
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The impact of SNP density on quantitative genetic analyses of
body size traits in a wild population of Soay sheep

Citation for published version:
James, C, Pemberton, JM, Navarro, P & Knott, S 2022, 'The impact of SNP density on quantitative genetic
analyses of body size traits in a wild population of Soay sheep', Ecology and Evolution, vol. 12, e9639.
https://doi.org/10.1002/ece3.9639

Digital Object Identifier (DOI):
10.1002/ece3.9639

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Ecology and Evolution

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 13. Jan. 2023

https://doi.org/10.1002/ece3.9639
https://doi.org/10.1002/ece3.9639
https://www.research.ed.ac.uk/en/publications/1a1392da-b8ce-4cfe-bd3a-16a3bb8a2e8e


Ecology and Evolution. 2022;12:e9639.	 ﻿	   | 1 of 15
https://doi.org/10.1002/ece3.9639

www.ecolevol.org

1  |  INTRODUC TION

Investigating the genetic architecture behind heritable traits is 
key to understanding the biological diversity of wild populations. 
If we know the number of loci influencing a trait and their effect 
size, we can better understand the evolutionary processes that 
underpin traits, improve inferences about trait evolution, and 

understand micro-evolutionary dynamics that occur due to envi-
ronmental change (Barton & Keightley,  2002). Most quantitative 
genetic research in animals is carried out in artificial populations; 
either domestic, agricultural or laboratory. Such populations ex-
perience controlled environmental conditions which make it eas-
ier to account for environmental factors when studying the effect 
of genetic variants on phenotypic variation. However, given that 
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Abstract
Understanding the genetic architecture underpinning quantitative traits in wild popu-
lations is pivotal to understanding the processes behind trait evolution. The ‘animal 
model’ is a popular method for estimating quantitative genetic parameters such as 
heritability and genetic correlation and involves fitting an estimate of relatedness be-
tween individuals in the study population. Genotypes at genome-wide markers can 
be used to estimate relatedness; however, relatedness estimates vary with marker 
density, potentially affecting results. Increasing density of markers is also expected to 
increase the power to detect quantitative trait loci (QTL). In order to understand how 
the density of genetic markers affects the results of quantitative genetic analyses, 
we estimated heritability and performed genome-wide association studies (GWAS) 
on five body size traits in an unmanaged population of Soay sheep using two dif-
ferent SNP densities: a dataset of 37,037 genotyped SNPs and an imputed dataset 
of 417,373 SNPs. Heritability estimates did not differ between the two SNP densi-
ties, but the high-density imputed SNP dataset revealed four new SNP-trait associa-
tions that were not found with the lower density dataset, as well as confirming all 
previously-found QTL. We also demonstrated that fitting fixed and random effects in 
the same step as performing GWAS is a more powerful approach than pre-correcting 
for covariates in a separate model.
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environmental factors can influence the phenotype of a quan-
titative trait (Charmantier et al.,  2014), and that the presence of 
genotype-by-environment interactions can cause additive genetic 
variance to differ between environmental conditions, studies on 
artificial populations arguably cannot be fully extrapolated to wild 
populations (Kruuk et al., 2008). Therefore, it is important to also 
study quantitative traits in wild populations in their natural habi-
tats. There is a wealth of quantitative genetics research in human 
populations (for examples, see Kang et al., 2010; Locke et al., 2015; 
Manolio et al., 2009; Yang et al., 2010; Xia et al., 2016, 2021; Zaitlen 
et al., 2013), but humans also arguably experience a more buffered 
environment than wild populations and inferences in wild popula-
tions are lacking in comparison.

When using molecular markers to inform quantitative genetic 
analyses, the results are dependent on the genetic polymorphisms 
used in the analysis: low numbers of markers can result in down-
wardly biased heritability estimates and regions containing causal 
variants may not appear as significant if there are no genotyped 
markers in linkage disequilibrium (LD) with the causal variant. 
Increasing the density of genotyped markers means they are more 
likely to be in LD with causal variants for the trait of interest, either 
by being physically closer to the causal variants or by matching the 
allele frequency of the causal variants more accurately. However, 
increasing the number of genotyped markers means larger, denser 
genotyping arrays with costs increasing with density. For commonly 
studied species, high-density arrays are more affordable due to high 
demand, but for more niche species, including wild populations, 
large genotyping arrays are often unaffordable. Genotyping-by-
sequencing, for example, ddRAD (Peterson et al.,  2012), is a po-
tentially useful alternative for upscaling SNP density, though the 
combination of bioinformatics and samples sizes required in quanti-
tative genetic research means that this approach is not yet in wide-
spread use.

As an alternative to expensive high-density genotyping, gen-
otype imputation can be used to increase the number of variants 
analyzed (Burdick et al., 2006). Imputation involves predicting geno-
types at untyped SNPs in a ‘target’ population using a subset of the 
study population – or more generally a ‘reference’ population – gen-
otyped at a higher density, either through a high density SNP array 
or by genotyping-by-sequencing. The genotypes at these untyped 
SNPs for individuals in the target population are inferred using their 
genotypes at typed markers and taking advantage of existing linkage 
disequilibrium (LD) between SNPs. Pedigree information can also be 
used to increase the accuracy of the imputation by identifying haplo-
type blocks that are identical by descent (Burdick et al., 2006).

The Soay sheep (Ovis aries) of St Kilda are a primitive, unmanaged 
breed of sheep that have been the focus of a longitudinal, individual-
based study since 1985 (Clutton-Brock & Pemberton, 2003). As part 
of the study, morphometric, life history, and environmental data 
are collected, DNA samples are collected, and a pedigree has been 
constructed using observation and genetic parentage inference. 
7630 sheep have been genotyped on the Ovine SNP50 Illumina 
Beadchip, on which 37,037 SNPs are autosomal and polymorphic in 

this population. In addition, 188 individuals have been genotyped 
on the Ovine Infinum HD Beadchip, which contains 419,281 autoso-
mal SNPs that are polymorphic in the population – this has allowed 
for imputation of the remaining sheep to this higher density (Stoffel 
et al., 2021).

In this study we performed a direct comparison of heritability 
estimates and GWAS associations between the lower density SNP 
data and the imputed high density SNP data in the Soay population, 
focusing on five body size traits in neonates, lambs, and adults. We 
performed GWAS by fitting fixed and random effects in the same 
step as testing for SNP-trait associations, which has the advantage 
of correctly propagating error throughout the analysis, reducing the 
chance of false positive results, and increasing power by disentan-
gling potential correlations. We also carried out a two-step GWAS 
approach previously used on a smaller sample size of the Soays 
(Bérénos et al.,  2015) to investigate whether any SNP-trait asso-
ciations identified using our approach were due to the increased 
sample size or due to the different methodology (single-step vs. 
two-step GWAS).

Our aims were as follows:

1.	 To determine whether the increased density of SNPs changes 
the heritability estimates of the traits.

2.	 To determine whether the imputed SNP data enables the identifi-
cation of new SNP-trait associations via GWAS.

3.	 To compare a single-step GWAS methodology with the two-step 
approach previously used on the study population.

While we have used the Soay sheep as our study population, we 
believe that our objectives are also relevant for other wild popula-
tions. Keeping costs down is important for all research groups, and 
we aim to show that imputation is a way to do so while improving 
the power results of quantitative genetic analyses. We also intend 
to highlight the benefit of fitting fixed and random effects whilst 
performing GWAS instead of pre-correcting.

2  |  METHODS

2.1  |  Phenotypic data

The sheep are ear-tagged when they are first captured which allows 
for reidentification for life. We focused on five body size traits in 
three age groups: neonates, lambs, and adults. Of the five traits, 
three (weight, foreleg length, and hindleg length) are live measures, 
recorded in April for neonates and in August for lambs and adults. 
The remaining two traits (metacarpal length and jaw length) are 
post-mortem measures taken from skeletal material. Both birth and 
August weight are measured to the nearest 0.1 kg, while the remain-
ing traits are all measured to the nearest mm. A detailed description 
of trait measurements can be found in Beraldi et al. (2007).

We defined neonates as individuals who were caught and 
weighed between 2 and 10 days after birth – birth weight was the 
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    |  3 of 15JAMES et al.

only trait recorded for this age group. Lambs were classed as individ-
uals who had phenotypic data recorded in the August of their birth 
year for the live traits, and as individuals who died before 14 months 
of age for the post-mortem measures. Individuals were classed as 
adults if they had August phenotypic data recorded at least 2 years 
after birth, or if they died after 26 months of age for post-mortem 
measures. We chose not to analyze yearling data due to the small 
sample sizes in comparison to the other age classes, which is due to 
high first winter mortality.

2.2  |  Genetic data

Most of the sheep in our study population have been genotyped 
using the Ovine SNP50 Illumina BeadChip, which targets 54,241 
SNPs across the sheep genome. After removing SNPs which failed 
quality control standards (minor allele frequency (MAF) > 0.001, call 
rate > 0.99, deviation from Hardy–Weinberg Equilibrium P > 1 e-05) 
and individuals with a call rate < 0.95, 39,368 polymorphic vari-
ants remained for 7630 individuals (3643 female, 3987 male). See 
Bérénos et al.  (2014) for information on genetic sampling protocol 
and marker characteristics.

Of these 7630 individuals, 188 have also been genotyped using 
the Ovine Infinium HD SNP BeadChip which targets 606,066 SNPs. 
This has allowed for the low-density genotypes to be imputed to the 
higher density using AlphaImpute, which combines shared haplo-
type and pedigree information for phasing and genotype imputation 
(Hickey et al., 2012) (see Stoffel et al., 2021 for information on im-
putation and quality control). We used imputed genotype ‘hard’ calls 
(rather than genotype probabilities) in downstream analyses. After 
filtering SNPs that failed quality control standards, 419,281 autoso-
mal SNPs remained for 7621 individuals (3639 females, 3982 males).

Both the 50 K SNP data and the imputed SNP data are mapped to 
the OAR_v3.1 genome assembly.

2.3  |  Narrow sense heritability estimation

We used animal models to partition the phenotypic variance for each 
trait in each age class into genetic and non-genetic variance compo-
nents. Fixed and random effects were fitted for all models, with the 
effects differing between traits and age classes (Table 1). We imple-
mented these analyses in DISSECT (Canela-Xandri et al., 2015) using 
the following model:

where y is the vector of phenotypic values; X is a design matrix linking 
individual records with the vector of fixed effects β, Zr is an incidence 
matrix that relates the random effect r to the individual records; ur is 
the associated vector of non-genetic random effects; g is the vector 
of additive genetic random effects with W the incidence matrix; and 
ε is the vector of residuals. It is assumed that g ~ MVN(0, Mσg

2), where 

σg
2 is the additive genetic variance and M is the genomic relationship 

matrix (GRM). For each trait in each age class, we ran this model twice: 
first with M being a GRM calculated from the 50 K genotype data, 
and second with M being a GRM calculated from the imputed SNP 
genotypes. The GRMs were computed using DISSECT (Canela-Xandri 
et al., 2015) using VanRaden's Method 2 GRM calculation, for which 
the genetic relationship between individuals i and j is computed as:

where sik is the number of copies of the reference allele for SNP k of 
the individual i, pk is the frequency of the reference allele for the SNP 
k, and N is the number of SNPs (VanRaden, 2008).

The narrow sense heritability was estimated by dividing the 
additive genetic variance (the variance explained by the GRM) by 
the total estimated phenotypic variance (the sum of the variance 
explained by the GRM and other fitted random effects after fitting 
fixed effects).

In adults, there are multiple records for August weight, foreleg 
length, and hindleg length for the same individual due to individuals 
being caught across multiple years. For these traits, we used a re-
peatability model in order that uncertainty was correctly propagated 
through all estimations (Mrode, 2014). To implement a repeatability 
model in DISSECT, we edited the input files so that each measure-
ment had its own row in the genotype and covariate files. Individual 
ID was replaced with a unique capture reference number, and indi-
vidual permanent environment was fitted as a random effect (see 
Supplementary Methods for a more detailed explanation).

Sample sizes and total number of phenotypic measurements for 
all traits are shown in Table 1, with effects fitted in all models.

2.4  |  Genome wide association analysis

Principal component analysis (PCA) using the GRM was performed 
prior to the genome-wide association analyses (GWAS) using 
DISSECT (Canela-Xandri et al., 2015) in order to examine the under-
lying population structure.

GWAS was also conducted using DISSECT (Canela-Xandri 
et al., 2015) using the following model:

where y, X, β, Zr, ur, W, and ε are the same as in the model for herita-
bility estimation, s is the effect of the focal SNP, S is the design matrix 
linking individual records to the number of effect alleles for α, the es-
timated SNP effect (coded as 0, 1 or 2), and gLOCO is the vector of 
additive genetic random effects excluding the chromosome on which 
the focal SNP resides.

We fitted the same fixed and random effects for each trait 
and age class as for the heritability estimation (Table  1). To ac-
count for population structure, when testing SNPs on a given 

y = X� +
∑

r

Zrur +Wg + ε

Aij =
1

N

∑N

k=1

(

sik − 2pk
)(

sjk − 2pk
)

2pk
(

1 − pk
)

y = X� + S� +
∑

r

Zrur +WgLOCO + ε
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4 of 15  |     JAMES et al.

chromosome for association with the phenotype, a GRM calcu-
lated from the remaining autosomes (referred to as Leave One 
Chromosome Out GRM [gLOCO] [Yang et al.,  2014]) was fitted. 

Input files for repeated-measure traits were reformatted as above. 
Our significance threshold was corrected for multiple testing using 
the SimpleM method (Gao et al., 2008), which accounts for linkage 

TA B L E  1 Number of individuals and records, fixed and random effects fitted in each trait x age class model in addition to the GRM.

Age Trait No. individuals No. records Fixed effects Random effects

Neonate Birth weight 2678 2678 Sex Year of birth

Litter size Mother ID

Population size year before birth

Age of mother (quadratic)

Ordinal date of birth

Age (days)

Lamb Weight 2228 2228 Sex Year of birth

Litter size Mother ID

Population size Permanent 
environment

Age (days)

Foreleg 2284 2284 Sex Year of birth

Litter size Mother ID

Population size Permanent 
environment

Age (days)

Hindleg 2349 2349 Sex Year of birth

Litter size Mother ID

Population size Permanent 
environment

Age (days)

Metacarpal 2059 2059 Sex Year of birth

Litter size Mother ID

Age at death (months)

Jaw 2113 2113 Sex Year of birth

Litter size Mother ID

Age at death (months)

Adult Weight 1152 3553 Sex Year of capture

Population size Permanent 
environment

Age (years)

Foreleg 1121 3331 Sex Year of capture

Population size Permanent 
environment

Age (years)

Hindleg 1135 3444 Sex Year of capture

Population size Permanent 
environment

Age (years)

Metacarpal 945 945 Sex Year of birth

Age at death (years)

Jaw 991 991 Sex Year of birth

Age at death (years)

Note: The same individuals and records were used for both heritability estimates and for GWAS.

 20457758, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9639 by E

dinburgh U
niversity, W

iley O
nline L

ibrary on [11/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  5 of 15JAMES et al.

disequilibrium between markers in order to calculate the effective 
number of independent tests.

We estimated the variance explained by SNPs that passed the 
significance threshold using the equation

where p and q are the major and minor allele frequencies of the SNP, 
and α is the estimated SNP effect. We then calculated the proportion 
of additive genetic variance explained by each SNP by dividing by the 
total additive genetic variance estimated for that trait.

For any trait for which several SNPs in the same region were as-
sociated with variation in the trait and thus had strong support for 
at least one QTL in the region, we carried out conditional analysis to 
understand if the region could potentially harbor several indepen-
dent QTL, or if further QTL could be uncovered elsewhere in the 
genome. To that aim, the genotypes of the SNP with the smallest 
association p value from each associated region (hereafter called the 
‘top SNP’) were added to the GWAS model as a fixed covariate and 
removed from the GRMs and genotype data. The GWAS analysis 
was re-run accounting for those associations to try and reveal novel 
peaks either in the same regions or elsewhere in the genome.

2.5  |  Genes in QTL regions

For each trait × SNP association, we investigated the genes within a 
0.5 Mb window either side of the top SNP to identify any genes which 
could be contributing to trait variation. We extracted a list of genes 
for each trait using the biomaRt package in R (Durinck et al., 2005, 
2009) from the OAR_v3.1 genome assembly and reviewed each 
gene against the NCBI Gene (Bethesda (MD): National Library of 
Medicine (US)  2004–2022) (including information from the Sheep 
Tissue Atlas (Jiang et al., 2014)), Animal QTLdb (Hu et al., 2022), and 
Ensembl (Howe et al., 2020) databases to examine function and ex-
pression annotations. When possible, we also compared with human 
and mouse orthologs due to the high level of annotation data avail-
able for these two species.

2.6  |  Two-step GWAS analysis

Genome-wide association studies has previously been performed on 
the adult traits in a smaller sample of Soay sheep using the 50 K SNP 
data (Bérénos et al., 2015). The authors performed GWAS by first run-
ning a mixed model analysis, fitting fixed and random effects including 
whole-genome relatedness in the form of a GRM and, for repeated-
measure traits, permanent environment. The residuals were then 
extracted and used as the phenotypic values for GWAS. For repeated-
measure traits, the mean residual value was used for each individual.

To investigate whether any novel SNP associations identified 
in this study were due to the increased sample size or due to the 
change in methodology, we also performed a two-step GWAS, 

focusing on adults only and using the 50 K SNP data. Like Bérénos 
et al.  (2015), we performed mixed model analyses using ASReml-R 
(Butler et al., 2017) and performed GWAS with the residuals as the 
trait phenotypes using DISSECT (Canela-Xandri et al.,  2015). We 
used the Bonferroni correction calculated in Bérénos et al.  (2015) 
to determine the significance threshold of 1.35 e-6 for our two-step 
GWAS in order to compare with the previously published analysis.

3  |  RESULTS

3.1  |  Heritability estimation

3.1.1  |  Neonates

In neonates, the heritability of birth weight was 0.051 (S.E. 0.020) 
both when using the 50 K SNPs to calculate relatedness and when 
using the imputed SNPs (Figure 1, Table S1). Given that both esti-
mates are identical to three decimal places, there is no difference 
between the estimates.

3.1.2  |  Lambs

In lambs, the heritability estimates for the live August measures 
were lower than those for the post-mortem measures (Figure  1, 
Table  S1). Across all the traits, heritability estimates were similar 
when using the 50 K SNP data and the imputed SNP data, with the 
biggest difference being 0.024 for metacarpal length. For all traits, 
estimates were within one standard error of each other, indicating 
that the small differences in heritability estimates between the two 
SNP densities were not significant.

3.1.3  |  Adults

As observed in lambs, heritability estimates for live measures in 
adults were lower than those of the post-mortem measures. Across 
all traits, heritability estimates were higher in adults than in lambs. 
Estimates obtained using the 50 K SNPs and using the imputed 
SNPs were similar and were within one standard error of each other 
(Figure 1, Table S1), meaning that the imputed SNPs provided no ad-
ditional information to partition the variation into genetic and envi-
ronmental variance.

Estimates for all variance components are listed in Table S1.

3.2  |  GWAS

3.2.1  |  PCA

The top 20 principal components together explained 10.68% of the 
variance in the genetic data, with the top two principal components 

V(SNP) = 2pqα2
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6 of 15  |     JAMES et al.

explaining 0.98% and 0.85% of the variance. We concluded that 
any population structure that was likely to affect the GWAS results 
would be corrected for by fitting a LOCO GRM in our GWAS model, 
as this will account for any structure caused by relationships.

3.2.2  |  50 K SNP data

To correct for multiple testing, we calculated the effective number 
of tests to be 20,082 using the SimpleM method (Gao et al., 2008), 
giving a genome-wide significance threshold of 2.49 e−06 for the 50 K 
SNP data.

For weight in neonates (birth weight) and lambs (August weight), 
no SNPs were found to have an association p value smaller than this 
threshold, suggesting that any variants that influence weight vari-
ation are either of small effect or were not tagged by SNPs in the 
50 K SNP data (Figure 2a, Figure S1b,g). For adult August weight, 
three SNPs had a p value lower than the genome-wide significance 
threshold; one SNP on chromosome 6 and two SNPs on chromo-
some 9.

For all three leg length measures in lambs, we found associations 
with the same region on chromosome 16. SNP s23172.1 was the 
SNP with the lowest p value for lamb foreleg and hindleg, explain-
ing 0.52% and 0.69% of the genetic variance for each trait respec-
tively (Table  S2, Figure  S1c,d). For lamb metacarpal, SNP 22142.1 
in the same chromosome 16 region had the lowest p value and ex-
plained 0.97% of the genetic variance. There was also a single SNP 
on chromosome 3 (OAR3_100483326.1) and a cluster of SNPs on 

chromosome 19 that had p values smaller than the genome-wide 
significance threshold and were associated with variation in lamb 
metacarpal length, with the SNP with the lowest p value from each 
region explaining 2.08% and 2.40% of the genetic variance respec-
tively (Table S2, Figure S1e).

The two regions on chromosomes 16 and 19 that were associ-
ated with lamb metacarpal length variation were also significantly 
associated with all three leg length measures in adults, with SNP 
s22142.1 on chromosome 16 and SNP s74894.1 on chromosome 
19 respectively explaining 0.80% and 2.04% of the genetic varia-
tion in adult foreleg, 0.88% and 1.32% of the genetic variation in 
adult hindleg, and 0.55% and 2.02% of the genetic variation in adult 
metacarpal length. There were other regions of the genome also 
associated with variation in the adult leg length traits; a region on 
chromosome 11 was significant across all three adult leg length 
traits, with the most significant SNP explaining 2.35%, 2.25%, and 
1.13% of the genetic variance in adult foreleg, hindleg, and meta-
carpal respectively (Figure  2b, Table  S2, Figure  S1h,j). For adult 
foreleg, a SNP on chromosome 7 and two on chromosome 9 were 
also associated, with the most significant SNPs in each region ex-
plaining 1.31% and 2.99% of the genetic variance respectively for 
this trait (Table S2, Figure S1h).

In lambs, there were no associations with jaw length found 
(Figure S1f). In adults, a SNP on chromosome 20 was associated with 
jaw length variation, explaining 2.05% of the genetic variance for 
this trait (Table S2, Figure S1k).

In total, we identified 85 SNP-trait associations with 39 unique 
SNPs.

F I G U R E  1 Estimates of heritability for body size traits in neonates, lambs, and adult Soay sheep when using a GRM calculated from 
the 50 K SNP data (blue) compared with using a GRM calculated from the imputed SNP data (yellow). Error bars represent standard error 
estimates.
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    |  7 of 15JAMES et al.

F I G U R E  2 Manhattan plots for (a) birth weight GWAS using 50 K SNP data (left) and imputed SNP data (right); (b) adult august weight 
GWAS using 50 K SNP data (left) and imputed SNP data (right); and (c) adult metacarpal length GWAS using 50 K SNP data (left) and imputed 
SNP data (right). The red line represents the significance threshold (2.49 e−06 for the 50 K SNP data and 1.03 e−06 for the imputed SNP data) 
– any SNPs above this threshold are considered to be significantly associated with variation in their respective traits.
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8 of 15  |     JAMES et al.

3.2.3  |  Imputed data

Using the SimpleM method (Gao et al.,  2008), we calculated the 
number of effective tests to be 48,635, giving a genome-wide sig-
nificance threshold of 1.03 e−06.

When performing GWAS using the imputed SNP data, we were 
able to recover significant SNPs in the same locations for all traits as 
those we found using the 50 K SNP data. Of the 85 SNP-trait asso-
ciations that we identified with the 50 K SNP data, 81 were signif-
icant using the imputed SNP data – the remaining four SNPs were 
no longer significant due to the increased multiple testing burden 
(which leads to a more stringent significance threshold) between the 
50 K SNP data and the imputed SNP data (2.49 e−06 and 1.03 e−06 
respectively).

We also identified 795 new SNP-trait associations using the im-
puted SNP data with 425 unique SNPs (Table S2). The majority of 
new associations were in the same regions as the SNPs identified 
using the 50 K SNP data, but we also found new associations: four 
SNPs on chromosome 1 and three SNP on chromosome 7 was as-
sociated with birth weight (Figure 2a, Table S2), one SNP on chro-
mosome 3 was associated with adult August weight (Figure  2b, 
Table S2), and one SNP on chromosome 17 was associated with adult 
metacarpal length (Figure 2c, Table S2).

Manhattan and QQ plots for all traits can be found in Figure S1.

3.2.4  |  Conditional analysis

We performed conditional analysis on all three leg length traits 
in both lambs and adults, as well as on birth weight, adult August 
weight, and adult jaw length (See Table S2 for all SNPs that were 
fitted for each trait). For all of these traits, we performed the con-
ditional analysis using both the 50 K SNP data and the imputed SNP 
data, with the exception of birth weight, which did not have any sig-
nificant SNP associations using the 50 K data.

Six of the nine traits we performed conditional analysis on had 
significant SNPs after fitting the SNPs with the lowest p value; how-
ever, for four of these traits (lamb metacarpal length, adult August 
weight, foreleg length, and hindleg length), these were SNPs that 
were also significant in our original GWAS analysis but were not 
fitted in the conditional analysis due to being the only SNP that 
was significantly associated with the trait in that region (Table S3). 
The remaining two traits (birth weight and adult jaw length) both 
had a new association, both of which were on chromosome 2. For 
birth weight, nine SNPs had p values lower than the genome-wide 

significance threshold, all around ~81 Mb (Figure 3a, Table S3). For 
adult jaw length, only one SNP had a lower p value than the genome-
wide significance threshold, at position 137,162,126 (Figure  3b, 
Table S3).

3.2.5  |  Genes in QTL regions

Given that all of the region-trait associations that were found to be 
significant with the 50 K SNP data were also significant with the im-
puted SNP data, we chose to focus on top SNPs in the imputed data-
set, including the two regions that were only significantly associated 
when performing the conditional analysis (See Tables S2 and S3 for 
the list of SNPs, and Table S4 for the list of genes).

We found a total of 179 genes in the regions around the SNPs 
associated with our traits. 56 of these genes were unannotated in 
the current sheep genome build, and of those that were annotated, 
three did not have a listed mouse homologue and a further six had 
neither a mouse nor a human homologue. Of the genes that did have 
annotation and homologue data, we found nine that are associated 
with similar traits to our focal traits in humans and mice, suggest-
ing that they may be contributing to the genetic variation of our 
traits (Table 2). However, without intimate knowledge of the genes 
surrounding the focal SNPs, it is likely that there are other genes 
that are also contributing. It is also worth noting that variation in 
coding regions of genes in proximity to SNPs we identified as being 
associated with our traits may not be responsible for variation in the 
phenotypes, but instead the causal variants may lie in regulatory se-
quences that modulate expression of either these or other genes.

We also compared our GWAS results with QTL from Animal 
QTLdb (Hu et al., 2022). We found that the region on chromosome 
6 that we found to be associated with adult August weight over-
laps with a region previously found to be associated with carcass 
weight and final body weight in an (Awassi × Merino) × Merino back-
cross population (Cavanagh et al., 2010) and is ~0.5 Mb upstream 
of a 2.5 Mb region that has also previously been associated with 
body weight in a population of Australian Merino sheep (Al-Mamun 
et al., 2015). In addition, the region on chromosome 9 we found to 
be associated with adult August weight is 1 Mb upstream of a region 
previously found to be associated with yearling live weight in a pop-
ulation of Chinese Merino sheep.

Chromosome 6 has previously been associated with adult body 
weight using linkage analysis in a smaller sample of Soays (Beraldi 
et al., 2007); however, the microsatellite markers flanking the associ-
ated region are not located close to the region we identified.

F I G U R E  3 Miami plots for (a) birth weight using imputed SNP data (top) and birth weight conditional analysis using imputed SNP data 
(bottom); and (b) adult jaw length GWAS using 50 K SNP data (top left) and imputed SNP data (top right), adult jaw length conditional analysis 
using 50 K SNP data (bottom left) and imputed SNP data (bottom right). The red line represents the significance threshold (2.49 e−06 for the 
50 K SNP data and 1.03 e−06 for the imputed SNP data) – any SNPs above this threshold are considered to be significantly associated with 
variation in their respective traits.
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3.2.6  |  Two-step GWAS

Across all 5 traits when using the two-step approach, we recov-
ered the SNP-trait associations identified by Bérénos et al.  (2015). 
However, we were unable to recover any of the novel SNP-trait as-
sociations we found when performing our single-step GWAS on the 
50 K SNP data, with the exception of the association between chro-
mosome 16 and adult foreleg (though Bérénos et al. noted that SNPs 
in this region approached significance in their analysis). Despite the 
genome-wide significance threshold used by Bérénos et al.  (2015) 
being more stringent than the significance threshold we calculated 
using the SimpleM method for the 50 K SNP data, no additional as-
sociations are recovered when using our less stringent threshold.

Our QQ plots using the two-step method also matched the QQ 
plots of Bérénos et al. (2015). In both, the observed p values were 

higher than the expected p values, causing the majority of points in 
the plots to fall below the x = y line (Figure S3).

3.3  |  DISCUSSION

3.3.1  |  Heritability

Our results corroborate findings from previous studies in the Soay 
sheep. For instance, we showed that all five body size traits we stud-
ied in Soay sheep are influenced by genetic variation in the popu-
lation (Bérénos et al., 2014), and that post-mortem measures have 
higher heritability estimates than live measures. We also found 
that leg measures have higher heritability than weight (Beraldi 
et al.,  2007; Bérénos et al.,  2014; Wilson et al.,  2006), and that 

TA B L E  2 Potential candidate genes for future analyses.

Gene name Ensembl gene ID Chr Associated trait Effects in other species

Cytochrome 
P450 26B1

ENSOARG00000011582 3 Lamb metacarpal length Associated with skeletal abnormalities in 
humans and zebrafish (Laue et al., 2011), 
knockouts produce reduced limbs in mice 
(Yashiro et al., 2004).

EXOC6B ENSOARG00000011607 3 Lamb metacarpal length Associated with spondyloepimetaphyseal 
dysplasia (resulting in short stature) in 
humans (Campos-Xavier et al., 2018).

FAM13A ENSOARG00000018727 6 Adult August weight Modulates body fat distribution and adipocyte 
function in humans and mice (Fathzadeh 
et al., 2020) as well as adipose insulin 
signaling in mice (Wardhana et al., 2018), 
also linked with obesity in mice (Tang 
et al., 2019)

ONECUT1 ENSOARG00000020928 7 Birth weight Associated with birth weight in humans 
(Warrington et al., 2019).

IFT43 ENSOARG00000002065 7 Adult foreleg length Associated with Sensenbrenner syndrome 
(resulting in growth retardation and 
dwarfism due to femoral and humeral limb 
shortening) in humans (Arts et al., 2011).

PENK ENSOARG00000020184 9 Adult August weight PENK knock-out mice found to have diminished 
food motivation, lower baseline body 
weight and attenuated weight gain (Mendez 
et al., 2015)

PTH1R ENSOARG00000006638 19 Lamb metacarpal length, 
adult foreleg length, 
adult hindleg length, 
adult metacarpal length

Involved in osteoblast development in mice 
(Qiu et al., 2015), associated with skeletal 
disorders such as EKNS (Duchatelet 
et al., 2005), JMC, and BLC (Schipani & 
Provot, 2003) in humans.

LTF ENSOARG00000008620 19 Lamb metacarpal length, 
adult metacarpal length

Human LTF associated with increased bone 
growth when injected into piglets (Li 
et al., 2018) found to stimulate osteoblast 
proliferation (Cornish & Naot, 2010). High 
expression levels in human bone marrow 
(Fagerberg et al., 2014).

BMP6 ENSOARG00000017264 20 Adult jaw length Involved in bone development and expressed in 
the jaw bone in mice (Oralová et al., 2014).

Note: From left to right: Gene name, Ensembl gene ID, chromosome, associated trait, and evidence for association in other species.
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    |  11 of 15JAMES et al.

heritability estimates increase with age (Bérénos et al., 2014; Wilson 
et al., 2006).

The heritability estimates for the 50 K data were very similar to 
those estimated using a GRM based on the 50 K data in a smaller 
sample of the same population of sheep by Bérénos et al.  (2014), 
with estimates for the same trait falling within one standard error 
of each other. The biggest difference was in adult metacarpal length 
with a heritability difference of 0.05 (estimates were 0.644 (0.047) 
and 0.594 (0.047) for our and Bérénos et al.'s results respectively). 
Given that we used the same models as Bérénos et al., it is likely that 
the small differences between heritability estimates for each trait is 
due to our increased sample sizes.

Comparing the heritabilities estimated using the imputed SNP 
data against the estimates using the 50 K SNP data, we found little 
difference between the two SNP densities in any traits in any age 
class. The additional genotypes at the imputed SNPs do not give any 
additional information on additive genetic variation for these traits. 
This result is not surprising given the previous rarefaction analysis 
showing that the heritability of these body size traits in adults as-
ymptoted when about half the 50 K SNP data was used (Bérénos 
et al.,  2014). There is high LD between nearby SNPs in the Soay 
sheep genome, which suggests that most, if not all, of the causal 
variants tagged by the imputed SNP data may have already been 
tagged by the 50 K SNPs. The high LD was reflected when calcu-
lating GWAS significance thresholds – while the number of SNPs 
between the 50 K SNP data and the imputed SNP data increased 
by a factor of 10, the number of effective tests only doubled (39 K 
SNPs, 20,082 effective tests and 401 K SNPs and 48,635 effective 
tests respectively).

For some of the traits we have analyzed, there is still a difference 
in heritability estimated using SNP data versus heritability estimated 
using pedigree – for example, the highest SNP-based heritability es-
timate for lamb metacarpal length (the estimate using the imputed 
SNP data) gave an estimate 59% of Bérénos et al.'s pedigree-based 
estimate (Bérénos et al., 2014). Given that our SNP-based heritability 
estimates were similar when using the 50 K SNP data as when using 
the imputed SNP data, and the results of Bérénos et al.'s rarefaction 
analysis (Bérénos et al., 2014), we believe it is unlikely that increas-
ing the density of genotyped SNPs that are common in the popula-
tion will increase heritability estimates of these traits. It is possible 
instead that the difference in heritability estimates obtained from 
pedigree and genomic data is due to rare familial variants that do 
not segregate widely in the population, as well as due to dominance 
and epistasis.

3.3.2  |  GWAS

Body size traits have been the focus of many kinds of analyses in Soay 
sheep (Ashraf et al., 2021; Beraldi et al., 2007; Bérénos et al., 2014, 
2015; Ozgul et al., 2009; Pemberton et al., 2017; Regan et al., 2017), 
and several SNP associations have already been identified for 
these traits. A 2015 study aiming to find SNP-trait associations 

identified QTL for adult leg length measures on chromosomes 16 
and 19 (s23172.1 and s74894.1 respectively) (Bérénos et al., 2015). A 
more recent study comparing genomic prediction methods in Soays 
using the 50 K SNP data identified s48811.1 on chromosome 7 and 
s50107.1 on chromosome 9 as having a probability higher than 0.9 
of having a non-zero effect on adult foreleg length in addition to the 
previously discovered regions on chromosomes 16 and 19 (Ashraf 
et al., 2021). We were able to identify all four of these associations 
in our GWAS, alongside associations that have not previously been 
identified in this population. Use of the imputed SNP data allowed us 
to discover four more associations with loci that were not genotyped 
in the 50 K SNP data, indicating that future identification of poly-
morphisms influencing trait variation in the Soay sheep will benefit 
from using the imputed data.

Performing a two-step analysis confirmed that the novel SNP-
trait associations we were able to identify using the 50 K SNP data 
were due to fitting the fixed and random effects for each trait simul-
taneously, performing GWAS in a single step, rather than due to hav-
ing a larger sample size. Given the increase in SNP-trait associations 
when using the single-step methodology, and with the availability of 
software like DISSECT which is able to fit fixed and random effects 
whilst performing GWAS, two-step GWAS should be avoided. As we 
have shown, although DISSECT does not currently have the option 
to automatically run a repeated measures GWAS, it is possible to 
modify input files to allow for repeated measures to be appropriately 
modeled.

The imputed SNP data revealed SNP-trait associations in four 
regions of the genome that were not discovered using the 50 K SNP 
data; a region on chromosome 1 and a region on chromosome 7 and 
birth weight, a region on chromosome 3 and adult August weight, 
and a region on chromosome 17 and adult metacarpal length 
(Table S2). When examining the Manhattan plot for the 50 K data for 
each trait (Figure 2a–c, Table S2) it is clear that, with the exception 
of the region on chromosome 1 associated with birth weight, there 
was a small cluster of SNPs just under the significance threshold in 
the 50 K analyses. The additional (imputed) SNPs may have matched 
the allele frequency of the underlying causal variants more accu-
rately, resulting in a smaller association p value.

We performed conditional analysis on all three leg length traits 
in both lambs and adults, as well as on birth weight (only using the 
imputed SNP data), adult August weight and adult jaw length. For 
each trait, we simultaneously fitted the genotype for the SNP with 
the lowest p value for any chromosome that had at least two SNPs 
found to be associated with the trait (see Table S2 for a list of SNPs 
fitted for each trait). We found that all of the SNPs that were signif-
icant in the GWAS analysis were no longer significant in the condi-
tional analysis when a significant SNP on the same chromosome was 
fitted (Figure 3, Table S3). We suggest that any future work looking 
to pinpoint the exact location of the genetic variants affecting body 
size traits in Soay sheep primarily focus on the regions around the 
SNPs listed in Table S2.

We identified 179 genes within 0.5 Mb of the top SNPs for 
each trait (Table S4), and of these genes, we found nine that are 
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potential candidate genes for further analyses due to their as-
sociation with similar traits in other species. Two of these genes 
(CYP26B1 and EXOC6B) are associated with the same trait (lamb 
metacarpal length) and are located within 0.5 Mb of the same top 
SNP on chromosome 3. CYP26B1 is associated with skeletal abnor-
malities in humans and zebrafish (Laue et al., 2011) and CYP26B1 
knockouts produced reduced limbs in mice (Yashiro et al., 2004), 
while EXOC6B is associated with spondyloepimetaphyseal dys-
plasia in humans which symptoms include skeletal malformations 
affecting the long bones of the limbs and short stature (Campos-
Xavier et al., 2018).

PTH1R is located in the region on chromosome 19 associated 
with lamb metacarpal length and all three adult leg traits, and has 
been found to be involved in osteoblast development in mice (Qiu 
et al., 2015), and is associated with skeletal disorders such as Eiken's 
syndrome (Duchatelet et al.,  2005), Jansen's metaphyseal chon-
drodysplasia and Blomstrand's lethal chondrodysplasia (Schipani & 
Provot, 2003). As the top SNPs on chromosome 19 for both lamb 
and adult metacarpal are in a slightly different position to the top 
SNP for the live measures, LTF is in the region associated with both 
lamb and adult metacarpal length on chromosome 19, and has 
been found to increase bone growth when injected into piglets (Li 
et al., 2018), stimulate osteoblast proliferation in humans (Cornish & 
Naot, 2010), and has high expression levels in human bone marrow 
(Fagerberg et al., 2014).

BMP6, located in the region on chromosome 20 associated with 
adult jaw length, has also been found to be involved in bone devel-
opment and expression in mice jaw bone (Oralová et al., 2014).

We found three potential candidate genes associated with 
weight. FAM13A in the region on chromosome 6 associated with adult 
August weight has been found to modulate body fat distribution and 
adipocyte function in humans and mice (Fathzadeh et al., 2020) af-
fects adipose insulin signaling in mice (Wardhana et al., 2018) and is 
associated with obesity also in mice (Tang et al., 2019). PENK, located 
in the region on chromosome 9 associated with adult August weight, 
has been found to cause diminished food motivation, lower baseline 
body weight, and attenuated weight gain when knocked out in mice 
(Mendez et al., 2015). ONECUT1, located in the region on chromo-
some 7 associated with birth weight, has been found to be associ-
ated with birth weight in humans (Warrington et al., 2019). Unlike 
the other potential candidate gene-trait associations we found, this 
association was only found when performing GWAS with the im-
puted SNP data.

Although we have discovered new SNP-trait associations, it is 
likely that there are still causative variants that remain undetected. 
GWAS lacks power to detect rare causative variants and variants 
with very small effect sizes (Yang et al., 2010). Also, GWAS power 
drops when the same amount of phenotypic variation is a conse-
quence of multiple variants in the same region as opposed to a 
single variant (Nagamine et al., 2012). Regional mapping methods 
have been developed that partition trait variance into regions by 
simultaneously fitting a whole genome and a regional GRM, with 

the regions either being defined as fixed SNP windows (Nagamine 
et al., 2012) or haplotype blocks (Shirali et al., 2018). Such meth-
odologies have the potential to identify regions of the genome 
that contain variants associated with a trait that are unable to be 
identified by GWAS either due to being rare or individually having 
small effects on trait variation. Genomic prediction, which simul-
taneously estimates all marker effects drawn from multiple dis-
tributions, can also be used to study the genetic architecture of 
traits by estimating the posterior inclusion probability of a SNP 
having a non-zero effect on a trait. Genomic prediction has already 
been used on adult body size traits in Soays, and has identified 
several of the SNPs we identified through our GWAS approach 
(Ashraf et al.,  2021). Ultimately, we believe that it is important 
to use a variety of methodologies when studying the genetic ar-
chitecture of complex traits, as different analyses have different 
strengths and may be able to identify different QTL. Across all 
traits for all age classes, the QQ plots showed deviation from the 
expected distribution of test statistics under the null hypothesis 
(x = y line) for a wide range of test statistics, including low values, 
which may be either due to underlying population structure not 
accounted for by the GRMs or due to trait architecture. The first 
20 genomic principal components accounted for only 10.68% of 
the variance in the genetic data, and repeating the GWAS analysis 
fitting these first 20 genomic principal components in addition to 
the GRM did not change the p values of the SNPs nor the QQ 
plots (data not shown). This shows that the principal components 
in this case were not useful in adjusting for population structure 
in the presence of the GRM, and that population structure is not 
likely to cause any issues in our analyses, especially after fitting a 
LOCO GRM.

In order to have sufficient power to detect associations be-
tween markers and a trait of interest, GWAS primarily requires 
two factors: (i) a very high density of genotyped SNPs and (ii) a 
large number of individuals that have been genotyped and pheno-
typed (Santure & Garant, 2018). For intensively studied organisms, 
both are achievable; such populations tend to have more individu-
als accessible to collect data from, high density genotyping can be 
done at a lower cost due to higher demand, and, as in humans, data 
from different populations can be combined to create larger sam-
ple sizes. GWA studies of humans are the most obvious example 
of this; studies often have study populations made up of hundreds 
of thousands of individuals and human SNP chips commonly gen-
otype hundreds of thousands of variants (for example, see Wood 
et al., 2014; Ishigaki et al., 2020; Wu et al., 2021). In comparison, 
wild study population samples are much smaller – often strug-
gling to reach 1000 individuals – and the number of SNPs geno-
typed is much lower (for example, see Silva et al., 2017; Malenfant 
et al.,  2018; Perrier et al.,  2018). Analyses of wild populations 
therefore generally lack the power of more intensively studied 
study organisms. Here, we have increased power by increasing the 
number of genotyped markers via imputation. Despite high LD in 
the Soay sheep population, use of imputed data has allowed us to 
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identify four new SNP-trait associations, including an association 
with birth weight, which had yet to be associated with any QTL in 
the Soay population. We have therefore shown that for a given 
sample size, more information can be obtained by increasing the 
density of markers for those individuals have been phenotyped. 
We suggest that, where possible, analyses of wild populations im-
pute SNP data in order to increase power and obtain results that 
may otherwise remain undiscovered.

In our population, we were able to identify new SNP-trait asso-
ciations when performing GWAS with the higher density imputed 
dataset that were not found with the lower density non-imputed 
data – one of which allowed for the identification of a potential can-
didate gene for that trait. We have shown that analyses performed 
with imputed data, such as heritability estimation and GWAS, can 
still pick up additive genetic variation that would have been identi-
fied with the non-imputed data. We suggest that, where possible, 
analyses of wild populations impute SNP data in order to increase 
power and obtain associations that may otherwise remain undis-
covered. In addition, we demonstrated the benefits of fitting fixed 
and random effects during GWAS instead of pre-correcting and 
performing GWAS on the residuals. We therefore recommend that 
researchers use this ‘one-step’ method when performing GWAS on 
wild populations.
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