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1  |  INTRODUC TION

Investigating the genetic architecture behind heritable traits is 
key to understanding the biological diversity of wild populations. 
If we know the number of loci influencing a trait and their effect 
size, we can better understand the evolutionary processes that 
underpin traits, improve inferences about trait evolution, and 

understand micro- evolutionary dynamics that occur due to envi-
ronmental change (Barton & Keightley, 2002). Most quantitative 
genetic research in animals is carried out in artificial populations; 
either domestic, agricultural or laboratory. Such populations ex-
perience controlled environmental conditions which make it eas-
ier to account for environmental factors when studying the effect 
of genetic variants on phenotypic variation. However, given that 
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Abstract
Understanding the genetic architecture underpinning quantitative traits in wild popu-
lations is pivotal to understanding the processes behind trait evolution. The ‘animal 
model’ is a popular method for estimating quantitative genetic parameters such as 
heritability and genetic correlation and involves fitting an estimate of relatedness be-
tween individuals in the study population. Genotypes at genome- wide markers can 
be used to estimate relatedness; however, relatedness estimates vary with marker 
density, potentially affecting results. Increasing density of markers is also expected to 
increase the power to detect quantitative trait loci (QTL). In order to understand how 
the density of genetic markers affects the results of quantitative genetic analyses, 
we	estimated	heritability	and	performed	genome-	wide	association	 studies	 (GWAS)	
on five body size traits in an unmanaged population of Soay sheep using two dif-
ferent	SNP	densities:	a	dataset	of	37,037	genotyped	SNPs	and	an	 imputed	dataset	
of	417,373	SNPs.	Heritability	estimates	did	not	differ	between	the	two	SNP	densi-
ties,	but	the	high-	density	imputed	SNP	dataset	revealed	four	new	SNP-	trait	associa-
tions that were not found with the lower density dataset, as well as confirming all 
previously- found QTL. We also demonstrated that fitting fixed and random effects in 
the	same	step	as	performing	GWAS	is	a	more	powerful	approach	than	pre-	correcting	
for covariates in a separate model.
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environmental factors can influence the phenotype of a quan-
titative trait (Charmantier et al., 2014), and that the presence of 
genotype- by- environment interactions can cause additive genetic 
variance to differ between environmental conditions, studies on 
artificial populations arguably cannot be fully extrapolated to wild 
populations (Kruuk et al., 2008). Therefore, it is important to also 
study quantitative traits in wild populations in their natural habi-
tats. There is a wealth of quantitative genetics research in human 
populations (for examples, see Kang et al., 2010; Locke et al., 2015; 
Manolio et al., 2009; Yang et al., 2010; Xia et al., 2016, 2021; Zaitlen 
et al., 2013), but humans also arguably experience a more buffered 
environment than wild populations and inferences in wild popula-
tions are lacking in comparison.

When using molecular markers to inform quantitative genetic 
analyses, the results are dependent on the genetic polymorphisms 
used in the analysis: low numbers of markers can result in down-
wardly biased heritability estimates and regions containing causal 
variants may not appear as significant if there are no genotyped 
markers in linkage disequilibrium (LD) with the causal variant. 
Increasing the density of genotyped markers means they are more 
likely to be in LD with causal variants for the trait of interest, either 
by being physically closer to the causal variants or by matching the 
allele frequency of the causal variants more accurately. However, 
increasing the number of genotyped markers means larger, denser 
genotyping arrays with costs increasing with density. For commonly 
studied species, high- density arrays are more affordable due to high 
demand, but for more niche species, including wild populations, 
large genotyping arrays are often unaffordable. Genotyping- by- 
sequencing,	 for	 example,	 ddRAD	 (Peterson	 et	 al.,	 2012), is a po-
tentially	 useful	 alternative	 for	 upscaling	 SNP	 density,	 though	 the	
combination of bioinformatics and samples sizes required in quanti-
tative genetic research means that this approach is not yet in wide-
spread use.

As	 an	 alternative	 to	 expensive	 high-	density	 genotyping,	 gen-
otype imputation can be used to increase the number of variants 
analyzed (Burdick et al., 2006). Imputation involves predicting geno-
types	at	untyped	SNPs	in	a	‘target’	population	using	a	subset	of	the	
study population –  or more generally a ‘reference’ population –  gen-
otyped	at	a	higher	density,	either	through	a	high	density	SNP	array	
or by genotyping- by- sequencing. The genotypes at these untyped 
SNPs	for	individuals	in	the	target	population	are	inferred	using	their	
genotypes at typed markers and taking advantage of existing linkage 
disequilibrium	(LD)	between	SNPs.	Pedigree	information	can	also	be	
used to increase the accuracy of the imputation by identifying haplo-
type blocks that are identical by descent (Burdick et al., 2006).

The Soay sheep (Ovis aries) of St Kilda are a primitive, unmanaged 
breed of sheep that have been the focus of a longitudinal, individual- 
based	study	since	1985	(Clutton-	Brock	&	Pemberton,	2003).	As	part	
of the study, morphometric, life history, and environmental data 
are	collected,	DNA	samples	are	collected,	and	a	pedigree	has	been	
constructed using observation and genetic parentage inference. 
7630	 sheep	 have	 been	 genotyped	 on	 the	 Ovine	 SNP50	 Illumina	
Beadchip,	on	which	37,037	SNPs	are	autosomal	and	polymorphic	in	

this population. In addition, 188 individuals have been genotyped 
on the Ovine Infinum HD Beadchip, which contains 419,281 autoso-
mal	SNPs	that	are	polymorphic	in	the	population	–		this	has	allowed	
for imputation of the remaining sheep to this higher density (Stoffel 
et al., 2021).

In this study we performed a direct comparison of heritability 
estimates	and	GWAS	associations	between	the	lower	density	SNP	
data	and	the	imputed	high	density	SNP	data	in	the	Soay	population,	
focusing on five body size traits in neonates, lambs, and adults. We 
performed	GWAS	by	fitting	fixed	and	random	effects	 in	the	same	
step	as	testing	for	SNP-	trait	associations,	which	has	the	advantage	
of correctly propagating error throughout the analysis, reducing the 
chance of false positive results, and increasing power by disentan-
gling	potential	correlations.	We	also	carried	out	a	two-	step	GWAS	
approach previously used on a smaller sample size of the Soays 
(Bérénos et al., 2015)	 to	 investigate	 whether	 any	 SNP-	trait	 asso-
ciations identified using our approach were due to the increased 
sample size or due to the different methodology (single- step vs. 
two-	step	GWAS).

Our aims were as follows:

1.	 To	 determine	 whether	 the	 increased	 density	 of	 SNPs	 changes	
the heritability estimates of the traits.

2.	 To	determine	whether	the	imputed	SNP	data	enables	the	identifi-
cation	of	new	SNP-	trait	associations	via	GWAS.

3.	 To	compare	a	single-	step	GWAS	methodology	with	the	two-	step	
approach previously used on the study population.

While we have used the Soay sheep as our study population, we 
believe that our objectives are also relevant for other wild popula-
tions. Keeping costs down is important for all research groups, and 
we aim to show that imputation is a way to do so while improving 
the power results of quantitative genetic analyses. We also intend 
to highlight the benefit of fitting fixed and random effects whilst 
performing	GWAS	instead	of	pre-	correcting.

2  |  METHODS

2.1  |  Phenotypic data

The sheep are ear- tagged when they are first captured which allows 
for reidentification for life. We focused on five body size traits in 
three age groups: neonates, lambs, and adults. Of the five traits, 
three (weight, foreleg length, and hindleg length) are live measures, 
recorded	in	April	for	neonates	and	in	August	for	lambs	and	adults.	
The remaining two traits (metacarpal length and jaw length) are 
post- mortem measures taken from skeletal material. Both birth and 
August	weight	are	measured	to	the	nearest	0.1	kg,	while	the	remain-
ing	traits	are	all	measured	to	the	nearest	mm.	A	detailed	description	
of trait measurements can be found in Beraldi et al. (2007).

We defined neonates as individuals who were caught and 
weighed	between	2	and	10 days	after	birth	–		birth	weight	was	the	
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    |  3 of 15JAMES et al.

only trait recorded for this age group. Lambs were classed as individ-
uals	who	had	phenotypic	data	recorded	in	the	August	of	their	birth	
year	for	the	live	traits,	and	as	individuals	who	died	before	14 months	
of age for the post- mortem measures. Individuals were classed as 
adults	if	they	had	August	phenotypic	data	recorded	at	least	2 years	
after	birth,	or	 if	they	died	after	26 months	of	age	for	post-	mortem	
measures. We chose not to analyze yearling data due to the small 
sample sizes in comparison to the other age classes, which is due to 
high first winter mortality.

2.2  |  Genetic data

Most of the sheep in our study population have been genotyped 
using	 the	 Ovine	 SNP50	 Illumina	 BeadChip,	 which	 targets	 54,241	
SNPs	across	the	sheep	genome.	After	removing	SNPs	which	failed	
quality	control	standards	(minor	allele	frequency	(MAF) > 0.001,	call	
rate > 0.99,	deviation	from	Hardy–	Weinberg	Equilibrium	P > 1 e-	05)	
and	 individuals	 with	 a	 call	 rate < 0.95,	 39,368	 polymorphic	 vari-
ants remained for 7630 individuals (3643 female, 3987 male). See 
Bérénos et al. (2014) for information on genetic sampling protocol 
and marker characteristics.

Of these 7630 individuals, 188 have also been genotyped using 
the	Ovine	Infinium	HD	SNP	BeadChip	which	targets	606,066	SNPs.	
This has allowed for the low- density genotypes to be imputed to the 
higher	 density	 using	 AlphaImpute,	 which	 combines	 shared	 haplo-
type and pedigree information for phasing and genotype imputation 
(Hickey et al., 2012) (see Stoffel et al., 2021 for information on im-
putation and quality control). We used imputed genotype ‘hard’ calls 
(rather	than	genotype	probabilities)	 in	downstream	analyses.	After	
filtering	SNPs	that	failed	quality	control	standards,	419,281	autoso-
mal	SNPs	remained	for	7621	individuals	(3639	females,	3982	males).

Both	the	50 K	SNP	data	and	the	imputed	SNP	data	are	mapped	to	
the	OAR_v3.1	genome	assembly.

2.3  |  Narrow sense heritability estimation

We used animal models to partition the phenotypic variance for each 
trait in each age class into genetic and non- genetic variance compo-
nents. Fixed and random effects were fitted for all models, with the 
effects differing between traits and age classes (Table 1). We imple-
mented these analyses in DISSECT (Canela- Xandri et al., 2015) using 
the following model:

where y is the vector of phenotypic values; X is a design matrix linking 
individual records with the vector of fixed effects β, Zr is an incidence 
matrix that relates the random effect r to the individual records; ur is 
the associated vector of non- genetic random effects; g is the vector 
of additive genetic random effects with W the incidence matrix; and 
ε	is	the	vector	of	residuals.	It	is	assumed	that	g ~ MVN(0, Mσg

2), where 

σg
2 is the additive genetic variance and M is the genomic relationship 

matrix (GRM). For each trait in each age class, we ran this model twice: 
first	with	M	 being	 a	GRM	 calculated	 from	 the	 50 K	 genotype	 data,	
and	 second	with	M	being	a	GRM	calculated	 from	 the	 imputed	SNP	
genotypes. The GRMs were computed using DISSECT (Canela- Xandri 
et al., 2015) using VanRaden's Method 2 GRM calculation, for which 
the genetic relationship between individuals i and j is computed as:

where sik	is	the	number	of	copies	of	the	reference	allele	for	SNP	k	of	
the individual i, pk	is	the	frequency	of	the	reference	allele	for	the	SNP	
k, and N	is	the	number	of	SNPs	(VanRaden,	2008).

The narrow sense heritability was estimated by dividing the 
additive genetic variance (the variance explained by the GRM) by 
the total estimated phenotypic variance (the sum of the variance 
explained by the GRM and other fitted random effects after fitting 
fixed effects).

In	adults,	there	are	multiple	records	for	August	weight,	foreleg	
length, and hindleg length for the same individual due to individuals 
being caught across multiple years. For these traits, we used a re-
peatability model in order that uncertainty was correctly propagated 
through all estimations (Mrode, 2014). To implement a repeatability 
model in DISSECT, we edited the input files so that each measure-
ment had its own row in the genotype and covariate files. Individual 
ID was replaced with a unique capture reference number, and indi-
vidual permanent environment was fitted as a random effect (see 
Supplementary Methods for a more detailed explanation).

Sample sizes and total number of phenotypic measurements for 
all traits are shown in Table 1, with effects fitted in all models.

2.4  |  Genome wide association analysis

Principal	component	analysis	(PCA)	using	the	GRM	was	performed	
prior	 to	 the	 genome-	wide	 association	 analyses	 (GWAS)	 using	
DISSECT (Canela- Xandri et al., 2015) in order to examine the under-
lying population structure.

GWAS	 was	 also	 conducted	 using	 DISSECT	 (Canela-	Xandri	
et al., 2015) using the following model:

where y, X, β, Zr, ur, W, and ε are the same as in the model for herita-
bility	estimation,	s	is	the	effect	of	the	focal	SNP,	S	is	the	design	matrix	
linking individual records to the number of effect alleles for α, the es-
timated	SNP	effect	(coded	as	0,	1	or	2),	and	gLOCO	is	the	vector	of	
additive genetic random effects excluding the chromosome on which 
the	focal	SNP	resides.

We fitted the same fixed and random effects for each trait 
and age class as for the heritability estimation (Table 1). To ac-
count	 for	 population	 structure,	 when	 testing	 SNPs	 on	 a	 given	

y = X� +
∑

r

Zrur +Wg + ε

Aij =
1

N

∑N

k=1

(

sik − 2pk
)(

sjk − 2pk
)

2pk
(

1 − pk
)

y = X� + S� +
∑

r

Zrur +WgLOCO + ε
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4 of 15  |     JAMES et al.

chromosome for association with the phenotype, a GRM calcu-
lated from the remaining autosomes (referred to as Leave One 
Chromosome Out GRM [gLOCO] [Yang et al., 2014]) was fitted. 

Input files for repeated- measure traits were reformatted as above. 
Our significance threshold was corrected for multiple testing using 
the SimpleM method (Gao et al., 2008), which accounts for linkage 

TA B L E  1 Number	of	individuals	and	records,	fixed	and	random	effects	fitted	in	each	trait	x	age	class	model	in	addition	to	the	GRM.

Age Trait No. individuals No. records Fixed effects Random effects

Neonate Birth weight 2678 2678 Sex Year of birth

Litter size Mother ID

Population	size	year	before	birth

Age	of	mother	(quadratic)

Ordinal date of birth

Age	(days)

Lamb Weight 2228 2228 Sex Year of birth

Litter size Mother ID

Population	size Permanent	
environment

Age	(days)

Foreleg 2284 2284 Sex Year of birth

Litter size Mother ID

Population	size Permanent	
environment

Age	(days)

Hindleg 2349 2349 Sex Year of birth

Litter size Mother ID

Population	size Permanent	
environment

Age	(days)

Metacarpal 2059 2059 Sex Year of birth

Litter size Mother ID

Age	at	death	(months)

Jaw 2113 2113 Sex Year of birth

Litter size Mother ID

Age	at	death	(months)

Adult Weight 1152 3553 Sex Year of capture

Population	size Permanent	
environment

Age	(years)

Foreleg 1121 3331 Sex Year of capture

Population	size Permanent	
environment

Age	(years)

Hindleg 1135 3444 Sex Year of capture

Population	size Permanent	
environment

Age	(years)

Metacarpal 945 945 Sex Year of birth

Age	at	death	(years)

Jaw 991 991 Sex Year of birth

Age	at	death	(years)

Note:	The	same	individuals	and	records	were	used	for	both	heritability	estimates	and	for	GWAS.
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    |  5 of 15JAMES et al.

disequilibrium between markers in order to calculate the effective 
number of independent tests.

We	estimated	 the	variance	explained	by	SNPs	 that	passed	 the	
significance threshold using the equation

where p and q	are	the	major	and	minor	allele	frequencies	of	the	SNP,	
and α	is	the	estimated	SNP	effect.	We	then	calculated	the	proportion	
of	additive	genetic	variance	explained	by	each	SNP	by	dividing	by	the	
total additive genetic variance estimated for that trait.

For	any	trait	for	which	several	SNPs	in	the	same	region	were	as-
sociated with variation in the trait and thus had strong support for 
at least one QTL in the region, we carried out conditional analysis to 
understand if the region could potentially harbor several indepen-
dent QTL, or if further QTL could be uncovered elsewhere in the 
genome.	To	 that	aim,	 the	genotypes	of	 the	SNP	with	 the	smallest	
association p value from each associated region (hereafter called the 
‘top	SNP’)	were	added	to	the	GWAS	model	as	a	fixed	covariate	and	
removed	 from	 the	GRMs	 and	 genotype	 data.	 The	GWAS	 analysis	
was re- run accounting for those associations to try and reveal novel 
peaks either in the same regions or elsewhere in the genome.

2.5  |  Genes in QTL regions

For each trait ×	SNP	association,	we	investigated	the	genes	within	a	
0.5 Mb	window	either	side	of	the	top	SNP	to	identify	any	genes	which	
could be contributing to trait variation. We extracted a list of genes 
for each trait using the biomaRt package in R (Durinck et al., 2005, 
2009)	 from	 the	 OAR_v3.1	 genome	 assembly	 and	 reviewed	 each	
gene	 against	 the	NCBI	 Gene	 (Bethesda	 (MD):	 National	 Library	 of	
Medicine (US) 2004– 2022) (including information from the Sheep 
Tissue	Atlas	(Jiang	et	al.,	2014)),	Animal	QTLdb	(Hu	et	al.,	2022), and 
Ensembl (Howe et al., 2020) databases to examine function and ex-
pression annotations. When possible, we also compared with human 
and mouse orthologs due to the high level of annotation data avail-
able for these two species.

2.6  |  Two- step GWAS analysis

Genome- wide association studies has previously been performed on 
the	adult	traits	in	a	smaller	sample	of	Soay	sheep	using	the	50 K	SNP	
data (Bérénos et al., 2015).	The	authors	performed	GWAS	by	first	run-
ning a mixed model analysis, fitting fixed and random effects including 
whole- genome relatedness in the form of a GRM and, for repeated- 
measure traits, permanent environment. The residuals were then 
extracted	and	used	as	the	phenotypic	values	for	GWAS.	For	repeated-	
measure traits, the mean residual value was used for each individual.

To	 investigate	 whether	 any	 novel	 SNP	 associations	 identified	
in this study were due to the increased sample size or due to the 
change	 in	 methodology,	 we	 also	 performed	 a	 two-	step	 GWAS,	

focusing	on	adults	only	and	using	the	50 K	SNP	data.	Like	Bérénos	
et al. (2015),	we	performed	mixed	model	analyses	using	ASReml-	R	
(Butler et al., 2017)	and	performed	GWAS	with	the	residuals	as	the	
trait phenotypes using DISSECT (Canela- Xandri et al., 2015). We 
used the Bonferroni correction calculated in Bérénos et al. (2015) 
to	determine	the	significance	threshold	of	1.35 e-	6	for	our	two-	step	
GWAS	in	order	to	compare	with	the	previously	published	analysis.

3  |  RESULTS

3.1  |  Heritability estimation

3.1.1  |  Neonates

In neonates, the heritability of birth weight was 0.051 (S.E. 0.020) 
both	when	using	the	50 K	SNPs	to	calculate	relatedness	and	when	
using	the	 imputed	SNPs	 (Figure 1, Table S1). Given that both esti-
mates are identical to three decimal places, there is no difference 
between the estimates.

3.1.2  |  Lambs

In	 lambs,	 the	 heritability	 estimates	 for	 the	 live	 August	 measures	
were lower than those for the post- mortem measures (Figure 1, 
Table S1).	 Across	 all	 the	 traits,	 heritability	 estimates	 were	 similar	
when	using	the	50 K	SNP	data	and	the	imputed	SNP	data,	with	the	
biggest difference being 0.024 for metacarpal length. For all traits, 
estimates were within one standard error of each other, indicating 
that the small differences in heritability estimates between the two 
SNP	densities	were	not	significant.

3.1.3  |  Adults

As	 observed	 in	 lambs,	 heritability	 estimates	 for	 live	 measures	 in	
adults	were	lower	than	those	of	the	post-	mortem	measures.	Across	
all traits, heritability estimates were higher in adults than in lambs. 
Estimates	 obtained	 using	 the	 50 K	 SNPs	 and	 using	 the	 imputed	
SNPs	were	similar	and	were	within	one	standard	error	of	each	other	
(Figure 1, Table S1),	meaning	that	the	imputed	SNPs	provided	no	ad-
ditional information to partition the variation into genetic and envi-
ronmental variance.

Estimates for all variance components are listed in Table S1.

3.2  |  GWAS

3.2.1  |  PCA

The top 20 principal components together explained 10.68% of the 
variance in the genetic data, with the top two principal components 

V(SNP) = 2pqα2
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6 of 15  |     JAMES et al.

explaining 0.98% and 0.85% of the variance. We concluded that 
any	population	structure	that	was	likely	to	affect	the	GWAS	results	
would	be	corrected	for	by	fitting	a	LOCO	GRM	in	our	GWAS	model,	
as this will account for any structure caused by relationships.

3.2.2  |  50 K	SNP	data

To correct for multiple testing, we calculated the effective number 
of tests to be 20,082 using the SimpleM method (Gao et al., 2008), 
giving	a	genome-	wide	significance	threshold	of	2.49 e−06	for	the	50 K	
SNP	data.

For	weight	in	neonates	(birth	weight)	and	lambs	(August	weight),	
no	SNPs	were	found	to	have	an	association	p value smaller than this 
threshold, suggesting that any variants that influence weight vari-
ation	are	either	of	small	effect	or	were	not	tagged	by	SNPs	in	the	
50 K	SNP	data	 (Figure 2a, Figure S1b,g).	For	adult	August	weight,	
three	SNPs	had	a	p	value	lower	than	the	genome-	wide	significance	
threshold;	one	SNP	on	chromosome	6	and	two	SNPs	on	chromo-
some 9.

For all three leg length measures in lambs, we found associations 
with	 the	 same	 region	 on	 chromosome	16.	 SNP	 s23172.1	was	 the	
SNP	with	the	lowest	p	value	for	lamb	foreleg	and	hindleg,	explain-
ing 0.52% and 0.69% of the genetic variance for each trait respec-
tively (Table S2, Figure S1c,d).	 For	 lamb	metacarpal,	 SNP	22142.1	
in the same chromosome 16 region had the lowest p value and ex-
plained	0.97%	of	the	genetic	variance.	There	was	also	a	single	SNP	
on	chromosome	3	 (OAR3_100483326.1)	and	a	cluster	of	SNPs	on	

chromosome 19 that had p values smaller than the genome- wide 
significance threshold and were associated with variation in lamb 
metacarpal	length,	with	the	SNP	with	the	lowest	p	value	from	each	
region explaining 2.08% and 2.40% of the genetic variance respec-
tively (Table S2, Figure S1e).

The two regions on chromosomes 16 and 19 that were associ-
ated with lamb metacarpal length variation were also significantly 
associated	with	all	 three	 leg	 length	measures	 in	adults,	with	SNP	
s22142.1	 on	 chromosome	16	 and	 SNP	 s74894.1	 on	 chromosome	
19 respectively explaining 0.80% and 2.04% of the genetic varia-
tion in adult foreleg, 0.88% and 1.32% of the genetic variation in 
adult hindleg, and 0.55% and 2.02% of the genetic variation in adult 
metacarpal length. There were other regions of the genome also 
associated with variation in the adult leg length traits; a region on 
chromosome 11 was significant across all three adult leg length 
traits,	with	the	most	significant	SNP	explaining	2.35%,	2.25%,	and	
1.13% of the genetic variance in adult foreleg, hindleg, and meta-
carpal respectively (Figure 2b, Table S2, Figure S1h,j). For adult 
foreleg,	a	SNP	on	chromosome	7	and	two	on	chromosome	9	were	
also	associated,	with	the	most	significant	SNPs	in	each	region	ex-
plaining 1.31% and 2.99% of the genetic variance respectively for 
this trait (Table S2, Figure S1h).

In lambs, there were no associations with jaw length found 
(Figure S1f).	In	adults,	a	SNP	on	chromosome	20	was	associated	with	
jaw length variation, explaining 2.05% of the genetic variance for 
this trait (Table S2, Figure S1k).

In	total,	we	identified	85	SNP-	trait	associations	with	39	unique	
SNPs.

F I G U R E  1 Estimates	of	heritability	for	body	size	traits	in	neonates,	lambs,	and	adult	Soay	sheep	when	using	a	GRM	calculated	from	
the	50 K	SNP	data	(blue)	compared	with	using	a	GRM	calculated	from	the	imputed	SNP	data	(yellow).	Error	bars	represent	standard	error	
estimates.
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    |  7 of 15JAMES et al.

F I G U R E  2 Manhattan	plots	for	(a)	birth	weight	GWAS	using	50 K	SNP	data	(left)	and	imputed	SNP	data	(right);	(b)	adult	august	weight	
GWAS	using	50 K	SNP	data	(left)	and	imputed	SNP	data	(right);	and	(c)	adult	metacarpal	length	GWAS	using	50 K	SNP	data	(left)	and	imputed	
SNP	data	(right).	The	red	line	represents	the	significance	threshold	(2.49 e−06	for	the	50 K	SNP	data	and	1.03 e−06	for	the	imputed	SNP	data)	
–		any	SNPs	above	this	threshold	are	considered	to	be	significantly	associated	with	variation	in	their	respective	traits.
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8 of 15  |     JAMES et al.

3.2.3  |  Imputed	data

Using the SimpleM method (Gao et al., 2008), we calculated the 
number of effective tests to be 48,635, giving a genome- wide sig-
nificance	threshold	of	1.03 e−06.

When	performing	GWAS	using	the	imputed	SNP	data,	we	were	
able	to	recover	significant	SNPs	in	the	same	locations	for	all	traits	as	
those	we	found	using	the	50 K	SNP	data.	Of	the	85	SNP-	trait	asso-
ciations	that	we	identified	with	the	50 K	SNP	data,	81	were	signif-
icant	using	the	imputed	SNP	data	–		the	remaining	four	SNPs	were	
no longer significant due to the increased multiple testing burden 
(which leads to a more stringent significance threshold) between the 
50 K	 SNP	data	 and	 the	 imputed	 SNP	data	 (2.49 e−06	 and	1.03 e−06 
respectively).

We	also	identified	795	new	SNP-	trait	associations	using	the	im-
puted	SNP	data	with	425	unique	SNPs	 (Table	S2). The majority of 
new	associations	were	 in	 the	 same	 regions	as	 the	SNPs	 identified	
using	the	50 K	SNP	data,	but	we	also	found	new	associations:	four	
SNPs	on	chromosome	1	and	three	SNP	on	chromosome	7	was	as-
sociated with birth weight (Figure 2a, Table S2),	one	SNP	on	chro-
mosome	 3	 was	 associated	 with	 adult	 August	 weight	 (Figure 2b, 
Table S2),	and	one	SNP	on	chromosome	17	was	associated	with	adult	
metacarpal length (Figure 2c, Table S2).

Manhattan and QQ plots for all traits can be found in Figure S1.

3.2.4  |  Conditional	analysis

We performed conditional analysis on all three leg length traits 
in	both	 lambs	and	adults,	as	well	 as	on	birth	weight,	adult	August	
weight, and adult jaw length (See Table S2	 for	 all	 SNPs	 that	were	
fitted for each trait). For all of these traits, we performed the con-
ditional	analysis	using	both	the	50 K	SNP	data	and	the	imputed	SNP	
data, with the exception of birth weight, which did not have any sig-
nificant	SNP	associations	using	the	50 K	data.

Six of the nine traits we performed conditional analysis on had 
significant	SNPs	after	fitting	the	SNPs	with	the	lowest	p	value;	how-
ever,	for	four	of	these	traits	(lamb	metacarpal	length,	adult	August	
weight,	 foreleg	 length,	 and	hindleg	 length),	 these	were	SNPs	 that	
were	 also	 significant	 in	 our	 original	 GWAS	 analysis	 but	were	 not	
fitted	 in	 the	 conditional	 analysis	 due	 to	 being	 the	 only	 SNP	 that	
was significantly associated with the trait in that region (Table S3). 
The remaining two traits (birth weight and adult jaw length) both 
had a new association, both of which were on chromosome 2. For 
birth	weight,	nine	SNPs	had	p	values	lower	than	the	genome-	wide	

significance threshold, all around ~81 Mb	(Figure 3a, Table S3). For 
adult	jaw	length,	only	one	SNP	had	a	lower	p	value	than	the	genome-	
wide significance threshold, at position 137,162,126 (Figure 3b, 
Table S3).

3.2.5  |  Genes	in	QTL	regions

Given that all of the region- trait associations that were found to be 
significant	with	the	50 K	SNP	data	were	also	significant	with	the	im-
puted	SNP	data,	we	chose	to	focus	on	top	SNPs	in	the	imputed	data-
set, including the two regions that were only significantly associated 
when performing the conditional analysis (See Tables S2 and S3 for 
the	list	of	SNPs,	and	Table	S4 for the list of genes).

We	found	a	total	of	179	genes	in	the	regions	around	the	SNPs	
associated with our traits. 56 of these genes were unannotated in 
the current sheep genome build, and of those that were annotated, 
three did not have a listed mouse homologue and a further six had 
neither a mouse nor a human homologue. Of the genes that did have 
annotation and homologue data, we found nine that are associated 
with similar traits to our focal traits in humans and mice, suggest-
ing that they may be contributing to the genetic variation of our 
traits (Table 2). However, without intimate knowledge of the genes 
surrounding	 the	 focal	 SNPs,	 it	 is	 likely	 that	 there	 are	other	 genes	
that are also contributing. It is also worth noting that variation in 
coding	regions	of	genes	in	proximity	to	SNPs	we	identified	as	being	
associated with our traits may not be responsible for variation in the 
phenotypes, but instead the causal variants may lie in regulatory se-
quences that modulate expression of either these or other genes.

We	 also	 compared	 our	 GWAS	 results	 with	 QTL	 from	 Animal	
QTLdb (Hu et al., 2022). We found that the region on chromosome 
6	 that	we	 found	 to	 be	 associated	with	 adult	 August	weight	 over-
laps with a region previously found to be associated with carcass 
weight	and	final	body	weight	in	an	(Awassi × Merino) × Merino	back-
cross population (Cavanagh et al., 2010) and is ~0.5 Mb upstream 
of	 a	 2.5 Mb	 region	 that	 has	 also	 previously	 been	 associated	 with	
body	weight	in	a	population	of	Australian	Merino	sheep	(Al-	Mamun	
et al., 2015). In addition, the region on chromosome 9 we found to 
be	associated	with	adult	August	weight	is	1	Mb	upstream	of	a	region	
previously found to be associated with yearling live weight in a pop-
ulation of Chinese Merino sheep.

Chromosome 6 has previously been associated with adult body 
weight using linkage analysis in a smaller sample of Soays (Beraldi 
et al., 2007); however, the microsatellite markers flanking the associ-
ated region are not located close to the region we identified.

F I G U R E  3 Miami	plots	for	(a)	birth	weight	using	imputed	SNP	data	(top)	and	birth	weight	conditional	analysis	using	imputed	SNP	data	
(bottom);	and	(b)	adult	jaw	length	GWAS	using	50 K	SNP	data	(top	left)	and	imputed	SNP	data	(top	right),	adult	jaw	length	conditional	analysis	
using	50 K	SNP	data	(bottom	left)	and	imputed	SNP	data	(bottom	right).	The	red	line	represents	the	significance	threshold	(2.49 e−06 for the 
50 K	SNP	data	and	1.03 e−06	for	the	imputed	SNP	data)	–		any	SNPs	above	this	threshold	are	considered	to	be	significantly	associated	with	
variation in their respective traits.
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10 of 15  |     JAMES et al.

3.2.6  |  Two-	step	GWAS

Across	 all	 5	 traits	 when	 using	 the	 two-	step	 approach,	 we	 recov-
ered	the	SNP-	trait	associations	 identified	by	Bérénos	et	al.	 (2015). 
However,	we	were	unable	to	recover	any	of	the	novel	SNP-	trait	as-
sociations	we	found	when	performing	our	single-	step	GWAS	on	the	
50 K	SNP	data,	with	the	exception	of	the	association	between	chro-
mosome	16	and	adult	foreleg	(though	Bérénos	et	al.	noted	that	SNPs	
in this region approached significance in their analysis). Despite the 
genome- wide significance threshold used by Bérénos et al. (2015) 
being more stringent than the significance threshold we calculated 
using	the	SimpleM	method	for	the	50 K	SNP	data,	no	additional	as-
sociations are recovered when using our less stringent threshold.

Our QQ plots using the two- step method also matched the QQ 
plots of Bérénos et al. (2015). In both, the observed p values were 

higher than the expected p values, causing the majority of points in 
the plots to fall below the x = y line (Figure S3).

3.3  |  DISCUSSION

3.3.1  |  Heritability

Our results corroborate findings from previous studies in the Soay 
sheep. For instance, we showed that all five body size traits we stud-
ied in Soay sheep are influenced by genetic variation in the popu-
lation (Bérénos et al., 2014), and that post- mortem measures have 
higher heritability estimates than live measures. We also found 
that leg measures have higher heritability than weight (Beraldi 
et al., 2007; Bérénos et al., 2014; Wilson et al., 2006), and that 

TA B L E  2 Potential	candidate	genes	for	future	analyses.

Gene name Ensembl gene ID Chr Associated trait Effects in other species

Cytochrome 
P450	26B1

ENSOARG00000011582 3 Lamb metacarpal length Associated	with	skeletal	abnormalities	in	
humans and zebrafish (Laue et al., 2011), 
knockouts produce reduced limbs in mice 
(Yashiro et al., 2004).

EXOC6B ENSOARG00000011607 3 Lamb metacarpal length Associated	with	spondyloepimetaphyseal	
dysplasia (resulting in short stature) in 
humans (Campos- Xavier et al., 2018).

FAM13A ENSOARG00000018727 6 Adult	August	weight Modulates body fat distribution and adipocyte 
function in humans and mice (Fathzadeh 
et al., 2020) as well as adipose insulin 
signaling in mice (Wardhana et al., 2018), 
also linked with obesity in mice (Tang 
et al., 2019)

ONECUT1 ENSOARG00000020928 7 Birth weight Associated	with	birth	weight	in	humans	
(Warrington et al., 2019).

IFT43 ENSOARG00000002065 7 Adult	foreleg	length Associated	with	Sensenbrenner	syndrome	
(resulting in growth retardation and 
dwarfism due to femoral and humeral limb 
shortening)	in	humans	(Arts	et	al.,	2011).

PENK ENSOARG00000020184 9 Adult	August	weight PENK	knock-	out	mice	found	to	have	diminished	
food motivation, lower baseline body 
weight and attenuated weight gain (Mendez 
et al., 2015)

PTH1R ENSOARG00000006638 19 Lamb metacarpal length, 
adult foreleg length, 
adult hindleg length, 
adult metacarpal length

Involved in osteoblast development in mice 
(Qiu et al., 2015), associated with skeletal 
disorders	such	as	EKNS	(Duchatelet	
et al., 2005), JMC, and BLC (Schipani & 
Provot,	2003) in humans.

LTF ENSOARG00000008620 19 Lamb metacarpal length, 
adult metacarpal length

Human LTF associated with increased bone 
growth when injected into piglets (Li 
et al., 2018) found to stimulate osteoblast 
proliferation	(Cornish	&	Naot,	2010). High 
expression levels in human bone marrow 
(Fagerberg et al., 2014).

BMP6 ENSOARG00000017264 20 Adult	jaw	length Involved in bone development and expressed in 
the jaw bone in mice (Oralová et al., 2014).

Note: From left to right: Gene name, Ensembl gene ID, chromosome, associated trait, and evidence for association in other species.
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    |  11 of 15JAMES et al.

heritability estimates increase with age (Bérénos et al., 2014; Wilson 
et al., 2006).

The	heritability	estimates	for	the	50 K	data	were	very	similar	to	
those	estimated	using	a	GRM	based	on	 the	50 K	data	 in	a	 smaller	
sample of the same population of sheep by Bérénos et al. (2014), 
with estimates for the same trait falling within one standard error 
of each other. The biggest difference was in adult metacarpal length 
with a heritability difference of 0.05 (estimates were 0.644 (0.047) 
and 0.594 (0.047) for our and Bérénos et al.'s results respectively). 
Given that we used the same models as Bérénos et al., it is likely that 
the small differences between heritability estimates for each trait is 
due to our increased sample sizes.

Comparing	 the	 heritabilities	 estimated	 using	 the	 imputed	 SNP	
data	against	the	estimates	using	the	50 K	SNP	data,	we	found	little	
difference	between	the	two	SNP	densities	 in	any	traits	 in	any	age	
class.	The	additional	genotypes	at	the	imputed	SNPs	do	not	give	any	
additional information on additive genetic variation for these traits. 
This result is not surprising given the previous rarefaction analysis 
showing that the heritability of these body size traits in adults as-
ymptoted	when	 about	 half	 the	 50 K	 SNP	 data	was	 used	 (Bérénos	
et al., 2014).	 There	 is	 high	 LD	 between	 nearby	 SNPs	 in	 the	 Soay	
sheep genome, which suggests that most, if not all, of the causal 
variants	 tagged	 by	 the	 imputed	 SNP	 data	may	 have	 already	 been	
tagged	by	 the	50 K	SNPs.	The	high	LD	was	 reflected	when	calcu-
lating	GWAS	 significance	 thresholds	 –		while	 the	 number	 of	 SNPs	
between	 the	 50 K	 SNP	data	 and	 the	 imputed	 SNP	data	 increased	
by	a	factor	of	10,	the	number	of	effective	tests	only	doubled	(39 K	
SNPs,	20,082	effective	tests	and	401 K	SNPs	and	48,635	effective	
tests respectively).

For some of the traits we have analyzed, there is still a difference 
in	heritability	estimated	using	SNP	data	versus	heritability	estimated	
using	pedigree	–		for	example,	the	highest	SNP-	based	heritability	es-
timate for lamb metacarpal length (the estimate using the imputed 
SNP	data)	gave	an	estimate	59%	of	Bérénos	et	al.'s	pedigree-	based	
estimate (Bérénos et al., 2014).	Given	that	our	SNP-	based	heritability	
estimates	were	similar	when	using	the	50 K	SNP	data	as	when	using	
the	imputed	SNP	data,	and	the	results	of	Bérénos	et	al.'s	rarefaction	
analysis (Bérénos et al., 2014), we believe it is unlikely that increas-
ing	the	density	of	genotyped	SNPs	that	are	common	in	the	popula-
tion will increase heritability estimates of these traits. It is possible 
instead that the difference in heritability estimates obtained from 
pedigree and genomic data is due to rare familial variants that do 
not segregate widely in the population, as well as due to dominance 
and epistasis.

3.3.2  |  GWAS

Body size traits have been the focus of many kinds of analyses in Soay 
sheep	(Ashraf	et	al.,	2021; Beraldi et al., 2007; Bérénos et al., 2014, 
2015; Ozgul et al., 2009;	Pemberton	et	al.,	2017; Regan et al., 2017), 
and	 several	 SNP	 associations	 have	 already	 been	 identified	 for	
these	 traits.	 A	 2015	 study	 aiming	 to	 find	 SNP-	trait	 associations	

identified QTL for adult leg length measures on chromosomes 16 
and 19 (s23172.1 and s74894.1 respectively) (Bérénos et al., 2015).	A	
more recent study comparing genomic prediction methods in Soays 
using	the	50 K	SNP	data	identified	s48811.1	on	chromosome	7	and	
s50107.1 on chromosome 9 as having a probability higher than 0.9 
of having a non- zero effect on adult foreleg length in addition to the 
previously	discovered	 regions	on	chromosomes	16	and	19	 (Ashraf	
et al., 2021). We were able to identify all four of these associations 
in	our	GWAS,	alongside	associations	that	have	not	previously	been	
identified	in	this	population.	Use	of	the	imputed	SNP	data	allowed	us	
to discover four more associations with loci that were not genotyped 
in	 the	50 K	SNP	data,	 indicating	 that	 future	 identification	of	poly-
morphisms influencing trait variation in the Soay sheep will benefit 
from using the imputed data.

Performing	a	 two-	step	analysis	confirmed	 that	 the	novel	SNP-	
trait	associations	we	were	able	to	identify	using	the	50 K	SNP	data	
were due to fitting the fixed and random effects for each trait simul-
taneously,	performing	GWAS	in	a	single	step,	rather	than	due	to	hav-
ing	a	larger	sample	size.	Given	the	increase	in	SNP-	trait	associations	
when using the single- step methodology, and with the availability of 
software like DISSECT which is able to fit fixed and random effects 
whilst	performing	GWAS,	two-	step	GWAS	should	be	avoided.	As	we	
have shown, although DISSECT does not currently have the option 
to	 automatically	 run	 a	 repeated	measures	GWAS,	 it	 is	 possible	 to	
modify input files to allow for repeated measures to be appropriately 
modeled.

The	 imputed	SNP	data	 revealed	SNP-	trait	 associations	 in	 four	
regions	of	the	genome	that	were	not	discovered	using	the	50 K	SNP	
data; a region on chromosome 1 and a region on chromosome 7 and 
birth	weight,	a	region	on	chromosome	3	and	adult	August	weight,	
and a region on chromosome 17 and adult metacarpal length 
(Table S2).	When	examining	the	Manhattan	plot	for	the	50 K	data	for	
each trait (Figure 2a– c, Table S2) it is clear that, with the exception 
of the region on chromosome 1 associated with birth weight, there 
was	a	small	cluster	of	SNPs	just	under	the	significance	threshold	in	
the	50 K	analyses.	The	additional	(imputed)	SNPs	may	have	matched	
the allele frequency of the underlying causal variants more accu-
rately, resulting in a smaller association p value.

We performed conditional analysis on all three leg length traits 
in both lambs and adults, as well as on birth weight (only using the 
imputed	SNP	data),	adult	August	weight	and	adult	 jaw	 length.	For	
each	trait,	we	simultaneously	fitted	the	genotype	for	the	SNP	with	
the	lowest	p	value	for	any	chromosome	that	had	at	least	two	SNPs	
found to be associated with the trait (see Table S2	for	a	list	of	SNPs	
fitted	for	each	trait).	We	found	that	all	of	the	SNPs	that	were	signif-
icant	in	the	GWAS	analysis	were	no	longer	significant	in	the	condi-
tional	analysis	when	a	significant	SNP	on	the	same	chromosome	was	
fitted (Figure 3, Table S3). We suggest that any future work looking 
to pinpoint the exact location of the genetic variants affecting body 
size traits in Soay sheep primarily focus on the regions around the 
SNPs	listed	in	Table	S2.

We	 identified	 179	 genes	 within	 0.5 Mb	 of	 the	 top	 SNPs	 for	
each trait (Table S4), and of these genes, we found nine that are 
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potential candidate genes for further analyses due to their as-
sociation with similar traits in other species. Two of these genes 
(CYP26B1 and EXOC6B) are associated with the same trait (lamb 
metacarpal	length)	and	are	located	within	0.5 Mb	of	the	same	top	
SNP	on	chromosome	3.	CYP26B1 is associated with skeletal abnor-
malities in humans and zebrafish (Laue et al., 2011) and CYP26B1 
knockouts produced reduced limbs in mice (Yashiro et al., 2004), 
while EXOC6B is associated with spondyloepimetaphyseal dys-
plasia in humans which symptoms include skeletal malformations 
affecting the long bones of the limbs and short stature (Campos- 
Xavier et al., 2018).

PTH1R is located in the region on chromosome 19 associated 
with lamb metacarpal length and all three adult leg traits, and has 
been found to be involved in osteoblast development in mice (Qiu 
et al., 2015), and is associated with skeletal disorders such as Eiken's 
syndrome (Duchatelet et al., 2005), Jansen's metaphyseal chon-
drodysplasia and Blomstrand's lethal chondrodysplasia (Schipani & 
Provot,	2003).	As	 the	top	SNPs	on	chromosome	19	for	both	 lamb	
and adult metacarpal are in a slightly different position to the top 
SNP	for	the	live	measures,	LTF is in the region associated with both 
lamb and adult metacarpal length on chromosome 19, and has 
been found to increase bone growth when injected into piglets (Li 
et al., 2018), stimulate osteoblast proliferation in humans (Cornish & 
Naot,	2010), and has high expression levels in human bone marrow 
(Fagerberg et al., 2014).

BMP6, located in the region on chromosome 20 associated with 
adult jaw length, has also been found to be involved in bone devel-
opment and expression in mice jaw bone (Oralová et al., 2014).

We found three potential candidate genes associated with 
weight. FAM13A in the region on chromosome 6 associated with adult 
August	weight	has	been	found	to	modulate	body	fat	distribution	and	
adipocyte function in humans and mice (Fathzadeh et al., 2020) af-
fects adipose insulin signaling in mice (Wardhana et al., 2018) and is 
associated with obesity also in mice (Tang et al., 2019). PENK, located 
in	the	region	on	chromosome	9	associated	with	adult	August	weight,	
has been found to cause diminished food motivation, lower baseline 
body weight, and attenuated weight gain when knocked out in mice 
(Mendez et al., 2015). ONECUT1, located in the region on chromo-
some 7 associated with birth weight, has been found to be associ-
ated with birth weight in humans (Warrington et al., 2019). Unlike 
the other potential candidate gene- trait associations we found, this 
association	was	 only	 found	when	 performing	GWAS	with	 the	 im-
puted	SNP	data.

Although	we	have	discovered	new	SNP-	trait	associations,	it	is	
likely that there are still causative variants that remain undetected. 
GWAS	lacks	power	to	detect	rare	causative	variants	and	variants	
with very small effect sizes (Yang et al., 2010).	Also,	GWAS	power	
drops when the same amount of phenotypic variation is a conse-
quence of multiple variants in the same region as opposed to a 
single	variant	(Nagamine	et	al.,	2012). Regional mapping methods 
have been developed that partition trait variance into regions by 
simultaneously fitting a whole genome and a regional GRM, with 

the	regions	either	being	defined	as	fixed	SNP	windows	(Nagamine	
et al., 2012) or haplotype blocks (Shirali et al., 2018). Such meth-
odologies have the potential to identify regions of the genome 
that contain variants associated with a trait that are unable to be 
identified	by	GWAS	either	due	to	being	rare	or	individually	having	
small effects on trait variation. Genomic prediction, which simul-
taneously estimates all marker effects drawn from multiple dis-
tributions, can also be used to study the genetic architecture of 
traits	 by	 estimating	 the	 posterior	 inclusion	 probability	 of	 a	 SNP	
having a non- zero effect on a trait. Genomic prediction has already 
been used on adult body size traits in Soays, and has identified 
several	 of	 the	 SNPs	we	 identified	 through	 our	 GWAS	 approach	
(Ashraf	 et	 al.,	 2021). Ultimately, we believe that it is important 
to use a variety of methodologies when studying the genetic ar-
chitecture of complex traits, as different analyses have different 
strengths	 and	may	 be	 able	 to	 identify	 different	 QTL.	 Across	 all	
traits for all age classes, the QQ plots showed deviation from the 
expected distribution of test statistics under the null hypothesis 
(x = y line) for a wide range of test statistics, including low values, 
which may be either due to underlying population structure not 
accounted for by the GRMs or due to trait architecture. The first 
20 genomic principal components accounted for only 10.68% of 
the	variance	in	the	genetic	data,	and	repeating	the	GWAS	analysis	
fitting these first 20 genomic principal components in addition to 
the	 GRM	 did	 not	 change	 the	 p	 values	 of	 the	 SNPs	 nor	 the	QQ	
plots (data not shown). This shows that the principal components 
in this case were not useful in adjusting for population structure 
in the presence of the GRM, and that population structure is not 
likely to cause any issues in our analyses, especially after fitting a 
LOCO GRM.

In order to have sufficient power to detect associations be-
tween	markers	 and	 a	 trait	 of	 interest,	 GWAS	 primarily	 requires	
two	 factors:	 (i)	 a	 very	high	density	of	genotyped	SNPs	and	 (ii)	 a	
large number of individuals that have been genotyped and pheno-
typed (Santure & Garant, 2018). For intensively studied organisms, 
both are achievable; such populations tend to have more individu-
als accessible to collect data from, high density genotyping can be 
done at a lower cost due to higher demand, and, as in humans, data 
from different populations can be combined to create larger sam-
ple	sizes.	GWA	studies	of	humans	are	the	most	obvious	example	
of this; studies often have study populations made up of hundreds 
of	thousands	of	individuals	and	human	SNP	chips	commonly	gen-
otype hundreds of thousands of variants (for example, see Wood 
et al., 2014; Ishigaki et al., 2020; Wu et al., 2021). In comparison, 
wild study population samples are much smaller –  often strug-
gling	to	reach	1000	individuals	–		and	the	number	of	SNPs	geno-
typed is much lower (for example, see Silva et al., 2017; Malenfant 
et al., 2018;	 Perrier	 et	 al.,	 2018).	 Analyses	 of	 wild	 populations	
therefore generally lack the power of more intensively studied 
study organisms. Here, we have increased power by increasing the 
number of genotyped markers via imputation. Despite high LD in 
the Soay sheep population, use of imputed data has allowed us to 
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identify	four	new	SNP-	trait	associations,	including	an	association	
with birth weight, which had yet to be associated with any QTL in 
the Soay population. We have therefore shown that for a given 
sample size, more information can be obtained by increasing the 
density of markers for those individuals have been phenotyped. 
We suggest that, where possible, analyses of wild populations im-
pute	SNP	data	in	order	to	increase	power	and	obtain	results	that	
may otherwise remain undiscovered.

In	our	population,	we	were	able	to	identify	new	SNP-	trait	asso-
ciations	when	performing	GWAS	with	 the	higher	density	 imputed	
dataset that were not found with the lower density non- imputed 
data –  one of which allowed for the identification of a potential can-
didate gene for that trait. We have shown that analyses performed 
with	 imputed	data,	 such	as	heritability	estimation	and	GWAS,	can	
still pick up additive genetic variation that would have been identi-
fied with the non- imputed data. We suggest that, where possible, 
analyses	of	wild	populations	 impute	SNP	data	 in	order	to	 increase	
power and obtain associations that may otherwise remain undis-
covered. In addition, we demonstrated the benefits of fitting fixed 
and	 random	 effects	 during	 GWAS	 instead	 of	 pre-	correcting	 and	
performing	GWAS	on	the	residuals.	We	therefore	recommend	that	
researchers	use	this	‘one-	step’	method	when	performing	GWAS	on	
wild populations.
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