THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy

Citation for published version:

Grange, LJ, Reynolds, JJ, Ullah, F, Isidor, B, Shearer, RF, Latypova, X, Baxley, RM, Oliver, AW, Ganesh, A, Cooke, SL, Jhujh, SS, McNee, GS, Hollingworth, R, Higgs, MR, Natsume, T, Khan, T, Martos-Moreno, GÁ, Chupp, S, Mathew, CG, Parry, D, Simpson, MA, Nahavandi, N, Yüksel, Z, Drasdo, M, Kron, A, Vogt, P, Jonasson, A, Seth, SA, Gonzaga-Jauregui, C, Brigatti, KW, Stegmann, APA, Kanemaki, M, Josifova, D, Uchiyama, Y, Oh, Y, Morimoto, A, Osaka, H, Ammous, Z, Argente, J, Matsumoto, N, Stumpel, CTRM, Taylor, AMR, Jackson, AP, Bielinsky, A-K, Mailand, N, Le Caignec, C, Davis, EE \& Stewart, GS 2022, 'Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy', Nature Communications, vol. 13, no. 1, 6664, pp. 6664. https://doi.org/10.1038/s41467-022-34349-8

Digital Object Identifier (DOI):
10.1038/s41467-022-34349-8

Link:

Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:

Nature Communications

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy.

Laura J. Grange ${ }^{1^{*}}$, John J. Reynolds ${ }^{1^{*}}$, Farid Ullah ${ }^{2,3^{*}}$, Bertrand Isidor ${ }^{4^{*}}$, Robert F. Shearer ${ }^{5}$, Xenia Latypova ${ }^{4}$, Ryan M. Baxley ${ }^{6}$, Antony W. Oliver ${ }^{7}$, Anil Ganesh ${ }^{1}$, Sophie L. Cooke ${ }^{1}$, Satpal S. Jhujh ${ }^{1}$, Gavin S. McNee ${ }^{1}$, Robert Hollingworth ${ }^{1}$, Martin R. Higgs ${ }^{1}$, Toyoaki Natsume ${ }^{8}$, Tahir Khan ${ }^{9}$, Gabriel Á. Martos-Moreno ${ }^{10}$, Sharon Chupp ${ }^{11}$, Christopher G. Mathew ${ }^{12}$, David Parry ${ }^{13}$, Michael A. Simpson ${ }^{14}$, Nahid Nahavandi ${ }^{15}$, Zafer Yüksel ${ }^{15}$, Mojgan Drasdo ${ }^{15}$, Anja Kron ${ }^{15}$, Petra Vogt ${ }^{15}$, AnneMarie Jonasson ${ }^{15}$, Saad Ahmed Seth ${ }^{16}$, Claudia Gonzaga-Jauregui ${ }^{17,18}$, Karlla W. Brigatti ${ }^{19}$, Alexander P.A. Stegmann ${ }^{20}$, Masato Kanemaki ${ }^{21}$, Dragana Josifova ${ }^{22}$, Yuri Uchiyama ${ }^{23,24}$, Yukiko Oh 25, Akira Morimoto ${ }^{25}$, Hitoshi Osaka ${ }^{25}$, Zineb Ammous ${ }^{11}$, Jesús Argente ${ }^{10,26}$, Naomichi Matsumoto ${ }^{23}$, Constance T.R.M. Stumpel ${ }^{27}$, Alexander M.R. Taylor ${ }^{1}$, Andrew P. Jackson ${ }^{13}$, Anja-Katrin Bielinsky ${ }^{6}$, Niels Mailand ${ }^{5}$, Cedric Le Caignec ${ }^{28 \#}$, Erica E. Davis ${ }^{2,29 \#}$, Grant S. Stewart ${ }^{1 \#}$

1. Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.

Abstract

2. Advanced Center for Genetic and Translational Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann \& Robert H Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA

3. National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.
4. Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France

[^0]7. Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom

[^1]11. The Community Health Clinic, 315 Lehman Ave, Ste C, Topeka, Indiana, 46571, USA
12. Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
13. MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU
14. Department of Medical and Molecular Genetics, Faculty of Life Science and Medicine, King's College London, Guy's Hospital, London, UK
15. Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
16. King Fahad Military Medical Complex, Dhahran, Saudi Arabia
17. Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA.
18. International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México
19. Clinic for Special Children, 535 Bunker Hill Road, Strasburg, Philadelphia, USA.
20. Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
21. Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
22. Clinical Genetics Department, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
23. Department of Rare Disease Genomics, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama 235-0004, Japan
24. Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 235-0004, Japan
25. Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan.
26. IMDEA Alimentación/IMDEA Food. Madrid, Spain
27. Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
28. Centre Hospitalier Universitaire Toulouse, Service de Génétique Médicale and ToNIC, Toulouse Neurolmaging Center, Université de Toulouse, Inserm, UPS, 31000 Toulouse, France.
29. Department of Pediatrics; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

* These authors contributed equally
\# Corresponding authors: Grant
S. Stewart (g.s.stewart@bham.ac.uk), Erica
E. Davis (eridavis@luriechildrens.org), Cedric Le Caignec (lecaignec.c@chu-toulouse.fr)

Abstract

Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterised by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anaemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells revealed elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.

Introduction
Despite the fundamental nature of DNA replication and cell division, inherited variants in genes involved in these processes are an underlying cause of human disease. Whilst these syndromes usually display unique clinical features that define them diagnostically, they typically exhibit common neurodevelopmental deficits, such as severe microcephaly and pre- and post-natal growth retardation ${ }^{1-}$ ${ }^{3}$. As such, many of these syndromes can be collectively referred to as microcephalic dwarfism (MD) disorders. This constellation of conditions includes Meier-Gorlin Syndrome, Seckel Syndrome Spectrum Disorders, Bloom Syndrome and Microcephalic Osteodysplastic Primordial Dwarfism type II and can be broadly classified as having deficiencies in one of three cellular processes: DNA replication, DNA repair, and mitotic cell division ${ }^{1-4}$. Although mechanistically distinct, the common clinical phenotypes exhibited by these diseases are thought to result from a reduction in cellular proliferation and/or excessive cell death in the developing embryo, which reduces the number of cells available to maintain normal foetal growth ${ }^{5}$. Cells from these patients often exhibit signs of increased genome instability, such as micronuclei and/or elevated chromosome breakage. A distinct subgroup of these syndromes exhibit rare cytogenetic anomalies, for example, mosaic variegated aneuploidy syndrome (MVA) $)^{6-8}$ caused by variants in the spindle assembly checkpoint genes BUB1B, CEP57 and TRIP13, or railroad chromosomes and premature chromatid separation (PCS) associated with Warsaw Breakage Syndrome (WABS) and Cornelia de Lange syndrome, caused by variants in the helicase DDX11 and components of SMC1/3 cohesin complex respectively ${ }^{9,10}$. Whilst, the presence of these chromosomal abnormalities is a useful diagnostic tool they can also help dissect the cellular mechanisms underlying the disease pathology.

Here, we report 11 patients with a neurodevelopmental disorder overlapping clinically with MVA and Fanconi Anaemia (FA) with pathogenic variants in SLF2 and SMC5, two components of the recently discovered RAD18-SLF1/2-SMC5/6 genome stability pathway ${ }^{11}$. The precise function of the SMC5/6 complex remains enigmatic, however, it has been linked to a number of fundamental processes, including DNA transcription, DNA replication, DNA repair and chromosome segregation ${ }^{12,13}$. Evidence suggests that the primary function of this complex occurs during DNA replication to stabilise stalled forks, suppress the activity of pro-recombination factors and promote efficient replication through difficult-to-replicate and/or repetitive regions of the genome, such as rDNA and telomeres ${ }^{14}$. In contrast,
the function of SLF1 and SLF2 remain unclear, other than a reported role in recruiting the SMC5/6 complex to sites of DNA damage ${ }^{11}$.

Analysis of SLF2 and SMC5 patient-derived cell lines revealed spontaneous replication stress and multiple mitotic abnormalities that give rise to a unique, diagnostically relevant, genome instability phenotype consisting of segmented, dicentric and railroad chromosomes, and mosaic variegated hyperploidy (MVH). The underlying basis for this chromosomal instability is not fully understood, but our data suggest that it may arise, in part, from the failed resolution of aberrant DNA structures during Sphase, such as G-quadruplexes (G4), potentially leading to a combination of under-replicated DNA and unresolved recombination intermediates persisting through to mitosis. Together, these data demonstrate that despite a hitherto unknown role as a core component of the SMC5/6 complex, SLF2 is essential for the SMC5/6 cohesin-like complex to maintain genome stability by regulating both DNA replication and cell division.

Results

Patients with microcephaly and short stature have biallelic SLF2 (FAM178A) and SMC5 variants

Whole exome sequencing (WES) was carried out on six patients (P1, P2, P3, P4-1, P4-2, P5 and P6) from five families, presenting with microcephaly, short stature, mild to severe developmental delay and spontaneous chromosome breakage. After aligning WES reads to the reference genome, variant calling, and filtering for rare variants (MAF <0.005), analysis under a recessive model of inheritance identified biallelic variants in SLF2 (FAM178A) in all six patients. All identified SLF2 variants segregated amongst family members (with the exception of patients P1 and P5 where parental material was unavailable) and were present at a frequency of $<0.5 \%$ in the gnomAD database (Figure 1a, 1c; Supplementary Table 1-7; Supplementary Figure 1a). Comparative genomic hybridisation (CGH) array analysis carried out on gDNA from patient P5 confirmed the homozygosity of the identified SLF2 variant.

Given that SLF2 had been identified previously as part of the RAD18-SLF1/2-SMC5/6 genome stability pathway ${ }^{11}$, we hypothesised that variants in other components of this pathway may also give rise to a similar neurodevelopmental disorder. By querying gene matching platforms, four patients exhibiting microcephaly and growth retardation that had undergone WES were identified to carry biallelic variants in SMC5: patient P7 (c.1110_1112del; p.Arg372del, c.1273C>T; p.Arg425Ter) and patients P8, P9-1 and P9-2 (c.2970C>G; p.His990Asp) (Figure 1a, 1c; Supplementary Table 1;

Supplementary Table 8-10; Supplementary Figure 1b). All variants were verified by Sanger sequencing, segregated amongst family members in an autosomal recessive paradigm and were present at a frequency of $<0.5 \%$ in gnomAD.

SLF2 and SMC5 variants give rise to neurodevelopmental abnormalities, cardiac defects and anaemia.

All individuals with SLF2 and SMC5 variants presented with a similar clinical phenotype, including marked microcephaly (-3.57 to -11.88 SD) and a reduction in height (-2.19 to -8.24 SD) (Figure 1b; Supplementary Table 1). Moreover, the majority of patients also exhibited a developmental delay along with learning difficulties. Mild skeletal defects (i.e. clinodactyly), skin hyperpigmentation and ocular abnormalities were present in several patients (Supplementary Table 1). Notably, two of seven SLF2 patients (P4-1, P5) and all four SMC5 patients (P7, P8, P9-1 and P9-2) displayed cardiac defects (Supplementary Table 1), such as atrial or ventricular defects, a phenotype commonly observed in patients with cohesinopathies ${ }^{15,16}$ but not DNA replication disorders. Furthermore, five of eleven patients (P3, P4-1, P4-2, P5, P9-2) also developed anaemia, with one of these patients (P9-2) subsequently developing myelodysplastic syndrome (Supplementary Table 1). This, coupled with other clinical features, could potentially result in future cases being mistakenly diagnosed with an atypical form of FA in the absence of a clear genetic diagnosis using WES. This is particularly relevant since components of the SMC5/6 complex have been previously shown to functionally interact with the FA pathway to repair DNA damage ${ }^{17}$. Only one patient $(\mathrm{P} 3)$ developed severe pulmonary disease similar to patients with variants in the SMC5/6 complex subunit NSMCE3 ${ }^{18,19}$, whereas insulin-resistant diabetes and metabolic dysfunction, which are characteristic to patients with NSMCE2 variants were absent among this cohort ${ }^{20}$. Collectively, these clinical and genetic observations support the premise that variants in SLF2 and SMC5 cause microcephaly and short stature associated with cardiac defects and the development of anaemia.

SLF2 and SMC5 variants compromise protein stability, interactions with other components of the RAD18-SLF1/2-SMC5/6 pathway and recruitment to sites of DNA damage

To determine the pathogenicity of the identified patient variants, we carried out western blotting on extracts from SLF2 patient-derived cell lines (SLF2-P1, SLF2-P2, SLF2-P3 and SLF2-P4-1) to
ascertain if SLF2 protein abundance or stability was compromised. Notably, all four of the SLF2 mutant patient cell lines examined exhibited a reduction or absence of detectable full length SLF2 protein whilst maintaining wild type (WT) levels of RAD18, SMC5, and SMC6 protein (Figure 2a). SLF1 protein level was not tested due to the absence of an available antibody.

We next investigated the SLF2 variants in patients P2 and P3 in more detail. Analysis of cDNA from the SLF2-P3 cell line demonstrated that the synonymous homozygous variant c.3330G>A (p.Arg1110Arg), disrupted splicing leading to an in-frame deletion of exon 17 (Supplementary Figure $2 a-b)$. We then analysed the impact of the $c .3486 \mathrm{G}>\mathrm{C}$ (p.GIn1162His) variant, present in patient P2, on splicing. Multiple SLF2 transcripts are annotated in the human genome and although c.3486G>C (p.GIn1162His) introduces a nonsynonymous change in the two longest transcripts (NM_018121 and NM_001136123), it only affects mRNA splicing of the most abundant SLF2 transcript (NM_018121) by impairing the exon 19 splice donor splice site (Supplementary Figures 2c, 3a-e). The p.(Gln1162His) variant also displayed compromised protein stability when expressed transiently indicating that this variant disrupts both mRNA and protein stability (Supplementary Figure 3 f). Together, these data suggest that most of the identified SLF2 variants have an adverse effect on protein stability.

In contrast, analysis of SMC5 patient cell lines revealed that the homozygous p .(His990Asp) variant present in patients P8, P9-1 and P9-2 had little detectable impact on the protein stability of SMC5, or RAD18, SLF2, and SMC6 (Figure 2b). Only a cell line derived from patient P7 exhibited a reduced abundance of SMC5 protein, presumably due to the presence of a nonsense variant (p.Arg425Ter) on one of the SMC5 alleles. As loss of Smc5 is embryonically lethal ${ }^{21}$, it is possible that the SMC5 variants are hypomorphic and that significant disruption of SMC5 protein stability to the extent observed with the SLF2 variants is incompatible with life.

SLF1 and SLF2 have been identified as bridging factors between RAD18 and the SMC5/6 complex at sites of stalled replication ${ }^{11}$. To address whether the SLF2 and SMC5 variants compromised their ability to bind components of the RAD18-SLF1/2-SMC5/6 pathway, we initially mapped the binding sites of RAD18, SLF1 and SMC6 on SLF2. Using co-immunoprecipitation analysis with tagged proteins, we determined that the binding of RAD18 and SLF1 to SLF2 requires the C-terminal 471 amino acids (aa702-1173), which also overlapped with the SMC6 binding site located at amino acids 589-810 (Supplementary Figure 4a-d). All patient-associated variants in SLF2, with the exception of p.(Gln1162His), are located within or truncate the SLF1/RAD18 binding domain of SLF2 (Figure 1c).

Consistent with SLF1 binding being essential for SLF2 to mediate bridging between RAD18 and the SMC5/6 complex, co-immunoprecipitation studies using extracts from hydroxyurea (HU) treated SLF2 patient-derived LCLs revealed a failure of all cell lines tested to co-purify SMC6 with RAD18 (Figure 2c). Furthermore, all SLF2 mutant proteins, with the exception of p.(Gln1162His), failed to or exhibited a reduced ability to, be recruited to sites of DNA damage induced by laser micro-irradiation (Supplementary Figure 3e).

We next extended the co-immunoprecipitation analysis to include SMC5 patient LCLs (Figure 2d). The interaction between RAD18 and SMC6 in SMC5-P8 and SMC5-P9-1 cells was observed to be at WT levels, suggesting that p.(His990Asp) had no discernible impact on the integrity of the RAD18-SLF1/2-SMC5/6 complex, whereas the association of RAD18 with SMC6 was partially affected in SMC5-P7 cells. However, both the p.(Arg372del) and p.(His990Asp) SMC5 mutants failed to re-localise efficiently to sites of laser micro-irradiation induced damage, with the latter being more severely affected (Supplementary Figure 4f). These observations indicate that whilst these variants largely do not appear to compromise their binding to components of the RAD18-SLF1-SLF2-SMC5/6 pathway, they do affect their re-localisation to and/or retention at sites of damage.

To gain insight into why the SMC5 mutants affected stability of the SMC5/6 complex at sites of damage, we carried out co-immunoprecipitation analysis to assess if these mutations affected binding to other components of the complex. Interestingly, whilst the p.(His990Asp) mutation did not significantly affect binding to other components of the SMC5/6 complex, the p.(Arg372del) significantly compromised binding to SLF2, SMC6 and NSMCE2 (Figure 2e). Moreover, endogenous NSMCE2 exhibited reduced binding to SMC5 in cells from patient SMC5-P7 (Figure 2f). Consistent with these observations, the Nse2 binding site on yeast Smc5 lies in close proximity to Lys368, which is the yeast functional equivalent of human SMC5 Arg372 (Supplementary Figure 5). This suggests that the failure of the p.(Arg372del) mutant SMC5 to be recruited to sites of laser damage may be due to this mutation compromising the binding of other key components of the SMC5/6 complex.

To explore the possibility that the p .(His990Asp) may have a deleterious impact on the structure of the SMC5/6 complex, we compared the AlphaFold model for human SMC5 to the X-ray crystal structures for the head domain of Pyrococcus furiosus Rad50 (Pf.Rad50) in both the unliganded and ATP-bound forms ${ }^{23}$. Notably, His990 lies just upstream of the ATP-binding cassette (ABC) signature motif of Smc5 (Supplementary Figure 6a), a region of the protein implicit in both binding ATP and
mediating the complex set of conformational changes that occur when SMC proteins bind nucleotide ${ }^{22}$. Interestingly, His990 sits in a position functionally equivalent to Phe791 of Pf.Rad50 - a residue known to interact directly with the adenine moiety of bound ATP ${ }^{23}$. Whilst mutation of His990 to aspartic acid would appear to be tolerated and unlikely to cause any gross-misfolding of the protein, as judged by the lack of steric clashes produced by the mutation (Supplementary Figure 6b), it removes an aromatic amino acid and replaces it with one carrying a negative charge. As such, this would alter the overall charge of a region that normally functions to accept the adenine moiety. Therefore, it is likely that the p.(His990Asp) mutation perturbs the ability of the complex to either bind or turnover ATP, in turn affecting its association with, or retention on chromatin ${ }^{24}$.

Cell cycle arrest and increased apoptosis in the developing brain underlies the development of microcephaly in zebrafish lacking slf2 and smc5

To gain insight into how SLF2 and SMC5 patient associated variants affect neurodevelopment, we utilised CRISPR-Cas9 genome-editing to ablate the single zebrafish orthologs of each of slf2 and $s m c 5$ in zebrafish embryos. Single guide (sg) RNAs targeting the primary isoforms of slf2 and smc5 (Supplementary Figure 7a, 7f) were injected, with or without recombinant Cas9 protein, into 1.4col1a1:egfp reporter embryos at the single-cell stage, which were allowed to develop until 3 days post-fertilisation (dpf) (Supplementary Figure 7b-c, 7g-h). This reporter allows visualisation of craniofacial patterning during embryonal development ${ }^{25}$. Bright field lateral images were acquired to measure head size and ventral fluorescent images of GFP-positive cells allowed visualisation of the pharyngeal skeleton. Similar to the clinical phenotype exhibited by SLF2 and SMC5 patients, zebrafish embryos lacking slf2 and smc5 displayed a significant reduction in head size and aberrant craniofacial patterning, as indicated by a broadening of the angle of the ceratohyal cartilage; a major mandibular structure (Figure 3a-f). Furthermore, unlike smc5, which is an essential gene ${ }^{21}$, we were able to generate stable F2 slf2 mutants possessing a frameshifting 8 bp deletion allele in slf2 exon 7 (c.515_522del; p.Ser172_Ser174fsTer191; Supplementary Figure 7d-e). Consistent with our observations from F0 embryos injected with sgRNA and Cas9, stable F2 slf2 null mutants also exhibited microcephaly and aberrant craniofacial patterning (Figure 3g).

To validate these findings, we used morpholinos (MO) to suppress the expression of slf2 and smc5 in zebrafish embryos. Splice blocking MO targeting the single zebrafish ortholog of each gene,
slf2 (exon 11) and smc5 (exon3), were designed and depletion of slf2 and smc5 mRNA was confirmed by RT-PCR after injection into zebrafish larvae (Supplementary Figure 8a-b). MO were injected into 1.4col1a1:egfp reporter embryos at the single-cell stage. Injected embryos were reared to 3 dpf and then bright field images were acquired to measure head size and ventral fluorescent images of GFPpositive cells to visualise the pharyngeal skeleton. Comparable to our observations from the zebrafish embryos lacking slf2 and smc5, zebrafish embryos depleted of slf2 and smc5 using MO also displayed a significant reduction in head size and aberrant craniofacial patterning in the pharyngeal skeleton (Supplementary Figure $8 \mathrm{e}-\mathrm{h}$, Supplementary Figure $9 \mathrm{a}-\mathrm{f}$), which could both be rescued by reexpression of WT human SLF2 or SMC5 mRNA.

To confirm the pathogenicity of the SMC5 disease associated variants we utilised our smc5 morphant zebrafish model to ascertain whether the three patient-associated SMC5 variants could rescue the developmental abnormalities caused by loss of smc5 expression. Neither the p.(Arg425Ter), p.(Arg372del) nor p.(His990Asp) variants could complement the reduced head size and increased ceratohyal angle resulting from smc5 depletion (Supplementary Figure 9g-i), reinforcing that they confer a loss of function effect. In contrast, both the head size and ceratohyal angle could be restored to normal following expression of WT human SMC5 or a polymorphic SMC5 variant, p.(Arg733GIn), identified from gnomAD.

To investigate the two principal underlying causes of microcephaly, slowed cell cycle progression and/or increased apoptosis in the developing brain ${ }^{2,26-28}$, fixed wholemount slf2 and smc5 depleted zebrafish embryos were stained with markers of cell cycle stage (G2/M: phospho-histone H3 serine-10) and apoptosis (TUNEL). F0 CRISPR embryos injected with either slf2 or smc5 sgRNA with recombinant Cas9 (Figure 4) exhibited a pronounced increase in both phospho-histone H 3 and TUNEL staining in the developing brain when compared to control zebrafish. Importantly, this phenotype was recapitulated in zebrafish embryos transfected with slf2 or smc5 MO, which could be complemented by re-expression of the orthologous WT human mRNA (Supplementary Figure 10). Together, these in vivo data confirm that a functional RAD18-SLF1/2-SMC5/6 pathway is required for normal development of the brain and cartilaginous structures, and compromising this pathway triggers a G2/M cell cycle arrest and the onset of apoptosis leading to microcephaly.

SLF2/SMC5 mutant patient-derived cell lines exhibit increased spontaneous replication stress

Although the SMC5/6 complex has been implicated in regulating numerous DNA repair and replication pathways, it is thought that its primary function is to promote efficient replication ${ }^{14,29}$. Therefore, we used DNA fibre analysis to study the impact of SLF2 and SMC5 variants on replication dynamics. All SLF2 and SMC5 mutant LCLs examined exhibited a significant increase in spontaneous replication fork stalling and fork asymmetry comparable to that observed in an LCL derived from an ATR-Seckel Syndrome patient (Figure 5a-d). Importantly, this increased spontaneous replication fork stalling was also observed in patient-derived fibroblasts and could be suppressed by re-expressing WT SLF2 or SMC5 (Figure 5e-f; Supplementary Figure 11a-b). Unlike the ATR-Seckel cell line, all the SLF2 mutant LCLs and one of the SMC5 mutant LCLs exhibited WT levels of replication fork speed (Supplementary Figure 11c-d). In contrast, LCLs carrying the homozygous p.(His990Asp) exhibited a moderate reduction in replication fork speed.

To confirm these observations, we used CRISPR-Cas9 gene editing in U-2 OS cells to generate SLF2 knockout clones. Despite several attempts we were unable to generate complete SLF2 knockout clones. Rather, we generated two hypomorphic (HM) clones, each with one expressed mutant allele of SLF2 in conjunction with one or more truncating mutant alleles: SLF2 HM cl. 1 (p.Asn411Lysins16, p.Ser403Ter, p.Asn411LysfsTer3) and SLF2 HM cl. 2 (p.Asp398_Ser404del, p.Ser403ThrfsTer14). These clones were subsequently complemented by re-expressing WT SLF2 (Supplementary Figure 12). Importantly, DNA fibre analysis of these SLF2 HM clones demonstrated that the vector complemented SLF2 HM cell lines exhibited significantly elevated levels of spontaneous fork stalling compared to the WT SLF2 complemented clones (Figure 5 g).

Since spontaneous replication stress exhibited by cells can be attributed to defective ATRdependent DNA damage signalling, we used DNA fibre analysis and western blotting to monitor activation of the ATR-dependent stress response ${ }^{30,31}$. In contrast to the ATR-Seckel syndrome cell line, all the SLF2 or SMC5 patient cell lines were capable of activating ATR or the intra-S phase checkpoint in response to HU and MMC (Supplementary Figure 11e-f, Supplementary Figure 13) indicating that dysregulation of the ATR stress response pathway does not account for the observed DNA replication defects. This is consistent with previous work demonstrating that loss of the SMC5/6 pathway does not affect activation of the ATR-dependent DDR ${ }^{17}$.

We next investigated the cellular impact of the increased spontaneous replication fork instability observed in the patient cell lines using different markers of replication stress. Significantly, both SLF2
and SMC5 patient cell lines exhibited elevated signs of spontaneous replication stress including the presence of DNA double strand breaks (DSBs) in S-phase cells (53BP1 foci in EdU positive cells), an increased frequency of mitotic cells undergoing mitotic DNA synthesis (MiDAS), elevated levels of 53BP1 G1 bodies and the formation of micronuclei (Figure 6a-d, Supplementary Figure 14a-d) ${ }^{17,29}$. Crucially, all these phenotypes could be complemented by re-expressing either WT SLF2 or SMC5 (Figure 6). Moreover, the U-2 OS SLF2 HM cell lines also exhibited elevated levels of micronuclei compared to the corrected WT SLF2 expressing clones (Figure 6e).

Hypomorphic variants in SLF2 and SMC5 are associated with mitotic abnormalities, segmented chromosomes, cohesion defects and mosaic variegated hyperploidy

Consistent with the elevated levels of spontaneous replication stress, LCLs derived from SLF2 and SMC5 mutant patients all exhibited increased levels of chromosomal aberrations (such as chromosome and chromatid gaps/breaks and chromosome radials) comparable to that observed in an ATR Seckel Syndrome LCL (Figure 6f-g). Notably, this phenotype was not significantly exacerbated by exposure to either APH or MMC, unlike LCLs from an ATR-Seckel Syndrome patient (Supplementary Figure 15a-b). Importantly, the elevated spontaneous levels of chromosomal aberrations in the SLF2/SMC5 patient fibroblasts and the U-2 OS SLF2 HM cells, was rescued by re-expression of either WT SLF2 or SMC5 (Figure 6h-i).

In addition to the spontaneous chromosomal aberrations, metaphase spread analysis of both the peripheral blood and patient-derived LCLs of SLF2 and SMC5 patients revealed that a significant subset of cells exhibited large increases in chromosome numbers, with some metaphases having >100 chromosomes (Figure 7a; Supplementary Figure 16a-b; Supplementary Figure 17a). Unlike MVA, which typically involves the loss/gain of small numbers of chromosomes, the cytogenetic abnormality observed in SLF2 and SMC5 patient cells predominantly involved huge chromosomal gains. Therefore, we have termed this cytogenetic abnormality mosaic variegated hyperploidy (MVH), i.e. chromosome number >46.

To investigate the cause of the MVH, we explored whether SLF2 or SMC5 patient-derived cell lines exhibited spontaneous mitotic abnormalities. Both SLF2 and SMC5 patient fibroblast cell lines, and U-2 OS SLF2 HM cells, displayed a significant increase in mitotic cells with lagging chromosomes in empty vector complemented cells compared to cells re-expressing WT protein (Figure 7b-d),
consistent with previous reports ${ }^{17,29,32}$. Additionally, when we examined the origins of these lagging chromosomes/micronuclei using CENPA as a marker of centromeres, it was evident that a significant proportion of the micronuclei were positive for CENPA, suggesting that they could have resulted from failed mitotic segregation (Supplementary Figure 16c-d). This is supportive of the RAD18-SLF1/2SMC5/6 pathway playing an important role in promoting proper chromosomal segregation.

Since SMC5/6 forms a cohesin-like complex and has been implicated in facilitating centromeric and sister chromatid cohesion ${ }^{21,32-35}$, we analysed metaphase spreads from SLF2 and SMC5 patientderived cells for the presence of cohesion defects. SLF2 and SMC5 peripheral blood lymphocytes showed loss of sister chromatid cohesion as evidenced by the presence of railroad chromosomes (Figure 7e; Supplementary Figure 17b). Moreover, SLF2 and SMC5 patient-derived LCLs exhibited PCS after treatment with the proteasome inhibitor MG132, which is known to induce cohesion fatigue by preventing the metaphase-to-anaphase transition ${ }^{36}$ (Figure 7f). Together, these observations suggest that the MVH characteristic to SLF2 and SMC5 patient cells may also be caused by PCS resulting from cohesion fatigue.

However, given the extent of the karyotypic abnormalities it seemed plausible that other cellular defects may contribute to the large increases in chromosome number seen in SLF2 and SMC5 mutant cell lines in addition to PCS. Replication stress can trigger centrosome amplification via fragmentation of the pericentriolar material (PCM) ${ }^{37}$ or premature centriole disengagement, which can lead to mitotic arrest and aneuploidy-induced cell death and microcephaly ${ }^{38}$. To investigate whether centrosome abnormalities could contribute to the cellular pathology associated with SLF2 and SMC5 dysfunction, patient-derived cell lines were subjected to immunofluorescence with antibodies to PCNT1 (a component of the PCM) and mitosin/CENPF (marker of S/G2 cells) before and after incubation with aphidicolin (APH). Notably, following APH exposure a significant proportion of S/G2 cells possessed more than two centrosomes (Figure 7g). We also observed that APH treatment had a profound effect on mitosis with >10-50\% of SLF2 and SMC5 patient-derived LCLs exhibiting multi-polar spindles during mitosis (Figure 7h, Supplementary Figure 16e). This increase in centrosome number and multi-polar spindles is not due to higher levels of replication stress in the APH treated patient cells as quantification of APH-induced G1 53BP1 bodies revealed no difference between empty vector and WT SLF2/SMC5 complemented cells (Figure 7i). Therefore, it is likely that the MVH observed in SLF2 and SMC5 patient
cells arises as a consequence of multiple defects including unresolved replication stress, PCS, chromosome mis-segregation and centrosome amplification.

SLF2/SMC5 mutant cells are unable to replicate efficiently in the presence of stabilised Gquadruplex structures.

During our analysis of metaphase spreads of peripheral blood lymphocytes from SLF2 and SMC5 patients, we noted that among the increased levels of spontaneous chromosomal damage, two distinct types of chromosome abnormality were evident (Figure 8a; Supplementary Figure 18). The first type of abnormal chromosome, which we termed segmented chromosomes, contained one or more chromosome gaps/breaks along the body of the chromosome (type 1). Type 1 segmented chromosomes with two or more gaps/breaks were particularly evident in SLF2-P1 and SLF2-P3, whilst most of the segmented chromosomes in SLF2-P2 and SMC5-P7 possessed one gap/break. The second type of abnormal chromosomal structure resembled a dicentric chromosome, which was confirmed by the presence of two centromeres using centromere specific FISH probes (type 2) (Figure $8 b)$.

The type 1 segmented chromosomes were reminiscent of the chromosomal abnormalities resulting from combined inactivation of GEN1 and either MUS81 or SLX4, suggesting that they may be caused by an inability to resolve recombination intermediates ${ }^{39,40}$. Accordingly, both SLF2 and SMC5 patient-derived cell lines exhibited elevated levels of recombination as indicated by increased levels of spontaneous RAD51 foci and sister chromatid exchanges (SCEs) in the patient-derived fibroblasts and LCLs respectively (Figure 8c, Supplementary Figure 19a-b, Supplementary Figure 15c-d). This is in line with previous work demonstrating a role for the SMC5/6 complex in resolving recombination intermediates ${ }^{41-44}$. We also observed an increased frequency of telomeric SCEs in SLF2 mutant LCLs (Supplementary Figure 19c), which could, in part, contribute to the generation of the observed dicentric chromosomes. To investigate whether the spontaneous chromosomal aberrations observed in SLF2/SMC5 mutant cells could arise as a consequence of the presence of unresolved HR intermediates, we examined the effect of stably expressing the bacterial Holliday junction resolvase, RusA, in patient-derived cell lines on genome stability ${ }^{40}$. In line with SLF2 and SMC5 dysfunction causing unresolved HR intermediates to accumulate and this leading to increased genome instability, expression of WT RusA increased the level of spontaneous chromosome aberrations in SLF2/SMC5
mutant cells lines complemented with an empty vector but not with WT SLF2 or SMC5 (Supplementary Figure 19c).

It is known that the SMC5/6 complex is important for the dissolution of replication stressinduced recombination, especially at repetitive regions prone to forming secondary structures and natural replication pause site intermediates ${ }^{41,43-46}$. This is consistent with our observations that the replication stress phenotype observed in SLF2/SMC5 mutant cells was not markedly exacerbated by exposure to MMC, APH and HU (Figure 5; Supplementary Figures 11 and 13). Recently, it has been shown that RNF168, which promotes the recruitment of the RAD18-SLF1/2-SMC5/6 pathway to damaged replication forks, is important for signalling the presence of G-quadruplex (G4) DNA structures stabilised by the RNA polymerase I inhibitor, CX546147. Since cells deficient in BRCA1/2 and the cohesin-associated helicase DDX11 are also hypersensitive to this agent ${ }^{48,49}$ and DDX11 was shown to function with SMC5/6 to repair DNA damage ${ }^{17,50,51}$, we hypothesised that the RAD18-SLF1/2SMC5/6 pathway might play a role in suppressing replication stress at sites of stabilised G4 structures. To test this possibility, we first investigated the effects of CX5461 on DNA replication using DNA fibre analysis. This revealed that whilst WT SLF2 and SMC5 expressing patient fibroblasts could replicate normally in the presence of CX5461, SLF2 and SMC5 patient fibroblasts complemented with an empty vector exhibited a significant reduction in replication fork speed when incubated with this G4-stabilizing compound (Figure 8d). Additionally, SLF2 and SMC5 patient-derived fibroblasts, LCLs and U-2 OS SLF2 HM cells treated with CX5461 exhibited increased levels of G1 phase 53BP1 bodies and chromosome aberrations (Figure 8e, Supplementary Figure 20a, c). In keeping with this, LCLs from SLF2-P1 and SMC5-P8 displayed an increased sensitivity to CX5461 (Figure 8f). Strikingly, we also observed that CX5461 treatment induced a significant increase in the levels of type 1 segmented chromosomes in the SLF2 and SMC5 patient LCLs, but not in the WT LCLs (Supplementary Figure 20b). These data suggest a role for SLF2 and the SMC5/6 complex in resolving replication stress at sites of stabilised G4 structures.

Whilst CX5461 is known to inhibit RNA polymerase I and stabilise G-quadruplexes, more recently it has also been identified as a TOP2 poison ${ }^{52,53}$. Given the pleiotropic nature of CX5461, we sought to identify which genotoxic lesion induced by CX5461 was causing the increased replication stress in cells deficient in components of the SMC5/6 complex. In this respect, we carried out DNA fibre and chromosomal aberration analysis on patient-derived cell lines following exposure to pyridostatin (a

G-quadruplex stabiliser), etoposide (a TOP2 poison) and BMH21 (an RNA polymerase I inhibitor). Interestingly, only exposure to pyridostatin caused a significant reduction in replication progression and an increase in the levels of chromosome aberrations in SLF2 and SMC5 mutant cell lines (Figure 8g, Supplementary Figure 20d).

Taken together, these observations support the notion that the spontaneous replication stress and chromosomal instability displayed by cells from patients with SLF2/SMC5 mutations is caused, in part, by an inability to resolve a specific subset of replication-associated recombination intermediates arising at sites of G 4 structures.

Discussion

Disrupting the delicate balance between stem cell proliferation and differentiation profoundly affects embryonic development, particularly body growth and brain development. Rapidly proliferating pluripotent stem cells exhibit constitutively high levels of replication stress and as such are heavily reliant on replication-associated DNA damage response pathways to maintain genome stability. Unsurprisingly, patients with pathogenic variants in genes encoding components of the replisome, the DNA damage response (DDR) and factors that maintain sister chromatid cohesion exhibit developmental abnormalities including severe microcephaly and dwarfism. Furthermore, variants in centrosome components and regulators of the microtubule-spindle network can also result in these developmental abnormalities by affecting the orientation of the spindle pole and/or triggering excessive cell death through the generation of aneuploid cells ${ }^{1}$. However, it is often difficult to determine whether the cellular pathology underlying the development of these neurodevelopmental disorders results primarily from the presence of aberrant replication or defective mitosis ${ }^{38,54,55}$.

Here we report the clinical and genetic characterization of 11 patients with biallelic variants in two components of the newly described RAD18-SLF1/2-SMC5/6 DDR pathway, SLF2 and SMC5, exhibiting microcephaly, short stature, cardiac defects and anaemia. However, in contrast to FA and other known disorders, cells from these patients exhibit a unique chromosomal instability phenotype, hallmarked by segmented and dicentric chromosomes and mosaic variegated hyperploidy, arising from a combination of replication stress- and mitosis-associated cellular pathologies. Given that the segmented chromosomes seen in SLF2 and SMC5 patient cells represent a chromosome instability phenotype not previously associated with any known DNA repair or replication deficiency disorder, we have named this syndrome, Atelís Syndrome (ATS), after the Greek word for incomplete to signify the importance of these atelic or segmented chromosomes as a diagnostic marker of the disease.

The SMC5/6 complex has been shown to have many functions in the cell, including regulating homologous recombination (HR)-dependent DNA repair, stabilising and restarting stalled replication forks, maintaining replication through highly repetitive regions of the genome, maintaining rDNA stability, elongating telomeres by ALT and controlling the topology of unusual DNA structures ${ }^{12,14,56,57}$. In contrast, little is known about the functions of SLF1 and SLF2, which were identified during a large proteomic screen of proteins associated with damaged replication forks ${ }^{11}$. However, it has been suggested that SLF1 and SLF2 are functional orthologs of the yeast Nse5 and Nse6 proteins,
respectively, which are important for localising the SMC5/6 complex to DNA damage and regulating its ATPase activity ${ }^{11,58-60}$.

Pursuant to the role of the SLF1/2-SMC5/6 complex in maintaining replication fork stability, we demonstrate that cells from ATS patients exhibit elevated levels of spontaneous replication stress, although this was not exacerbated significantly following exposure to replication stress-inducing agents (HU, MMC or APH). This suggests that the clinical phenotype resulting from variants in SLF2 and SMC5 may not simply arise from elevated levels of replication stress, but rather from deficits with a subset of replication forks, such as those replicating through difficult-to-replicate regions of the genome or encountering specific types of endogenous DNA lesions. Consistent with this hypothesis, ATS cells fail to replicate efficiently in the presence of stabilised G4 structures and accumulate chromosomal damage, suggesting that the RAD18-SLF1/2-SMC5/6 pathway functions to resolve replication intermediates occurring at these lesions. Since G4 structures have been shown to be enriched at telomere repeat sequences ${ }^{61}$, a defect in the ability to replicate through these lesions could result in genome instability at telomeres, potentially explaining the presence of dicentric chromosomes in ATS patient cells.

ATS patients exhibit overlapping clinical and cellular features with WABS patients, including microcephaly, growth restriction, skin hyper-pigmentation, ocular abnormalities and heart defects. Moreover, cell lines derived from both ATS and WABS patients exhibit loss of sister chromatid cohesion and premature chromatid separation ${ }^{49}$. Interestingly, the loss of sister chromatid cohesion in WABS cell lines is exacerbated upon exposure to replication stress-inducing genotoxins, including G4 stabilising agents ${ }^{49}$. Notably, cells from Ddx11 null mice display loss of sister chromatid cohesion, chromosome segregation errors and aneuploidy, which has been shown to induce a G2/M cell cycle delay and apoptosis ${ }^{62}$. This suggests that a failure to resolve specific endogenous DNA lesions, such as G4 structures, in ATS cells may directly compromise cohesion, or exacerbate a pre-existing cohesion defect, thus giving rise to chromosome segregation defects and aneuploidy that triggers cell death in highly proliferative tissues, such as the developing brain.

It is clear that the RAD18-SLF1/2-SMC5/6 pathway plays additional cellular roles beyond promoting replication through G4 lesions. In yeast, the smc5/6 complex restrains recombination at programmed fork pause sites, for example, in the rDNA locus ${ }^{43,44,63}$ and, in mammalian cells, SMC5/6 is involved in suppressing HR at highly repetitive sequences, e.g. rDNA, centromeres and
telomeres ${ }^{14,63}$. Consistent with this, ATS cells exhibit elevated levels of RAD51 in S-phase cells and spontaneous SCEs and tSCEs. Interestingly, segmented chromosomes have been observed in cells that have a combined defect in both the Holliday junction dissolution and resolution pathways ${ }^{64}$, indicating that the gaps in the type 1 segmented chromosomes may result from a failure to dissolve/resolve recombination intermediates ${ }^{41}$.

Cells from NSMCE2 and NSMCE3 mutant patients are not known to display segmented or dicentric chromosomes, and whilst NSMCE3 patient-derived cells exhibit aneuploidy and structural chromosome abnormalities, hyperploidy to the extent seen in ATS cells was not reported ${ }^{18,20}$. This indicates that neither NSMCE2 nor NSMCE3 subunits are essential for this SMC5/6 function, or that the hypomorphic variants in these genes retain sufficient function to suppress these chromosomal phenotypes. Consistent with the latter scenario, Nsmce2 transgenic mice lacking SUMO E3 ligase activity developed normally, whereas a complete loss of Nsmce2 resulted in early embryonic lethality associated with chromosome segregation defects ${ }^{65}$. Notably MEFs derived from the Nsmce2 knockout mice exhibited increased spontaneous replication stress and genome instability due to a failure to detangle recombination intermediates similar to ATS patient cell lines (e.g. elevated levels of BRCA1 foci, increased sister chromatid and telomeric SCEs and chromosomal segregation errors) ${ }^{65}$ indicating that ATS represents a more severe form of SMC5/6 dysfunction.

Interestingly, the clinical phenotype exhibited by patients with variants in the SMC5/6 complex components NSMCE2 and NSMCE3 are different from each other, with the former being associated with microcephalic primordial dwarfism and insulin resistance ${ }^{20}$ and the latter being associated with severe pulmonary disease and immunodeficiency ${ }^{18,19}$. It is unclear why these clinical presentations are different, especially as the cellular phenotype resulting from NSMCE2 and NSMCE3 variants are similar ${ }^{18,20}$. One possible important cellular difference between the two disorders is that the patientassociated missense variants in NSMCE3 result in the destabilization of the SMC5/6 complex to a much greater extent than the nonsense variants present in NSMCE2 patients ${ }^{18,20}$. It is notable that the clinical phenotype of ATS patients more closely resembles that of NSMCE2 patients than NSMCE3 patients, and like NSMCE2 patient variants, SLF2 and SMC5 patient variants do not destabilise the SMC5/6 complex to any significant degree.

Taken together, we have demonstrated that variants in two components of the RAD18-SLF1/2SMC5/6 pathway give rise to a FA/MVA-like disorder, termed Atelís Syndrome, with clinical and cellular
features overlapping with WABS, MVA, NSMCE2 variants and FA. In vivo ablation of slf2 and smc5 in zebrafish recapitulate patient phenotypes including microcephaly and craniofacial patterning defects, likely due to concomitant cell cycle defects and apoptosis. We show that cells from ATS patients display a unique and complex chromosomal instability phenotype consisting of atelic (segmented) and dicentric chromosomes coupled with MVH, which should allow for cytogenetic diagnosis of patients with this disorder.

Methods

Research subjects.

Informed consent was obtained from all participating families to take clinical samples and to publish clinical information in accordance with local approval regulations and in compliance with the Declaration of Helsinki principles. This study was approved by the West Midlands, Coventry and Warwickshire Research Ethics Committee (REC: 20/WM/0098), the Scottish Multicentre Research Ethics Committee (REC: 05/MRE00/74), the Lancaster General Hospital Institutional Review Board and the Institutional Review Boards of Yokohama City University Graduate School of Medicine (ID: A190800001) and Jichi Medical University (ID: G21-V06). A collaboration to study the pathological significance of the identified SLF2 and SMC5 variants was established via GeneMatcher ${ }^{66}$.

Exome sequencing.

Genomic DNA from affected children and family members was extracted from peripheral blood using standard methods. Whole exome capture and sequencing was performed as described to a minimum of $30 x$ coverage 67. Exome sequencing for families 8 and 9 was conducted in collaboration with the Regeneron Genetics Center as previously described ${ }^{68}$. Briefly, DNA was sheared (Covaris S2), exome capture performed using the Agilent SureSelect v5 enrichment kit according to manufacturer's instructions, and libraries were sequenced with 125 bp read-pairs using the lllumina HiSeq 2500 V4 platform. All analyses were performed as described ${ }^{69}$. Variants were confirmed by bidirectional capillary dye-terminator sequencing and annotated using the reference sequences, GenBank: NM_018121.4, NM_001136123.2 and NM_015110.4. Capillary sequencing was performed in the MRC Human Genetics Unit, Edinburgh, UK, the University of Birmingham, UK, the Bioscientia Institute for Medical Diagnostics, Germany, the Rare Disease Genomics Department, Yokohama City University Hospital, Japan and the Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., USA.

Cell lines

Patient-derived lymphoblastoid cell lines (LCLs) were generated from peripheral blood samples with Epstein Barr virus (EBV) transformation using standard methods and were maintained in RPMI1640 medium (Life Technologies) supplemented with 10% FBS, L-glutamine and penicillin-
streptomycin. The ATR-Seckel LCL used in this study was reported previously ${ }^{31}$. Dermal primary fibroblasts were grown from skin-punch biopsies and maintained in Dulbecco's modified Eagle's medium (DMEM; Thermo Fisher Scientific) supplemented with 20\% FCS, 5\% L-glutamine and 5\% penicillin-streptomycin. Primary fibroblasts were immortalized with a lentivirus expressing human telomerase reverse transcriptase (hTERT) that was generated by transfecting 293FT cells (Thermo Fisher Scientific) with the plasmids: pLV-hTERT-IRES-hygro (Addgene \#85140), psPax2 (Addgene \#12260) and pMD2.G (Addgene \#12259). Selection was performed using Hygromycin (Thermo Fisher Scientific) at $70 \mu \mathrm{~g} / \mathrm{ml}$. All LCLs were routinely grown in RPMI-1640 (Thermo Fisher Scientific) supplemented with 10\% FCS, 5\% L-glutamine and 5\% penicillin-streptomycin. Patient cell lines were validated using Sanger sequencing and immunoblotting. Fibroblast and U-2 OS cell complementation was carried out using the pLVX-IRES-Neo lentiviral vector (Takara Bio) encoding 2xMyc-tagged SLF2 or untagged SMC5.

293FT (Thermo Fisher Scientific) were maintained in DMEM supplemented with 10\% FBS, 5\% I-glutamine and 5% penicillin-streptomycin and U-2-OS cells were cultured in McCoy's 5A medium, supplemented with 10% FBS, and 5% penicillin/streptomycin. 293FT transiently transfected with GFPBLM or GFP expression vectors using Lipofectamine 2000 (Thermo Fisher Scientific). U-2 OS cells were transiently transfected with SLF2/SMC5 expression vectors using FuGENE 6 Transfection Reagent (E2692, Promega) or Lipofectamine 3000 Reagent (L3000015, Thermo Fisher Scientific) where indicated. Stable GFP-SMC5 cell lines were generated by G418 selection and low expressing clones were selected based on GFP expression. All cell lines were routinely tested for mycoplasma.

Western blotting

Whole-cell extracts were obtained by sonication in UTB buffer (8 M urea, 50 mM Tris, 150 mM β-mercaptoethanol) and analyzed by SDS-PAGE following standard procedures. Protein samples were run on 6-12\% acrylamide gels with SDS-PAGE and transferred onto a nitrocellulose membrane. Immunoblotting was performed using antibodies to: RAD18 (Fortis Life Sciences, A301-340A; 1:1000), SMC5 (Fortis Life Sciences, A300-236A; 1:500), SMC6 (Fortis Life Sciences, A300-237A; 1:2000), SLF2 (generated in house; 1:1000) ${ }^{11}$, GAPDH (Genetex, GTX100118; 1:1000), Myc (Abcam, ab32; 1:1000), GFP (SCBT, sc-9996), HA (SCBT, sc-7392), α-Tubulin (Sigma-Aldrich, T9026), ATR (Fortis Life Sciences, A300-137A; 1:1,000), phospho-ATR (Thr1989) (GeneTex, GTX128145; 1:500),

FANCD2 (SCBT, sc-20022; 1:1,000), CHK1 (SCBT, sc-8408; 1:1,000), phospho-CHK1 (Ser345) (Cell Signaling Technology, 2341; 1:100), NBS1 (Genetex, GTX70224; 1:10,000); phospho-NBS1 (Ser343) (Abcam, 47272; 1:500); SMC1 (Fortis Life Sciences, A300-055A; 1:1,000); phospho-SMC1 (Ser966) (Fortis Life Sciences, A300-050A; 1:1,000); HA (Abcam, Ab9110; 1:1000). Loading controls for all blots were derived from re-probing the same membrane, except for the phospho-antibody immunoblots, for which paired gels were run simultaneously and blotted in parallel for phosphorylated and total proteins.

Co-immunoprecipitation and GFP-Trap pull-downs

For GFP-Trap pulldown experiments with 293FT cells, cells transfected with plasmids using Lipofectamine 2000, were treated with 2 mM HU for 16 h and harvested. Cells were incubated in lysis buffer ($150 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ Tris $\mathrm{HCl} \mathrm{pH} 7.5,2 \mathrm{mM} \mathrm{MgCl}$, $1 \% \mathrm{NP40} 90 \mathrm{U} /$,ml Benzonase (Novagen) and EDTA-free protease inhibitor cocktail [Roche]) for 30 min with rotation at $4^{\circ} \mathrm{C}$. Cell lysates were then pre-cleared at $65,000 \mathrm{~g}$ at $4^{\circ} \mathrm{C}$ for 30 min . For GFP-Trap, 3-5 mg of lysate was incubated with GFP-Trap agarose beads (ChromoTek) for 5 h at $4^{\circ} \mathrm{C}$. The resulting GFP-Trap complexes were washed with wash buffer ($150 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ Tris $\mathrm{HCl} \mathrm{pH} 7.5,0.5 \% \mathrm{NP} 40$, and complete protease inhibitor cocktail [Roche]) and analysed by SDS-PAGE.

For immunoprecipitations from patient-derived LCLs, 3 mg of lysate (prepared with the same lysis buffer as above) was immunoprecipitated with $5 \mu \mathrm{~g}$ of antibody (RAD18; Fortis Life Sciences, A301-340A or NSMCE2; Fortis Life Sciences, A304-129A) and protein A-sepharose beads (GE Healthcare). Complexes were washed with wash buffer (as described above) and analysed by SDSPAGE. Experiments were carried out in the presence of Benzonase nuclease to exclude the possibility of interactions being mediated by DNA.

For immunoprecipitations from U-2 OS cells, cell lysates were generated using EBC buffer ($150 \mathrm{mM} \mathrm{NaCl} ; 50 \mathrm{mM}$ Tris, pH 7.5; 1 mM EDTA; 0.5% IGEPAL CA-630). Lysates were subject to Co-IP using Strep-Tactin Sepharose (IBA GmbH) prior to immunoblot using the following antibodies: GFP (sc9996, SCBT), HA (sc-7392, SCBT), RAD18 (A301-340A, Fortis Life Sciences), SMC6 (A300-237A, Fortis Life Sciences), SMC5 (Fortis Life Sciences, A300-236A), NSMCE2 (Fortis Life Sciences, A304129A), α-Tubulin (T9026, Sigma-Aldrich).

U-2 OS cells were grown on coverslips and sensitized to laser induced DSB formation using 5-Bromo-2-deoxyuridine (B9285-50MG, Sigma-Aldrich) for 24 h . GFP-SLF2 expression vectors were transiently transfected 24 h prior and GFP-SMC5 stable expressing cells were used for microirradiation. Laser micro-irradiation induced DSB formation was performed as previously described ${ }^{70}$ with 1 h allowed for recovery. Cells were pre-extracted using CSK buffer ($100 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ HEPES, $3 \mathrm{mM} \mathrm{MgCl} 2,300 \mathrm{mM}$ Sucrose, 0.25% Triton-X100, 1 mM PMSF) prior to fixation in formalin buffer (AMPQ43182, VWR) for 15 mins at room temperature (RT).

Fixed coverslips were blocked with 5\% Bovine Serum Albumin (A7906, Sigma-Aldrich) for 1 h prior to staining with anti- - -H2AX (Ser139) (1:1000, 05-636, Merck) and anti-GFP (1:500, PABG1, Chromotek) overnight at $4^{\circ} \mathrm{C}$. After PBS washes cells were stained with Alexa Fluor secondary antibodies and 4',6-Diamidino-2-Phenylindole (DAPI, D1306, Molecular Probes) for 30 mins at RT. After further washing, coverslips were dried completely and mounted for imaging using Mowiol (81381, Sigma-Aldrich).

Zebrafish husbandry and embryo maintenance.

All zebrafish experiments were performed according to protocols approved by the Duke University and Northwestern University institutional animal care and use committees (IACUC). Wild type (WT: ZDR or NIH) adults or transgenic -1.4col1a1:egfp ${ }^{25}$ adults were maintained on an $A B$ background and subjected to natural matings to generate embryos for microinjection and/or phenotyping. Embryos were grown in egg water ($0.3 \mathrm{~g} / \mathrm{L} \mathrm{NaCl}, 75 \mathrm{mg} / \mathrm{L} \mathrm{CaSO} 4,37.5 \mathrm{mg} / \mathrm{L} \mathrm{NaHCO} 3$, 0.003% methylene blue) at $28^{\circ} \mathrm{C}$ until assessment. Zebrafish sex is unknown until animals are ~ 3 months old. Therefore, in the larvae at <5days post fertilization, it is not possible to know how many males and females are present, and there should be no sex-dependent effects at this stage. However, adults that were used to generate embryos were crossed in a 1 male to 1 female ratio.

CRISPR-Cas9 genome editing of zebrafish embryos

Reciprocal translated BLAST of human SLF2 (NP_060591.3) and SMC5 (NP_055925.2) was performed against the zebrafish genome and found a single ortholog corresponding to either protein (transcripts targeted: slf2: ENSDART00000136689.3, smc5: ENSDART00000122170.4). To identify CRISPR/Cas9 single guide RNA (sgRNA) targets in both genes, CHOPCHOPv2 ${ }^{71}$ (and
http://chopchop.cbu.uib.no) was used. sgRNAs were generated using the GeneArt precision gRNA synthesis kit (Thermo Fisher Scientific) according to the manufacturer's instructions (Supplementary Table S11). 1 nl of cocktail containing 100 pg sgRNA with or without 200 pg of Cas9 protein (PNA Bio) was injected into the cell of single cell staged zebrafish embryos. To estimate the percentage mosaicism of genome-edited cells, genomic DNA from individual embryos was extracted at 2 days post fertilization (dpf; two controls and ten founder [F0] embryos per sgRNA). PCR was used to amplify the sgRNA targeted region using flanking primers and heteroduplex analysis was performed using polyacrylamide gel electrophoresis (PAGE). PCR products were denatured, reannealed slowly, and migrated on a 20\% polyacrylamide gel (Thermo Fisher Scientific). PCR products from five embryos per sgRNA were randomly selected from the heteroduplex analysis, cloned into a TOPO-TA vector (Thermo Fisher Scientific) and sequenced using BigDye terminator 3.1 chemistry (Applied Biosystems). To isolate stable slf2 mutants, F0 animals were crossed to WT ZDR adults and heterozygous F1 mutants bearing the c.515_522del (p.Ser172_Ser174fs191Ter) variant were identified. Mutant F1 adult siblings were inter-crossed to generate homozygous F2 animals for phenotyping. slf2 mRNA expression level was monitored by qRT-PCR (QuantStudio, Thermo Fisher Scientific) using SYBR Green detection kit (Thermo Fisher Scientific) with normalization to β-actin.

Transient suppression of slf2 and smc5 in zebrafish embryos

Splice blocking morpholinos (MOs) were designed to target the slf2 exon 11 (e11i11) and smc5 exon 3 (e3i3) splice donor sites (Gene Tools; Supplementary Table S11)). Each gene was transiently suppressed independently by injecting 1 nl at different doses ($3 \mathrm{ng}, 6 \mathrm{ng}$ and 9 ng) into one to four cell staged zebrafish embryos. To validate MO efficiency, total RNA was extracted from pools of 2 dpf embryos (25 animals/condition; controls and MO-injected) using Trizol (Thermo Fisher Scientific) according to manufacturer's instructions. cDNA was synthesised with the QuantiTect Reverse Transcription kit (Qiagen), RT-PCR of the MO target locus was performed, and PCR products were separated on a 1% agarose gel. Resulting PCR bands were gel purified with the QIAquick gel extraction kit (Qiagen) and cloned into the TOPO-TA cloning vector (Thermo Fisher Scientific). Purified plasmids from resulting colonies ($n=4 / \mathrm{PCR}$ product) were sequenced using BigDye 3.1 terminator chemistry according to standard protocols.

Molecular cloning and site directed mutagenesis of human SLF2 and SMC5 constructs for expression of human proteins in zebrafish

Full length Gateway-compatible SLF2 (NM_018121.4) and SMC5 (NM_015110.4) open reading frame (ORF) entry vectors were obtained (Horizon). WT ORFs of both genes were inserted into a pCS2+ Gateway destination vector using LR clonase II (Thermo Fisher Scientific). SMC5 variants identified in either affected individuals (p.His990Asp, p.Arg372del, p.Arg425Ter) or in gnomAD (dbSNP ID: rs59648118, p.(Arg733GIn); 16 homozygotes of 140,814 individuals, negative control) were inserted using site directed mutagenesis as described (Supplementary Table S11) ${ }^{72}$. After full ORF sequence confirmation of all WT and mutant plasmids, each construct was linearised with Notl and in vitro transcription was performed with the mMessage mMachine SP6 Transcription kit (Thermo Fisher Scientific) according to manufacturer's instructions. 150 pg SLF2 mRNA with 6 ng s/f2 MO and 150 pg SMC5 mRNA with 9 ng smc5 MO was used for in vivo complementation assays.

Live imaging of zebrafish larvae

Images of tricaine-anesthetized larvae at 3 dpf were captured using the Vertebrate Automated Screening Technology (VAST) Bioimager (Union Biometrica) mounted to an AXIO Imager.M2m microscope (Zeiss) with a 10x objective lens. Larvae were passed sequentially through a $600 \mu \mathrm{~m}$ capillary on the detection platform. Each larva was detected by software on the computer screen and oriented automatically for lateral and ventral side images with a pre-provided template setting in the software. VAST software (version 1.2.6.7) operated in automatic imaging mode with a 70% minimum similarity threshold, as described ${ }^{73}$. Bright field lateral images were captured with the VAST onboard camera and a fluorescent signal from ventrally positioned larvae with an Axiocam 503 monochrome camera (Zeiss) and ZenPro software (Zeiss).

TUNEL assay and phospho-histone H3 (pHH3) immunostaining in zebrafish larvae

Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) assays or pHH3 immunostaining on whole mount embryos were performed as described ${ }^{27,74,75}$. Embryos were dechorionated at 2 dpf (slf2 and smc5) or $3 \mathrm{dpf}(s m c 5)$ and fixed overnight in 4% paraformaldehyde (PFA) at $4{ }^{\circ} \mathrm{C}$. Embryos were then dehydrated in methanol at $-20^{\circ} \mathrm{C}$ for 2 h and gradually rehydrated in methanol in PBS and 0.1% Tween (PBST) in the following percent volume/volume ratios: $75 / 25$;

50/50; 25/75 for 10 min each at RT. Embryos were bleached for 12 min in a solution of $9 \mathrm{ml} \mathrm{PBST}+1$ $\mathrm{ml} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}+0.05 \mathrm{~g} \mathrm{KOH}$ before proteinase K treatment and fixation in 4% PFA for 20 min at RT. For TUNEL, embryos were then incubated in equilibration buffer for 1 h and treated overnight with TdT enzyme at $37{ }^{\circ} \mathrm{C}$ in a humidified incubator. Following treatment with digoxigenin (ApopTag red in situ apoptosis detection kit, Sigma-Aldrich) for 2 h , embryos were washed $3 x$ with PBST (10 min each) and processed for imaging. For pHH 3 staining, embryos were washed $3 x$ (10 min each) with PBST and incubated in blocking solution (IF buffer [1\% BSA in PBST] +10\% FBS]) for 1 h . Embryos were then treated with primary antibody diluted in 1% BSA overnight: anti-pHH3 (SCBT, sc-374669: 1:500) at 4 ${ }^{\circ} \mathrm{C}$. Following staining with a secondary antibody: Alexa Fluor 488 goat anti-rabbit IgG (Thermo Fisher Scientific, A11008: 1:500) diluted in 1% BSA for 2 h at RT, embryos were washed $2 x$ (10 min each) with IF buffer and processed for imaging. For both TUNEL and pHH3 stained embryos, a z-stacked fluorescent signal of the dorsal aspect was captured with a Nikon AZ100 microscope facilitated by a Nikon camera controlled by Nikon NIS Elements Software.

Zebrafish image analysis

ImageJ (NIH) was used to measure lateral head size, ceratohyal angle and count cells (TUNEL or pHH 3) in the specified head region. Raw images were exported as TIF files and contrast and brightness were adjusted using identical settings for all images across the experiments. To measure head size, a straight line was drawn from the posterior otolith to the tip of the mouth (line a), the dorsal head area outlined (line b), and the arbitrary shape closed with a line perpendicular to line a (line c). Ceratohyal angle was measured with the angle tool. To count TUNEL or pHH 3 positive cells, the imagebased tool for counting nuclei (ICTN) plugin for ImageJ was used. A consistent region between the two eyes was selected that spanned the most anterior region of the head to the most anterior region of the yolk.

Immunofluorescence in human cells

Patient-derived fibroblasts or U-2 OS CRISPR HM cells were seeded onto coverslips at least 48 h before extraction and fixation. Cells were pre-extracted for 5 min on ice with ice-cold extraction buffer (25 mM HEPES [pH 7.4], $50 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, $3 \mathrm{mM} \mathrm{MgCl} 2,300 \mathrm{mM}$ sucrose, and 0.5% Triton $\mathrm{X}-100$) and then fixed with 4% paraformaldehyde (PFA) for 10 min . For immunofluorescence
involving patient-derived LCLs, cells were seeded onto Poly-L-Lysine coated coverslips 20 min before fixation with ice-cold methanol for 20 min . For immunofluorescence using cells treated with exogenous DNA damage, patient-derived fibroblasts or LCLs cells were incubated with 500 nM APH, $50 \mathrm{ng} / \mathrm{ml}$ MMC or 250μ C CX5461 (Selleck Chemicals, S2684), as indicated in the figure legends, 24 h before fixation.

Fixed cells were then stained with primary antibodies specific to $\mathrm{yH2AX}$ (Sigma-Aldrich, 05636; 1:1,000), CENPA (Abcam, Ab13939; 1:750), 53BP1 (Novus Biologicals, NB100-304; 1:1,000), CENPF/Mitosin (Abcam, Ab5; 1:500 and BD Transduction Laboratories, 610768; 1:500), α-Tubulin (Sigma-Aldrich, B-5-1-2; 1:4000), PCNT (Abcam, Ab4448; 1:100), and RAD51 (Merck, PC130; 1:500), and with secondary antibodies: anti-rabbit IgG Alexa Fluor 488 (Thermo Fisher Scientific, A11070; 1:1000) and anti-mouse IgG Alexa Fluor 594 (Thermo Fisher Scientific, A11032; 1:1000). Cells were then stained with DAPI and visualized with a 100x oil-immersion objective lens on a Nikon Eclipse Ni microscope.

To visualize DNA replication, cells were incubated in medium containing $10 \mu \mathrm{M}$ EdU for 30-45 min before harvesting. EdU immunolabeling was performed using the Click-iT EdU Imaging Kit (Thermo Fisher Scientific, C10337) according to the manufacturer's protocol.

DNA fibre spreading assay

Patient-derived fibroblasts or U-2 OS cells were seeded at least 48 h prior to harvesting. Cells were incubated with 25 mM CldU for 30 min , washed with media containing 250 mM IdU (with or without $250 \mu \mathrm{M}$ CX5461), incubated with 250 mM IdU (with or without $250 \mu \mathrm{M}$ CX5461) for 30 min , and harvested by trypsinization. For patient-derived LCLs, untreated cells were incubated with 25 mM CIdU for 20 min, washed with media containing 250 mM IdU, before being incubated with 250 mM IdU for 20 min and harvested. LCLs were incubated with $50 \mathrm{ng} / \mathrm{ml}$ MMC for 24 h prior to pulse labelling with 25 mM CldU for 20 min and then 250 mM IdU for 20 min . For all incubation or washing steps, $50 \mathrm{ng} / \mathrm{ml}$ MMC was present in the media. For cells treated with HU, after being incubated with 25 mM CIdU for 20 min , LCLs were incubated with media containing 2 mM HU for 2 h , before being washed in media containing 250 mM IdU, then incubated with 250 mM IdU for 20 min and harvested.

Following harvesting, cells were washed with PBS and resuspended to a concentration of 500,000 cells $/ \mathrm{ml}$ in PBS, and then lysed in lysis buffer (200 mM Tris-HCI [pH 7.5], 50 mM EDTA, 0.5%

SDS) directly on glass microscope slides. DNA fibres were spread down the slide by gravity, fixed in methanol/acetic acid (3:1) and denatured with 2.5 M HCI . The thymidine analogues, CldU and IdU, were detected via rat anti-BrdU antibody (clone BU1/75, ICR1; Abcam, ab6326; 1:500) and mouse antiBrdU antibody (clone B44; BD Biosciences, 347583; 1:500) respectively, and secondary antibodies conjugated to Alexa Fluor 594 or Alexa Fluor 488 (Thermo Fisher Scientific). Labelled DNA fibres were visualized with a Nikon Eclipse Ni microscope with 100x oil-immersion objective lenses, and images were acquired with NIS-Elements software (Nikon Instruments). Replication fork structures and CIdU and IdU track lengths were then quantified with ImageJ software (US NIH).

Metaphase spreads

Giemsa-stained metaphase spreads from patient-derived cell lines or U-2 OS CRISPR SLF2 HM cells were prepared by adding of $0.2 \mathrm{mg} / \mathrm{ml}$ colcemid (KaryoMAX, Life Technologies) and incubating for 3 h . The cells were then harvested by trypsinization, subjected to hypotonic shock for 30 min at $37^{\circ} \mathrm{C}$ in hypotonic buffer ($10 \mathrm{mM} \mathrm{KCl}, 15 \% \mathrm{FCS}$), and fixed in ethanol/acetic acid solution (3:1). The cells were dropped onto microscope slides, stained for 15 min in Giemsa-modified solution (SigmaAldrich; 5% vol/vol in water), and washed in water for 5 min . For analysis of cohesion fatigue in SLF2 patient LCLs, the metaphase spread protocol was followed as above. However, instead of adding colcemid, $25 \mu \mathrm{M}$ MG 132 (Sigma-Aldrich, M7449) was added 4 h before harvesting.

To prepare Giemsa-stained metaphase spreads from peripheral blood, whole blood was diluted in RPMI1640 and $180 \mu \mathrm{~g} / \mathrm{ml}$ PHA (Thermo Fisher Scientific) was added for $48-72 \mathrm{~h}$ at $37^{\circ} \mathrm{C} .4 \mathrm{~h}$ prior to harvesting $0.2 \mathrm{mg} / \mathrm{ml}$ colcemid was added. The cells were pelleted and then subjected to hypotonic shock for 10 min at $37^{\circ} \mathrm{C}$ in hypotonic buffer (0.075 M KCl). Finally, the cells were then fixed in methanol/acetic acid solution (3:1) and processed as described above.

Fluorescence in situ hybridization

For Fluorescence In Situ Hybridization (FISH) was carried out on peripheral blood lymphocytes metaphases using a peptide nucleic acid (PNA) pan-centromere FISH probe conjugated to Alexa Fluor 488 (5'-ATTCGTTGGAAACGGGA-3', PNA Bio, F3004 CENPB-Alexa488). Briefly, the PNA FISH probes was made up as per the manufacturer's instructions. Metaphase spreads were harvested from patient blood samples as above, and metaphases were dropped onto acetic-acid humidified microscope
slides. 24 h later, the slides were re-hydrated in PBS, dehydrated in an ethanol series (70%, 95%, 100%) and air dried. The slides were pre-warmed to $37^{\circ} \mathrm{C}$ and before being incubated with hybridization buffer (20 mM Tris, pH7.4, 60% formamide, 0.5% blocking reagent [Roche Blocking Reagent, $11096176001], 1 \% \mathrm{v} / \mathrm{v}$ PNA probe) for 10 min at $85^{\circ} \mathrm{C}$. The slides were then incubated in a dark, humidified chamber at RT for 2 h , before being washed in wash buffer (70% formamide, 10 mM Tris) and dehydrated in an ethanol series $(70 \%, 95 \%, 100 \%)$. The slides were then air dried and fixed with prolong gold DAPI mounting medium (ProLong Gold Antifade Mountant with DAPI, P36935).

Sister chromatid exchange analysis

For sister chromatid exchange analysis, LCLs were incubated with $10 \mu \mathrm{M}$ BrdU for 48 h before incubating with $0.2 \mu \mathrm{~g} / \mathrm{ml}$ demecolcine for 3 h . Cells were then resuspended in 0.075 M KCl and incubated at $37^{\circ} \mathrm{C}$ for 1 h , fixed in methanol/acetic acid (3:1) and dropped onto microscope slides. The slides were then incubated in $10 \mu \mathrm{~g} / \mathrm{ml}$ Hoescht for 20 min and exposed to UVA light for 1 h in $2 \times$ SSC buffer. Slides were incubated in $2 \times$ SSC buffer for 1 h at $60^{\circ} \mathrm{C}$ and stained with 5% Giemsa. For metaphase spread analysis of cells treated with exogenous DNA damage, patient-derived LCLs cells were incubated with 500 nM APH or $50 \mathrm{ng} / \mathrm{ml}$ MMC 24 h before harvesting.

For analyses of telomere sister chromatid exchange, LCLs were cultured in the presence of BrdU:BrdC (final concentration of 7.5 mM BrdU [MP Biomedicals, 100166] and 2.5 mM BrdC [SigmaAldrich, B5002]) for 10 hr prior to harvesting. KaryoMAX colcemid (Gibco, 15212-012) was added at a concentration of $0.1 \mu \mathrm{~g} / \mathrm{mL}$ during the last 2 h . Cells were collected and washed in 75 mM KCl . Cells were then fixed $3 x$ in methanol:acetic acid (3:1) by adding fixative solution dropwise with constant gentle agitation by vortex. Following fixation, cells were dropped onto microscope slides and metaphase spreads were allowed to dry overnight. Next, slides were rehydrated in $1 \times$ PBS and then treated with $0.5 \mathrm{mg} / \mathrm{ml}$ RNase A (Sigma-Aldrich, R5125) for 30 min at $37^{\circ} \mathrm{C}$. Next, slides were treated with $0.5 \mu \mathrm{~g} / \mathrm{ml}$ Hoescht 33258 (Sigma-Aldrich, 861405) in $2 x$ SSC for 15 min at RT, UV-irradiated, and digested with Exolll (NEB M0206L) for at least 30 min at $37^{\circ} \mathrm{C}$. Slides were then washed once in 1 xPBS and dehydrated in an ethanol series $(70 \%, 90 \%, 100 \%$) and air dried. FISH was performed using a TelC-Alexa488-conjugated PNA probe (PNA Bio, F1004; 1:1,000) followed by a TelG-Cy3-conjugated PNA probe (PNA Bio, F1006; 1:1,000) diluted in hybridization solution (10 mM Tris-HCI pH 7.2; 70\% formamide; 0.5% blocking reagent (Roche, 11096176001)) each for 2 h at RT. Next, slides were
washed at RT twice for 30 min in PNA wash A (70% formamide, $0.1 \% \mathrm{BSA}, 10 \mathrm{mM}$ Tris pH 7.2) and $3 x$ for 5 min in PNA wash B (100 mM Tris pH 7.2, $150 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ Tween-20). The second PNA wash B contained DAPI (Life Technologies, D1306) at a 1:1000 concentration. Slides were then dehydrated and dried as described above prior to mounting with Vectashield (Vectalabs, H1000). Slides were imaged using a Zeiss Spinning Disk confocal microscope. Image analyses were blinded and used FIJI version 2.1.0/153.c. Statistical analysis was performed using GraphPad Prism version 9.4.1.

LCL proliferation assays

LCL proliferation assays were carried out as previously reported ${ }^{49}$. Briefly, LCLs were seeded at a concentration of 0.25×10^{6} cells per ml in $25 \mathrm{~cm}^{2}$ flasks and incubated with an increasing concentration of CX5461. The treated cells were counted when the untreated cells had reached a concentration of 2.0×10^{6} cells per ml (approximately three population doubling times). The viability of the cells was expressed as a percentage of the untreated cell count.

Plasmids, mutagenesis and sequencing primers

Total RNA was extracted from cell lines using RNeasy Mini kit (Qiagen) according to the manufacturer's instructions. DNA was removed by treatment with DNase I (Qiagen), and cDNA was generated using Superscript II and primed with oligo-dT (Thermo Fisher Scientific). PCR was carried out using Phusion Hot Start II (Thermo Fisher Scientific). $2 x$ Myc-SLF2 or untagged SMC5 lentiviral expression constructs were generated by cloning a PCR-generated cDNA into the Notl site of pLVX-IRES-neo (Takara Bio). The SLF2 and SMC5 ORFs were verified by sequencing using the primers in Supplementary Table S12.

Full length SLF2 cDNA was also cloned into pcDNA4/TO (Thermo Fisher Scientific) and deletion constructs were generated using KOD Hot Start DNA polymerase (Merck) according to manufacturer's instructions. The following primer sets in Supplementary Table S13 were used to generate the SLF2 deletion constructs and SLF2 'minimal binding region' (MBR) constructs. GFP-SLF2 is previously described ${ }^{11}$. Full length SMC5 cDNA was amplified and cloned into pEGFP-C1 (Takara Bio) using Kpnl/BamHI. SLF2/SMC5 mutagenesis was achieved using the Q5 Site-Directed Mutagenesis Kit (E0554S, NEB) according to manufacturer's instructions. The following primer sets in

Supplementary Table S13 were used to generate mutant expression vectors. SLF2 p.Gln1162His variant was generated using gene synthesis (Thermo Fisher Scientific).

Lentiviral plasmids encoding the bacterial Holliday junction resolvase RusA were a kind gift from Agata Smorgorzewska ${ }^{40}$.

RT-PCR analysis of patient cells

RT-PCR of SLF2 was performed using transcript specific primers (Supplementary Table S14) to assess the mRNA levels of the two longest annotated SLF2 transcripts (NM_018121.4 and NM_001136123.2) in patient whole blood RNA (Paxgene) or commercially-obtained human cDNA panels: Human Universal QUICK-Clone II (Clontech), which is pool of cDNA obtained from 35 different healthy adult or fetal tissues; and Human multiple tissue cDNA (MTC) panel I (Clontech). PCR product was migrated on a 1% agarose gel for 40 minutes at 100 V .

CRISPR-Cas 9 genome editing of U-2 OS cells

Pairs of SLF2 targeting guide RNAs (sgRNA 1, 5'-AGTTTCATCACTCGGTTCCT-3'; sgRNA 2, 5'-GGCTTGGCACCTTCAAATTC-3') were designed using the CHOPCHOP web tool (version 2$)^{71,76}$ and hybridised and ligated into the purpose built AIO-GFP All-in-One Cas9D10A nickase vector at unique Bbsl and Bsal sites. These constructs were transfected into U-2 OS cells using FuGENE transfection reagent according to manufacturer's instructions ($3: 1$ ratio of FuGENE to DNA). Cells were sorted for high GFP expression by fluorescence-activated cell sorting (FACS) into 96-well dishes and recovered in McCoys 5A media supplemented with 20% FBS and 5\% penicillin-streptomycin. After three weeks, 25 colonies were chosen to be propagated and screened for successful gene editing. After propagating, potential clones were lysed in lysis butter (100 mM Tris/HCl pH 8.5, 5 mM EDTA, 0.2% SDS, $200 \mathrm{mM} \mathrm{NaCl}, 100 \mu \mathrm{~g}$ Proteinase K / ml) and the DNA was precipitated with isopropanol and resuspended in 10 mM Tris/HCl, 0.1 mM EDTA, pH 7.5 . Screening of genomic DNA from clones was achieved by sequencing a region of SLF2 surrounding the Cas9 nickase cut sites (Reverse primer, 5'-AGTTCCGATAATCCACCCCTT-3'; Forward primer, 5'-TTTCTGCAACCAGGTAGTCCT-3'). Following secondary screening of five clones by Western blotting, two SLF2 CRISPR HM clones were chosen (renamed as cl. 1 and cl.2) and were characterised further by inserting the amplified region of SLF2 described above into TOPO-TA vectors. 20 TOPO-TA vector clones were then sequenced for both cl. 1
and cl .2 to identify all SLF2 mutant alleles and ensure no WT allele was present. The HM clones cl. 1 and cl. 2 were then complemented by $2 x$ Myc tagged SLF2 cloned into pLVX-IRES-neo (Takara Bio).

Statistical Analysis

Statistical analyses were performed as indicated in the figure legends. A p-value of less than 0.05 indicates significance. The number of independent experimental replicates is denoted in the figure legends. In all cases, independent experiments represent distinct samples, and not the same sample measured repeatedly.

Data Availability

The datasets generated during WES are not publicly available due to reasons of sensitivity, e.g. human data, but may be available from the corresponding author upon request subject to parental consent. Gene variant frequency was obtained from the gnomAD database (https://gnomad.broadinstitute.org/). Accession codes for genes/proteins analysed within this study are: Human SLF2 (NM_018121.4 [https://www.ncbi.nlm.nih.gov/nuccore/NM_018121.4], NM_001136123.2 [https://www.ncbi.nlm.nih.gov/nuccore/NM_001136123.2], NP_060591.3 [https://www.ncbi.nlm.nih.gov/protein/NP_060591.3]),

Human SMC5
(NM_015110.4 [https://www.ncbi.nlm.nih.gov/nuccore/NM_015110.4], [https://www.ncbi.nlm.nih.gov/protein/NP_055925.2]), zebrafish slf2 (XM_002664123.6 [https://www.ncbi.nlm.nih.gov/nuccore/XM_002664123.6], XP_002664169.3 [https://www.ncbi.nIm.nih.gov/protein/XP_002664169.3]), zebrafish smc5 (NM_001193541.1 [https://www.ncbi.nlm.nih.gov/nuccore/NM_001193541.1], NP_001180470.1 [https://www.ncbi.nlm.nih.gov/protein/NP_001180470.1]). Plasmids obtained from Addgene (https://www.addgene.org/) used in this study: pLV-hTERT-IRES-hygro (Addgene \#85140), psPax2 (Addgene \#12260) and pMD2.G (Addgene \#12259). PDB files used within this study to model the structural impact of SMC5 patient variants: Saccharomyces cerevisiae Smc5 (PDB: 3HTK), Pyrococcus furiosus RAD50 (PDB: 1F2T and 1FTU). AlphaFold models used to facilitate structural predictions: human SMC5 (AF-Q8IY18-F1). Source data and uncropped and unprocessed scans of the immunoblotting experiments are provided with this paper.

References

1. Alcantara, D. \& O'Driscoll, M. Congenital microcephaly. Am J Med Genet C Semin Med Genet 166C, 124-39 (2014).
2. O'Driscoll, M. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery. J Pathol 241, 192-207 (2017).
3. Grand, R.J.A. \& Reynolds, J.J. (eds.). DNA Repair and Replication: Mechanisms and Clinical Significance, 348 (Garland Science, Boca Raton, 2018).
4. Schmit, M. \& Bielinsky, A.K. Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms. Int J Mol Sci 22(2021).
5. Klingseisen, A. \& Jackson, A.P. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev 25, 2011-24 (2011).
6. Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36, 1159-61 (2004).
7. Snape, K. et al. Mutations in CEP57 cause mosaic variegated aneuploidy syndrome. Nat Genet 43, 527-9 (2011).
8. Yost, S. et al. Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nat Genet 49, 1148-1151 (2017).
9. Pisani, F.M. Spotlight on Warsaw Breakage Syndrome. Appl Clin Genet 12, 239-248 (2019).
10. Avagliano, L. et al. Chromatinopathies: A focus on Cornelia de Lange syndrome. Clin Genet 97, 3-11 (2020).
11. Raschle, M. et al. DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science 348, 1253671 (2015).
12. Aragon, L. The Smc5/6 Complex: New and Old Functions of the Enigmatic Long-Distance Relative. Annu Rev Genet 52, 89-107 (2018).
13. Sole-Soler, R. \& Torres-Rosell, J. Smc5/6, an atypical SMC complex with two RING-type subunits. Biochem Soc Trans 48, 2159-2171 (2020).
14. Palecek, J.J. SMC5/6: Multifunctional Player in Replication. Genes (Basel) 10(2018).
15. Schuster, K. et al. A neural crest origin for cohesinopathy heart defects. Hum Mol Genet 24, 7005-7016 (2015).
16. Piché, J., Piet Van Vliet, P., Pucéat, M. \& Andelfinger G. The expanding phenotypes of cohesinopathies: one ring to rule them all! Cell Cycle 18, 2828-2848 (2019).
17. Rossi, F. et al. SMC5/6 acts jointly with Fanconi anemia factors to support DNA repair and genome instability. EMBO Rep 21, e48222 (2020).
18. van der Crabben, S.N. et al. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J Clin Invest 126, 2881-92 (2016).
19. Willemse, B.W.M. et al. New insights in phenotype and treatment of lung disease immunodeficiency and chromosome breakage syndrome (LICS). Orphanet J Rare Dis 16, 137 (2021).
20. Payne, F. et al. Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance. J Clin Invest 124, 4028-38 (2014).
21. Pryzhkova, M.V. \& Jordan, P.W. Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression. J Cell Sci 129, 1619-34 (2016).
22. Hassler, M. et al. Towards a unified model of SMC complex function. Curr Biol 28, R1266R1281 (2018).
23. Hopfner, K.P. et al. Structural biology of Rad50 ATPase: ATPdriven conformational control in DNA double strand break repair and the ABC-ATPase superfamily. Cell 101, 789-800 (2000).
24. Etheridge, T.J. et al. Live-cell single-molecule tracking highlights requirements for stable Smc5/6 chromatin association in vivo. Elife 10, e68579.
25. Kague, E. et al. Skeletogenic fate of zebrafish cranial and trunk neural crest. PLoS One 7, e47394 (2012).
26. Atkins, A. et al. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. Elife 9(2020).
27. Ansar, M. et al. Bi-allelic Variants in DYNC1I2 Cause Syndromic Microcephaly with Intellectual Disability, Cerebral Malformations, and Dysmorphic Facial Features. Am J Hum Genet 104, 1073-1087 (2019).
28. Khan, T.N. et al. Mutations in NCAPG2 Cause a Severe Neurodevelopmental Syndrome that Expands the Phenotypic Spectrum of Condensinopathies. Am J Hum Genet 104, 94-111 (2019).
29. Venegas, A.B., Natsume, T., Kanemaki, M. \& Hickson, I.D. Inducible degradation of the human SMC5/6 complex reveals an essential role only during interphase. Cell Reports 31, 107533 (2020).
30. Ogi, T. et al. Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome. PLoS Genet 8, e1002945 (2012).
31. Reynolds, J.J. et al. Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism. Nat Genet 49, 537-549 (2017).
32. Copsey, A. et al. Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions. PLoS Genet 9, e1004071 (2013).
33. Behlke-Steinert, S., Touat-Todeschini, L., Skoufias, D.A. \& Margolis, R.L. SMC5 and MMS21 are required for chromosome cohesion and mitotic progression. Cell Cycle 8, 2211-2218 (2009).
34. Stephan, A.K. et al. Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombination. Mol Cell Biol 31, 1369-1381 (2011).
35. Lin, S-J. et al. An acetyltransferase-independent function of Eso1 regulates centromere cohesion. Mol Cell Biol 27, 4002-4010 (2016).
36. Daum, J.R. et al. Cohesion fatigue induces chromatid separation in cells delayed at metaphase. Curr Biol 21, 1018-24 (2011).
37. Loffler, H., Fechter, A., Liu, F.Y., Poppelreuther, S. \& Kramer, A. DNA damage-induced centrosome amplification occurs via excessive formation of centriolar satellites. Oncogene 32, 2963-72 (2013).
38. Marthiens, V. et al. Centrosome amplification causes microcephaly. Nat Cell Biol 15, 731-40 (2013).
39. Sarbajna, S., Davies, D. \& West, S.C. Roles of SLX1-SLX4, MUS81-EME1, and GEN1 in avoiding genome instability and mitotic catastrophe. Genes Dev 28, 1124-36 (2014).
40. Garner, E., Kim, Y., Lach, F.P., Kottemann, M.C. \& Smogorzewska, A. Human GEN1 and the SLX4-associated nucleases MUS81 and SLX1 are essential for the resolution of replicationinduced Holliday junctions. Cell Rep 5, 207-15 (2013).
41. Agashe, S. et al. Smc5/6 functions with Sgs1-Top3-Rmi1 to complete chromosome replication at natural pause sites. Nature Comms 12, 2111 (2021).
42. Branzei, D. et al. Ubc9-and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127, 509-522 (2006).
43. Menolfi, D. et al. Essential roles of the Smc5/6 complex in replication through natural pausing sites and endogenous DNA damage tolerance. Mol Cell 60, 835-846 (2015).
44. Torres-Rosell, J. et al. SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nat Cell Biol 7, 412-419 (2005).
45. Bermudez-Lopez, M. et al. Sgs1's roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev 30, 133956 (2016).
46. Bonner, J.N. et al. Smc5/6 Mediated Sumoylation of the Sgs1-Top3-Rmi1 Complex Promotes Removal of Recombination Intermediates. Cell Rep 16, 368-378 (2016).
47. Masud, T. et al. Ubiquitin-mediated DNA damage response is synthetic lethal with Gquadruplex stabilizer CX-5461. Sci Rep 11, 9812 (2021).
48. Xu, H. et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun 8, 14432 (2017).
49. van Schie, J.J.M. et al. Warsaw Breakage Syndrome associated DDX11 helicase resolves Gquadruplex structures to support sister chromatid cohesion. Nat Commun 11, 4287 (2020).
50. Jegadesan, N.K. \& Branzei, D. DDX11 loss causes replication stress and pharmacologically exloitable DNA repair defects. Proc Natl Acad Sci USA 118, e2024258118 (2021).
51. Lerner, L.K. et al. Timeless couples G-quadruplex detection with processing by DDX11 helicase during DNA replication. EMBO J 39, e104185 (2020).
52. Bruno, P.M. et al. The primary mechanism of cytotoxicity of the chemotherapeutic agent CX5461 is topoisomerase II poisoning. Proc Natl Acad Sci USA 117, 4053-4060 (2020).
53. Pan, M. et a. The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma. Nat Commun 12, 6468 (2021).
54. Fernandez-Casanas, M. \& Chan, K.L. The Unresolved Problem of DNA Bridging. Genes (Basel) 9 (2018).
55. Wilhelm, T. et al. Mild replication stress causes chromosome mis-segregation via premature centriole disengagement. Nat Commun 10, 3585 (2019).
56. Gutierrez-Escribano, P. et al. Purified Smc5/6 Complex Exhibits DNA Substrate Recognition and Compaction. Mol Cell 80, 1039-1054 e6 (2020).
57. Serrano, D. et al. The Smc5/6 Core Complex Is a Structure-Specific DNA Binding and Compacting Machine. Mol Cell 80, 1025-1038 e5 (2020).
58. Adamus, M. et al. Molecular Insights into the Architecture of the Human SMC5/6 Complex. J Mol Biol 432, 3820-3837 (2020).
59. Hallett, S.T. et al. Nse5/6 is a negative regulator of the ATPase activity of the Smc5/6 complex. Nucleic Acids Res 49, 4534-4549 (2021).
60. Taschner, M. et al. Nse5/6 inhibits the Smc5/6 ATPase and modulates DNA substrate binding. EMBO J 40, e107807 (2021).
61. Spiegel, J., Adhikari, S. \& Balasubramanian, S. The Structure and Function of DNA GQuadruplexes. Trends Chem 2, 123-136 (2020).
62. Inoue, A. et al. Loss of ChIR1 helicase in mouse causes lethality due to the accumulation of aneuploid cells generated by cohesion defects and placental malformation. Cell Cycle 6, 164654 (2007).
63. Peng, X.P. et al. Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites. PLoS Genet 14, e1007129 (2018).
64. Wechsler, T., Newman, S. \& West, S.C. Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature 471, 642-6 (2011).
65. Jacome, A. et al. NSMCE2 suppresses cancer and aging in mice independently of its SUMO ligase activity. EMBO J 34, 2604-19 (2015).
66. Sobreira, N., Schiettecatte, F., Valle, D. \& Hamosh, A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat 36, 928-30 (2015).
67. Logan, C.V. et al. DNA Polymerase Epsilon Deficiency Causes IMAGe Syndrome with Variable Immunodeficiency. Am J Hum Genet 103, 1038-1044 (2018).
68. Strauss, K.A. et al. Genomic diagnostics within a medically underserved population: efficacy and implications. Genet Med 20, 31-41 (2018).
69. Murray, J.E. et al. Mutations in the NHEJ component XRCC4 cause primordial dwarfism. Am J Hum Genet 96, 412-24 (2015).
70. Poulsen, M., Lukas, C., Lukas, J., Bekker-Jensen, S. \& Mailand, N. Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. J Cell Biol 197, 189-99 (2012).
71. Labun, K., Montague, T.G., Gagnon, J.A., Thyme, S.B. \& Valen, E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44, W272-6 (2016).
72. Niederriter, A.R. et al. In vivo modeling of the morbid human genome using Danio rerio. J Vis Exp, e50338 (2013).
73. Isrie, M. et al. Mutations in Either TUBB or MAPRE2 Cause Circumferential Skin Creases Kunze Type. Am J Hum Genet 97, 790-800 (2015).
74. Frosk, P. et al. A truncating mutation in CEP55 is the likely cause of MARCH, a novel syndrome affecting neuronal mitosis. J Med Genet 54, 490-501 (2017).
75. Stankiewicz, P. et al. Haploinsufficiency of the Chromatin Remodeler BPTF Causes Syndromic Developmental and Speech Delay, Postnatal Microcephaly, and Dysmorphic Features. Am J Hum Genet 101, 503-515 (2017).
76. Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res 47, W171-W174 (2019).

Acknowledgments

We would like to thank the parents and affected individuals from the Atelís Syndrome families for taking part in this study and generously donating tissue samples. We would also like to thank Agata Smorgorzewska, Kasper Fugger and Stephen West for providing plasmids expressing RusA, Gen1, Mus81 and Eme1. GSS, RH, GSN, SLC, AG are funded by a CR-UK Programme Grant (C17183/A23303). LJG is supported by a joint funded University of Birmingham and CR-UK Ph.D studentship (C17422/A25154). JJR and AMRT are supported by the University of Birmingham. SSJ is supported by a project grant funded by the Great Ormond Street Hospital Charity and Sparks (V5019). RFS and NM are supported by Novo Nordisk Foundation (NNF14CC0001) and Independent Research Fund Denmark (9040-00038B). DP and APJ are supported by a European Union Horizon 2020 research and innovation program European Research Council (ERC) Advanced Grant (grant agreement 788093) and by a Medical Research Council (MRC) Unit core grant (U127580972). NM is supported by AMED (JP21ek0109486, JP21ek0109549, and JP21ek0109493). YU is supported by JSPS KAKENHI (JP21K15907). AKB and RMB are supported by grants from the National Institutes of Health (R01 GM134681 and R35 GM141805). FU is funded by the Higher Education Commission of Pakistan under the International research support initiative program (IRSIP). EED is supported by US National Institutes of Health grant R01 MH106826 and is the Ann Marie and Francis Klocke MD Research Scholar.

Author contributions

L.J.G, J.J.R, R.F.S, R.M.B, R.H, G.S.M, S.L.C, M.R.H, N.M, A-K.B and G.S.S designed and performed the cell biology experiments. F.U, X.L, T.K, and E.E.D generated, performed, and supervised analysis on the slf2 and smc5 knockdown and knockout zebrafish. L.J.G, A.G and S.S.J designed and generated the SLF2 CRISPR knockout constructs and U-2 OS cell lines. A.W.O carried out structural modelling of patient-associated mutations in SMC5. T.N. and N.Matsumoto, designed and generated aid-tagged SLF2 degron cell lines. B.I, G.A.M-M, S.C, C.G.M, D.P, M.A.S, N.N, Z.Y, M.D, A.K, P.V, A-M.J, S.A.S, C.G-J, K.W.B, A.P.A.S, M.K, D.J, Y.U, Y.O, A.M, H.O, Z.A, J.A, C.T.R.M.S, A.M.R.T, A.P.J and C.Le C provided patient samples, performed next-generation sequencing, carried out bioinformatic analysis of next-generation sequencing data and performed other molecular genetic experiments. J.J.R,
A.M.R.T, N.M, A-K.B, A.P.J, E.E.D. and G.S.S wrote the manuscript. G.S.S. planned and supervised the study.

Competing Financial Interests

The authors declare no competing financial interests.

Figure Legends

Figure 1: SLF2 and SMC5 variants cause severe microcephaly and short stature
a Table listing biallelic SLF2 and SMC5 variants in 11 individuals. ss, splice site created or destroyed by variant. ' - ' denotes that the allele variant was not present in the gnomAD database. Scores predicting the pathogenicity of the identified missense variants in SLF2 and SMC5 were generated using Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/). NA; Not applicable. b Length and head circumference (occipital frontal circumference; OFC) at birth and at the age of last exam as z-scores (s.d. from population mean for age and sex; SD). Dashed line at -3 SD indicates cut-off for normal population distribution. Orange values indicate SMC5 patients and blue values indicate SLF2 patients. c Schematic of full length WT SLF2 protein and SLF2 patient variants. APIM, atypical PCNA binding motif. SMC, SMC5/6 binding region. SLF1, SLF1 binding region. d Schematic of full length WT SMC5 protein and SMC5 patient variants. CC, coiled-coil region.

Figure 2: Impact of patient associated variants on the stability of SLF2 and SMC5 protein and the integrity of the SMC5/6 complex
a Representative immunoblot analysis of cell extracts from lymphoblastoid (LCL) cell lines derived from patients with variants in SLF2. WT-AH and WT-LQ (WT; wild type) indicate unrelated heathy individuals. b Representative immunoblot analysis of cell extracts from lymphoblastoid (LCL) cell lines derived from patients with variants in SMC5. WT-SW and WT-WCS indicate unrelated heathy individuals. ce \& Whole cell extracts prepared from WT cell lines, SLF2 patient LCLs (c) or SMC5 patient LCLs (d) were subjected to immunoprecipitation with the indicated antibodies, and inputs and immunoprecipitates (IP) were analysed by immunoblotting (IB). e U-2 OS cells expressing Flag-SLF2 were transfected with WT or mutant GFP-SMC5. GFP-SMC5 was precipitated from cell extracts using GFP-Trap beads and coprecipitated proteins were detected using immunoblotting with the indicated antibodies. * represents a cross-reaction of the NSMCE2 antibody to GFP. f Whole cell extracts prepared from WT cell lines or SMC5 patient LCLs were subjected to immunoprecipitation with the indicated antibody, and inputs and immunoprecipitates were analysed by immunoblotting. Immunoblotting and immunoprecipitation experiments in panels a, b, c, d, and f are representative of two independent experiments with similar results. Panel e is representative of three independent experiments with similar results.

Figure 3: Loss of sIf2 and smc5 in zebrafish give rise to microcephaly and aberrant craniofacial patterning
a Top: Representative lateral bright field images acquired at 3 days post-fertilization (dpf); white dashed shape depicts head size measured. Bottom: Representative ventral images of GFP signal from the anterior region of -1.4col1a1: egfp transgenic reporter larvae at 3 dpf . The white dashed lines show the ceratohyal angle. b Quantification of lateral head size measurements. Larvae were injected with two independent sgRNAs targeting slf2 with or without Cas9; $n=3$ independent experiments (left to right; 56, 37, 37, 36, 36 larvae/batch). c Quantification of the ceratohyal angle. Larvae were injected with two independent $s l f 2$ sgRNAs: $n=3$ independent experiments (left to right; 39, 42, 30, 20, 44 larvae/batch). d Top: Representative lateral bright field images at 3 dpf. Bottom: Representative ventral images of GFP signal in the anterior region of $-1.4 c o l 1 a 1$:egfp smc5 sgRNA1 transgenic larvae at 3 dpf . e Quantification of lateral head size measurements in 3 dpf larvae (as shown in panel A); $n=3$ independent experiments (left to right; $50,50,52,46,53,38$ larvae/batch). The chart shows two independent experiments for sgRNA1 and sgRNA2 with a vertical line grouping independent controls with test conditions. f Quantification of the ceratohyal angle. Larvae were injected with two independent smc5 sgRNAs: $\mathrm{n}=3$ independent experiments (left to right; 34, 53, 37, 62, 28, 48 larvae/batch). The chart shows two independent experiments for sgRNA1 and sgRNA2 with a vertical line grouping independent controls with test conditions. g Left: Representative lateral bright field images of WT control and slf2-/ mutants at 3 dpf. Right: Quantification of lateral head size measurements in 3 dpf WT control and slf2-- mutant larvae (as shown in panel a); $\mathrm{n}=3$ independent experiments (left to right; 10, 12, 12 larvae/batch). In (a \& b): (top left) white dashed shape depicts head size measured; (bottom left) white dashed lines show the ceratohyal angle measured. Abbreviations: MK, Meckel's cartilage; CH, ceratohyal cartilage (indicated with arrowheads, respectively); and CB , ceratobranchial arches (asterisks). Scale bars represent $300 \mu \mathrm{~m}$, with equivalent sizing across panels. Error bars represent standard deviation of the mean. Statistical differences were determined with an unpaired Student's t test (two sided).

Figure 4: Loss of slf2 and smc5 induces apoptosis and altered cell cycle progression in zebrafish larvae
a Representative dorsal inverted fluorescent images showing TUNEL positive cells in control and slf2 F0 mutants at 2 dpf (left two panels), and control and smc5 F0 mutants at 3 dpf (right two panels). The blue dashed line indicates the region of interest (ROI) quantified. Embryos of the same developmental stage and similar magnification were evaluated for all s/f2 and smc5 conditions. b Left: Quantification of TUNEL positive cells in the ROI of control and slf2 F0 mutants at 2 dpf shown in panel a (left to right; 27, 23, 19, 29, 30 embryos/condition were analysed from 3 independent experiments). Right: Quantification of TUNEL positive cells in control and smc5 F0 mutants at 3 dpf in the ROI as shown in panel a (left to right; 37, 27, 22, 25, 23, 23 embryos/condition were analysed from 3 independent experiments). The chart shows two independent experiments for sgRNA1 and sgRNA2 with a vertical line grouping independent controls with test conditions. c Representative dorsal inverted fluorescent images showing phospho-histone $\mathrm{H} 3(\mathrm{pHH} 3)$ positive cells in control and slf2 F0 mutants at 2 dpf (left two panels), and control and slf2 F0 mutants at 3 dpf (right two panels). Embryos of the same developmental stage and similar magnification were evaluated for all slf2 and smc5 conditions. d Left: Quantification of pHH 3 positive cells of control and slf2 F0 mutants at 2 dpf in the ROI as shown in panel a (left to right; 21, 24, 22, 24, 26 embryos/condition were analysed from 3 independent experiments). Right: Quantification of pHH 3 positive cells in the ROI in control and smc5 F0 mutants at 3 dpf as shown in panel a (left to right; 25, 23, 26 embryos/condition were analysed from 3 independent experiments). For all panels: Statistical differences were determined with an unpaired Student's t-test (two sided). Error bars represent standard deviation of the mean. Scale bars, $30 \mu \mathrm{~m}$ with equivalent sizing across panels.

Figure 5: Patient-derived cell lines from individuals with bi-allelic SLF2 or SMC5 variants exhibit increased levels of spontaneous replication fork instability a Top: Schematic representation for DNA fibre analysis in untreated cells. The indicated cell lines were pulse-labelled with CIdU for 20 min , then pulse-labelled with IdU for 20 min . Bottom: DNA fibre analysis of SLF2 patient-derived LCLs or LCLs from a WT individual. The percentage of ongoing forks (left) or stalled forks (right) was quantified. $\mathrm{n}=4$ independent experiments. A minimum of 1,500 fork structures were counted. b DNA fibre analysis of SMC5 patient-derived LCLs or WT LCLs. Quantification of the levels of ongoing forks (left) or stalled forks (right). $\mathrm{n}=4$ independent experiments. A minimum of 750 fork structures were counted. c \& d Quantification of replication fork asymmetry of WT, SLF2 patient
(c) or SMC5 patient LCLs (d). $\mathrm{n}=4$ independent experiments. A minimum of 75 fork structures were counted. Red lines denote median values. A Mann-Whitney rank sum test was performed for statistical analysis. Replication fork asymmetry represents the ratio of the left to right fork-track lengths of bidirectional replication forks. e \& f DNA fibre analysis of SLF2 (e) and SMC5 (f) mutant fibroblast cell lines infected with lentiviruses encoding WT SLF2, WT SMC5, or an empty vector. The percentage of ongoing forks (left) or stalled forks (right) in untreated cells was quantified. A minimum of 350 fork structures in total were counted over 3 independent experiments. g DNA fibre analysis of U-2-OS SLF2 CRISPR hypomorphic (HM) cells infected with lentiviruses encoding WT SLF2 or an empty vector. The percentage of stalled forks in untreated cells was quantified. A minimum of 1,000 fork structures in total were counted over 3 independent experiments. For panels a, b, e, f and g; a Student's t-test (two-sided, equal variance) was performed for statistical analysis and error bars denote SEM.

Figure 6: SLF2 and SMC5 patient cells exhibit S-phase associated DNA damage
a Percentage of cells positive for EdU staining with >10 53BP1 foci in SLF2 and SMC5 mutant fibroblast cell lines infected with lentiviruses encoding WT SLF2, WT SMC5, or an empty vector. A minimum of 900 EdU positive cells across 3 independent experiments were counted. b SLF2 and SMC5 patient fibroblast cell lines were pulsed with $10 \mu \mathrm{M}$ EdU for 45 min , fixed, and mitotic DNA synthesis was visualised by mitotic EdU incorporation following labelling with click chemistry. The percentage of mitotic cells with EdU foci was quantified. A minimum of 300 mitotic cells were counted. $\mathrm{n}=3$ independent experiments. c Immunofluorescent microscopy analysis to quantify the percentage of G1-phase cells (CENPF negative cells) with >353BP1 bodies in WT SLF2, WT SMC5, or an empty vector expressing SLF2 and SMC5 patient fibroblasts. $\mathrm{n}=3$ independent experiments. A minimum of 750 G 1 -phase cells were counted. \mathbf{d} Levels of micronuclei in cells from (c). $n=3$ independent experiments. A minimum of 2,500 cells were counted. e Levels of micronuclei in U-2 OS SLF2 CRISPR HM cells infected with lentiviruses encoding WT SLF2 or an empty vector. $n=3$ independent experiments. A minimum of 1,700 cells were counted. f \& \mathbf{g} Quantification of the average number of chromosomal aberrations per metaphase (which includes chromatid/chromosome gaps, breaks, fragments and chromosomes radials) in WT, SLF2 patient (f), or SMC5 patient LCLs (g). $\mathrm{n}=3$ independent experiments. A minimum of 140 metaphases were counted. \mathbf{h} Average number of chromosomal aberrations per metaphase (chromatid/chromosome gaps, breaks, fragments and chromosome radials) in SLF2 and SMC5 mutant
fibroblast cell lines infected with lentiviruses encoding WT SLF2, WT SMC5, or an empty vector was quantified. $\mathrm{n}=3$ independent experiments. A minimum of 90 metaphases were counted. i Average number of chromosomal aberrations (chromatid/chromosome gaps, breaks, fragments and chromosome radials) per metaphase in U-2 OS SLF2 CRISPR HM cell lines expressing either WT SLF2 or an empty vector. $\mathrm{n}=3$ independent experiments. A minimum of 100 metaphases were counted. In all cases, a Student's t -test (two-sided, equal variance) was performed for statistical analysis and error bars denote SEM.

Figure 7: SLF2 and SMC5 patient cells exhibit mosaic variegated hyperploidy, mitotic abnormalities and sister chromatid cohesion defects
a Quantification of the numbers of chromosomes per metaphase in peripheral blood lymphocytes from SLF2 or SMC5 patients, or an unrelated WT individual. 200 metaphases were counted in total from 2 independent blood samples. b Average number of mitotic cells with mis-segregated lagging chromosomes in SLF2 and SMC5 mutant fibroblast cell lines infected with lentiviruses encoding WT SLF2, WT SMC5, or an empty vector. $\mathrm{n}=3$ independent experiments for SLF2-P1, SMC5-P7 and SMC5P8, and $n=4$ independent experiments for SLF2-P2. A minimum of 250 mitotic cells were counted. \mathbf{c} Representative images of mitotic cells from (b) with lagging chromosomes (scale bar: $10 \mu \mathrm{M}$). d Average number of mitotic cells with mis-segregated lagging chromosomes in U-2 OS SLF2 CRISPR HM cells infected with lentiviruses encoding WT SLF2 or an empty vector. $\mathrm{n}=3$ independent experiments. A minimum of 190 mitotic cells were counted. e Left: percentage of metaphases with rail road chromosomes in peripheral blood lymphocytes from SLF2 or SMC5 patients, or an unrelated WT individual. A minimum of 380 metaphases were counted in total from 2 independent blood samples. Right: Representative images of metaphases (scale bar: $10 \mu \mathrm{M}$). f Percentage of metaphases with premature chromatid separation following 4 h treatment with $25 \mu \mathrm{M}$ MG132 in SLF2 and SMC5 patient LCLs. $\mathrm{n}=4$ independent experiments. 200 total metaphases were counted. \mathbf{g} Percentage of $\mathrm{S} / \mathrm{G} 2$ cells (CENPF positive cells) with >2 centrosomes with or without 24 h exposure to 250 nM APH. $\mathrm{n}=3$ independent experiments. A minimum of 900 CENPF positive cells were counted. h Percentage of mitotic cells in SLF2 and SMC5 mutant LCLs with multi-polar spindles in untreated cells and cells exposed to 250 nM APH for 24 h . A minimum of 300 mitotic cells were counted over 3 independent experiments. I The percentage of G1-phase cells (CENPF negative cells) with >553BP1 bodies in SLF2
and SMC5 mutant fibroblast cell lines, with or without 24 h exposure to 500 nM APH. $\mathrm{n}=4$ independent experiments. A minimum of 390 G1-phase cells were counted. In all cases, a Student's t-test (twosided, equal variance) statistical test was performed and error bars denote SEM.

Figure 8: Variants in the RAD18-SLF1/2-SMC5/6 complex compromise the ability of cells to replicate in the presence of stabilised G4 quadruplex structures.
a Left: Average number of segmented chromosomes per metaphase in peripheral blood lymphocytes (PBLs) from SLF2 or SMC5 patients, or an unrelated WT individual. 250 total metaphases were counted from 2 independent blood samples. Middle: Representative images of 'type 1' and 'type 2' segmented chromosomes. Right: Representative image of a metaphase exhibiting segmented chromosomes from SLF2-P3 PBLs (scale bar: $10 \mu \mathrm{M}$). b Representative image of FISH with a centromere-specific probe showing di-centric chromosomes in a metaphase prepared from SLF2-P3 PBLs (scale bar: $10 \mu \mathrm{M}$). c Average number of sister chromatid exchanges in metaphase spreads from SLF2 and SMC5 patientderived LCLs. $\mathrm{n}=3$ independent experiments. A minimum of 100 metaphases were counted. d Quantification of the IdU:CldU track length ratio in untreated and CX451-treated SLF2 and SMC5 patient fibroblast cells. Cell lines were pulse-labelled first with CldU for 30 min , followed by IdU, with or without 250 nM CX5461, for 30 min . $\mathrm{n}=3$ independent experiments. A minimum of 250 ongoing fork structures were counted. e Average number of chromosomal aberrations (chromatid/chromosome gaps, breaks, fragments and chromosome radials) per metaphase in SLF2 and SMC5 patient-derived LCLs with and without 24 h exposure to 250 nM CX5461. $\mathrm{n}=5$ independent experiments. A minimum of 350 metaphases were counted. Student's t-test (two-sided, equal variance) was performed. Error bars denote SEM. f LCL proliferation assay. WT and SLF2 and SMC5 patient-derived LCLs were cultured in increasing concentrations of CX5461 for the time untreated cells took to undergo three population doublings. Cell viability following CX5461 treatment was calculated as a percentage of the number of untreated cells. $\mathrm{n}=4$ independent experiments. Error bars denote SEM. A two-way ANOVA statistical test was performed. \mathbf{g} Quantification of IdU:CIdU track length ratio in untreated, pyridostatin-, etoposideand BMH21-treated SLF2 and SMC5 mutant fibroblast cells. Cell lines were pulse-labelled first with CldU for 30 min , followed by IdU with or without $1 \mu \mathrm{M}$ pyridostatin, 50 nM etoposide or $1 \mu \mathrm{M}$ BMH21, for 30 min . $\mathrm{n}=3$ independent experiments. A minimum of 150 ongoing forks were counted. For panels c, d and g , red lines denote median values, and a Mann-Whitney rank sum statistical test was performed.

Figure 1
a

d

Figure 2

C
d

f
$\operatorname{lgG} \quad \alpha$-NSMCE 2
3% Input

Input

	-	-28

\qquad

$\stackrel{\mathrm{IP}}{\mathrm{IB}}$	3\% Input				$\underline{\lg G}$		RAD	
	$\begin{aligned} & \frac{T}{4} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & \frac{5}{9} \\ & \frac{5}{3} \end{aligned}$	$\begin{aligned} & \stackrel{\varrho}{\stackrel{N}{N}} \\ & \stackrel{\sim}{\omega} \end{aligned}$	$\begin{aligned} & \bar{\downarrow} \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\sim}{\omega} \end{aligned}$	$\begin{aligned} & \frac{T}{4} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & \frac{1}{1} \\ & \frac{1}{3} \end{aligned}$	$\begin{aligned} & \text { ๗ } \\ & \stackrel{\sim}{亡} \\ & \stackrel{\omega}{\omega} \end{aligned}$	J N N゙ ¢
SMC6	$\longrightarrow \longrightarrow$					\square		
			RAD	-				

Figure 3

g

Figure 4

b

Figure 5

b

ㅁ WT-SWSMC5-P7ㅁMC5-P8ㅁ SMC5-P9-1ㅁATR-Seckel

Bi-directional forks
c

d

Figure 6

C

e
g

$\square+$ Vector
$\square+$ WT SM

- + Vector
- + WT SMC5

$$
\begin{array}{ll}
\mathbf{d} & \mathbf{a}+\text { Vector } \\
& \mathbf{a}+\text { WT SLF2 }
\end{array}
$$

$$
0.15 \quad \mathrm{P}=0.03
$$

$\begin{array}{ll} & \square+\text { Vector } \\ \\ \square+\text { WT SMC5 }\end{array}$

Untreated

h
 Average number of chromosome
 1.5
$1.0-$

$0.5-$

+ Vector
i
- + Vector
- + WT SMC5
- + WT SLF2

SMC5-P7 SMC5-P8

Figure 7

b $\quad \begin{array}{ll}\mathbf{a}+\text { Vector } \\ & \square+\text { WT SLF2 }\end{array}$
$\square+$ Vector
$\square+$ WT SMC5
d
$\square+$ Vector
$\square+$ WT SLF2

\square
\gg
0

\% S/G2 cells with >2 centrosomes

0061
f
i
$\checkmark P=0.022$

$$
\begin{aligned}
& \text { SLF2-P1 + Vector } \\
& \text { 나2-P1 + SLF2 } \\
& \text { SMC5-P8 + Vector }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SMC5-P8 + Vector } \\
& \text { SMC5-P8 + SMC5 }
\end{aligned}
$$

$$
\checkmark P=0.0106
$$

\% of G1 cells with >5 53BP1 foci

Figure 8

C

d
Untreated

f

segmented chromosomes
b
Type 2 'dicentric
chromosome'

e

g

Untreated
Pyridostatin
Etoposide
BMH21

Supplementary Figure 1

SMC5	Human Chimpanzee Dog Mouse Chicken Zebrafish Drosophila S.Cerevisiae S. Pombe
	Human Chimpanzee Dog Mouse Chicken Zebrafish Drosophila S.Cerevisiae S. Pombe

p. (His990Asp)	
SSMQCAGEVDLHTENEEDYDKYGIRTRVKERSSTQLHELTPHHQSGGERSVSTMLYLMAL	1007
SSMQCAGEVDLHTENEEDYDKYGIRIRVKERSSTQLHELTPHHQSGGERSVSTMLYLMAL	1007
SSMQCAGEVDLHTENEEDYDKYGIRIRVKERSSTQLHELTPHHQSGGERSVSTMLYLMAL	1011
SSMQCAGEVDLHTENEEDYDKYGIRIRVKERSSTQLHELTPHHQSGGERSVSTMLYLMAL	1007
SSMESVGEVDLHVENEEEYDKYGIRIRVKEHNFTDLHELTPYHQSGGEKSVSTVLYLMAL	971
QSMQCAGEVDLHSENEEEYDKYGIRIQVQERRNTRMHELTPHHQSGGERSVTTMLYLMSL	982
ESIEYVGEVVLSKTDKYDFDSYGIQIMVQFRRGLQLQPLDKFIQSGGERAVSIAIYSLSI	955
NNVGSAGAVRLEKP--KDYAEWKIEIMVKERDNAPLKKLDSHTQSGGERAVSTVLYMIAL	1002
SGMGYAGEVRIGKS--DDYDKWYIDILVEFREEEGLQKITGQRQSGGERSVSTIMYLLSI	982
p. (Arg372del)	
IERKD--KHIEELQQALIVKQNEEL-D--RQRRI-GNTRKMIEDLQNELKTTEN	392
IERKD--KHIEELQQALIVKQNEEL-D--RQRRI-GNTRKMIEDLQNELKTTEN-	392
IERKD--KQIEELQQALTVKQNEEH-D--RQRRI-SNTRKMIEDLQNELKTTEN------	396
IERKD--RQIKELQQALTVKQNEEL-D--RQKRI-SNTRKMIEDLQSELKTAEN-	392
LEMKD--KQISEINQALRMKKDEEV-D--RKKKI-LSAYKMIDEWNNELNTVTD-	371
LELKN--KEVDDIKQDMSLKQTEEA-D--RQKRI-GHTQLMIRDLQKELQNMGT	381
-AAID--GKMDSLKQGIYQKK----------------YELEQNIKKSRRTATE------	336
-----IFEKLNTIRDEVIKKKNQNEYYRGRTKKLQATIISTKEDFLRSQEILAQT--HLP	393
LRARASFSNFMENEKKLYEKVN-------TNRTLLRNANLTLNEAQQSVKSLTERQGPRP	362

Supplementary Figure 2

a

b
WT SLF2

p.(Arg1110Arg Δ exon17) SLF2

Exon $16 \mid$ Exon 18
ATTTAGAACTTGAAAAGCAGAAACACTTTGTGCTACTCTG

c

Supplementary Figure 3

a

Human pooled cDNA

b \quad SLF2

Variant c.3486G>C, p. (Q1162H)
SpliceSiteFinder 0-100 MaxEntScan 0-12 NNSPLICE 0-1
Human Splicing Finder $0-100$
c. 3486 C CCAGAACTGTCGGCCTACTCACgtgtcattttgttatacaatttcatg SpliceSiteFinder 0-100 MaxEntScan 0-12 NNSPLICE 0-1

Human Splicing Finder 0-100

Human adult tissues

Patient

Patient			
	Sample 1		Control

Supplementary Figure 4

Supplementary Figure 6

Hs.SMC5 (AlphaFold)

b

Analysis Program *	$\Delta \Delta \mathrm{G}\left(\mathrm{kcal} . \mathrm{mol}^{-1}\right)$	Predicted Effect
DynaMut	0.587	Stabilising
mCSM	0.342	Stabilising
DUET	0.368	Stabilising
SDM	-0.200	Destabilising
EnCOM	0.164	Destabilising
Analysis Program	$\Delta \Delta$ SVib (kcal.mol $\left.^{-1} . \mathrm{K}^{-1}\right)$	Predicted Effect
ENCoM	-2.05	Decrease of molecule flexibility

Supplementary Figure 7

b

C
PAM
sgRNA1
Control facgacchcgtgttgatattcafgcchcctccagctcttctatattganctcgectccafagtttatcagacgti

sgRNA2 PAM
Control
AAGTCCTGAGAGGCGCARTTCACTCTTATTCCAGCAGAGFCCGAGGAACTCATCCGGGCARTTCACCCAC
FO mutants
f AAGTCCTGAGAGGCGCAATTCACTCTTATTCCAGCAG:A::: :GG:AACTCATCCGGGCAATTCACCCAC ARGTCCTGAGAGGCGCARTTCACTCTTATTCCAGCAG:A: : GAGGARCTCATCCGGGCAATTCACCCAC GAGTCATTAGGGGCGCAACAAACACACACTCACTCAC:A: : CACCA:CACATGAACACAGATGAAGAAC

d

c.515-522del p.(Ser172_Ser174fs191*)

Control
 igCCACGTGTTGATATTCARGCCACCT: :: :: :: : :TCTATATTGAACTCGCCTCCARAG

e

sgRNA1 sgRNA2 e3i3 MO
 202122

g

h

\qquad sgRNA2 PAM
Control TGGGCCTGGCTGGAAAAACATCTGTCCTGGGCCGAGGAGACARGGTGAGACTGTCTTA:: AATCATCACCGAGATTARTT
F0 mutants $\left\{\begin{array}{l}\text { TGGGCCTGGCTGGAAAAACATCTGTCCTGGG: :GÄ:GAAAGGTG:GA:GG:A:G: :GAGGAGAAAAGGTGAGACTGTCTTAAAT:CATCACCGAGATTAATT } \\ \text { TGGGCCTGGCTGGAAAAACATCTGTCCTGGG: :GA:GAAAGGT:G:G:A:G:GAG:GAGGAGAAAAGGTGAGACTGTCTTAAAT:CATCACCGAGATTAATT }\end{array}\right.$ TGGGCCTGGCTGGAAAAACATCTGTCCTGGC::GC:TTTCCG: :AG::G:C:G:CC:AGGAGAAAAGGTGAGACTGTCTTAAAT:CATCACCGAGATTAATT

Supplementary Figure 8

a

b

C
e11i11 MO
Control

Exon 10
Exon 11 del 103 bp
Exon 12
d
eЗi3 MO
Control TCTGTCCTGGGCCGAGGAGACARGGTTGGTCTGTATGTGARGAGAGGGTGTCAARGAGGCTCAGTTGAAATAGAGCTGTACAGGACACGTGGAAACL 9 ng MO TCTGTCCTGGGCCGAGGAGACARG:: GTACAGGACACGTGGARACG

g
h

0

Supplementary Figure 9

Control

slf2 MO 6 ng

d

slf2 $\mathrm{MO}+\mathrm{WT}$ mRNA

smc5 MO+WT mRNA

Supplementary Figure 10

c

\mathbf{g}

b

d

f
h

Supplementary Figure 11

C

d

Untreated

Supplementary Figure 12

a

 sgRNA 2
 GAAGATATATCCAAGGAACCGAGTGATGAAACTGATGGCTCTTCTGCAGGCTTGGCACCTTCAAATTCTGGCAATTCTGG СТТСТАТАТАGGTTCCTTGGCTCACTACTTTGACTACCGAGAAGACGTCCGAACCGTGGAAGTTTAAGACCGTTAAGACC sgRNA 1

b

Clone \#	Mutation
Cl. 1.	c.1192_1210dupGATGAAACTGATGGCTCTT,

C

Supplementary Figure 13

e

f 50ng/ml MMC

SMC1
S966-P
SMC1

Supplementary Figure 14
a

b

c

d

e

Chromosome radials

Supplementary Figure 15

Untreated
MMC

$$
\begin{aligned}
& \text { ㅁ WT-GS } \\
& \text { ㄴT-AH } \\
& \text { ㄴ SLF1-P1 } \\
& \text { SLF2-P2 } \\
& \text { ㅁTR-Seckel }
\end{aligned}
$$

C

d
DAPI 53BP1 CENPA

SLF2-P3

SLF2-P1

SMC5-P7

SLF2-P3

SMC5-P7

Supplementary Figure 18

SMC5-P7

SLF2-P1

SMC5-P7

SMC5-P7

SLF2-P3

SLF2-P2

SLF2-P2

c
b

d

a

c

Supplementary Figure Legends

Supplementary Figure 1: Conservation of SLF2 and SMC5 amino acids mutated in patients

a Amino acid alignment of SLF2 protein from different species showing the degree of evolutionary conservation of disease causing SLF2 point variants, generated using Clustal Omega. Blue arrows indicate the missense variants present in SLF2-P2 (p.GIn1162His) and SLF2-P4-1 and SLF2-P4-2 (p.Asn861lle). b Amino acid alignment of SMC5 protein from different species, generated using Clustal Omega, showing the degree of evolutionary conservation of the disease causing SMC5 point variants p.(Arg372del), present in SMC5-P7, and p.(His990Asp), present in SMC5-P8, SMC5-P9-1 and SMC5-P9-2. Blue arrows indicate location of the variants.

Supplementary Figure 2: Analysis of SLF2 mRNA in SLF2-P2, SLF2-P3 and SLF2-P4-1

a PCR amplification of SLF2 from cDNA derived from heathy normal WT individuals or SLF2 patients SLF2-P4-1 and SLF2-P3. b Chromatograms showing the skipping of exon 17 in the p.(Arg1110ArgDexon17) variant from patient SLF2-P3. c A fragment of SLF2 transcript (NM_018121.4) was amplified by RT-PCR from whole blood-derived mRNA from SLF2 patient SLF2-P2, as well as an age and sex matched control sample.

Supplementary Figure 3: Analysis of SLF2 mRNA in SLF2-P2

a Top: Schematic of the two longest annotated SLF2 transcripts, NM_018121.4 and NM_001136123.2 containing 20 and 19 exons, respectively. Black arrows indicate position of primers used for amplification of SLF2. Variant c.3486G>C, (p.Gln1162His; red arrow) affects the last nucleotide of NM_018121 exon 19 (splice donor). Bottom: Enlarged view of the 3' terminal regions of the NM_018121 and NM_001136123 transcripts. Variant c.3486G>C, (p.Gln1162His) is indicated as a red arrow. Blue arrowhead shows stop codon used by either NM_018121 or NM_001136123 transcripts. Red dashed lines indicate identical sequences between NM_018121 and NM_001136123 transcripts. b Bioinformatic predictions indicate disrupted splicing at the exon 19 donor site (NM_018121) by the c.3486G>C, (p.Gln1162His) variant. MaxEntScan, NNSPLICE, Human Splicing Finder have been used with Alamut software to examine the probability of splicing through a donor (top, delineated by red box, labelled 5') or acceptor paradigm (bottom, labelled 3'). Range of possible values is indicated. Values obtained with each tool are indicated as black boxes. Variant c.3486G>C, p.(Gln1162His), is indicated
in red. c RT-PCR on pooled cDNA from healthy human tissues using isoform-specific primers. Arrows show the expected size for NM_001136123 (primers P1 and P3), NM_018121 (primers P1 and P2) and β-actin. d RT-PCR of NM_018121 using cDNA derived from eight different adult tissues indicates ubiquitous expression using primers P1 and P2 (Supplementary Table S14). e RT-PCR on patient or control cDNA obtained from whole blood extracts indicates an isoform-specific splice defect leading to disruption of NM_018121. Primers specifically amplify NM_018121 (P6 and P8, T1, PCR3), NM_001136123 (P6 and P7, T2, PCR2) or both NM_018121 and NM_001136123 (P4 and P5, T1+T2, PCR1). Black arrows indicate result for transcript NM_018121, absent in the affected individual although present in control sample. F Representative immunoblot analysis of cell extracts from U-2 OS cells transiently transfected with constructs expressing either WT SLF2 or the patient associated SLF2 variant p.(Gln1162His) tagged with GFP. SLF2 constructs were mixed with an equal amount of mCherry expressing vector as a transfection control. Experiments in panels $\mathrm{c}, \mathrm{d}, \mathrm{e}$ and f are representative of three independent experiments with similar results.

Supplementary Figure 4: Analysis of RAD18-SLF1/2-SMC5/6 complex interactions and recruitment to DNA damage

$\mathbf{a} \& \mathbf{b}$ Co-immunoprecipitation of SLF2 deletion mutant interacting proteins with SLF1 and RAD18. (left) Schematic of SLF2 deletion mutants. (right) U-2 OS cells transfected with SLF2 deletion constructs were subject to HA-streptavidin pulldown (DP) and immunoblotted with the indicated antibodies to determine binding of GFP-SLF1 and RAD18. c Co-immunoprecipitation of SLF2 minimal binding region (MBR) interacting proteins. (left) Schematic of SLF2 MBR constructs. (right) U-2 OS cells transfected with SLF2 MBR constructs were subject to HA-streptavidin pulldown and immunoblotted with the indicated antibodies. d Co-immunoprecipitation of SLF2 deletion mutant interacting proteins as in (a) with SMC6 and RAD18. e Representative images of U-2 OS cells transiently transfected with WT or mutant GFP-SLF2 constructs after laser micro-irradiation. f Representative images of U-2 OS cells transiently transfected with WT or mutant GFP-SMC5 constructs after laser micro-irradiation. Note that nuclear GFP signal is lost from p.(Arg425Ter) with pre-extraction. Cells in (e \& f) were recovered for 1 hour post irradiation and CSK pre-extracted prior to fixation, staining and imaging (scale bar $=20 \mu \mathrm{M}$). Experiments in panels a, b, c, d, e and f are representative of three independent experiments with similar results.

Supplementary Figure 5: Structural modelling of the SMC5 p.(Del372Arg) mutation.

(Left) Secondary structure model showing selected amino acid side chains from the X-ray crystal structure of a short section of Saccharomyces cerevisiae Smc5 (PDB: 3HTK) in complex with Nse2 (grey surface). An AlphaFold model for the relevant section of the Smc5 arm has been structurally superposed (AF-Q08204-F1) to extend the two helices towards the hinge (as this region is absent from the crystal structure). (Right) Secondary structure model showing the equivalent region from an AlphaFold model of human SMC5 (AF-Q8IY18-F1). Arg372 is located within a small, charged motif (369-RQRR-372) that sits near to a region of predicted disorder in the opposing helix; a similar motif can be found in budding yeast (365-RTKK-368). A hydrophobic residue (lle744 and Leu728, in budding yeast and humans, respectively) serves to anchor the restarted (descending) helix. The directionality of each helix from the Smc5 arm (N - to C-terminus) is indicated by an arrow, heading either towards (ascending) or away (descending) from the hinge. Of note, the C-terminal tail of Nse2 emerges in close proximity to the predicted break in the descending helix.

Supplementary Figure 6: Structural modelling of the SMC5 p.(His990Asp) mutation.

a (top) Secondary structure models showing selected amino acid side chains from Pyrococcus furiosus RAD50 (Pf.Rad50) in un-liganded (left) and ATP-bound forms (right); PDB accession codes 1F2T and 1FTU respectively. The ATP-binding cassette (ABC) signature motif, containing Ser793, is additionally highlighted with carbon atoms coloured in yellow. The side chains of Phe791, Arg787 and Trp782 are repositioned as a result of ATP-binding and interaction with a second Rad50 monomer (not shown). a (bottom) Comparative view for the same region of human SMC5 (AlphaFold model, AF-Q8IY18-F1; UniProt entry SMC_HUMAN). Side chains for amino acids in equivalent positions to those shown in the top panel are shown in stick representation. His990 of human SMC5 is structurally equivalent to Phe791 of Pf.Rad50 (carbon atoms coloured green and orange respectively) but is also within hydrogen-bonding distance of the side chain of Thr987 (black dotted line). Mutation of His990 to Asp (p.His990Asp) is likely to be tolerated, without any gross effects on protein folding as no major steric clashes are predicted by the change in amino acid identity [Mutagenesis Wizard, PyMOL]. However, its introduction would affect the overall charge and electronics of the region accepting the adenine moiety of bound ATP. In addition the p.(His990Asp) mutation would affect stacking/packing interactions with the side chains of both

His984 and Phe977 (by analogy to Pf.Rad50). b Summary of prediction outcomes from the DynaMut webserver: http://biosig.unimelb.edu.au/dynamut. The SMC5 p.(His990Asp) patient mutation is predicted to generate only small increases or decreases in $\Delta \Delta G$ and thus no gross effect on the overall protein fold. A moderate decrease in molecule flexibility is predicted, but this is limited to just the loop containing the affected amino acid (see inset molecular model, region coloured in dark blue).

Supplementary Figure 7: Efficiency of reagents used to target slf2 and smc5 in zebrafish larvae.

 a Schematic of the Danio rerio slf2 genomic locus (GRCz11). Filled rectangles denote coding exons; black lines indicate introns. Target position of single guide RNAs (sgRNA) and morpholinos (MO) used are indicated with vertical arrows. b Polyacrylamide gel image showing heteroduplex analysis of PCR products amplified from genomic DNA harvested at 2 dpf from control embryos and embryos injected with slf2 sgRNAs plus Cas9 protein. Embryos revealed high mosaicism of frameshifting insertions and deletions at each respective target site (slf2 sgRNA1: 82\%; slf2 sgRNA2: 70\%). Asterisks indicate homoduplexes of WT PCR product. c Representative sequences generated from PCR products cloned into TOPO-TA vectors. Plasmids were purified from individual colonies and subjected to direct sequencing, revealing insertions and deletions in slf2 F0 mutant larvae. Protospacer adjacent motif (PAM) is shown with red dashed box. d Representative sequences confirming an 8 bp deletion in slf2-/- mutants. e qRT-PCR depicts 50\% reduction in slf2 mRNA level normalized to β-actin. F1-5' and F23' indicate two different primer sets complementary to the 5 ' and 3 ' regions of the slf2 mRNA, respectively. $\mathrm{n}=2$ independent experiments. f Schematic of the Danio rerio smc5 genomic locus (GRCz11). Filled rectangles denote coding exons; black lines denote introns. Target position of single guide (sg) RNAs and MO used are indicated with vertical arrows. g Polyacrylamide gel image showing heteroduplex analysis of PCR products amplified from genomic DNA harvested at 2 dpf from control embryos and embryos injected with smc5 sgRNA plus Cas9 protein. High mosaicism of frameshifting insertions and deletions at each respective target site is visible (smc5 sgRNA1: 92\%; smc5 sgRNA2: 80\%). Asterisks indicate homoduplexes of WT PCR product. h Representative sequences generated from PCR products (panel g) cloned into TOPO-TA vectors. Plasmids were purified from individual colonies and subjected to direct sequencing, revealing insertions and deletions in smc5 F0 mutant larvae. Protospacer adjacent motif (PAM) is shown with red dashed box. Polyacrylamide gels in panels b and g were generated for screening purposes and so are representative of one experimental repeat.
Supplementary Figure 8: Loss of slf2 and smc5 in zebrafish give rise to microcephaly and aberrant craniofacial patterning

a Agarose gel images show exon exclusion of slf2 exon 11 in morphants (MO) resulting in a 103 bp deletion (Δ) as determined by RT-PCR and sequencing. b Agarose gel images show semi-quantitative reduction of WT message in smc5 MO as determined by RT-PCR. Agarose gels in b and c are representative of one experimental repeat. c RT-PCR product sequence confirmation of exon 11 skipping in MO as determined by cloning and sequencing of the lower slf2 band in the morphant lane of (a). d RT-PCR sequence confirmation of exon 3 skipping in MO as determined by cloning and sequencing the smc5 band in the morphant lane of (b). e-h Quantification of lateral head size (e \& g) (left to right; 47, 42, 39, 37 embryos/condition were analysed from 3 independent experiments for panel e, and 27, 33, 20, 13 embryos/condition were analysed from 3 independent experiments for panel g), and ceratohyal angle measurements (f \& h) (left to right; 19, 16, 24, 13 embryos/condition were analysed from 3 independent experiments for panel f, and 17, 16, 16, 24 embryos/condition were analysed from 3 independent experiments for panel h), of larvae injected with different doses ($3 \mathrm{ng}, 6$ ng and 9 ng) of MO, or MO with co-injection of human WT SLF2 or SMC5 mRNA. Error bars represent standard deviation of the mean. Statistical differences were determined with an unpaired Student's ttest (two sided).

Supplementary Figure 9: Loss of slf2 and smc5 in zebrafish give rise to microcephaly and aberrant craniofacial patterning.

a Representative bright field lateral (top) and ventral images of the GFP signal in the anterior region of -1.4col1a1:egfp transgenic reporter larvae (bottom) showing controls, slf2 morphants (MO) and slf2 MO rescued with human WT SLF2 mRNA, respectively. b \& c Quantification of lateral head size (b) (left to right; 38, 34, 34 embryos/condition from 3 independent experiments) or ceratohyal angle measurements (c) (left to right; 27, 13, 22 embryos/condition from 3 independent experiments). d Representative bright field lateral (top) and ventral images of the GFP signal in the anterior region of 1.4col1a1:egfp transgenic reporter larvae (bottom) showing controls, smc5 MO and smc5 MO rescued with human WT SMC5 mRNA, respectively. e \& f Quantification of lateral head size (e) (left to right; 46, 45, 45 embryos/condition from 3 independent experiments) or ceratohyal angle measurements (f) (left
to right; 18, 24, 22 embryos/condition from 3 independent experiments). \mathbf{g} Left, representative lateral bright field images; and right, representative ventral GFP signal showing in the mandible of 1.4col1a1:egfp transgenic reporter larvae at 3 dpf . Images show head size (left) and craniofacial patterning (right) in controls, in smc5 MO, MO rescued with human SMC5 WT mRNA, and MO complemented with p .(His990Asp) patient variant. Left, white dashed shape depicts head size measured; right, white dashed lines show the ceratohyal angle. Abbreviations: MK, Meckel's cartilage; CH , ceratohyal cartilage (indicated with arrowheads, respectively); CB , ceratobranchial arches (asterisks); MO, morpholino. Scale bar, $300 \mu \mathrm{~m}$, with equivalent sizing across panels. \mathbf{h} \& i Quantification of lateral head size (h) (left to right; 54, 36, 39, 33, 39, 40, 34 embryos/condition from 3 independent experiments) and ceratohyal angle measurements (i) (left to right; 34, 42, 49, 32, 33, 37, 21 embryos/condition from 3 independent experiments) of larvae injected with MO alone, co-injection of MO with human WT or variant encoding mRNA; p. (Arg733GIn) is a negative control (rs59648118; 16 homozygotes in gnomAD). For all panels: Statistical differences were determined with an unpaired Student's t-test (two sided). Error bars represent standard deviation of the mean. Scale bars, $300 \mu \mathrm{~m}$ with equivalent sizing across panels.

Supplementary Figure 10: slf2 and smc5 depletion induces apoptosis and altered cell cycle progression in zebrafish larvae.

a Representative dorsal inverted fluorescent images indicating TUNEL positive cells in slf2 MO at 2 dpf. The blue dashed box indicates the region of interest (ROI). \mathbf{b} Quantification of TUNEL positive cells in controls and larvae injected with slf2 MO with or without WT mRNA (left to right; 35, 29, 28 embryos/condition from 3 independent experiments). ROI used is shown in panel (a). c Representative dorsal inverted fluorescent images indicating pHH3 positive cells in slf2 MO at 2 dpf . d Quantification of pHH 3 positive cells in larvae injected with slf2 MO with or without WT mRNA (left to right; 24, 25, 25 embryos/condition from 3 independent experiments). ROI used was the same as that shown in panel (c). e Representative dorsal inverted fluorescent images show TUNEL positive cells in smc5 MO at 3 dpf. \mathbf{f} Quantification of TUNEL positive cells in controls and larvae injected with smc5 MO with or without WT mRNA (left to right; 32, 31, 29 embryos/condition from 3 independent experiments). g Representative dorsal inverted fluorescent images indicating pHH3 positive cells in smc5 MO at 2 dpf. h Quantification of pHH3 positive cells in controls and larvae injected with smc5 MO and WT mRNA
(left to right; 24, 23, 24 embryos/condition from 3 independent experiments). In all cases, embryos of the same developmental stage and similar magnification were assessed for all slf2 or smc5 conditions. Fluorescent staining in the ROI was quantified using the ImageJ (NIH) ICTN plugin. Error bars represent standard deviation of the mean. Scale bar in panels a, c, e, g: $30 \mu \mathrm{~m}$ with equivalent sizing across panels. In all cases, statistical differences were determined with an unpaired Student's t-test (two sided).

Supplementary Figure 11: Replication fork analysis of SLF2 and SMC5 patient-derived cell lines

 a Representative immunoblot analysis of myc-SLF2 expression in SLF2 patient fibroblasts infected with lentiviruses encoding myc-tagged WT SLF2 or an empty vector. A nonspecific cross-reactive protein was used as a loading control. b Representative immunoblot analysis of SMC5 expression in SMC5 fibroblasts infected with lentiviruses encoding WT SMC5 or an empty vector. A nonspecific crossreactive protein was used as a loading control. Immunoblotting analysis in panels a and b are representative of two independent experiments with similar results. c \& d Replication fork velocity of ongoing forks in WT cells, SLF2 patient LCLs (A) or SMC5 patient LCLs (B). $\mathrm{n}=3$ independent experiments. A minimum of 430 fork structures were counted. Red lines denote median values. A MannWhitney rank sum test was performed for statistical analysis. e \& f DNA fibre analysis in untreated cells and cells exposed to replication stress in SLF2 patient-derived LCLs (e) or SMC5 patient-derived LCLs (f) was carried out. In untreated cells, the indicated cell lines were pulse-labelled with CldU for 20 min, and then pulse-labelled with IdU, for 20 min. For DNA fibres following MMC treatment, cells were incubated with $50 \mathrm{ng} / \mathrm{ml}$ MMC for 24 h prior to pulse-labelling with CIdU and IdU. For DNA fibres following hydroxyurea (HU) treatment, cells were pulsed with CldU for 20 min , exposed to 2 mM HU for 2 h and then pulsed with IdU for 20 min . The percentage of stalled forks was quantified. $\mathrm{n}=4$ independent experiments. A minimum of 650 fork structures were counted. A Student's t-test (twosided, equal variance) was performed for statistical analysis. Error bars denote SEM.
Supplementary Figure 12: Generation of U-2 OS SLF2 CRISPR hypomorphic cell lines

a Schematic of the human SLF2 genomic locus. Filled rectangles indicate coding exons; black lines denote introns. Positions of single guide RNAs (sgRNA) are highlighted by red text and the location of the protospacer adjacent motif (PAM) is indicated by blue text. b Table detailing SLF2 variants present
in U-2 OS SLF2 CRISPR HM clones cl. 1 and cl.2. c Representative immunoblot analysis of SLF2 expression in U-2 OS SLF2 CRISPR HM cell lines infected with lentiviruses encoding myc-tagged WT SLF2 or an empty vector. GAPDH was used as a loading control. d Representative immunoblot analysis of myc-SLF2 expression in U-2 OS SLF2 CRISPR HM cell lines infected with lentiviruses encoding myc-tagged WT SLF2 or an empty vector. Endogenous c-Myc was used as a loading control. Immunoblotting analysis in panels c and d are representative of two independent experiments with similar results.

Supplementary Figure 13: Analysis of the ATR-CHK1 dependent replication stress response in SLF2 and SMC5 patient-derived LCLs

$\mathbf{a} \& \mathbf{b}$ DNA fibre analysis of SLF2 (a) and SMC5 (b) patient-derived LCLs was carried out as in (Supplementary Figure 11 e \& f) and the percentage of new origins (IdU only) were quantified. A representative image is included. $\mathrm{n}=4$ independent experiments. A minimum of 650 fork structures were counted. A Student's t-test (two-sided, equal variance) was performed for statistical analysis. Error bars denote SEM. c-f Representative immunoblot analysis for the indicated proteins in whole-cell extracts from SLF2 (c \& e) or SMC5 ($\mathrm{d} \& \mathrm{f}$) patient-derived LCLs subjected to treatment with 0.5 mM HU for 2 h (c \& d) or $50 \mathrm{ng} / \mathrm{ml}$ MMC for $24 \mathrm{~h}(\mathrm{e} \& \mathrm{f})$. In all cases, immunoblotting analysis are representative of two independent experiments with similar results.

Supplementary Figure 14: Representative microscopy images of SLF2/SMC5 mutant cell lines exhibiting elevated levels of S-phase associated DNA damage

a Representative immunofluorescence microscopy images of EdU positive S-phase cells with 53BP1 foci quantified in Figure 6a. b Representative immunofluorescence microscopy images of mitotic cells with MiDAS quantified in Figure 6b. c Representative immunofluorescence microscopy images of 53BP1 bodies in CENPF negative G1 cells quantified in Figure 6c. d Representative immunofluorescence microscopy images of cells with micronuclei quantified in Figure 6d. e Representative brightfield microscopy images of different types of chromosomal aberrations quantified in Figure 6f-I, Figure 8e, Supplementary Figure S15a-b, Supplementary Figure 19c, Supplementary Figure S20c-d. In all cases, scale bars $=10 \mu \mathrm{M}$.

Supplementary Figure 15: Genome instability in SLF2/SMC5 mutant cell lines is not exacerbated by exogenous replication stress

$\mathbf{a} \& \mathbf{b}$ Quantification of the average number of chromosomal aberrations (which includes chromatid/chromosome gaps, breaks, fragments and radials) in metaphase spreads from SLF2 (a) and SMC5 (b) patient derived LCLs before treatment or following exposure to 500 nM APH or $50 \mathrm{ng} / \mathrm{ml}$ MMC for 24 h. $\mathrm{n}=3$ independent experiments. A minimum of 140 metaphases were counted. A Student's t-test (two-sided, equal variance) was performed for statistical analysis. Error bars denote SEM. c \& d Quantification of the average numbers of sister chromatid exchanges in metaphase spreads from SLF2 (c) and SMC5 (d) patient derived LCLs treated as in ($\mathrm{a} \& \mathrm{~b}$). $\mathrm{n}=3$ independent experiments. A minimum of 100 metaphases were counted. Red lines denote median values. A Mann-Whitney rank sum test was performed for statistical analysis.

Supplementary Figure 16: Levels of mosaic variegated hyperploidy in SLF2/SMC5 mutant LCLs

 a Quantification of the number of chromosomes per metaphase in SLF2 patient-derived LCLs. $\mathrm{n}=3$ independent experiments. A total of 300 metaphases were counted. \mathbf{b} Quantification of the number of chromosomes per metaphase in SMC5 patient-derived LCLs. $\mathrm{n}=3$ independent experiments. A total of 300 metaphases were counted. c Quantification of the average number of CENPA positive and CENPA negative micronuclei in SLF2 and SMC5 mutant fibroblast cell lines infected with lentiviruses encoding WT SLF2, WT SMC5, or an empty vector. $\mathrm{n}=3$ independent experiments. A minimum of 185 micronuclei were counted. Student's t-test (two-sided, equal variance) was performed for statistical analysis. Error bars denote SEM. d Representative images of CENPA positive micronuclei. e Representative immunofluorescence microscopy images of mitotic cells from SLF2-P1 LCLs with multi-polar spindles quantified in Figure 7 h . In all cases, scale bars $=10 \mu \mathrm{M}$.
Supplementary Figure 17: Representative microscopy images of SLF2 and SMC5 patient LCLs exhibiting mosaic variegated hyperploidy and sister chromatid cohesion defects

a Representative bright field microscopy images of metaphases exhibiting mosaic variegated hyperploidy derived from peripheral blood of SLF2 and SMC5 mutant patients. b Representative bright field microscopy images of metaphases displaying railroad chromosomes derived from peripheral blood of SLF2 and SMC5 mutant patients. In all cases, scale bars $=10 \mu \mathrm{M}$.

Supplementary Figure 18: SLF2 and SMC5 patient cells exhibit a unique chromosomal breakage phenotype.

Representative bright field microscopy images of metaphases displaying segmented chromosomes derived from peripheral blood of SLF2 and SMC5 mutant patients. In all cases, scale bars $=10 \mu \mathrm{M}$.

Supplementary Figure 19: SLF2 and SMC5 patient cells exhibit increased levels of recombination intermediates

a Quantification of the percentage of S/G2 (CENPF positive) cells with >5 RAD51 foci in SLF2 and SMC5 mutant fibroblast cell lines complemented with either WT SLF2, WT SMC5, or an empty vector. A minimum of 850 CENPF positive cells in total were counted over 3 independent experiments for SLF2-P2, SMC5-P7 and SMC5-P8, and 4 independent experiments for SLF2-P1. Error bars denote standard error of the mean. For statistical analysis, a Student's t-test (two-sided, equal variance) was performed. b Representative immunofluorescence microscopy images of cells from panel a. Scale bars $=10 \mu \mathrm{M}$. c The average number of telomeric SCEs (tSCEs) per chromosome end was quantified in WT, SLF2 and SMC5 patient-derived LCLs. The red line denotes the mean. $\mathrm{n}=2$ independent experiments. d Quantification of the level of chromosomal aberrations per metaphase (chromatid/chromosome gaps, breaks, fragments and chromosome radials) in complemented SLF2 and SMC5 mutant fibroblast cell lines infected with either an empty lentiviral expression vector, or a vector expressing WT RUSA. $\mathrm{n}=3$ independent experiments. A minimum of 120 metaphases were counted. Error bars denote standard error of the mean. Student's t-test (two-sided, equal variance) was performed for statistical analysis. e Representative immunoblot analysis of HA-tagged RUSA expression in SLF2 and SMC5 mutant patient fibroblasts infected with lentiviruses encoding myctagged WT SLF2/SMC5 or an empty vector. GAPDH was used as a loading control.

Supplementary Figure 20: SLF2 and SMC5 mutant cells exhibit increased genome instability in the presence of G-quadruplex stabilising agents

a Quantification of the percentage of G1-phase (CENPF negative) cells with >10 53BP1 bodies in SLF2 and SMC5 mutant fibroblast cell lines expressing WT SLF2, WT SMC5, or an empty vector, with or without exposure to 250 nM CX 5451 for 24 h. $\mathrm{n}=4$ independent experiments. A minimum of 390 G1-
phase cells were counted. b Quantification of the average number of segmented chromosomes per metaphase in SLF2 and SMC5 patient-derived LCLs before or after exposure to 250 nM CX5461 for 24 h. $\mathrm{n}=6$ independent experiments for untreated cells and $\mathrm{n}=4$ for CX 5461 treated cells. A minimum of 350 metaphases were counted. c Quantification of the level of chromosomal aberrations (chromatid/chromosome gaps, breaks, fragments and chromosome radials) per metaphase in U-2 OS SLF2 CRISPR HM cell lines complemented with either WT SLF2 or an empty vector before or after exposure to 250 nM CX5461 or $1 \mu \mathrm{M}$ pyridostatin (PDS) for 24 h . $\mathrm{n}=3$ independent experiments. A minimum of 100 metaphases were counted. d Quantification of the average number of chromosomal aberrations (chromatid/chromosome gaps, breaks, fragments and radials) in metaphase spreads from SLF2 and SMC5 patient derived LCLs either left untreated or exposed to $1 \mu \mathrm{M}$ PDS, 50 nM etoposide (ETOP) or $1 \mu \mathrm{M} \mathrm{BMH} 21$ for $24 \mathrm{~h} . \mathrm{n}=3$ independent experiments. A minimum of 100 metaphases were counted. In all cases, a Student's t-test (two-sided, equal variance) was performed for statistical analysis. Error bars denote SEM.

Supplementary Tables:

Table S11. Primers used for SLF2/SMC5 in vivo modelling studies.

Purpose	oligo name	Sequence
slf2 sgRNA1 CRISPR/Cas9	slf2 sgRNA 1	5'-CAATATAGAAGAGCTGGAGG-3'
slf2sgRNA1 CRISPR/Cas9 efficiency	slf2 sgRNA1 PCR primer F	5'-AAATACCCATTTTTGCCAACAG-3'
slf2 sgRNA1 CRISPR/Cas9 efficiency	slf2 sgRNA1 PCR primer R	5'-AGGATGACAGTTTTGGCTTGTT-3'
slf2 sgRNA2 CRISPR/Cas9	slf2 sgRNA 2	5'-TCTTATTCCAGCAGAGACCG-3'
slf2sgRNA2 CRISPR/Cas9 efficiency	slf2 sgRNA2 PCR primer F	5'-TTCCTCACTCATCTCACAGACG-3'
slf2 sgRNA2 CRISPR/Cas9 efficiency	slf2 sgRNA2 PCR primer R	5'-CCTGGACTAGTCATCGTGTTCA-3'
slf2 MO-induced suppression	slf2 e11i11 sb MO	5'-ATGAGAAAAGTGGCTGGTATTACCT-3'
slf2 e11i11 sb MO efficiency	slf2 e11i11 PCR primer F	5'-ACAGTGAAAGTAAAGGGGAGGAC-3'
slf2 e11i11 sb MO efficiency	slf2 e11i11 PCR primer R	5'-AAAAGACTGATGAACGATGCCC-3'
smc5 sgRNA1 CRISPR/Cas9	smc5 sgRNA 1	5'-GTTGCAGGTTCACGATCGGA-3'
smc5 sgRNA1 CRISPR/Cas9 efficiency	smc5 sgRNA1 PCR primer F	5'-TGTGCTGAACATCAACCAGAG-3'
smc5 sgRNA1 CRISPR/Cas9 efficiency	smc5 sgRNA1 PCR primer R	5'-AAACAAACGACGCTTGCATA-3'
smc5 sgRNA2 CRISPR/Cas9	smc5 sgRNA 2	5'-AAAACATCTGTCCTGGGCCG-3'
smc5 sgRNA2 CRISPR/Cas9 efficiency	smc5 sgRNA2 PCR primer F	5'-CAGCACGTACGATCACTCTGA-3'
smc5 sgRNA2 CRISPR/Cas9 efficiency	smc5 sgRNA2 PCR primer R	5'-GCCAGACACAGTGGATGTGA-3'
smc5 MO-induced suppression	smc5 e3i3 sb MO	5'-TGTAAAAACACATACTTACAGCTCT-3'
smc5 e3i3 sb MO efficiency	smc5 e3i3 PCR primer F	5'-CCGGACCCAAACTGAACAT-3'
smc5 e3i3 sb MO efficiency	$\begin{aligned} & \text { smc5 e3i3 PCR } \\ & \text { primer R } \end{aligned}$	5'-TCCTCCACTGCCTTCTGACT-3'
SMC5 mutagenesis	SMC5-p.R733Q-F	TGAAGAGGAAGAGCAAAAAGCAAGTACCA
SMC5 mutagenesis	SMC5-p.R733Q-R	5'-TGGTACTTGCTTTTTGCTCTTCCTCTTCA-3'
SMC5 mutagenesis	SMC5-p.H990D-F	5'-GAATTAACTCCTCATGATCAAAGTGGAGGTGAA-3'
SMC5 mutagenesis	SMC5-p.H990D-R	5'-TTCACCTCCACTTTGATCATGAGGAGTTAATTC-3'
SMC5 mutagenesis	SMC5-p.R425*-F	5'-GAAATAATTGATAAGTGAAGAGAGAGGGAAACT-3'
SMC5 mutagenesis	SMC5-p.R425*-R	5'-AGTTTCCCTCTCTCTTCACTTATCAATTATTTC-3'
SMC5 mutagenesis	SMC5-p.R372-del-F	5'-TTGACCGACAGAGGATAGGTAATACCCGC-3'
SMC5 mutagenesis	SMC5-p.R372-del-R	5'-GCGGGTATTACCTATCCTCTGTCGGTCAA-3'
SMC5 construct sequencing	SMC5-seq1	5'-GCAAGAAGACGTCAACTCCA-3'
SMC5 construct sequencing	SMC5-seq2	5'-CGAGCAGATAAGGTTGGGTTT-3'
SMC5 construct sequencing	SMC5-seq3	5'-GGAATATGAAAATGTTCGTCAGG-3'
SMC5 construct sequencing	SMC5-seq4	5'-TGGACGATCATATTGTACGTTTT-3'
SMC5 construct sequencing	SMC5-seq5	5'-CAGCAGAAGAAAAGTATGTGGTG-3'
SMC5 construct sequencing	SMC5-seq6	5'-ACAGTGATCTCTGAGAAGAACAAA-3
SMC5 construct sequencing	SMC5-seq7	5'-GCAGTGTGCTGGTGAAGTTG-3'
SLF2 construct sequencing	SLF2-seq1	5'-AGAAGTTGGGTGCGTGGTT-3'
SLF2 construct sequencing	SLF2-seq2	5'-TTTGGCTAAATATTTGGAGGCTA-3'

SLF2 construct sequencing	SLF2-seq3	5'-TTCCCATGAATCAGAAGAGGA-3'
SLF2 construct sequencing	SLF2-seq4	5'-CACTTGGAACACGGGAAAGT-3'
SLF2 construct sequencing	SLF2-seq5	5'-GAGCAGGAGGCTTTCCTGTA-3'
SLF2 construct sequencing	SLF2-seq6	5'-ATCATCCGAAACAGCCACTT-3'
SLF2 construct sequencing	SLF2-seq7	5'-ATGCCCAGACAGAGTTCAGG-3'
SLF2 construct sequencing	SLF2-seq8	5'-TTTCCTGCCATTTTCCATGT-3'
SLF2 construct sequencing	SLF2-seq9	5'-AGTAGGCCGACAGTTCTGGA-3'
actinb2-RT-PCR	actinb2_F	5'-CCACCATGTACCCTGGCATT-3'
actinb2-RT-PCR	actinb2_R	5'-GTCACCTTCACCGTTCCAGT-3'
slf2 mRNA expression	slf2-qPCR-F1	5'-TCTCCTGCAAAAGTCCAGTTC-3'
slf2 mRNA expression	slf2-qPCR-R1	5'-GCCTCTCAGGACTTCGTCTG-3'
slf2 mRNA expression	sl/f2-qPCR-F2	5'-ATGCGTCCTTCATCTCTGCT-3'
slf2 mRNA expression	s/f2-qPCR-R2	5'-TCTCTGGGCTGAGGGTAAGA-3'
actinb2 mRNA expression	actinb2-qPCR-F	5'-TTGTTGGACGACCCAGACAT-3'
actinb2 mRNA expression	actinb2-qPCR-R	5'-TGAGGGTCAGGATACCTCTCTT-3'

Table S12. Primers used for sequencing of SLF2/SMC5

SLF2 Sequencing	Primer name	Sequence
	SLF2-760F	5'-AAGGAGCAAATGGAGCAGAGAA-3'
	SLF2-1624F	5'-TGCGCTCAGAATATGGCACT-3'
	SLF2-2556F	5'-GTCTGATGTAGCAGCTGTGTT-3',
	SLF2-2961F	5'-TGAACTCTCCAGTCATCCCCA-3'
	SLF2-1768R	5'-GGCTTTATCTGAAGGTGCTGC-3'
	SLF2-2575R	5'-ACACAGCTGCTACATCAGACA-3'
	SLF2-3437R	5'-CTGGCGACCAAGTCTTTCAC-3'
SMC5 Sequencing	Primer name	Sequence
	SMC5-300F	5'-ACCTGCTTTCATGGGACGAG-3'
	SMC5-975F	5'-AGAAAAGGCAACAGATATTAAGGAG-3'
	SMC5-1563F	5'-GGTTTTCCTCAAAGAGGTTCGTG-3'
	SMC5-1681F	5'-GTTTTCCTCAAAGAGGTTCGTG-3'
	SMC5-2188F	5'-GAGGAAGAGCGAAAAGCAAGT-3'
	SMC5-2322F	5'-TGCTTTTCGCTCTTCCTCTTCA-3'
	SMC5-2486F	5'-CCGCATCTTCACAACTCCGT-3'
	SMC5-687R	5'-GCATGAGGTCTCGAGCTGTTT-3'
	SMC5-1194R	5'-GGGCTGAAGATTCTCGCAGT-3'
	SMC5-1234R	5'-TTCTCCTCTGTCGGTCAAGC-3'
	SMC5-3178R	5’-TTTTGCAGGAGCTTTGGTGT-3'

Table S13. Primers used for the generation of SLF2 and SMC5 deletion/mutation constructs

SLF2 deletion constructs	Sequences of primer pairs
SLF2 41	5'-TCCAGCACAGTGGCGGCCGCAACAGCTCCAGAAGCCTTAG-3' and 5'-CTAAGGCTTCTGGAGCTGTTGCGGCCGCCACTGTGCTGGA-3'
SLF2 $\Delta 2$	5'-AGAAGAATGATAGAGATCGAAATTCTGGCAATTCTGGCCA-3' and 5'-TGGCCAGAATTGCCAGAATTTCGATCTCTATCATTCTTCT-3'
SLF2 43	5'-GTGATGTGTTGCGCTTAGAAAACCTAGACAGTGATGAGGA-3' and 5'-TCCTCATCACTGTCTAGGTTTTCTAAGCGCAACACATCAC-3'
SLF2 $\Delta 4$	5'-CAGGAAATTCCAATGCAGGTCTGTTTCGGATGATGTCAGT-3' and 5'-ACTGACATCATCCGAAACAGACCTGCATTGGAATTTCCTG-3'
SLF2 45	5'-AGATTTTTTTGACAACACAAAGGCAACTGAGACAGTGCCT-3' and 5'-AGGCACTGTCTCAGTTGCCTTTGTGTTGTCAAAAAAATCT-3'
SLF2 $\Delta 6$:	5'-TGGGCATAAATGAACTCTCCTAGGGGCCCGTTTAAACCCG-3' and 5'-CGGGTTTAAACGGGCCCCTAGGAGAGTTCATTTATGCCCA-3'
SLF2 47	5'-GCCGAGGCATTAAATCCCCACCTGTCCCTGTGTTAAAGTG-3' and 5'-CACTTTAACACAGGGACAGGTGGGGATTTAATGCCTCGGC-3'
SLF2 48	5'-CGTCTGCTTATCACTATGTCCCAATTTTTTCAACACTTCC-3' and 5'-GGAAGTGTTGAAAAAATTGGGACATAGTGATAAGCAGACG-3'
SLF2 $\Delta 9$	5'-GGAAAGAAAGTGAAGATTCACAGCTGGTCCCTAATTGGAC-3' and 5'-GTCCAATTAGGGACCAGCTGTGAATCTTCACTTTCTTTCC-3'
SLF2 $\Delta 10$	5'-ACAACCTCCTGTGGTTGGTATGTTCTCATTCTTTTTCTTC-3' and 5'-GAAGAAAAAGAATGAGAACATACCAACCACAGGAGGTTGT-3'
SLF2 $\Delta 11$	5'-CACTGAAAAGAAAACTAAGGTCCCCAATCAGAATTGGAGA-3' and 5'-TCTCCAATTCTGATTGGGGACCTTAGTTTTCTTTTCAGTG-3'.
MBR1	5'-GAACATGCGGCCGCTTCAATCAGTATACCTTG-3' and 5'-CGCTCTAGAGCCTAACTAACTTCACCGACTAA-3'
MBR2	5'-GAACATGCGGCCGCTTCAATCAGTATACCTTG-3' and 5'-CAGCATTCTAGACGCTAAGAATCTGGTACCCA-3'.
SLF2 and SMC5 mutant constructs	Sequences of primer pairs
SLF2 p.Ser815Ter	5'-TGTTTCGGATGATGTGAGTTCATACAGACTG-3' and 5'-CAGTCTGTATGAACTCACATCATCCGAAACA-3'
SLF2 p.Arg336Lysfs:	5'-AATTCCCTGAAAAAAAGAAAAAGGAACTCTG-3' and 5'-CAGAGTTCCTTTTTCTTTTTTTCAGGGAATT-3'
SLF2 p. \triangle Ser907Phefs	5'-TCCTGAAACCAACATTTTAAATG-3' and 5'-AAAAAATTGGCTTATAAGATGAATC-3'
SLF2 p.Asn861Ile	5'-GTGTTTTTCATTATGGGGATTGATTTTAG-3' and 5'-AGCTGCTACATCAGACAATG-3'
SLF2 . AAla1085_Arg1110 $^{\text {a }}$	5'-AAACACTTTGTGCTACTC-3' and 5'-CTGCTTTTCAAGTTCTAAATG-3'
SLF2 p.Aps783Serfs	5'-TCAGATTTTTTTGACAACAC-3' and 5'-TGTTTTTCCCGATTTAAGAATAAG-3'
SMC5 p.Arg425Ter	5'-AATTGATAAGGGAAGAGAGAGG-3' and 5'-ATTTCGCCTTCACATAATG-3'
SMC5 p. 4 Arg372	5'-GAGAATAGGTAATACCCGC-3' and 5'-TGTCGGTCAAGCTCTTCA-3'
SMC5 p.His990Asp	5'-AACTCCTCATGATCAAAGTGG-3' and 5'-AATTCATGCAGTTGAGTAC-3'

Table S14. Primers used for RT-PCR expression studies

Experiment	Primer name	Identifier	Sequence
Expression studies			
RT-PCR	SLF2_ex16_common_F	P1	GTGCAGATGAAGCCTTCTGA
RT-PCR	SLF2_1173_ex20_R	P2	GGTACCCAGAAGTCATGAAGC
RT-PCR	SLF2_1186_ex19_R	P3	TGAAGAGTGCCATTCAGCAA
RT-PCR	SLF2-E1-FOR	P4	CGCGCTGCCATCTGAGACCC
RT-PCR	SLF2-E3-REV	P5	GGACAGGCTGCTCCTGCTGC
RT-PCR	SLF2-E14-FOR	P6	GGACAGGCTGCTCCTGCTGC
RT-PCR	SLF2-I19-REV	P7	GGTGCCTGAACTCTGTCTGGGC
RT-PCR	SLF2-E20-REV	P8	TGAAGAGTGCCATTCAGCAAAACT

[^0]: 5. Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
 6. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN55455 USA
[^1]: 8. Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan
 9. Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA
 10. Universidad Autónoma de Madrid, Hospital Infantil Universitario Niño Jesús, CIBER de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III. Avenida Menéndez Pelayo, 65; 28009 Madrid, Spain
