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REVIEW ARTICLE

Pathogenicity and virulence of African trypanosomes: From laboratory models 
to clinically relevant hosts
Liam J. Morrison a, Pieter C. Steketee a, Mabel D. Tettey b, and Keith R. Matthews b

aRoslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK; bInstitute for Immunology and Infection 
Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK

ABSTRACT
African trypanosomes are vector-borne protozoa, which cause significant human and animal 
disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, 
infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of 
progression to neurological disease, caused by parasites exiting the vasculature and entering the 
brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, 
T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and 
this complexity of trypanosome and host diversity is reflected in the spectrum of severity of 
disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality 
to long-term chronic infections, and is also a main reason why designing interventions for animal 
trypanosomiasis is so challenging. In this review, we will provide an overview of the current 
understanding of trypanosome determinants of infection progression and severity, covering 
laboratory models of disease, as well as human and livestock disease. We will also highlight 
gaps in knowledge and capabilities, which represent opportunities to both further our funda
mental understanding of how trypanosomes cause disease, as well as facilitating the development 
of the novel interventions that are so badly needed to reduce the burden of disease caused by 
these important pathogens.

ARTICLE HISTORY
Received 26 August 2022  
Revised 14 November 2022  
Accepted 17 November 
2022  

KEYWORDS
Trypanosome; human 
African trypanosomiasis; 
animal African 
trypanosomiasis; 
pathogenicity; virulence

Introduction

African trypanosomes are protozoan parasites, trans
mitted either cyclically by tsetse flies or mechanically 
by other biting flies. Several species infect a range of 
mammals and cause disease, impacting upon both ani
mal and human health. Animal disease is caused by 
multiple species, with T. congolense, T. vivax and 
T. brucei the main pathogens of cattle, sheep, goats, 
equids, and wild animals in sub-Saharan Africa, 
T. simiae and T. suis infecting pigs in the same region, 
and T. brucei evansi and T. vivax infecting cattle, equids, 
camels, and Asian buffalo across North Africa, Asia 
(T. b. evansi) and South America (T. b. evansi and 
T. vivax). T. brucei equiperdum causes a venereally trans
mitted form of trypanosomiasis in horses and donkeys, 
mostly in sub-Saharan Africa. Variants of T. brucei, 
T. b. gambiense and T. b. rhodesiense, also cause 
human infections and disease in sub-Saharan Africa. 
The economic and health impact of these pathogens is 
collectively enormous, with Animal Trypanosomiasis 
(AT) remaining widespread and causing millions of 
infections and deaths per year [1–3]. There has been 
substantial progress in combating human African 

trypanosomiasis (HAT) in recent decades, in particular 
for T. b. gambiense, with an elimination program in 
place that aims to remove T. b. gambiense HAT as 
a disease of public health importance by 2030, an objec
tive that seems achievable from recent progress [4]. 
However, the methods used to control T. b. gambiense 
HAT (active case detection) will not eliminate 
T. b. rhodesiense HAT, due to the truly zoonotic nature 
and large animal reservoir of the latter pathogen [5]. 
This outline serves to illustrate the point that trypano
somiasis is caused by a wide diversity of species or 
variants – and indeed AT can be caused by concurrent 
infections of multiple species. The genetic diversity 
within this complex of organisms has begun to be 
much better understood in the post-genomic era, 
which has underlined that the species are not only 
genetically divergent, but that there is also substantial 
genetic diversity within species (e.g. T. congolense 
Savannah, Forest and Kilifi subtypes). This inevitably 
means that genetic diversity translates to phenotypic 
diversity, and this includes virulence.

What do we mean by virulence in trypanosome 
infections? Virulence can be a very loosely used term 
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in trypanosome literature, often applied to simple phe
notypes such as parasite growth rate (including 
in vitro), but it is also used to refer to more complex 
traits such as host-specific infectivity or vector trans
missibility. In reality, many of these phenotypes inter
act to determine the virulence of a trypanosome. 
However, virulence is also clearly an outcome of the 
interaction(s) of the trypanosome with the host, and 
host factors (for example, host species) can also shape 
and influence the virulence of trypanosomes in 

multiple ways. In this article, we define virulence as 
the ability to cause disease in the recipient host, i.e. the 
more virulent a trypanosome is, the more severe the 
disease is in the mammalian host. In this context, we 
aim to describe what is currently known about the 
spectrum of virulence diversity in trypanosomes, the 
variety of mechanisms that underpin virulence in try
panosomes, and the virulence factors that have thus far 
been identified in trypanosomes (see Figure 1 for over
view). Additionally, we will outline the important 

Figure 1. Overview of virulence in African trypanosomes. (from left to right); Human infectivity: ApoL1 is the main component of 
human trypanosome lytic factor (TLF), a high-density lipoprotein subclass that confers protection against animal-infective trypano
somes through parasite lysis. The human-infective trypanosome species, T. b. rhodesiense and T. b. gambiense, have evolved 
mechanisms to evade ApoL1-mediated lysis, strongly influencing virulence in human hosts. For example, T. b. rhodesiense can 
express SRA, a protein that neutralises ApoL1 through direct interaction. Another mechanism is reduced ApoL1 uptake via an L210S 
mutation in the haptoglobin-haemoglobin receptor (HpHbr) that inactivates it. Coinfection: Infection with multiple species and/or 
strains can lead to multiple virulence phenotypes as described. For example, the presence of a less virulent strain can suppress the 
pathology associated with a more virulent strain of the same species in a coinfection setting. In addition, coinfection of multiple 
trypanosome species can impact differentiation dynamics. Immune response: The interaction of trypanosomes and the host 
immune response can greatly impact virulence phenotypes. Antigenic variation is undoubtedly a paradigm of trypanosome biology. 
Hydrodynamic flow of VSGs across the cell surface sweep bound antibodies to the cell posterior, where they are degraded following 
endocytosis. Furthermore, trypanosomes regularly switch the identity of the expressed VSG, leading to waves of parasitaemia with 
host antibodies eventually raised to the dominant VSG in the parasite population. A further parasite virulence phenotype associated 
with the host immune response is the ablation of B cell memory via killing of host B cells. Extravasation/sequestration: A key 
symptom of HAT is an ability of T. brucei to extravasate and enter extravascular tissues, in particular the brain, adipose tissue and the 
skin. A related virulence phenotype has also been described in animal-infective trypanosomes, albeit caused by intravascular 
sequestration rather than extravasation (e.g. strain and tissue specific sequestration in T. congolense). Secreted factors/EVs: 
Trypanosomes release a significant amount of metabolites, proteins and vesicles into the host environment, several of which 
have been characterised. In particular, virulence associated with secreted peptidases has been established, with oligopeptidase 
B (targeting atrial natriuretic factor), type 1 proglutamyl peptidase (targeting gonadotropin-releasing hormone and thyrotropin- 
releasing hormone) and prolyl oligpeptidase (type I and native collagen) all targeting host effectors. As-of-yet unidentified parasite- 
derived secretome components also target the maturation of host LPS-induced dendritic cells. Abbreviations: ApoL1: apolipoprotein 
L1; HpHbr: haptoglobin-haemoglobin receptor; SRA: serum resistance-associated protein; VSG: variant surface glycoprotein; OPB: 
oligopeptidase B; ANF: atrial natriuretic factor; PGP: proglutamyl peptidase; GnRH: gonadotropin-releasing hormone; TRH: thyro
tropin-releasing hormone; POP: prolyl oligpeptidase; COL I: type I collagen; COL-N: native collagen; LPS: lipopolysaccharide; EVs: 
extracellular vesicles. Inset graph in immune response panel adapted from [6].
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current gaps in knowledge, and consider the opportu
nities that recent research presents for advancing 
understanding in this area. Finally, we will propose 
priorities for research on trypanosome virulence going 
forward.

Evidence of virulence diversity of field isolates

Human trypanosomiasis

Disease caused by trypanosomiasis in humans is char
acterized by two stages. The first (the hemolymphatic 
stage or stage 1) is initiated by the deposition of trypa
nosomes into the skin by tsetse bite, from where para
sites disseminate, initially via the lymphatics, to spread 
throughout the vascular system. This stage is typified 
by fever and lymphadenopathy, alongside malaise, 
weakness, and headaches. The second stage occurs 
when the parasites invade the brain (meningoencepha
litic stage or stage 2) which is associated with motor 
and sensory dysfunction (including abnormal sleep 
patterns, giving rise to the colloquial name of sleeping 
sickness), and if untreated, eventually leads to seizures, 
coma, and death. The rate of progression from stage 1 
to 2 disease is a classical metric of virulence in human 
infections, and here we will discuss the parasite-driven 
aspects of this.

As described above, animal and human disease is 
caused by an assemblage of trypanosome species. The 
diversity within species can contribute to phenotypic 
divergence, and in particular can be critically linked to 
parasite virulence and disease outcome. This is exem
plified by the variants (often termed subspecies) of 
T. brucei that are able to infect humans and cause 
disease; T. b. rhodesiense, T. b gambiense Group 1 and 
T. b. gambiense Group 2. In fact, the current status of 
T. b. gambiense Group 2 in the area of West Africa 
from where it was originally described is uncertain 
[7] – and how these parasites evade lysis by human 
serum is detailed below. These human infective variants 
are genetically distinct from each other, and reflect 
multiple independent emergences of human infectivity 
as a trait [8]. The genetic divergence also manifests as 
differences across multiple phenotypes:

● T. b. gambiense Group 1 is primarily anthropono
tic while T. b. rhodesiense and T. b. gambiense 
Group 2 are zoonotic.

● T. b. gambiense Group 1 does not undergo sexual 
recombination and all data suggest this organism 
reproduces strictly clonally [8–10] – indeed, geno
mic analysis demonstrated the Meselson effect in 
this organism whereby there is independent 

evolution and accumulation of mutations in the 
homologous chromosomes, which can only occur 
with long-term absence of sexual recombination 
[8]. In contrast, evidence from both experimental 
and population genetics data indicates that 
T. b. rhodesiense and T. b. gambiense Group 2 
are capable of frequent sexual recombination 
[8,11–15].

● T. b. gambiense Group 1 and T. b. rhodesiense 
require treatment by different drugs, particularly 
in the meningoencephalitic stage 2 of infection 
when parasites have entered the brain [16].

● The nature of the disease caused is very different - 
T. b. gambiense Group 1 is classically described as 
leading to a chronic infection that takes many 
months to years to culminate in the neurological 
end stage of infection [17], whereas 
T. b. rhodesiense is usually described as causing 
infections that tend to be much more acute 
[18,19], in some instances reaching the critical 
neurological complications in a matter of days 
[20].

However, virulence is complex in human-infective try
panosomes, as there is a clear contribution of host 
genetic variation to disease progression and outcome – 
this has mostly been defined in T. b. gambiense Group 
1, where there is evidently a spectrum of disease pre
sentation, including long-term asymptomatic indivi
duals and even apparent self-cure [21]. This difference 
in outcome has been linked to differential immune 
response signatures, with high IL10 and low TNFα 
being associated with an increased risk of developing 
HAT, whereas increased IL8 was associated with indi
viduals becoming seronegative [22] – in contrast 
macrophage inhibitory factor (MIF) was shown to be 
elevated in infected people (HAT patients and latent 
infections) but to not contribute to pathology [23]. 
Differential disease outcome has also been shown to 
be associated with different Apolipoprotein-1 geno
types (see section below on human serum resistance), 
with patients having G2 alleles of this gene showing 
improved disease outcome [24], and genome-wide 
association studies have corroborated this observation 
[25]. The analysis of host genetic factors is a continuing 
area of work, and how host genetic diversity may inter
act with parasite genetic diversity is a remaining ques
tion. Indeed, there have been attempts to link 
T. b. gambiense Group 1 genotype to disease presenta
tion in HAT patients [26], but given the remarkable 
clonality and high levels of homozygosity across multi
ple isolates [8] it may be that this will prove difficult, 
and this homogeneity across T. b. gambiense Group 1 
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exemplifies why it may be a good model to explore the 
human genetic contribution to disease. Having said 
that, inoculation of T. b. gambiense Group 1 isolates 
into mice deriving from human patients that differed in 
clinical severity demonstrated that pathology in mice 
also broadly separated into three categories (“highly 
pathogenic,” “intermediate pathogenic,” and “low 
pathogenicity”) that mirrored the pattern of disease 
severity in the patients they were isolated from [27]. 
Therefore, there may be a pathogen genetic factor 
underpinning at least some of the variation in disease 
outcome observed in T. b. gambiense Group 1 infec
tions, perhaps sited in the highly variable subtelomeric 
regions of the trypanosome genome that are very diffi
cult to assemble and which would not be covered or 
captured by low-resolution approaches, such as micro- 
or minisatellites, or by most genome approaches/ 
assemblies. The substantial challenge of incorporating 
these regions in analysis is evidenced by one study 
currently being the only genome assembly that has 
managed to provide a complete picture of T. brucei 
subtelomeric regions [28], despite the organism being 
the focus of multiple genome sequencing efforts for 
many years.

The population genetics of T. b. rhodesiense is much 
more complex than that of T. b. gambiense, deriving 
from the fact that T. b. rhodesiense is defined by the 
carrying of a single gene, the serum resistance asso
ciated (SRA) gene [29] that confers resistance to the 
trypanolytic factors in human serum. T. b. rhodesiense 
are therefore essentially variants of T. brucei that carry 
the SRA gene, and the genetic diversity of 
T. b. rhodesiense reflects that of the underlying 
T. brucei population that it is a member of, with clonal 
expansions occurring when outbreaks occur 
[8,11,14,30]. As a result of T. b. rhodesiense being 
genetically diverse, there is unsurprisingly also evidence 
for variation in virulence within T. b. rhodesiense in 
human cases [31]. This is perhaps best characterized by 
studies in Uganda and Malawi, where it was demon
strated that there were differing population dynamics of 
T. b. rhodesiense, with semi-stable clonal lineages in 
Uganda and frequent mating in Malawi [14]. These 
differences likely correlate with their varying transmis
sion intensity and population dynamics resulting in 
different levels of interactions and mating with the 
underlying non-human infective T. b. brucei popula
tion. This also correlated with differing clinical presen
tations, there being a more chronic form of disease in 
Malawi and acute disease in Uganda [32]. Within 
Uganda, with the increased power to test associations 
afforded by the expansion of clonal lineages, it was 
possible to link genetically distinct T. b. rhodesiense 

isolated from different disease foci with differing sever
ity of disease presentation [33,34], with circulating 
IFNγ levels correlating with progression to the neuro
logical stage of disease [33]. In a separate study, geno
mic analysis was carried out on Ugandan 
T. b. rhodesiense isolates deriving from human patients 
with differing clinical presentation. This analysis sug
gested that the genetic divergence of these pathogeni
cally distinct isolates to some extent derived from 
introgression from West African T. b. brucei, with 
a region on chromosome 8 originating from West 
African T. b. brucei containing a gene(s) whose alleles 
underpin the virulence differences observed between 
the isolates [35]. Interestingly, the virulence differences 
between these T. b. rhodesiense isolates variants also 
was recapitulated to some extent in murine infection 
models, with isolates of the strain that presented with 
more severe human disease (Z310) resulting in infec
tions with substantially higher parasitemia and more 
severe symptoms than isolates from the strain derived 
from milder human infections (B17) [35].

There have been relatively few attempts to directly 
examine the genetic determinants of parasite-driven 
differential pathology, exemplified by T. b. rhodesiense 
and T. b gambiense, in T. brucei. One approach has 
been to utilize a classical genetics approach, exploiting 
cloned progeny derived from a genetic cross between 
two strains of T. brucei (TREU927 and STIB247) that 
cause very different severity of infection in mice [36]. 
Analysis of the inheritance pattern of induced pathol
ogy during infections with progeny in mice identified 
a locus on chromosome 3 that was linked to differential 
organomegaly (enlarged liver and spleen) [37]. While 
the causative gene(s) in this locus remain to be identi
fied, the phenotype observed involved differential argi
nase expression and alternative macrophage activation 
[36], reminiscent of the parasite-induced arginase- 
mediated reduction of NO synthesis and consequent 
liver damage by T. brucei kinesin heavy chain 1 
(TbKHC1 – see section below for further details) [38]. 
With improved sequencing technologies enabling 
assembly and annotation of the previously difficult to 
assemble and highly repetitive subtelomeric regions 
[28], in which many trypanosome virulence factors 
are located, it may be timely to revisit the utility of 
genetic crosses and exploit these resources as routes to 
identifying virulence factors that may be important for 
disease.

Animal trypanosomiasis

While HAT is caused by different variants of T. brucei, 
Animal Trypanosomiasis (AT) is caused by multiple 
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species of trypanosome [39], which are very genetically 
divergent indeed. These differences are such that traits 
defined in T. brucei as paradigms of African trypano
some biology, such as reliance upon high-rate glucose 
metabolism in the mammalian host, or the mechanistic 
utilization of variant surface glycoproteins (VSGs) in 
antigenic variation, have been shown to either not hold 
(reliance upon glucose metabolism is much reduced in 
T. congolense [40]) or be achieved by very distinct 
mechanisms (the VSG content and family structure 
indicate that antigenic variation is achieved in 
T. congolense and T. vivax by different mechanisms to 
T. brucei [41–45]). This means that animal disease is 
caused by a much greater spectrum of trypanosome 
genetic diversity, making it a very broad disease in 
terms of clinical severity, duration and presentation 
[46]. This complexity is one reason why developing 
interventions such as drugs and vaccines against AT 
has been and remains such a challenge, as any product 
needs to be effective against multiple divergent patho
gen species.

Typically in ruminants (cattle, sheep and goats) try
panosome infection manifests as a chronic wasting dis
ease, with intermittent pyrexia, lymphadenopathy, 
weight loss and reduction in activity [47]. Anemia is 
a consistent clinical sign in ruminants, and can be used 
as a diagnostic indicator of infection [48] - albeit with 
the caveat that several co-endemic pathogens also cause 
anemia. As well as reduced production in terms of 
weight loss, trypanosome infections also result in 
reduced milk yield and fertility [49–51], with abortions 
in some cases [52,53]. In contrast to the human disease, 
neurological symptoms are not a common feature of 
ruminant infections, although seem to be reported 
more frequently in T. vivax infections [54,55]. 
Donkeys and horses are also commonly infected with 
trypanosomes [56–58]; in these hosts neurological dis
ease is much more common, with data indicating that 
T. brucei (including T. b. evansi and T. b. equiperdum) 
may be implicated in being the primary causative agent 
of neurological complications [59,60]. Asian or water 
buffalo (Bubalus bubalis) are an important livestock 
species across Asia, as well as increasingly in South 
America, and the impact of T. b. evansi (as well as 
T. vivax in S. America) upon buffalo is important and 
currently underappreciated, where it causes a similar 
chronic production disease to that seen in cattle [46], 
with occasional outbreaks of high mortality [61]. 
T. suis, T. simiae and T. godfreyi all either only or 
preferentially infect pigs, causing either acute or 
chronic presentation, which is seemingly dependent 
upon age of infection [62–65]. The extent of the impact 
of the latter species (as well as other species such as 

T. simiae Tsavo) on livestock has been poorly docu
mented, partially due to lack of molecular tools to 
enable detection, but also due to a relative paucity of 
research focus. Similarly, the diversity of trypanosomes 
identified through molecular screening of tsetse is 
clearly greater than that of the traditionally described 
livestock pathogens T. brucei, T. congolense, and 
T. vivax, (for example the recently described “T. vivax- 
like” species [66,67], but the role that such trypano
somes play in causing disease in livestock is currently 
unclear.

This brief outline of pathology in animal trypanoso
miasis [covered in more detail elsewhere - [46,47,68] 
serves to illustrate the enormous complexity of the 
disease, and this can make identifying the contribution 
of parasite virulence to clinical severity difficult to 
ascertain – even before considering the added compli
cation and contribution of coinfections (see section 
below) and host susceptibility/tolerance. However, it is 
clear that some of the variation in clinical presentation 
does derive from the parasite genotype. T. congolense 
groups broadly into three genetically distinct subtypes, 
Forest, Kilifi, and Savannah [39,44,69], and evidence 
indicates that there is frequent genetic exchange in 
the field resulting in substantial genetic diversity, at 
least within T. congolense Savannah [70–72], and 
furthermore suggestion that T. congolense Savannah 
and Forest may hybridize [72]. It has been demon
strated that field isolates representative of the three 
subtypes differed in virulence in cattle infections – a 
Savannah isolate (Sam 28.1) causing more severe dis
ease (higher parasitemia, lower packed cell volume and 
eventually death) than Forest (Dind.3.1) or Kilifi 
(K60.1A) subtypes, which either showed minimal clin
ical signs compared to control animals (Kilifi) or even 
apparent self-cure (or inability to detect parasites in the 
blood) in all five animals infected with Forest after 95  
days of infection (with animals followed for 295 days 
post-infection) [73]. This strain-specific pattern of viru
lence was mirrored in mice infections, with Sam 28.1 
giving rise to lethal infections that lasted less than 
a week, whereas Dind.3.1 and K60.1A produced 
chronic infections with low parasitemia and low mor
tality rate (one death in each group of seven mice over 
130 days of infection) [74]. While the caveat of these 
studies is that there was a single isolate per subtype, the 
observations would fit with the increased representa
tion of T. congolense Savannah isolates in AT field 
studies in the literature [39] – the expansion of loca
tions across the African subcontinent where 
T. congolense Kilifi (and to a lesser extent Forest) has 
been detected has coincided with the advent of more 
sensitive molecular diagnostics, and this suggests that 
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these subtypes may be reasonably widespread but either 
cause limited severe disease or present with very low 
parasitemia in livestock, and are therefore picked up 
less frequently in surveillance efforts. However, there 
are really very significant knowledge gaps around 
T. congolense Kilifi and Forest, including the extent of 
the role they play in livestock disease, and these sub
types certainly warrant further investigation.

Virulence variation within T. congolense Savannah 
has also been demonstrated, with 31 field isolates 
derived from cattle in Zambia being tested by inocula
tion into two mice each (with all strains used at their 
fifth or sixth passage from cattle isolation). The isolates 
grouped into three categories – termed “extremely viru
lent,” “moderately virulent” or “low virulence,” as 
determined by parasitemia profile, survival time, pre
patent period, and degree of anemia induced [75]. How 
these virulence categories translate to clinical presenta
tion in cattle is unclear and requires further work, but it 
is worth noting that highly virulent field strains of 
T. congolense Savannah have been isolated, which 
reproducibly give rise to very acute infections in cattle, 
resulting in death in 9–10 days unless treatment is 
provided [76–78].

T.vivax broadly splits into two genetic groupings, East 
and West African [45,79,80]. Several studies using dif
ferent (low resolution) genetic markers indicate that 
South American strains are derived from West African 
T. vivax [81–83]. While the population genomic analysis 
of Silva Pereira et al. [45] robustly demonstrated group
ing of South American T. vivax with Ugandan strains, 
Uganda is closely linked with West Africa (including via 
trade routes and transfer of livestock) by being on the 
edge of the Congo basin, and therefore it is possible that 
Ugandan T. vivax may be more representative of West 
African strains than those from elsewhere in East and 
Southern Africa (which were unable to be included in 
the analysis). This is backed up by a study that assessed 
cross-reactivity of sera from cattle inoculated with 
strains from West and East Africa, which showed that 
sera from cattle infected with Ugandan strains cross- 
reacted with that from cattle infected with West 
African strains, but not those infected with East 
African strains [84]. Such data indicate that further 
genomic analysis is therefore required to fully resolve 
the continental picture of diversity for T. vivax. With 
respect to sexual recombination influencing genetic 
diversity, all evidence suggests that, like 
T. b. gambiense, T. vivax is clonal and does not undergo 
sexual recombination [45,85]. A feature of T. vivax 
infections of cattle (as opposed to T. congolense and 
T. brucei) is that self-cure is reasonably frequently 
reported (e.g. [50,86,87]), and this has been suggested 

to potentially relate to the smaller VSG repertoire of this 
species [42,45,50] and therefore “exhaustion” of avail
able VSGs during infections, and/or a reduced amount 
of VSG protein on the cell surface that may result in 
greater exposure of other invariant antigens to the host 
immune response. However, while there are reduced 
levels of cellular VSG gene transcripts compared to 
T. brucei and T. congolense [88], evidence that this 
translates to reduced levels of VSG protein at the cell 
surface is less clear [50]. There is reported strain-specific 
virulence in T. vivax, perhaps the most notable being 
a reported hemorrhagic form of T. vivax infection that 
seems be more commonly reported in isolates deriving 
from East Africa [50,89–92] – this is associated with 
a hyperacute infection profile with very high and sus
tained parasitemia, fever, profound anemia and multiple 
hemorrhages of visceral and mucosal surfaces. The 
hemorrhagic stage is correlated with thrombocytopenia 
and dysregulation of the clotting cascade, as well as 
generation of autoantibodies that bind to and cause 
lysis of erythrocytes and platelets [93]. Additionally, 
other highly virulent field strains (without the hemor
rhagic presentation) have been isolated that give rise to 
experimental infections with very acute profile and short 
duration (9–10 days before rescue treatment is required) 
[76,77]. However, while we have good evidence for there 
being parasite-driven differences in virulence in T. vivax, 
a barrier to understanding the parasite factors that con
tribute to these differences is that very few T. vivax 
strains grow in mice and only one strain has been repro
ducibly cultured in vitro (Y486) [94,95] - although it 
should be noted that the culture of bloodstream form 
Y486 has only been successful to a limited extent. This 
limitation to ruminant in vivo experimental work for all 
but very few strains means that there has not been the 
ability to either assess translation of variable virulence in 
the murine model, or functionally assess potential 
mechanisms in vitro.

Trypanosome interactions with the host 
immune response

The host immune system and its interaction with the 
pathogen evidently is a major component of how virulence 
presents in the infected mammalian host. The details of 
immunology in trypanosome infections are well covered 
elsewhere [68,96–98], and in this section, we will aim to 
focus on aspects of the host immune response that are 
driven by the parasite (i.e. how parasite virulence influences 
elements of the host immune system).

The paradigmal trypanosome interaction with the 
host immune system is antigenic variation. 
Trypanosomes have developed an incredibly elaborate 
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and extensive system of antigenic variation, which is 
driven by a large gene family of variant surface glyco
proteins (VSGs), one of which is expressed in each cell 
through a monoallelic expression system that results in 
the parasite coat being covered in homodimers of the 
expressed VSG protein. The VSG N-terminal domains 
are the primary point of contact for the host adaptive 
immune response, and VSG epitope-specific antibodies 
are generated that clear parasites expressing the rele
vant VSG. However, the parasites regularly change the 
identity of the expressed VSG, meaning that within 
a population cells emerge that are not susceptible to 
the VSG-specific antibodies raised against epitopes on 
the previously expressed VSG. Through a combination 
of a very large VSG gene repertoire (2,000 in T. brucei – 
approximately 20% of the coding genome) and elabo
rate recombinatorial processes that massively amplify 
the potential encoded genetic VSG variation, antigenic 
variation in trypanosomes is a powerful tool that 
matches the host ability to generate antibodies, and is 
key to their ability to establish and maintain long- 
lasting chronic infections. The intricacies of antigenic 
variation, particularly in T. brucei, have been the sub
ject of much research over many decades, and the 
mechanistic understanding is highly developed 
[43,99,100]. While it is very evident that T. congolense 
and T. vivax also undergo antigenic variation, the struc
ture and content of the VSG repertoire in these species 
is very different to that of T. brucei [42,101], and the 
degree of recombination-driven amplification of diver
sity also appears quite distinct. For example, while 
T. brucei massively multiplies antigenic diversity 
through recombination between VSGs that belong to 
one of two subfamilies (a-VSG and b-VSG), evidence 
suggests that T. vivax does not employ recombinational 
VSG switching [45], with genes in four subfamilies 
corresponding to 174 phylotypes (where a phylotype 
is a clade of highly related VSGs based on amino acid 
alignment). T. congolense lies somewhere between, with 
a repertoire indicating recombination largely occurring 
within 15 phylotypes split between two subfamilies 
[44,101]. Currently, it is unclear if these repertoire 
differences translate to mechanistic differences in 
terms of how antigenic variation is expressed in 
T. congolense and T. vivax [43]. Additionally, the impli
cations of the VSG repertoire differences with respect 
to host-parasite interactions, such as the putative dif
ferent effective repertoire sizes, remain to be elucidated.

The structure of the VSG coat and limited presenta
tion of epitopes to the host response are one mechanism 
of immune evasion, but trypanosomes also elegantly 
exploit their motility as an immune evasion technique – 
the motility driven by the flagellum, combined with the 

free movement of VSGs across the cell surface, results in 
hydrodynamic pressures at the cell surface effectively 
sweeping bound antibodies to the cell posterior, where 
they are engulfed and removed by endocytosis in the 
flagellar pocket [102]. This provides an extended time 
window for trypanosomes to switch VSG identity before 
antigen-specific antibodies reach a concentration thresh
old that can overcome the hydrodynamic flow effect. 
Initially described in T. brucei, this has since been 
shown to also occur in T. congolense and T. vivax 
[103] – with species-specific differences in motility char
acteristics postulated to link to the differential infection 
biology of the parasites, such as extravascular tissue 
invasion for T. brucei, cellular adherence for 
T. congolense and intravascular circulation for T. vivax.

The VSG coat structure has long been posited to 
provide a near insurmountable barrier in terms of 
targeting the host immune response to underlying and 
conserved antigen epitopes, via vaccination for exam
ple. How this barrier functions as such, given there are 
invariant proteins whose structure suggested they 
should protrude above the protective VSG monolayer, 
has long been debated [104]. However, the generation 
of the first model of a full T. brucei VSG structure 
provided insight that the C-terminal domain of the 
VSG is likely to be remarkably conformationally flex
ible, sufficiently so to enable VSGs to possibly shield 
invariant surface proteins [105]. This is supported by 
efforts that have targeted invariant antigens in vaccina
tion efforts providing at best partial protection 
[106,107]. Strategies have been implemented to try 
and bypass this structural barrier, such as using single- 
chain camel-derived nanobodies against invariant anti
gens [108]. Overall, this strategy has also met with 
limited success, although some protective effect was 
demonstrated. However, recent data has demonstrated 
that vulnerabilities can be identified by targeting invar
iant antigens. Through a process of expressing recom
binant versions of proteins predicted to be expressed on 
the cell surface of T. vivax, and immunization and 
challenge experiments in mice, the extracellular domain 
of one protein (“invariant flagellum from T. vivax,” 
IFX) resulted in reproducibly sterile protection against 
rechallenge [109]. These remarkable data provide proof 
of principle that vaccination using surface-expressed 
proteins may be achievable, after decades of skepticism. 
The localization of IFX, between the flagellum and cell 
body, suggests it may play a role in flagellum structure 
or function, and this may provide a reason as to why it 
represents a vulnerability for the parasite, as due to its 
location it may not be subject to hydrodynamic clear
ance of bound antibodies. Whether this vulnerability 
also applies to T. congolense and T. brucei awaits 
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further study. Additionally, the translation of successful 
immunization against IFX from the mouse model to 
a clinically relevant host species (goats) has been tried 
in pilot vaccination and challenge experiments, but did 
not result in protection [109]. Therefore, significant 
hurdles clearly remain to be overcome in order to 
replicate the promising protection observed in mice in 
disease-relevant hosts such as cattle.

The host antibody response is clearly important in 
clearance of trypanosomes during infection [110]. 
Debate continues about the role and efficacy of parti
cular antibody isotypes; for example, the key isotype 
that conferred protection against T. vivax in IFX vacci
nations studies was shown to be IgG2a [109], but recent 
data demonstrated that activation-induced cytidine 
deaminase (AID)-deficient mice, which are incapable 
of somatic hypermutation and therefore cannot gener
ate IgG antibodies, were more efficient at clearing chal
lenge with T. b. evansi than their wild-type controls 
through IgM [111] – consistent with previous studies 
showing the importance of IgM in controlling T. brucei 
infections in mice [112]. Nguyen et al. [111] interest
ingly hypothesized that the rapid onset of B cell follicle 
activation and isotype switching to IgG may in fact be 
driven by the trypanosome, as switching to the lower 
efficacy IgG would benefit parasite survival. These 
aspects of antibody response remain to be fully eluci
dated in the mouse model of T. brucei, let alone host 
species such as cattle, in which the mechanisms of 
antibody generation are very different and for which 
the antibodies can have some unique features that may 
impact upon antigen binding [113,114], and for 
T. congolense and T. vivax. If vaccine prospects for 
AT are to be achieved from candidates such as IFX, 
clarity on what constitutes an effective antibody 
response, and how this would be optimally induced, 
in the eventual host species and against the AT-relevant 
trypanosome species, will be needed.

Given the key role of antigen-specific antibodies, 
a notable parasite-driven phenotype is the destruction 
of host immune memory, with trypanosome infection 
of mice resulting in ablation of B cell memory via 
killing of B cells. This included the loss of memory to 
previously exposed non-trypanosome antigens [115]; 
this was recently shown to specifically involve the loss 
of memory B cells from infected animals [116]. This 
effect has also been shown to occur in mouse infections 
with T. congolense [117], and observed disruptions to 
splenic architecture including lymphocyte-depleted 
germinal centers and depletion of splenic B cells in 
mice infected with T. vivax are consistent with the 
phenotype also occurring in infections with this species 
[118,119]. While the destruction of B cells has not been 

formally described in cattle infections, memory loss was 
observed in cattle immunized with irradiated T. brucei, 
infected with T. congolense and then re-challenged with 
homologous irradiated T. brucei, with the memory 
response against T. brucei being impaired in three of 
the five cattle [120], suggesting that this process also 
occurs in cattle. The extent of any parasite-driven B cell 
destruction in human trypanosome infections is also 
not clear, although one study has demonstrated 
reduced anti-measles antibody levels in HAT patients 
[121]. Both cattle and human data, although scanty, 
indicate that the phenomenon indeed may occur, but 
the extent of B cell memory loss may not be as exten
sive as in infected mice. The B cell destruction is known 
to be mediated by host natural killer (NK) cells and is 
perforin-mediated [122], but the identity of any para
site ligand that may stimulate and drive this interaction 
is yet to be identified. While the impact of this parasite- 
driven phenomenon clearly benefits immune escape 
and survival of trypanosomes within infections, it also 
has potentially serious implications for the epidemiol
ogy of other infectious diseases in endemic areas. The 
impairment of immune memory in trypanosome 
infected animals or humans may mean hosts become 
more permissive for particular coinfections, and as 
suggested by other authors [96], the trypanosome- 
mediated destruction of immune memory would in 
theory also disrupt vaccination-mediated protection, 
with consequent implications for disease control 
efforts. This latter suggestion is backed up by several 
observations of diminished antigen-specific antibody 
responses in trypanosome-infected Asian buffalo, 
goats, and cattle to vaccinations ranging from 
Pasteurella multocida, Bacillus anthracis, contagious 
bovine pleuropneumonia to foot and mouth disease 
virus [96,123–127]. This aspect of trypanosome infec
tion biology deserves further attention, and in particu
lar fuller understanding of the extent of immune 
memory loss in clinically relevant hosts, as this could 
be an important factor in both general disease suscept
ibility and epidemiology, and, for example, if efforts to 
generate a vaccine against AT bear fruit.

The symptomology of human trypanosomiasis is 
defined by the ability of T. brucei to extravasate and 
enter extravascular tissues, leading to encephalitis- 
related clinical signs. The description of adipose- 
and skin-resident trypanosomes in mouse and 
human infections with T. brucei sensu lato [128– 
130] has focused attention on this aspect of 
T. brucei infection biology, with its obvious relevance 
for disease progression, transmission, diagnosis, 
parasite metabolism, and interactions with the host 
immune response. Indeed, the extravasation has been 
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shown in a mouse model to be active (i.e. occurs prior 
to any vascular compromise induced by inflamma
tion) and if the process is blocked by introducing 
antibodies against host molecules involved in cellular 
adhesion (E-selectin, P-selectin, ICAM2, CD36, and 
PECAM1) mouse survival was improved, indicating 
that extravasation is a key virulence phenotype in 
T. brucei infections [131]. Notably, CD36 was 
shown to preferentially inhibit extravasation into adi
pose depots, indicating potential tissue-specific inter
action in extravasation. Brain involvement in the 
mouse model has also been well defined in infections 
with T. vivax and T. congolense [132,133]. In the case 
of T. congolense, which binds to endothelial cells and 
is considered an intravascular parasite [134], brain 
pathology was associated with trypanosome seques
tration in brain vasculature and the consequent 
immune response; interestingly this effect was strain- 
specific (T. congolense 1/148 caused sequestration 
and pathology, while IL3000 did not), suggestive of 
a differentially expressed parasite virulence factor(s). 
While similar sequestration in cerebral capillaries 
and sequelae have been observed in cattle experimen
tally infected with T. congolense [135,136], neurolo
gical clinical signs associated with T. congolense 
infections are not frequently reported in the field in 
livestock [18,46]. It is not completely clear whether 
T. vivax readily extravasates or sequesters, and mouse 
data has either described mainly vascular lesions 
[119] or used non-invasive bioluminescence imaging 
techniques that would not discriminate between 
intravascular and extravascular parasites [132]. 
While neurological clinical signs have been reported 
from T. vivax livestock infections in the field 
[54,137], as with T. congolense it is also not 
a frequent clinical presentation. However, clearly 
a fuller exploration of tissue distribution in all three 
parasites, and in clinically relevant hosts as well as 
mice, is needed before the potentially important 
implications of tissue specificity and adaptation are 
understood.

The interaction of trypanosomes with the immune 
response is clearly multifaceted, and we have chosen 
here to focus on key parasite-driven aspects. The fol
lowing sections also contain multiple examples of para
site biology whose interaction with the hosts, including 
with the immune response, also determine virulence 
and infection outcome. The examples outlined above 
particularly serve to illustrate gaps in our knowledge – 
many of these derive from the need to translate find
ings from either T. brucei to T. congolense and T. vivax, 
or from in vitro or mouse models to clinically relevant 
hosts.

Human infectivity

Another defense mechanism elicited by the mammalian 
host is the presence of apolipoprotein L1 (ApoL1) in 
normal human serum. ApoL1 is a component of the 
trypanosome lytic factor-1 and −2 (TLF1 and TLF2) 
which is a subclass of high-density lipoprotein (HDL) 
[138–140]. Human ApoL1 lyses exclusively animal 
infective trypanosomes through the formation of pH- 
dependent ionic pores in the lysosomal membrane. 
This causes the inflow of chloride ions from the cyto
plasm leading to lysosomal swelling [141–144], and 
ultimately, parasite death. Permeabilization of the mito
chondrial membrane has also been reported [145]. 
However, the human infective forms of the parasite, 
T. b. rhodesiense and T. b. gambiense, are resistant to 
these TLFs. T. b rhodesiense evades ApoL1 lysis by the 
possession of serum resistance-associated (SRA) pro
tein [146], which neutralizes the ApoL1 toxin by direct 
interaction. However, some variants of ApoL1, variants 
G1 and G2, are able to avoid this deactivation resulting 
in the killing of T. b. rhodesiense [142]. These variants 
are primarily found in African Americans and West 
Africans [147], potentially contributing to the absence 
of T. b. rhodesiense infections in west Africa, and factor 
in the spectrum of disease severity in T. b. rhodesiense 
patients (see “Evidence of virulence diversity of field 
isolates” section), with the G2 allele being associated 
with less severe disease in a genetic analysis of 
T. b. rhodesiense patients in Malawi [148]. 
T. b. gambiense, consisting of two groups, Group 1 
and Group 2, are both resistant to ApoL1 lysis. While 
T. b. gambiense Group 1 stably avoids TLF lysis, 
T. b. gambiense Group 2 shows variable TLF resistance 
in a way seemingly similar to T. b. rhodesiense but 
which does not involve SRA, and thus, remains to be 
fully elucidated [149,150]. T. b. gambiense Group 1 on 
the other hand, uses the specific glycoprotein (TgsGP) 
to inhibit ApoL1-mediated lysosomal damage by mem
brane stiffening when it interacts with lipids [151]. 
Other mechanisms employed by T. b. gambiense 
Group 1 to escape ApoL1 killing include reduced sen
sitivity to ApoL1 by cysteine proteases [152], reduced 
uptake of ApoL1 due to an L210S substitution in the 
haptoglobin-hemoglobin receptor, resulting in inactiva
tion [151,153], and increased digestion of ApoL1 [142]. 
There have been reports of atypical infections of 
humans with species of trypanosome not normally 
infective to humans, including T. lewisi and 
T. b. evansi, and very rarely T. b. brucei, T. vivax and 
T. congolense – while sporadic and clearly rare, 
instances of such infections either are increasing or 
are being detected more often [154]. While often the 
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basis for human infectivity in such infections has not 
been able to be fully investigated, T. b. evansi infections 
have been identified to occur both in an individual 
lacking APoL1 due to null mutations [155], but also 
recently in a patient with no observable ApoL1 defi
ciency [156], suggesting there remain aspects yet to be 
explained in this intensively studied and important 
host-parasite interaction.

Parasite metabolism and virulence

Parasite metabolism is crucial to enable generation of 
sufficient ATP to persist in the host bloodstream. It is 
well established that African trypanosomes rely on host 
carbohydrates in the form of glucose for ATP production. 
However, metabolic enzymes and their products can also 
impact host gene expression and metabolism in ways that 
maximize parasite survival, modulate host immunity, and 
directly contribute to virulence phenotypes. The role of 
parasite metabolism in mediating host immune responses 
has been studied in several pathogenic protozoan parasite 
species, including Trypanosoma cruzi and Leishmania 
spp., in addition to African trypanosomes [157–159]. 
These parasites all release a significant number of proteins 
and metabolites into their host environment (the former 
detailed by studies of the secretome [160–162]), although 
relatively few studies have detailed the impacts of meta
bolism on host-pathogen dynamics, and thus, virulence, 
during infection. Nonetheless, there is clear evidence that 
parasite-derived metabolites and proteins impact host 
immune responses with implications for parasite viru
lence [161,163].

Nitric oxide (NO) is a key host effector molecule in 
the defense against trypanosome infection and NO 
exhibits cytostatic and cytolytic properties. To counter 
the effects of NO, Kinesin Heavy Chain (TbKHC)-1 is 
a protein secreted by T. brucei under both in vitro and 
in vivo conditions, and has been shown to induce 
arginase-1 activity in host myeloid cells, even those 
from uninfected mice [38]. Arginase-1 converts 
L-arginine to L-ornithine and urea, and its activity 
leads to reduction in the synthesis of NO. 
Presumably, increased competition for L-arginine (an 
important substrate for NO synthesis) leads to this 
reduction. Indeed, it has previously been shown that 
L-arginine bioavailability is an important determinant 
of NO production and parasite killing [164]. 
Recombinant TbKHC1 was shown to trigger IL-10 
and arginase-1 expression mediated by a C-type lectin 
(SIGN-R1; CD209b) receptor. Importantly, host survi
val time is significantly prolonged in TbKHC1 KO- 
infected mice, compared to wild-type controls [38].

TbKHC1 secretion is not the only form of host NO 
modulation. Earlier work highlighted that soluble VSG 
(sVSG), a form of VSG released by trypanosomes, 
modulates host gene expression in macrophages [165]. 
Importantly, the timing of sVSG exposure in relation to 
that of IFN-γ is crucial. Whereas IFN- γ exposure 
followed by sVSG exposure leads to the expression of 
TNF-α, IL-6, and IL12p40, treatment of macrophages 
with sVSG prior to IFN-γ led to a reduction in IFN-γ- 
induced responses, including reduced NO synthase 
expression and NO secretion [165]. Further work 
showed that the glycosylinositolphosphate moiety of 
the sVSG is crucial for these host modulatory effects 
[165,166].

Metabolism of fatty acids also impacts virulence. In 
particular, phospholipase A1 (PLA1) activity is thought 
to correlate with pathogenesis [167] and indeed, PLA1 
activity in plasma and tissue fluid from experimentally 
infected rabbits correlates with parasitemia [168]. It is 
thought PLA1 (and potentially PLA2) activity is 
responsible for the severe changes seen in plasma lipids 
in infected animals, in particular a reduction in phos
phocholines (phosphatidylcholine) accompanied by 
increased levels of choline, indicative of phospholipase 
action [169,170]. Interestingly, the phospholipase activ
ity from non-pathogenic trypanosome species such as 
Trypanosoma lewisi is relatively low compared to that 
of pathogenic species, suggesting a correlation between 
PLA1 action and virulence/pathogenesis [167].

Trypanosomiasis is also associated with significant 
perturbations in serum/plasma levels of amino acids 
[170]. In particular, there is depletion of the aromatic 
amino acids L-tryptophan, L-tyrosine and 
L-phenylalanine [171–174]. Concomitantly, T. brucei 
excretes biologically relevant levels of aromatic ketoa
cids, specifically indolepyruvate (IP), hydroxyphenyl
pyruvate (HPP) and phenylpyruvate (PP) 
[171,172,175,176]. These aromatic ketoacids are gener
ated through degradation of aromatic amino acids by 
the cytosolic aspartate aminotransferase (cASAT) 
[163,177]. This protein, as well as the reactions it cat
alyzes, are essential to the parasite [163,178], but the 
products of these reactions possess several important 
immunomodulatory properties.

The most studied excretory aromatic keto acid, 
indolepyruvate (IP), has been implicated in several 
virulence roles [163,179]. IP is a product of 
L-tryptophan metabolism through cASAT action 
[163]. Firstly, IP treatment of host cells leads to reduced 
glycolytic capacity by interfering with the transcription 
factor hypoxia-inducible factor-1α (HIF-1α) [163]. 
Furthermore, this study showed that IP inhibits the 
induction of pro-IL-1β, a potent pro-inflammatory 
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cytokine. More recent work on IP has highlighted the 
modulation of host eicosanoid production associated 
with this trypanosome-derived metabolite [179], speci
fically the downregulation of a class of eicosanoids 
called prostaglandins (PGs). In this study, Diskin and 
colleagues further showed that IP acts as a direct inhi
bitor of cyclooxygenase (COX) activity, an upstream 
mediator of PG production, and this effect is replicated 
in human macrophages [179]. Thus, IP is a powerful 
modulator of host activity, in particular that of the pro- 
inflammatory and innate immune response to 
infection.

Whilst the aforementioned studies were in large part 
carried out in murine trypanosomiasis models, recent 
evidence shows that the immunomodulatory properties 
of IP (in addition to HPP) are replicated in primary 
human dendritic cells [180], with HO-1 induction 
through Nrf2 activation, suppressed production of pro- 
inflammatory cytokines, reduced CD4+ T cell activa
tion and modulation of host cell metabolism, including 
downregulation of glycolytic capacity [180]. To our 
knowledge, there are no reports on any immunomodu
latory effects of PP, another aromatic ketoacid excreted 
at high levels by African trypanosomes. Unlike IP, PP 
has no effect on the ability of LPS to induce IL-1β 
[163], but other roles cannot be ruled out.

In murine models, trypanosome infection is asso
ciated with global host metabolic disturbances, includ
ing in the bloodstream, but also in other anatomical 
locations such as the gut and brain [170,181,182]. These 
changes are the result of both host and parasite meta
bolism. The main glycolytic end-product from trypano
somes is pyruvate, which accumulates to high levels in 
the host plasma [170]. There are also increased plasma 
concentrations of lactate and these are, to an extent, 
indicative of upregulated glycolysis in host cells [170]. 
T. brucei does not encode lactate dehydrogenase (LDH) 
[183], and, therefore, cannot generate lactate via fer
mentation of glucose [184]. However, glucose-derived 
L-lactate is excreted from T. brucei at low levels, likely 
via methylglyoxal detoxification [183,185]. It should be 
noted that procyclic form T. brucei, as well as blood
stream form T. lewisi, also excrete L-lactate, the latter 
able to do so via lactate dehydrogenase [186,187]. It is 
currently unknown whether the livestock trypanosomes 
T. congolense and T. vivax generate L-lactate via fer
mentation, although LDH is not annotated in their 
respective genomes. It is plausible that both host and 
parasite-derived lactate likely contribute to metabolic 
acidosis, a significant contributor to pathology. As the 
disease progresses, the host can enter a ketotic state, 
characterized by increased levels of 
D-3-hydroxybutyrate, where lipids are metabolized for 

energy [170]. This is partially due to competition for 
the main energy source, glucose [188–190]. Ultimately, 
hypoglycemia can play a role in host survival [and has 
been noted in cattle infections, e.g. [54]], and, therefore, 
parasite glycolytic rates have the potential to impact 
upon parasite virulence.

Several other important metabolic processes have 
been shown to impact upon virulence, including pro
teases such as serine peptidase 2 (ISP2) [191] and the 
cysteine proteases Cathepsin L and Cathepsin B [192]. 
In addition, increased levels of O- and N-acetylated 
glycoproteins have been detected in T. brucei-infected 
plasma, which are likely T. brucei derived [193]. Whilst 
the underlying mechanisms remain to be elucidated, it 
is clear that these proteins are involved in trypano
some-mediated attenuation of the immune response 
[191–193]. Finally, T. brucei, like other pathogens, exhi
bits an ability for metabolic mimicry, where T. brucei 
derived inositol phosphate glycans released from GPI 
anchors are able to affect the host in the same way as 
insulin, an important hormone for glucose regula
tion [194].

Recent evidence has revealed that T. brucei is capable 
of invading adipose tissue [130], a site abundant in 
glycerol. Indeed, T. brucei is capable of proliferation 
in glycerol-based medium [195], and these findings 
may also contribute to our understanding of trypano
some virulence in vivo. Furthermore, imbalances in 
plasma lipid bioavailability have also been detected in 
plasma samples derived from experimental model and 
human infections [196–198].

Whilst the majority of studies on trypanosome meta
bolism and its impact on virulence have focused on the 
relevant model for human infection, T. brucei, com
paratively few studies have investigated the relevant 
species for Animal Trypanosomiasis - T. congolense 
and T. vivax. Recent studies, however, have shown 
that the former differs from T. brucei in key metabolic 
areas, such as glycolysis and lipid metabolism, and this 
may impact metabolic phenotypes associated with viru
lence [40]. For example, it was hypothesized some time 
ago that free fatty acids released from autolyzing trypa
nosomes can significantly impact pathogenesis and 
virulence [199]. The differences in fatty acid metabo
lism between T. congolense and T. brucei that have been 
observed recently could underpin differences in viru
lence between the species [40]. Furthermore, differ
ences in metabolite uptake and excretion may also 
play an important role in differing virulence between 
African trypanosome species, but these are as yet 
unstudied.

Whilst the genetic basis of differential virulence in 
livestock trypanosomes has not been elucidated, there is 
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clear evidence that strain-dependent variation in viru
lence exists in T. congolense [73–75], and it is likely that 
differential metabolism underlies at least some aspects 
of this variation. T. vivax is unique amongst African 
trypanosomes in that it encodes a proline racemase not 
found in T. brucei or T. congolense [200]. This enzyme 
was subsequently shown to be a potent B-cell mitogen 
and thus, can be considered a virulence factor under
pinning hypergammaglobulinemia, a symptom 
observed during acute stages of T. vivax infection in 
mice [200]. Furthermore, unlike T. brucei, adhesion to 
host cells is an important aspect of T. congolense and 
T. vivax bloodstream form biology, as well as patho
genesis [134,201,202]. In both T. vivax and 
T. congolense, it is established that trans-sialidases are 
involved in host cell attachments, and are also a key 
mediator of anemia, and thus, virulence [203–206]. 
Trans-sialidases are both expressed on the parasite sur
face and secreted into the extracellular environment, 
and they are responsible for desialylation of red blood 
cells, leading to erythrophagocytosis and anemia. There 
is evidence that trypanotolerant N’Dama (African taur
ine) cattle exhibit reduced anemia compared to suscep
tible indicine cattle [207], and concomitant evidence 
that trans-sialidases purified from T. vivax desialylated 
indicine but not African taurine RBCs [203], indicating 
a correlation between trans-sialidase host-specificity 
and parasite virulence.

Comparative proteomics analysis of T. vivax strains 
with contrasting virulence revealed differential expres
sion of several metabolic enzymes [208]. In that study, 
virulence and pathogenesis were interpreted as capacity 
to multiply and capacity to produce disease/mortality, 
respectively. Protein expression profiles of two strains 
(high virulence and moderate pathogenicity vs low 
virulence and high pathogenicity) were compared. 
Amongst the significant differentially expressed pro
teins, there were also important glycolytic enzymes, 
pyruvate kinase, and glycerol kinase, expressed at 
higher levels in a T. vivax strain eliciting significantly 
more severe clinical pathogenesis, suggesting that gly
colytic metabolism may play a role in driving symp
toms [208].

It is worth noting that in vivo experiments focused 
on dissecting host–pathogen interactions and virulence 
have been carried out almost exclusively on rodent 
models in contrast to clinically relevant models such 
as, in the case of animal trypanosomiasis, cattle [95]. 
Ruminants such as cattle exhibit markedly divergent 
blood biochemistry from non-ruminants such as 
rodents and humans [209], and this has the potential 
to impact both parasite and host metabolism during 
infection. For example, ruminant blood contains 

reduced levels of glucose and substantially increased 
levels of small volatile fatty acids (e.g. propionic acid 
and butyric acid) [210–212] compared to human or 
mouse blood. Thus, given that, as an example, glycoly
sis is a cornerstone of trypanosome metabolism, host 
metabolic differences may play an important role in 
influencing host–pathogen interactions and virulence 
(Figure 2 summarizes our current understanding of 
how trypanosome metabolism influences infection 
severity and outcome).

Quorum sensing

Although trypanosomes are single-celled parasites, 
individuals within the population show the ability to 
act co-operatively to restrict parasite numbers. This has 
a direct impact on virulence and parasite transmissibil
ity. Virulence is affected because with unlimited popu
lation growth, hosts lethally and rapidly succumb 
[213,214]. Correspondingly, the prolongation of host 
viability increases the probability of transmission – 
the essential requirement for any parasitic lifestyle. 
This is particularly the case for African trypanosomes 
where transmission is restricted by the poor vectorial 
capacity and relative scarcity of tsetse flies in compar
ison to, for example, mosquito vectors for parasites 
such as Plasmodium [215–217]. In addition to the 
direct consequences of uncontrolled parasite prolifera
tion on host survival, the co-operative behavior of 
trypanosomes acts to promote transmission by driving 
the generation of non-proliferative transmission 
adapted developmental forms of the bloodstream para
sites – so-called stumpy forms [218]. These forms, 
specific to T. brucei at least as a morphologically dis
tinct entity, dominate the peak of acute and chronic 
parasitaemias in experimental infections and predomi
nate in tissue reservoirs such as the skin and adipose 
tissue when quantitated using the molecular marker 
defining this form, PAD1 [129,130,219].

Stumpy generation is a quorum sensing phenom
enon whereby parasite numbers are detected and 
responded to by individuals within the population – 
a characteristic described in many species of social 
microbe. Evidence of inter-parasite communication 
controlling the production of stumpy forms was initi
ally provided by the analysis and modeling of parasites 
in animal infections [220], but definitive evidence 
emerged with the successful culture of parasites with 
the developmental competence to generate stumpy 
forms [221,222]. These are representative of tsetse- 
transmitted trypanosomes in the field and are termed 
pleomorphic [223], and are distinguished from so- 
called monomorphic forms that arise through 
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Figure 2. Parasite metabolism and virulence. A) Trans-sialidases released by T. vivax cleave sialic acid moieties from glycoproteins on 
the erythrocyte cell surface, leading to erythrophagocytosis and eventually, anaemia. B) All three species of pathogenic African 
trypanosomes are known to release phospholipases that degrade phosphocholine-bound lipids. They are considered significant 
virulence factors, and their action results in a build up of choline in the host bloodstream. C) T. brucei secretes multiple factors that 
modulate macrophage ability to generate nitric oxide (NO), including TbKHC1, and soluble VSG (sVSG). The latter stimulates 
arginase-1 activity, leading to increased usage of the available arginine pool to generate ornithine, reducing substrate availability 
for NO production through nitric oxide synthase (NOS). Simultaneously, sVSG has an inhibitory effect on NOS. sVSG also interferes 
with the phosphorylation of STAT1, an important transcription factor that drives pro-inflammatory responses. D) Parasite amino acid 
metabolism and its effect on host responses has been studied to some degree in T. brucei. In particular the fate of hydroxyphe
nylpyruvate (HPP), phenylpyruvate (PP) and indolepyruvate (IP), products of cASAT-catalysed conversions of L-tyrosine, 
L-phenylalanine and L-tryptophan, respectively. IP is a potent modulator of pro-inflammatory responses in macrophages. Firstly, 
IP interferes with HIF-1α, leading to a reduction in glycolytic capacity of macrophages. Secondly, IP inhibits induction of pro-IL-1, 
a potent pro-inflammatory cytokine. Finally, more recent work has established that IP is a direct inhibitor of cyclooxygenase (COX), 
leading to reduced prostaglandin (PG; mediators of inflammation) production. E) Trypanosome-derived IP as well as HPP can impact 
upon dendritic cells, by stimulating Nrf2-mediated hemeoxygenase-1 (HO-1) induction, again leading to a reduced pro-inflammatory 
response. Many other metabolic factors are known to be excreted by trypanosomes, but their molecular interactions with the host 
environment remain to be established, and they are therefore not included in this overview figure.
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laboratory passage, or in parasite subspecies that have 
lost the capacity for tsetse transmission, and are instead 
spread either by mechanical transmission by other bit
ing flies (T. b. evansi) or by venereal transmission 
between equids (T. b. equiperdum) [224,225].

The molecular details that generate the quorum sen
sing signal and how this is detected and transduced to 
effect development in the parasites have been recently 
unraveled (Figure 3). The signal that induces the para
site to undergo cell cycle arrest and stumpy formation 
(classically described as an ill-defined “stumpy induc
tion factor”, SIF) is oligopeptides in the environment of 
the parasite [226]. These are generated by proteolytic 
enzymes or peptidases that are released by the parasite 
in the mammalian host, apparently through an uncon
ventional protein secretion pathway [227]. This allows 
a density-dependent signal to be generated because as 
parasite numbers increase, the abundance of the 
released peptidases correspondingly increases and, 
though their activity in the blood or tissues, produce 

oligopeptides to activate the developmental signaling 
pathway [228]. Two peptidases have been found to 
provide a major contribution to the generation of the 
QS signal, Oligopeptidase B and metallocarboxypepti
dase 1, and the individual or combined deletion of both 
peptidases by gene knockout increases parasite viru
lence through reduced stumpy formation [227]. Other 
parasite-derived peptidases are also likely to contribute, 
however, complementing the dominant activities of 
TbOPB and TbMCP1, or pre-processing larger poly
peptide substrates so that they can act as substrates for 
these enzymes, which show specificity for substrates 
limited in size [229,230]. Host peptidases in the para
site’s environment could also provide a signal to aug
ment stumpy formation; this would not be dependent 
upon parasite numbers directly, although immune 
responses to the parasite population may involve pro
teolytic activities [231]. Although untested, the immune 
response against the parasite could also contribute to 
promote quorum sensing if parasite-specific antibodies 

Figure 3. Quorum sensing in Trypanosoma brucei. Schematic pathway for the quorum sensing signalling pathway in Trypanosoma 
brucei. Slender form parasites release several peptidases into their environment, with two peptidases, Oligopeptidase B and 
Metallocarboxypeptidase I being important contributors to the generation of the quorum sensing signal, oligopeptides. 
Environmental oligopeptides can be transported into recipient parasites by the TbGPR89 surface transporter that is expressed on 
slender cells but not stumpy forms. In an unknown mechanism, transported oligopeptides stimulate a signal transduction cascade 
that promotes stumpy formation through the action of gene regulators (RNA binding proteins). Molecules that act to inhibit stumpy 
formation (slender retainers) are inactivated. At least one kinase, TbDYRK, acts on both control arms, inhibiting slender retainers and 
promoting stumpy formation. Other molecules, annotated as “Hypothetical proteins” in TryTrypdb (https://tritrypdb.Org/tritrypdb/ 
app) have been identified that control stumpy formation but their positions in the regulatory pathway are unknown.
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proximal to the parasite could provide substrates for 
trypanosome-released peptidases, potentially contribut
ing to the altered stumpy formation of intact versus 
immunocompromised mice [232]. Importantly, the 
generation of oligopeptides by parasite-derived pepti
dases allows stumpy formation at high parasite num
bers in the blood and also low parasite numbers where 
trypanosomes are constrained within tissues such as the 
skin and adipose, such that local accumulation of their 
activities and products can occur [226,227]. This 
resolves the perceived conundrum that stumpy forma
tion in rodents involves large parasite numbers, 
whereas in livestock hosts the circulating parasite popu
lation might be relatively low but stumpy forms are 
prevalent [233].

The presence of oligopeptidases activates 
a developmental signaling response. The signal is trans
ported by a surface molecule, TbGPR89, specific to 
slender cells as the signal-receiving population. 
Interestingly, not all oligopeptides operate equally 
effectively, with tripeptides being more active than 
dipeptides, and with particular amino acid combina
tions being more effective than others [226] - suggest
ing a specificity code. The quorum sensing signaling 
pathway has many components, originally identified via 
a genome-wide RNAi screen designed to isolate para
sites unresponsive to a cell permeable mimic of the 
quorum sensing signal [234]. These molecules include 
protein phosphatases and protein kinases as well as 
RNA binding proteins acting as predicted gene regula
tors and, more recently, a long non-coding RNA reg
ulator [235]. Several hypothetical proteins of unknown 
function are also implicated [236]. In combination, 
these components drive stumpy formation, although 
an analysis of their respective dependency relationships 
indicated that the signal transduction pathway was not 
a simple linear hierarchy [237]. Perhaps more than one 
signal input contributes to ensure appropriate activa
tion of the developmental response, or perhaps there is 
regulatory input or feedback from other molecular 
components, including those not yet uncovered? 
Molecular inhibitors of stumpy formation have also 
been identified [238–241], as has at least one molecule 
that seems to act on both stimulatory and inhibitory 
arms of the process [242]. This reflects the complexity 
and stringent regulation of quorum sensing, which is 
necessary because stumpy formation represents 
a terminal developmental step unless the parasites are 
transmitted to tsetse.

The gene expression response to the quorum sensing 
signal has been analyzed by single-cell RNA sequencing 
[243]. This identified the trajectory of the transition in 
terms of gene expression from the slender to the 

stumpy forms. In particular, parasites were observed 
to transition in the G1 phase of their cell cycle with 
no “intermediate form” transcriptome identified, 
despite the description of these morphologically transi
tional forms [223]. Analysis of a parasite line defective 
in quorum sensing through its deletion of a component 
of the QS signaling pathway identified early transcript- 
level changes in gene expression as parasite initiate the 
developmental QS response [243], providing a route to 
pinpoint the molecular commitment events that define 
the initiation of the decision to progress toward stumpy 
formation.

The generation of stumpy forms is a unique innova
tion to T. brucei with limited evidence for morphologi
cal development in either T. congolense or T. vivax. 
Nonetheless, both these species exhibit density- 
dependent growth arrest, accumulating as G1-arrested 
forms at higher parastiaemias [244,245]. In 
T. congolense, gene expression changes that accompany 
this arrest have been analyzed, which predicts changes 
in the expression of some surface proteins [246]. The 
genomes of both T. congolense and T. vivax also encode 
orthologues of many of the regulators of quorum sen
sing identified in T. brucei, and at least one of these 
(TcIL3000.0.19510) can complement a T. brucei null 
mutant for TbHYP2 (Tb927.9.4080) to restore stumpy 
formation, demonstrating functional equivalence [245]. 
Thus, despite the absence of morphological develop
ment, it appears both T. congolense and T. vivax exhibit 
quorum sensing to regulate their virulence in mamma
lian hosts and, potentially, as an adaptation for tsetse 
uptake.

Secreted factors and EVs

The importance of released peptidases and their role in 
generating the signal that promotes the development 
transition to stumpy forms has reemphasized that try
panosomes are not passive entities in their hosts but 
instead behave interactively to support their survival 
and transmission and, potentially, to contribute to 
virulence.

Several studies have analyzed the secretome of 
bloodstream form trypanosomes. Secreted proteases, 
and T. brucei Cathepsin-L (TbCatL) in particular, 
have been implicated mediating extravasation of 
T. brucei cells via perturbation of intracellular calcium 
levels in brain endothelial cells [247], and secreted 
TbCatL has also been shown to induce spontaneous 
depolarization events in isolated cardiomyocytes, also 
via perturbation of intracellular calcium levels [248], 
which may contribute to cardiac pathology observed 
in human and animal infections. Secreted peptidases 
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have been proposed to be involved in trypanosome 
pathogenicity by hydrolyzing host hormone peptides, 
hence affecting their functions [249250250, . Other 
studies have also described peptidases in the blood 
of infected mice and rodents where they remained 
catalytically active [251–253]. Various studies have 
looked at these secreted or released peptidases and 
their substrates both in vitro and in vivo. For example, 
oligopeptidase B (OPB), which cleaves Arg/Lys con
taining peptides smaller than 30 amino acid residues, 
is released into the bloodstream of rats infected with 
trypanosomes. This cleaves available host hormones 
such as atrial natriuretic factor resulting in hormonal 
deregulation linked with trypanosome infections 
[249,253]. Similarly, type 1 pyroglutamyl peptidase 
(PGP) and prolyl oligopeptidase (POP) are also 
released into the blood of rats during trypanosome 
infections and remain catalytically active. PGP cleaves 
host 
gonadotropin-releasing hormone (GnRH) and thyro
tropin-releasing hormone (TRH) by removing the 
N-terminal pyroglutamic acid-blocking groups [252] 
while POP, which hydrolyses Pro/Ala containing sub
strates at the carboxyl end, hydrolyses type 1 collagen 
and native collagen [251]. POP has also been demon
strated to hydrolyze substance P, oxytocin, vasopres
sin, and angiotensin in vitro [251]. In all, the 
expression of peptidases, their secretion/release into 
the host bloodstream and their activity in the host 
plasma have been reported in African trypanosomes, 
with interest in these molecules enhanced with the 
recent discovery of their involvement in the genera
tion of the quorum-sensing signal for stumpy differ
entiation [227,228].

Numerous studies have looked at the secretome of 
the different species of trypanosomes, including in the 
different life cycle forms [160,161,254,255–258]. These 
studies have identified proteins that are involved in 
different functions, including folding and degradation, 
nucleotide, carbohydrate and amino acid metabolism, 
protein synthesis, and transport [258]. These proteins 
may interact with the host’s immune system, and by so 
doing, contribute to immunopathology and also the 
survival of the parasites. This was demonstrated by 
Garzon et al. [257], where they found a reduction in 
the secretion of host immune molecules and an impair
ment in the maturation of lipopolysaccharide (LPS)- 
induced dendritic cells in the presence of 
T. b. gambiense secretome. As highlighted above, 
among the identified secreted proteins in previous stu
dies were peptidases. Different classes of peptidases are 
expressed in trypanosome parasites; serine, cysteine, 
metallopeptidases, threonine, and aspartyl with 

peptidases from each of these classes being character
ized in T. brucei.

Exosomes are a subset of extracellular vesicles and 
are formed from the budding of the late endosomes. 
They are cup-shaped, approximately 20–100 nm in dia
meter [259], and are secreted through fusion with the 
plasma membrane. In a variety of pathogens, exosomal 
secretion has been proposed to be involved in cell-to- 
cell communication, cell-to-host communications, and 
has also been implicated in pathogenicity and cell dif
ferentiation [260–262]. Protein release through exo
somes has been described in trypanosomes when the 
secretome of the parasite was analyzed, revealing the 
release of leaderless proteins as well as exosome asso
ciated proteins such as Rab proteins, clathrin heavy 
chain, enolase, and heat-shock protein 70 [254]. 
Extracellular vesicular secretion has also been reported 
in T. cruzi [259], and in Leishmania it was recently 
demonstrated that genes encoding drug resistance can 
be passed between Leishmania cells via exosomes 
[263] – highlighting the potential importance of this 
phenomenon for multiple phenotypes. Molecules 
involved in this type of secretion include the compo
nents of the ESCRT complex (Endosomal Sorting 
Complex Required for Transport) [262,264,265].

Parasite-parasite interactions and coinfections

The extracellular release of factors into their environ
ment open the possibility for coinfecting trypanosome 
strains and species to interact with one another through 
collaboration or competition, either directly or indir
ectly. Different trypanosomes species co-circulate in 
sub-Saharan Africa, with transmission by the same 
vector species [266]. As a consequence, coinfections 
have been frequently reported both in livestock infec
tion and in trapped tsetse flies [267–269]. In several 
studies, the coinfection between different strains and 
species have been found to alter the infection dynamics 
and/or virulence in the host [57]. This was exemplified 
in concomitant infections of livestock with virulent and 
less virulent strains of T congolense in livestock, where 
the presence of a less virulent strain suppressed the 
pathology associated with a more virulent strain [270]. 
This was not linked to shared antigens or immune cross 
reactivity between the parasites in the infection, since 
removing one of the strains with trypanocides before 
inoculating the second strain eliminated the response. 
Competitive suppression has also been observed 
between strains of T. brucei in rodent infections, with 
a more virulent strain being suppressed by a less viru
lent strain, enabling extended host survival and reduced 
pathology [271]. These phenomena are reminiscent of 
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the interactions between closely related Theileria spe
cies in livestock, where the impact of the more patho
genic Theileria parva was ameliorated by infection of 
the less virulent Theileria mutans, to the extent that 
infection with the less virulent species was proposed as 
a potential anti-virulence approach to disease control, 
potentially more valuable than anti-parasitic drugs 
[272]. In many cases, however, the coinfection of dif
ferent parasite species generates significantly worse out
comes [273,274].

Interactions between strains in coinfection are also 
observed with respect to quorum-sensing signals. As 
highlighted earlier, T. congolense does not generate 
morphologically stumpy forms but the parasite exhi
bits arrest in G1 in a density-dependent manner 
[245]. To explore whether the parasites could detect 
the QS signals, mice with T. congolense infections 
were superinfected with T. brucei and the ability of 
the latter to generate stumpy forms compared with 
mice infected with T. brucei alone. The T. brucei in 
the coinfection were found to accelerate their stumpy 
formation reflective of the overall parasite load, 
rather than the contribution of T. brucei to the infec
tion alone. Furthermore, the response of the parasites 
was dependent on their intact QS signaling pathway 
since null mutants for a component of the signaling 
path proliferated in the coinfection setting regardless 
of the existing T. congolense parasites [245]. Overall, 
this demonstrated that T. brucei responds to the 
presence of T. congolense and that this is mediated 
via a T. congolense derived QS signal, although 
whether there was a signal from T. brucei to 
T. congolense could not be explored in the absence 
of suitable molecular markers for transmission stages 
in the latter species.

These experiments established that different try
panosome strains and species can detect and 
respond to one another in a coinfection and that 
this can alter their potential for virulence and trans
mission. Such interactions in the field have the 
potential to select for evolutionary strategies that 
provide an advantage in a coinfection scenario for 
parasites that reduce their sensitivity to the QS sig
nal, or occupy niches where they are less susceptible 
to manipulation by a coinfecting strain [218]. As 
discussed elsewhere, there are also potential impli
cations for therapeutic strategies [275] or with spe
cies-specific vaccination [109], since this has the 
potential to perturb a coinfection equilibrium to 
allow the emergence of parasites less sensitive to 
QS signals and so more likely to be virulent when 
in a monoinfection setting.

Future perspectives: identification of gaps, 
priorities, and opportunities

In this article, we have aimed to summarize current 
knowledge with respect to parasite factors that influ
ence the severity of clinical signs and disease outcome 
in the mammalian host. The complexity of disease 
caused by trypanosomes, with the involvement of mul
tiple host and multiple trypanosome species, means 
that this is inevitably an ambitious undertaking, and 
covers multiple aspects of trypanosome infection biol
ogy. However, the advances in the last decades by many 
researchers mean that we now have an impressively 
detailed understanding of trypanosome factors that 
influence host-parasite interactions. This is particularly 
true for T. brucei, and for infections in mice, where the 
understanding is particularly advanced – the detailed 
knowledge we now have of the differentiation process 
from long slender to stumpy life cycle stages being 
a prime example. In recent years, efforts in T. brucei 
have also begun to significantly shift toward working 
with pleomorphic, differentiation-competent strains 
(e.g. T. brucei EATRO 1125 AnTat 1.1) and away 
from the heavily laboratory-adapted monomorphic 
Lister 427, a move that will provide data more relevant 
to field infections. However, the science reviewed in 
this article highlights that we have identified relatively 
few virulence factors responsible for even well charac
terized phenotypes (see Table 1), and has also high
lighted areas where knowledge in general is much less 
developed. These gaps in understanding represent 
opportunities for the trypanosome research community 
going forward, and in the following section we aim to 
outline research needs and opportunities.

While the ability to work with T. brucei advances at 
a spectacular pace, with examples such as precise and 
scalable gene silencing and editing techniques that facil
itate high throughput phenotypic screens and highly 
detailed functional analysis [234,279–281], the rate of 
progress in terms of advancement in knowledge, data, 
and capabilities lags significantly behind for 
T. congolense and T. vivax. Partly, this is due to the 
sheer difference in scale in terms of amount of research 
investment into these pathogens, as evidenced by the 
stark disparity in the number of research outputs on 
T. congolense and T. vivax compared to T. brucei over 
the past decades [282]. However, there has been 
a refocusing on T. congolense in recent years that has 
seen the generation of foundational datasets and cap
abilities [40,44,72,133,283–285], and combined with 
renewed interest from funders in AT, this is contribut
ing to a revival of research on this organism. Although 
not to the same extent, there are also tools and 
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Table 1. Virulence phenotypes and state of current knowledge.
Phenotype Mechanistic details Virulence factor References

Human infectivity Evasion of trypanosome cell lysis by preventing 
lytic activity of human Apolipoprotein-1.

SRA (T. b. rhodesiense) 
TgsGP, TbHpHbR, KIFC1, V-ATPase-a, -c, -F & -H, 

V-ATPase assembly factors,Tb9297.10.12940, 
Tb927.9.8000 (T. b. gambiense Group 1) 

Unknown gene, probably located in 
bloodstream expression site (T. b. gambiense 
Group 2)

[149],[276,277 
[29,146,151]

Tissue damage Modulation of NO production via influencing 
arginase expression, leading to liver injury and 
early mortality. (T. brucei; mice)

TbKHC1 [38]

Strain-specific organomegaly, linked to arginase 
expression and alternative macrophage 
activation. (T. brucei, mice)

Locus on T. brucei chromosome 3 – gene 
unknown

[363737,

Cardiomyocyte depolarization and cardiac 
arrhythmias via parasite-induced perturbation 
of host cell Ca2+ signaling. (T. brucei; rats)

TbCatL [248278278,

Hypergammaglobulinemia B-cell mitogenesis in response to virulence 
factors released by the parasite. (T. vivax)

Proline racemase [200]

Anaemia Desialylation of erythrocytes leading to 
erythrophagocytosis. (T. vivax & T. congolense)

Trans-sialidases [204–206]

Antigenic variation Evasion of host antigen-specific antibody 
response by sequential switching of identity of 
the expressed Variant Surface Glycoprotein. 
(T. brucei, T. congolense, T. vivax; all 
mammalian hosts)

VSG [42–45,99]

Host B cell destruction Ablation of splenic B cells, Including memory 
B cells, leading to loss of adaptive immune 
memory, including to non-trypanosome 
antigens. (T. brucei, T. congolense, T. vivax; 
mice, probably cattle & humans)

Unknown [115–118,122]

Trypanosome 
differentiation

T. brucei – Genes identified in a genome wide 
RNAi screen for resistance to chemical 
activators of the stumpy formation pathway 
in vitro, cAMP or AMP. The listed genes have 
been confirmed to be involved in stumpy 
formation in vivo (mice). 

Negative regulator of stumpy formation 
Negative regulator of stumpy formation 
Negative regulator of stumpy formation 
Long non coding RNA regulator of stumpy 

formation positioned between Tb927.10.12090 
and Tb927.10.12100. 

Oligopeptide transporter for the quorum sensing 
signal 

Peptidases contributing to the generation of the 
quorum sensing signal

Tb927.4.3620/30/40 (PP1) 
Tb927.10.5930/40/50 (NEK17) 
Tb927.2.2720 (MEK) 
Tb927.10.15020 (DyrK) 
Tb927.11.6600 (Hyp 1) 
Tb927.9.4080 (Hyp2) 
Tb927.10.12090 (RBP7A) 
Tb927.10.12100 (RBP7B) 
Tb927.2.4020 (Nedd8 activating enzyme) 
Tb927.3.4560 (AMPKa) 
TbTOR4 
MAPK5 
ZFK 
SnoGRUMPY 
TbGPR89 
TbOPB, TbMCP1

[142,234,237] 
[238,239,241] 

[235] 
[226] 
[227]

T. congolense – functional orthologue of 
Tb927.9.4080 (45% identity, 58% similarity).

TcIL3000.0.19510 [246]

T. vivax – not known
Skin colonisation Invasion (& metabolic adaptation?) and 

establishment of skin resident populations. 
(T. brucei; mice & humans)

Unknown [128,129]

Adipose tissue 
colonisation

Invasion & metabolic adaptation to adipose 
tissue. (T. brucei; mice)

Unknown [130]

Endothelial cell adherence 
& sequestration

Strain-specific cerebral pathology linked to 
differential sequestration in brain capillaries. 
(T. congolense; mice) 

Parasite-induced migration across endothelial 
barriers by perturbation of host cell Ca2+ 

signaling. (T. brucei)

Unknown 
TbCatL

[133] 
[202,247]

Metabolic suppression of 
macrophage activity/ 
response

Indolepyruvate impacting upon glycolytic 
capacity through HIF-1α interference and 
inhibition of pro-IL-1β. 

Inhibition of cyclooxygenase and downstream 
prostaglandin production via indolepyruvate. 
(T. brucei)

Indole pyruvate (derived from cASAT; 
Tb927.10.3660; predicted syntenic 
orthologues: TcIL3000_10_2990, 
TvY486_1003700

[163]

Metabolic modulation of 
dendritic cell response

Activation of Nrf2 and HO-1 induction impacting 
upon glycolytic capacity, leading to reduced 
production of pro-inflammatory cytokines and 
CD4+ T cell activation. (T. brucei)

Indole pyruvate & hydroxyphenylpyruvate 
(derived from cASAT; Tb927.10.3660; 
predicted syntenic orthologues: 
TcIL3000_10_2990, TvY486_1003700)

[163]
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resources available for T. vivax that enable work on this 
pathogen that was not previously possible [45,88,94], 
which is already leading to notable, paradigm- 
challenging studies [109]. However, there are key 
basic capabilities where improvement would be trans
formative. The ability to culture bloodstream form 
T. congolense and T. vivax in vitro is still limited, with 
a very small number of strains for T. congolense having 
been successfully adapted to in vitro culture, and only 
one for T. vivax – with a requirement in T. vivax for 
mammalian feeder cells for mid- to long-term culture. 
Development of media formulations that supported 
axenic growth of multiple strains for both species 
would be a substantial breakthrough that would accel
erate meaningful functional studies, and provide the 
ability to dissect the genetic diversity present in both 
species. Additionally, while genetic modification is 
clearly possible in both species [94,283], in T. vivax 
this is currently restricted to the epimastigote life 
cycle stage, and requires differentiation through meta
cyclics to bloodstream forms to obtain the relevant 
mammalian life cycle stage. The ability to directly 
genetically modify T. vivax bloodstream form cells 
would be a major step forward, albeit this may depend 
on the prior development of an appropriate in vitro 
culturing medium. It is clear that the multiple funda
mental differences between these three species mean 
that if such basic capabilities are improved, there are 
many opportunities for identifying novel and important 
aspects of trypanosome cell and infection biology.

As is evident from many of the advances outlined in 
this article, the mouse model has been and remains 
hugely influential and useful in providing key insights 
into the infection biology of African trypanosomes. The 
mouse model provides experimental tractability and 
scalability that can make it an incredibly powerful 
experimental tool. However, ultimately for most traits 
there is a need or desire to assess translation to the 
clinically relevant host model. It should be stressed that 
this is not always simply a matter of assessing clinical 
relevance, but that it can also be because analyzing 
a trait in such hosts provides genuine scientific insight 
and interest. While this is clearly a challenge with the 
human disease in terms of both ethical reasons and the 
small and reducing number of clinical cases (although 
the extravascular skin populations of T. brucei are 
a recent example of laboratory observations proving 
important and useful in HAT [128,129]), for AT there 
is substantial scope for analysis in clinically relevant 
hosts such as cattle. Several facilities are now available 
that enable experimental infection of cattle, and there 
are multiple phenotypes observed either in vitro or in 
the mouse model that it would be of significant interest 

to translate to the bovine model – whether for reasons 
of host size and scale, physiology, bovine-specific 
aspects of the immune response, or to demonstrate 
potential clinical relevance. Example phenotypes 
where the interest in this translation to the cow are 
obvious include antigenic variation (where modelling 
has indicated host size is likely to play a substantive role 
in VSG-population dynamics [286]), parasite-mediated 
B cell memory loss [115], cell adherence and tissue- 
specific sequestration [133], coinfection and interaction 
between trypanosome species [245], and the validation 
of vaccine candidates [109]. However, this is to name 
but a few phenotypes where analysis in the bovine host 
would prove informative; it is abundantly clear that 
many aspects of our understanding of trypanosome 
infection biology would greatly benefit from assessment 
in the bovine or other clinically relevant host species.

Similar to increased research on the clinically rele
vant hosts, there is equally a lot of value to be gained 
from more assessment of the extent to which laboratory 
findings are recapitulated in the field. Likewise, findings 
in the field also have the obvious potential to stimulate 
meaningful laboratory and experimental work, and 
there could perhaps be better integration of laboratory 
and field approaches across many aspects of trypano
some biology. The tissue distribution of trypanosomes 
in the skin and adipose, and the findings that have 
resulted from the original studies describing these phe
nomena [129,130], is a prime example of the mutually 
beneficial advances that can be gained across basic and 
applied approaches from combining field and labora
tory experimental work. But as noted above, there are 
multiple aspects of trypanosome biology where integra
tion of field approaches with laboratory approaches 
would enhance our understanding – for example, the 
increasing interest in coinfections, where experimental 
approaches provide the ability to control for multiple 
confounders and gain mechanistic insights, but prop
erly designed field approaches enable the deconvolution 
of the interaction of trypanosomes (or mechanism) 
with host, pathogen, and environmental factors.

There also remain some fundamental gaps in our 
field knowledge of trypanosome virulence. For exam
ple, almost all T. congolense studies (laboratory or field) 
focus on T. congolense Savannah. We know astonish
ingly little about the other subtypes of T. congolense, 
Forest and Kilifi, other than that they are detected in 
cattle and wildlife across sub-Saharan Africa, a very few 
assessments of relative virulence of selected strains in 
cattle and mice, and the generation of a limited amount 
of genome data (for Forest). But the extent of the 
disease caused in cattle and other livestock attributed 
to these subtypes, and the intricacies of their 
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epidemiology (e.g. tsetse transmission, interaction with 
other trypanosome species and other subtypes of 
T. congolense) are questions that are ripe for answer
ing – similar questions pertain to several of the under
studied trypanosomes, such as T. simiae, T. suis and 
T. vivax-like. This lack of knowledge feeds into some of 
the capability challenges outlined above (e.g. limited 
capacity for in vitro culture), but is likely also exacer
bated by confirmation bias in many field study designs 
(i.e. targeted surveillance will only detect what is tested 
for). Improved diagnostics, and in particular the 
increasing power of sequence capture or enrichment 
approaches, should enable a better disentangling of 
such questions.

In summary, reflecting the complexity of disease 
caused by multiple and genetically distinct trypano
some species that infect a diversity of host species, 
virulence in trypanosomes is complicated and multi
factorial. While we have made substantial progress in 
some areas and have a good understanding of viru
lence factors and how they exert their effect, particu
larly with respect to T. brucei, there remain 
substantial gaps in knowledge. However, these repre
sent opportunities going forward to further our 
understanding of how these fascinating and important 
pathogens interact with the mammalian host and 
cause disease. This has the potential to reveal yet 
more scientifically novel aspects of trypanosome biol
ogy, as well as lead to the design of novel interven
tions that are still sorely lacking for both human and 
animal trypanosomiasis.
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