℏ ∂
∂Q̂

. The Hermitian operators Q̂ and P̂ are the quadrature

operators corresponding to the position and momentum of the particle respectively. We define the

quadrature eigenstates such that

Q̂ |q⟩ = q |q⟩ , P̂ |p⟩ = p |p⟩ , (2.2)

where q and p are real continuous variables describing the observables position and momentum

of the particle respectively. The operators obey the canonical commutation relation [Q̂, P̂ ] = iℏ.

9



CHAPTER 2. DISCRETE AND CONTINUOUS VARIABLE PHOTONICS

When using these Hermitian quadrature operators, we say we are working in the ‘quadrature basis’

or ‘real picture’.

These quadrature operators fully determine the Hamiltonian describing the particle (up to some

constants), but there are infinitely many pairs of conjugate operators that can be used instead. For

example, the non-Hermitian ladder operators are defined as

â =

√
mω

2ℏ

(
Q̂+

i

mω
P̂

)
, â† =

√
mω

2ℏ

(
Q̂− i

mω
P̂

)
, (2.3)

where â is the annihilation operator and â† the creation operator. These operators are more useful

when considering their action on Fock states, which are states that label the total number of

photons, where |n⟩ denotes n photons in the state. The annihilation and creation operators act on

Fock states as

â |n⟩ =
√
n |n− 1⟩ , â† |n⟩ =

√
n+ 1 |n+ 1⟩ . (2.4)

This means the creation operator increases the number of photons by one (creates a photon) and

the annihilation operator reduces the photon number by one (destroys or annihilates a photon). A

convenient consequence of this is that any Fock state can be written in terms of creation operators

acting on the vacuum state (the state with no photons) as

|n⟩ = 1√
n!
(â†)n |0⟩ . (2.5)

Furthermore, we can introduce a Hermitian operator, the number operator, such that

n̂ |n⟩ := â†â |n⟩ = n |n⟩ , (2.6)

where the Fock state is its eigenstate and the observable n is the number of photons in the state,

a discrete quantity. Unlike the quadrature eigenstates, the number eigenstates form a complete

orthonormal basis so that ⟨n|n′⟩ = δn,n′ . It follows from the definitions of â and â† and that

[Q̂, P̂ ] = iℏ that these operators obey the commutation relation [â, â†] = 1. When using these non-

Hermitian ladder operators, we say we are working in the ‘ladder basis’ or the ‘complex picture’.

In this basis, the Hamiltonian is given more compactly by

Ĥ = ℏω(â†â+ 1
2 ) = ℏω(n̂+ 1

2 ). (2.7)

To reduce the explicit number of variables in the expressions for the creation and annihilation

operators, we can nondimensionalise the quadrature operators by introducing the coordinates q̂ =√
mω
ℏ Q̂ and p̂ =

√
1

ℏmω P̂ . So the ladder operators can be written simply as

â = 1√
2
(q̂ + ip̂), â† = 1√

2
(q̂ − ip̂), (2.8)

and the Hamiltonian in terms of the annihilation and creation operators remains unchanged. The

Hamiltonian in terms of these new coordinates is given by Ĥ = ℏω
2 (p̂2+ q̂2). The commutation rela-

10
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tions of q̂ and p̂ also simplify to [q̂, p̂] = i. We note that there are various ways to nondimensionalise

the quadrature operators by moving constants around. There are two other ways commonly used in

literature that involve multiplying or dividing each by
√
2. These result in commutation relations

[q̂, p̂] = 2i and [q̂, p̂] = i
2 . By comparing to the Q̂, P̂ commutation relation, these three choices

would be consistent given ℏ = 1, 2, 12 respectively. Similarly the three Hamiltonians would also be

consistent with each other. Therefore, to distinguish which choice has been used it is convention

to say ℏ = 1, 2 or 1
2 , where we use the nondimensionalised operators with ℏ = 1 throughout this

thesis. Note that this choice of ℏ does not affect the commutation relations or Hamiltonian in the

complex picture.

The above description is for a single mode state. This can be generalised to a state with M

modes which is described by a quantum harmonic oscillator with Hamiltonian Ĥ =
∑
Ĥi with Ĥi

acting on mode i. The above description can be modified such that all operators and states take a

subscript to denote the mode, eg. â†i is the creation operator on mode i adding a photon in that

mode. Operators in different modes commute so the commutation relations can be extended to

[q̂i, p̂j ] = iδi,j and [âi, â
†
j ] = δi,j over multiple modes.

A photon is a bosonic quantum particle whose state is described by |ψ⟩, a vector in the hilbert

space H. This state could be, for example, wavelength, polarisation, position or momentum. For

many-particle systems with N photons, the multi-particle state is denoted with a tensor product

between the states of the individual photons |ψ⟩ = |ψ1⟩ ⊗ . . .⊗ |ψN ⟩. For convenience, we use the

notation |ψ1⟩⊗. . .⊗|ψN ⟩ ≡ |ψ1⟩ . . . |ψN ⟩ ≡ |ψ1, . . . , ψN ⟩. This vector is now from a tensor product of

Hilbert spaces. In this representation of states, there is an implicit matching between the ith photon

and the ith element in the ket |ψi⟩. If the photons are distinguishable in another degree of freedom it

is possible to order each photon from the ‘first photon’ to the ‘Nth photon’. However if the photons

are indistinguishable in all degrees of freedom (apart from what ψ describes) it is impossible to label

them separately. To account for this, we need to symmetrise the state under the exchange of bosons

(ie. if we change the ordering of two indistinguishable photons the state should remain unchanged).

In order to do this, the state must be considered as a superposition of all the possible orderings

of the photons consistent with the overall state: |ψ⟩ = N
∑

σ∈SN
|ψσ(1), ψσ(2), ..., ψσ(N)⟩, where

SN is the symmetric group which contains all permutations of elements 1 to N , and N is some

normalisation constant. This representation of quantum states involving a tensor product of states

for each particle is called the first quantisation formalism.

However, there is another representation that naturally takes into account the permutations

of the indistinguishable photons. Given the labelling of photons to a particular position is not

important, we only need to keep a count of how many photons are in each state. These are the

Fock states already introduced, but we can expand beyond one mode. Instead of defining a basis

with M vectors to describe the state of one photon, it is possible to write the state as a single

vector with M elements. For example, if we are considering the state to be polarisation, the basis

states could be |↑⟩ and |→⟩ which can be equivalently written as |↑⟩ ≡ |1, 0⟩ and |→⟩ ≡ |0, 1⟩.
Here the first element in the ket corresponds to vertical polarisation and the second element to

horizontal polarisation, and the number indicates the number of photons in that state. For the

11
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case of only one photon the representations are completely equivalent. However when there is more

than one photon, the basis with M elements must be symmetrised as explained above whereas

the Fock state with N photons is still given by a vector with M elements where the sum of the

elements is N . Again looking at the polarisation as an example, a state with one photon in each

polarisation can be represented as |ψ⟩ = 1√
2
(|↑,→⟩ + |→, ↑⟩) in the first quantisation or more

succinctly as the Fock state |ψ⟩ = |1, 1⟩. More generally for M basis states the Fock state is given

by |ψ⟩ = |n1, . . . , nM ⟩, where ni is the number of photons in mode i. The term ‘mode’ can refer to

any physical encoding of the basis states, for example, for an arbitrary number of modes, spatial

modes (eg. optical fibres or waveguides on an integrated chip), or time-bins (photons are delayed

with respect to each other), or for just two modes, polarisation. In the case where the total number

of photons is not fixed, the space that the vectors exist in is expanded to a direct sum of Hilbert

spaces, H(0),H(1),H(2), . . ., where H(i) is the Hilbert space for states with i photons. This is the

Fock space and this representation is known as the second quantisation formalism.

So far we have used state vectors to describe a quantum system. These can be used to describe

a pure basis state such as a photon being in the first mode |1, 0, 0⟩, and also a pure state in a

superposition described by a normalised linear combination of vectors for example 1√
2
(|1, 0, 0⟩ +

|0, 1, 0⟩). However, it is possible to create a mixed state - a state prepared with some probability of

being in each of a selection of pure states. These cannot be described by vectors alone and so we

introduce density operators [29] as a more general way to describe a state. This density operator

contains all the information about a state. For a pure state the density operator is given by

ρ̂ = |ψ⟩ ⟨ψ|, whereas for a mixed state which is prepared in state ψi with probability pi the density

operator is given by ρ̂ =
∑

i pi |ψi⟩ ⟨ψi|. The purity of a state is defined as P := Tr(ρ̂2) =
∑

i p
2
i .

For a pure state, there is only one term with p = 1 so the purity is equal to 1, whereas mixed states

have more than one state and so all pi < 1 and hence the purity P < 1.

When measuring a state ρ̂, the type of measurement performed corresponds to a basis of pro-

jection operators Π̂j such that
∑

j Π̂j = Î, the identity operator. Each operator is associated with

projecting the state onto state |πj⟩ and measuring the value j. The measurement projects the state

onto the basis state |πj⟩ with probability Tr(ρ̂Π̂j). For pure states where ρ̂ = |ψ⟩ ⟨ψ| measuring

with the projective operator with basis Π̂j = |πj⟩ ⟨πj |, the probability can be written as

Pr(j|ψpure) = Tr(|ψ⟩ ⟨ψ|πj⟩ ⟨πj |) = ⟨ψ|πj⟩ ⟨πj |ψ⟩ = | ⟨πj |ψ⟩ |2. (2.9)

For mixed states,

Pr(j|ψmixed) = Tr

(∑
i

pi |ψi⟩ ⟨ψi|πj⟩ ⟨πj |

)
=
∑
i

pi ⟨ψi|πj⟩ ⟨πj |ψi⟩ =
∑
i

pi| ⟨πj |ψi⟩ |2, (2.10)

which is the weighted sum of the individual probabilities of each pure state. As an example that

will be used throughout this thesis, photon number resolving detectors measure the number of

photons in a mode and project the state onto a Fock basis state |n⟩. So the projection operator

basis here is |n⟩ ⟨n| for all n which project onto state |n⟩ measuring n photons with probability

12
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Tr(ρ̂ |n⟩ ⟨n|) = | ⟨n|ψ⟩ |2 in the case of a pure state.

In the case with multiple degrees of freedom, it is sometimes useful to know properties of one of

the subsystems without knowledge of the whole system. The reduced density operator of subsystem

A describes the state of the subsystem A. This is found by taking the partial trace of the density

operator of the whole system over the other subsystem B:

ρ̂A = TrB(ρ̂A,B). (2.11)

Two subsystems can be entangled or separable. A system is separable if its state can be written as

a product of states in each subsystem: |ψA,B⟩ = |ψA⟩ |ψB⟩. For example the state

|ψ⟩ = 1

2
(|0A, 0B⟩+ |2A, 0B⟩+ |0A, 2B⟩+ |2A, 2B⟩) =

1√
2
(|0A⟩+ |2A⟩)⊗

1√
2
(|0B⟩+ |2B⟩) (2.12)

which is written in the Fock basis for two modes with two photons is separable. Taking the partial

trace over subsystem B leaves subsystem A with the pure state density operator ρ̂A = TrB(ρ̂) =
1
2 (|0A⟩+ |2A⟩)(⟨0A|+ ⟨2A|) and therefore the state in subsystem A is independent of the subsystem

B. If subsystem B is measured to have 2 photons, subsystem A is still in the state 1√
2
(|0A⟩+ |2A⟩),

the same state as if B had measured no photons. In contrast,

|ψ⟩ = 1√
2
(|2A, 0B⟩+ |0A, 2B⟩) (2.13)

is an entangled state as the subsystems are not independent. This can be seen from the state vector

because if system B is measured to have 2 photons, system A must have no photons and vice versa.

More formally, taking the partial trace over subsystem B leaves subsystem A with the mixed state

density operator ρ̂A = TrB(ρ̂) =
1
2 (|0A⟩ ⟨0A|+ |2A⟩ ⟨2A|). The condition for a separable state is that

the reduced density operator when tracing over one subsystem will be pure whereas an entangled

state will result in a mixed reduced density operator.

2.2 Phase-space formalism

In the previous section we introduced multimode states represented by vectors with M elements

and quadrature and ladder operators that act on each mode separately. Working in terms of

the quadrature operators is known as the phase-space formalism [30] and we explore here how to

represent states and transformations in this formalism as well as the mapping to the equivalent

ladder operators picture.

2.2.1 Describing states

When considering an M -mode continuous variable system, it is convenient to write the quadrature

operators in a vector with 2M elements [31]. The q̂ and p̂ operators for all M modes can be

ordered in any way, and there are two common conventions in literature. The first is x̂(A) =

13
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(q̂1, p̂1, q̂2, p̂2, ..., q̂M , p̂M )⊤ and the second is x̂(B) = (q̂1, q̂2, ..., q̂M , p̂1, p̂2, ..., p̂M )⊤ = ( q̂
p̂ ), where the

labels A and B are used to distinguish between the conventions. In the first convention, we can

succinctly write the commutation relations as [x̂
(A)
i , x̂

(A)
j ] = iΩ

(A)
i,j , where

Ω(A) =


ω̃ 0 0

0
. . . 0

0 0 ω̃

 , where ω̃ =

(
0 1

−1 0

)
. (2.14)

Similarly, in the second convention [x̂
(B)
i , x̂

(B)
j ] = iΩ

(B)
i,j , where now

Ω(B) =

(
0 I

−I 0

)
. (2.15)

We can equivalently work in the complex basis defining a vector of creation and annihilation

operators ζ̂ = (â1, . . . , âM , â
†
1, . . . , â

†
M )⊤ = (â⊤, â†)⊤ where we introduce the row vector â† for

the creation operators but a column vector â for the annihilation operators so that they are the

Hermitian conjugate of each other. Again the operators could be in any order but this is the

usual convention. From eq. (2.8) we can convert between the quadrature and complex bases by the

transformation ζ̂ = F (A)x̂(A) or ζ̂ = F (B)x̂(B), where

F (A) =


f 0 0

0
. . . 0

0 0 f

 , where f =
1√
2

(
1 i

1 −i

)
(2.16)

and

F (B) =
1√
2

(
I iI

I −iI

)
. (2.17)

We find the second convention to be more convenient and use that one throughout the rest of this

thesis, dropping the B labelling.

The commutation relations of the creation and annihilation operators can be written in a similar

manner to the quadrature operators where the commutation matrix Ω(c) is now given in the ladder

basis. The commutation relations are given by

[
ζ̂i, ζ̂

†
j

]
=

[∑
k

Fi,kx̂k,
∑
l

x̂lF
†
l,j

]
=
∑
k

∑
l

Fi,kF
†
l,j [x̂k, x̂l] =

∑
k

∑
l

Fi,kF
†
l,jiΩk,l = i(FΩF †)i,j .

(2.18)

Hence, we can define the commutation matrix in the number basis as

Ω(c) := FΩF † = −i

(
I 0

0 −I

)
, (2.19)

which gives commutation relations
[
ζ̂i, ζ̂

†
j

]
= iΩ

(c)
i,j , and the superscript c specifies that it is for the

14
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complex basis.

Now we have a convenient matrix and vector notation for multimode states, we consider how

to fully describe these states. As mentioned previously, a pure state is described by a state vector

but a mixed state needs a density operator to fully describe it. There are equivalent ways to fully

characterise a state, eg. the Wigner function [32], the Q-function [33] and the P-function [34, 35].

Any state can be written in terms of basis states where the probability of measuring a state in one

of these basis states with projection operator P̂ is given by Tr(ρ̂P̂ ). One such basis is represented

by the Weyl operator D̂(x) = exp(ix̂⊤Ωx). An S-parametrised characteristic function is given by

[30]

χ(x, S) = Tr(ρ̂D̂(x)) exp

(
Sx⊤x

4

)
. (2.20)

The values of S = 0,−1,+1 correspond to the Wigner, Husimi Q and Glauber-Sudarshan P char-

acterisation functions respectively. They are more often expressed in their complex forms as

χ(ζ, S) = Tr(ρ̂D̂(ζ)) exp

(
Sζ⊤ζ

4

)
. (2.21)

Equivalently a state can be described by its Wigner, Q or P functions, which are the Fourier

transforms of the corresponding characteristic functions

F (x, S) =

∫
R2N

d2Ny

(2π)2N
exp(−ix⊤Ωy)χ(y, S), (2.22)

and similarly in the complex form, where W (x) = F (x, 0) is the Wigner function, P (x) = F (x, 1)

is the P function and Q(x) = F (x,−1) is the Q function. The Wigner, Q and P functions are pop-

ular choices because they correspond to operators that are symmetrised over creation/annihilation

operators, in antinormal order or ordered normally respectively. They can be used to calculate the

expectation values of these types of operators

⟨Ô(n)⟩ =
∫
P (ζ) Ô(n) d2Nζ, ⟨Ô(a)⟩ =

∫
Q(ζ) Ô(a) d2Nζ, ⟨Ô(s)⟩ =

∫
W (ζ) Ô(s) d2Nζ,

(2.23)

where the superscripts (a), (n) and (s) denote antinormal, normal and symmetric ordered respec-

tively. These functions are characterised by the statistical moments of the quantum state. For the

Wigner function which is symmetrically ordered, the first moment (the vector of means), and the

second moment (the covariance matrix) [36] are given by

x̄ = ⟨x̂⟩ = Tr(x̂ρ̂), Vi,j =
1
2 ⟨{x̂i − x̄i, x̂j − x̄j}⟩. (2.24)

Due to the commutation relations which can be used to change the order of the annihilation and

creation operators, the covariance matrix corresponding to the Q and P functions are given by [37]

VQ = V + 1
2I, VP = V − 1

2I, (2.25)
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Object Real Complex Mapping

operators x̂ = ( q̂
p̂ ) ζ̂ = ( â

(â†)⊤ )⊤ ζ̂ = F x̂

displacement x = ( q
p ) ζ = ( α

α∗ ) ζ = Fx

vector of means x̄ = ⟨x̂⟩ = ( q̄
p̄ ) ζ̄ = ⟨ζ̂⟩ = ( ᾱ

ᾱ∗ ) ζ̄ = F x̄

covariance matrix V Σ Σ = FV F †

commutation relations [x̂i, x̂j ] = Ωi,j [ζ̂i, ζ̂j ] = Ω
(c)
i,j Ω(c) = FΩF †

eigenstates x̂i |xi⟩ = xi |xi⟩ âi |αi⟩ = αi |αi⟩ N/A

transformation Vvac → SVvacS
⊤ Σvac →MΣvacM

† M = FSF †

Table 2.1: A summary of the mapping between quadrature and ladder descriptions and the notation
used throughout this thesis. The matrix F defined in eq. (2.17) can be used to convert between the
real and complex descriptions of multimode states in the phase-space formalism. The mapping of
the operators, first and second moments and commutation relations are shown with the notation
used in this thesis.

while the first moment, which consists only of one creation or annihilation operator and therefore

is normally, antinormally and symmetrically ordered, remains unchanged.

The moments above are written in the real quadrature basis, but can also be written in the

complex number basis. To swap between the two descriptions, the conversion matrix F is used as

follows:

ζ̄ =

(
ᾱ

ᾱ∗

)
= F x̄, Σ = FV F †, (2.26)

where ᾱi = (x̄i+ip̄i)/
√
2. There is a special class of states which are fully defined by only these first

two moments, ie. ρ̂ = ρ̂(x̄,V ). These are the Gaussian states [38, 39] which must have Gaussian

Wigner characteristic and Wigner functions:

χ(x) = exp

(
−1

2
x⊤(ΩV Ω⊤)x− ix̄⊤Ω⊤x

)
, W (x) =

exp(− 1
2 (x− x̄)⊤V −1(x− x̄))√

det(2πV )
.

(2.27)

2.2.2 Gaussian transformations

A quantum channel is a transformation on a quantum state that is completely positive and trace-

preserving of the density operator. In this thesis we restrict to the case of reversible transfor-

mations, given by unitary operators Û which act on the density operator as ρ̂ → Û ρ̂Û†. Gaus-

sian transformations are those that take Gaussian states to Gaussian states. A general Gaussian

unitary, Û = exp
(
−iĤ

)
, is generated by a Hamiltonian which is at most second-order in the
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creation/annihilation operators. Explicitly this Hamiltonian is given by

Ĥ = i(â†α+ â†Gâ+ â†H(â†)⊤) + h.c. (2.28)

where as before â† = (â†1, â
†
2, ..., â

†
M ) and â = (â1, â2, .., âM )⊤, h.c. stands for Hermitian conjugate,

G and H are complex matrices and α is a complex column vector.

A state can be described by its statistical moments such as the vector of means x̄ or ζ̄ and

covariance matrix V or Σ as defined previously. Therefore a transformation can be equivalently

defined by its effect on these moments. Transforming these moments can be done by instead

considering its action on the quadrature or ladder operators:

x̄i = ⟨x̂i⟩ = Tr(ρ̂x̂i)→ Tr(Û ρ̂Û†x̂i) = Tr(ρ̂Û†x̂iÛ)

Vi,j = ⟨x̂ix̂j⟩ = Tr
(
ρ̂ 1
2 (x̂ix̂j + x̂j x̂i − 2x̂ix̄j − 2x̂j x̄i + 2x̄ix̄j)

)
→ Tr

(
Û ρ̂Û† 1

2 (x̂ix̂j + x̂j x̂i − 2x̂ix̄j − 2x̂j x̄i + 2x̄ix̄j)
)

= Tr
(
ρ̂Û† 1

2 (x̂ix̂j + x̂j x̂i − 2x̂ix̄j − 2x̂j x̄i + 2x̄ix̄j)Û
)
.

(2.29)

The vector of means has an explicit dependence on Û†x̂iÛ and with inserting the identity Î = Û Û†

between the quadrature operators in the covariance matrix, it can be seen that the effect on the

covariance matrix can also be accounted for completely by the action on the quadrature operators.

When considering the unitary transformations acting on the operators, either the ladder or the

quadrature operators, we are working in the Heisenberg picture.

The transformation on the annihilation and creation operators is given by the Bogoliubov trans-

formation [40]

â→ Câ+D(â†)⊤ +α, (â†)⊤ → C∗(â†)⊤ +D∗â+α∗. (2.30)

It is convenient to write this in matrix form as:(
â

(â†)⊤

)
→

(
Û†âÛ
Û†(â†)⊤Û

)
=

(
C D

D∗ C∗

)(
â

(â†)⊤

)
+

(
α

α∗

)
. (2.31)

In more succinct notation, this is written as ζ̂ → Mζ̂ + ζ. The Bogoliubov transformation is

canonical and so must preserve the canonical commutation relations [âi, â
†
j ] = δi,j and [âi, âj ] = 0.

By fixing [Û†âiÛ , Û†â†jÛ ] = δi,j and [Û†âiÛ , Û†âjÛ ] = 0 and substituting eq. (2.31) into the commu-

tation relations for â† and â, the following conditions must be placed on the matrix corresponding

to the unitary operator:

CC† −DD† = I, CD⊤ −DC⊤ = 0. (2.32)
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We can convert these matrix conditions to the real quadrature coordinates:

x̂ = F †ζ̂ → F †MFx̂+ F †ζ = Sx̂+ d, (2.33)

where S = F †MF and d = F †ζ. This matrix S is symplectic and therefore by definition satisfies

SΩS⊤ = Ω [41]. Note that the conditions for matrix M in the complex coordinates are similar

to the conditions for symplectic matrices and in fact the matrix M is isomorphic to symplectic

matrices. This matrix is part of the Lie group U(n, n) = {M |MΩ(c)M † = Ω(c)} [42].
The Hamiltonian in eq. (2.28) can be considered to be composed of three separate transforma-

tions applied in order. First we consider the term i(â†α − α†â). We consider the action of this

operator D̂(α) = exp(â†α−α†â) on the creation/annihilation operators using the Baker-Hausdorff

lemma [27]:

âi → D̂†âiD̂ = e−(â†α−α†â) âi e
(â†α−α†â) = âi + αi (2.34)

â†i → D̂†â†i D̂ = e−(â†α−α†â) â†i e
(â†α−α†â) = â†i + α∗

i . (2.35)

This does not mix the creation or annihilation operators and simply performs single-mode opera-

tions, displacing mode i by αi in the phase space. The operator D̂(α) is the called the displace-

ment operator and is just the complex version of the Weyl operator introduced earlier. From

the transformations, it is clear that the transformation matrix Md and vector ζd in the complex

picture are given by

Md = I, ζd = ζ =

(
α

α∗

)
, (2.36)

where ζ is the displacement vector of the state and hence why the notation α and α∗ in the operator

was chosen. Similarly in the real picture, they are

Sd = I, dd = x =

(
q

p

)
, (2.37)

where q and p are the position and momentum eigenvalues respectively.

Next we look at the term i(â†Gâ−â†G†â) = â†iGâ+â†(iG)†â = â†Eâ, whereE = iG+(iG)†

is a Hermitian matrix. The operator Û = exp
(
−iâ†Eâ

)
has the following action on the creation

and annihilation operators:

â†i → Û
†â†i Û = e(iâ

†Eâ) â†i e
(−iâ†Eâ) = (â†e(iE))i = (â†U †)i (2.38)

âi → Û†âiÛ = e(iâ
†Eâ) âi e

(−iâ†Eâ) = (e(−iE)â)i = (Uâ)i (2.39)

where we define U = e−iE . This operator mixes within the creation operators and the annihilation

operators but not between them, corresponding to a multimode unitary transformation U in linear

optics. It is useful to find the transformation of the column vectors â→ Uâ and (â†)⊤ → U∗(â†)⊤.
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From this and eq. (2.31), it is simple to find the transformation matrix and vector as

Mu =

(
U 0

0 U∗

)
ζu = 0, (2.40)

and in the real picture, using the mapping S = F †MF , the transformation is given by

Su =

(
Re(U) −Im(U)

Im(U) Re(U)

)
du = 0, (2.41)

where Re(U) and Im(U) denote the real and imaginary parts of the matrix U .

And finally we look at the last term i(â†H(â†)⊤ − â⊤H†â). This is just a number and so its

transpose must leave it unchanged. From this we can determine that H is symmetric. So the action

of this operator Ûs = exp
(
â†H(â†)⊤ − â⊤H∗â

)
on the annihilation and creation operators is

â†i → Û
†
s â

†
i Ûs = e(−â†H(â†)⊤+â⊤H∗â) â†i e

(â†H(â†)⊤−â⊤H∗â)

=
[
â† cosh

(
2
√
H∗H

)
+ sinh

(
2
√
H∗H

)
H∗

√
H∗H

â
]
i

(2.42)

âi → Û†
s âiÛs = e(−â†H(â†)⊤+â⊤H∗â) âi e

(â†H(â†)⊤−â⊤H∗â)

=
[
cosh

(
2
√
H∗H

)
â+ â† H√

H∗H
sinh

(
2
√
H∗H

)]
i
.

(2.43)

If we restrict to the case where H is diagonal such that 2Hi,i = −ξi, this is the case of single mode

squeezing with the operator given by exp
(

1
2 (−ξiâ

†
i â

†
i + ξ∗i âiâi)

)
. In this case we can simplify the

transformations to

â†i → Ŝ†â†i Ŝ = e(â
†
i ξiâ

†
i−âiξ

∗
i âi)/2 â†i e

(−â†
i ξiâ

†
i+âiξ

∗
i âi)/2 = â†i cosh(|ξi|)− âi

ξ∗i
|ξi|

sinh(|ξi|) (2.44)

âi → Ŝ†âiŜ = e(â
†
i ξiâ

†
i−âiξ

∗
i âi)/2 âi e

(−â†
i ξiâ

†
i+âiξ

∗
i âi)/2 = âi cosh(|ξi|)− â†i

ξi
|ξi|

sinh(|ξi|). (2.45)

By using the notation ξ = reiϕ, the transformation matrices and vectors for this single mode

squeezing (on all modes) operation can be written as

Ms =

(
⊕i cosh ri ⊕− eiϕi sinh ri

⊕i − e−iϕi sinh ri ⊕i cosh ri

)
, ζs = 0 (2.46)

Ss =

(
⊕i cosh ri − cosϕi sinh ri ⊕i − sinϕi sinh ri

⊕i − sinϕi sinh ri ⊕i cosh ri + cosϕi sinh ri

)
, ds = 0, (2.47)

where each quadrant is a diagonal matrix comprised of the direct sum for each mode in the state

with squeezing rie
iϕi .
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2.2.3 Gaussian states

Gaussian states are those that have Gaussian Wigner functions and can be fully described by the

vector of means (the first moment) and the covariance matrix (the second moment). The simplest

example is the vacuum state. This is the state with no photons, with a zero vector of means and

half times the identity as the covariance matrix:

x̄vac = ζ̄vac = 0, Vvac = Σvac =
1
2I. (2.48)

A single-mode state can be represented on a phase-space diagram with axes q and p. For Gaussian

states, the mean values of the quadratures (ie. the first moment) provide the coordinates of the

centre of the state and uncertainties give the width of the state in the q and p directions. For states

with diagonal covariance matrices, these uncertainties are given by the square root of the variances

of the quadratures (ie. the second moment). Therefore, a single-mode vacuum state is represented

in the phase space as a circle centred on the origin, with a diameter of 1/
√
2.

Any pure Gaussian state can be made by a Gaussian operator (or combinations of Gaussian

operators) acting on the vacuum state. In order to describe the state after the Gaussian transfor-

mation, we need to know how the vector of means and covariance matrix transform. Taking the

transform of the vector of means x̄→ Tr(ρ̂Û†x̂Û), and with the assumption that x̂→ Sx̂+ d (as

shown in the previous section), the vector of means can be written as

⟨x̂i⟩ → Tr(ρ̂(Sx̂+ d)i) = Tr

ρ̂∑
j

Si,j x̂j + ρ̂di

 =
∑
j

Si,jTr(ρ̂x̂j) + Tr(ρ̂di) =
∑
j

Si,j x̄j + di,

(2.49)

where we use that Tr(ρ̂) = 1 in the final step. Hence, we have shown it is possible to determine the

vector of means by the transformation matrix and vector acting on the vacuum vector of means.

Similar arguments can be applied to the covariance matrix and so we find

x̄→ Sx̄+ d, V → SV S⊤

ζ̄ →Mζ̄ + ζ, Σ→MΣM †.
(2.50)

Hence a Gaussian state can be completely described by its transformation matrix and vector in

either the real or complex picture (ie. S and d, or M and ζ).

Any combination of the three Gaussian transformations introduced previously can be applied

to the vacuum state in any order resulting in a Gaussian state. We now look at common Gaussian

states and describe them in the Gaussian formalism by their covariance matrices and vectors of

means and also look at their expansions in the Fock basis.

2.2.3.1 Coherent states

The first Gaussian operator introduced was the displacement operator D̂(α) = exp
(
â†α⊤ −α∗â

)
.

As shown previously, the transformation matrix is the identity matrix in both real and complex
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pictures and the complex vector is ζ = ( α
α∗ ) and the real vector is dd = x = ( q

p ). Applying

these transformations to the moments of the vacuum state, we find the vectors of means and

covariances matrices for the state formed by applying the displacement operator with parameter α

or equivalently (q,p) are

Vd = 1
2I, x̄d =

(
q

p

)
, Σd = 1

2I, ζ̄d =

(
α

α∗

)
. (2.51)

The covariance remains unchanged and so in the phase space this operator simply is a translation

in a direction determined by the parameter α = |α|eiθ without changing the shape of the state.

This geometric interpretation of the action of the displacement operator in phase space is shown

in fig. (2.1a). The vector of means is determined solely by the displacement operators acting on a

vacuum state and so the terms ‘displacement’ and ‘vector of means’ are used interchangeably. The

state formed by applying a displacement operator on the vacuum state is denoted by |α⟩ = D̂(α) |0⟩
and called simply a displaced (vacuum) state or a coherent state.

Although it is neat to write the coherent state in its Gaussian formalism, it is convenient to write

the state decomposed in the Fock basis, for example in order to measure the number of photons

in a state. The displacement operator can act on many modes, but each mode is independent so

without loss of generality, we consider the single mode version and apply separately to each mode.

We define the displacement parameter α = |α|eiθ, where θ is the angle from the q quadrature and

|α| is the distance of the translation. The coherent state expanded in terms of the Fock basis is

given by [28]

|α⟩ = exp
(
αâ† − α∗â

)
|0⟩ = exp

(
− 1

2 |α|
2
) ∞∑
n=0

|α|neinθ√
n!

|n⟩ . (2.52)

From this, and using ⟨N |n⟩ = δN,n, it is easy to find the probability amplitude of detecting N

photons from a coherent state |α⟩:

⟨N |α⟩ = exp
(
− 1

2 |α|
2
) ∞∑
n=0

|α|neinθ√
n!

⟨N |n⟩ = exp
(
− 1

2 |α|
2
) |α|NeiNθ

√
N !

. (2.53)

And therefore the probability of measuring N photons is

Pr(N) = | ⟨N |α⟩ |2 = e−|α|2 |α|2N

N !
. (2.54)

We note that this is a Poisson distribution with parameter |α|2, so the number of photons detected

from a coherent state is distributed as N ∼ Pois(|α|2). This means that each photon from a coherent

state is independent and suggests they behave similarly to distinguishable photons. A consequence

of this is that finding the probability of a coherent state after mixing the modes together is still

easy to do as we show next.

We can observe the effect of a linear optical transformation on a multimode coherent state by

analysing its action on the creation and annihilation operators. First we assume that the state
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formed by a unitary evolution acting on a multimode coherent state is another coherent state of a

different displacement parameter:

D̂(β) |0⟩ = ÛD̂(α) |0⟩ . (2.55)

We note that the unitary (and its conjugate) leaves the vacuum state unchanged when acting on

it. This can be seen because the transformation matrix Mu is Hermitian and therefore leaves

the identity as the identity and the translation vector ζu is the zero vector. Therefore the above

equivalence can be rewritten as

D̂(β) |0⟩ = ÛD̂(α)Û† |0⟩ . (2.56)

With the expansion of the exponential in the displacement operator the relation between β and α

can be found by simply analysing the action of a unitary on the creation and annihilation operators:

D̂(β) = exp
(
â†β − β†â

)
=

∞∑
n=0

1

n!
(â†β − β†â)n (2.57)

ÛD̂(α)Û† =

∞∑
n=0

1

n!

[
Û(â†α−α†â)Û†

]n
=

∞∑
n=0

1

n!

[
Û â†Û†α−α†Û âÛ†

]n
, (2.58)

where we inserted the identity Î = Û†Û in the second line such that in the power the Û† at the end

cancels with the Û at the beginning of the next term when multiplying out the power. It is important

to notice that for the action on the covariance matrix and vector of means the transformation was

U†â†U whereas here we have U â†U†. In eqs. (2.38) and (2.39), this simply sends i→ −i and in turn

the unitary matrix becomes the Hermitian conjugate and vice versa. Therefore the action here is

â†i → U â
†
iU

† = (â†U)i âi → U âiU† = (U †â)i (2.59)

and in vector form

(â†)⊤ → U â†U† = U⊤(â†)⊤ â→ U âU† = U †â. (2.60)

Inserting these transformations back into eqs. (2.56) and (2.58), we find

D̂(β) |0⟩ = ÛD̂(α)Û† |0⟩ =
∞∑

n=0

1

n!

[
â†Uα−α†U †â

]n |0⟩ = D̂(Uα) |0⟩ . (2.61)

Hence, a unitary operator acting on a coherent state takes it to a new coherent state with the vector

displacement parameter multiplied by the matrix U .

2.2.3.2 Squeezed vacuum states

The final Gaussian transformation is the squeezing operator. We define the single mode squeezing

operator as Ŝ(ξ) = exp
(
1
2 (ξ

∗â2 − ξâ†2)
)
, where ξ = reiϕ is the complex valued squeezing parameter

with ϕ being twice the angle from the q̂ quadrature. The creation and annihilation operators here
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Figure 2.1: Coherent and squeezed states in phase space. The action of displacing (a) and squeezing
(b) on the vacuum state (gold) in the phase space. (a) The displacement operator is a translation
moving the centre of the vacuum state but maintaining the shape. The result (green) is a state
with vector of means given by the displacement parameter α and the variance the same as for
the vacuum (1/2). (b) The squeezing operator acts on the vacuum state positively scaling in one
direction (stretching) and negatively scaling in the orthogonal direction (shrinking). The angle at
which the scaling is done depends on the angle ϕ of the squeezing parameter. This angle simply
rotates the axes on which the squeezing occurs. For an angle of zero, the q quadrature is reduced
with the uncertainty given by e−r/

√
2 and the p quadrature is stretched to er/

√
2. For any non-zero

angle the operation can be considered as a rotation to new coordinates (turquoise) followed by a
real valued squeezing and then reversing the rotation.

are quadratic and so photons are produced and destroyed in pairs. When acting the symplectic and

complex transformation matrices (eqs. (2.47) and (2.46)) on the vacuum state, this corresponds to

covariance matrices

Vs =
1

2

(
cosh(2r)− cosϕ sinh(2r) − sinϕ sinh(2r)

− sinϕ sinh(2r) cosh(2r) + cosϕ sinh(2r)

)
,

Σs =
1

2

(
cosh(2r) −eiϕ sinh(2r)

−e−iϕ sinh(2r) cosh(2r)

)
,

(2.62)

with the vector of means unchanged. From this it is not very clear what this transformation does

geometrically to the vacuum state in the phase space. However, setting the angle of the squeezing

ϕ = 0 so that the squeezing parameter is real, the covariance matrices are much simpler:

V =
1

2

(
e−2r 0

0 e2r

)
, Σ =

1

2

(
cosh(2r) − sinh(2r)

− sinh(2r) cosh(2r)

)
. (2.63)

In the quadrature picture, the q quadrature variance is reduced to e−2r/2 while the p quadrature

variance is increased to e2r/2, which corresponds to squeezing in the q quadrature and anti-squeezing

(expanding) in the p quadrature. In the case that the angle of the squeezing is not zero, we can

consider rotating the coordinate system to find one that has real squeezing only. This is found by
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rotating the coordinate system q and p by ϕ/2 anticlockwise. This geometric interpretation of the

squeezing operator acting on the vacuum state is given in fig. (2.1).

Now we can treat a squeezed state in the non-Gaussian formalism and expand it in the number

basis as [28]

|ξ⟩ = 1√
cosh r

∞∑
n=0

(−1)n
√

(2n)!

2nn!
einϕ tanhn r |2n⟩ . (2.64)

From this series, it is convenient to find the probability amplitude of measuring 2N photons from

a squeezed vacuum state:

⟨2N |ξ⟩ = 1√
cosh r

∞∑
n=0

(−1)n
√

(2n)!

2nn!
einϕ tanhn r ⟨2N |2n⟩

=
1√

cosh r
(−1)N

√
(2N)!

2NN !
eiNϕ tanhN r

(2.65)

Therefore the probability of measuring 2N photons from a squeezed vacuum state is

| ⟨2N |ξ⟩ |2 =
1

cosh r

(2N)!

22NN !2
tanh2N r. (2.66)

It is easy to see that the probability of measuring an odd number of photons | ⟨2N + 1|ξ⟩ |2 will

include the term ⟨2N + 1|2n⟩ = δ2N+1,2n which will always be zero because an odd number can

never equal an even number. Therefore, as expected from the quadratic nature of the annihilation

and creation operators, photons are only ever measured in pairs from a squeezed state.

2.2.3.3 Squeezed coherent states

A combination of squeezing and displacement operators will give a more general squeezed coherent

state |α, ξ⟩. As the displacement and squeezing operators do not commute, it is important to specify

which order they are applied. In general in this thesis, unless otherwise stated, we assume that the

squeezing is applied first followed by the displacement as we find it to be more convenient. The

probability distribution of the number of photons only depends on the position of the centre and

shape of the state in phase space. Applying squeezing to the vacuum state changes its shape only

and applying displacement to any state changes only the position of the centre. So we can treat

the two processes separately if applying them in this order. On the other hand, if the squeezing

is applied to the displaced state, that operation changes both the shape and central position so

we cannot consider the operators separately. However, similarly to how swapping the order of a

unitary and displacement operator is equivalent for different displacement parameters, changing the

order of the squeezing and displacement can also be accounted for by changing the displacement

parameter. Specifically a state with squeezing parameter ξ = reiϕ and displacement parameter α

can equivalently be written as [43]

|α, ξ⟩ = D(α)S(ξ) |0⟩ = S(ξ)D(β) |0⟩ (2.67)
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Figure 2.2: Displaced squeezed states and squeezed displaced states equivalence. (a) A vacuum
state (gold) is first squeezed with squeezing parameter ξ = reiϕ and then displaced by displacement
parameter α = |α|eiθ. (b) The same state is formed as in (a) but by first displacing by a different

parameter β = |β|eiθ̃ and then squeezing by the same parameter ξ. The order of applying displace-
ment and squeezing matters because the squeezing scales the whole phase space moving the centre
of the state unless it is at the origin. The centre of the state determines the overall displacement.

where β = α cosh r+α∗eiϕ sinh r, or to convert in the opposite direction α = β cosh r−β∗eiϕ sinh r.

We can derive this equivalence geometrically on a phase-space diagram. First we restrict to

squeezing parallel to the q quadrature, corresponding to ϕ = 0. Displacement is a translation

and squeezing is a compression and enlargement in the direction of the q (x-axis) and p (y-axis)

quadratures respectively. Therefore squeezing a displaced state moves the centre of the state towards

the y-axis and away from the x-axis. In the case of squeezing first and then displacing with a

displacement parameter α = |α|eiθ, the location of the centre depends only on the displacement

and so is at the point (|α| cos θ, |α| sin θ). In the case where we displace first with displacement

parameter β = |β|eiθ, the centre of the state is at (|β| cos θ, |β| sin θ). When we squeeze it, the q

coordinates (ie. real part) undergo an enlargement by the factor e−r and the p coordinates (ie.

imaginary part) undergo an enlargement by the factor er. So now the centre of the state is at

(|β| cos θ e−r, |β| sin θ er). This is the real and imaginary parts of the displacement parameter which
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can be found as
α = |β| cos θ e−r + i|β| sin θ er

= |β| cos θ(cosh r − sinh r) + i|β| sin θ(cosh r + sinh r)

= |β| cosh r(cos θ + i sin θ)− |β| sinh r(cos θ − i sin θ)

= |β| cosh r eiθ − |β| sinh r e−iθ

= β cosh r − β∗ sinh r,

(2.68)

which agrees with the conversion for ϕ = 0. A squeezed displaced state formed by applying squeezing

and displacement in either order is depicted in the phase space in fig. (2.2).

Now we consider the general case where squeezing is along a line at an angle of ϕ/2 to the

x-axis (q quadrature). It is convenient to define the state in a new coordinate system such that the

squeezing is along the new x-axis. This is simply done by a rotation of an angle ϕ/2 anticlockwise

which results in a state with displacement βe−iϕ/2. The squeezing is now applied parallel to the

x-axis so the previous equation can be applied to this displaced state:

αrotated = βe−iϕ/2 cosh r − β∗eiϕ/2 sinh r. (2.69)

This is the displacement parameter in the rotated coordinate system, so we need to rotate back to

the correct coordinates. The displacement in the original coordinates is

α = (βe−iϕ/2 cosh r − β∗eiϕ/2 sinh r)eiϕ/2

= β cosh r − β∗eiϕ sinh r
(2.70)

as expected. This process of rotating to new coordinates for squeezing at an arbitrary angle is

shown in fig. (2.3).

A squeezed coherent state |α, reiϕ⟩ can also be expressed in the Fock basis as [28]

|α, reiϕ⟩ =
exp

(
− 1

2 (|α|
2 + α∗2eiϕ tanh r)

)
√
cosh r

∞∑
n=0

1√
n!

(
eiϕ tanh r

2

)n/2

Hn

(
α+ α∗eiϕ tanh r√

2eiϕ tanh r

)
(2.71)

from which the probability for N photons can be found to be

Pr(N) =
exp

(
−|α|2 − 1

2 (α
∗2eiϕ + α2e−iϕ) tanh r

)
N ! cosh r

(
tanh r

2

)N ∣∣∣∣HN

(
α+ α∗eiϕ tanh r√

2eiϕ tanh r

)∣∣∣∣2 , (2.72)

where HN is the Nth Hermite polynomial. This is derived rigorously finding the decomposition

in the Fock basis using the action of creation and annihilation operators and recursion relations.

However, here we motivate the probability from the combination of squeezing and displacement. In

quantum mechanics, the probability of a starting state ending in a final state is found by summing

the probability amplitudes of all the ways that this could happen and then taking the modulus

square of that total. So here we consider that a photon measured from a squeezed coherent state

could have come from the squeezing part or the displaced part. Hence the probability amplitude
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Figure 2.3: General squeezed displaced state. When squeezing is applied to a displaced state at
an arbitrary angle it is convenient to rotate the coordinate system to align the angle of squeezing
with the x-axis and then rotate back. (a) A displaced state at an angle of θ̃. (b) Rotate to new
coordinates p′ and q′ such that the squeezing is now parallel to the x-axis. (c) This gives a displaced
state at an angle of θ̃−ϕ/2, where ϕ/2 is the angle of the squeezing in the original frame. (d) Apply
the squeezing now in the x direction. This multiplies all x coordinates by e−r and all y coordinates
by er. (e) Rotate back to the original coordinate system.

of a squeezed coherent state measuring N photons can be found by summing the amplitudes of all

possible ways of getting N photons from a combination of ‘displacement photons’ and ‘squeezing

photons’. For example, if there are N photons, there could be N − q squeezing photons and q

displacement photons in N !/(q!(N − q)!) ways, for any q.

First we consider the case where we have an even number of photons N = 2n. Here we must

have an even number of squeezing photons and therefore an even number of displacement photons.

The probability amplitude is given by

⟨2n|α, reiϕ⟩ = N
n∑

q=0

√
(2n)!

(2q)!(2n− 2q)!
⟨2q|γ⟩ ⟨2n− 2q|reiϕ⟩

= N
n∑

q=0

√
(2n)!

(2q)!(2n− 2q)!
e−|γ|2/2 γ2q√

(2q)!

(−1)n−q

√
cosh r

√
(2n− 2q)!

2n−q(n− q)!
eiϕ(n−q) tanhn−q r

= N e−|γ|2/2
√
cosh r

(
eiϕ tanh r

2

)n n∑
q=0

(−1)n−q

√
(2n)!

(2q)!(n− q)!

(
2γe−iϕ/2

√
2 tanh r

)2q

= N e−|γ|2/2√
(2n)! cosh r

(
−eiϕ tanh r

2

)n

H2n

(
γe−iϕ/2

√
2 tanh r

)
,

(2.73)
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where we have used the following polynomial definition of the even numbered Hermite polynomials:

H2k(x) = (−1)k(2k)!
k∑

j=0

(−1)j 1

(2j)!(k − j)!
(2x)2j . (2.74)

As we are considering the squeezing and displacement separately, we must change the displace-

ment such that it can be considered as acting independently to the squeezing. Thus we use the

displacement given by γ

γ = α+ α∗eiϕ tanh r. (2.75)

This conversion is explored further in section (2.4.3.3). Putting this into the equation for the

probability amplitude and taking the modulus square we find the expected probability as long as

we include a normalisation constant N to ensure the probabilities sum to one.

Now we consider the case where we have an odd number of photons N = 2n + 1. Here we

must have an even number of squeezing photons but an odd number of displacement photons. The

probability amplitude is given by

⟨2n+ 1|α, reiϕ⟩ = N
n∑

q=0

√
(2n+ 1)!

(2q + 1)!(2n− 2q)!
⟨2q + 1|γ⟩ ⟨2n− 2q|reiϕ⟩

= N
n∑

q=0

√
(2n+ 1)!

(2q + 1)!(2n− 2q)!
e−|γ|2/2 γ2q+1√

(2q + 1)!
×

1√
cosh r

(−1)n−q

√
(2n− 2q)!

2n−q(n− q)!
eiϕ(n−q) tanhn−q r

= N e−|γ|2/2
√
cosh r

(
eiϕ tanh r

2

)n+1/2 n∑
q=0

(−1)n−q

√
(2n+ 1)!

(2q + 1)!(n− q)!

(
2γe−iϕ/2

√
2 tanh r

)2q+1

= N e−|γ|2/2(−1)n√
(2n+ 1)! cosh r

(
eiϕ tanh r

2

)n+1/2

H2n+1

(
γe−iϕ/2

√
2 tanh r

)
,

(2.76)

where we now use the polynomial expansion definition of odd numbered Hermite polynomials

H2k+1(x) = (−1)k(2k + 1)!

k∑
j=0

(−1)j 1

(2j + 1)!(k − j)!
(2x)2j+1. (2.77)

Again we need to substitute the displacement parameter to be independent of the squeezing using

eq. (2.75) and renormalise to find the correct probability amplitude.

It is clear by taking the modulus square of these probability amplitudes the expected expres-

sions for the probabilities of measuring N photons from a squeezed displaced state [28] have been

recovered by summing over all the possible ways of getting q photons from the displacement and

N − q photons from the squeezing. This may provide an intuitive description of the photon number

probability from squeezed coherent states.
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2.3 Permanents, hafnians and loop hafnians

In anticipation of describing boson sampling in the next section, we introduce the matrix functions

that are used in the classical simulation of boson sampling. For the variants that we cover in this

thesis, these are permanents, hafnians and loop hafnians. Although they are different functions,

they are closely linked to each other and can all be connected to graph theory. We introduce some

terminology for graphs below.

A graph is a collection of vertices (or nodes) with connecting edges which tell you something

about the relationship between the two vertices they join. We denote an edge by the beginning and

end vertex it connects, (Vi, Vj). In this thesis, we define graphs to be allowed ‘loops’ where an edge

starts and ends at the same node, and refer to graphs that do not allow loops as ‘simple graphs’ to

distinguish the two cases. A graph may be weighted or not. If it is not weighted, any two vertices

are either connected by an edge or they are not. Strictly speaking the existence of an edge implies

a weighting of one and the lack of an edge means a weighting of zero. If it is a weighted graph, the

edges can have any value associated to them. A graph is undirected if the weighting on the edges

is the same going from vertex Vi to Vj as in the opposite direction from Vj to Vi. There is a special

instance called a bipartite graph where the vertices can be split into two groups with no edges

within each group. A matching in a graph is a collection of edges such that no vertex is included

more than once. A perfect matching is a matching such that all vertices are included precisely

once. These terms are all depicted in fig. (2.4). Any graph can be equivalently written in the form

of its adjacency matrix, A, where the element Ai,j is the weighting between vertex Vi and Vj .

In an unweighted graph, all these elements are either 0 (no edge) or 1 (an edge). In an undirected

graph, as the weighting is the same in both directions, (Vi, Vj) = (Vj , Vi) =⇒ Ai,j = Aj,i, and so

the adjacency matrix is symmetric. The mapping between graphs and their adjacency matrices is

shown in fig. (2.5).

2.3.1 Permanent

The permanent is defined for any square N ×N matrix, A, as

Perm(A) =
∑

σ∈SN

N∏
i=1

Ai,σ(i), (2.78)

where the sum is over the symmetric group, SN , ie. all the permutations of the elements from 1

to N . For example, for N = 3, S3 = {(1, 2, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1), (2, 1, 3), (1, 3, 2)}. Ai,σ(i)

is the element of matrix A in row i and the column given by the ith element of ordering σ. The

product inside the sum matches all integers from 1 to N with an element from a permutation of

those integers. In terms of a graph, this is the product of the edge weightings in a perfect matching

in a bipartite graph where the first subscript in Ai,σ(i) corresponds to a vertex on the left-side and

is matched to a vertex σ(i) from the group of vertices on the right-hand side. The sum is over all

possible permutations which covers all possible perfect matchings. So the permanent of a matrix A

is equivalent to the total weight of all possible perfect matchings on a graph with adjacency matrix
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Figure 2.4: Properties of graphs. The vertices are represented by the blue circles and labelled with
integers inside. The edges are shown by dashed black lines between the vertices. (a) A simple
graph with no loops. Missing edges correspond to edges with a weighting of zero. (b) A graph
with loops. (c) A bipartite graph. The vertices are split into two groups, left and right with no
edges within each group. The vertices are relabelled as the halves can be treated separately. (d)
A directed graph. All the edges have a direction associated with them with potentially different
weights on edges between the same two vertices but in opposite directions. (e) A matching. The
purple lines represent the matching {(1,5)(3,3)(4,6)} including vertices 1,3,4,5 and 6 once and not
including vertex 2. (f) A perfect matching. The purple lines show a matching which includes all
vertices {(1,5)(2,3)(4,6)}.

A. In an unweighted bipartite graph, the permanent is equal to the number of perfect matchings.

This is because the permanent sums over all possible perfect matchings and adds weight 1 if all

edges in that matching exist and 0 otherwise.

The naive way to calculate this quantity requires summing over all the permutations of N

elements. However, there are N ! ways of permuting N elements and a factorial scaling means

this quickly becomes unmanageable as the size of the matrix increases. There have been several

algorithms to calculate the permanent with a better scaling. The first was introduced by Ryser [44]

and has time complexity O(N22N ). This algorithm was improved on to reduce the complexity to

O(N2N ) by Nijenhuis and Wilf [45] and later another approach was developed by Glynn with the

same complexity [46]. Although these algorithms are much faster than the naive approach, it was

shown that calculating the permanent lies in the #P complexity class and therefore cannot be done

in polynomial time [47].
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Figure 2.5: The adjacency matrix of a graph. The weighting of the edges are given by elements in
the adjacency matrix associated with a graph. The elements for each edge are colour coordinated.
In the bipartite graph (a), the nodes on the left are labelled separately to the ones on the right and
this is reflected in the matrix by linking the left group with the row index and the right group with
the column index. This allows the size of the matrix to be reduced for the same number of nodes
compared to a general graph. For an undirected general graph (b) the weighting of the edges is the
same in each direction and so the weighting is given in Ai,j and Aj,i.

2.3.2 Hafnian

The hafnian is defined for a symmetric even-sized square 2N × 2N matrix A as

Haf(A) =
1

N !2N

∑
σ∈S2N

N∏
i=1

Aσ(2i−1),σ(2i), (2.79)

where S2N is the symmetric group over 2N . Here the product inside the sum is a perfect matching

in a simple graph with adjacency matrix A. However, the sum includes all permutations including

permuting the ordering of the vertices for an edge (eg. includes (V1, V2) and (V2, V1)) which means

accounting each perfect matching twice for every pair (ie. the same perfect matching is included 2N

times due to this). Also the ordering of the edges does not matter and summing over the symmetric

group includes all the permutations of the edges (eg. (V1, V2)(V3, V4) and (V3, V4)(V1, V2)) and this

contributes another multiplicative factor for the number of ways of ordering the N edges (ie. N !).

However the factor before the sum takes this over-inclusion into account and the hafnian is the

sum of the weights of all perfect matchings over a simple graph [48]. In an unweighted graph, the

hafnian is the number of perfect matchings.

The number of possible perfect matchings in a simple graph with 2N vertices is (2N−1)!! which

does not scale well as the size of the matrix increases and so a naive implementation of this formula
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quickly becomes unmanageable. Again there are several algorithms that run in exponential time

O(poly(N)2N ) [49, 50, 51].

2.3.3 Loop hafnian

The loop hafnian is defined for a symmetric square N ×N matrix as

Lhaf(A) =
∑

σ∈SPM

N∏
i=1

Aσ(2i−1),σ(2i), (2.80)

where SPM is the set of perfect matchings of a graph with loops. This is a natural extension of

the hafnian and can be computed with the same time complexity as for a hafnian [49]. The loop

hafnian of an unweighted graph finds the number of perfect matchings in a graph with loops which

is given by the telephone numbers.

2.3.4 Connection between permanents, hafnians and loop hafnians

There is an obvious connection between permanents, hafnians and loop hafnians when considering

the graph theory representations; namely that they all sum over the weights of all the perfect

matchings of different types of graphs. The most general is the loop hafnian which is the perfect

matchings of an arbitrary graph with loops. The hafnian is a specific loop hafnian where the loops

are not allowed which translates into a zero diagonal in the matrix:

Haf(A) = Lhaf(0,A), (2.81)

where the notation Lhaf(x,Y ) means to take the loop hafnian of the matrix Y but where the

diagonal elements have been replaced with the vector x.

A perfect matching in a bipartite graph can be considered as a perfect matching in a general

graph where the vertices can be split into two groups such that the weightings on all edges between

two vertices in the same group are zero. The adjacency matrix of such a general graph will have a

block form when the vertices are ordered such that each group is separate. The leading diagonal

blocks will be the all-zeros matrix corresponding to the zero weightings within each group. From

this argument, it follows that the hafnian can be reduced to a permanent if the matrix is of the

following form:

Perm (A) = Haf

(
0 A⊤

A 0

)
. (2.82)

The mapping of these matrix functions to graphs and their adjacency matrices is shown in

fig. (2.6) to highlight the equivalence between them under certain conditions of the adjacency

matrix.

A final useful identity is when the matrix is block diagonal. This corresponds to splitting the

vertices into two groups as for the permanent, but now there are only edges within a group and

none between them. As there is no linking between the two groups, they can be treated completely
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Figure 2.6: The mapping between permanents, hafnians and loop hafnians. (a) The loop hafnian
is of a symmetric matrix which includes the weights of the loops on the diagonals. (b) The hafnian
does not include the loops and therefore the hafnian of any symmetric adjacency matrix and the
loop hafnian of this adjacency matrix with zeros on the diagonal are the same. (c) For a bipartite
graph, the elements in the same group are not joined by edges which results in zeros in the block
diagonals in the adjacency matrix. (d) The same graph but now we consider the labelling in one
group as different to the other. In this way we can find an equivalence between the permanent of
a matrix and a hafnian (or loop hafnian) of a symmetric block off-diagonal matrix.

independently and the hafnian becomes the product of hafnians of each subgraph:

Haf

(
C 0

0 D

)
= Haf(C)Haf(D). (2.83)

The calculation of two N × N hafnians is much faster than one 2N × 2N matrix due to the

exponential scaling of the complexity of hafnians and so this property can be used to provide a

quadratic speed-up whenever a matrix is block diagonal. The above result does not make any

assumptions about the size of either block and can be extended to loop hafnians too.

2.4 Boson sampling

Boson sampling is the task of sampling from a particular probability distribution. This probability

distribution is naturally given by measuring an entangled state formed by passing a quantum state

through an M ×M interferometer. In the original proposal by Aaronson and Arkhipov, the input

state is a Fock state with single photons in, typically the top, N modes [6]. There have since been

many variants on this recipe which take advantage of less restrictive experimental requirements,

particularly the need for deterministic single photon sources. In this section, we review the most

common types of boson sampling.

33



CHAPTER 2. DISCRETE AND CONTINUOUS VARIABLE PHOTONICS

2.4.1 Standard boson sampling

The original proposal introduced as BosonSampling and commonly referred to in literature by var-

ious names including Fock boson sampling, vanilla boson sampling and Aaronson and Arkhipov

boson sampling, we call standard boson sampling throughout this thesis. We use the phrase ‘bo-

son sampling’ to mean any variant, including but not limited to standard boson sampling. The

experimental task is as follows: An input Fock state with N photons |1, . . . , 1, 0, . . . , 0⟩ is passed

through an interferometer described by a unitary matrix, U , resulting in an entangled state. This

state is then measured with photon number resolving detectors to project onto a pure number

state. The measured number of photons in each mode (t1, . . . , tM ) is referred to as the ‘photon

number pattern’ or the ‘output photon pattern’ throughout this thesis. This task is equivalent to

sampling from a probability distribution which is determined by the entangled state at the output

of the interferometer. The quantum device naturally samples from this distribution, but if we want

to sample from it classically, we need to be able to calculate probabilities of the output photon

patterns. Here we derive the probability expression.

The input state is typically given by |1, . . . , 1, 0, . . . , 0⟩ = â†1 · · · â
†
N |0, . . . , 0⟩. However, we

generalise this to any Fock state with N photons |s1, . . . , sM ⟩, where
∑

i si = N . We use the

notation s for the pattern in second quantisation and s̃ in the first quantisation, (s̃1, . . . , s̃N ), where

s̃i ∈ {1, . . . ,M}. As previously shown, the creation operators are transformed under a unitary

transformation Û as â†i →
∑

j Ujiâ
†
j . Hence, the state given at the output of the interferometer

|ρout⟩ is given by

|ρout⟩ = Û |ρin⟩ = Û |s1, . . . , sM ⟩ = Û
1∏

i

√
si!
â†s̃1 · · · â

†
s̃N
|0, . . . , 0⟩

=
1∏

i

√
si!

M∑
j1=1

Uj1,s̃1 â
†
j1
· · ·

M∑
jN=1

UjN ,s̃N ,â
†
jN
|0, . . . , 0⟩

=
1∏

i

√
si!

M∑
j1=1

· · ·
M∑

jN=1

Uj1,s̃1 · · ·UjN ,s̃N â
†
j1
· · · â†jN |0, . . . , 0⟩ .

(2.84)

The probability of measuring a particular photon number pattern, t = (t1, . . . , tM ), is determined

by the probability amplitude, ⟨t|ρout⟩, according to Pr(t) = | ⟨t|ρout⟩ |2. We find the probability

amplitude to be

⟨t|ρout⟩ =
1∏

i

√
ti!si!

M∑
j1=1

· · ·
M∑

jN=1

Uj1,s̃1 · · ·UjN ,s̃N ⟨0, . . . , 0| ât̃1 · · · ât̃N â
†
j1
· · · â†jN |0, . . . , 0⟩ . (2.85)

The braket can be simplified to reduce the sum:

⟨0, . . . , 0| ât̃1 · · · ât̃N â
†
j1
· · · â†jN |0, . . . , 0⟩ =


∏
i

ji! if t̃1, . . . , t̃N = j1, . . . , jN in any order

0 otherwise

(2.86)
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The product of factorials comes from the action of creation operators on Fock states: (â†)k |0⟩ =
√
k! |k⟩, and similarly for annihilation operators: ⟨0| (â)k = ⟨k|

√
k!. All vectors j = (j1, . . . , jN )

that satisfy the condition t̃1, . . . , t̃N = j1, . . . , jN in any order is the set of all permutations of

integers t̃1, . . . , t̃N which is the definition of the symmetric group St̃. In the case of repeated

values in the output t̃, the symmetric group includes the permutations of all elements including

the repeated values (which gives the same pattern), whereas the sum over all j above only includes

this vector/pattern once. So the value must be divided by the number of permutations that leave

the vector unchanged when the sum is changed to be over the symmetric group. Hence, the sum

in eq. (2.85) can be simplified to include only terms where j ∈ St̃:

⟨t|ρout⟩ =
1∏

i

√
ti!si!

∑
j∈St̃

Uj1,s̃1 · · ·UjN ,s̃N∏
i ji!

∏
i

ji! =
1∏

i

√
t!si!

∑
j∈St̃

N∏
k=1

Ujk,s̃k

=
1∏

i

√
t!si!

Perm(U{t̃,s̃}),

(2.87)

where Perm is the permanent matrix function and U{t̃,s̃} is the submatrix of U including rows in

t̃ (the output photon pattern) and columns in s̃ (the input photon pattern). In the first line, the

product of factorials in the numerator comes from evaluating the braket and the same term in the

denominator is to account for the inclusion of permutations over repeated values in the sum over

the symmetric group. For example, the term corresponding to j1 = j2 = 1 should only appear once

whereas it appears twice in St̃. The last line simply comes from the definition of the permanent.

So the probability of measuring output photon pattern t given a unitary operator Û acting on an

input photon pattern s is given by

Pr(t|s) = | ⟨t|Û |s⟩ |2 =
|Perm(U{t̃,s̃})|2∏

i ti!si!
. (2.88)

As an example, we take a simple well-known case of standard boson sampling: Hong-Ou-Mandel

interference [52]. In this case there are only two modes with a photon injected into both input modes

and interferred on a 50/50 beamsplitter. The input state is given by |ψin⟩ = |1, 1⟩ = â†1â
†
2 |0, 0⟩. So

N =M = 2. The beamsplitter operation is given by the following matrix:

UBS =
1√
2

(
1 1

−1 1

)
, (2.89)

and so â†1 → 1√
2
(â†1− â

†
2) and â

†
2 → 1√

2
(â†1 + â†2)/

√
2. The state after the beamsplitter is then given

by

|ψout⟩ =ÛBS |ψin⟩ = ÛBS â
†
1â

†
2 |0, 0⟩ =

1

2
(â†1 − â

†
2)(â

†
1 + â†2) |0, 0⟩

=
1

2
(â†1â

†
1 + â†1â

†
2 − â

†
2â

†
1 − â

†
2â

†
2) |0, 0⟩ =

1

2
(â†1â

†
1 − â

†
2â

†
2 |0, 0⟩ =

1√
2
(|2, 0⟩ − |0, 2⟩),

(2.90)
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where in the second line we use the commutativity of â†i and â†j if i ̸= j, and â†â† |0⟩ =
√
2 |2⟩. So

the state after the interferometer (single beamsplitter) is a superposition of both photons in the first

mode and both photons in the second mode. The cancelling of the amplitudes for the coincidence

of one photon in each mode is famously evidence for quantum interference as this cancellation

wouldn’t happen classically when we sum probabilities not amplitudes. For two photons in two

modes, there are just three possible output photon patterns: |2, 0⟩, |1, 1⟩ and |0, 2⟩. Due to the

orthogonality of Fock states, the probabilities can be found by taking the modulus square of the

coefficients, eg. Pr(t = (2, 0)) = 1/2.

Below we perform the same calculation except in terms of general U for a 2× 2 interferometer

to show more clearly that it is an example of the general equation (2.88):

|ψout⟩ =ÛBS |ψin⟩ = ÛBS â
†
1â

†
2 |0, 0⟩ =

2∑
j1=1

2∑
j2=1

Uj1,1Uj2,2â
†
j1
â†j2 |0, 0⟩

=(U11U12â
†
1â

†
1 + U11U22â

†
1â

†
2 + U12U21â

†
2â

†
1 + U21U22â

†
2â

†
2) |0, 0⟩

=
√
2U11U12 |2, 0⟩+ (U11U22 + U12U21) |1, 1⟩+

√
2U21U22 |0, 2⟩

=
1√
2
Perm(U{(1,1),(1,2)}) |2, 0⟩+ Perm(U{(1,2),(1,2)}) |1, 1⟩+ 1√

2
Perm(U{(2,2),(1,2)}) |0, 2⟩ ,

(2.91)

where U{(1,1),(1,2)} is the submatrix of U with columns 1 and 2, and row 1 repeated twice. Evalu-

ating the permanents of the beamsplitter unitary will give the previous equation as expected. For

example, the permanent of the 2× 2 matrix with the row U11 and U12 repeated twice evaluates to

1. In the above form, it is clearer that the probabilities are given by eq. (2.88) as derived.

There is perhaps a more intuitive explanation for the derivation of the permanent in the proba-

bility, using comparisons to graph theory. We begin by remembering that in quantum interference

we must sum the probability amplitudes of all the possible ways of transitioning from the input state

to the output state. The probability is then given by taking the modulus square of this. So to find

the probability of the measurement outcome t = (t1, . . . , tM ) from a Fock state |s⟩ = |s1, . . . , sM ⟩
input in an interferometer we consider all the possible ways of this happening. We can map the

input photons and output photons to an undirected bipartite graph, with the input photons given

by one group of vertices and the output photons by the other. The weight of the edge (Vi, Vj) is

the probability amplitude of a photon that begins in input mode Vi ending in output mode Vj . As

shown previously, the probability amplitude of beginning in mode i and ending in mode j is simply

the element of the unitary matrix Uji. Therefore the adjacency matrix of this graph representing

the photons and their transition probabilities is just the unitary matrix representing the unitary

evolution applied to the input Fock state, but keeping the columns of the input photons and rows

of the output. If the input state |s⟩ is measured in the output state |t⟩, each photon in the input

must be matched to one and only one of the photons at the output. This simply gives the path

that each photon took, but because we are only considering the probability amplitudes this does

not remove the quantum interference. In graph terminology, the matching of all vertices in one

group to all vertices in the other is a perfect matching. The aim is to sum over the probability
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amplitudes of all the possible matchings, where the probability amplitude of a particular path from

input to output is given by the product of the individual weightings between each vertex pairing.

So the probability amplitude of the input state being measured in the output state is the sum of

the weights of all the perfect matchings, which as shown previously is precisely the definition of the

permanent.

2.4.2 Scattershot boson sampling

The experimental challenge to produce single photons on-demand is a potential impediment in

the task to realise a demonstration of standard boson sampling with many photons. One option

is to repeat the experiment until enough photons are detected. If the probability of a photon

being produced in one mode is p, then all N photons are produced with probability pN . As the

probability of all photon sources producing a photon deteriorates exponentially with the number of

desired photons, this is not a feasible solution when the number of photons is high. Therefore, the

first variant to be suggested was scattershot boson sampling [9]. In this scenario, the input states

are two-mode squeezed states, where one mode of each state is directed to detectors to herald the

presence of a photon pair and the other mode is fed into an interferometer. The setup is shown

in fig. (2.7). Ideal two-mode squeezed states will always produce an even number of photons with

n photons in one mode implying there are n photons in the other mode: |TMSS⟩ =
∑
pn |n, n⟩.

In scattershot boson sampling, the input states have low enough squeezing that the probability to

produce more than two photons from each two-mode squeezer is negligible and we assume either

no photons or one photon in each mode. This means that we do not fix the input state, but

because we squeeze all M modes there is a much higher probability of producing N photons, now(
M
N

)
pN (1− p)M−N .

The input state is not fixed and so when determining the probability of an output pattern t

from a scattershot experiment we need to sum over the possible input states:

Pr(t) =
∑
s

Pr(s)Pr(t|s), (2.92)

where Pr(s) is the probability of heralding pattern s and Pr(t|s) is the probability of measuring

output pattern t conditional on heralding pattern s. By heralding on half the modes, the input

state collapses to the Fock state with the number of photons in each input mode determined by

the number of photons detected in each heralding mode. Therefore the input state is precisely

given by the heralded pattern and the probability of the output pattern conditional on the input

state is the same as in standard boson sampling with the heralded pattern as the input, eq. (2.88).

The probability of measuring a particular heralded pattern is simply the probability of measuring

a two-mode squeezed state in the number basis. Therefore the probability of heralding s is the

product of the probabilities of si photons in each mode of the two-mode squeezed state in modes

2i and 2i− 1. The probability of detecting n photons in each mode of a two-mode squeezed state
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Pr(n) is given by

Pr(n) =
tanh2n r

cosh2 r
, (2.93)

for squeezing parameter r. In the case of equal squeezing on all modes, which is typically used, the

probabilities of all heralding patterns with the same total number of photons are equal.

2.4.3 Gaussian boson sampling

Building on the use of squeezed states in boson sampling, we now describe a type of boson sam-

pling that uses sampling from Gaussian states at the output of the interferometer, appropriately

named Gaussian boson sampling (GBS) [7, 9, 53, 54]. This is contrary to standard boson sampling

which inputs a non-Gaussian state, and scattershot in which a Gaussian state is input but the

non-Gaussian photon measurement leaves a non-Gaussian state at the output. In GBS, we must

input a Gaussian state - a squeezed, coherent, or squeezed coherent state - and use non-Gaussian

measurements. For boson sampling to be a hard problem, we need at least one non-Gaussian ele-

ment: the input state, the evolution or the measurement. Another proposal for GBS is the reverse

where we input non-Gaussian states but have Gaussian measurements - namely homodyne or het-

erodyne measurements [8]. Under time reversal this is equivalent to the case of Gaussian states and

non-Gaussian measurements and is much less common in literature. The focus of this thesis is the

first proposal.

2.4.3.1 General Gaussian boson sampling

We need to know the probability of an output photon pattern given an input Gaussian state.

Here we expand on the derivation outlined in [53]. The general probability of a state with density

operator ρ̂ being measured in state |t⟩ is given by

Pr(t) = Tr(ρ̂Π) = Tr (ρ̂ |t1, . . . , tM ⟩ ⟨t1, . . . , tM |) = Tr(ρ̂ |t⟩ ⟨t|). (2.94)

Any state can be represented by the Glauber-Sudarshan P representation which is the decomposition

in terms of the coherent states [34, 35],

ρ̂ =

∫
α

d2αPρ(α) |α⟩ ⟨α| , (2.95)

where Pρ is the P-function, introduced in section (2.2.1). We can use the P-function representation

of the number state projector to write the probability of an output photon pattern in terms of the

phase-space representation [55]:

Pr(t) = Tr(ρ̂ |t⟩ ⟨t|) = Tr

(
ρ̂

∫
α

d2αPt,t(α) |α⟩ ⟨α|
)

=

∫
α

d2αPt,t(α) ⟨α|ρ̂|α⟩

= πM

∫
α

d2αPt,t(α)
⟨α|ρ̂|α⟩
πM

= πM

∫
α

d2αPt,t(α)Qρ,

(2.96)
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where Qρ is the Q-function of a state, introduced in section (2.2.1). The P-function for the number

state projection operator is given by [37]

Pn,n(α) =
e|α|

2

n!
∂nα∂

n
α∗δ(Re(α))δ(Im(α)). (2.97)

We confirm that this does give the expected operator |n⟩ ⟨n| here. First we expand the terms inside

the integral:

Pn,n(α) |α⟩ ⟨α| =
e|α|

2

n!
∂nα∂

n
α∗δ(Re(α))δ(Im(α))

(
e− |α|2

2

∞∑
n1=0

αn1

√
n1!
|n1⟩

)(
e− |α|2

2

∞∑
n2=0

(α∗)
n2

√
n2!
⟨n2|

)

= δ(Re(α))δ(Im(α))
1

n!

∞∑
n1=0

∞∑
n2=0

∂nα∂
n
α∗

αn1

√
n1!

(α∗)
n2

√
n2!
|n1⟩ ⟨n2|

= δ(Re(α))δ(Im(α))
1

n!

∞∑
n1=0

∞∑
n2=0

n1!α
n1−n

(n1 − n)!
√
n1!

n2!(α
∗)

n2−n

(n2 − n)!
√
n2!
|n1⟩ ⟨n2| .

(2.98)

When integrating over all α, due to the delta function only the terms where α = 0 are non-zero. It

is clear to see that the only terms inside the sum that are non-zero for α = 0 are when n1 − n = 0

and n2 − n = 0. Therefore after integrating we are left with∫
Pn,n(α) |α⟩ ⟨α| =

1

n!

n!√
n!

n!√
n!
|n⟩ ⟨n| = |n⟩ ⟨n| , (2.99)

as expected. This P-function can be generalised in the case that the state is multimode by taking

the product of each mode:

ρ̂ =

∫
α

Pρ(α) |α⟩ ⟨α| , (2.100)

where

Pρ(α) =

M∏
i=1

e|αi|2

ni!
∂ni
αi
∂ni

α∗
i
δ(Re(αi))δ(Im(αi)) = e

1
2 |ζ|

2
M∏
i=1

1

ni!
∂ni
αi
∂ni

α∗
i
δ(Re(αi))δ(Im(αi)). (2.101)

The above equivalence is true due to the symmetry of ζ = ( α
α∗ ) giving |ζ|2 = ζ†ζ =

∑2M
i=1 |ζi|2 =∑M

i=1 2|ζi|2 =
∑M

i=1 2|αi|2. By changing eq. (2.27) into the ladder operator basis and swapping V

with VQ, we can see the Q-function of a Gaussian state is given by

Qρ =
exp
(
− 1

2 (ζ − ζ̄)†Σ−1
Q (ζ − ζ̄)

)
√
det(πΣQ)

. (2.102)
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We substitute eq. (2.101) and eq. (2.102) into eq. (2.96):

Pr(t) = πM

∫
α

d2α e
1
2 |ζ|

2
M∏
i=1

[
1

ti!
∂tiαi

∂tiα∗
i
δ(α)

] exp(− 1
2 (ζ − ζ̄)†Σ−1

Q (ζ − ζ̄)
)

√
det(πΣQ)

=

M∏
i=1

1

ti!
∂tiαi

∂tiα∗
i

exp
(
− 1

2ζ
†(Σ−1

Q − I)ζ
)
exp
(

1
2 (ζ

†Σ−1
Q ζ̄ + ζ̄†Σ−1

Q ζ)
)
exp
(
− 1

2 ζ̄
†Σ−1

Q ζ̄
)

√
det(ΣQ)

∣∣∣∣∣∣
ζ=0

=
exp
(
− 1

2 ζ̄
†Σ−1

Q ζ̄
)

√
det(ΣQ)

M∏
i=1

1

ti!
∂tiαi

∂tiα∗
i
exp
(
− 1

2ζ
†(Σ−1

Q − I)ζ
)
exp
(

1
2 (ζ

†Σ−1
Q ζ̄ + ζ̄†Σ−1

Q ζ)
)∣∣∣∣∣

ζ=0

.

(2.103)

We introduce a permutation matrix

X =

(
0 I

I 0

)
(2.104)

which when applied to block matrices/vectors from the left swaps the top and bottom blocks and

when applied from the right swaps the left and right blocks. It is clear from the block structure

of ζ = ( α
α∗ ) that applying X to the left of this column vector or the right of the row vector (its

transpose) is the same as taking its complex conjugate: Xζ = ζ∗. Therefore in the first exponential

term in the equation above the ζ† can be replaced by ζ⊤X which simplifies the expression. The

final exponential term can also be simplified. The term ζ†Σ−1
Q ζ̄ is a scalar and so must be equal

to its transpose: ζ†Σ−1
Q ζ̄ = ζ̄⊤(Σ−1

Q )⊤ζ∗. Again using the permutation matrix, we convert to

using ζ† and ζ: ζ†Σ−1
Q ζ̄ = ζ̄†X(Σ−1

Q )⊤Xζ. So both terms in the exponential function are equal

if Σ−1
Q = X(Σ−1

Q )⊤X. We note that the permutation matrix is symmetric, Hermitian and its own

inverse. By simply using these properties and changing the order of the inverse and transposition

X(Σ−1
Q )⊤X = (XΣ⊤

QX)−1 = ((XΣQX)⊤)−1. We can map to the real covariance matrix V to

find XΣQX = XF (V + 1
2I)F

†X = F ∗(V + 1
2I)F

⊤ = (F (V + 1
2I)F

†)⊤ = Σ⊤
Q, where we used the

property that the real covariance matrix is symmetric. So we have shown that ζ†Σ−1
Q ζ̄ = ζ̄†Σ−1

Q ζ.

Therefore the probability can be simplified to

Pr(t) =
exp
(
− 1

2 ζ̄
†Σ−1

Q ζ̄
)

√
det(ΣQ)

M∏
i=1

1

ti!
∂tiαi

∂tiα∗
i
exp
(
1
2ζ

⊤Aζ
)
exp(γζ)

∣∣∣∣∣
ζ=0

(2.105)

where we introduce A = X(I −Σ−1
Q ) and γ = ζ̄†Σ−1

Q .

We use Fáa di Bruno’s formula [56] to evaluate the multidimensional partial derivatives. From

this higher-order chain rule, the derivative of a Gaussian function is generally given by [57]

n∏
i=1

∂xi
exp(y) = exp(y)

∑
π

∏
B∈π

∏
j∈B

∂xj

 y, (2.106)

where π is all the partitions of the set {x1, . . . , xn} and B is all the subsets of the partition. For

example, if n = 5, one such partition in π is {x1}, {x2, x4}, {x3, x5} with B being the three subsets
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B1 = {x1}, B2 = {x2, x4} and B3 = {x3, x5}. This can be applied to the previous equation

where we have y = 1
2ζ

⊤Aζ + γζ, and the product is over ζi. One thing to be cautious of is that

there are powers of derivatives according to the output photon pattern. This can be circumvented

by defining a new vector ζ̃ = ζ{t} which is the vector with each element ζi and ζi+M added ti

times. To be more precise we can multiply the vector of displacements by a matrix P̃ which is

similar to a permutation matrix but does not necessarily conserve the number of occurrences of

each element: ζ̃ = P̃ ζ. It is convenient to introduce the 2M -length vector t′ = (t, t) so that

the output pattern in each mode is associated with both α and α∗ in ζ. This way the product

of partial derivatives becomes
∏M

i=1 ∂
ti
αi
∂tiα∗

i
=
∏2M

i=1 ∂
t′i
ζi

=
∏2N

n=1 ∂ζ̃n
. For example, if the output

pattern of three photons in four modes is t = (2, 1, 0, 0), the ‘permuted’ vector would be given by

ζ̃ = (ζ1, ζ1, ζ2, ζ1+M , ζ1+M , ζ2+M )⊤ = Pζ = (P̃s ⊕ P̃s)ζ where

P̃s =


1 0 0 0

1 0 0 0

0 1 0 0

 (2.107)

and the product of partial derivatives would be ∂2ζ1∂ζ2∂
2
ζ1+M

∂ζ2+M
= ∂ζ1∂ζ1∂ζ2∂ζ1+M

∂ζ1+M
∂ζ2+M

=

∂ζ̃1∂ζ̃2∂ζ̃3∂ζ̃4∂ζ̃5∂ζ̃6 . So the quantity of interest can be written as

2M∏
i=1

∂
t′i
ζi
exp
(
1
2ζ

⊤Aζ + γζ
)
=

2N∏
n=1

∂ζ̃n exp
(
1
2ζ

⊤Aζ + γζ
)

= exp
(
1
2ζ

⊤Aζ + γζ
)∑

π

∏
B∈π

∏
j∈B

∂ζ̃j

 1
2ζ

⊤Aζ + γζ.

(2.108)

We note that the quadratic term ζ⊤Aζ =
∑

i,j ζiAi,jζj consists of a sum of terms where the

elements in ζi appear in pairs only. Similarly, the linear term γζ =
∑
γiζi is a sum of terms where

the order of ζi is 1. Therefore, when performing the partial derivatives and setting ζ = 0, only

those with a second partial derivative or first partial derivative of elements in ζ̃ are non-zero for

the quadratic and linear terms respectively. This means that the sum is reduced to only be over

partitions of the elements in ζ̃ with one or two elements in each subset. Performing the derivatives

results in ∏
j∈B

∂ζ̃j

 1
2ζ

⊤Aζ + γζ

∣∣∣∣∣∣
ζ=0

=


Aj1,j2 if |B| = 2

γj if |B| = 1

0 otherwise,

(2.109)

where |B| is the number of elements in B.

First, consider the case when γ = 0. This corresponds to a state with a zero vector of means (no

displacement). The non-zero partitions are when each subset is of size 2, which is equivalent to all

the ways of pairing the elements in the group. As shown earlier, all the perfect matchings between

vertices is given by the hafnian of the adjacency matrix. In this case, where B is a partition of

2N elements, the vertices are given by the modes where photons were detected, as according to ζ̃j .
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Defining the vector t̃′ = (t̃, t̃ +M), where t̃ +M means adding M to each element in the vector

t̃, the weighting between vertices i and j is given by At̃′i,t̃
′
j
. Therefore the adjacency matrix is the

matrix A with each row and column appearing as many times as they appear in t̃′, which we denote

as A{t̃′,t̃′}. More precisely this matrix is found as A{t̃′,t̃′} = P̃AP̃⊤. Hence, for a state with no

displacement, the probability of measuring a pattern t at the output is given by

Pr(t) =
1√

det(ΣQ)

Haf(A{t̃′,t̃′})∏
ti!

, (2.110)

where Haf denotes the hafnian.

Now consider the more general case where the vector of means is non-zero. Here γ is not zero

and so the partitions that contribute to the sum after taking the partial derivatives and setting

ζ = 0 include those with subsets of size 1 as well as 2. As we saw previously, in graphs where loops

are allowed, an edge can exist between two different vertices or between only one vertex (a loop).

Therefore a perfect matching in a graph that allows loops is precisely the sum over all partitions

into groups of size 1 or 2. From eq. (2.109), when the size of a group is 2, the weighting is given by

Aj1,j2 which are the off-diagonal terms, whereas when the size of the group is 1, the weighting is

given by γj which are assigned to the loops corresponding to the diagonal terms in the adjacency

matrix. Therefore for a general state with non-zero displacement, the probability of measuring a

pattern t at the output is given by

Pr(t) =
exp
(
ζ̄†Σ−1

Q ζ̄
)

√
det(ΣQ)

Lhaf(γ{t̃′},A{t̃′,t̃′})∏
ti!

, (2.111)

where (γ{t̃′},A{t̃′,t̃′}) is the matrix A{t̃′,t̃′} with the diagonal elements replaced by γ{t̃′} and Lhaf

denotes the loop hafnian.

The above is the derivation of the formula for general states as shown in [53], but in the particular

case when the state is pure the formula can be simplified. The 2N × 2N (loop) hafnian can be

simplified as the product of two N ×N (loop) hafnians. Note that the matrix A only depends on

the covariance matrix which does not depend on the displacement. We analyse the form of matrix

A for anM -mode squeezed state with squeezing rmeiϕm on mode m followed by a unitary evolution

U . The covariance matrix for this state is given by

Σ = MUMSΣvacM
†
SM

†
U , (2.112)

where

MU =

(
U 0

0 U∗

)
, MS =

(
⊕m cosh rm ⊕m − eiϕm sinh rm

⊕m − e−iϕm sinh rm ⊕m cosh rm

)
. (2.113)
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Multiplying out these matrices, the covariance matrix is written as

Σ =
1

2

(
U ⊕m cosh(2rm)U † −U ⊕m eiϕm sinh(2rm)U⊤

−U∗ ⊕m e−iϕm sinh(2rm)U † U∗ ⊕m cosh(2rm)U⊤

)
, (2.114)

where ⊕m is the direct sum resulting in an M ×M diagonal matrix. We need to find the inverse

of ΣQ = Σ+ 1
2I, so we use the general formula for the inverse of block matrices. Given a general

block matrix, its inverse is given by

(
a b

c d

)−1

=

(
(a− bd−1c)−1 −a−1b(d− ca−1b)−1

−d−1c(a− bd−1c)−1 (d− ca−1b)−1

)
. (2.115)

In our case a = 1
2U ⊕m (cosh(2rm) + 1)U † which has inverse 2U ⊕m 1/(cosh(2rm) + 1)U †, and

similarly d = 1
2U

∗ ⊕m (cosh(2rm) + 1)U⊤ has inverse 2U∗ ⊕m 1/(cosh(2rm) + 1)U⊤. Substituting

these into the general equation for the inverse gives

Σ−1
Q =

(
I −URU⊤

−U∗R∗U † I

)
, (2.116)

where for clarity we have defined the diagonal matrix R = ⊕m(−eiϕm tanh rm). From here it is

easy to see the form of the matrix A is

A = X(I −Σ−1
Q ) =

(
U∗R∗U † 0

0 URU⊤

)
, (2.117)

which is a block diagonal matrix with the blocks being the complex conjugate of each other and so

we can write this as A = B∗ ⊕B, where B = U ⊕m (−eiϕm tanh rm)U⊤ and use the property of

hafnians (eq. 2.83) to find Haf(A) = |Haf(B)|2.

In the case of non-zero displacement, we also need to replace the diagonal with γ = ζ̄†Σ−1
Q .

Note that ζ̄ is a function of the vector of means after the interferometer β = Uα, where α is

the displacement in the input states. We observe that this vector has a block structure such that

γ = (γ̃, γ̃∗):

γ =ζ̄†Σ−1
Q = (β†,β⊤)

(
I −URU⊤

−U∗R∗U † I

)
=
(
β† − β⊤U∗R∗U †,β⊤ − β†URU⊤)

= (α†U † −α⊤R∗U †,α⊤U⊤ −α†RU⊤)

=

(
U∗[α∗ −R†α]

U [α−R⊤α∗]

)⊤

.

(2.118)

Therefore, the matrix in the loop hafnian, (γ,A) is also a block diagonal matrix and the loop

hafnian can be simplified.

We can also simplify the prefactors in the probability expression for pure states. First we find

43



CHAPTER 2. DISCRETE AND CONTINUOUS VARIABLE PHOTONICS

det(ΣQ). Again we use the general formula for block matrices:

det

(
a b

c d

)
= det(d)det(a− bd−1c). (2.119)

From eq. (2.114) it can be seen that for the covariance matrix ΣQ = Σ + 1
2I, the blocks sat-

isfy a − bd−1c = I which has determinant 1. So we only need to find the determinant of

d = 1
2U

∗ ⊕m [cosh(2rm) + 1]U⊤. We use the multiplicative property of determinants to find

det( 12U
∗⊕m [cosh(2rm)+ 1]U⊤) = det( 12 ⊕m [cosh(2rm)+ 1]U⊤U∗) = 1

2M
det(⊕m[cosh(2rm)+ 1]).

This is a diagonal matrix which has a determinant given by the product of the entries of the matrix.

Hence det(ΣQ) =
1

2M

∏
cosh(2rm) + 1.

Finally, we need to determine the prefactor for the non-zero displacement case: exp(ζ̄†Σ−1
Q ζ̄).

From above we have

ζ̄†Σ−1
Q ζ̄ = (β†,β⊤)

(
I −URU⊤

−U∗R∗U † I

)(
β

β∗

)
= 2|β|2 − β⊤U∗R∗U †β − β†URU⊤β∗

= 2(|α|2 − Re(β†URU⊤β∗))

= 2(|α|2 − Re(α†Rα∗)).

(2.120)

So for the case of input squeezed displaced states with squeezing rmeiϕm and displacement αm

in mode m passing through a unitary U measured with photon number resolving detectors, the

probability of measuring pattern t can be written as

Pr(t) =
exp(|α|2 − Re(α†Rα∗))∏

m cosh2 rm

|Lhaf((U [α−R⊤α∗]){t̃}, (URU⊤){t̃,t̃})|2∏
m tm!

. (2.121)

In the case of no displacement, the above equation reduces to

Pr(t) =
1∏

m cosh2 rm

|Haf((URU⊤){t̃,t̃})|2∏
m tm!

. (2.122)

2.4.3.2 Reduction to scattershot boson sampling

Scattershot boson sampling is a particular case of GBS and as such it is possible to retrieve the

expression for the probabilities in scattershot boson sampling from the general equations for GBS.

In scattershot boson sampling, the input states are two-mode squeezed states but where one mode

in each is used for heralding and typically not included as individual modes. However, to map it

to a GBS set-up these heralding modes must be taken into account and so the number of modes

doubles with half of the modes passing through the identity transformation. This mapping is shown

in figs. (2.7a) and (2.7b). The layout here also involves swap gates to move all the heralding modes

together such that it is easier to show that half of the modes undergo only the identity transformation

and the other half pass through the desired scattershot unitary. To fully map to general GBS, the
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input states should be single-mode squeezed states. A simple unitary transformation can be applied

to two single-mode squeezed states to output a two-mode squeezed state: |TMSS⟩ = ÛBSÛPS |ξ, ξ⟩,
where the corresponding matrices

UBS =
1√
2

(
1 1

−1 1

)
, UPS =

(
1 0

0 i

)
(2.123)

are the unitaries for a beamsplitter and phase shifter respectively. This is the application of a phase

shifter on the lower mode followed by a 50/50 beamsplitter. Applying this transformation on each

of the 2M modes and then applying the swap gates is depicted in fig. (2.7c) and that transformation

is given by

UTMS =
1√
2



1 i 0 0 0 0 0 . . . 0 0

0 0 1 i 0 0 0 . . . 0 0

0 0 0 0 1 i 0 . . . 0 0
...

...
...

...
...

. . . 1 i

−1 i 0 0 0 0 0 . . . 0 0

0 0 −1 i 0 0 0 . . . 0 0

0 0 0 0 −1 i 0 . . . 0 0
...

...
...

...
...

. . . −1 i


. (2.124)

Therefore the whole unitary for the GBS description is given by UGBS = (I ⊕U)UTMS, which can

now be substituted into the general equation for input states with no displacement (eq. 2.122).

In scattershot boson sampling, the input states all have equal squeezing ξ = reiϕ and so the

matrix R is a multiple of the identity (R = −eiϕ tanh rI) and can be taken out of the hafnian

Pr(t) =
tanhN r

cosh2M r

|Haf((UGBSU
⊤
GBS)

{t̃,t̃})|2∏
m tm!

. (2.125)

Using the fact that UTMSU
⊤
TMS = −X, we find

UGBSU
⊤
GBS = −

(
I 0

0 U

)(
0 I

I 0

)(
I 0

0 U⊤

)
= −

(
0 U⊤

U 0

)
. (2.126)

If we split the output photon pattern into the heralding pattern and the desired pattern t = (th, td),

the submatrix for which the hafnian is calculated is given by

(UGBSU
⊤
GBS)

{(t̃h,t̃d),(t̃h,t̃d)} = −

(
0{t̃h,t̃h} U{t̃d,t̃h}⊤

U{t̃d,t̃h} 0{t̃d,t̃d}

)
, (2.127)

where the superscript {t̃d, t̃h} means to take rows in t̃d and columns in t̃h. Using the property of
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Figure 2.7: Scattershot and GBS equivalence. In (a) a usual set-up for scattershot boson sampling
is depicted with input two-mode squeezed states where one mode is heralded and the other feeds
into an interferometer. The mathematical equivalence of this is shown in (b), where the heralded
photons can be considered to pass through the identity and detected exactly as the other photons
are. To separate the modes such that the heralded modes are together and the others are grouped,
the modes need to pass through swap gates. The two-mode squeezed states can also be described by
two single-mode squeezed states passing through a phase shifter and beamsplitter. This is indicated
by the TMSS box in (c). Putting together the phase shifters, beamsplitters, swap gates and identity
interferometer, the unitary required to describe this set-up in the GBS picture is indicated by UGBS.

hafnians, this reduces to a permanent and as expected the probability is given by

Pr(t) =
tanhN r∏
m cosh2 rm

|Perm((U){t̃d,t̃h})|2∏
m tm!

, (2.128)

with the columns chosen according to the heralding pattern (which is equivalent to the input state

in standard boson sampling) and the rows by the output pattern.

2.4.3.3 Retrodictive intuition behind Gaussian boson sampling

We provide an intuitive explanation behind the matrices that are found in the derivation of the

probabilities for GBS. To do this we consider the probabilities in the retrodictive picture [58]. In

the predictive picture, the probability of an outcome from a measurement on a state is known. The

retrodictive probability is the reverse where given a measurement outcome, we wish to describe

the state that was measured. This approach was applied when simulating boson sampling with an

arbitrary input state with a Gaussian measurement performed [8, 59]. In this way it is possible to

consider the input states as equivalent to the measurement basis and the detection events as the

source. For example, in standard boson sampling, a Fock state |s⟩ is input into the modes and a

detection pattern t is measured. However, the probability of this happening is the same as if the

measurement pattern had been a Fock state at the input |t⟩ and the input state corresponds to the

detection pattern s if we use time reversal of the states through the interferometer. Applying time

reversal to a unitary simply results in its transpose matrix. This is supported by the probability

amplitude of a particular output pattern being given by the permanent of a submatrix of U where
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the columns are determined by the input states and the rows by the output detection pattern. By

swapping the input and output modes, this corresponds to instead taking the columns from the

output pattern and the rows from the input state. Because we know the probability amplitude of

this event occurring should be the same due to time reversal, the unitary matrix must be transposed

so that the same elements are included in the permanent.

In Gaussian boson sampling the input states are squeezed vacuum or squeezed displaced states.

In the arbitrary GBS paper [59], a similar set-up to scattershot boson sampling is explored where

the identity is now generalised to any unitary. The two-mode squeezed states are treated as under

partial time reversal where one mode acts forwards in time and the other is reversed. In this

description the output pattern in the top modes can be considered as the input where the photons

go backwards in time to the squeezed states and then go forwards in the bottom modes where the

output pattern is given. In this manner the GBS set-up is essentially equivalent to standard boson

sampling with input Fock states measured in the number basis, but with an extra complication of a

weighting in which mode they pass through in the middle because of the squeezing. This weighting

corresponds to the probability that the pair of photons was produced from that squeezed state. So

in the case where the squeezing is equal each mode is equally likely and the probabilities are scaled

to reflect the probability of those photons being produced by any squeezed state. We expand on

this idea for GBS with input squeezed states measured in the number basis by considering each

state produces photons in pairs and so in each pair we can force them into two modes but then

combine the modes before detection. Adding a mode and removing it before the measurement

is a theoretical concept and does not change the probabilities. Furthermore, we can consider the

pattern before recombining the modes as long as we only consider the probability amplitudes.

The mapping between a GBS set-up is shown in fig. (2.8). Each pair of photons can be considered

as a single photon under partial time reversal. This single photon now starts in a mode in the top

half, travels backwards in time through a unitary U , which as explained above corresponds to the

transpose of the unitary. Then it undergoes some probability of being created in the mode after

the unitary and travels forwards through the lower unitary to be measured in a mode in the lower

half. This is where the expression of the matrix URU⊤ arises. For a particular output pattern

the probability is given by summing over the probability amplitudes of all the paths to match the

input to the output pattern. However, for a particular output pattern, the measurement does not

distinguish whether the photon was in the theoretical top or bottom modes and so it is necessary

to sum over all the ways of splitting the detection pattern in half. The ways of splitting a group in

half and matching every element in one half to an element in the other is all the ways of pairing

the elements. This is precisely the hafnian.

If we now include displacement in the input squeezed states, we can extend the summation

over all paths to include similar tricks to those used in section (2.2.3.3) to treat the displacement

independently of squeezing. So in this case we need to consider all scenarios where a subset of the

photons came from the displacement and the rest from the squeezing. As ‘displacement’ photons

are not paired whereas ‘squeezing’ photons are, we must sum all the ways of pairing 2s photons and

not matching (or matching to themselves) the N−2s remaining photons for all s. This corresponds
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Figure 2.8: Retrodictive description of GBS. The set-up for GBS is depicted in (a), with single
mode squeezing and number resolving detectors. Single mode squeezing always produces photons
in pairs (in the ideal case) and so it’s possible to consider forcing the two photons into separate
modes (like two-mode squeezing) as long as they are recombined before measurement. This is shown
in (b) where one photon from each pair passes through the top unitary and the other the bottom.
If the states are not measured when they are in separate modes but instead recombined before
measuring, these two pictures are equivalent. In a theoretical framework, it is possible to reverse
this combining step and split the photon pattern such that half of the photons were detected in the
upper modes. The probability can be found by summing the probability amplitudes of all these
possible splits. In (c) we show the set-up that the probability amplitudes need to be calculated for.
The sum over input photons is all the ways of choosing half of the photons from the output photon
pattern. For each possible split, the probability amplitude of the input state being detected at the
output is now true for photons passing through the interferometer shown here. The matrix R is
not unitary and applies scaling to reflect the probabilities of originating from each squeezed state.
From this set-up the emergence of the Haf(URU⊤) can be seen.
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to a perfect matching with loops, where the loops represent the displacement photons and the pairs

represent the squeezing photons. This is given by the loop hafnian of a matrix with diagonal and

off-diagonal elements being the probability amplitudes of the photons coming from displacement

and squeezing respectively. The probability amplitudes for the squeezing part are the same as for

GBS with no displacement, i.e. URU⊤. The amplitudes for the displacement photons need to be

adjusted so it can be considered as independent of the squeezing. As can be seen from eq. (2.118),

the required amplitude is proportional to U [α−Rα∗], where we look at the lower half of γ as the

URU⊤ matrix is in the bottom right block in eq. (2.117). Note that if the unitary is the identity

and we consider one mode, we recover the relation for squeezed displaced states in eq. (2.75). More

generally the displacement is given by (Σ−1
Q ζ̄)∗, where the complex conjugate is due to A = B∗⊕B,

rather than the more natural A = B ⊕ B∗. The multiplication by the inverse of the Husimi Q

matrix is perhaps not surprising as the Q matrix is the covariance matrix of the Gaussian state

in the displacement basis. Specifically sampling from a Gaussian distribution with mean given by

the displacement (β, β∗) and covariance Σ−1
Q projects the state onto a coherent state. Therefore

multiplying by its inverse can account for the implicit displacement in the state.

Hence, we have explained the appearance of the hafnian and loop hafnian in the probability

expressions using the summation over all possible paths from input to output. Also we motivated

the elements in the corresponding matrices using the retrodictive picture for squeezing.

2.4.4 Sampling from a probability distribution

In the previous section, we provided detailed analysis for the probability of an output pattern

in the different variants of boson sampling. However, we stress that the task of boson sampling

is indeed to sample from the distribution. This is potentially a very different problem, where

sometimes sampling from a distribution can be easier than the calculation of a single probability if

the structure of the distribution allows tricks to be implemented, but often it is harder to sample

from a distribution. Generally any distribution can be sampled if the full distribution is known.

This approach which we refer to as ‘brute force sampling’ can be extremely slow if the number

of possible outcomes is large as the number of probabilities that need to be calculated affect the

speed of the sampling. In boson sampling problems the scaling of the size of the sample space

as the number of photons or modes increases is very problematic and the number of probabilities

to calculate is the first bottleneck when using brute force sampling. This is the problem that is

addressed in this thesis, where we suggest multiple methods to sample which do not require the

knowledge of the full distribution.
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Chapter 3

Simulating Gaussian Boson

Sampling with Rejection Sampling

“I’m always trying to calculate the mathematical probability of certain outcomes.”

- Paul Allen

The main aim of this thesis is to classically simulate Gaussian boson sampling, and as such we

apply existing techniques for sampling from probability distributions to accomplish this. The task

of sampling from a probability distribution can be simply expressed as follows: given a random

variable X is distributed according to some probability distribution f(x), an outcome or sequence

of outcomes {xi} is output each with probability f(xi). We stress that this is not the same as

finding the distribution f(x) for all x. We begin by introducing the formal terminology associated

with sampling [60].

In probability, an experiment is a method that generates an observation or outcome - a

value of a variable. All the different values this variable can take form the sample space, Ω,

where each of the possible values is called a sample point. If an experiment samples the random

variable X, we denote a sample point as xi, for any i = 1, . . . , |Ω|, and the sample space is the set

{xi| i = 1, . . . , |Ω|}, where |Ω| is the size of the sample space. Formally, a sample space must satisfy

the following requirements:

1. The outcomes must be mutually exclusive - the outcome from an experiment can never be

more than one sample point,

2. The outcomes must be collectively exhaustive - the sample space must contain all possible

outcomes.

This means in an experiment, an observation xi will be generated, which is one and only one sample

point. An event is a subset of the sample space that is of interest. The sample size, Ns, is the

number of observations/outcomes that are generated from the experiment to form a sample, which

is a collection of observations. Experiments always generate outcomes according to a probability
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distribution. If the variable is discrete, the probability that an outcome will take a certain value

is given by its probability mass function (pmf), whereas if it is continuous, the probability is

given by its probability density function (pdf). In both cases, we denote this probability as

f(x), where x may be discrete or continuous, and refer to it as the probability distribution. A

cumulative distribution function (cdf) is the sum or integral of the probability distribution

until that point, or equivalently the probability that the outcome will have at most that value,

F (xi) = Pr(X ≤ xi). For discrete quantitative variables, this involves summing over all the smaller

values, whereas for continuous variables, instead integration over all the smaller values is required.

For discrete qualitative variables, we can consider a cdf if we choose an arbitrary order of the sample

space. We denote a random variable X that is distributed with a probability f(x) as X ∼ f(x),

where f(x) is shorthand for Pr(X = x), the probability that the random variable has value x. We

use upper case letters for random variables and lower case for particular realisations of them.

There are several ways to perform sampling from a distribution, and the best method is depen-

dent on the distribution to be sampled. First consider the example of sampling from the uniform

distribution between 0 and 1: X ∼ U(0, 1). We assume a computer has access to uniformly random

integers, t, between 0 and tmax. In reality a classical computer cannot generate completely ran-

dom numbers and instead uses pseudo-random number generation. Clearly the value x = t/tmax

will be a sample from the uniform distribution between 0 and 1, in steps of 1/tmax. This is an

approximation to sampling from the uniform distribution where the precision is limited by the size

of the step. However, by increasing tmax, an arbitrary precision can be found. We note that any

continuous probability density function will always be approximated by discretisation and treating

it as a probability mass function. Therefore, we will generally refer to probability distributions in

the context of probability mass functions but, unless otherwise stated, everything can be applied

in the continuous case too.

For any general pmf f(x), it is possible to sample from it by only sampling from the uniform

distribution U(0, 1) using the inverse transform sampling method [61]. In this method, the cu-

mulative distribution function F (x) is built from f(x). First, a value, u, is sampled from the uniform

distribution U ∼ U(0, 1), and this value is associated to the cumulative value: u = F (x). If U ∼
U(0, 1), this means x = F−1(u) is an observation of a variable distributed by X ∼ F−1(U(0, 1)).

Here the existence of the inverse cdf would imply that it is bijective. This is generally not true for

cdfs. They are not injective because cdfs are weakly monotonically increasing meaning that several

values of x may have the same cumulative value F (x), which is the case when some outcomes have

zero probability of occurring. Secondly, for variables with a finite sample space, only a finite number

of values are possible for the cumulative probability (at most one for each sample point). Therefore

the cdf is not surjective on the codomain [0, 1]. Hence the inverse cdf used here is defined as

F−1(u) = min{x|F (x) ≥ u}. (3.1)

This function maps any u that satisfies F (xi−1) < u ≤ F (xi) on to xi. Therefore if u is sampled

from U(0, 1), the probability that u is within this range is equal to the difference between the upper
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and lower limits which by the definition of the cdf is precisely the pmf f(xi). Hence xi = F−1(u)

is sampled with probability f(xi) as desired.

An example for a discrete variable is shown in Fig (3.1). The pmf is shown on the left and the

height of the bars represent the probability of that value. It is intuitive that sampling any point in

that graph uniformly will produce points in each colour in the correct proportions (ie. according

to the probability distribution) as the higher the bar the more space there is to sample a point in

it. Hence, sampling from a distribution is equivalent to uniformly sampling from the area of the

pmf. However, it is not easy in practice to sample uniformly from this shape. Therefore the cdf is

built as shown in the middle plot. There is a one-to-one correspondence between the cdf and the

outcomes xi and therefore sampling the cdf is equivalent to sampling an outcome. The plot on the

right-hand side shows more clearly the mapping between the cdf and the outcomes, assigning the

same area as in the pmf plot to each colour but now in a straight line. It is easy to sample uniformly

a number between 0 and 1, and from this the colour at that height is the outcome sampled. When

sampling using the inverse transform method, it is necessary to know the probabilities of at least

all x ≤ xi when outputting xi. This is because we need to sum over the probabilities of all x in

order until we find xi such that F (xi−1) < ui ≤ F (xi). Given it is possible to sample the final

sample point (ie. highest value of the variable), we must assume that we might need to calculate

the probabilities of all sample points. So the inverse transform sampling method is only useful when

the entire distribution can be found.

It is also possible to sample multiple variables from a multidimensional probability distribution.

In this case it is possible to consider the variables together and sample all of them from the distri-

bution at once. However, it may be more convenient to sample one variable at a time, conditional

on the outcomes of the previous variables, or independently if the variables are independent. For

example, consider the distribution {X,Y, Z} : X,Y, Z ∼ U(0, 1). X, Y and Z are independent

variables and so it is simplest to sample each variable independently to get the overall outcome

{x, y, z}. This can be generalised to more complicated functions by using the inverse transform

sampling method as above.

In many cases, the difficulty in sampling arises from the huge number of possible outcomes

to consider. Then it becomes impossible to calculate the cumulative distribution for the whole

sample space, which means inverse transform sampling is not possible. For the application we are

interested in, GBS, this is true and so we now look at the first method to avoid this problem:

rejection sampling.

3.1 Rejection sampling

3.1.1 Exact rejection sampling

The task is to sample a random variable X ∼ f(x), where f(x) is known as the ‘target distribution’.

Rejection sampling [62] builds on the inverse transform method. As we saw above this method turns

a 2D shape that is difficult to uniformly sample from into a one-dimensional line which is easy to
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Figure 3.1: Inverse transform sampling. When sampling from a probability mass function (pmf)
it is possible to convert it into a cumulative distribution function (cdf) and sample uniformly
between 0 and 1. A variable’s pmf and cdf are shown in plots (a) and (b) respectively. Plot (b)
shows the mapping between the uniform variable and the outcome sampled. When there are two
corresponding outcomes with a cdf equal to the uniformly sampled value, the first outcome is taken;
see for example if the sampled value is u1 the outcomes x2 and x3 both have this cdf, so in this case
x2 will be sampled. When no outcomes have the exact value sampled (which is always the case if
the values can have infinite precision) the first outcome that has a greater cdf than the sampled
value is chosen as shown with u2 corresponding to x5. Plot (c) provides another way of showing the
correspondence between the random variable and the outcomes making it clearer that each outcome
is sampled with probability given by the area of the pmf as expected.

sample from. Rejection sampling adds another outcome, ‘reject’ to turn the awkward 2D shape into

one that can be sampled first in the x-coordinate and then the y-coordinate. Fig. (3.2) shows an

example of this additional outcome in purple in (c) which turns the area to be uniformly sampled

into a rectangle. A point inside a rectangle can be uniformly sampled simply by first sampling an x

coordinate and then the y coordinate both from U(0, 1). Part (d) in the figure shows the equivalence

to using the inverse sampling method on this new distribution (although it is not necessary). By

adding the new outcome, the probabilities of all the others need to be scaled to renormalise the

distribution. However, it is clear that the probability of sampling any of the original outcomes are in

the same proportions, but there is also some probability of sampling this ‘reject’ option. Therefore

by discarding any of these ‘reject’ outcomes and repeating until a sample is found that does not

contain ‘reject’ outcomes, this will be equivalent to sampling from the original distribution.

Suppose f(x) is completely unknown but the probability of any outcome, x, can be calculated.

In rejection sampling, another distribution g(x), commonly referred to as the ‘proposal distribution’

is introduced. The proposal distribution is multiplied by some constant H such that this scaled

distribution is never smaller than the target distribution, Hg(x) ≥ f(x)∀x. We refer to this scaled

proposal distribution as the ‘envelope distribution’. The distribution can be sampled using rejection

sampling as described in algorithm 1. The algorithm simply consists of two steps repeated until an
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Figure 3.2: Inverse transform sampling and rejection sampling. A pmf is shown in (b) for a
discrete random variable with the size of the sample space being 5. The height of the bars gives
the probabilities of each outcome, in this case represented by the colours. (a) gives the mapping
between the value of cdf (between 0 and 1) and the corresponding outcome (colour). The heights
of each colour bar are the same in (a) and (b) and so uniformly sampling in either will sample
according to the correct probabilities. It is more convenient to sample uniformly a number between
0 and 1 than a point in a 2D graph. Using the mapping between a random number between 0 and
1 to the cdf is known as inverse transform sampling. (c) shows another way of sampling uniformly
from the area in (b) by adding another outcome given by the purple shading. Sampling by area
in this graph will output the other outcomes in the same relative probabilities as before but with
another option, purple. If we discard all purple outcomes, the remaining outcomes will be according
to the original pmf. (d) shows the cdf now with the additional outcome included.

outcome is accepted:

1. Sample from g(x) −→ x,

2. Accept x with probability f(x)
Hg(x) , otherwise reject.

Note that the first step samples an x-coordinate, and the second step is equivalent to sampling a

y-coordinate between 0 and Hg(x) and accepting if it is less than f(x). Therefore, in this algorithm

only one probability from the target distribution needs to be calculated in each repeated attempt

and so for a sample of size 1 the number of probabilities to be calculated is the number of repeats

until a proposed outcome is accepted.

To prove that this samples exactly from the target distribution, we need to show that the

probability of an accepted outcome being x is f(x). By Bayes’ theorem, the probability of sampling
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Algorithm 1 Rejection Sampling

Require: H s.t. f(x) ≤ Hg(x)∀x
while True do

Sample xi ← g(x)
Sample ui ← U(0, 1)

if ui ≤ f(xi)
Hg(xi)

then
return xi

x conditional on the proposed state being accepted is given by

Pr(x|accept) = Pr(x ∩ accept)

Pr(accept)
=

Pr(x)

Pr(accept)
, (3.2)

because if x is sampled, it must be true that the proposed state was accepted (and x) so the accept

outcome is redundant in the numerator. First we look at the probability of accepting x. In step 1,

the state x is proposed with probability g(x). Then in step 2, it is accepted with probability f(x)
Hg(x) .

So the probability of sampling x is the probability of proposing and accepting it:

Pr(x) = g(x)
f(x)

Hg(x)
=
f(x)

H
. (3.3)

Now we consider the overall probability of accepting independent of what is proposed in step 1.

The overall probability of accepting is

Pr(accept) =
∑
x

Pr(x) =
∑
x

f(x)

H
=

1

H
. (3.4)

We note that the efficiency of the algorithm is given by the acceptance probability and hence is

inversely proportional to the value of H. Assuming the proposal distribution is normalised, H is

equal to the area under the envelope distribution, Hg(x). Substituting eqs. (3.3) and (3.4) into

(3.2) we recover

Pr(x|accept) = f(x)

H
H = f(x) (3.5)

as expected.

Rejection sampling is a general sampling algorithm and can be used to sample from any distri-

bution as long as it is possible to find a proposal distribution that is efficient to sample from and a

value of H such that Hg(x) ≥ f(x) for all x. Note that Hg(x) ≥ f(x) implies that for all x with

f(x) > 0, we require g(x) > 0 and so the support of the target distribution must be contained in

the support of the proposal distribution. Choosing a distribution that is efficient to sample from

is easy, for example take the uniform distribution. However, setting H to ensure Hg(x) ≥ f(x) is

difficult given f(x) is unknown. It could be set very high (eg. Hg(x) ≥ 1 ∀x would always work),

but a high value of H means a low rate of acceptance and therefore is less efficient. It is best to

optimise H by setting it as low as possible, whilst still satisfying the condition. The closer g(x) is

to f(x), the smaller the optimal value of H and the more efficient the algorithm. A poor proposal
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Figure 3.3: The error in approximate rejection sampling. In (a) the height of the envelope distri-
bution (here uniform), Hg(x), is too low such that for three of the outcomes they do not satisfy
f(x) ≤ Hg(x). The area of f(x) below the envelope distribution, A, and the area cut off, 1−A, is
shown in (b). The green distribution is the minimum of the envelope and target distributions, and
gives the relative probabilities of the outcomes sampled in approximate rejection sampling. As the
cut off probability needs to be accounted for, the approximate distribution is renormalised in (c)
to find the sampled distribution f̃(x). This is the distribution that is actually being sampling from
in this case. Case 1 corresponds to the outcomes where f(x) ≤ Hg(x), whereas cases 2 and 3 do
not satisfy this exact constraint. Cases 2 (3) are the outcomes such that the sampled distribution
is greater (less) than the target distribution: f̃(x) > f(x) (f̃(x) < f(x)).

distribution or an overly generous value of H can have severe impact on the efficiency to the extent

where the algorithm is no longer useful. Therefore, it is important to find a good candidate for the

proposal distribution and a close estimate of the optimal H. These are the main challenges when

implementing the algorithm.

3.1.2 Approximate rejection sampling

For exact rejection sampling as described above, the condition Hg(x) ≥ f(x) must be satisfied for

all x. This is to ensure that in step 2 of the algorithm, the probability of accepting the proposed

outcome is always less than or equal to 1. However, given f(x) is generally unknown, finding H

large enough to satisfy this and small enough for good efficiency is a non-trivial task. In many cases

it may only be possible to estimate the minimum value of H required. In this case, the constraint

can be removed as long as the algorithm is updated to upper bound the probability of accepting

by 1 to ensure a meaningful probability. The acceptance rule in step 2 is adapted to

Pr(accept x|proposed x) = min

{
1,

f(x)

Mg(x)

}
. (3.6)

In the case where H is big enough to meet the requirement of exact sampling, this rule reduces

back to the previous algorithm, and so this is a generalisation of the previous algorithm with no

constraints. We now explore the consequences the relaxation of the constraint has on the efficiency

and accuracy of the rejection sampling algorithm.

The efficiency is given by the overall probability of accepting any proposed outcome. This is
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now given by:

Pr(accept) =
∑
x

Pr(propose x) Pr(accept x|proposed x) (3.7)

=
∑
x∈B

g(x)
f(x)

Hg(x)
+
∑
x/∈B

g(x) =
1

H

(∑
x∈B

f(x) +
∑
x/∈B

Hg(x)

)
=
A

H
, (3.8)

where A is the area of f(x) under the envelope distribution, Hg(x), and B = {x : f(x) ≤ Hg(x)},
the outcomes that satisfy the exact constraint. The area A is shown in fig. (3.3b) as the area

under the green distribution which is the minimum of the target and envelope distributions. The

outcomes in B are given by ‘case 1’ in fig. (3.3c) and those not in B are in ‘case 2’ and ‘case 3’ which

will be distinguished later. Note that this equation is true even if f(x) is not normalised, where

A is the absolute area under the envelope distribution, but the proposal distribution g(x) must be

normalised. The area of f(x) under the envelope distribution can never be greater than the total

area of f(x) and, assuming the target distribution is normalised, this means A ≤ 1 with equality

only when H is large enough to satisfy the exact condition for all outcomes. Therefore, from the

above equation it can be seen that for a fixed value of H the efficiency of the rejection sampling

algorithm is optimal when the exact criteria is met and gets worse the more area cut off by the

envelope distribution. If H is fixed, the only way for more of the target distribution to be below

the envelope distribution is if the target and proposal distributions are closer to each other. So this

statement just reiterates that a proposal distribution that is closer to the target distribution is more

efficient. If instead the target and proposal distributions are fixed and the value of H is scaled by a

value α > 1, it is less obvious whether the probability of accepting a proposed outcome increases or

decreases, as both A and H change. The scaling of H → αH implies that A =
∑
f(x)+

∑
Hg(x)→∑

f(x) + α
∑
Hg(x) < αA. Therefore A/H → Ã/H̃ < αA/(αH) = A/H and so the efficiency

decreases as H increases. So by reducing H the algorithm accepts the proposed state more often

and is faster, but the more of the target distribution cut off by the envelope distribution. The

increase in efficiency is a positive, but it is important to know the impact this has on the accuracy

of the sampling algorithm.

When a proposed outcome is accepted, the probability of it being a particular outcome x should

ideally be equal to f(x). Using the adapted algorithm, the probability is given by

Pr(x|accept) = g(x)min

(
1,

f(x)

Hg(x)

)
H

A
= min

(
Hg(x)

A
,
f(x)

A

)
=


Hg(x)

A
if f(x) > Hg(x)

f(x)

A
if f(x) ≤ Hg(x)

(3.9)

A perhaps more intuitive way of finding this is shown in fig. (3.3). The target and envelope

distributions are shown in (a) where the first three outcomes do not meet the exact condition. The

probability above the envelope distribution is cut off and not included when sampling. The area

sampled from is given by A in (b), the minimum of both distributions. However, for a distribution
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Figure 3.4: The proposal distributions for rejection sampling. For a Haar random unitary, the
target distribution is shown by the green bars. The proposal distribution must be multiplied by
a scaling factor so that it is always greater than the target. Two examples of the scaled proposal
distributions are given by the blue lines. In (a), we show the stepped uniform proposal distribution
which comprises a uniform distribution for each photon number set at the maximum probability.
In (b), we have the peaked distribution which is based on the stepped uniform but where the height
in each level is set as the nth maximum probability in that photon number. For the outcomes
where the probability is greater than this value, the proposal takes the same value as the target
distribution. This is beneficial as the area below the proposal distribution is smaller than for the
stepped uniform.

to be sampled it must be normalised and clearly the area below both distributions will always sum

to less than 1. Therefore this distribution is rescaled in (c) to find f̃(x), the sampled distribution.

Outcomes x that satisfy the exact condition are sampled with a higher probability than they should

and outcomes that do not satisfy the condition are sampled with a probability determined by the

envelope distribution only. As A approaches 1, which is equivalent to the exact condition always

being met, these probabilities reduce to the correct probabilities as expected. The more probability

cut off above the envelope distribution the further the distribution sampled from is from the target

distribution.

In cases where A < 1 the algorithm samples only approximately from the target distribution.

This is often good enough for many purposes, however it is important to know how approximate the

sampling algorithm is by determining how close the two distributions are. To quantify this measure

we use the total variation distance (TVD) between the target distribution and the distribution

sampled from. The TVD between two distributions q(x) and r(x) is defined as

TVD(q(x), r(x)) =
1

2

∑
x

|q(x)− r(x)|. (3.10)

3.2 Rejection sampling applied to Gaussian boson sampling

Now we look at applying rejection sampling to simulating Gaussian boson sampling. Rejection

sampling is beneficial to sampling problems where the desired sample size is significantly smaller

than the size of the sample space. As discussed in the previous chapter, Gaussian boson sampling
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(GBS) is such a problem where the sample space comprises the output patterns (n1, n2, . . . , nM )

and the target probabilities are given by eq. (2.110) or eq. (2.111) if there is no or some displacement

in the input states respectively. The size of this sample space scales with the number of modes, M ,

and number of photons, N , as
(
N+M−1

N

)
. This combinatorial scaling grows extremely rapidly and

so, for a reasonable sample size, rejection sampling is a good candidate for sampling from a GBS

distribution. The challenge is to find a proposal distribution that is both efficient to sample from

and a good approximation to the GBS distribution, and finding the scaling parameter H to ensure

the envelope distribution is greater than the target distribution for most outcomes. We suggest a

couple of proposal distributions and analyse the efficiency of them numerically.

In GBS, the number of photons is not fixed, and so it is possible to have a proposal distribution

which incorporates all output patterns of any photon number or to first sample the number of

photons and then perform rejection sampling on that subset of output patterns until a proposed

outcome is accepted. We stress that if the whole sample space is considered in one proposal

distribution, each time we reject or accept a proposed state the next proposed state can have any

number of photons, whereas when first sampling the photon number, we must continue proposing

outcomes with that photon number until a state is accepted. We now show that both methods

have the same efficiency and accuracy. In the case of sampling the photon number first, each

proposed state is not independent because we must propose the same photon number until it is

accepted. Therefore, the most appropriate parameter to measure efficiency is the expected number

of outcomes to propose until one is accepted. When the proposal distribution incorporates all photon

numbers, the expected number of probabilities is given by 1/p = H, for the exact case where p is

the probability of accepting. When first sampling the photon number, we sample a photon number

N with probability Pr(N) = FN =
∑

x∈N f(x), where x ∈ N means that the output pattern x has

N photons. Whichever output pattern is proposed is then accepted with probability FN/(HGN ),

where GN =
∑

x∈N g(x). The expected number of probabilities to calculate is given by the weighted

sum of the expected value of the number of probabilities in each photon number:

E(#probabilities) =
∑
N

Pr(N)E(#probabilities in N) =
∑
N

FN
HGN

FN
=
∑
N

HGN = H, (3.11)

where we use that the proposal probabilities GN are normalised to sum to 1. Hence, the expected

number of probabilities to calculate for one accepted outcome is the same in both cases. The accu-

racy is also the same in both cases which follows because the area cut off by the proposal distribution

is the same so the TVD in each photon number is the same whether considered separately or not.

We generally find it is more useful to first sample the number of photons and then sample

the output pattern from a proposal distribution dependent on the total number of photons. This

also allows the number of photons to be fixed to restrict to a particular photon number which is

equivalent to post-selecting from the quantum device. Therefore, we begin by describing a method

to sample the number of photons.
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3.2.1 Sampling the number of photons

To sample the total number of photons in the output photon pattern, we use the fact that the

probability distribution of the number of photons in a state is conserved after passing through an

interferometer under the assumption of no loss. In general, uniform loss across all modes in the

interferometer can be included by moving the loss into the sources [25, 15]. So to sample the number

of photons in the output pattern, we can instead sample the number of photons from the sources.

The probability of ni photons from a source in mode i is given in eq. (2.66) for a squeezed vacuum

state or eq. (2.72) for a squeezed displaced state. Theoretically, the sources can produce an infinite

number of photons but we restrict the total number of photons, N , to a chosen cut-off Nc such that

Pr(N ≤ Nc) < ϵ. To sample the number of photons from a source in mode i, the probabilities of

all ni = 0 to ni = Nc are calculated and this distribution can be sampled after renormalising. The

sources are independent so each source can be sampled separately and the total photon number is

simply given by the sum of the number of photons from each source, N =
∑
ni. As each source is

allowed up to Nc photons, sometimes the sampled total photon number will be above this chosen

cut-off and it is necessary to repeat until a photon number equal to or below the cut-off is sampled.

However this will happen with low probability as long as ϵ is small and not have a detrimental

effect on the efficiency of this method.

It can be important to find the probability of N photons in total, such as to determine the

cut-off photon number to ensure Pr(N ≤ Nc) < ϵ. To do this the probabilities of all the possible

combinations of ni such that N =
∑
ni need to be summed. The number of combinations scales

combinatorially
(
N+M−1

N

)
which quickly becomes unmanageable. However, it is possible to find the

sum of these probabilities without needing to calculate all the individual probabilities. For each

mode, assign the probability of each ni to an auxiliary variable xni . So for mode i we form the

polynomial

Nc∑
ni=0

Pr(Ni = ni)x
ni = Pr(Ni = 0) + Pr(Ni = 1)x+ Pr(Ni = 2)x2 + ... (3.12)

Here the coefficients for each term are given by the probability of getting ni photons where ni

is the order of that term. Given a polynomial for each mode as above, we want to find a new

polynomial where the coefficients give the probability of getting N photons across all modes.

Multiplying polynomials naturally collects together all the possible ways of getting N photons

with the probability given as the coefficient of the xN term. For example, if we want the prob-

ability of measuring 2 photons across 3 modes, we need to add the probabilities of detecting

patterns (0, 0, 2), (0, 2, 0), (2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1) from the source. The probability for

(0, 0, 2) corresponds to the coefficient of the term x01x
0
2x

2
3 (where the subscript labels the mode,

but x1 = x2 = x3 = x) so the sum of all the 2 photon probabilities naturally comes out as the

coefficient of x2. Mathematically, the probability of N total photons for any N ≤ Nc is given by
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the coefficients in the following polynomial:

MNc∑
N=0

Pr
(∑

Ni = N
)
xN =

M∏
i=1

(
Nc∑

ni=0

P (Ni = ni)x
ni

)
. (3.13)

Note that the coefficients of orders greater than Nc do not give the correct probabilities for the total

photon number because some terms are missing from the sum where more than Nc photons are

measured in the same mode, but we are only interested in photon numbers below this. Hence, the

problem of calculating the probabilities is reduced to multiplying togetherM polynomials of degree

Nc. The naive way to multiply two polynomials of order Nc is to expand the brackets which results

in N2
c elements. Hence the complexity of this is O(N2

c ). To multiply M polynomials together we

simply multiply the first two and then in turn multiply the result by the next polynomial. However,

multiplying two polynomials of order Nc outputs a polynomial of order 2Nc and so this results in

an increasingly high order of polynomial to multiply. In our case, we are only interested in the

coefficients up to order Nc and therefore we can ignore any orders above this as we progress with

the multiplication, cutting off the higher orders after each multiplication. Therefore, to calculate

the final polynomial and hence the probability of any number of photons, it can be done by M − 1

multiplications of polynomials of order Nc. The naive approach gives an overall complexity of

O(MN2
c ), which is polynomial with respect to both the number of photons and modes and the time

taken to compute this is negligible compared to the time for a single probability as Nc increases

assuming a reasonable M . Faster algorithms to multiply polynomials exist [63] and in particular

the fast fourier transform can be used to find an algorithm with complexity of O(Nc logNc) [64, 65]

which reduces the overall complexity to O(MNc logNc).

3.2.2 Proposal distributions

One of the biggest challenges when applying rejection sampling to a task is to find a suitable

proposal distribution that is efficient to sample from, the probability of any outcome can be found

and gives a good acceptance rate. We introduce two proposal distributions that can be used for

simulating GBS with rejection sampling: the stepped uniform and peaked distributions. These can

be applied for both a fixed or variable total photon number.

3.2.2.1 The stepped uniform distribution

The first proposal distribution we try is simply the uniform one. For exact rejection sampling we

need to find H such that Hg(x) ≥ f(x) for all x. For the uniform distribution, this corresponds

to finding the maximum of the target distribution and setting H such that Hg(x) = maxx(f(x)).

In order to do this we need to know the maximum value in the target distribution, and set the

envelope distribution at this height. To find the maximum value, we use an optimisation algorithm:

hill climbing. We explain two variants of this algorithm in the following section and analyse their

performance. Although they are not guaranteed to find the global maximum, we find numerically

that they find close to the maximum generally and so they can be used in approximate rejection
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sampling to sample from a distribution that is close to the desired GBS distribution.

As the probabilities of some photon numbers can be significantly higher than others, the max-

imum value in each photon number can be very different. So if we set the height of the envelope

distribution at the global maximum, the area under it could be very large and hence the sampling

extremely inefficient. To overcome this, it is more sensible to fix the height for each photon number

separately, reducing the height of the distribution in most places and therefore the area under it.

See fig. (3.4a) for a plot of an example of this distribution which we call the ‘stepped uniform

distribution’ due to its appearance.

To sample from this distribution we simply fix or sample the photon number first and then

sample an output pattern conditional on that photon number. When doing this, the target and

proposal probabilities within the photon number are no longer normalised as they are normalised

over the entire distribution. However, in rejection sampling the normalisation constant of the target

distribution does not need to be known as long as the envelope distribution is always greater than

the unnormalised target distribution. The proposal distribution must be normalised to sample from

it, however the envelope distribution can be fixed by simply changing the value of H if the proposal

distribution is renormalised.

We can sample the output pattern with the fixed/sampled photon number from the uniform

distribution by assigning each pattern to an integer between 0 and |Ω|−1, where |Ω| is the cardinality
of the sample space, ie. the number of possible output patterns. Then it is as simple as sampling an

integer uniformly. However, as the number of photons or modes increases, the number of possible

output patterns increases very quickly and so storing the pairings between patterns and integers

would cause memory errors. Yet, it is possible to order the patterns in such a way that a mapping

can be found to convert between the pattern and an integer such that each integer corresponds to

one and only one pattern. This mapping is as follows:

• Start with a pattern of N photons in M modes ω = (m1,m2, . . . ,mN ), where 0 ≤ mi ≤
mi+1 ≤M − 1 (ie. in non-decreasing order).

• Remove the possibility of having more than one photon in the same mode by adding i−1 tomi

to get the new pattern (m̃1, m̃2, . . . , m̃N ) = (m1,m2 +1, . . . ,mN +N − 1), where m̃i < m̃i+1

(ie. in increasing order). This pattern is now in the collision free space overM+N−1 modes,

which removes problems with repeated modes being included for multiple orderings.

• I =
∑

i

(
m̃i

i

)
.

Hence the output pattern ω can be uniquely mapped to the integer I. If we sample an integer and

want to determine the corresponding pattern, we need to reverse this mapping. Given the sum of

the binomial coefficients, we need to find the individual m̃i. First, find the final m̃N by finding the

largest m̃N such that
(
m̃N

N

)
≤ I. Subtract the value of this binomial coefficient from I to leave the

sum of the other binomial coefficients. Continue this process from the next last element until all

m̃i have been found. To convert back to allow collisions, simply subtract i − 1 from m̃i. So if a

random integer can be sampled, the corresponding pattern can be found.
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However, it is not possible to sample a random integer between 0 and an arbitrarily large number

due to memory constraints. For a 64-bit integer the largest maximum value is 264, which is not big

enough for just 13 photons in 169 modes - a problem size for which the probabilities are quick to

calculate. It is possible to generate an arbitrarily large number of k bits, but this does not allow

for any desired upper limit. Therefore sampling from integers for the entire sample space is not

generally a good choice for sampling from the uniform distribution for GBS. Because each element

in a pattern is between 1 and M , this will always be a small enough range to sample, and is the

basis for a memory efficient way to sample a pattern.

To sample a pattern in the collision free space (no repeated elements in the pattern), it is

easiest to simply sample N of the modes at random in any order, and then order them. Each

ordered pattern (m̃1, . . . , m̃N ) where m̃i < m̃i+1 will correspond to N ! unordered patterns and

therefore if the unordered patterns are generated uniformly randomly so will be the ordered patterns.

However, if some of the elements are repeated, there are less unordered patterns that contribute

to that pattern. For example, the state (1, 2, 3) is sampled if any of the following are generated:

(1, 2, 3), (2, 3, 1), (3, 1, 2), (1, 3, 2), (3, 2, 1) and (2, 1, 3). However for the state (1, 1, 2), only the

states (1, 1, 2), (1, 2, 1) and (2, 1, 1) contribute. Therefore, (1, 2, 3) is twice as likely to be sampled

as (1, 1, 2), and so this does not result in uniform sampling. To avoid this issue, we make use of the

mapping between collision space with M modes and the collision free space with M +N −1 modes.

So we first sample a collision free pattern in M +N − 1 modes and then subtract i− 1 from mi to

find the desired pattern.

The advantage of using the stepped uniform proposal is that it is easy to sample from and in

order to satisfy the exact constraint, only the global maximum for each photon number needs to be

known or approximated. The drawback is that it is not necessarily close to the GBS distribution

especially if just a few of the probabilities are much higher than the rest and so may not be the

most efficient choice.

3.2.2.2 Peaked - rejection sampling

The second proposal distribution is aimed at GBS distributions where a lot of the probability is

concentrated in just a few output patterns. In this case, the distribution is far from uniform and so

that is not a good proposal distribution. Now we can separate the patterns into two groups where

one includes the nmax outputs with the highest probability and the other contains all other patterns.

The proposal distribution comprises of the exact values for the first group of states and a uniform

distribution set at a lower height for the second group. Instead of fixing the height of the envelope

distribution at the global maximum we would like to set the uniform level at the height of the

nmaxth highest probability. This proposal distribution is a hybrid between the uniform distribution

for the majority of the states and the target probability for just a few of the states with the largest

probabilities. A plot of an example of this envelope distribution is shown in fig. (3.4b), and is

named the ‘peaked distribution’ again due to its appearance. Similarly to the stepped uniform

distribution, we fix the uniform part of the distribution at different heights for each photon number

to reduce the area under the envelope distribution.
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Sampling from this distribution requires the knowledge of nmax maxima not just the maximum.

To do this we still use hill climbing algorithms, but we expect it to be more difficult to find all of

the maxima values. The value of nmax is an arbitrary choice but we choose nmax = N , the number

of photons, because the number of outputs with unusually large probabilities is likely to increase

as the size of the sample space does.

This distribution is easy to sample from as we can split the distribution in two: one part with

the exact probabilities and the other with the uniform distribution. First we sample which half to

choose. For this we need to know the relative probabilities of the two parts, which can be calculated

easily: the probability of the exact values is just the sum of the known values, and the probability

of the uniform group is given by its height multiplied by the total number of states in that group

which is
(
N+M−1

N

)
− N . This is actually the area under the envelope which is not a normalised

distributions and so these values will sum to H not 1, but the relative probabilities are unaffected

by the scaling constant H. Then we sample from within the set we have selected. In the case of

the uniform, we can sample as above and simply reject any time we select one of the patterns in

the exact part. Given the number of maxima will be very small in comparison to the total number

of patterns, the number of rejections will be negligible and not affect the efficiency. In the case

of the exact values, we are simply sampling from a known distribution, and can use the inverse

transform method. Alternatively, to avoid the need to post-select on the uniform sampling part,

the probability can be split into two by including the uniform contribution of all states in one group

and the extra probability of the exact values in the other group. In this case, when sampling from

the uniform part all outcomes are valid, and when sampling the exact values it is the probability

above the uniform level that is included for each outcome (with the probability below accounted

for when sampling from the uniform part).

This peaked distribution is easy to sample from, although slightly slower than the uniform

distribution, due to the extra step of sampling which group (uniform or exact values) to choose.

However, the height of the uniform part can never be higher than in the stepped uniform case, but

may be substantially lower thus increasing the probability of accepting a proposed pattern. The

main concern is that it requires more knowledge of the highest values which might be more difficult.

3.2.2.3 Adaptive rejection sampling

A proposal distribution is better the closer it is to the target distribution. Each time we try to

sample with rejection sampling, whether an outcome is accepted or rejected, we can use a different

proposal distribution because each experiment is independent. When using rejection sampling,

every time a state is rejected the target probability is calculated and this additional information

can be used to improve the sampling rate. For each probability that is calculated, the proposal

distribution can be updated to replace the proposal probability with the target probability [66].

Gradually over time the proposal distribution will become closer to the target distribution, and

the probability of accepting the proposed state will increase. This will result in a hybrid envelope

distribution with a subset of the sample space having probability f(x) and the rest of the sample

space given by Hg(x). It is important that it is still easy to sample from this hybrid distribution
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of Hg(x) and f(x). We note this is a generalisation of the peaked distribution where states with

probabilities f(x) are equivalent to the peaks and those with Hg(x) is a more general proposal

distribution than the uniform part of the peaked distribution. So in general it is always possible to

first determine whether to sample the states given with envelope probability f(x) or Hg(x), and

then sample from f(x) states using the inverse transform method for the known distribution and

from the Hg(x) states as before. It may be possible to sample from Hg(x) restricted to the states

in that group, however in general that cannot be assumed and we need to post-select on outcomes

in that group. For both the uniform and peaked distributions, we would need to post-select and

this can substantially reduce the efficiency if the probability contained in the states in the Hg(x)

subset is small.

This technique can have a substantial speed-up if enough probabilities are replaced by the target

probability and the unknown values can be sampled efficiently. However, if the majority of states

are replaced this means the number of probabilities calculated is sufficiently large that rejection

sampling is no more efficient than brute force sampling. Therefore we should assume that we will

only be calculating a small number of the probabilities and in this regime the speed-up is at best

very small. As such we choose not to adapt the proposal distribution to avoid complications arising

from the sampling of the hybrid proposal distribution, given the speed-up will be minimal in the

regime that rejection sampling is useful.

3.2.3 Hill climbing optimisation algorithms

For both of the suggested proposal distributions it is necessary to find at least an estimate of the

maximum probability or in the case of the peaked distribution the N maxima. Hill climbing [67] is

a local search algorithm to maximise a criterion and we employ it to maximise the probability of an

output pattern by searching neighbours within the sample space. The choice of how to determine

which output patterns are neighbours is open, however there are two natural ways to do this. For

the first way, we write a pattern with notation corresponding to the first quantisation, where there

are N elements that can take M values, (m1, . . . ,mN ). It is possible to find a neighbouring state

by simply moving one photon to another mode by changing one element in the pattern. In this

problem, the variable is N -dimensional with neighbours defined for each dimension; that is for

dimension d, the corresponding variable is md and the neighbours are all M states with all other

mi fixed. The second way to define neighbours would be to instead work in the second quantisation,

with M elements that can each take a value from 0 to Nc. A neighbour for each dimension can be

defined in a similar way by changing one element, but this now corresponds to adding or removing

photons from a particular mode. As such the number of photons is not conserved and this method

would search over the whole sample space rather than for a fixed photon number. For the proposal

distributions we need to know the maximum/maxima in each photon number and therefore we

choose to use the first quantisation neighbours and run the algorithm for each photon number.

In hill climbing a starting state is chosen, and then each variable is improved in turn with all

others fixed until they all have been improved at which point the process is repeated from the first

variable but now with the other fixed variables potentially having different values compared to the

66



CHAPTER 3. SIMULATING GAUSSIAN BOSON SAMPLING WITH REJECTION SAMPLING

previous time. A pass is a single round of updating each variable in turn and the process is repeated

for many passes until there is no improvement at which point it terminates. As this process is a

local search (searches over only the neighbour states each time) it may not find the global maximum

and get stuck in a local maximum instead. The final value depends on the starting state (and in

some cases a sequence of random numbers). The general algorithm is outlined in algorithm (2).

Algorithm 2 Hill climbing

Input: M , N , the number of modes and photons
Output: x = (m1, . . . ,mN )

Sample a starting pattern x0 = (m1, . . . ,mN ) with probability p0
while True do

for n = 1 to N do
Update mn, with all other mi fixed, according to the update rule to find a new pattern

xn with corresponding probability pn
if pn = pn−1 then

Break out of while loop
return xN

As the choice of starting state can determine whether a local or global maximum is found, it is

beneficial to optimise the starting state. However, finding which state is the best to start at is not

trivial and to overcome the problem of potentially starting in a poor choice, we can instead run the

algorithm a few times starting at a different random state in each case. This is called random restart

hill climbing, and the amount of times that a new starting state is chosen is a free parameter that

should be chosen carefully to balance the trade-off in increased probability of finding the maximum

with reduction in efficiency when increasing this number. The criteria for updating each variable

can also be chosen and we consider two variants of hill climbing that we employ for GBS: steepest

ascent and stochastic hill climbing.

3.2.3.1 Steepest ascent hill climbing

Steepest ascent is a variant of hill climbing that is a greedy algorithm always choosing the neighbour

that maximises the probability. Hence the update rule in this case is to select the modemn such that

Pr(m1, . . . ,mn, . . . ,mN ) > Pr(m1, . . . ,mi, . . . ,mN ) for all i ̸= n. In order to do this, it is necessary

to calculate the probabilities for all mi. This method is deterministic for a given starting state,

always outputting the same end state. Since it continues to always choose the best improvement,

once it has found the local maximum there will be no further improvements and hence the algorithm

stops. This guarantees ending in a local maximum but not necessarily the global. Therefore we

use random restarts to find a few local maxima increasing the probability of finding the global

maximum but also meaning it is more likely to find more of the N maximum values, which may be

local maxima or neighbours of various local maxima.

The number of probabilities we need to calculate in each pass is MN because for each of the

N photons we need to know the probability of finding it in each of the M modes. The number of

passes |P | is unfixed and depends on how long it takes for the maximum found to remain unchanged,
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and the number of restarts |R| can be chosen arbitrarily. So the total number of probabilities to

calculate is |R||P̄ |MN , where |P̄ | is the average number of passes across all restarts.

3.2.3.2 Stochastic hill climbing

Stochastic hill climbing is a variation on steepest ascent hill climbing which climbs the curve non-

deterministically and so will not always take the same path. Therefore we are less likely to become

stuck in a local maximum. The non-determinism comes from when we select which mode to fix the

photon in. In the previous hill climbing we always chose the mode which maximised the probability,

however, here we will sample which mode to choose with a weighted probability based on the values

for each pattern, such that we are more likely to choose the pattern with the highest GBS probability

and we never choose a pattern which lowers the GBS probability. The exact function which maps

the GBS values to the probability of accepting that pattern is not fixed and can be chosen based on

each problem. We choose to accept a mode with probability proportional to the GBS probability

of that pattern, restricted to patterns that have a greater probability than the current pattern.

The number of probabilities calculated here is |R||P̄s|MN , where |P̄s| is the average number of

passes in the stochastic case. In general |P̄s| > |P̄ | because the stochastic variant will find higher

probabilities more slowly as it doesn’t necessarily accept the maximum. This wider search of the

sample space also means that it is more likely to find the global maximum from any starting state

which reduces the required number of restarts.

For the peaked distribution, we need to find the N maxima. To do this we can keep the highest

N probabilities found at any point during the algorithm whether it was accepted or not. It is

intuitive that to find more maxima it will require more probabilities to be calculated in general.

Therefore we expect the hill climbing will need to run for longer for the peaked distribution.

3.3 Numerical analysis of the accuracy and efficiency of

Gaussian boson sampling with rejection sampling

For both of the suggested proposal distributions above, stepped uniform and peaked, it is important

to know the maximum or N maxima probabilities for each photon number respectively. The hill

climbing algorithms presented above aim to find these and if they successfully do this, the rejection

sampling algorithm is exact and the accuracy is perfect. In the case where they do not find the

global maximum/maxima, some of the distribution is missed when sampling. This causes a non-

zero total variation distance (TVD) between the target distribution f(x) and the distribution we

sample from, which we denote f̃(x). It is important to know that f̃(x) is a good approximation

to the target distribution. There is a trade-off between accuracy and efficiency with hill climbing

algorithms where the number of probabilities calculated can be chosen and increasing this will

generally increase the probability of finding the maximum/maxima but also the time it takes to do

so. Therefore care needs to be taken when fixing the number of probabilities such that there is a

good balance between accuracy and efficiency. We wish to determine whether steepest ascent or
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stochastic hill climbing is better for our application and how long they need to be run for any size

GBS problem. We begin by analysing the accuracy of both algorithms for a range of problem sizes.

3.3.1 Comparison of hill climbing algorithms

Steepest Ascent Stochastic Difference

(a) (b) (c)

(d) (e) (f)

Figure 3.5: TVD for stepped uniform distribution. These heat maps represent the mean TVD
between the target and sampled distributions as a function of the number of modes and photons
when using the maximum as found by a hill climbing algorithm. The left column (plots (a) and (d))
shows the TVD when using the steepest ascent algorithm and the middle (plots (b) and (e)) for the
stochastic algorithm. The right column (plots (c) and (f)) shows the difference (stochastic - steepest
ascent) between these two graphs to highlight which algorithm performs better - green means that
the steepest ascent has a lower TVD while pink represents where the stochastic algorithm is better.
The top row ((a), (b) and (c)) are plots when terminating the hill climbing algorithms after finding
50 probabilities and the bottom row ((d), (e) and (f)) are for after 2000 probabilities. All data
points are found by averaging over 100 Haar random unitaries.

We can measure the accuracy of the hill climbing algorithms in terms of either the probability

of finding the maximum/maxima or the average TVD this causes between the target and sampled

probability distributions. We look at both of these metrics and compare the accuracy for both hill

climbing algorithms to determine which one is better for our application. For a fair comparison

between steepest ascent and stochastic hill climbing, either the number of probabilities calculated

are fixed and the accuracy is measured or vice versa. The first option is more convenient as it fixes

the number of hafnians ensuring a finite time and it is not necessary to calculate the accuracy at

every point. Therefore this is the option we choose.

The size of the sample space and the shape of the probability distribution (such as the number of
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Steepest Ascent Stochastic Difference

(a) (b) (c)

(d) (e) (f)

Figure 3.6: TVD for peaked distribution. These heat maps represent the mean TVD between the
target and sampled distributions as a function of the number of modes and photons when using
the maxima as found by a hill climbing algorithm. The plots correspond to the same scenarios as
in fig. (3.5) but for the peaked distribution.

local maxima) depend on the number of modes and photons and so it is likely that the effectiveness

of the hill climbing algorithms also depend on these variables. We are interested in rejection

sampling, and therefore hill climbing, for GBS problem sizes where we cannot sample by brute

force. However, it can be useful to estimate the required number of probability calculations for

some accuracy for small problem sizes and extrapolate. Ensuring that the error does not increase

with problem size in the regime that can be directly tested is important as it suggests that the error

will not become large in the regime that cannot be tested. For the problem sizes that are small

enough for the full distribution to be calculated, the accuracy of the hill climbing algorithms can

be predicted by calculating the actual accuracy for many Haar random unitaries and finding the

average. It is a reasonable assumption that although the number of probabilities required for the

same accuracy will scale with the number of photons and modes, it will be relatively independent

of the unitary. It is also possible that the relative squeezing and displacement input on each mode

will affect the shape of the probability distribution. As it is impossible to test the accuracy for all

infinite combinations of the squeezing and displacement, we test here for the case of no displacement

and equal squeezing on all modes. Note that the value of the squeezing affects the total number

of photons distribution but not the distribution of the patterns for a fixed photon number. This is

because for equal squeezing on all modes, the squeezing can be factored out of the hafnian in the

probability, which is the only part that has dependence on the output pattern. In all numerical
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Steepest Ascent Stochastic Difference

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Success probability for stepped uniform proposal. These plots show the average prob-
ability of the hill climbing algorithms successfully finding the global maximum for a variety of
problem sizes. As the number of modes or photons increases, this probability quickly falls to al-
most zero. The plots correspond to the same scenarios as in fig. (3.5).

simulations the squeezing parameter was set to 1.

We estimated the TVD between f(x) and f̃(x), and the probability of finding the maximum

and N maxima for the stepped uniform and peaked distributions for various GBS problem sizes

from 2 to 22 photons and 2 to 14 modes. The squeezing parameter was set as 1, but as mentioned

above this is an arbitrary choice that does not affect the data. For each metric of accuracy and

proposal distribution, the accuracy was found after calculating 50 and 2000 probabilities in both

hill climbing algorithms. Where both the number of photons and modes are high, the problem size

becomes too big to calculate the full distribution and the test becomes too slow. The results are

shown in figs. (3.5)-(3.8). For each problem size, the values were calculated for 100 Haar random

unitaries and the mean value is plotted.

First we consider the TVD between the target and sampled distributions. Fig. (3.5) shows the

average TVD for the uniform distribution. Plots (a) and (d) are for steepest ascent hill climbing,

plots (b) and (e) for stochastic hill climbing and plots (c) and (f) show the difference between them

to highlight which algorithm performed better. The top row (plots (a), (b) and (c)) is the average

TVD after calculating 50 probabilities in the hill climbing algorithms and the bottom row (plots

(d), (e) and (f)) is for after 2000 probabilities. We wish to minimise the TVD and as can be seen

from the graphs, both algorithms give fairly similar results. Therefore to determine which algorithm

performs better, the graphs on the right give the mean value for the stochastic variant minus those
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Steepest Ascent Stochastic Difference

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Success probability for peaked proposal. These plots show the average probability of the
hill climbing algorithms successfully finding the N maxima for a variety of problem sizes. As the
number of modes or photons increases, this probability quickly falls to almost zero, more quickly
than for finding the global maximum as shown in fig. (3.7). The plots correspond to the same
scenarios as in fig. (3.5).

for the steepest ascent. A positive value (in green) shows that the steepest ascent performed better

whereas a negative value (in pink) means that the stochastic was better. Whilst neither colour

is completely dominant in these graphs, there are two interesting observations. The first is that

there is a grouping of the colours suggesting that in general the stochastic algorithm is preferable

when there is a high density of photons per mode, otherwise the steepest ascent performs better.

The second is that by comparing the top and bottom graphs, the pink is dominant after only 50

probabilities whereas the green is dominant after 2000 suggesting that stochastic is more effective

more quickly but eventually the steepest ascent will find a better estimate of the maximum. We

note that for 2 modes, both hill climbing algorithms are in theory exactly the same because there

are only two probabilities to choose between in each step and an improved probability must be the

maximum. Therefore the row for M = 2 in the difference graphs should be zero. This is seen well

in the graph (f) but less so in graph (c). This suggests that the variance in the estimate of the TVD

is too large to distinguish between the two algorithms after only 50 probabilities. There may also

be differences between the two algorithms if both outputs have the same probability. Comparing

the upper row to the lower row (note the difference in the scaling of the colourbars) shows that

increasing the number of probabilities from 50 to 2000 reduces the TVD significantly as expected.

There is an interesting pattern with regard to the number of modes and photons. In general the

72



CHAPTER 3. SIMULATING GAUSSIAN BOSON SAMPLING WITH REJECTION SAMPLING

TVD increases as the number of photons increases but may actually decrease with the number of

modes. The increase with the number of photons can be explained as it increases the number of

dimensions in the output pattern and therefore the number of local maxima will likely increase

meaning it is easier to get stuck in one rather than finding the global maximum. The decrease with

increasing number of modes is due to the increase in size of the sample space meaning that the

average probability of each pattern is lower. Therefore in cases where the global maximum is not

found, the next largest values are very close and so not as much probability is above the envelope

distribution. Of course increasing the number of photons also increases the size of the sample space

but it is counteracted by the increase in local maxima. It is important to note that the size of the

sample space is
(
M+N−1

N

)
and therefore the effect of increasing M or N is very dependent on the

relative values of M +N − 1 and N .

The same plots are given for the peaked proposal distribution in fig. (3.6). Here it is even

more pronounced that the TVD is significantly different in the photon dense regime with both

algorithms suffering when there is a high amount of photons per mode. A TVD of close to one occurs

if not enough different probabilities have been calculated to assign all N peaks and the uniform

distribution is set at the lowest which is zero. The difference plots, (c) and (f), show similar patterns

to the stepped distribution but we have lower bounded the values by -0.1 and -0.005 in order that

the smaller differences in the photon sparse regime can be seen. In the photon dense problem size,

the stochastic algorithm is significantly better but in the photon sparse problems, there is a slight

preference to the steepest ascent variant, again especially after 2000 probabilities. For the same

number of probabilities calculated, when compared to the stepped uniform distribution the TVD

is much larger which will result in a worse approximation when using the peaked distribution in

rejection sampling. This is to be expected as this proposal distribution requires the knowledge of

all N maxima and sets the uniform level at the smallest of these values. As there are more values

to find it is more likely to miss a few of them and therefore the Nth maxima found is actually much

lower than it should be.

As well as analysing how approximate the rejection sampling is when using the hill climbing al-

gorithms, it it interesting to consider the probability that the rejection sampling is exact. Figs. (3.7)

and (3.8) show the estimated probability of finding the maximum (for uniform proposal) and N

maxima (for peaked proposal) respectively. As before, the left column (plots (a) and (d)) is the

data when using steepest ascent, the middle (plots (b) and (e)) for stochastic and the right (plots

(c) and (f)) for the difference between them. The top row (plots (a), (b) and (c)) is after allowing

the hill climbing to run for 50 calculated probabilities and the bottom (plots (d),(e) and (f)) for

2000. Contrary to the previous plots, the higher the value (and therefore lighter the colour), the

better the algorithm. In all cases as the number of modes or photons increases, the probability of

exact rejection sampling goes quickly to zero. As expected, increasing the number of calculated

probabilities does increase the probability of finding the maximum/maxima but it is still essentially

zero for a moderate problem size after 2000 probabilities. The probability to find the maximum is

better than to find all N maxima. This is to be expected as successfully finding the N maxima

guarantees that the maximum has been found as well as the other N − 1 maxima. We want to
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determine which of the two hill climbing algorithms to use. For this data, if the difference is positive

(green), the stochastic algorithm was better. Again, neither algorithm was always better than the

other but for the uniform proposal there is a leaning towards pink with the knowledge of more

probabilities suggesting that the steepest ascent is more likely to find the maximum. In the case of

the peaked distribution, there are few problem sizes that don’t have a probability of 0 or 1 of finding

the maxima for both algorithms and therefore there is almost no difference between the algorithms

in most cases. For those where there is a difference, the stochastic hill climbing algorithm performs

better after 50 probabilities, but it is very equal after 2000 probabilities.

Overall it is less important to sample exactly as long as the approximation is good. Therefore

when determining the hill climbing algorithm and the number of probabilities to find the maxi-

mum/maxima, the most important metric to consider is the TVD between the target and sampled

distributions. The behaviour is very different depending on the ratio of photons to modes with

the stochastic algorithm generally performing better in the photon dense regime and the steepest

ascent preferred in the photon sparse regime. Therefore we choose to use the stochastic algorithm if

2M < N and the steepest ascent otherwise. We refer to this as the ‘hybrid hill climbing’ algorithm

and use it for the rest of the numerical testing.

3.3.2 Efficiency of hybrid hill climbing

We wish to determine how many probabilities we need to calculate when running the hybrid hill

climbing to ensure a small TVD between target and sampled distributions. As the plots in figs. (3.5)

and (3.6) confirm, the effectiveness of the hill climbing algorithm depends on the number of modes

and photons so we need to determine how to scale the number of probabilities calculated with these

variables. To do this we run numerical tests to find the average number of probabilities required to

reach a fixed TVD as a function of modes and photons.

We choose to find the minimum number of probabilities needed to be calculated in the hybrid hill

climbing algorithm such that the TVD is less than 0.05, averaged over 100 Haar random unitaries.

In order to find the number of probabilities at which the TVD is lower than a threshold value, it

can require running the hill climbing for a long unknown time. Therefore it is necessary to put

an upper limit on the number of probabilities to try, and we chose to set 10,000 as the limit for

these simulations. For the problem sizes we tested, for the uniform distribution this was always

high enough and for the peaked distribution there was only one case where the TVD did not reach

0.05. This was for 16 photons in 4 modes and the final value was 0.0527 and so any distortion

to the data due to this upper limit is negligible. The data is plotted in fig. (3.9). The scaling

of the required number of probabilities as a function of modes and photons is shown in the top

and bottom rows respectively. The left column plots are when finding the global maximum for the

stepped uniform distribution and the right for the N maxima for the peaked distribution. Each

point is averaged over 100 instances with different Haar random unitaries and the error bars show

the standard deviation.

First we consider the uniform distribution. As can be seen from the upper left plot, there is no

significant pattern to how the number of required probabilities scales with the number of modes,
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Figure 3.9: The efficiency of hill climbing. These plots show the average number of probabilities
needed to be calculated for the TVD to fall below 0.05. Plots (a) and (b) show this as a function
of the number of modes, while (c) and (d) give it as a function of the number of photons. The left
column (a and c) is when using the stepped uniform proposal distribution and the right (b and d)
is with the peaked proposal.

with it being approximately flat beyond 4 modes for all tested numbers of photons (4, 8, 12 and

16). The error bars are high which shows that for different Haar random unitaries and also different

starting states for the hill climbing, its effectiveness varies significantly. There is however a clear

pattern with an increase in photons causing an increase in the number of probabilities to calculate.

This relationship is plotted in the lower left graph for several numbers of modes (6, 10 and 14).

Despite the error bars being high, the mean values follow a linear trend quite closely and so we fit

a line to each set of data points. These are given by f(N) = 9.71N − 6.07, f(N) = 11.59N − 21.65

and f(N) = 6.57N + 0.98 for M = 6, 10 and 14 respectively. The plots for M = 6 and M = 10 are

similar but the gradient forM = 14 appears to be lower. This decrease in gradient with the increase

in the number of modes shows more clearly that the top left plot must actually be decreasing beyond

M = 10 even if it is not obvious by eye. It seems that M = 10 is approximately the most difficult

number of modes and using the scaling found for M = 10 will result in a smaller TVD for higher

modes. It is not possible to numerically find the relationship between the number of photons and

the required number of probabilities for allM . Therefore, we choose the worst-case scenario and set

the number of probabilities to calculate in the hill climbing for the uniform proposal distribution

as 11.59N − 21.6 for all other numbers of modes.
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Now we look at the peaked distribution. From the upper right plot, there is a more clear

pattern of rising until approximately 4 modes after which it decreases again. The lower right

plot again shows a linear trend with increasing the number of photons with the steepest gradient

now corresponding to the M = 6 case. The linear fit for the peaked distribution is given by

f(N) = 63.22N − 93.27, f(N) = 73.00N − 81.64 and f(N) = 31.75N − 29.82 for M = 6, 10 and 14

respectively. This means that approximately 5 times as many probabilities need to be calculated

to find the N maxima than the global maximum for the same TVD when using the respective

proposal distributions. We again choose the worst-case scenario and set the number of probabilities

to calculate in the hill climbing for the peaked proposal distribution as 63.22N − 93.27 for all

numbers of modes.

The above analysis is a good tool to predict the scaling of the accuracy of rejection sampling

on average. However, the actual accuracy will depend a lot on the target distribution and the

particular path taken in hill climbing, as shown by the large error bars in the plots. The target

distribution depends on many factors: the unitary, squeezing and displacement parameters, and

the path of the hill climbing depends on the starting state, and random sampling in the case of

the stochastic variant. Therefore this prediction does not ensure that the TVD is guaranteed to

be low if the derived parameters are used. We would like to be able to estimate post-sampling the

accuracy of the sample found for a particular instance of simulating GBS with rejection sampling.

We now investigate a method for estimating the TVD between the target and sampled distributions

that can be used to check the accuracy after the sampling.

3.3.3 Post-sampling analysis of the accuracy of rejection sampling

The aim is to estimate the TVD between the target distribution f(x) and the sampled distribution

f̃(x) after sampling. It is useful to formalise the link between the TVD and the area of the target

distribution contained under the envelope distribution, A. For any two distributions, q(x) and

r(x), the TVD between them is given by half the sum of the absolute differences for each outcome

(eq. 3.10). So we can group the outcomes by whether q(x) > r(x) or q(x) < r(x) and given that

both distributions sum to the same total probability, the total difference in the first group must

be equal and opposite to the total difference in the second group. So the TVD is equivalent to the

total difference in one of these groups. This is just the probability of one distribution not under

the other one. In fig. (3.3), the TVD between the black f(x) and orange f̃(x) distributions in (c)

is by definition half the sum of the blue and red shaded areas. These areas must be equal and so
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the TVD is given by the area of either of them. We can also show this result mathematically:

TVD(q, r) =
1

2

( ∑
x∈X+

(q(x)− r(x)) +
∑

x∈X−

(r(x)− q(x))

)

=
1

2

( ∑
x∈X+

(q(x)− r(x)) +
∑

x∈X−

(q(x)− r(x))−
∑

x∈X−

(q(x)− r(x)) +
∑

x∈X−

(r(x)− q(x))

)

=
1

2

(∑
x∈X

(q(x)− r(x)) + 2
∑

x∈X−

(r(x)− q(x))

)
=
∑

x∈X−

(r(x)− q(x)),

(3.14)

where X+ = {x : q(x) > r(x)}, X− = {x : q(x) < r(x)}, and X = X+ ∪ X−. In the last line,

we used that both distributions are normalised so
∑
q(x) =

∑
r(x) = 1 and hence the first term

cancels out. We can rewrite this in terms of the area of probability under both distributions, Aq,r:

TVD(q, r) =
∑

x∈X−

(r(x)− q(x)) = 1−
∑

x∈X+

r(x)−
∑

x∈X−

q(x)

= 1−
∑
x∈X

min{r(x), q(x)} = 1−Aq,r.
(3.15)

This is equivalent to the probability in r(x) above q(x) and vice versa. So it is possible to find the

TVD between two distributions if the area under both distributions is known. In our case, we want

to find the TVD between the approximate distribution, f̃(x), and the target distribution, f(x),

without knowing either distribution fully.

From section (3.1.2), we know that the area under both the target and envelope distributions, A,

is related to the probability of accepting a proposed sample, paccept = A/H. However, to calculate

the TVD between the target and sampled distributions it is the area under these distributions

Af,f̃ that needs to be known. To find this area we need to consider for which outcomes the target

distribution is greater than the sampled one. There are three different possible cases, which are

shown in fig. (3.3). The first case is the outcomes which are sampled exactly (ie. f(x) ≤ Hg(x))

for which the sampled probability is f(x)/A according to eq. (3.11). Given A ≤ 1, this implies

f̃(x) = f(x)/A ≥ f(x). So the TVD contribution in these cases is f(x)/A − f(x). We denote

these outcomes as x ∈ B. The other cases are when the outcomes are sampled approximately (ie.

f(x) > Hg(x)) for which the sampled probability is Hg(x)/A which may be greater than or less

than f(x). So for cases 2 and 3, outcomes contribute Hg(x)/A−f(x) (which we denote as x ∈ C−)

and f(x) −Hg(x)/A (denoted x ∈ C+) respectively to the TVD. The only case where the target

distribution is greater than the sampled one is case 3 so the sum of the outcomes x ∈ C+ gives

the correct TVD. However, it is not possible to know the values of these outcomes or even which

outcomes are in case 3 without knowing the entire target distribution which of course would defeat

the purpose of using rejection sampling. Therefore, we look at a couple of ways of estimating the

TVD by sampling.

77



CHAPTER 3. SIMULATING GAUSSIAN BOSON SAMPLING WITH REJECTION SAMPLING

3.3.3.1 Upper bound for the TVD between target and sampled distributions

First, we consider trying to find an upper bound to the TVD in terms of quantities that are easier

to evaluate. We can upper bound the TVD as

TVD(f(x), f̃(x)) =
∑

x∈C+

f(x)−Hg(x)/A ≤
∑

x∈C+

f(x)−Hg(x) ≤
∑
x/∈B

f(x)−Hg(x) = 1−A,

(3.16)

where B = {x : f(x) ≤ Hg(x)}, C+ = {x /∈ B : f(x) > Hg(x)/A} and C− = {x /∈ B : f(x) <

Hg(x)/A}. As before, A is the area under both the target and envelope distributions. The first

inequality uses the fact 1/A ≥ 1 and is the equality only when A = 1 ie. in the exact case. The

second inequality comes from the fact that f(x)−Hg(x) ≥ 0 in C− and so adding these terms can

only increase the value. It is only the equality if C− = ∅ (the empty set) which is more likely the

closer the sampling is to being exact. So in approximate sampling TVD is bound by the probability

that is missed in selecting the scaling of the proposal distribution. The value of A can be found

using equation (3.8), if H and p, the probability of accepting, are known. We can assume H is

already known as this is chosen when forming the envelope distribution, but p is unknown.

However it is possible to estimate the probability of accepting a state by taking a large sample

size and recording the proportion of times the proposed state was accepted. In the limit of an

infinite sample size, the fraction of times we accept, Ra, approaches the expected acceptance rate,

⟨Ra⟩, which is equal to the probability of accepting, p, ie. Ra ≈ ⟨Ra⟩ = p. We note that proposed

samples that are rejected as well as those that are accepted contribute to the sample size for this

test, rather than only accepted patterns contributing to the sample size when sampling from the

target distribution. Hence the accuracy of p depends on the number of times we test a proposed

pattern to be accepted, which may be substantially higher than the number of times we accept a

pattern. So for a fixed GBS sample size, the sample size for this test is not fixed and sometimes

the estimate will be more accurate than others.

When estimating the value of p, the error due to a finite sample size is given by

|p−Ra| ≤ E = Z

√
p(1− p)
Ns

, (3.17)

where Z is the confidence level, and Ns is the sample size. We use the Wilson score interval

technique [68] to solve for p in terms of Ra.

|p−Ra| ≤ Z

√
p(1− p)
Ns

(p−Ra)
2 ≤ Z2 p(1− p)

Ns

p2 +R2
a − 2pRa ≤

Z2

Ns
(p− p2)

p2(1 + Z2/Ns) + p(−2Ra − Z2/Ns) +R2
a ≤ 0

(3.18)
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Solving this for the equality will give the upper and lower limits for p as

p =
2Ra + Z2/Ns ±

√
(2Ra + Z2/Ns)2 − 4(1 + Z2/Ns)R2

a

2(1 + Z2/Ns)
. (3.19)

We choose to find a worst-case scenario for the TVD between the target and sampled distribu-

tions and so find the upper limit on the estimate of the upper bound. To do this we need to find

a lower limit on A so that TVD ≤ 1−A ≤ 1−ALL. The subscripts UL and LL refer to the upper

and lower limits respectively. A is estimated using the relation A = Hp (eq. 3.8) and therefore a

lower limit for the probability of accepting, p, must be determined. Explicitly,

TVD ≤ 1−A ≤ 1−ALL = 1−HpLL. (3.20)

So the lower limit of p from eq. (3.19) can be found from the acceptance rate when sampling and

then substituted into the above equation along with the known value of H to find an estimate of

the upper bound for the desired TVD.

3.3.3.2 An estimation of the exact TVD between target and approximate distribu-

tions

In the above section we estimated an upper bound for the TVD which only depends on the area

under the target and envelope distributions and the value of the scaling parameter H, avoiding

needing to know anything about the sampled distribution. However, if we know A it is possible

to calculate the sampled probabilities and in the previous method an estimate of A was found.

This suggests we could use this estimate to estimate the exact value for the TVD. From eq. (3.15),

the TVD between two distributions is given by 1− Aq,r, the area not below both of them and we

describe a method here to estimate Af,f̃ .

Suppose we have rejection sampling with the proposal distribution as g(x) but the scaling

constant as H/A = 1/p instead of H. This would have the acceptance probability

Pr(accept x|proposed x) = min

{
1,

f(x)

g(x)/p

}
. (3.21)

So the overall probability of accepting is

pf,f̃ =
∑
x

Pr(propose x) Pr(accept x|proposed x) =
∑

x∈B∪C−

g(x)
f(x)

g(x)/p
+
∑

x∈C+

g(x)

=
1

1/p

( ∑
x∈B∪C−

f(x) +
∑

x∈C+

g(x)/p

)
=
Af,f̃

1/p
,

(3.22)

where Af,f̃ is the area of f(x) under the sampled distribution. So now we can find the TVD exactly
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in terms of pf,f̃ and p:

TVD(f(x), f̃(x)) = 1−Af,f̃ = 1−
pf,f̃
p
. (3.23)

The value of p can be estimated from the acceptance rate in rejection sampling as in the previous

section, but we also need to estimate pf,f̃ . This can be done by rejection sampling with the above

acceptance rule. Note that we only use this rule for estimating the TVD, not for sampling from

the target distribution. However, we will already need to calculate f(x) for sampling from the

target GBS distribution and the rest of the calculation is efficient. Therefore additionally keeping

a count of the proportion of proposed outcomes that would be accepted under this rule has a

negligible impact on the speed of the rejection sampling algorithm. As this acceptance rule requires

knowledge of p, we first need to estimate p as before. The error on p is carried through when

estimating pf,f̃ and amplified. If the upper limit on p is used such that some value pUL = αp, where

α > 1, only the outcomes in B ∪ C− are scaled in pf,f̃ and so

pf,f̃ ,UL =
∑

x∈B∪C−

pULf(x) +
∑

x∈C+

g(x) =
∑

x∈B∪C−

αpf(x) +
∑

x∈C+

g(x)

≤
∑

x∈B∪C−

αpf(x) +
∑

x∈C+

αg(x) = αpf,f̃ .
(3.24)

Therefore, if an upper limit on p is used in the acceptance rule and in the denominator when

estimating the TVD, we find an upper limit on the TVD:

TVDUL = 1−
pf,f̃ ,UL

pUL
= 1−

pf,f̃ ,UL

αp
≥ 1−

αpf,f̃
αp

= TVD. (3.25)

A disadvantage to this method is if we don’t want to store all the values of f(x) as we calculate

them, we must divide the sample size in two, using the first group to estimate p and the second to

estimate pf,f̃ using the approximate value of p found. Reducing the sample size for each estimation

further reduces the accuracy of both the estimates of p and pf,f̃ , compared to the method to

estimate the upper bound of the TVD.

3.3.3.3 Comparison of the upper bound method and exact method

Both the above methods require estimating the probability of accepting which introduces some

error due to finite sample size. In the first method, we find an upper bound to the TVD, so our

estimate might be overly generous. However, in the second method, we also need to estimate the

probability of accepting under the adapted rule which adds more error and again this might give

an overly generous estimate for the TVD. In some situations, one method may give a tighter bound

than the other. For example, when the upper bound is found, the first inequality uses A ≤ 1 and

so the upper bound is closer when A approaches 1. The second inequality is also closer to equality

as A approaches 1. Hence this is a good estimate when A is close to 1 and therefore the TVD is

small, but not if it is big. On the other hand, as the exact method relies on estimating two values
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Figure 3.10: Testing the estimation of the TVD. Many data points were taken for various problem
sizes to determine numerically how close the estimated TVD is to the correct value. These are
plotted for the uniform distribution (circles) and peaked distribution (stars) for both the upper
bound method (blues) and the exact estimate method (pinks). Plots (a), (b), (c), (d) and (e)
correspond to sample sizes of 100, 1000, 10,000, 100,000 and 1,000,000 respectively. Increasing the
sample sizes reduces the standard deviation as expected. The green line is y = x which is the ideal
relationship. The upper bound method is quite far from this for higher TVDs, but a good estimate
at lower (and more useful) TVDs.
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with a finite sample size, this estimate will be good for a large sample size but suffer from a small

sample size. Generally we are interested in the case where the TVD is quite small, TVD < 0.1,

otherwise the sampling approximation is not good enough. When the upper bound is close to the

real value, the error from the upper bound method is dominated by the error due to a finite sample

size in estimating p. For the exact method, we are estimating the actual TVD and so the errors

always only arise from finite sample size. However, because in this method two variables need to be

estimated with one depending on the other, the error due to finite sample size is likely higher for the

exact method that the upper bound method. In addition, the sample size to estimate each of these

variables is half compared to estimating p in the upper bound, further increasing the uncertainty.

We numerically tested the estimated TVD for various values of actual TVD and plot them for

different sample sizes in fig. (3.10). In the above analysis nothing was assumed about the number

of modes or photons or the proposal distribution and therefore the error in the estimation ought

not to depend on these properties. The uniform proposal is marked with circles while the peaked

is given by stars to distinguish between them. As expected they follow the same patterns. There

is a higher concentration of the peaked events at higher TVDs, but this is only because the hill

climbing was run for various numbers of probabilities (5, 10, 15, 20) in order to generate events

with varying TVDs and hill climbing is less accurate for the peaked distribution as found in the

previous section. Events were simulated for N = 5 and 10 with M = 6 and 12. For clarity they are

not distinguished in the graphs but are equally distributed and clearly follow the same pattern.

In fig. (3.10), the green line marks where the estimated TVD is equal to the actual TVD and so

the aim is to get as close to this line as possible. For a sample size of only 100 proposed states, the

estimated TVD with both methods is often very far from the actual value and so cannot be used

to determine the TVD. With a sample size of 1000, the spread is significantly reduced, with the

deviation in the upper bound method smaller than in the exact method due to the larger sample

size for estimating the variables. For the higher TVD values the upper bound is far from the correct

value and so cannot be used in these cases. For a sample size of 10,000, the patterns are quite clear

with the error due to sample size becoming small. For small TVDs the upper bound may be a

slightly better estimate because the error due to upper bounding is very small. However, the exact

estimate is also quite good for this sample size. As the sample size is increased further to 100,000

and 1,000,000, the patterns are very clear with almost no deviation for the exact method. There is

still some variance in the upper bound method. This is because the tightness of the upper bound

does not only depend on the actual TVD but the entire distribution.

It is not possible to know which method will guarantee the closest estimate so, given both

methods do not significantly slow down the rejection sampling, we can calculate both estimates of

the TVD and take the minimum value to give the best estimate. We choose 100,000 sample size to

give a good estimate of the TVD. Although this is quite a lot of outcomes to test it is completely

independent of the number of modes and photons and therefore does not suffer from scaling issues.

Also, because this sample size takes into account all the rejected proposed outcomes, the sample

size of the target distribution may be significantly lower and therefore it is reasonable that we will

have this sample size in applications.
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3.3.4 Complexity of Gaussian boson sampling with rejection sampling

The overall aim of this chapter is to estimate the efficiency of using rejection sampling while still

sampling from a good approximation to the GBS distribution. In the previous sections we have

tested the efficiency of the hill climbing algorithms and found a method to estimate the accuracy.

The final piece of the puzzle is to estimate the efficiency of the accept-reject part of the algorithm.

Again this can be estimated with numerical tests. The efficiency of the accept-reject part of the

algorithm is the expected number of probabilities that need to be calculated per each accepted pro-

posed state. We fixed the number of probabilities in the hill climbing as was found in the previous

section for each number of modes and ran the rejection sampling algorithm to find a sample of size

100,000 for 100 instances with different Haar random unitaries. The number of probabilities calcu-

lated during the rejection sampling was recorded and from this the average number of probabilities

to accept one proposed outcome was determined.

The results are plotted in fig. (3.11) for M = 6, 10 and 14. The left-hand side graph shows

the estimated TVD using the method described previously as a function of the number of photons.

Although the standard deviation is high, the average estimated TVD is approximately 0.05 for

most of the data points which is the limit we fixed setting how long to run the hybrid hill climbing.

This confirms that the chosen parameters for the hill climbing were good. For M = 6 for the

peaked distribution, the TVD is a little high at approximately 0.1. This suggests that the hill

climbing parameter found for this case was an underestimate, which is possible where parameters

are determined numerically. The right-hand side graph gives the scaling with the number of photons

of the average number of required probabilities to accept a proposed state. As expected the number

of probabilities to be calculated is generally lower for the peaked distribution. For 6 modes, the

average number of probabilities is very low, but as seen in the left-hand side plot, it is more

approximate than the other cases and so is not a fair comparison. For 10 modes, the peaked

distribution is more efficient but not significantly and for 14 modes, the distributions have very

similar efficiencies. This suggests that the higher the number of modes, the less effective the peaked

proposal distribution is compared to the stepped distribution.

In fig. (3.12), the same values are plotted but this time as a function of the number of modes.

Because the scaling of the hill climbing parameter was only found for 6, 10 and 14 modes, for the

others the worst-case of those three was used. In agreement with the plot scaling with the photon

number, the peaked distribution gives a slightly high estimate of the TVD around 6 modes. The

uniform seems to be more accurate with the estimated TVD closer to 0.05 as expected. The right-

hand side plot again confirms that the peaked distribution is more efficient in the reject-accept

part of the algorithm for all cases. However, unlike when running the hill climbing, there is a clear

dependence of the efficiency on the number of modes, with more modes reducing the efficiency.

When deciding which proposal distribution is better the total number of probabilities must be

taken into account. This depends on the number of photons and modes but also the sample size. If

the number of probabilities in the hill climbing is h and the average number to accept one outcome

is a, then the total number of probabilities t is t = h+Nsa. This number should be found for both

proposal distributions to decide which is the best one to use.
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Figure 3.11: The scaling with photon number of the number of probabilities in rejection sampling.
Plot (a) shows the estimated TVD when sampling with the hill climbing parameter set from pre-
vious numerical tests. The hill climbing parameter was fixed to ensure the TVD is approximately
0.05. This plot suggests that the majority of the parameters were chosen well except the peaked
distribution with 6 modes which has an unexpected high TVD. The plot in (b) shows the average
number of probabilities that needs to be found to output a single sample on average. For each prob-
ability a hafnian needs to be calculated and so this determines the efficiency of the algorithm. The
efficiency generally follows a linear trend with the number of photons. The lines of best fit are given
by the following equations: for the uniform distribution: y = 0.33N + 3.09, y = 0.45N + 3.27 and
y = 0.41N +3.90 for M = 6, 10 and 14 respectively; for the peaked distribution: y = 0.11N +2.43,
y = 0.31N + 2.80 and y = 0.46N + 3.11.
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Figure 3.12: The scaling with number of modes of the number of probabilities in rejection sampling.
Plot (a) shows the estimated TVD when sampling with the hill climbing parameter set from previous
numerical tests. The hill climbing parameter was fixed to ensure the TVD is approximately 0.05,
which is largely confirmed in this graph. The plot in (b) shows the average number of probabilities
that needs to be found to output a single sample on average. For each probability a hafnian needs
to be calculated and so this determines the efficiency of the algorithm. The efficiency generally
follows a linear trend with the number of modes. The lines of best fit are given by the following
equations: for the uniform distribution: y = 0.25M +1.91, y = 0.39M +2.98 and y = 0.48M +3.46
for N = 4, 8 and 12 respectively; for the peaked distribution: 0.25M +1.17, y = 0.47M +0.75 and
y = 0.64M + 0.40.
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3.4 Discussion

In this chapter, we have presented two possible proposal distributions for rejection sampling: the

stepped distribution and the peaked distribution. From numerical testing, it seems that for both

proposal distributions the maximum/maxima probabilities can be estimated in time that is linear in

the number of photons and without scaling with the number of modes. The efficiency of the reject-

accept part also scales linearly with the number of photons, but in addition there is linear scaling

with the number of modes too. This means both proposal distributions are a feasible way to sample

from a GBS distribution. In general, the peaked distribution loses its advantage in efficiency as the

number of modes or photons grow and therefore it is easier to simply use the uniform distribution

in general which is quicker to sample from and has a lower overhead in the hill climbing algorithm.

The accuracy and efficiency of this algorithm depend heavily on the particular instance of GBS,

with the numerical data presented here having large error bars. However, the method to estimate

the TVD after sampling is a good way to test the accuracy of the sample. In this way, although

the accuracy cannot be guaranteed beforehand, the correctness of the algorithm can be verified in

hindsight.

Further testing could be done to find the scaling for GBS distributions with displacement or

unequal squeezing. However, it is unfeasible to test every possible scenario and reasonable to apply

the relationships found above in these cases with the security that the accuracy can be tested

afterwards. It is also possible that a better proposal distribution can be found to increase the

efficiency. It is not clear how the exact condition f(x) ≤ Hg(x) can be ensured for most outcomes

for a general proposal distribution and that is the reason it is not addressed in this thesis.
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Chapter 4

Simulating Gaussian Boson

Sampling with Metropolised

Independence Sampling

“A Wrackspurt... They’re invisible. They float in through your ears and make your

brain go fuzzy. I thought I felt one zooming around in here.” - Luna Lovegood

In the previous chapter we looked at rejection sampling as a method to sample from the Gaussian

boson sampling (GBS) distribution without needing to calculate the full probability distribution.

The efficiency of rejection sampling is very dependent on the proposal distribution used. The

need to know how to scale the proposal distribution such that it is always higher than the target

distribution is very restricting to the proposal distributions we can consider. In this chapter we

analyse a Markov chain Monte Carlo method which does not have this requirement and so there is

more flexibility to the choice of proposal distributions. We begin by introducing the algorithm in a

general setting.

4.1 Markov chain Monte Carlo

4.1.1 Markov chains

A discrete-time process can be described by a sequence of random variables, {X1, X2, ..., Xt, ...},
where Xt gives the state of the process at time t and each time a stochastic process is started, a

different chain emerges according to some probability distribution. The set of all values each state

can take is called the state space, denoted Ω. A discrete-time Markov chain describes such a

stochastic process with the defining property that the probability of the state at time t is directly

dependent only on the state at time t− 1 and independent of all other previous states [69, 70]:

Pr(Xt = xt|X1 = x1, . . . , Xt−1 = xt−1) = Pr(Xt = xt|Xt−1 = xt−1). (4.1)
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The probability of transitioning from the state at time t to the state at time t + 1 is given by

the Markov kernel. In the following, we assume a finite discrete state space (as is the case for

GBS), but the treatment can be generalised to a continuous state space by using integrals instead

of summations. Of course, because Pr(xt−1) depends on xt−2, there is implicit dependence on

previous values, but that information is contained in the last variable and hence knowledge of the

path to get to that value is unnecessary. However, in order to predict the state multiple time steps

ahead we can use recursion by summing over all the possible paths. For example, for two time steps

we sum over all the possible intermediate points:

Pr(xt+2|xt) =
∑
xt+1

Pr(xt+2|xt+1)Pr(xt+1|xt). (4.2)

This means that, given a starting state, it is possible to find the probability of the state at any time

by the Markov kernels at each point in the chain:

Pr(xt|x0) =
∑

xt−1,...,x1

Pr(xt|xt−1)Pr(xt−1|xt−2) · · ·Pr(x1|x0). (4.3)

For a discrete state space, Ω, all the transition probabilities at each time point can be given by

an |Ω| × |Ω| matrix P where

P
(t)
i,j = Pr(Xt = xi|Xt−1 = xj). (4.4)

This matrix is called the transition matrix. A Markov chain is time-homogeneous if the transition

probabilities do not change over time and therefore P (t) = P (t′). If a vector of length |Ω|, µ(t),

describes the probability of being in each state at time t, the probability at any time can be given

by It is convenient to write the probabilities of being in each state at time t in a vector of length

|Ω|, µ(t). For time-homogeneous chains, the probabilities at time t can be determined from the

initial probabilities as

µ(t) = P tµ(0). (4.5)

For an eigenvector of P , v, with eigenvalue 1, Pv = v, the eigenvector describes a probability

distribution that is stationary as applying the transition matrix any number of times leaves the

probability distribution unchanged and fixed as time increases. Because the transition matrix

describes probabilities, all elements are non-negative and the sum of the rows and columns must be

1. By the Perron-Frobenius theorem, this matrix must have such an eigenvector and the probability

distribution converges to it over time. In a sense, as the chain progresses it ‘forgets’ the starting

point and P (Xt|X0) → P (Xt) as t → ∞. When the probabilities are independent of the starting

position, they are now time independent. So for t > tmin the probability distribution is stationary.

To ensure that the distribution converges to a stationary distribution, the chain must satisfy

three properties [71]. These are

1. Irreducible

The chain must be able to reach all possible states from any starting point. This means the
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transition kernel must satisfy

Pr(Xt = xi|X0 = xj) > 0 (4.6)

for some t and all i, j. This is trivially true if we allow transitions between any two states in

the state space.

2. Aperiodic

The chain must have some probability of returning to a state at random points in the chain,

not cycling back to states with some regular occurrence. To be precise a chain is aperiodic if

greatest common divisor {t > 0 : Pr(Xt = xi|X0 = xi) > 0} ∀i (4.7)

This is trivially true if Pr(Xt = xi|Xt−1 = xi) > 0 for all t and i, ie. it is always possible to

add the same state to a chain as the previous one.

3. Positive recurrent

The chain is expected to return to its initial state in a finite time. This is trivially true if we

allow any transition to be reversed (ie. if a transition in one direction is possible, it is also

possible in the other direction). An equivalent definition is that a stationary distribution,

π(x), exists such that if the initial state is sampled from the stationary distribution the chain

will continue to sample from that distribution:

π(xj) =
∑
i

π(xi)Pr(Xt = xj |Xt−1 = xi). (4.8)

4.1.2 Monte Carlo

We draw on methods in statistical analysis used to estimate the expectation values associated with

probability distributions such as moments, interquartiles etc. The foundation of this method is that

E[ϕ(x)] =

∑
i ϕ(xi)f(xi)∑

i f(xi)
≈ 1

n

n∑
q=1

ϕ(xq) (4.9)

where f(xi) is the probability associated with drawing value xi, and ϕ(x) is any function of x. Thus

drawing n samples from a distribution can be used to estimate the expected value of a function

ϕ(x). For our purposes we are interested in drawing samples from a distribution without using

them to estimate an expectation value. So we focus here on how the samples can be drawn using

Markov chain Monte Carlo methods, rather than why they are useful in statistics.

4.1.3 Metropolis-Hastings algorithm

The main idea for drawing samples from a distribution using a Markov chain is that a chain is formed

where the stationary distribution is the target distribution. Once the distribution has converged,
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states will be added to the chain with probability according to the target distribution. To build a

Markov chain, it is necessary to define the transition probability.

The Metropolis-Hastings algorithm introduces a process for a state to transition [72, 73]. As

in rejection sampling, a state is suggested from a proposal distribution that is efficient to sample

from and this state is accepted or rejected with some probability. Here, if the state is accepted it is

added to the Markov chain, whereas if it is rejected the previous state must be added again. The

probability of accepting a proposed state y given the current state is x is given by

Pr(accept y|x) = min

(
1,
f(y)g(y, x)

f(x)g(x, y)

)
, (4.10)

where f(x) is the target probability of x and g(x, y) is the proposal probability of y if the current

state is x. Note that the proposal probability may now have dependence on the current state. So

the probability of transitioning from x to y, with x ̸= y is

Pr(Xt = y|Xt−1 = x) = g(x, y)min

(
1,
f(y)g(y, x)

f(x)g(x, y)

)
= min

(
g(x, y),

f(y)g(y, x)

f(x)

)
. (4.11)

The probability of adding the same state to the chain is simply one minus the probability of adding

a different state. So the probability of transitioning from state x to state x is

Pr(x|x) = 1−
∑
y ̸=x

min

(
g(x, y),

f(y)g(y, x)

f(x)

)
. (4.12)

So the Metropolis-Hastings algorithm forms a chain with transition matrix defined by eqs. (4.11)

and (4.12) with the introduction of a proposal distribution. Similarly to rejection sampling, this

proposal distribution must be efficient to sample from, any probability must be able to be calculated

for the accept rule and the closer the proposal to the target distribution, the more likely the chain

updates the state at each step and the faster it converges to the target distribution.

4.1.4 Metropolised independence sampling

Metropolised independence sampling (MIS) is a particular case of the Metropolis-Hastings algorithm

where it is assumed that the proposal distribution is independent of the current state in the chain:

g(x, y) = g(y). This is the version we choose to use for simulating GBS and so we check under what

conditions on the proposal distribution the Markov chain satisfies the three requirements to converge

to a stationary distribution with this algorithm. We also confirm that the target distribution is the

stationary distribution.

The first condition is irreducibility. This is satisfied if we can always transition to any possible

state. The probability Pr(Xt = y|Xt−1 = x) is only zero if g(x) = 0, g(y) = 0 or f(y) = 0. In the

case that f(y) = 0, this means it is not possible to sample that outcome from the target distribution

and hence that state should not be included in the state space. The state x must have previously

been sampled from the proposal distribution (and accepted) and therefore g(x) ̸= 0. So as long

as g(y) ̸= 0, the chain is irreducible. A valid proposal distribution for this algorithm must have
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a positive probability for all states that have positive target probabilities. This is also true for

rejection sampling.

The second condition is aperiodicity. This is satisfied if it is possible to add the same state

twice in a row, ie. Pr(x|x) ̸= 0. The probability of remaining in the same state is given by the

probability of rejecting the proposed state or proposing the same state. There will always be at

least one value of x (with the smallest f(x)/g(x) value) for which any proposed state is guaranteed

to be accepted. So we require there to be a non-zero probability of proposing the current state, at

least for these values. Given the proposal probabilities are independent of the current state and it

must have been proposed already to have been added to the chain, this must always be true. Hence

the second condition is naturally satisfied in this algorithm for any proposal distribution.

The final condition is positive recurrence, ie. that if a state is sampled from the stationary

distribution, the next state will be drawn from the same distribution. We show this is always true,

if the stationary distribution is the target as desired. The probability of sampling x at some point

in the chain, Xt, is the probability that x is proposed and accepted or that x was the previous state

in the chain and the proposed state was rejected:

Pr(Xt = x) =
∑
y

f(y)g(x)min

{
1,
f(x)g(y)

f(y)g(x)

}
+
∑
y

f(x)g(y)

(
1−min

{
1,
f(y)g(x)

f(x)g(y)

})
=
∑
y

min {f(y)g(x), f(x)g(y)}+
∑
y∈B

f(x)g(y)

(
1− f(y)g(x)

f(x)g(y)

)
,

(4.13)

where B = {y : f(y)g(x) < f(x)g(y)}. The first sum includes all possibilities for proposing x and

accepting it, and the second sum encompasses when the previous state in the chain was x and the

proposed state was rejected. From the first to second line we used the fact that the terms in the

second sum where y /∈ B contribute zero to the sum and so can be removed. By further splitting

the sums over y ∈ B and y /∈ B, the above expression can be simplified as

Pr(Xt = x) =
∑
y∈B

f(y)g(x) +
∑
y/∈B

f(x)g(y) +
∑
y∈B

f(x)g(y)

(
1− f(y)g(x)

f(x)g(y)

)
=
∑
y∈B

f(y)g(x) +
∑
y/∈B

f(x)g(y) +
∑
y∈B

f(x)g(y)−
∑
y∈B

f(y)g(x)

=
∑
y/∈B

f(x)g(y) +
∑
y∈B

f(x)g(y)

=
∑
y

f(x)g(y)

= f(x).

(4.14)

Hence, once a state has been drawn from the target distribution at any point, any state afterwards

will also be sampled from the target distribution. Therefore a stationary distribution exists and it

is the target distribution.

The steps for building the Markov chain in MIS are:
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1. Take a sample point x1 from the proposal distribution and take this as the start of the chain;

2. For i = 2 to Nl (the desired length of the chain):

(a) Sample a state xi from the proposal distribution;

(b) Evaluate the update probability, p = f(xi)g(xi−1)
g(xi)f(xi−1)

;

(c) Add xi to the chain with the probability p or add xi−1;

This algorithm builds a chain that converges to sampling from the target distribution. Our aim

is to sample from the target distribution for any sample size. This can be done by taking states

from the chain but there are two things to consider. The first is that the states at the beginning

of the chain have not yet converged to the stationary distribution and so must be discarded. The

number of outcomes we discard is called the burn-in time or the mixing time and there is no

exact method to calculate this but tests can be done to find a reasonable estimate. The second

issue with this method is that although any particular state in the chain is sampled from the target

distribution once it has converged, the probabilities are not independent of the previous states. This

is the Markov property that the transition probability depends on the previous state and due to the

algorithm adding the same state if the proposed one is rejected, it is much more likely that a state

will be repeated in a Markov chain than if two independent samples were drawn. In Monte Carlo

techniques, it is not necessary to have independent samples to approximate the average values,

and so this correlation between neighbouring states is often ignored. However, for our purpose we

generally do want independent samples and so we need to consider this when we form our chain.

To remove this correlation we include a thinning interval τ such that only every τth state is kept

when we take our sample. Both the burn-in time and thinning interval add inefficiencies into the

algorithm and can be reduced by having a better proposal distribution. There is a trade-off between

having a good convergence and lack of correlation with the speed of the sampling algorithm, which

can be chosen by the user. We note that the proposal distribution does not need to satisfy the

condition f(x) ≤ Hg(x) as for rejection sampling which allows for more options when considering

the proposal distribution.

4.2 Metropolised independence sampling applied to Gaus-

sian boson sampling

When applying MIS to any sampling problem, the three problems to fix are finding a good proposal

distribution, and determining the burn-in time and the thinning interval. In this section we discuss

several possible proposal distributions for GBS and in the following section numerically test the

burn-in times and thinning intervals for some of these proposal distributions.

4.2.1 Stepped uniform proposal

As with rejection sampling we can use the stepped distribution for MIS, where we still want to take

into account the probability of each photon number, with outcomes within each N being uniformly
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Figure 4.1: Proposal distributions for MIS. For an example Haar random unitary, the target dis-
tribution is shown by the green bars. Two proposal distributions are illustrated by the blue lines.
The stepped proposal distribution is shown in (a). Here the height of each level is the average
probability of patterns with that photon number. In (b), the peaked proposal is shown. For this,
the n maxima patterns with n photons are set as the target probabilities and the remaining patterns
take the average value of the other patterns for each photon number.

distributed, but the height different for each N . Although in rejection sampling this was to reduce

the area underneath the proposal distribution as the maximum values in each photon number are

potentially very different, in MIS we choose to do this because it is a closer distribution than the

uniform to the target GBS distribution. It is also as easy to sample from the stepped distribution

and to calculate its probabilities as long as the probability of each photon number is known. The

height in each photon number is fixed simply by ensuring that the total probability of the outcomes

with N photons is equal to the probability of sampling N photons from the target distribution.

Therefore the height of the uniform distribution for N photons is given by the average probability:

g(x(N)) =
Pr(N)

|Ω|
, with |Ω| =

(
N +M − 1

N

)
, (4.15)

where the (N) superscript denotes an outcome with N photons and Pr(N) is the probability of

getting N photons from the squeezed (and displaced) input states in the GBS device withM modes.

This distribution is shown in fig. (4.1a). To sample from this probability distribution, first sample

the photon number and then sample from the outcomes with N photons uniformly. The methods

to sample the number of photons and photon patterns uniformly is given in sections (3.2.1) and

(3.2.2.1) respectively.

4.2.2 Peaked proposal

By replacing some of the proposal values with the target values, the proposal distribution must

always be closer to the target distribution. When one value is changed, all others must be rescaled

so that it is still normalised. When the value is changed to the target value, that particular outcome

is better approximated by the proposal and therefore reduces the TVD between the proposal and

target distributions, but also the other outcomes must on average become better approximated
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when they are renormalised further improving the TVD. As more values are replaced by the target

probability the proposal distribution becomes closer and closer, where in the limit of all values being

replaced the proposal distribution is exactly the target distribution. We can use this technique to

suggest a proposal distribution where some of the outcomes are given by the target value. As this

requires the calculation of the target probabilities which is time costly the distribution must only

require a polynomial number of values to calculate. We note that the biggest reduction in TVD is

found when there is the biggest difference between the proposal and target probabilities.

We choose to begin with the stepped uniform distribution as described above and therefore the

outcomes with the biggest difference must be either the ones with the largest or smallest target

probabilities. Because the probabilities are lower bounded by zero and upper bounded by one and

the uniform probability will be increasingly close to zero as the sample space increases, it seems

reasonable that the largest deviations from the uniform height will be for the outcomes with the

greatest target probabilities. Therefore we choose to replace a polynomial number of the highest

valued outcomes with their target probabilities. This is very similar to the peaked distribution in

the previous chapter where we found the N highest probabilities. However, for rejection sampling

the Nth maximum set the height of the uniform part whereas for MIS the height is set to ensure

the proposal distribution is normalised. This distribution is shown in fig. (4.1b) So the proposal

probability is given by

g(x(N)) =

f(x), if x is in N maxima

Pr(N)−
∑

f(xpeak)

(N+M−1
N )−N

, otherwise
(4.16)

4.2.3 Coherent states

We can consider proposal distributions that are directly related to the GBS set-up in the hope that

their distributions will be closer than the uniform distribution that is independent of the input

states and interferometer. In particular we can consider the distribution from using states of light

that are classically efficient to simulate as the input states instead. One example is the coherent

state. So if we want to find a state that gives a similar probability distribution to our squeezed

(and possibly displaced) states, we have a few options to try. The first is in the case that there

is displacement in the input states. Here we can just ignore the squeezing and set the proposal

distribution by using only the coherent component of the states. Intuitively this will give the biggest

overlap with the target distribution when we have a lot of displacement compared to the squeezing.

This distribution is shown in fig. (4.2c).

In the case where there is no displacement, this distribution cannot be used but instead a

displacement parameter can be chosen such that this coherent state has the same mean number of

photons in each mode as the input squeezed state. The mean number of photons in a squeezed state

with squeezing parameter r is given by sinh2 r and the mean number of photons in a coherent state

with displacement parameter α is |α|2, and so by equating these values the correct displacement

parameter can be found for the proposal distribution. Using this equivalent coherent state is

applicable if there is displacement too. This distribution is shown in fig. (4.2d).
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Recall from eq. (2.61) that a multimode coherent state passing through an interferometer is

another multimode coherent state. Sampling a measurement of a coherent state in the Fock basis is

efficient as it follows a Poisson distribution N ∼ Pois(|α|2) which can easily be sampled. Calculating

the probability of a particular detection pattern is also efficient and given in eq. (2.54) for each

mode.

We note that only the relative squeezing and displacement in different modes determine relative

differences in the probability distribution of a particular photon number. That is, scaling the

squeezing and displacement will only affect the probability distribution of the total number of

photons and not the relative probabilities of each pattern conditional on the total photon number.

Therefore, for equal squeezing and displacement, the values of the squeezing and displacement do

not affect the target or proposal distributions and so the two methods of fixing the displacement

parameter are completely equivalent, only when fixing the photon number.

In the event that the photon number is fixed, sampling from the Poisson distribution will not

guarantee sampling a valid outcome with N photons. It is possible to keep sampling until a valid

outcome is found, however it is possible to sample an outcome conditional on the total number

of photons. If ni ∼ Pois(|βi|2) for all modes i, we wish to find a sample (n1, . . . , nM ) such that∑
i ni = N . From the relationship between Poisson distributions and multinomial distributions,

(n1, . . . , nM ) ∼ Mult(N, π), where π = (π1, . . . , πM ), and πi = |βi|2/
∑

j |βj |2.

4.2.4 Distinguishable squeezed states

We next take inspiration from the proposal distribution used in applying MIS to standard boson

sampling, which was distinguishable photons. Many of the derivations in this section have been ex-

plored in a manuscript regarding partial indistinguishability [16]. First, we review indistinguishable

and distinguishable photon probabilities in standard boson sampling. For boson sampling with an

input state s ∈ ZM , where we allow any integer number of indistinguishable photons in each input

mode, the probability of an output pattern t ∈ ZM , with
∑

s =
∑

t = N , is given by

Probindist(t|s) =
1

s!t!
|Perm(U{t̃,s̃})|2, (4.17)

where s! =
∏

i si!, U
{r,c} is the submatrix of U made by keeping rows r and columns c, and s̃ ∈ ZN

is the pattern s in first quantisation. Now we consider the scenario where instead the photons are

distinguishable to all photons in the other modes. We note that photons in the same mode behave

the same regardless of whether they are distinguishable or indistinguishable and hence we can

equivalently consider all photons to be distinguishable. The probability of an outcome t with input

distinguishable photons is

Prdist(t|s) =
1

t!
|Perm(|U{t̃,s̃}|2), (4.18)

where |U |2 is the elementwise modulus square of the matrix.

For a proposal distribution for GBS we instead suppose distinguishable squeezed states at the

input. An example of this distribution is shown in fig. (4.2a). We consider distinguishable squeezed
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states such that photons that come from different input modes are distinguishable. First, we look

at how to calculate the probabilities of this distribution. Because distinguishable photons do not

interfere, we can find the probability of an outcome by summing the probabilities (rather than

probability amplitudes) of all the combinations of which mode each photon came from:

Pr(t) =
∑

t{1},...t{M}∑
t{i}=t

M∏
i=1

Pr(t{i}) (4.19)

where Pr(t{i}) is the probability of getting pattern t{i} from the squeezer in input mode i. We can

find the probability Pr(t{i}) by assuming there is no squeezing in all modes apart from mode i. We

can substitute this into eq. (2.122) to get

Pr(t{i}) =
1

t{i}! cosh ri

∣∣∣Haf(UR{i}U⊤){t̃
{i},t̃{i}}

∣∣∣2 , (4.20)

where R{i} is the matrix with R
{i}
i,i = tanh ri and 0 elsewhere. Due to the sparsity of the matrix

R{i}, the expression for the product of matrices above can be simplified to

(UR{i}U⊤)j,k =
∑
v,w

Uj,vR
{i}
v,wU

⊤
w,k = Uj,iRi,iU

⊤
i,k = tanh riUj,iUk,i. (4.21)

The hafnian is actually calculated for a submatrix of this and so when the corresponding rows and

columns for the detected output pattern t{i} are included, the row j in the submatrix corresponds

to row t̃
{i}
j in the original matrix and column k to column t̃

{i}
k :

[(UR{i}U⊤){t̃
{i},t̃{i}}]j,k = (UR{i}U⊤)

t̃
{i}
j ,t̃

{i}
k

= tanh riUt̃
{i}
j ,i

U
t̃
{i}
k ,i

(4.22)

This can instead be written in terms of a submatrix of the unitary with rows t̃{i} and all columns,

U{t{i}}:

[(UR{i}U⊤){t̃
{i},t̃{i}}]j,k = tanh riU

{t̃{i}}
j,i U

{t̃{i}}
k,i . (4.23)

We use the notation U{r} to mean a submatrix of U formed by keeping rows in r and all columns,

but the notation U{r,c} to keep rows in r and only the columns in c. From the definition of the
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hafnian, and denoting the number of photons detected from mode i as ni =
∑

t{i}, we find

Haf[(UR{i}U⊤){t̃
{i},t̃{i}}] =

1

(ni/2)!2(ni/2)

∑
σ∈Sni

ni/2∏
j=1

tanh riU
{t̃{i}}
σ(2j−1),iU

{t̃{i}}
σ(2j),i

=
tanhni/2 ri

(ni/2)!2(ni/2)

∑
σ∈Sni

ni/2∏
j=1

U
{t̃{i}}
σ(2j−1),iU

{t̃{i}}
σ(2j),i

=
tanhni/2 ri

(ni/2)!2(ni/2)

∑
σ∈Sni

ni∏
k=1

U
{t̃{i}}
σ(k),i

=
tanhni/2 ri

(ni/2)!2(ni/2)

∑
σ∈Sni

ni∏
k=1

U
{t̃{i},i}
σ(k),k

=
tanhni/2 ri

(ni/2)!2(ni/2)
Perm(U{t̃{i},i}),

(4.24)

where U{t̃{i},i} is the matrix formed by taking the rows given by t̃{i} and column i of U repeated

ni times. From line 2 to 3 the odd values of k correspond to the σ(2j − 1) terms and the even

values of k to the σ(2j) terms. From the third to fourth line, the column index does not change

and so by replacing all columns in the unitary matrix by that column, all indices refer to the same

column. In the final line, the definition of the permanent was used.

So the probability of outputting the pattern t{i} with non-zero squeezing in only mode i can be

found by substituting eq (4.24) into eq (4.20):

Pr(t{i}) =
1

t{i}! cosh ri

∣∣∣Haf(UR{i}U⊤){t̃
{i},t̃{i}}

∣∣∣2
=

(
ni!

(ni/2)!22ni

tanhni ri
cosh ri

)(
1

ni!t{i}!
|Perm(U{t̃{i},i})|2

)
= Pr(ni)Prindist(t

{i}|ni).

(4.25)

Hence, the probability of this output is the same as the probability of getting ni photons from

the squeezed state multiplied by the probability of outputting this pattern from standard boson

sampling with ni photons input in mode i. We now show that the output pattern probability for

indistinguishable photons input in one mode is the same as if the photons were distinguishable.

The permanent of a matrix with all columns identical is a sum over product terms where each term

in the sum is the same. Hence the permanent in this case can simply be written as one product

term:

Perm(U{t̃{i},i}) =
∑

σ∈Sni

ni∏
k=1

U
{t̃{i},i}
σ(k),k = ni!

ni∏
k=1

U
{t̃{i},i}
k,k , (4.26)

where ni! comes from the number of terms in the sum. When taking the modulus square of this
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permanent, it can be moved to elementwise modulus square of the unitary:

|Perm(U{t̃{i},i})|2 =

∣∣∣∣∣ni!
ni∏
k=1

U
{t̃{i},i}
k,k

∣∣∣∣∣
2

= ni!
2

ni∏
k=1

∣∣∣U{t̃{i},i}
k,k

∣∣∣2 = ni!Perm
(
|U{t̃{i},i}|2

)
. (4.27)

Therefore the probability of the output pattern is the probability of producing ni distinguishable

photons and evolving them through the unitary:

Pr(t{i}) =

(
ni!

(ni/2)!22ni

tanhni ri
cosh ri

)(
1

t{i}!
Perm

(
|U{t̃{i},i}|2

))
= Pr(ni)Prdist(t

{i}|ni). (4.28)

This suggests we can sample from this distribution by first sampling how many photons the squeezed

state produces and then sampling from standard boson sampling with distinguishable photons. Al-

though this probability is written as a permanent, from the single product equivalence, it is possible

to calculate in O(1). This expression can be substituted into eq. (4.19) to find the probability of

output pattern t from distinguishable squeezed states inM modes. The sum in eq. (4.19) comprises

of all the ways of matching the photons in the output pattern to the input modes (ie. splitting

the output pattern into groups depending on which squeezed state they originated). To examine

how many ways there are of doing this, we first consider all the combinations of how ti photons in

output mode i were distributed among the input modes. This is simply all the ways of selecting ti

modes from M values with replacement:
(
ti+M−1

ti

)
. So across all output modes the number of ways

of distributing the photons in the input modes is

M∏
i=1

(
ti +M − 1

ti

)
. (4.29)

In the worst-case scenario every photon is detected in different modes and so ti = 1 for N modes and

0 otherwise. In this case the binomial coefficient reduces to either M when ti = 1 or 1 otherwise.

Therefore the complexity is upper bounded by MN . In the best-case scenario, all photons appear

in one output mode and the complexity is simply
(
N+M−1

N

)
, which is the lower bound. However,

because squeezing only produces photons in pairs in the ideal case, the number of photons from

each input mode must be even and so this reduces the total number of ways of matching the output

and input photons.

Rather than summing over all the ways of partitioning the photons according to the originating

mode, it is possible to sum over all the possible input patterns. So we consider only how many

photons came from each mode, not which photons originated in each mode. Clearly this will have

a lot fewer terms to sum over if we do not assign all the photons to an input mode. We now show

mathematically that this is a valid method.

We start with combining eqs. (4.28) and (4.19) and splitting the sum by first summing over all

the ways of dividing the photons between the input modes and then over all possible patterns given
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the division:

Pr(t) =
∑

t{1},...,t{M}∑
t{i}=t

M∏
i=1

Pr(ni)Prdist(t
{i}|ni) =

∑
n1,...,nM∑

ni=N

∑
t{1},...,t{M}∑

t{i}=t

|t{i}|=ni

M∏
i=1

Pr(ni)Prdist(t
{i}|ni). (4.30)

Here ni is the number of photons detected from input mode i and |t{i}| is the number of photons

in the pattern t{i} from input mode i, which must be equal. This expression can be rearranged to

extract the probability of an output pattern from distinguishable input photons:

Pr(t) =
∑

n1,...,nM∑
ni=N

(
M∏
i=1

Pr(ni)

)


∑
t{1},...,t{M}∑

t{i}=t

|t{i}|=ni

M∏
i=1

Prdist(t
{i}|ni)

 =
∑
s

Pr(s)Prdist(t|s), (4.31)

where s corresponds to the input pattern and gives the number of photons that originated from

each mode. The sum is over all possible input patterns. This proves that the probability from

distinguishable squeezed states is the probability of outputting that pattern from distinguishable

photons weighted across all possible input patterns. The complexity of calculating the probability

this way is given by the number of input patterns to sum over multiplied by the complexity of

calculating a single probability. The calculation of the probability of the input state is efficient O(1)

and the probability for distinguishable single photons is given by the permanent of a positive N×N
matrix which has complexity O(N2N ) when restricting to the exact probability. In the case where

both even and odd numbers of photons can be produced by each source, the number of potential

input patterns is given by
(
N+M−1

N

)
because we must choose N modes with possible repeated modes.

However, when restricted to the case where photons come in pairs as they do with perfect squeezed

states, we can now pair the photons together and consider where each pair is produced and so

there are
(
N/2+M−1

N/2

)
possible input states. So the overall complexity of calculating a probability

from distinguishable squeezed states is O(
(
N+M−1

N

)
N2N ) for general states or O(

(
N/2+M−1

N/2

)
N2N )

when photons are produced in pairs. In reality this is a simplification of the complexity as photons

bunched in the same input or output modes reduce the complexity, but we keep it general for the

worst-case scenario. Also the matrix that the permanent is taken for is real and positive and there

exists a polynomial algorithm to approximate this. However, the effect on MIS of the error due

to this approximate algorithm is unknown and as such we choose to avoid this and find the exact

probability.

In the above derivation, a zero displacement was assumed when the hafnian was reduced to the

permanent. It can be extended to non-zero displacement input, where now the probability of a

pattern from each squeezed state is given by

Pr(t{i}) =
exp
(
1
2Re(α

†URU⊤α∗)− |α|2
)

t{i}! cosh ri

∣∣∣Lhaf(γ{t̃{i}}, (UR{i}U⊤){t̃
{i},t̃{i}}

)∣∣∣2 . (4.32)

99



CHAPTER 4. SIMULATING GAUSSIAN BOSON SAMPLING WITH METROPOLISED
INDEPENDENCE SAMPLING

We do not show the derivation but the same treatment will find that the probability is still given

as the sum over the possible input patterns with the probability of the input state now given

by the probability for squeezed displaced states and the distinguishable photon probabilities are

unchanged.

So we have found two ways to calculate the probabilities for this proposal distribution, but

we also need to be able to sample from it efficiently. From the chain rule presented in eq. (4.31)

the distribution from distinguishable input squeezed states can be sampled by first sampling the

number of photons from each input mode and then sampling the output pattern from the input

distinguishable single photons. As both of these are efficient to sample, the overall algorithm is

also efficient. The input patterns can be sampled by calculating the probabilities of all number of

photons up to some chosen cut-off photon number. The probabilities of n photons from squeezed

vacuum and squeezed displaced states are given by eq. (2.66) and eq. (2.72) respectively. To sample

from these input distinguishable single photons, the output mode of each photon can be sampled

separately as they do not interfere. The probability of a photon input in mode s being detected in

output mode t is given by the modulus square of a permanent of a 1× 1 matrix, which is simply a

number, and so sampling the output mode for each input photon involves sampling from aM -length

known distribution.

When sampling the number of photons in each input mode, there are two complications to

consider. The first is that the necessity to introduce a cut-off number of photons in each mode adds

some error. This can be removed by allowing the cut-off in each mode to be that of the overall

cut-off photon number and then repeatedly sampling until a pattern with less than the overall cut-

off number of photons is produced. As long as the cut-off is sufficiently high that the distribution

above this number of photons is negligible, the probability of sampling within the allowed number

of photons is high and as such most samples will not need to be repeated and hence the efficiency of

the sampling algorithm is not too adversely affected. The second complication is that the number

of photons is not fixed when sampling the input pattern. The probability of N photons is the same

for the proposal as target distribution and therefore sampling the input pattern naturally samples

the photon number rather than needing to explicitly sample the photon number and then sampling

the proposal pattern conditional on the number of photons as we have done with other proposal

distributions. So in general this is not a problem. However, if it is desired to fix the photon number,

for example for testing purposes, repeating until the correct number of photons are detected can be

very inefficient if the photon number is not very probable. As the number of photons is conserved

between the input and output modes, we can post-select the input patterns without needing to

sample the output pattern until a valid input is found. Sampling the input patterns are very

efficient and so repeating until success is not too problematic unless the probability of success is

low. However, the probability of N can be extremely low and hence it is important to find a method

to sample the input pattern conditional on the total number of photons.

Here we introduce such an algorithm. First by the definition of conditional probability

Pr(si = ni|S = N) =
Pr(si = ni, S = N)

Pr(S = N)
, (4.33)
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where si is the number of photons in mode i, and S is the total photon number across all modes.

The quantity Pr(S = N) can be efficiently found according to eq. (3.13), but it can also be ignored

as it is constant for all values of ni. So the quantity of interest is Pr(si = ni, S = N). If the total

number of photons across all modes is N and the number of photons in mode i is ni, this condition

is completely equivalent to ni photons in mode i and N − ni photons in all modes except mode i.

Because the modes are independent, the number of photons in mode i does not affect the number

of photons in all other modes. Therefore the probability can be written as

Pr(si = ni, S = N) = Pr(si = ni, S\i = N − ni) = Pr(si = ni)Pr(S\i = N − ni), (4.34)

where S\i is the total number of photons in all modes except i. We note that it is efficient to find the

number of photons in any subset of the modes by using eq. (3.13) and also to find the probability

of a particular pattern in a subset of the modes because the modes are independent at the input.

We can use the chain rule of probability to iteratively sample each mode to get a sample with N

photons in total. For each mode, the distribution to sample from is the probability conditional on

the overall total number of photons and the sampled pattern in the previous modes:

Pr(si = ni|S = N ∩ s<i = n<i) =
Pr(si = ni ∩ S = N ∩ s<i = n<i)

Pr(S = N ∩ s<i = n<i)

=
Pr(si = ni ∩ S>i = N − ni −N<i ∩ s<i = n<i)

Pr(S>i−1 = N −N<i ∩ s<i = n<i)

=
Pr(si = ni)Pr(S>i = N − ni −N<i)Pr(s<i = n<i)

Pr(S>i−1 = N −N<i)Pr(s<i = n<i)

=
Pr(si = ni)Pr(S>i = N − ni −N<i)

Pr(S>i−1 = N −N<i)
,

(4.35)

where the notation s<i and s>i is used to succinctly write the state of the modes before/after

the ith mode respectively: s<i = (s1, . . . , si−1) and s>i = (si+1, . . . , sM ), and similarly S<i and

S>i are the total number of photons in modes before/after the ith mode. Hence to sample the

input pattern, start with the first mode and sample the number of photons in each mode in turn

by evaluating the above probability for all ni up to N . The probability for ni > N − N<i will

be zero because the second term in the numerator will be the probability of a negative number of

photons which is impossible. Therefore, the probability distribution is finite and the sampling will

be exact. The denominator is independent of the number of photons in mode i and therefore is

a normalisation constant which doesn’t need to be directly calculated but the distribution could

instead be normalised once all the probabilities have been found. It is slightly more efficient to

simply sum the probabilities to find this constant rather than calculate it directly. The full algorithm

is outlined in algorithm (3).

We have shown an efficient method for sampling from this proposal distribution, however the two

ways shown of calculating the probability are both much more inefficient than the target probability.

Finding a method to calculate this proposal probability with a complexity no worse than the (loop)

hafnian remains an open problem. Whilst it seems likely that a solution would exist, until it is
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Algorithm 3 Sample input photon pattern

Input: N - desired number of photons
Output: s = (s1, . . . , sM )

Begin with state s = (0, . . . , 0), and nprev = 0
for m = 1 to M do

for n = 0 to N do
Find Pr(n) = Pr(sm = n)Pr(

∑M
j=m+1 sj = N − n− nprev)

Sample nm from the normalised distribution Pr(n) and update sm = nm
nprev → nprev + nm

return n

found, this proposal distribution is not useful for MIS and is only included and analysed in this

work with the prospect that a solution may be found.

4.2.5 Independent pairs and singles

The problems with the previous proposal distribution were caused by the generation of photons in

each state not being independent even though the photons did not interfere in the interferometer.

Specifically the probability of measuring two photons in two input modes with squeezed states is not

the same as four photons in one mode and none in the other. Here we introduce another proposal

distribution to overcome this, motivated by the mapping of GBS to standard boson sampling with

the interferometer given by URU⊤. For standard boson sampling with distinguishable photons,

the modulus square of the permanent is moved inside to act on the matrix elementwise. We can

do the same thing with the probability for GBS where we relate the matrix inside the hafnian to

the equivalent interferometer in standard boson sampling. Because each pair in GBS becomes an

input and output photon in the mapping, each pair of photons behaves independently including in

the generation.

The probability of generating an output pattern t for independent pairs of photons is

Pr(t) = N1

Haf
(
(|URU⊤|2){t̃,t̃}

)
t!

, (4.36)

for input squeezed vacuum states. If displacement is also included, individual photons are also

generated which we also treat as independent. So the probability of a pattern is generalised for

input squeezed coherent states to

Pr(t) = N2

Lhaf
(
(|γ|2){t̃}], (|URU⊤|2){t̃,t̃}

)
t!

. (4.37)

where N1 and N2 are normalisation constants to be found. Because each pair or single is produced

independently, the probability distribution for the total number of photons must be different to the

target distribution. We wish to determine the above normalisation constants and also to find the

probability of the total number of photons.
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We begin with just displaced states which naturally act independently and so the probabil-

ity distribution is already known. A photon is produced from a coherent state with probability

proportional to |α|2. This implies that the probability of producing n photons is

Pr(n) = ND
|α|2n

n!
, (4.38)

where we multiplied the probabilities for each photon being produced and divided by n! due to the

number of ways of ordering the photons. This normalisation constant can be found by equating

the sum of the probabilities of all photon numbers from zero to infinity with one, and employing

the power series expansion of the exponential:

∞∑
n=0

ND
|α|2n

n!
= ND exp

(
|α|2

)
= 1 =⇒ Pr(n) = exp

(
−|α|2

) |α|2n
n!

, (4.39)

which agrees with the known result and the number of photons from a coherent state follows a

Poisson distribution.

Now we apply the same treatment to squeezed states where each pair is independent. We

assume that the probability of producing a pair from a squeezed state is proportional to tanh2 r.

This implies that the probability of producing n pairs of photons is

Pr(2n) = NS
tanh2n r

2nn!
, (4.40)

where we multiplied the probabilities for each photon pair being produced and divided by n! to

account for the number of ways to order each pair of photons and 2n for the ordering of the two

photons in each pair. This normalisation constant can be found using the same methods as above:

∞∑
n=0

NS
tanh2n r

2nn!
=

∞∑
n=0

NS
(tanh2 r/2)n

n!
= NS exp

(
1
2 tanh

2 r
)
= 1

=⇒ Pr(n) = exp
(
− 1

2 tanh
2 r
) (tanh2 r/2)n

n!
,

(4.41)

so that the number of photon pairs from a squeezed state also follow a Poisson distribution, 2n ∼
Pois( 12 tanh

2 r).

Finally, we look at squeezed coherent states by considering all combinations of photons from the

squeezing part and the displacement part. For example, if four photons are detected, all four could

be ‘squeezing photons’, or they could all be ‘displacement photons’ or they could be two of each.

Note that the restriction such that the squeezing photons must come in pairs puts a restriction on

whether an odd or even number of photons came from the displacement. So we find the probability

of n independent photons from squeezed displaced states to be

Pr(n) =

n/2∑
q=0

NDS
tanh2q r

2qq!

|α|2(n−2q)

(n− 2q)!
, (4.42)
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which sums over getting 2q squeezing photons and n − 2q displacement photons. To find this

normalisation constant, we again sum over all possible total photon numbers:

∞∑
n=0

n/2∑
q=0

NDS
tanh2q r

2qq!

|α|2(n−2q)

(n− 2q)!
=

∞∑
q=0

∞∑
n=2q

NDS
tanh2q r

2qq!

|α|2(n−2q)

(n− 2q)!

= NDS

∞∑
q=0

tanh2q r

2qq!

∞∑
n=2q

|α|2(n−2q)

(n− 2q)!

= NDS

∞∑
q=0

tanh2q r

2qq!

∞∑
i=0

|α|2i

i!

= NDS

∞∑
q=0

tanh2q r

2qq!
exp
(
|α|2

)
= NDS exp

(
1
2 tanh

2 r
)
exp
(
|α|2

)
,

(4.43)

where in line three we introduced the variable i = n − 2q. So the probability of n photons from a

squeezed coherent state is

Pr(n) = exp
(
− 1

2 tanh
2 r − |α|2

) n/2∑
q=0

tanh2q r

2qq!

|α|2(n−2q)

(n− 2q)!
, (4.44)

which is not Poissonian. To sample the number of photons in this case it is easy to sample the

number of photons from the squeezing and separately the number of photons from the displacement

and we do not need to worry about the probability above.

This analysis is for the case of the input state, but by conservation of photons through the

interferometer these normalisation constants are the same at the output state. We can also gen-

eralise the Poisson description to the state at the output. To sample the photon pattern at the

output, the squeezing and displacement photons can be sampled separately. The displacement can

be placed after the interferometer by applying the unitary α → Uα and so sampling from this is

just sampling from a Poisson distribution on each mode with a new mean value. The squeezing

photons can be sampled at the input and then sampled as distinguishable single photons through

the interferometer.

Sampling as described above does not fix the total number of photons. Because the probability

distribution of the total number of photons is different to the target probability there would be

a poor overlap between the target and proposal distributions. So we scale the probabilities such

that the probability of n photons is the same for the target and proposal distributions. We have

found the photon number probabilities above for a single mode. The sum of variables distributed

according to a Poisson distribution is itself distributed by a Poisson distribution where the mean pa-

rameter is given by the sum of the individual parameters: X1 ∼ Pois(λ1), . . . , Xm ∼ Pois(λm) =⇒∑
iXi ∼ Pois(

∑
i λi). Therefore the photon number for all M modes for squeezed vacuum states

is distributed by 2n ∼ Pois( 12
∑

i tanh
2 ri). Because the probability for squeezed displaced states

is not Poissonian, we cannot use the same method. The reason it is not Poissonian is because
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although the sum of Poissonian variables is also Poissonian, here it is the number of photon pairs

from squeezing that is Poissonian and not the individual photons. However, we can use the poly-

nomial method introduced in section (3.2.1) to find the probability of the number of photons from

squeezed displaced states.

In order to sample from this scaled distribution, we need to first sample the number of photons

from the same distribution as for the target and then sample the pattern conditional on this outcome.

One possibility is to simply sample a pattern until one with the correct number of photons is output,

but this could be slow as the photon number is unlikely in the proposal distribution. As both the

distributions from squeezed states and coherent states are Poissonian, it is easy to sample from

these distributions separately conditional on the outcome using the multinomial method explored

previously. So the only piece of the puzzle left is how to sample the proportion of photons from

the squeezing and displacement conditional on the total number of photons. This can be done by

building a probability distribution for the probability of 2i photons from squeezing and N − 2i

photons from displacement for all i = 0, . . . , N2 . This is simply the probability of measuring 2i

squeezing photons conditional on measuring a total of N photons

Pr(Nsq = 2i|Ntotal = N) =
Pr(Nsq = 2i,Ntotal = N)

Pr(Ntotal = N)
=

Pr(Nsq = 2i,Ndis = N − 2i)

Pr(Ntotal = N)

=
Pr(Nsq = 2i)Pr(Ndis = N − 2i)

Pr(Ntotal = N)
.

(4.45)

Sampling the number of squeezing photons from this distribution naturally fixes the number of

displacement photons too.

Hence we have shown that this distribution can be sampled efficiently either with fixing the

photon number (and with a different probability distribution for the photon number) or not. The

probabilities are given by the hafnian of an N ×N positive matrix which to calculate exactly has

time complexity O(N32N/2). An example is shown in fig. (4.2b). For the case of no squeezing (as

depicted in the figure), in the event that there is only two photons, there are no other pairs from

which to be independent or not and therefore the proposal probabilities are exactly the same as

the target distribution. If there is displacement, this is no longer true as squeezed coherent states

produce the displacement and squeezing photons not independently and so the proposal distribution

is not true to the input states.

4.3 Numerical analysis of the efficiency and accuracy of

Metropolised independence sampling

When using MIS it is important to be able to fix the burn-in time and thinning interval to ensure

the sampling approximation is good without knowledge of the distribution itself. Here we perform

a few numerical tests to find where these parameters need to be set for problem sizes that are small

enough to be directly tested. The patterns at small problem sizes can then be extrapolated beyond

the region that is testable. We also want to compare the proposal distributions to determine which
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Figure 4.2: State dependent proposal distributions for MIS. For an example Haar random unitary,
the target distribution is shown by the green bars. Four proposal distributions are illustrated by
the blue lines. In (a), the proposal is distinguishable squeezed states where the probability of
photons from the source remains the same as for the target but the photons act distinguishably
through the unitary. The proposal distribution in (b) is independent pairs and singles (IPS). Here
we assume the photons are produced independently in pairs from squeezing and individually from
displacement. This changes the probabilities of n-photon events so we rescale the distribution such
that the probability of each photon number is the same as in the target distribution. This graph
depicts a GBS distribution with no displacement in the input states so the proposal is exactly the
same for two-photon events. Graphs (c) and (d) depict a coherent state proposal where we ignore
the squeezing in our state and use only the probability contribution from the displacement in (c)
and find the equivalent displacement such that the average number of photons from each source is
the same as for the squeezed state in (d). The proposal in (c) is only valid if there is displacement
in the input states and so the graph plotted here is for equal contributions from squeezing and
displacement. The other graphs are for the case of no displacement.
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provide the most efficient sampling. For all testing, we fix the squeezing as equal in all modes (with

a value of one) and sometimes include displacement which is also equal in all modes. We also test

everything for a fixed number of photons, rather than allow the number of photons to be sampled,

for simplicity. Because of this the two proposed coherent states are equivalent and we just test the

one coherent proposal.

4.3.1 Acceptance rate test

When proposing a state y to add to a Markov chain, with previous state x, it is added with

probability given by

Pr(accept y|x) = min

(
1,
f(y)g(x)

f(x)g(y)

)
. (4.46)

So the overall probability of accepting a state independent of what state is proposed and the previous

state is given by

Pr(accept) =
∑
x,y

a(x)g(y)min

(
1,
f(y)g(x)

f(x)g(y)

)
,

=
∑
x,y

a(x)

f(x)
min (f(x)g(y), f(y)g(x)) ,

(4.47)

where a(x) is the distribution from which the previous state x was sampled. The chain is started

by sampling from the proposal distribution and so at the start the approximate distribution a(x) =

g(x). Once the chain has converged, the previous state was sampled from the target distribution:

a(x) = f(x). In the above equation a(x)/f(x) is smallest on average when a(x) = f(x) and largest

when they are the most different. As the approximate distribution starts at the proposal and

converges towards the target, the probability of accepting converges from its highest value when

a(x) = g(x) to its minimum value when a(x) = f(x). Therefore the value of the probability of

accepting a proposed state is indicative of how much it has converged. This will be used in the

next section to determine the burn-in time. However, just the average probability of accepting is

a good indication of how quickly the chain converges and how often a new state is added which

determines the thinning interval. The higher the probability of accepting, the faster the chain is

able to change and converge. Therefore we used this first to compare the proposal distributions to

gauge which are generally better.

The probability of accepting can be numerically estimated by running the MIS chain many

times and noting how many times the proposed state was accepted at each point in the chain.

This requires running a lot of chains to get a good estimate but does not necessitate a brute force

calculation of the whole probability space. This means we are able to test this beyond where we

can brute force sample. Therefore we use this to compare the various proposal distributions.

We ran 100 chains for different Haar random unitaries of length 1000 and find the average rate

of accepting for a range of numbers of modes and photons. These values are plotted in fig. (4.3).

These give rather interesting results with the most notable observations being that the uniform and

peaked distributions both perform better without displacement contrary to the IPS and coherent

distributions. It is expected that the IPS and coherent distributions become closer to the target
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Figure 4.3: The probability of accepting in MIS. Plots are shown for the proposal distributions:
uniform, peaked, IPS and coherent, and a selection of displacement parameters: no displacement,
α = 1.08 and α = 1.53. These displacement parameters are chosen such that the mean number of
photons (sinh2 r+ |α|2) has no, less and more contribution from displacement (|α|2) than squeezing
(sinh2 r) respectively (squeezing parameter r = 1). The heatmaps show the estimated probability
of accepting. The uniform and peaked distributions are worse when displacement is increased,
whereas the IPS and coherent distributions perform better. The IPS and coherent distributions are
extremely similar when displacement is included.
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Figure 4.4: Comparison of the probability of accepting. Plot (a) shows the distinguishable pro-
posal distribution with little variation in the plotted problem sizes, but getting slightly worse with
increasing numbers of photons or modes. Plot (b) shows the acceptance rate from IPS minus that
from the distinguishable proposal to more clearly show the comparison. The data suggests that IPS
is better when there is a smaller density of photons per mode but the distinguishable proposal would
be better otherwise. Plot (c) shows the acceptance rate from IPS minus the uniform. This follows
a similar trend where the IPS is preferable in the low density region. Finally plot (d) shows the
value for the uniform minus the distinguishable proposals. Generally this shows that the uniform
is better, especially as the number of photons or modes increases.
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Figure 4.5: The probability of accepting over the length of the chain. This is an example plot
for how the probability of accepting changes as the chain converges. Each point is found by the
proportion of times the proposed state was accepted at that point in the chain out of 100 runs
each with a different Haar random unitary. As the data is very noisy, we averaged the probability
over 10 consecutive points in the chain. This example is for the IPS proposal in 10 modes with
no displacement. From this plot the required burn-in is found to satisfy that the acceptance rate
is within 0.001 of the final value, which is found by averaging over the last 500 states in the 1000
length chain. These points are indicated by the blue dashed lines.
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Figure 4.6: Determining the required burn-in. Plots (a), (b) and (c) show the estimated burn-in
required for the coherent, IPS and uniform distributions respectively. There is some fluctuation in
this data which may hide any patterns in the burn-in times. However, for the IPS distribution,
it is clear that the burn-in does not seem to increase as the number of modes increase but is
significantly affected as the number of photons increase. In general, it seems that the uniform
distribution converges much faster than the others with the coherent distribution being the worst.
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Figure 4.7: The burn-in time as a function of the number of photons. This is a plot of one row
(M = 10) in fig. (4.6) to make clearer the relationship between the burn-in time and the number
of photons for (a) coherent, (b) IPS and (c) uniform proposal distributions. The data points follow
linearly increasing trends although there is a lot of variance. We plot the lines of best fit for each
proposal distribution and the equations for the burn-in are τ = 17.7N+195.00, τ = 21.9N−111.67,
and τ = 1.07N+7.67 for the coherent, IPS and uniform distributions respectively. This supports the
previous observation that the uniform distribution is more efficient even as the number of photons
increases beyond the testable region.

distribution as the displacement dominates and in the limit of infinite displacement, both become

equal to the target distribution. However, when the displacement is set such that the mean number

of photons from the displacement is just less than from the squeezing, the two plots look extremely

similar which is somewhat surprising. Further, having a high density of photons per mode is

detrimental to the efficiency of these proposal distributions. However for the uniform proposal,

the high numbers of photons have better acceptance rates when there is displacement. It is worth

noting that when adding displacement, the size of the sample space significantly increases as odd

numbers of photons are also allowed and therefore a decrease in efficiency could be due to the

increase in sample space rather than the direct effect of displaced states.

Calculating the proposal probabilities for the distinguishable squeezed states proposal is very

slow and so we plot fewer modes and photons for only zero displacement in fig. (4.4). The acceptance

rate is quite high but it is difficult to compare to the other distributions by eye. Therefore we also

include comparison plots to show the difference between the distinguishable, IPS and uniform

proposal distributions. We find that different proposals suit different combinations of the number

of modes and photons.

The distinguishable distribution is slow to calculate and seems like it is often outperformed by

just the uniform disrtribution and so we do not continue to analyse it for the burn-in and thinning

interval. Also the peaked distribution does not show signs of notable improvement (in fact it

sometimes looks worse) and due to the extra overhead of the hill climbing to estimate the maxima

values, we do not consider this distribution worth investigating further.

4.3.2 Testing the burn-in time

As the Markov chain converges over time to the stationary distribution and we wish to take samples

from this distribution, we need to know how long it takes for the chain to have converged. In theory,

the chain will continue to converge forever getting asymptotically closer to the distribution, so we

need to choose how far we allow our distribution to be from the target. This is an arbitrary choice,
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where we can choose for example the maximum TVD we are willing to concede. We use several

tests to determine how much of the chain we need to discard as a function of the number of modes

and photons. We use this to predict the average runtime of MIS. Tests exist that can find the

burn-in from the chain itself, however these methods scale with the size of the sample space which

in this case is combinatorial and so we cannot apply these post-sampling tests [74, 75].

We can investigate the required burn-in time τ by estimating the probability of accepting at all

burn-in times up to a maximum. This can be done by running many independent Markov chains

and finding the fraction of times at each point in the chain the proposed state was accepted. Then

we choose some ϵ such that we want to find the burn-in time at which the estimated acceptance

probability is within ϵ of the minimum acceptance once the chain has converged. This is assumed

to be given by the average acceptance probability over the end of the chain which is a good estimate

as long as the acceptance probability is approximately constant by the end of the chain. Choosing

a smaller ϵ enforces a better convergence to the target distribution.

An example of the estimated acceptance probability for each point in the Markov chain is shown

in fig. (4.5). From the estimated probability of accepting at each point in the chain, we find the

length of the chain required such that the probability of accepting at that point is within 0.001 of

the final probability. From the graph it is clear that there is quite a lot of uncertainty likely caused

by the finite sample size but also possibly by variation in different Haar random unitaries. This will

have an impact on the accuracy of the determined burn-in times. This process is run for all numbers

of modes and photons in our testing limits for the three proposal distributions: IPS, uniform and

coherent and this is plotted in fig. (4.6). Although the data is noisy, there is a strong suggestion

that the uniform distribution requires the smallest burn-in time and so is the most efficient. To

see the scaling with the number of photons more clearly, we plot the acceptance rate as a function

of the number of photons for 10 modes for each probability distribution in fig. (4.7). These show

reasonable aligning with linear trends with the uniform having a much shallower gradient.

4.3.3 Testing the thinning interval

As mentioned previously, because there is a much higher probability of adding the same state to

the chain than sampling that state independently there is a significant chance of repeating the same

state multiple times in a chain which results in correlation between samples taken from the chain. It

has been suggested that caching the samples and rearranging can be used to remove the correlation

[76]. However, the order of the samples is not usually important and this method will still have

correlation in the sample but not neighbouring ones. Similarly to testing the burn-in time, we run

numerical tests in the region that is classically possible and look for scaling patterns to extrapolate.

The probability of accepting gives an indication of how likely two neighbouring states will be the

same, but if the proposed state is the same as the current state it is guaranteed to accept it but the

state does not change. This is not necessarily a reflection on this state having a high probability as

if the proposal probability is high, it will be proposed often and always accepted regardless of the

target probability for this state. Therefore a more appropriate metric to use to test the correlation

is the probability of repeating the same state. Again this is likely to change with it settling once the
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chain has converged. Therefore we take the average probability of repeating a state after a burn-in

time of 500 which from the previous section is enough for most problem sizes to have comfortably

converged.

The parameter we wish to fix is τthin, where every τthinth state is added to our sample. To do

this we can choose a value r, the desired probability of repeating, and find r1, the probability of

repeating from one state to the next in the chain. So we need to find τthin such that rτthin1 < r, ie.

the probability that a state is repeated all τthin times. The choice of r is arbitrary with the lower the

number, the less correlation in the sample. We fix r = 0.01 and estimate the probability of repeating

by averaging the proportion of times the state was the same as the previous one for all states after

500 in a chain of length 1000, repeated for 100 different Haar random unitaries. The results are

shown in fig. (4.8). To more closely analyse the pattern as a function of the number of photons, we

also plot the expected thinning interval for 10 modes for each proposal distribution in fig. (4.9). The

data points follow linear trends quite closely and the gradient of the uniform distribution is much

smaller than the IPS or the coherent proposals. However, the thinning intervals are reasonable for

all problem sizes and extrapolating the worst performing distribution, the coherent proposal, to 100

photons (in 10 modes), we expect a thinning interval of less than 400 which is quite manageable, but

the calculation of a hafnian of that size is already impossible. Therefore, even the poorer suggested

proposal distributions are still quite useful and a viable option for simulating GBS.

4.4 Discussion

In this chapter we have reviewed several proposal distributions and numerically tested their effi-

ciency whilst fixing the accuracy equally for all distributions. Perhaps surprisingly, the uniform

distribution is a good proposal and often has the best convergence and least correlation. However,

the best proposal depends on the number of photons and modes with the IPS distributions having a

particularly strong reliance on the photon density. In all the cases tested, the scaling of the burn-in

time and thinning interval appears to be approximately linear with the number of photons. In some

cases increasing the number of modes will likely increase the efficiency further. The burn-in time

need only add an overhead once regardless of the sample size and although some of the determined

burn-in times were rather high an additional approximately 1000 probability calculations is still

much more favourable than needing to calculate the entire distribution which grows very large very

quickly. The thinning intervals of around 100 are quite reasonable and slow our sampling down by

a factor of 100. When comparing with the acceptance rate in rejection sampling from the previous

chapter, it seems as though rejection sampling might be the faster algorithm. However, one of the

biggest problems with MIS is the inability to know or even estimate what the TVD is between

the sampled and target distributions. We are able to estimate this with rejection sampling, but

at present an efficient way to verify the TVD from a Markov chain with an insurmountable state

space is an open problem. Therefore, we cannot be sure we are comparing the same accuracy of

approximations. The choice of how close to wait for the acceptance probability to get to the final

value and the desired probability of repeating are arbitrary choices which do not tell us about the
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Figure 4.8: Thinning intervals for the MIS proposal distributions. The thinning interval was found
such that the probability of repeating is less than 0.01, after a burn-in time of 500. All values
are averaged over 100 Haar random unitaries. Plots (a), (b) and (c) show the expected thinning
interval for the coherent, IPS and uniform distributions respectively. The coherent distribution
seems to suffer from raising quite quickly as both the number of modes and photons are increased,
reaching much higher thinning intervals than the other distributions. The IPS distribution again
performs much better for regions with a lower density of photons per mode. It scales very well
with the number of modes, however, and may be a good candidate in the case of many modes. The
uniform distribution has small thinning intervals in all tested problem sizes. The appearance of a
slight increase for the small problem sizes is due to there being a much smaller sample space and
so if there are only three possible outcomes (as is the case for two photons in two modes), complete
independent and uniform sampling should have a third probability of repeating. Requiring the
probability to be 0.01 is very low in this case even if the samples were independent. The difference
in the expected repeat probability in uncorrelated samples becomes negligible quite quickly as we
increase the number of modes or photons.
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Figure 4.9: Thinning intervals as a function of the number of photons. This is a plot of one row
(M = 10) in fig. (4.8) to make the relationship between the thinning interval and the number of
photons clearer. A linear trend has been fitted to the data points which align quite well. The lines
of best fit are given by τthin = 3.72N + 11.10, τthin = 1.70N − 3.06, and τthin = 0.19N + 6.82 for
coherent, IPS and uniform distributions respectively.

114



CHAPTER 4. SIMULATING GAUSSIAN BOSON SAMPLING WITH METROPOLISED
INDEPENDENCE SAMPLING

TVD that these choices provide.
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Chapter 5

Chain-Rule Methods in Boson

Sampling

“All good stories deserve embellishment.” - Gandalf

The ultimate aim of this thesis is to find an algorithm that samples from the GBS distribution with

the same time complexity as the calculation of a single probability for a pure state. Previously we

used approximate Monte Carlo methods to do so, but it may also be possible to sample using exact

techniques. In this chapter, we study various algorithms for both standard and Gaussian boson

sampling using the chain rule of probability.

5.1 Sampling photon by photon in boson sampling

5.1.1 Chain rule of probability

In probability, the chain rule can be used when calculating the probability of a joint set of variables.

It formulates the joint probability in terms of conditional probabilities:

Pr(a, b) = Pr(a)Pr(b|a) = Pr(b)Pr(a|b), (5.1)

where we use the notation (a, b) to denote the joint outcome (a∩b). The above rule can be extended

to any number of joint variables:

Pr(x1, . . . , xq) = Pr(x1)Pr(x2|x1)Pr(x3|x1, x2) · · ·Pr(xq|x1, . . . , xq−1). (5.2)

The probabilities of only a subset of the variables (eg. Pr(xi)) form the marginal probability dis-

tribution which completely describes the subset of the variables without knowledge of the other

variables. It is equivalent to summing over the joint probabilities for all values of the unknown

variables: Pr(a) =
∑

b Pr(a, b). Essentially the marginal probability of a subset is the probabil-

ity independent of what the other variables might be. In contrast, conditional probabilities (eg.
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Pr(xi|xj)) describe the probability of a subset dependent on the value of the conditional variables.

It is possible to have a probability that is both marginal and conditional if it is conditional only on

some of the other variables, for example for three variables Pr(x1|x2) is dependent on the outcome

of x2 yet independent of x3.

When sampling from a joint probability distribution, the chain rule can be used to sample one

variable at a time. The first variable is sampled without knowledge of any other variables; that is it

is sampled from the marginal probability distribution. Then the next variable is sampled conditional

on the outcome of the first variable but without knowledge of any of the remaining variables. This

is repeated until the final variable is sampled conditional on all the values previously sampled. The

advantage of this method is that it reduces the total number of probabilities needed to be calculated.

To sample the joint outcome by calculating the entire distribution if each of the q variables can

take r values, a total of rq joint probabilities need to be calculated. However, by sampling one

variable at a time using the chain rule, only qr marginal probabilities are calculated which are

chosen depending on the sequence of outcomes.

5.1.2 Standard boson sampling

In boson sampling, the distribution is over joint variables where the variables can be either the mode

of each photon in first quantisation or the number of photons in a mode in second quantisation. The

size of the sample space is very large; for M modes, if the number of photons N is fixed, because

the photons are not ordered, the sample space has
(
N+M−1

N

)
sample points, and if the number of

photons is not fixed it is even larger consisting of a sum of the binomial coefficients. Therefore, the

chain rule seems like a good candidate for boson sampling. It was introduced as a method of exact

sampling for standard boson sampling by Clifford and Clifford [26]. We briefly review this here as

a starting point for the aim of classically simulating GBS.

In standard boson sampling the number of photons is fixed by the input state and so the first

quantisation is more convenient. As the photons are indistinguishable the pattern corresponds to

the sum over the symmetric permutations of the elements. When this state is measured, the pattern

can be written in many ways and it is convenient to write it in a non-decreasing order. So a detection

pattern of a photon in mode 1 and a photon in mode 2 is written as t̃ = (1, 2) in first quantisation

and t = (1, 1, 0, . . . , 0) in second quantisation, and is measured with probability as determined by

eq. (2.88). However, it is equivalent to sample from a distribution where all orderings are allowed

in the first quantisation, but the number of ways of permuting the elements is accounted for in the

probability. The number of distinct ways of ordering the elements in an output pattern is given by

N !/t̃!. If the probability of measuring the output pattern is given by q(t̃), a new distribution that

does not restrict the elements to be in non-decreasing order is found where each outcome now has

probability p(t̃) = q(t̃)t̃!/N !. This means that the probability of sampling any permutation of an

outcome from this new probability distribution is equal to the probability of sampling that outcome

(which is forced to be in non-decreasing order) in the GBS distribution. So simply ordering the

elements after they are sampled will result in sampling from the same distribution. This equivalent

distribution is more convenient to sample from as the values that each element can have (1, . . . ,M)
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is independent of the previous outcomes (because it does not need to be greater than or equal to

the previous outcome) and the outcomes have more symmetry.

So the task of sampling the output modes of N photons naturally lends itself to using the chain

rule to first sample the mode of the first photon and then sample the mode of each subsequent

photon. This seems straightforward, however, it is important to remember that each probability

using the chain rule is a marginal and conditional probability and so far we have only seen the joint

probabilities of all photons. First we consider the definition of conditional probabilities:

Pr(a|b) = Pr(a, b)

Pr(b)
. (5.3)

When sampling the modemi of photon i, the probabilities of all possible modes Pr(mi|m1, . . . ,mi−1)

need to be calculated. The dependence on the mode mi is only in the numerator in the above equa-

tion and the denominator can be found by normalising once the relative probabilities have been

calculated for all modes. Therefore, the problem can be reduced to needing to know the marginal

probabilities. Clifford and Clifford derived these as follows:

Suppose we want to find the probability of the first n photons in a particular pattern, with the

other N −n photons unknown. The marginal probability is given by summing over all the variables

t̃i, where i > n and the probability p(t̃) = q(t̃)t̃!/N ! can be substituted in to find

p(t̃1, . . . , t̃n) =
∑

t̃n+1,...,t̃N

p(t̃1, . . . , t̃N ) =
∑

t̃n+1,...,t̃N

t!

N !

|Perm(U{t̃,s̃})|2

s!t!
, (5.4)

where each t̃i can take any value between 1 and M to denote the mode in which the photon is

measured. Using the definition of a permanent and then changing the order of the summations, the

probability can be written as

p(t̃1, . . . , t̃n) =
1

N !s!

∑
t̃n+1,...,t̃N

 ∑
σ∈π(s̃)

N∏
x=1

Ut̃x,σ(x)

 ∑
τ∈π(s̃)

N∏
y=1

U∗
t̃y,τ(y)


=

1

N !s!

∑
σ,τ∈π(s̃)

n∏
j=1

Ut̃j ,σ(j)
U∗
t̃j ,τ(j)

∑
t̃n+1,...,t̃N

N∏
i=n+1

Ut̃i,σ(i)
U∗
t̃i,τ(i)

=
1

N !s!

∑
σ,τ∈π(s̃)

n∏
j=1

Ut̃j ,σ(j)
U∗
t̃j ,τ(j)

N∏
i=n+1

M∑
k=1

Uk,σ(i)U
∗
k,τ(i),

(5.5)

where π(s̃) is the set of the N ! permutations of the vector s̃ = (s̃1, . . . , s̃N ). In the first line, the

definition of a permanent is used and going to the second line the sum over elements in the output

pattern and over the permutations of the input pattern are independent and so the order can be

changed, and the elements of the unitary that depend only on the fixed modes in the output pattern

are moved outside of the sum. To go to the third line, we use the fact that the elements in t̃ are

summed over all integers from 1 to M which corresponds to all the ways of choosing N −n ordered

elements from 1 toM (with replacement). This is the reason using the distribution p(t̃) rather than
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q(t̃) simplifies the problem. The matrix U is anM×M unitary and therefore
∑M

m=1 Um,iU
∗
m,j = δij .

This implies that for the second product to be non-zero σ(i) = τ(i) for all i > n, in which case the

product is one. This means the values of σ(i) and τ(i) for i ≤ n are the same n elements chosen

from s̃ but in any order for all non-zero terms. Ignoring all the zero terms, the probability becomes

p(t̃1, . . . , t̃n) =
1

N !s!

∑
σ,τ∈π(s̃)

σ(i)=τ(i),i>n

n∏
j=1

Ut̃j ,σ(j)
U∗
t̃j ,τ(j)

=
(N − n)!
N !

∑
c̃∈Cn

1

c!

∑
σ,τ∈π(c̃)

n∏
j=1

Ut̃j ,σ(j)
U∗
t̃j ,τ(j)

=
(N − n)!
N !

∑
c̃∈Cn

1

c!

 ∑
σ∈π(c̃)

n∏
x=1

Ut̃x,σ(x)

 ∑
τ∈π(c̃)

n∏
y=1

U∗
t̃y,τ(y)


=

(N − n)!
N !

∑
c̃∈Cn

1

c!
|Perm(U{t̃,c̃})|2,

(5.6)

where Cn denotes the set of all the ways of choosing n ordered elements from s̃, and c! denotes the

product of the factorials of c (c̃ in the second quantisation). For example, if s̃ = (1, 2, 2, 3), n = 2

and M = 3, we know s = (1, 2, 1) and there are 6 (non-unique) elements in Cn which are (1, 2)× 2,

(1, 3), (2, 2), (2, 3)×2. For c̃ = (1, 2), c! = 1!×1!×0! = 1 but for c̃ = (2, 2), c! = 0!×2!×0! = 2. In

the first line, the sum is reduced to not include elements σ(i) and τ(i) for i > n as the product term

is independent of these values. As all these terms contribute the same value, we instead include

the factor (N − n)!s!/c! which is the number of ways of arranging the elements such that the first

n elements of σ and τ are a particular pattern (c̃), while the last N − n elements in both are the

same as each other. The (N − n)! comes from all the ways of permuting the last N − n elements

of both σ and τ simultaneously as the order doesn’t matter but they must be the same. The s! is

due to being able to permute values that are the same without changing anything. However, the

c! must be included to remove the permuting of identical elements in c̃ as they are also included

in the sum over Cn. In the second and third lines, the expression is simply rearranged to write the

marginal probability in terms of a permanent.

The complexity of calculating a marginal probability using the expression above is O(n3n). Each

permanent is of an n × n matrix and so takes time O(n2n) and there are
(
N
n

)
elements in the set

Cn which needs to be summed over. For photon n, the probabilities of that photon being in all of

the M modes need to be found which involves the calculation of O[
(
N
n

)
] n × n permanents. The

process must be repeated for all N photons, with increasing size of permanents. Using an identity

[77], the total time complexity to sample each photon is found to be

N∑
n=0

(
N

n

)
n2nM =

2

3
N3NM = O(N3NM). (5.7)

This time complexity is significantly worse than the complexity of calculating a single joint prob-

ability which is O(N2N ). However, the sum over the combination group Cn can be removed by

effectively sampling that group first and further tricks using Gray code can be used to improve the

complexity to O(N2N ) + O(MN2). This is derived in [26], but this step is unnecessary for this
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thesis and so not detailed here.

5.1.3 Gaussian boson sampling

Sampling using the chain-rule method is almost as efficient as the calculation of one joint probability

and as such it seems a promising route to simulate Gaussian boson sampling too. In GBS, there

is an extra degree of freedom in the number of photons, but this is not a problem as this can be

sampled first as described in section (3.2.1) and then a pattern can be sampled conditional on the

total number of photons as done previously in rejection sampling and metropolised independence

sampling. The photon pattern can be sampled photon by photon following the same procedure as

above for standard boson sampling where the mode of each photon is sampled conditional on the

modes of all the previous photons. However, the marginal probabilities need to be replaced to reflect

the correct probabilities for GBS. We can search for an expression for the marginal probabilities

by summing over the joint variables as before. For simplicity we take the case of pure states with

squeezed vacuum states:

p(t̃1, . . . , t̃n) =
∑

t̃n+1,...,t̃N

p(t̃1, . . . , t̃N ) =
∑

t̃n+1,...,t̃N

t!|Haf(B{t̃,t̃})|2

N !t!
∏

m cosh2 rm

=
1

N !
∏

m cosh2 rm

∑
t̃n+1,...,t̃N

∑
σ∈St̃

N/2∏
i=1

Bσ(2i−1),σ(2i)

(N/2)!2N/2

∑
τ∈St̃

N/2∏
i=1

B∗
τ(2i−1),τ(2i)

(N/2)!2N/2


(5.8)

where B = URU⊤ and R = ⊕m tanh rm. Here a problem arises that was not present for the

standard boson sampling case. The symmetric group depends now on the output pattern and so

the summations cannot so easily be swapped and both indices of the matrix B depend on the

element σ from the symmetric group which means the elements corresponding to the marginal

elements t̃1, . . . , t̃n cannot be separated from the unknown variables t̃n+1, . . . , t̃N .

This means the marginal probabilities of a subset of photons cannot be found so easily as for

the standard boson sampling case. A simplification of the marginal probabilities was found by

Wu et al [78]. They found a time complexity of O(M sinh2 r + poly(N)28N/3) which is reduced to

O(M sinh2 r+ poly(N)22N ) for an algorithm that uses a memory overhead of O(M2N ). These are

both improvements on the brute force approach but significantly slower than the time complexity to

calculate one joint probability for a pure state which is O(N32N/2). In the case of the algorithm with

exponential memory requirements this will cause its own limit for scaling due to a lack of memory

and so is not useful beyond a certain size. Although a more efficient method for calculating the

marginal probabilities is not obvious, there is no reason why it cannot be possible. It is still an

open problem whether sampling a photon at a time could provide a method of simulating GBS

with reasonable time complexity.
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5.2 Sampling mode by mode in Gaussian boson sampling

Although the marginal probabilities of a subset of the photons is as of yet not useful in terms of

time complexity, a Gaussian state across a subset of the modes is easy to describe and therefore

the marginal probabilities of a subset of the modes are more convenient. The chain-rule sampling

method can easily be applied in the second quantisation notation, where each variable sampled in

turn is the occupancy number of each mode. This method was utilised by Quesada and Arrazola

[79] to find an algorithm for simulating GBS in time complexity O(MN32N ), a significant improve-

ment on the brute force approach and, apart from polynomial factors, the same complexity as the

calculation of a mixed state probability. We review this algorithm in the following section as a

starting point for the next algorithm.

5.2.1 Sampling with mixed probabilities

Recall that an M -mode Gaussian state can be completely characterised by its vector of means,

x̄ (or ζ̄), and covariance matrix, V (or Σ), where the quadrature values x = ( q
p ) ∼ N (x̄,V )

are distributed according to the multivariate normal distribution. It is a property of multivariate

normal distributions that the marginal distribution over a subset of the variables is also normally

distributed with the reduced vector of means and covariance matrix obtained by simply keeping

the included variables in both the vector of means and the covariance matrix [80]. For example if

variables X2 and X5 are included in the marginal distribution, the new vector of means comprises

elements x̄2 and x̄5 while the covariance matrix is formed by keeping the second and fifth rows and

columns. For Gaussian states, each mode m has two corresponding variables: qm and pm. In the

notation used throughout this thesis, for mode m these are elements m and M +m respectively in

the vector of means and the corresponding rows and columns in the covariance matrix. The state

can be equally described in the complex picture in terms of the creation and annihilation operators

rather than the quadrature operators.

The probability of detecting a photon pattern t is given in eq. (2.110) for input squeezed vacuum

states and eq. (2.111) for input squeezed coherent states which for convenience we repeat here:

Pr(t|x̄ = 0) =
1√

det(ΣQ)

Haf(A{t̃′,t̃′})∏
tm!

, Pr(t|x̄ ̸= 0) =
exp
(
ζ̄†Σ−1

Q ζ̄
)

√
det(ΣQ)

Lhaf(γ{t̃′},A{t̃′,t̃′})∏
tm!

,

(5.9)

where ΣQ = Σ + 1
2I, A = X(I − Σ−1

Q ) and γ = ζ̄†Σ−1
Q . Clearly the probability of measuring

an output photon pattern is a function of the pattern, the vector of means and covariance matrix

only. Therefore, it is possible to calculate the marginal probability of an output pattern in a

subset of modes, A, by simply using the reduced vector of means ζ̄{A} and covariance matrix

Σ{A} corresponding to the subset in the above equations. It is important to note that by taking

the reduced covariance matrix, the matrix A is no longer the direct sum of two smaller matrices

(A ̸= B ⊕ B∗) in general, because the reduced state is no longer pure. As a result the (loop)

hafnian of a 2N × 2N rather than an N ×N matrix needs to be found. So the time complexity for
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a marginal probability is the same as for a mixed state joint probability (O(N32N )).

When using the chain rule to sample, for each variable the probability should be found for every

value it can take and then it is easy to sample from a fully known distribution. In the case of

sampling the output mode of a photon as done in the Clifford and Clifford algorithm for standard

boson sampling, the number of modes is finite and there are no problems. However, in GBS when

sampling the occupation number of a mode, in theory there is no upper bound to the number of

photons detected from squeezed input states. This is not a significant problem though as for a

high enough photon number the probability of detecting more photons is small and can be ignored.

Therefore a cut-off photon number nc should be chosen such that in each mode Pr(ti > nc) < ϵ. Of

course it is always necessary to choose an overall cut-off number of photons across all modes Nc to

be able to sample in a finite time. However the overall limit does not affect the relative probabilities

of the events below the cut-off whereas a cut-off on each mode does because it removes only some

events with each photon number. The algorithm is outlined below:

For mode m = 1 to M :

1. Find the reduced vector of means ζ̄(m) and covariance matrix Σ(m) for the first m modes.

2. Find the corresponding Husimi matrix Σ
(m)
Q and matrix A(m).

3. With all previous outcomes fixed, calculate the marginal probabilities of mode m containing 0

to nc photons conditional on the previous modes using the applicable expression in eq. (5.9):

Pr(tm|t∗1, . . . , t∗m−1) =
Pr(t∗1, . . . , t

∗
m−1, tm)

Pr(t∗1, . . . , t
∗
m−1)

, (5.10)

where the stars denote outcomes fixed in previous steps and tm ranges from 0 to nc. As the

denominator is constant with respect to mode m, it is not necessary to calculate it and the

distribution can be sampled by renormalising after evaluating the numerator for all values of

tm.

4. Sample the value of tm according to the distribution found in the previous step.

This algorithm makes use of properties of Gaussian states to elegantly sample from a GBS

distribution, but has three main drawbacks. The first is that by requiring a cut-off photon number

in each mode a truncation error is introduced. This can be removed using the idea of ‘overloading’

introduced by Qi et al [81]. This is an extension of GBS such that a single mode can detect up to

nc photons or overload which is a separate event that does not distinguish between the number of

photons above the cut-off in any mode. To sample this with the above method, step 3 needs to be

adapted such that the probabilities are found up to nc photons and the probability of any number

above this cut-off is also found. The probability of a number of photons above the cut-off is the

sum of an infinite number of probabilities (because there is an infinite number of possible photon

numbers above the cut-off) which is of course not a practical way to determine the probability of

overloading in a mode. However, using the fact that probabilities must sum to 1, if the normalised

probabilities are found up to the cut-off photon number, the remaining probability is easily found
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by subtracting the sum of the probabilities below from 1. This means that the denominator in

eq. (5.10) must also be calculated, but this comes with no overhead as it was found in the previous

step. Hence, this algorithm can be used to simulate overloaded GBS with no error or time overhead.

It can also be used to simulate GBS up to some overall cut-off Nc without a truncation error. In

this case, every time an overloaded mode is sampled, that sample is abandoned and the algorithm

is repeated until a valid sample is found. Assuming the probability of overloading is small (because

the cut-off in each mode is sufficiently high) this incurs only a small time penalty in occasionally

needing to reject samples, but is the fastest completely exact simulation of GBS.

The second drawback is that the number of photons cannot be predetermined using this algo-

rithm. Although this may not be considered a problem as the number of photons is not fixed in the

quantum device and therefore sampling without a fixed photon number is true to the experiment,

it may be useful for benchmarking or certain applications to be able to sample a set number of

photons. This remains an open problem and an algorithm that sampled the photons sequentially

rather than the modes would fix this. Otherwise, a similar algorithm to that presented in alg. (3)

might be used to fix the number of photons. Here the probability of tm photons in mode m must

include the probability of the photon pattern up to that mode and the probability of N −
∑m

j=1 tj

photons in the remaining modes, where they are now conditional on each other. This raises the

problem of how to find the probability of n photons in a subset of the modes, conditional on the

outcomes in the other modes. At the moment this is an open problem.

The final limitation of this algorithm is the time complexity. As the algorithm relies on the

calculation of mixed state probabilities, even if the full mode state is pure, this limits the overall

complexity of the algorithm to O(N32NM), where the factor of M comes from the case where an

N ×N (loop) hafnian needed to be calculated in every mode. This limitation is addressed in the

following section.

5.2.2 Sampling with pure probabilities

It is possible to reduce the problem of sampling a photon output pattern from a mixed state to

sampling from a pure state. The covariance matrix of a mixed state can be split into two matrices

V = T + W , where T is the covariance matrix of a pure state and W is a positive semidefinite

matrix, using the Williamson decomposition [82]. Using this, a mixed state ρ with vector of means

x̄ and covariance matrix V can be written as a weighted integral over pure states [83],

ρ =

∫
dx p(x) |ψx,T ⟩ ⟨ψx,T | , (5.11)

where |ψx,T ⟩ ⟨ψx,T | is the density matrix of the pure state with vector of means x and covariance

matrix T and x ∼ N (x̄,W ) and so

p(x) =
exp

(
− 1

2 (x− x̄)⊤W−1(x− x̄)
)√

det(2πW )
. (5.12)
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Using this Williamson decomposition the probability of measuring outcome t is given by

Pr(t) = Tr(ρ |t⟩ ⟨t|) = Tr

(∫
dx p(x) |ψx,T ⟩ ⟨ψx,T |t⟩ ⟨t|

)
=

∫
dx p(x)Tr (|ψx,T ⟩ ⟨ψx,T |t⟩ ⟨t|) =

∫
dx p(x) ⟨t|ψx,T ⟩ ⟨ψx,T |t⟩

=

∫
dx p(x)| ⟨ψx,T |t⟩ |2 =

∫
dx p(x)Pr(t| |ψx,T ⟩).

(5.13)

Hence to sample from the mixed distribution it is possible to first sample a displacement vector

from p(x) and then sample from the photon pattern distribution conditional on the displacement

vector outputted. This method reduces the problem of sampling from a mixed state to that of

sampling from a pure state. It does not solve the problem of sampling from a pure state as

although each probability can now be calculated in O(N32N/2), a brute force approach would

require a combinatorial number of probabilities to be calculated. Combining this decomposition

technique with the mixed state chain-rule algorithm was first addressed by Quesada et al. In their

pre-print manuscript they replaced the mixed state sampling step for each mode by sampling a

displacement vector over the subset of modes followed by sampling the occupation number of that

mode conditional on the pure covariance matrix, sampled displacement and sampled occupation

numbers in the previous modes. The following proof was used to show that this method samples

from the correct distribution: For each mode m the distribution sampled from p̃ is

p̃(tm|t∗1, . . . , t∗m−1) =

∫
dx p(x)Pr(tm|t∗1, . . . , t∗m−1,x) =

∫
dx p(x)

Pr(tm, t
∗
1, . . . , t

∗
m−1|x)

Pr(t∗1, . . . , t
∗
m−1|x)

=

∫
dx p(x)

Pr(tm, t
∗
1, . . . , t

∗
m−1|x)

Pr(t∗1, . . . , t
∗
m−1)

=

∫
dx p(x)Pr(tm, t

∗
1, . . . , t

∗
m−1|x)

Pr(t∗1, . . . , t
∗
m−1)

=
Pr(tm, t

∗
1, . . . , t

∗
m−1)

Pr(t∗1, . . . , t
∗
m−1)

= Pr(tm|t∗1, . . . , t∗m−1),

(5.14)

where from the first to second line, the assumption is made that the probabilities of the previous

values are independent of the sampled displacement vector because they were sampled previously

and so cannot depend on something that is sampled later.

This algorithm could be applied to standard boson sampling as an alternative to the Clifford

and Clifford algorithm. However, during the derivation and numerical testing of the standard

boson sampling version, it became clear that the algorithm presented above was not correct. The

error made in the derivation is the assumption that the probabilities are independent of the sampled

displacement vector. Although the values of the occupation numbers in the previous modes are fixed

before the displacement vector is sampled, the probability of measuring that pattern is very much

dependent on the displacement. We suggest that the above problem could be fixed by sampling

the displacement conditional on the pattern sampled in the previous modes. Then the above proof
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becomes

p̃(tm|t∗1, . . . , t∗m−1) =

∫
dxPr(x|t∗1, . . . , t∗m−1)Pr(tm|t∗1, . . . , t∗m−1,x)

=

∫
dxPr(x|t∗1, . . . , t∗m−1)

Pr(tm, t
∗
1, . . . , t

∗
m−1|x)

Pr(t∗1, . . . , t
∗
m−1|x)

=

∫
dx

(
Pr(t∗1, . . . , t

∗
m−1|x)

p(x)

Pr(t∗1, . . . , t
∗
m−1)

)
Pr(tm, t

∗
1, . . . , t

∗
m−1|x)

Pr(t∗1, . . . , t
∗
m−1|x)

=

∫
dx

p(x)Pr(tm, t
∗
1, . . . , t

∗
m−1|x)

Pr(t∗1, . . . , t
∗
m−1)

=

∫
dx p(x)Pr(tm, t

∗
1, . . . , t

∗
m−1|x)

Pr(t∗1, . . . , t
∗
m−1)

=
Pr(tm, t

∗
1, . . . , t

∗
m−1)

Pr(t∗1, . . . , t
∗
m−1)

= Pr(tm|t∗1, . . . , t∗m−1),

(5.15)

where from line 2 to 3, we used Bayes’ theorem. So this would sample from the correct distri-

bution but it introduces a new problem: how to sample from Pr(x|t1, . . . , tm−1). This is in fact

non-trivial. It is possible to post-select by sampling the vector x and accepting with probability

Pr(t∗1 . . . , t
∗
m−1), however this is a mixed state probability and we have reintroduced the need to

calculate quadratically slower probabilities. On top of this, the probability of accepting could be

very small meaning the need to sample many times and calculate many mixed state probabilities.

Therefore this is not a viable way to sample the conditional displacement. This modification to the

algorithm does not provide an obvious way to sample with pure state probabilities. However, we

present an algorithm that does not introduce mixedness when sampling mode by mode [84].

The main innovation we employ to maintain purity in the marginal output states is to perform

pure Gaussian measurements on the modes not included in the marginal modes. A pure Gaussian

measurement on a subset of modes in a pure Gaussian state will leave the unmeasured modes in

another pure Gaussian state. Thus it is quadratically faster to calculate the probabilities conditional

on the measurement outcome in the other modes than to calculate the marginal probabilities. This

is an integral part of the algorithm and so we review heterodyne measurements (a particular pure

Gaussian measurement), both of the full M -mode state and partial measurements on a subset, and

the marginal state of the remaining modes after measuring.

Recall that a Gaussian state can be completely described by its vector of means x̄ and a covari-

ance matrix, either symmetrical over the creation and annihilation operators V , normally ordered

VP or antinormally ordered VQ. Heterodyne detection projects the state onto the quadrature basis

x. To simulate this measurement, an outcome is sampled from the multivariate normal distribution

x ∼ N (x̄,VQ). Therefore the probability of an outcome x from a state with vector of means x̄ and

Q-matrix VQ is

p(x) =
exp

(
− 1

2 (x− x̄)⊤V −1
Q (x− x̄)

)
√

det(2πVQ)
. (5.16)

When measuring a subset of the modes in a multimode state, this is referred to as a partial het-

erodyne measurement. One way to simulate this is to sample a measurement on all modes and

simply discard the outcomes on the modes not measured. Of course you can always sample from a

marginal probability distribution by sampling all the variables and discarding the ones not included.
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As the displacement is sampled according to a multivariate normal distribution, it is also possible

to take advantage of their property that the marginal distribution is described by dropping the

corresponding rows and columns in the mean vector and covariance matrix. Because each mode m

has two variables qm and pm, rows and columns m and M +m are removed for any mode which is

not included.

Now we consider the conditional state of the subset of the modes, A, when the other modes,

B, are measured with heterodyne detectors. We can again use the property of multivariate normal

distributions of how the conditional state affects the mean vector and covariance matrix. As each

mode has two corresponding variables, it is convenient to group variables for the modes in A
together. This means the covariance matrix V is written in block form with modes in A and B in

separate blocks, and similarly for the vector of means. This simply involves permuting the rows and

columns in the covariance matrix and the elements of the vector of means, such that the ordering

in both is consistent. So the covariance matrix and vector of means are rewritten in the ordering

(qA,pA, qB,pB) as

V =

(
VAA VAB

VBA VBB

)
, x̄ =

(
x̄A

x̄B

)
. (5.17)

The conditional state in modes A if the measurement outcome is x is given by [83]

V
(B)
A = VAA − VAB(VBB + ℏ

2I)
−1VBA,

x
(B)
A = x̄A + VAB(VBB + ℏ

2I)
−1(x− x̄B).

(5.18)

So it is possible to sample a subset of the modes in the coherent basis leaving the state in

the other modes as given above. Therefore, the state in the remaining subset of modes can now

be sampled in the number basis to find a pattern in the modes of interest. Although we are

only interested in the marginal photon pattern probabilities, not conditional on the displacement

outcome, by first sampling the heterodyne measurement and then the conditional photon pattern,

simply discarding the coherent state projection will result in a sample from the marginal probability.

This is true because a marginal probability can be obtained by integrating the joint probabilities

over the ignored variables, here the set of possible heterodyne outcomes xB:

Pr(tA) =

∫
dxB Pr(tA,xB) =

∫
dxB Pr(xB)Pr(tA|xB). (5.19)

In order to sample each mode sequentially conditional on the previous ones, we need to expand

on the above principle. The algorithm is as follows:

1. If the state to be sampled is mixed, use the Williamson decomposition V = T +W to sample

a new displacement from x ∼ N (x̄,W ). Use this sampled vector as the new vector of means

and the covariance matrix T in the following steps.

2. Sample a heterodyne measurement x outcome on all modes but the first. This is done by

sampling from the normal distribution x ∼ N (x̄,VQ).
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3. Find the state in the first mode conditional on the measurement outcome, x̄1, V1, according

to eq. (5.18).

4. Calculate the probabilities of the occupation number of the first mode being each value be-

tween zero and a cut-off photon number nc from the state found in the previous step.

5. Sample the number of photons in the first mode from this distribution.

6. Discard x2.

7. For modes m = 2 to M :

(a) Find the state in the first m modes conditional on the remaining measurement outcome,

x̄m, Vm.

(b) Calculate the probabilities, from the state found in the previous step, of the photon

pattern in the first m modes with the occupation number of the mth mode being each

value between zero and the cut-off photon number nc and the first m − 1 occupation

numbers fixed from the previous steps.

(c) Sample the number of photons in the mth mode from this distribution.

(d) Discard xm.

We provide the following proof that this algorithm samples from the correct distribution denoted

p(t1, . . . , tM ). The distribution we are sampling from is given by

p̃(t1, . . . , tM )

=

∫
dx2 · · · dxM p(x2, . . . , xM )p(t1|x2, . . . , xM )p(t2|t1, x3, . . . , xM ) · · · p(tM |t1, . . . , tM−1)

=

∫
dx2 · · · dxM p(x2, . . . , xM )

p(t1, x2, . . . , xM )

p(x2, . . . , xM )

p(t1, t2, x3, . . . , xM )

p(t1, x3, . . . , xM )
· · · p(t1, . . . , tM )

p(t1, . . . , tM−1)

=

∫
dx2 · · · dxM

p(t1, x2, . . . , xM )

p(t1, x3, . . . , xM )

p(t1, t2, x3, . . . , xM )

p(t1, t2, x4, . . . , xM )
· · · p(t1, . . . , tM−1, xM )

p(t1, . . . , tM−1)
p(t1, . . . , tM )

=

∫
dx2 · · · dxM p(x2|t1, x3, . . . , xM )p(x3|t1, t2, x4, . . . , xM ) · · · p(xM |t1, . . . , tM−1)p(t1, . . . , tM )

= p(t1, . . . , tM ),

which is equal to the correct probability distribution as required. From the first to second line,

we used the definition of conditional probabilities and simply rearranged in the third line. From

the third to fourth line we again used the definition of conditional probabilities and the final step

involves integrating over all the displacement parameters in order from x2 to xM . Integrating in

this order means there is only one term containing the variable which is a conditional probability

that must integrate to one over all possible outcomes as it is normalised to unity.

The necessity for a cut-off photon number in each mode introduces an error. This cut-off

must be chosen high enough to ensure that the probability missed by this restriction is very small.

Otherwise, due to the probability in each mode depending on the displacement vector sampled, this
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truncation error can become amplified and has a worse effect on the accuracy than the same cut-off

photon number in the previous algorithm that relied on mixed states and was quadratically slower.

Similarly to the previous algorithm, it is possible to instead simulate the overloaded case to remove

this error. However, this would require calculating a mixed state probability and lose the speed-up.

This is because the normalised probability of an occupation number in mode m conditional on the

displacement measurement and the previous modes is given by

Pr(tm|t1, . . . , tm−1, xm+1, . . . , xM ) =
Pr(t1, . . . , tm|xm+1, . . . , xM )

Pr(t1, . . . , tm−1|xm+1, . . . , xM )
. (5.20)

The numerator is a pure state which gives the probabilities calculated when the mode is sampled,

but the denominator is mixed. Therefore it is much more efficient to normalise the distribution

after calculating the values up to the cut-off than to calculate the normalisation constant explicitly.

In the overload version, it is necessary to find this denominator as the probability of overloading the

detector is given by one minus the probabilities of not overloading it. Therefore it is not generally

useful to apply this algorithm to the overloading case, however it can be used to test that the

algorithm is correct as there is no truncation error that could potentially hide a problem with the

algorithm.

We provide numerical testing of all of the GBS algorithms covered in this chapter in fig. (5.2).

We tested the algorithms by approximating the probability distribution by taking a very large

sample size for numbers of modes and photons that are small enough for the whole distribution

to be found. Because there will always be a distance between the correct distribution and the

estimated distribution due to having a finite sample size, we include sampling from the correct

distribution, known as brute force sampling, to benchmark the expected total variation distance.

We test both the mixed state and pure state algorithms for both the case of overloading and not.

When the squeezing is lower, the chosen cut-off is high enough that all algorithms quite closely

agree. However, when the squeezing is higher, the cut-off is not high enough to avoid truncation

errors and these are seen in both algorithms, with the pure state algorithm more affected. However,

when applied to the overloaded scenario, all algorithms agree closely, providing evidence that both

algorithms work well but can be adversely affected if the chosen cut-off is too low. We also provide

a test for just the pure state chain-rule algorithm comparing it to brute force sampling, where

we have averaged over more Haar random unitaries to provide less uncertainty. This is shown in

fig. (5.1) and again the data points are completely overlapping as expected.

5.3 Sampling mode by mode in standard boson sampling

Given an algorithm can sample from a GBS distribution mode by mode, it seems that it ought to

be possible to sample from a standard boson sampling distribution mode by mode too. The process

of using the chain rule is the same but we need to derive the marginal probabilities for standard

boson sampling instead. This problem is addressed in this section.

Scattershot boson sampling is a simplification of the more general GBS and as such can be
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Figure 5.1: Total variation distance when brute force sampling and using the pure state chain-rule
algorithm. For a range of number of modes from 1 to 6, the total variation distance (TVD) between
two estimated probability distributions and the correct distribution are plotted. The estimated
distributions are found by taking a large sample size of 100,000 and assigning probabilities to each
outcome given by the proportion of samples with that value. The pure state chain-rule algorithm
is the algorithm we have introduced here and the brute force sampling is sampled from the fully
known distribution as a benchmark for the expected TVD which arises from a finite sample size.
All points are averaged over ten instances with three different Haar random unitaries, and the error
bars correspond to the standard deviation. The squeezing parameter was 0.5 with no displacement
and the cut-off number of photons in each mode was three. The increase in TVD as the number
of modes increases is expected due to the increase in the cardinality of the sample space - there
are more possible outcomes so each has a smaller probability and so needs a larger sample size to
estimate to the same precision, but here the sample size is consistent. The two distributions align
closely providing evidence the algorithm is sampling from the correct distribution.

described as a particular instance of GBS as shown in section (2.4.3.2). Standard boson sampling

is simply scattershot boson sampling where the photons were heralded in the correct modes. Thus

it can be described as scattershot with post-selection. However, if we sample each mode at a time,

rather than post-selecting on a valid output pattern in the heralding modes, we can simply fix the

heralding modes first and sample the other modes conditional on this heralded pattern. Therefore,

to sample from a standard boson sampling distribution mode by mode, the algorithm for GBS [79]

can be used where the unitary is chosen to reduce it to scattershot and the input states are equal

squeezed vacuum states, and the output from the heralded modes are fixed as the equivalent input

photon pattern in the standard boson sampler. So this problem is reduced to finding the marginal

probabilities for the specific case that describes scattershot boson sampling.

In section (2.4.3.2), the derivation is given for the reduction of the hafnian equation for GBS to

Pr(t) =
tanhN r

cosh2M r

|Perm(U){td,th}|2∏
m tm!

. (5.21)

We follow similar steps to find the marginal probability, but where only the included modes are

kept in the covariance matrix.

Consider a scattershot set-up withM heralding modes andM ‘output’ modes. This corresponds

to a GBS set-up with 2M modes in total. To simulate standard boson sampling, we must first fix
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Figure 5.2: Comparison of the GBS chain-rule sampling algorithms. To show the accuracy of
the algorithms covered in this chapter, the total variation distance (TVD) between the estimated
distribution by sampling with a sample size of 20,000 and the correct distribution is plotted for 1
to 6 modes. All points were averaged over three instances with different Haar random unitaries,
with the error bars showing the standard deviation. In (a), the squeezing parameter is 0.5 with
an average number of photons per mode of 0.27, whereas in (b) the squeezing parameter is 1 with
an average photon number of 1.38. The cut-off photon number was fixed as three for both. This
is sufficiently high for the lower squeezing but has a non-negligible effect for the higher squeezing.
This is seen in the plots as all algorithms have consistent TVDs in (a), whereas only the overloading
algorithms are consistent with the brute force sampling plots in (b). The mixed state chain-rule
algorithm has a higher TVD than the expected TVD when sampling from the correct distribution
(brute force) due to a truncation error. The pure state chain-rule algorithm suffers even more from
a truncation error due to being amplified by the coherent state projection. Both the pure and
mixed state chain-rule algorithms with overloading allowed are extremely similar to the brute force
sampling TVDs which confirms that the error in the versions without overloading is only due to
the cut-off photon number being too low.

the heralding pattern as the desired input pattern s and so we start sampling the output state t

from mode M +1 conditional on s. We denote the mode we are sampling as m where 1 ≤ m ≤M ,

meaning the mth output mode, not including the heralding modes. For scattershot the squeezing

should be equal and so the covariance matrix for the first M +m modes is given by

Σm =
1

2

(
cosh(2r)I − sinh(2r)(UGBSU

⊤
GBS)M+m

− sinh(2r)(UGBSU
⊤
GBS)

∗
M+m cosh(2r)I

)
, (5.22)

where each block is an (M +m) × (M +m) matrix, (UU⊤)M+m denotes taking the first M +m

rows and columns of the resulting matrix. Recall that the unitary required to simulate scattershot

via GBS, UGBS, satisfies the following:

UGBSU
⊤
GBS = −

(
0 U⊤

U 0

)
, (5.23)

where U is the unitary in the scattershot set-up. Using this, the marginal covariance matrix can
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be expanded as

Σm =
1

2


cI(M) 0 0 sU⊤

m

0 cI(m) sUm 0

0 sU †
m cI(M) 0

sU∗
m 0 0 cI(m)

 , (5.24)

where I(M) is the M × M identity matrix and we introduce the shorthand c = cosh(2r) and

s = sinh(2r). Here Um denotes taking the first m rows of U . Note that the same notation is used

for a product of unitaries where in that case the subscript corresponds to both the included rows

and columns. Using this notation allows the simple statement (UU⊤)m = UmU⊤
m. Although the

order is not explicit, U⊤
m = (Um)⊤ and taking the first m rows of U and then transposing or taking

the Hermitian conjugate causes it to be the first m columns of these matrices.

For the probability, we need to know theΣQ andA corresponding to the marginal state including

up to the mth output mode. To avoid excessive subscripts, we use Q for the Q-covariance matrix

rather than ΣQ introduced previously. This matrix is simply found by adding half the identity:

Qm = Σm + 1
2I =

1

2


(c+ 1)I 0 0 sU⊤

m

0 (c+ 1)I sUm 0

0 sU†
m (c+ 1)I 0

sU∗
m 0 0 (c+ 1)I

 . (5.25)

To determine Am = Xm(Im −Q−1
m ), we first can find the inverse of the Q matrix. We again make

use of the inverse formula for block matrices repeated here for convenience:

(
a b

c d

)−1

=

(
(a− bd−1c)−1 −a−1b(d− ca−1b)−1

−d−1c(a− bd−1c)−1 (d− ca−1b)−1

)
, (5.26)

Using this identity, the inverse of Qm is found to be

Q−1
m =


(1− t2)I + t2U⊤

mU∗
m 0 0 −tU⊤

m

0 I −tUm 0

0 −tU †
m (1− t2)I + t2U †

mUm 0

−tU∗
m 0 0 I

 , (5.27)

where we introduce the shorthand t = tanh r. Note that here the argument of the hyperbolic

function is only r rather than 2r hidden in c and s shorthands. From here the matrix Am corre-

sponding to the marginal state can easily be found. Because of the simple structure of both the

identity matrix and the swap matrix X, keeping only certain rows and columns in these matrices
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simply reduces the size but leaves the structure unchanged. The matrix Am is given by

Am = Xm(Im −Q−1
m ) =


0 tU †

m t2(I −U †
mUm) 0

tU∗
m 0 0 0

t2(I −U⊤
mU∗

m) 0 0 tU⊤
m

0 0 tUm 0

 . (5.28)

In the expression for the probability of a pattern, the hafnian is found for a submatrix of Am

depending on the heralding s and output patterns t. However the block structure of A is unchanged

when we include rows/columns according to these patterns. So the hafnian can be written as

Haf(A{s̃+t̃}
m ) = Haf


0 t(U †

m){s̃,t̃} t2(I −U †
mUm){s̃,s̃} 0

t(U∗
m){t̃,s̃} 0 0 0

t2(I −U⊤
mU∗

m){s̃,s̃} 0 0 t(U⊤
m){s̃,t̃}

0 0 t(Um){t̃,s̃} 0

 ,

(5.29)

where M{r,c} denotes including the rows according to r and columns according to c.

Hafnians are unchanged under simultaneous permutations of rows and columns so we permute

block rows and columns 2 and 4 (from the 4× 4 block matrix) to simplify the hafnian to

Haf(A{s̃+t̃}
m ) = Haf


0 0 t2(I −U †

mUm){s̃.s̃} t(U †
m){s̃,t̃}

0 0 t(Um){t̃,s̃} 0

t2(I −U⊤
mU∗

m){s̃,s̃} t(U⊤
m){s̃,t̃} 0 0

t(U∗
m){t̃,s̃} 0 0 0


= Perm

(
t2(I −U †

mUm){s̃,s̃} t(U †
m){s̃,t̃}

t(Um){t̃,s̃} 0

)

= t2NPerm

(
(I −U †

mUm){s̃,s̃} (U †
m){s̃,t̃}

(Um){t̃,s̃} 0

)
.

(5.30)

From the first to second line we used the relation between permanents and hafnians and from the

second to third line we factor out t from the top N rows and the first N columns.

The final expression we need in order to evaluate the marginal probabilities is the determinant

of the marginal Q matrix. This is given by

det(Qm) =det

1

2


(c+ 1)I 0 0 sU⊤

m

0 (c+ 1)I sUm 0

0 sU †
m (c+ 1)I 0

sU∗
m 0 0 (c+ 1)I




=
det((c+ 1)I(M+m))

22m+2M
det

(
(c+ 1)I −

(
0 sU⊤

m

sUm 0

)
I

c+ 1

(
0 sU †

m

sU∗
m 0

))
,

(5.31)
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where we’ve factored out the 1
2 and used the block matrix determinant formula

det

(
a b

c d

)
= det(d)det(a− bd−1c). (5.32)

Further simplification finds

det(Qm) =
(c+ 1)m+M

22m+2M
det

(
(c+ 1)

(
I − t2U⊤

mU∗
m 0

0 (1− t2)I

))

=
(c+ 1)2m+2M

22m+2M
det(I(M) − t2U⊤

mU∗
m)det((1− t2)I(m)).

(5.33)

Here we make use of Weinstein-Aronszajn’s identity [85]

det(I(j) +A(j×k)B(k×j)) = det(I(k) +B(k×j)A(j×k)) (5.34)

to change the order of U⊤
m and U∗

m, and hence simplify the determinant to

det(Qm) =
(c+ 1)2m+2M

22m+2M
det(I(m) − t2U∗

mU⊤
m)det((1− t2)I(m))

=
(c+ 1)2m+2M

22m+2M
(1− t2)2m = (cosh2 r)2m+2M 1

(cosh2 r)2m
= cosh4M r,

(5.35)

where from the first to second line we used that U∗
mU⊤

m = (U∗U⊤)m = (I)m = I(m).

We can now input these values into the general equation to find a simpler expression for the

marginal probability for GBS in this case:

Prob(s+ t) =
tanh2N r

s!t! cosh2M r
Perm

(
(I −U †

mUm){s̃,s̃} (U †
m){s̃,t̃}

(Um){t̃,s̃} 0

)
, (5.36)

where this is the probability of the output pattern with s in the heralded modes and t in the output

modes so the overall pattern is given by s+ t. In standard boson sampling, the input state is fixed

so it is actually the probability of detecting s+ t conditional on detecting s that is of interest. The

probability of measuring the heralded pattern can be found by inputting m = 0 and t = {} (empty)

in the above expression which reduces the permanent to be of a submatrix of the identity matrix.

If there are no repetitions in s̃, the submatrix of the identity is just a smaller identity. However,

if there is bunching in the input modes, the submatrix becomes a block diagonal matrix with the

diagonal blocks being the sm × sm all-ones matrix. The permanent of a block diagonal matrix is

the product of the permanents of the block matrices and the permanent of the all-ones matrix is

the factorial of its size. Therefore the permanent of the submatrix of the identity is
∏

m sm! and

the probability of detecting s is

Pr(s) =
tanh2N r

cosh2M r
. (5.37)

This probability could also have been found by simply calculating the probability of detecting sm
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photons from a two-mode squeezed state for each mode m. As expected, these expressions agree,

providing reassurance for the derived marginal probability expression.

Putting everything together, we finally arrive at the expression for the marginal probability for

standard boson sampling:

Prob(t|s) = Prob(s+ t)/Prob(s)

=
tanh2N r

s!t! cosh2M r
Perm

(
(I −U †

mUm){s̃,s̃} (U †
m){s̃,t̃}

(Um){t̃,s̃} 0

)/
tanh2N r

cosh2M r

=
1

s!t!
Perm

(
(I −U †

mUm){s̃,s̃} (U †
m){s̃,t̃}

(Um){t̃,s̃} 0

)
.

(5.38)

This can be used to sample each mode sequentially, by sampling from the conditional probability

Prob(tm|tm−1, . . . , t1, s) for m = 1 to M . Because the number of photons is fixed, the probability

only needs to be found for tm = 0, . . . , N − nm−1 where nm−1 is the number of photons already

sampled in the output pattern t1, . . . , tm−1, and N is the number of input photons in s. So unlike

for GBS, this is an exact sampling algorithm. However it requires the calculation of the permanent

of an (N + n) × (N + n) matrix for each probability with N input photons and n photons in the

included output modes, which is much slower than the Clifford and Clifford algorithm for standard

boson sampling.

5.4 Discussion

Chain-rule sampling algorithms can be used to sample from a multidimensional state by sampling

either the modes or the photons sequentially. It seems that sampling photon by photon is more

suited for standard boson sampling, while mode by mode naturally is incorporated into the Gaussian

formalism. However, there is no obvious reason why both methods cannot be applied to either and

each has its own advantages. We have provided a mode by mode algorithm for standard boson

sampling, but it suffers from a worse complexity than the Clifford and Clifford algorithm. It remains

to be shown whether the pure-state chain-rule algorithm for GBS can be applied to standard boson

sampling as it would need to be adapted to start conditional on the heralded modes.
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Chapter 6

Conclusion

“In the end, everything will be okay. If it’s not okay, it’s not yet the end.”

- Fernando Sabino

In this thesis we have explored several methods for simulating GBS in time proportional to the

complexity of calculating a single probability for the distribution. This provides a quadratic speed-

up on the previous leading algorithm when sampling from both pure and mixed states [79]. The

numerical simulations were run assuming the ideal scenario with the application of quantum-inspired

algorithms in mind. Experimental imperfections, such as loss, can readily be included [86]. We

provide a comparison of the main types of boson sampling in table (6.1) highlighting the difference

in complexity for the calculation of individual probabilities and the sampling problem. We have also

added threshold GBS which is where the Gaussian state is measured using threshold detectors that

only distinguish between whether a photon is present or not, rather than the number of photons.

Although this type of boson sampling is not explored in this thesis, the algorithms presented can

be extended to this case [86].

All three algorithms presented in this thesis for simulating GBS are viable options being efficient

with regard to the number of probability calculations required to output a sample. However, they all

suffer from some approximation. For rejection sampling this can be estimated from the sample itself

given a large enough sample size, but predicting it beforehand is more uncertain. For MIS, it is not

clear how to determine the total variation distance between the sampled and target distributions,

but the numerical testing provides some assurance that for the parameters chosen the error will

be small. The chain-rule sampling algorithm only suffers from a truncation error which can be

reduced by choosing the cut-off photon number in each mode such that the probability of more

photons is small. It is possible to tune this probability of getting more photons in any mode to

some desired small ϵ by finding the corresponding cut-off photon number. However, the exact

relationship between ϵ and the total variation distance is still unknown and so the TVD cannot be

fixed or even determined.

The challenge to lower the boundary of quantum advantage by Gaussian boson sampling remains

when experimental imperfections may be taken into account. In this case, loss and distinguishabil-
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Variant Matrix function Complexity of probability Complexity of sampling

Standard permanent [6] O(N2N ) O(N2N ) +O(MN2) [26]

GBS hafnian [7] O(N32N )→ O(N32N/2) O(MN32N/2) [84]

GBS (displaced) loop hafnian [51] O(N32N )→ O(N32N/2) O(MN32N/2) [84]

Threshold GBS Torontonian [87] O(N32N ) O(MN32N/2) [86]

Table 6.1: A comparison of the complexity of boson sampling variants. For each variant of boson
sampling, we list the matrix function that describes the probability distribution, the complexity of
calculating a single probability and the complexity of sampling from the distribution. We include
standard boson sampling, GBS with and without displacement in the input states and threshold
GBS. Although the last variant has not been discussed in this thesis, it is included for completeness.
The arrows show the reduction in complexity for a pure state compared to a mixed state.

ity cause approximations to the ideal distribution which means that classical simulations can also

make use of these approximations to find a speed-up. Current experimental demonstrations have

significant loss [10, 11] which allows the possibility for an approximate algorithm to exploit this.

Another open problem is whether an exact chain-rule algorithm can be found similar to standard

boson sampling. The error in the algorithm presented is small and so this would only be an incre-

mental improvement. A more pressing open problem is finding a definitive method for validating

experimental samples to provide evidence of sampling from the correct distribution.
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[26] Peter Clifford and Raphaël Clifford. The classical complexity of boson sampling. In Proceedings

of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 146–155.

SIAM, 2018.

[27] Jun John Sakurai and Eugene D Commins. Modern quantum mechanics, revised edition, 1995.

[28] Christopher C Gerry and Peter L Knight. Introductory quantum optics. Cambridge university

press, 2005.

[29] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.

[30] Samuel L Braunstein and Peter Van Loock. Quantum information with continuous variables.

Reviews of modern physics, 77(2):513, 2005.

[31] Christian Weedbrook, Stefano Pirandola, Raúl Garćıa-Patrón, Nicolas J Cerf, Timothy C
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