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Abstract

The permissionless clock synchronization problem asks how it is possible for a population of
parties to maintain a system-wide synchronized clock, while their participation rate fluctuates
—possibly very widely— over time. The underlying assumption is that parties experience the
passage of time with roughly the same speed, but however they may disengage and engage with
the protocol following arbitrary (and even chosen adversarially) participation patterns. This
(classical) problem has received renewed attention due to the advent of blockchain protocols,
and recently it has been solved in the setting of proof of stake, i.e., when parties are assumed
to have access to a trusted PKI setup [Badertscher et al., Eurocrypt ’21].

In this work, we present the first proof-of-work (PoW)-based permissionless clock synchro-
nization protocol. Our construction assumes a public setup (e.g., a CRS) and relies on an
honest majority of computational power that, for the first time, is described in a fine-grain
timing model that does not utilize a global clock that exports the current time to all parties. As
a secondary result of independent interest, our protocol gives rise to the first PoW-based ledger
consensus protocol that does not rely on an external clock for the time-stamping of transactions
and adjustment of the PoW difficulty.

∗Research supported by NSF grants no. 2001082 and 2055694.
†Work supported by Input Output – IOHK through their funding of the Edinburgh Blockchain Technology Lab.
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1 Introduction

In the classical clock synchronization problem [DHS84, LMS84, HSSD84], a set of processors, each
one possessing a timer that is within a bounded rate of drift from “nominal time” (the real time—
called Newtonian time in [DHS86]), should realize logical clocks that are within a distance Skew ∈ N
of each other and within a linear envelope of nominal time. The typical threat model involves a
subset of parties who deviate arbitrarily either from correct protocol execution or in terms of their
clock speed and may as a result prevent synchronization from happening. A clock synchronization
protocol has parties exchanging messages to suitably adjust their clocks so that the synchronization
condition is achieved.

Up until the work of [BGK+21] all prior work in clock synchronization assumed that the number
of parties are known and available during protocol execution, unless they are assumed adversarial.1

This standard assumption in Byzantine fault tolerance protocols was challenged first with the
advent of the Bitcoin blockchain and related “permissionless” protocols. As exemplified in [GKL17,
GKL20], the Bitcoin blockchain operates in a setting where the number of active parties may be
unknown and continuously fluctuating throughout the protocol execution. While such results paved
the way to rethink the problem of consensus in this setting (cf. [PS17b, GK20]), near perfectly
synchronized clocks remained a central assumption in all previous security analyses of blockchain
protocols (cf. [GKL15, BMTZ17, PSS17, GKL17, GKL20]).

In the setting where participation is dynamic and fluctuating over time, the adversary can in-
troduce and remove honest parties at will without notifying the existing participants. The main
challenge in this transient participation setting shifts from correcting the bounded-rate drift occur-
ring between the ever connected honest parties over time to the task of bringing up to sync freshly
joining parties who start without any information about nominal time, while accommodating for
the fact that a (possibly large) number of honest parties is no longer active. In [BGK+21], as-
suming a so-called private-state setup [GK20] (specifically, a PKI), a protocol called “Ouroboros
Chronos” is presented that can synthesize a notion of global time using a continuous flow of clock
measurements that are provided by parties who only transiently participate in the protocol and
their local clocks are assumed to be correct up to a bound. The level of participation fluctuates
broadly with the only requirements that (i) it does not become negligible, and (ii) honest majority
is preserved in terms of stake (all parties have a number of coins associated to their public keys
that amount to their individual stake). Given this, their result leaves open the question of only
utilizing a public(-state) setup.

To our knowledge, the only known result with a public setup in the permissionless setting,
again from [BGK+21], is that parties may use a Nakamoto-style longest chain blockchain without
difficulty adjustment and use the block index to define a concept of global time. The obvious
downside of this idea is that the protocol execution speeds up and slows down as participation
fluctuates and, most importantly, it will be entirely insecure when there is a steady increase (or
decrease) of participants, making the construction essentially only suitable for a static model where
the number of parties (i.e., the computational power invested in the system for proof of work)
remains fixed.

This motivates the current work, where the following open question is being tackled:

Is it possible for a dynamically changing population of peers to synchronize their clocks

1Note that the problem of joining parties in the context of clock synchronization was considered, but only condi-
tionally on the new party agreed upon and approved by a sufficient number of participants; see [HSSD84].

4



utilizing only a public setup and assuming PoW?

One apparent difficulty in answering this question is that using a blockchain protocol to derive
consistency for clock adjustments runs into the complication that the blockchain protocol itself
utilizes a clock to adjust the PoW difficulty at regular intervals. Indeed, the Bitcoin blockchain
[Nak08] relies fundamentally on a global clock being available to all parties.2 It follows that this
observation suggests also a secondary open question that will be tackled as well:

Is there a blockchain protocol in the PoW setting that has no dependency on a publicly
accessible global clock?

1.1 Overview of our results

The clock synchronization problem asks parties to report clocks that satisfy two properties (cf. [DHS84])
(i) bounded skew: the parties maintain logical clocks whose difference is upper bounded, and (ii)
linear envelope synchronization: the logical clock reported by a party is always within a linear en-
velope of the nominal time. Note that we are interested in a formulation of this problem in a very
general setting where some parties are adversarial and hence deviate from the protocol arbitrarily,
while honest parties may come and go following arbitrary participation patterns. Given this setting
we formulate the desideratum of a synchronized clock only with respect to a class of parties we call
alert, which are honest parties that have also been online for a sufficiently long time to catch up
with all protocol messages. More formally, the clock synchronization problem is stated as follows.

Definition 1 (Clock Synchronization). There exist constants Skew ∈ N, shiftLB, shiftUB ∈ (0, 1)
such that honest parties’ logical clocks satisfy the following two properties:

Bounded skews. Let r1, r2 be the reported logical clocks of two alert parties at any nominal
time r. Then |r1 − r2| ≤ Skew.

Linear envelope synchronization. Each alert party’s logical clock stays in a (U,L)-linear
envelope3 with respect to the nominal time r, where U = 1/(1−shiftUB) and L = 1/(1+shiftLB).

Solving the clock synchronization problem asks for a protocol that within a certain threat model
achieves the two properties. This brings us to our first main result.

A model for permissionless clock synchronization in the PoW setting. Our model (Section 2) simul-
taneously facilitates (i) the dynamic participation of parties, (ii) imperfect local clocks, and (iii)
resource bounding by restricting parties’ queries to a random oracle (cf. [GKO+20]). Specifically,
we extend the previous model of the global imperfect clock of [BGK+21] to the PoW setting by
introducing a random oracle functionality that apportions random oracle queries per unit of time
between the honest parties and the adversary in a manner consistent with an honest majority as-
sumption in terms of computational power. The concept of time provided by the imperfect local
clock functionality of [BGK+21] enables parties to advance their local clocks and experience time
at roughly the same speed (a maximum drift of Φclock is allowed). Note that the environment is
allowed to introduce new parties and remove old parties at will, something that results in them
being de-registered from the clock functionality; when this happens the clock functionality is not
responsible for keeping them up to speed with the rest of the honest parties. In this way, parties
can be seen as entirely transiently engaging with the protocol—each individual party may only

2The protocol implements such clock by having nodes querying other nodes in the network and possibly seeking
user input — it has no way of deriving a clock from the protocol operation itself. See [GKL20] for more details.

3A function f : R → R is within a (U,L)-linear envelope if and only if it holds that L · x ≤ f(x) ≤ U · x, for all x.
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engage for a small fraction of the total execution time as adaptively decided by the environment.
Armed with our model, we then present our second main result.

A new protocol for permissionless clock synchronization in the PoW model. We describe our new
PoW-based clock synchronization protocol Timekeeper in Section 3. The construction is based on
three key ingredients: (i) A mechanism that repurposes the concept of 2-for-1 PoWs introduced in
[GKL15] and subsequently used to achieve various properties such as fairness in [PS17a] and high
throughput in [BKT+19], to the setting of time-keeping by employing it to enable the collection of
“timing beacons” from the active parties in a rolling window process; (ii) a PoW-based longest-chain
type of blockchain that enables parties at regular intervals to reach consensus about the timing
beacons that are shared and extract a suitable correction to their local clocks taking into account
the arrivals of the beacons; and (iii) a novel target-recalculation function that can be thought of
as the reverse of the one used in Bitcoin, that uses protocol recorded timestamps as a means to
define the length of an epoch, and then uses the number of blocks produced in that period of time
to adjust the PoW difficulty accordingly.

Putting these elements together, our clock synchronization protocol instructs parties when
their local clock passes some specific moment (which happens periodically with respect to the
interval length) to execute an adjustment on their local clock based on the median value of the
beacon timestamps and their corresponding arrival time. Moreover, towards the goal of letting
newly joining parties become synchronized with the protocol time, we present a joining procedure
which requires the fresh parties to passively listen to the protocol execution for a while and then
synchronize with other honest participants.

Based on the ledger consensus function offered by our protocol it is easy to derive also the
following result.

A new PoW-based blockchain protocol without a global clock. Given that our protocol is a Nakamoto-
style “most-difficult chain” type of protocol that faclitates clock synchronization, it is easy to
transform it to a full-fledged blockchain protocol that admits transactions as in Bitcoin script
or Ethereum smart contracts. The resulting blockchain has the novel property that it does not
depend on accessing a globally available clock. Instead, parties utilize their local clocks which may
be drifting or be out of sync, but thanks to the synchronization (sub-)protocol that is offered by
our construction they can adjust their local clocks periodically. This eliminates time as an attack
vector in the context of PoW-based blockchain protocols and demonstrates that it is possible to
achieve ledger consensus using merely local clocks in a fully dynamic setting where parties may
come and go adaptively per the adversary’s instructions.

Security analysis. We present the full security analysis of Timekeeper in Section 4. As a high-level
overview, we proceed to adapt the analytical toolset from [GKL17, GKL20] to the imperfect-
local-clock model. Notably, we modify the concept of target recalculation epoch boundaries (from
“point” to “zone”) and the concept of isolated successes (which addresses the question of under
what circumstances can a hash success guarantee the increase of accumulated difficulty). As an
intermediate step, we study several predicates aiming at providing the “good” properties of an
execution starting from the onset and until a given nominal round.

Our inductive-style proof works in the following manner. We prove that if at the onset, the
PoW difficulty is appropriately set and the steady block-generation rate lasts during the whole clock
synchronization interval, parties can maintain good skews after they enter the next interval and the
shift value they compute to adjust their clocks is properly bounded. In addition, if good skews and
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certain time adjustment calculations are maintained during a target recalculation epoch, the block
production rate will be properly controlled in the next epoch. To sum up, this guarantees that
“good” properties can be achieved during the whole execution given a “safe” start and a bounded
change in the number of parties (which can nevertheless still be exponential). We also provide an
analysis of the joining procedure showing that joining parties starting with no a-priori knowledge
of global time, can listen in and bootstrap their logical clock, turning themselves into alert parties
being capable of fully engaging with the protocol.

In summary, Timekeeper solves the clock synchronization problem as defined above as follows.

Theorem (Theorem 18, informal). Let Φclock be the maximum drift allowed on parties’ local clocks
and ∆ the maximum (and unknown) message transmission delay. Then Timekeeper solves the clock
synchronization problem assuming bounded dynamic participation and an honest majority in terms
of random oracle queries, with parameter values

Skew = 2Φ, shiftLB = 3Φ/R, shiftUB = 2Φ/R,

where Φ = ∆ + Φclock and R ∈ N+ is a parameter chosen sufficiently large w.r.t. the security
parameter and reflects the time required for an honest party to become alert.

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we present our
model, relevant definitions and building blocks. We describe our Timekeeper protocol in Section 3
and present the full analysis in Section 4. Detailed description of protocols, functionalities, and
some of the proofs can be found in the appendix.

2 Model and Building Blocks

In this paper we adapt the timing and networking model of [BGK+21] to the setting of proof of
work, obviating the requirement for a PKI as a setup assumption. In more detail, in the model there
is an upper bound ∆ in message transmission (cf. [DLS88, PSS17, BMTZ17, GKL20]), and parties
do not have access to a global clock, but instead rely on their local clocks, whose drift is assumed
to be upper-bounded by Φclock. What complicates matters is that the model supports dynamic
participation where parties may join and leave during the protocol execution without warning (it is
worth noting here that this is where the difficulty of our setting is derived from: indeed if all honest
parties were online throughout then it would be trivial to implement a logical clock by incrementing
a counter). For succinctness, we choose to express primitives and building blocks (see below) in our
execution model utilizing the ideal functionality language of [Can00, Can01], but we do not pursue
a composability analysis for our security properties, which are expressed in a game based manner
as in [GKL15, PSS17].

2.1 Imperfect Local Clocks

As in [BGK+21], and as mentioned above, in this paper we remove the assumption that parties
have access to a global clock, as in [GKL15, GKL17, PSS17, BMTZ17, GKL20], and instead assume
imperfect local clocks. In a nutshell, every honest party maintains a local clock variable by commu-
nicating with an imperfect local clock functionality FILClock. In contrast to the global-setup clock
functionality in [KMTZ13], where parties learn the exact global time and thus strong synchrony
is guaranteed, parties registered with FILClock will only receive “ticks” from the functionality to
indicate that they should update their own clocks. In addition, FILClock issues “imperfect” ticks,
i.e., the adversary is allowed to set a bounded drift to each party by manipulating its corresponding
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status variable in FILClock. FILClock can be viewed as a variant from [BGK+21]’s with adap-
tations to provide a more natural clock model with real-word resources and in the proof-of-work
setting.

For a detailed description of the functionality, see Appendix B. Here we just elaborate on the
“imperfect” aspect of the clock and on the adversarial manipulation of clock drifts. Specifically, we
allow the adversary to set some drifts to parties’ local clocks, which will accelerate or stall their
progress; such values are globally bounded by Φclock. This assumption allows local clocks to proceed
at “roughly” the same speed.

Further, the adversaryA can adaptively manipulate the drift of honest parties’ clocks by sending
clock-forward and clock-backward messages to the functionality4 after they conclude the
current round. If A issues clock-forward for party P, it will enter a new local round before
FILClock updates the nominal time, and this can be repeated as long as P’s drift is not Φclock

rounds larger than other honest parties. On the other hand, if A issues clock-backward, it will
set P’s budget to a negative value, thus preventing FILClock from updating dP at the end of the
nominal round (dP is the functionality variable that captures whether the party P has made its
move for the clock tick). I.e., P will still be in the same logical round during these two nominal
rounds. Again, this process can be repeated by A as long as the drift on P is not Φclock rounds
smaller than others. As a consequence, the targeted party’s local clock may remain static for several
nominal rounds.

2.2 Other Core Functionalities

Common Reference String. We model a public-state setup by the CRS functionality FD
CRS. The

functionality is parameterized with some distribution D with sufficiently high entropy. Once FD
CRS

receives (Retrieve, sid) from either the adversary A or a party P for the first time, it generates a
string d← D as the common reference string. In addition, FD

CRS will immediately send a message
(Retrieved, sid) to functionality W(FRO) (described next) to indicate that W(FRO) should start
to limit the adversarial RO queries. For all subsequent activations, FD

CRS simply returns d to the
requester.

(Wrapped) Random Oracle. By convention, we model parties’ calls to the hash function used to
generated proofs of work as assuming access to a random oracle; this is captured by the functionality
FRO. Notice that with regards to bounding access to real-world resources, functionality FRO as
defined fails to limit the adversary on making a certain number of queries per round. Hence, we
adopt a functionality wrapper [BMTZ17, GKO+20]W(FRO) that wraps the corresponding resource
to capture such restrictions. We highlight that our wrapperW(FRO) improves on previous wrappers
in two aspects, in order to provide a more natural model of the real world: (1) We capture the
pre-mining stage by letting the adversary query the RO with no restrictions (albeit polynomially
bounded) before the CRS is released; (2) The wrapper limits adversarial access per nominal round
by bounding the total number of queries that A can make. The second aspect allows us to dispose
the “flat” computational model and define the computational power in terms of the number of RO
queries per round, which makes it possible to further refine the notion of a “respecting environment”
(see below) that is suited for imperfect local clocks.

4As such, our clock functionality is a more natural model of the real world compared to [BGK+21]’s, as it allows
A to manipulate the clock in both directions, backward, and forward; in [BGK+21], only forward manipulation is
allowed. Nonetheless, this does not result in a more powerful adversary.

8



Diffusion. We adopt the peer-to-peer communication functionality F∆
Diffuse (cf. [BGK+21]), which

guarantees that an honestly sent message will be delivered to all the protocol participants within ∆
rounds. Moreover, for those adversarially generated messages, F∆

Diffuse forces them to be delivered
to all the honest parties within ∆ rounds after they are learnt by at least one honest participant.
This captures the natural behavior of honest parties that they will forward all the messages that
they have not yet seen to their peers.

We refer to Appendix B for a detailed description of the above functionalities.

2.3 Dynamic Participation

The notion of a “respecting environment” was introduced in [GKL17] to model the varying number
of participants in a protocol execution. In [BGK+18, BGK+21], the notion of dynamic participation
was introduced aiming at describing the protocol execution in a more realistic fashion. Here we
present a further refined classification of possible types of honest parties. See Table 1.

Basic types of honest parties
Resource Resource unavailable Resource available

random oracle FRO stalled operational
network F∆

Diffuse offline online
clock FILClock time-unaware time-aware

synchronized state desynchronized synchronized

Table 1: A classification of protocol participants.

Consider an honest party P at a given point of the protocol execution. We say P is operational
if P is registered with the random oracle FRO; otherwise, we say it is stalled. We say P is online if
P is registered with the network; offline otherwise. We say P is time-aware if P is registered with
the imperfect clock functionality FILClock, and time-unaware otherwise.

Further, we say P is synchronized if P has been participanting in the protocol for sufficiently long
time and achieves a “synchronized state” as well as a “synchronized clock.” “Synchronized clock”
means P holds a chain that shares a common prefix (cf. [GKL15]) with other synchronized parties;
“synchronized clock” refers to that P maintains a local clock with time close to other synchronized
parties. Otherwise, P is desynchronized. Additionally, P is aware of whether it is synchronized
or not, and maintains a local variable isSync serving as an indicator for other actions.

Based on the above classification, we now define the notion of alert parties:

alert
def
= operational ∧ online ∧ time-aware ∧ synchronized.

In short, alert parties are those who have access to all the resources and are synchronized; this
requires them to join the protocol execution passively for some period of time. They constitute the
core set of parties that carry out the protocol.

In addition, we define active parties to include all parties that are alert, adversarial, and time-
unaware.

active
def
= alert ∨ adversarial ∨ time-unaware.

Respecting environment in terms of computational power. Next, we provide the follow-
ing generalization of “respecting environment” to relate it to computational power as opposed to
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number of parties. Our assumption is that during the whole protocol execution, the honest compu-
tational power is higher than the adversarial one (cf. the “honest majority” condition in [GKL15]
and follow-ups). The computational power is captured by counting the number of RO (hash) queries
that parties make in each round. Further, we restrict the environment to fluctuate the number of
such queries in a certain limited fashion.

Definition 2. For γ ∈ R+ we call the sequence (hr)r∈[0,B), where B ∈ N, (γ, s)-respecting if for
any set S ⊆ [0, B) of at most s consecutive integers, maxr∈S hr ≤ γ ·minr∈S hr.

We say that environment Z is (γ, s)-respecting if for all A and coins for Z and A the sequence
of honest hash queries (hr) is (γ, s)-respecting.

Note that the notion of respecting environment here is different from the “flat” model adopted
in [GKL15, GKL17, GKL20, BMTZ17]. In a flat model, honest parties are assumed to have the
same computational power, hence the total number of RO queries is a direct 1-to-1 map from the
number of parties. The new respecting environment allows some subset of the honest parties to
query the RO multiple times or stay stalled during a nominal round and hence it adapts to the
“imperfect local clock” model used in this paper.

3 The Clock Synchronization Protocol with Public Setup

In this section we present the general approach and the various core building blocks of the new
clock synchronization protocol—Timekeeper. For a complete description, refer to Appendix C. At
a high level, Timekeeper is a Nakamoto-style PoW-based blockchain protocol together with time
synchronization functionalities. Readers can think of it as a Bitcoin protocol with the following
modifications:

It replaces Bitcoin’s original clock maintenance solution5 with a new clock synchronization
scheme, which requires parties to use 2-for-1 PoWs [GKL15] to mine and emit clock synchro-
nization beacons and include them in an upcoming block. Furthermore, protocol participants
will periodically adjust their local clock values based on the beacons collected in the blockchain
and their (local) receiving time.

Events are triggered by counting the number of local rounds (which is different from the con-
vention that events in PoW-based blockchains are triggered by the arrival of blocks). In other
words, the protocol has a clock synchronization interval of length R and a target recalculation
epoch of length M that are defined in terms of the number of rounds; in addition, M is a multiple
of R. Both of these values are hardcoded in the protocol. More precisely, parties will call the
SyncProc functionality (see Appendix C.10) when their local clock enters round ⟨itvl, itvl ·R⟩
(this represents the last round in interval itvl; see below for details on the round structure);
and for target in the next epoch they will call UpdateMiningTarget (Appendix C.6) when their
local clock enters ⟨itvl, itvl ·R⟩, where (itvl mod (M/R)) = 0 (i.e., at the boundary of every
(M/R) synchronization intervals).

See Figure 1 for an illustration of the protocol execution.

Next, we present the basic components that are employed in Timekeeper.

5In Bitcoin’s original implementation, miners will adjust their time based on three different sources: (1) their local
system clock; (2) the median of clock values from peers; (3) the human operator (if the first two disagrees).
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Epoch 1

Interval 1 Interval 2 Interval 3 Interval 4

Epoch 2

Interval 5 Interval 6 Interval 7 Interval 8

Clock Synchronization Interval Target Recalculation Epoch Block Local Clock Adjustment Target Recalculation Point

Figure 1: An illustration of the clock synchronization protocol execution with one target recalcu-
lation epoch consisting of four clock synchronization intervals.

3.1 Timekeeper Timestamps

As opposed to the conventional approach where blocks’ timestamps are integer values, timestamps
(both blocks’ and beacon values) in Timekeeper are represented by a pair of values interval number
and round number ⟨itvl, r⟩ ∈ ⟨N+,N+⟩. Note that (ideally) one synchronization interval would
last for R rounds (i.e., rounds ((i − 1) · R, i · R] would belong to the i-th interval). However, in
Timekeeper we let the lower bound be 0, which means that timestamps with a somewhat small
round number are still valid. Specifically, a timestamp ⟨itvl, r⟩ is considered valid if and only if
it satisfies the predicate validTimestamp(itvl, r) ≜ r ≤ itvl ·R. We note that this new treatment
allows for some small distortion at the end of each interval—i.e., the round number of a few blocks
at the beginning of the next interval may be smaller than the last block of the previous interval
(we call these “retorted” timestamps); see Figure 2.

⟨1, 90⟩… …⟨1, 99⟩ ⟨2, 95⟩ ⟨2, 99⟩ ⟨2, 108⟩
Blocks in interval 1

Blocks in interval 2

Figure 2: An illustration of a segment of the blockchain with synchronization interval length R =
100. Blocks can have timestamp values equal to blocks in the previous interval.

Consider a chain of blocks in Timekeeper. Their timestamps should increase monotonically in
terms of their interval number, and the round number in a single interval should also increase
monotonically. More specifically, given two timestamps ⟨itvli, ri⟩, ⟨itvlj , rj⟩ of two blocks Bi,Bj
respectively, if Bi is an ancestor block of Bj , they should satisfy the following predicate:

validTimestampOrder(⟨itvli, ri⟩, ⟨itvlj , rj⟩) ≜

{
validTimestamp(itvli, ri) ∧ validTimestamp(itvli, ri)

∧ [(itvli ≤ itvlj) ∨ (itvli = itvlj ∧ ri < rj)]

}

Furthermore, we will overload the notation of comparison operators based on the valid order of
timestamps. E.g., “=” will denote that two timestamps are identical, and ⟨itvl1, r1⟩ < ⟨itvl2, r2⟩
if and only if validTimestampOrder(⟨itvl1, r1⟩, ⟨itvl2, r2⟩) holds. Other operators >,≤,≥, ̸= are
defined similarly.

We also redefine “+,−” to describe the timestamp that is k ∈ N rounds before (resp., after)
⟨itvl, r⟩. Regarding addition, ⟨itvl, r⟩ + k = ⟨max{itvl, ⌈(r + k)/R⌉}, r + k⟩. Intuitively, the
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additive operation simply adds k to r, and only increments itvl when it is going to become invalid.
For subtraction, ⟨itvl, r⟩ − k = ⟨max{1, ⌈(r− k)/R⌉},max{1, r− k}⟩. In other words, regarding
the subtraction operation, we only apply the operation on round, and the interval number is derived
from the round after calculation. It does not output timestamps that are not “normally” belong
to an interval. In case we do the subtraction operation for k ≥ r, it will return ⟨1, 1⟩.

Timekeeper’s new approach to timestamps raises questions regarding the “trimming” of blockchains
by counting the number of rounds. Recall that in [GKL15] the notation C⌈k represents the chain
that results from removing the k rightmost blocks. In this paper, we overload this notation to de-
note the chain that results from removing blocks with timestamps in the last k rounds with respect
to the current time. Specifically, for C = B1B2 . . .Bn and local time ⟨itvl, r⟩, C⌈k = B1B2 . . .Bm is
the longest chain such that ∀B ∈ C⌈k,Timestamp(B) < ⟨itvl, r⟩ − k. In other words, Bm+1 is the
first block (if it exists) such that Timestamp(Bm+1) ≥ ⟨itvl, r⟩ − k holds.

3.2 2-for-1 Proofs of Work and Synchronization Beacons

2-for-1 PoW is a technique that allows protocols to utilize a single random oracle H(·) to com-
pose two separate PoW sub-procedures involving two distinct and independent random oracles
H0(·), H1(·). It was first proposed in [GKL15] in order to achieve a better/optimal corruption
threshold (from one-third to one-half) for the solution of the traditional consensus problem using
a blockchain.

We refer to [GKL15] for more details, and here we present a simple implementation with the
clock synchronization application in mind. In order to do the 2-for-1 mining, a party P prepares
a composite input w that is a concatenation of two inputs w0, w1 of two different sub-procedures
S0, S1, respectively. I.e., w = w0 ∥ w1. After selecting a nonce ctr, quering the random oracle
with ctr ∥ w and getting result u, P checks if u < T which implies success in sub-procedure S0; P
also checks if [u]R < T (where [u]R denotes the reverse of a bitstring u) which indicates success in
sub-procedure S1. After successfully generating a PoW for S0 (resp., S1), in order to let parties
others check validity, the proof will include the nonce and the entire composite input ctr ∥w. Note
that sub-procedure S0 (resp., S1) only cares about its corresponding part w0 (resp., w1), and treat
the other part as dummy information.

The 2-for-1 PoW technique has several advantages when compared with the straightforward
approach that would simply utilize two different random oracles. The most prominent advantage is
that it prevents the adversary A from concentrating its computational power on one RO and thus
gain advantage in the corresponding sub-procedure.

Synchronization beacons. In addition to the conventional blocks constituting the blockchain,
protocol participants in Timekeeper also produce another type of “tiny” blocks using 2-for-1 PoWs.
We call these blocks clock synchronization beacons (“beacons” for short) since they are used to
report parties’ local time and synchronize their clocks.

In more detail, one clock synchronization beacon SB is a tuple with the following structure.

SB ≜ ⟨⟨itvl, r⟩,P, ηitvl, ctr, blockLabel⟩,

where ⟨itvl, r⟩ is the local time SB reports; P denotes the identity of its miner; ηitvl is some
fresh randomness in the current interval; ctr represents the nonce of the PoW and blockLabel is
the associated block input. Note that SB must record the identity of its miner because there
might be multiple beacons, mined by different parties, reporting the same timestamp as well as
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nonce value; otherwise, it would be impossible for the parties to distinguish such beacons. Worse
still, other participants would not be able to distinguish the same beacon SB when they receive
SB multiple times. Regarding ηitvl, it is a string associated with interval itvl for the purpose of
preventing the adversary A from mining beacons with future timestamps. In other words, protocol
participants (including A) can only learn ηitvl after they have (almost) finished interval itvl− 1.
We present the structure of intervals in detail and how we compute ηitvl in Section 3.3 and treat
it as a communal bitstring here. We note that parties can learn ηitvl from their local chain, and
indeed SB does not need to include ηitvl (P can prune those beacons that are invalid with ηitvl in
their local view). We keep ηitvl in the description for convenience.

Regarding the structure of a blockchain block B, we adopt the similar structure as inin [GKL17]
(with the dummy information in the 2-for-1 PoWs):

B ≜ ⟨h, st, ⟨itvl, r⟩, ctr, txLabel⟩,

where h is the reference to the previous block, st the Merkle root of the block content, ⟨itvl, r⟩
its timestamp, ctr the nonce of PoW, and txLabel the binded beacon input.

We are now ready to describe how the parties in Timekeeper do the 2-for-1 PoW mining. The
composite input prepared in Timekeeper is different from the trivial instance above, in that the term
⟨itvl, r⟩ appears in both blocks and beacons. Hence, simply concatenating two inputs introduces
redundant information in the PoW. When a party P is ready to perform the mining procedure, P
binds the nonce, the blocks’ input and beacon input together as

⟨ctr, h, st, ⟨itvl, r⟩,P, ηCep⟩

and hand them over to random oracle FRO. Let u denote the result from FRO. If u < T (i.e.,
the block query succeeds), P finds a new block B = ⟨h, st, ⟨itvl, r⟩, ctr, txLabel⟩ where txLabel :=
⟨P, ηCep⟩; if [u]R < T (the beacon query succeeds), P gets a new beacon SB = ⟨⟨itvl, r⟩,P, ctr, blockLabel⟩,
where blockLabel := ⟨h, st⟩. Note that for the sake of presentation, we reorder the content of blocks
and beacons so that they are inconsistent with the input to the PoW.

After receiving the result from FRO, P checks if it was able to successfully generate a new block.
In addition, P checks if he successfully produces a beacon but only when P’s local clock stays in
the beacon mining and inclusion phase. Namely, P reports a timestamp that satisfies a certain
criterion (details in Section 3.3).

3.3 Clock Synchronization Intervals and the Synchronization Procedure

As mentioned earlier, Timekeeper participants will periodically adjust their local clock. We call the
time interval between two adjustment points6 a clock synchronization interval (or “interval” for
short). Ideally, one interval will last for R rounds. The actual number of local rounds that parties
observe may differ according to the shift computed in the previous interval (we will show later that
the shift computed in every interval is well-bounded). When party P’s local clock gets to the last
round of an interval, it will call SyncProc (Appendix C.10), which adjusts its local clock and gets
the fresh randomness to run the next interval.

6The first interval in particular lies between the beginning of the execution and the first time parties adjust their
clock.
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3.3.1 Interval Structure

Timekeeper divides one interval into three phases: (1) view convergence, (2) beacon mining and
inclusion and (3) beacon-set convergence. The phase parties stay in depends on their local clocks.
Furthermore, parties will keep track of the (local) arriving time of a synchronization beacon as long
as it is online. In this section we describe these three phases as well as the bookkeeping function
and explain the design intention behind them.

View convergence. When a party P’s local clock reports a time ⟨itvl, r⟩ such that r < (itvl−
1) ·R+K, P is in the view convergence phase. Note that this also includes rounds with potentially
retorted timestamps. In this phase, if P is alert, it will try to mine the next block with the 2-for-1
PoW technique (i.e., the input information that P forwards to the FRO functionality does not need
to be changed); nonetheless, P will not check if he successfully mines a beacon after P acquires the
output. This is because all the beacons obtained in this phase are invalid in that they report an
undesirable timestamp.

The general motivation for introducing the view convergence phase and letting parties wait for
some period of time at the beginning of an interval is that we would like parties to start mining
beacons with a consistent view of the previous interval. Since K is larger than the common prefix
parameter (we will quantify K in later, in Section 4.2), at the end of the view convergence phase
of interval itvl+ 1, alert parties will have a common view of interval itvl. In other words, they
will agree on all the blocks in interval itvl, and the adversary A will not be able to apply any
changes to these blocks. Hence, alert parties agree on the number of blocks in the previous interval,
which decides the mining difficulty within the current interval. (This will used in our new target
recalculation function, presented in Secion 3.4.) Parties will mine beacons with the same difficulty,
and this simplifies the protocol description as well as its analysis. Furthermore, alert parties will
compute the same fresh randomness as

ηitvl+1 ≜ G(ηitvl ∥ (itvl+ 1) ∥ v), (1)

where v is the concatenation of all block hashes in interval itvl. Note that we adopt a different
hash function G(·) (as opposed to H(·)) to compute the next fresh randomness that is not used in
the 2-for-1 PoW , which does not consume any queries to random oracle FRO.

Recall that by assumption the adversary A has full knowledge of the network, and hence it can
learn all honest blocks from the previous interval immediately and manipulate the chain at will
for up to a number of rounds bounded by the common prefix parameter, allowing A to mine the
synchronization beacons before the alert parties start to mine. We call this period where A starts
ahead of time the pre-mining stage. Nonetheless, we will show later that there will be at least one
block generated by an alert party near the end of interval itvl, which prevents the adversary from
pre-mining for too long a time.

Remark 1. We note that, with some modifications, it is safe to get rid of the view convergence
phase. The fresh randomness will still need to be extracted from the settled part of the chain, so we
will replace it with the randomness generated in previous beacon mining and inclusion phase. This
can be implemented by modifying some parameters and does not change the protocol framework.
The main difference lies in how validity of a timestamp beacon is checked. At the beginning of a
target recalculation epoch (which is also the beginning of an interval), parties may be mining on
different chains, and hence mining beacons under different targets. In order to check if the beacon
target is correctly computed, some additional information (e.g., the block height of the previous
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target recalculation epoch) should be included in the block header (and the height should not be
less than the number of blocks in the settled part). Moreover, when parties run the synchronization
procedure at the first interval in an epoch, they should use the “weighted” median timestamp instead
of the plain median (and “weighted” means we would assign a weight to each timestamp based on
its difficulty). Details on applying the median timestamp are given in Section 3.3.2.

Beacon mining and inclusion. When a party P’s local clock is in rounds ⟨itvl, r⟩ satisfying
(itvl − 1) · R + K ≤ r ≤ itvl · R − K, P is in the beacon mining and inclusion phase. Next, we
define the predicate Isync(itvl) to extract the set of timestamps in this phase. Formally,

Isync(itvl) ≜ {(itvl− 1) · R+K, . . . , itvl ·R−K}. (2)

For convenience, we slightly overload this predicate. When the input is a timestamp, Isync(⟨itvl, r⟩)
outputs whether ⟨itvl, r⟩ stays in a beacon mining and inclusion phase. I.e., Isync(⟨itvl, r⟩) = true
if r ∈ Isync(itvl), and false otherwise.

After entering this phase, P will use a 2-for-1 PoW to mine both blocks and clock synchronization
beacons. During interval itvl, the output will be a beacon which indicates its local time and value
SB ≜ ⟨⟨itvl, r⟩,P, ctr, blockLabel⟩. Regarding the mining difficulty, Timekeeper will set the same
target value for blocks and beacons7. In other words, the expected number of blocks and of beacons
in this phase are equal.

After a beacon is successfully generated, it will be diffused into the network via F sync
Diffuse. P

will include a beacon SB into the pending block content if SB is valid w.r.t. the current interval.
Next, we describe how they check the validity of a beacon is checked. The format of a beacon SB

with respect to interval itvl is correct if and only if it reports a timestamp ⟨itvl, r⟩ such that
r ∈ Isync(itvl). We say a beacon SB is valid w.r.t. chain C if and only if its format is correct
and the hash value of SB (after concatenating with the fresh randomness in C) is smaller than the
corresponding mining target. P will try to include all the (valid) beacons mined in the current
interval itvl with timestamps earlier than the current local time but which have not yet been
included in the blockchain. Specifically, at round ⟨itvl, r⟩, all valid beacons recording timestamp
⟨itvl, u⟩ with u ≤ r will get into P’s pending block content.

When P’s local clock goes past the last round of beacon mining and inclusion phase, it stops
checking the beacon hash output and it no longer includes beacons in the next block. Beacons that
are generated and diffused right at the end of this phase get dropped.

Beacon-set convergence. The third and last phase—beacon-set convergence—consists of the last
K rounds in an interval. In other words, a party P is in this phase when P reports a timestamp
⟨itvl, r⟩ with r > itvl · R − K. During this phase, P behaves similar to the first phase. I.e., it
will not check for the 2-for-1 PoW result to see if the beacon generation succeeds.

Parties have to wait for at least K rounds to ensure that they share a consistent view of the set
of beacons included in the current interval (except with some negligible probability). This phase
cannot be omitted (as opposed to the case of first phase mentioned in Remark 1) since only when
parties agree on the same beacon set can the synchronization procedure maintain the protocol’s
security properties (Section 4).

7We will adopt the same target for simplicity. Indeed, maintaining a constant ratio between the difficulty level of
blocks and that of beacons will work.

15



Beacon arrival booking. In order to adjust its clock, P also needs the local receiving time of all
beacons that have been included in the chain. Hence, P will maintain a local registry that records
the beacons it receives as well as their arrival time. More specifically, this local beacon ledger is an
array of synchronization beacons. For each beacon SB, a pair (a,flag) ∈ ⟨N+,N+⟩ × {final, temp}
is assigned to it. Consider a round ⟨itvl, r⟩ when P receives a beacon SB with Timestamp(SB) =
⟨itvl′, r′⟩.

If itvl′ ≤ itvl, which means the beacon SB is generated in the current or previous interval8.
P will drop SB if it is not valid w.r.t. its localchain; otherwise, P will assign (⟨itvl, r⟩, final) to
SB. This means that all the information gathering regarding this beacon has been finalized and
it is ready to be used.

If itvl′ > itvl, the beacon is generated in the future. P will assign (⟨itvl, r⟩, temp) to SB,
which indicates that modifications on the receiving time may be applied in the future. Note
that parties may not know the fresh randomness in future intervals (for example, if they are
newly joint parties and have not yet synchronized with the blockchain or they are alert but
receive forthcoming beacons). Hence they cannot check the validity of beacons with temp flag.
Nevertheless, invalid beacons would be excluded from the registry after P learns the upcoming
fresh randomness.

If P receives multiple beacon messages with the same creator and time reported, P will adopt the
first one it receives as its arrival time.

3.3.2 The Synchronization Procedure

At the end of an interval (i.e., when the local time reports r = itvl·R), parties will use the beacons
information to compute a value shift that indicates how much the logical clock should be adjusted.
(See Appendix C.10 for the complete specification.)

Adjusting the local clock. When a party P’s local clock reaches round ⟨itvl, itvl · R⟩ and P
has finished the round’s regular mining procedure, P will adjust its local clock based on the beacons
recorded on chain and their local receiving time. More specifically, P will extract all the beacons
from the beacon mining and inclusion phase, and compute the differences between their timestamp
and local receiving time Timestamp(SB)−arrivalTime(SB). Since the timestamp of SB and its arrival
time share the same interval index, we only need to compute the difference between their round
numbers. Subsequently, all the beacons will be ordered based on this difference and a shift will be
computed by selecting the median difference therein. Formally,

shiftPitvl ≜ med{Timestamp(SB)− arrivalTime(SB) | SB ∈ SPitvl}. (3)

In case there are two median beacons SB1, SB2, parties will adjust shiftPitvl ≜ ⌈(Timestamp(SB1) −
arrivalTime(SB1)+Timestamp(SB2)−arrivalTime(SB2))/2⌉. Afterwards, P will update its local clock
to ⟨itvl+ 1, r+ shift⟩. Later we show that this update strategy in the synchronization procedure
allows parties’ clocks to remain in a narrow interval and do not deviate too much from the nominal
time.

Note that parties will enter local round ⟨itvl, r⟩ where r = itvl · R only once. If they enter
some time ⟨itvl′, r⟩ in the future, we will get itvl′ > itvl and they will never revert back.

8Beacons generated in previous intervals are stale in that P has already passed the synchronization point associated
with these beacons, and they will never be used in the future. We list them for completeness.
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Mining with backward-set clocks. After the adjustment at the end of intervals, and shift is
added to P’s local clock, it may set its local time to values ⟨itvl, r⟩ such that r ≤ (itvl − 1) · R
(i.e., the retortion effect that was mentioned earlier). Nonetheless, P can continue to mine blocks
with this timestamp and its local clock will eventually proceed to a time value of regular format
(i.e., r > (itvl− 1) · R).

We compare this treatment with the similar scenario in a PoS blockchain [BGK+21]. In
[BGK+21], setting local clocks backward is never a problem since parties can keep silent dur-
ing this period. Due to the nature of PoS-based blockchains, parties do not need to do anything if
they are not assigned the leader slot. In our context, however, adopting the same ‘silence’ policy
contradicts the basic nature of PoW-based blockchains as parties will forfeit the chance to extend
their local chain. In other words, there is no point for an activate party to not make RO queries.
This is taken care of by Timekeeper’s timestamping scheme.

Updating the beacon arrival time registry. Notice that the beacon information stored in a
party P’s arrival time registry is closely related to which interval P stays in; after P enters the
next interval, it needs to update the beacon bookkeeping. P will apply a shift computation for
all beacons with flag temp. Furthermore, for those beacons that report a timestamp with interval
equal to the incoming one, their flag will be set to final. In more detail, at the end of interval itvl,
for all eligible SB in the beacon registry, their associated pair (⟨itvlSB, rSB⟩, temp) will be updated
to (⟨itvlSB, rSB + shift⟩, final) if itvlSB = itvl + 1. Note that for those beacons whose flags are
set to final, P will removed all invalid ones from the registry after the update.

3.4 The Target Recalculation Function

If the mining target is not set appropriately (“appropriately” means that the block generation rate
according to the current hashing power and target is somewhat steady; see [GKL17]), PoW-based
blockchain protocols fail to maintain any of the security properties in a permissionless environment.
In Bitcoin, the target is adjusted after receiving the last block of the current epoch (and an epoch
consists of 2016 blocks). Based on the time elapsed to mine these blocks, a new target is set based on
the previous target value and the variation is proportional to the time elapsed. Note that Bitcoin’s
target recalculation function is not the only way to adjust the difficulty level. A large number of
other recalculation functions have been proposed in alternate blockchains (e.g., Ethereum, Bitcoin
Cash, Litecoin), with their security asserted by either theoretical analysis or empirical data.

In Timekeeper, we propose a new target recalculation function that is suitable for the new set-
ting. Intuitively, our function is a reversed version of Bitcoin’s original function, namely, protocol
participants wait for some fixed number of rounds M (in their local view) to update the difficulty
level. We call such M number of rounds a target recalculation epoch. Moreover, Timekeeper sets
M as a multiple of R, which makes the target recalculation epoch consist of several clock syn-
chronization intervals, and the start and end point of an epoch coincide with the start and end of
different synchronization intervals. Recall that in the Timekeeper timestamp scheme introduced in
Section 3.1, the first term in ⟨itvl, r⟩ does not directly reflect which target recalculation epoch it
is in. For simplicity, we introduce function TargetRecalcEpoch that maps the protocol timestamp
to the target recalculation epoch it belongs to:

TargetRecalcEpoch(⟨itvl, r⟩) ≜ ⌈itvl/(M/R)⌉.

In addition, we introduce a function EpochBlocks which extracts all the blocks in chain C that

17



belong to target recalculation epoch ep. Formally, given ep ≥ 1,

EpochBlocks(C, ep) ≜ {B : B ∈ C ∧ TargetRecalcEpoch(Timestamp(B)) = ep}.

Also for convenience, we let EpochBlockCount be a function that returns the number of blocks in
chain C that belong to epoch ep. We also extend the input domain of epoch numbers to 0 and let
it output Λepoch (the ideal number of blocks) to capture the fact that the target at the beginning
of an execution is set appropriately and hence maintains the ideal block generation rate. Formally,

EpochBlockCount(C, ep) ≜

{
|EpochBlocks(C, ep)| if ep ≥ 1

Λepoch if ep = 0
(4)

Going back to the algorithm, for the first epoch (ep = 1) parties will adopt the target value of
the genesis block (T0). I.e., T1 = T0. Regarding other epochs (ep > 1), parties will figure out how
many blocks are produced in the previous epoch, and set the next target based on the previous
one. This variation is proportional to the ratio of expected number of blocks Λepoch and the actual
number. I.e., for epoch ep+ 1,

Tep+1 ≜
Λepoch

Λ
· Tep, ep ∈ N+, (5)

where Λ is the number of blocks in epoch ep—in other words, the size of EpochBlocks(C, ep).

In order to prevent the “raising difficulty attack” [Bah13], the maximal target variation in a
single recalculation step still needs to be bounded (we denote this bound by τ). Specifically, if
Λ > τ · Λepoch, Tep+1 will be set as Tep/τ ; on the other hand, if Λ < Λepoch/τ , Tep+1 will be set as
τ · Tep.

Remark 2. We observe that, compared to the Bitcoin case, the adversary A in Timekeeper is in a
much worse position to carry out the raising difficulty attack. This is because in Bitcoin, in order
to significantly raise the difficulty in the next epoch, A only needs to mine 2016 blocks with close
timestamps; in the case of Timekeeper, however, the adversary has to mine τ · Λepoch blocks (with
fake timestamps) in order to raise the same level of difficulty. The number of blocks that A needs
to prepare is τ times larger than that in Bitcoin (assuming both protocols share the same number
of expected blocks in an epoch).

3.5 Newly Joining Parties

Recall that Timekeeper runs in a permissionless environment where parties can join and leave at
will. As such, it is essential that newly joining parties can learn the protocol time to become alert
and participate in the core mining process. More specifically, after the joining procedure, newly
joining party P’s local clock should report a time in a sufficiently narrow interval with all other
alert parties, at which point P can claim also being alert.

Based on the fine-grained classification of types of parties in our dyanmic participation model
(Section 2.3), newly joining parties can be classified into two types: (1) parties that are temporarily
de-registered from FRO, and (2) parties that start with bootstrapping from the genesis block, or
parties that temporarily lose the network connection (i.e., de-registered from F∆

Diffuse), or parties
that are temporarily de-registered from FILClock.
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For parties that are stalled for a while, since they do not miss any clock tick or other necessary
information from the network, they can easily re-join by calling the procedure SimulateClockAdjust-
ments (Section C.12). For the rest of newly joining parties, they will be classified as de-synchronized
(note that parties are aware of their synchronization status), and will run the joining procedure
JoinProc, which we now describe.

Procedure JoinProc. In order to synchronize its clock, a newly joining party P needs to “listen”
to the protocol for sufficiently long time. We describe the joining process below, which is similar
to that in [BGK+21]. The main difference is that we adopt the heaviest-chain selection rule in
order to adapt to the PoW context. The complete specification of this protocol is presented in
Appendix C.14, and the default parameters values are summarized in Table 2.

Parameter Default Phase

toff 2K B

tgather 5R/2 C

tpre 3K D

Table 2: Parameters of the joining procedure and their corresponding phases.

Phase A (state reset). When all resources are available to P, after resetting all its local
variables, P invokes the main round procedure triggering the join procedure.

Phase B (chain convergence, with parameter toff). In the second activation upon a
maintain-ledger command, the party will jump to phase B and stay in phase B for toff
rounds. During this phase, the party applies the heaviest-chain selection rule maxvalid to filter
its incoming chains. The motivation behind Phase B is to let P build a chain that shares a
sufficiently long common prefix with all alert parties. Note that since P has not yet learnt the
protocol time, it cannot filter out chains that should be put aside in the futureChains. Hence,
the chain held by P may still contain a long suffix built entirely by the adversary. However,
it can be guaranteed (Lemma 15(a)) that this adversarial fork can happen for up to k rounds
ahead. Thus, the beacons recorded before the fork can be used to compute the adjustment and
their local arrival times will be reliable.

Phase C (beacon gathering, with parameter tgather). Once a party P has finished Phase
B, it continues with Phase C, the beacon-gathering phase. During this phase, P continues to
collect and filter chains as in Phase B. In addition, P now processes and bookkeeps the beacons
received from F sync

Diffuse. At a high level, this phases’ length parameter tgather guarantees that:
(1) enough beacons are recorded to compute a reliable time shift; (2) enough time has elapsed
so that the blockchain reaches agreement on the set of (valid) beacons to use. At the end of
Phase C, P is able to reliably judge valid arrival times.

Phase D (shift computation, with parameter tpre). Since party P has now built a
blockchain sharing a common prefix with any alert party, and has bookkeeped synchroniza-
tion beacons for a sufficiently long time, P starts from the earliest interval i∗ such that (1) the
arrival times of all beacons included in blocks within the beacon mining and inclusion phase
of interval i∗ have been locally bookkeeped, and (2) all of these beacons arrived sufficiently
later than the start of Phase C (parameterized by tpre rounds). Based on this information, P
computes the shift value as alert parties do at the boundary of synchronization interval i∗. P
concludes Phase D when the adjusted time is a valid timestamp in interval i∗ + 1 (in other
words, r does not exceed (i∗+1)R); otherwise, P updates the local arrival time of beacons with
flag temp and repeats the above process with interval i∗ +1. We note that if Phase D involves
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the computation w.r.t. multiple intervals, the local time may temporarily be set as an invalid
timestamp. Nevertheless, eventually after P has passed (2K+ 5R/2) (local) rounds, P will end
up with a valid timestamp that with overwhelming probability is close enough to those of all
alert parties.

4 Protocol Analysis

Our ultimate goal is to show that, at any point of the protocol’s execution, the timestamps reported
by all alert protocol participants of Timekeeper will satisfy the properties defined in Definition 1.
We start off with some additional definitions and preliminary results.

4.1 Notation, Definitions and Preliminary Propositions

We note that several of the analytical tools proposed in [GKL17, GKL20] do not directly apply in
the environment (with FILClock) where Timekeeper runs in. Therefore, we first extend and enhance
these tools to adapt them to this new environment.

Our probability space is over all executions of length at most some polynomial in κ and λ; we
use Pr to denote the probability measure of this space. Furthermore, let E be a random variable
taking values on this space and with a distribution induced by the random coins of all entities
(adversary, environment, parties) and the random oracle.

For the sake of convenience, we define a nominal time that coincides with the internal variable
time in FILClock. Recall that time aims at recording how many times the functionality sends clock
ticks to all registered honest parties.

Definition 3 (Nominal Time). Given an execution of Timekeeper, any prefix of the execution can
be mapped deterministically to an integer r, which we call nominal time, as follows: r is the value
of variable time in the clock functionality at the final step of the execution prefix which is obtained
by parsing the prefix from the genesis block and keeping track of the honest party set registered with
the clock functionality (bootstrapped with the set of inaugural alert parties). (In case no honest
party exists in the execution, r is undefined).

Note that we adopt r to denote the nominal time, which is different from the protocol timestamp
⟨itvl, r⟩.

If at a nominal round r exactly h parties query the oracle with target T , the probability of at
least one of them will succeed is

f(T, h) = 1− (1− pT )h ≤ pTh, where p = 1/2κ.

During nominal round r, alert parties might be querying the random oracle for various targets. We
denote by Tmin

r and Tmax
r the minimum and maximum of those targets. Moreover, the initial target

T0 implies in our model an initial estimate of the number of honest RO queries h0; specifically,
h0 = 2κΛepoch/(T0M), i.e., the number of parties it takes to produce Λepoch blocks of difficulty 1/T0

in time M. For convenience, we denote f0 = f(T0, h0) and simply refer to it as f . Also note that
the ideal number of blocks Λepoch = Mf , so in the analysis we will use Mf to represent Λepoch.

“Good” properties. Next, we present some definitions which will allow us to introduce a few
(“good”) properties, serving as an intermediate step towards proving the desired clock properties.
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Let us consider the boundary of two target recalculation epochs. Recall that Bitcoin’s target
recalculation algorithm defines epoch in terms of the number of blocks (m blocks forms an epoch).
Thus, a block with block height a multiple of m is the last block of an epoch. While it might be ma-
nipulated, its timestamp naturally becomes the proof that miners have adjusted their difficulty and
entered the next epoch (known as the target recalculation point [GKL17]). In contrast, Timekeeper
adopts a new target recalculation function (see Section 3.4) that divides the epoch based on the
parties’ local view. While we can still define a target recalculation point based on one party’s
local view, parties can never agree on a point where they enter the next epoch based on nominal
time.

In order to circumvent the above obstacle, we extend the notion of target recalculation point to
target recalculation zone. See Figure 3 for an illustration. Intuitively, a “target recalculation zone”
w.r.t. epoch ep is a sequence of consecutive nominal rounds such that during these nominal rounds,
at least one alert party crosses its own target recalculation point w.r.t. epoch ep. For convenience,
we assume a “safe” start—i.e., the first epoch also has a target recalculation zone, and it naturally
satisfies all good properties we will later define.

Nominal

Time t - 1 t t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7

P1

P2

P3

P4

P5

Env. ep - 1 Target Recalculation Zone Zep ep

RO query w.r.t. ep - 1

RO query w.r.t. ep

ep - 1 Zep ep

Party Pi

Env. & Nominal Time

Figure 3: An illustration of the target recalculation zone Zep = {t, . . . , t + 6 }.

Definition 4.

Nominal time r is good if f/2γ2 ≤ phrT
min
r and phrT

max
r ≤ (1 + δ)γ2f .

Round ⟨itvl, r⟩ is a target-recalculation point w.r.t. epoch ep if (r = itvl ·R) ∧ [itvl mod
(M/R) = 0].

A sequence of consecutive nominal rounds Zep = {r} is a target recalculation zone w.r.t. target
recalculation epoch ep if during Zep some subset of synchronized parties are in the logical round
that is a target recalculation point w.r.t. ep− 1.

A target-recalculation zone Zep is good if for all hr, r ∈ Zep the target Tep satisfies f/2γ ≤
phrTep ≤ (1 + δ)γf .

A chain is good if all its target-recalculation zones are good.

A chain is stale if for some nominal time u it does not contain an honest block computed after
nominal time u− ℓ− 2∆− 2Φ.

The blocklength of an epoch ep on a chain C is the number of blocks in C with timestamp
⟨itvl, ·⟩ such that TargetRecalcEpoch(⟨itvl, r⟩) = ep.

We would like to prove that, at a certain nominal round r of the protocol execution, alert parties
enjoy good properties on their local chains and reported timestamps. Towards this goal, we extract
all chains that either belong to alert parties at r or have accumulated sufficient difficulty and thus
might be adopted in the future. We denote this chain set by Sr:
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Sr ≜

C ∈ Er

∣∣∣∣∣∣∣∣∣∣
“C belongs to an alert party” or

“∃C′ ∈ Er that belongs to an alert party and diff(C) > diff(C′)′′ or
“∃C′ ∈ Er that belongs to an alert party and diff(C) = diff(C′)

and head(C) was computed no later than head(C′)′′

 .

Next, we define a series of useful predicates with respect to the potential chain set Sr and
parties’ local clocks at nominal round r. Note that Φ is a constant that is the ideal maximal skew
of all alert clocks, and Φ = ∆+Φclock where ∆ is the network delay and Φclock is the maximal clock
drift that A can set (see Section 2.1).

Definition 5. For a nominal round r, let:

� GoodChains(r) ≜ “For all u ≤ r, every chain in Su is good.”
� GoodRound(r) ≜ “All rounds u ≤ r are good.”
� NoStaleChains(r) ≜ “For all u ≤ r, there are no stale chains in Su.”
� CommonPrefix(r) ≜ “For all u ≤ r and C, C′ ∈ Sr, head(C ∩ C′) was created after nominal

round u− ℓ− 2∆− 2Φ.”
� BlockLength(r) ≜ “For all u < r and C ∈ Su, the blocklength Λ of any epoch ep in C satisfies

1
2(1+δ)γ2 ·mf ≤ Λ ≤ 2(1 + δ)γ2 ·mf

� GoodBeacons(r) ≜ “For all u < r and the beacon set Sitvl bookkeeped during any interval
itvl, more than half of beacons within Sitvl are generated by honest parties”.

� GoodShift(r) ≜ “For all u < r, and the alert party Pi that adjusts its local clock at round u,
Pi computes shifti that −2Φ ≤ shifti ≤ Φ”.

� GoodSkew(r) ≜ “For all alert parties in nominal time r, their local time in this round differs
by at most Φ if they are in the same interval or differs by at most 2Φ if they are in different
intervals.” Formally,

GoodSkew(r) :⇔

(
∀P1,P2 ∈ Palert[r] :

∣∣∣∣∣|r1 − r2| ≤ Φ if itvl1 = itvl2

|r1 − r2| ≤ 2Φ if itvl1 ̸= itvl2

)

where ⟨itvl1, r1⟩ and ⟨itvl2, r2⟩ are the timestamps that P1 and P2 reports during r9.

Random variables and (∆,Φ)-isolated success. Next, for the purpose of estimating the dif-
ficulty acquired by honest parties during a sequence of rounds, we define the following random
variables w.r.t. nominal round r.

Dr: the sum of the difficulties of all blocks computed by alert parties at nominal round r.

Yr: the maximum difficulty among all blocks computed by alert parties at nominal round r.

Qr: equal to Yr when Du = 0 for all r < u < r +∆+ Φ and 0 otherwise.

We call a nominal round r such that Dr > 0 successful and one wherein Qr > 0 isolated successful.
An isolated successful round guarantees the irreversible progress of the honest parites.

We highlight that, under the imperfect local clock model FILClock, the notion of an “isolated
successful round” needs to be re-considered as parties’ local clocks may span some consecutive

9If P passes multiple local rounds in nominal round r, we require that all of these timestamps should satisfy the
predicate.
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rounds. Assuming a Φ-drift is maintained during the sequence of rounds we are interested in, an
irreversible contribution to the chain happens when the (nominal) distance between such success
and the following success is at least Φ+∆ rounds. This is because the block producer may have a
local clock that is already Φ rounds behind other alert parties, and it takes ∆ rounds to diffuse the
block. This cancels out other parties’ successes for up to Φ +∆ rounds. As a result, we call such
event a (∆,Φ)-isolated successful, which is the for the new formulation of Qr (cf. [GKL20]). Note
that this (∆,Φ)-isolated successful round is meaningful only when the protocol is able to maintain
a Φ-bounded skew during the sequence of rounds we are considering.

Recall that the total number of hash queries alert parties (resp., the adversary) can make during
nominal round r is denoted by hr (resp., tr). For a sequence of rounds S we write n(S) =

∑
r∈S nr

and similarly, t(S), D(S), Q(S).

Regarding the adversary A, while A may query the random oracle for an arbitrarily low target
and obtain blocks with arbitrarily high difficulty, we wish to upper-bound the difficulty it can
accrue during a set of J queries. Consider a set of consecutive adversarial queries J and associate
it with the target of the first query (this target is denoted by T (J)). We define A(J) and B(J) to
be equal to the sum of the difficulties of all blocks computed by the adversary during queries in J
for target at least T (J)/τ and T (J), respectively.

Let Er−1 fix the execution just before (nominal) round r. In particular, a value Er−1 of Er−1

determines the adversarial strategy and so determines the targets against which every party will
query the oracle at round r and the number of parties hr and tr, but it does not determine Dr or
Qr. For an adversarial query j we will write Ej−1 for the execution just before this query.

Blockchain properties. We use blockchain properties as formulated in [GKL15, GKL17] as an
intermediate step towards proving the clock properties and achieve our blockchain synchronizer.
Next, we briefly describe these properties: common prefix, chain growth, chain quality and exis-
tential chain quality.

Notably, we consider common prefix in terms of number of rounds. I.e., honest parties will agree
on a settled part of the blockchain with timestamps at most a given number of rounds before their
local time.10 Let C⌈k denote the chain resulting from removing all rightmost blocks with timestamp
larger than r− k, where r is the current (local) time. We can now define common prefix as follows
(we will quantify k in Corollary 6).

Common Prefix (with parameter k ∈ N). For any two alert parties P1,P2 holding chains

C1, C2 at rounds r1, r2, with r1 ≤ r2, it holds that C⌈k1 ≼ C2.

Regarding chain growth, the lemma below provides a lower bound on the irreversible progress
of achieved by the honest parties regardless of any adversarial behavior. This lemma has appeared
in previous analyses under varying settings, evolving from the synchronous network and static
environment ([GKL15]), to a dynamic environment ([GKL17]), and further to a bounded-delay
network setting ([GKL20]). The next lemma extends the chain growth property to a ∆-bounded
network delay, Φ-bounded clock drift and dynamic environment.

10While most of the previous work considers common prefix in terms of number of blocks, we note that these two
definitions are equivalent. This is due to the fact that if the protocol guarantees security, then the block generation
rate is somewhat steady (cf. [GKL17]) and thus the number of blocks generated during a period of time can be
inferred from its length and the highest mining speed.
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Lemma 1 (Chain Growth). Suppose that at nominal round u of an execution E an honest party
diffuses a chain of difficulty d. Then, by (nominal) round v, every honest party has received a chain
of difficulty at least d+Q(S), where S = [u+∆+ Φ, v −∆− Φ].

4.2 Protocol Parameters and Their Conditions

We summarize all Timekeeper parameters in Table 3 in Appendix E. It is worth noting that ϵ is
a small constant regarding the quality of concentration of random variables (it will appear in the
typical executions in Section 4.3). We introduce a parameter λ—which is related to the properties
of the protocol—to simplify several expressions. Protocol parameter λ and the RO output length
κ are the seucrity parameters of Timekeeper.

In order to get desired convergence and perform meaningful analysis, we consider a sufficiently
long consecutive sequence of at least

ℓ =
4(1 + 3ϵ)

ϵ2f [1− (1 + δ)γ2f ]∆+Φ+1
·max{∆+ Φ, τ} · γ3 · λ (6)

consecutive rounds.

We are now ready to discuss the conditions that protocol parameters should satisfy. We first
quantify the length of a clock synchronization interval R, the length of a target recalculation interval
M and the length of the convergence phase K. Specifically, we let one target recalculation epoch
consists of 4 clock synchronization intervals, i.e., M = 4R; we set K = ℓ+2∆+4Φ (this will coincide
with our common prefix parameter and thus provide some desired properties; see Corollary 6).

Next, we will require that ℓ (defined in Equation (6)) is appropriately small compared to the
length of an epoch and of an interval (note that M = 4R).

ℓ+ 2∆+ 7Φ ≤ ϵM/(4γ) = ϵR/γ. (C1)

Further, we require that the advantage of the honest parties is large enough to absorb the errors
introduced by ϵ (from the concentration of random variables) and [1 − (1 + δ)γ2f ]∆+Φ (from the
network delay and clock skews).

[1− (1 + δ)γ2f ]∆+Φ ≥ 1− ϵ and ϵ ≤ δ/12 ≤ 1/12. (C2)

4.3 Typical Executions

We define the notion of typical executions following [GKL17, GKL20]. The idea here is that given
a certain execution E, we compare the actual progress and the expected progress that parties will
make under the success probabilities. If the difference and variance are reasonably small, and no
bad events (see Definition 6) about the underlying hash function happen, we declare E typical.

Definition 6. An insertion occurs when, given a chain C with two consecutive blocks B and B′,
a block B∗ created after B′ is such that B,B∗,B′ form three consecutive blocks of a valid chain. A
copy occurs if the same block exists in two different positions. A prediction occurs when a block
extends one with later creation time.

Note that in addition (compared to [GKL17, GKL20]), in Definition 7(a) we require that the
difficulty of all blocks the alert parties can acquire during consecutive rounds S (i.e., D(S)) is
well lower-bounded. This is because D(S) also captures the beacon production process, where
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there is no loss incurred by the bounded-delay network as well as by skewed local clocks. Hence,
a reasonably better lower-bound on D(S) helps us get better results when arguing for the good
properties of generated beacons by alert parties (Lemma 11).

Definition 7 (Typical Execution). An execution E is typical if the following hold.

(a) For any set S of at least ℓ consecutive good rounds,

(1− ϵ)[1− (1 + δ)γ2f ]∆ph(S) < Q(S) ≤ D(S) < (1 + ϵ)ph(S) and D(S) > (1− ϵ)ph(S)

(b) For any set J of consecutive adversarial queries and α(J) = 2(1ϵ +
1
3)λ/T (J),

A(J) < p|J |+max{ϵp|J |, τα(J)} and B(J) < p|J |+max{ϵp|J |, α(J)}

(c) No insertions, no copies, and no predictions occurred in E.

In the next lemma, we establish the quantitative relation between honest and adversarial hashing
power during consecutive rounds with length at least ℓ, as well as the relationship between the total
difficulty acquired by all parties (D(S) +A(J)) and their hashing power.

Lemma 2. Consider a typical execution in a (γ, s)-respecting environment. Let S = {r : u ≤
r ≤ v} be a set of at least ℓ consecutive good rounds and J the set of adversarial queries in
U = {r : u−∆− Φ ≤ r ≤ v +∆+ Φ}. We have

(a) (1 + ϵ)p|J | ≤ Q(S) ≤ D(U) < (1 + 5ϵ)Q(S).
(b) T (J)A(J) < ϵM/4(1 + δ) or A(J) < (1 + ϵ)p|J |; τT (J)B(J) < ϵM/4(1 + δ) or B(J) <

(1 + ϵ)p|J |.
(c) If w is a good round such that |w − r| ≤ s for any r ∈ S, then Q(S) > (1 − ϵ)[1 − (1 +

δ)γ2f ]∆|S|pnw/γ. If in addition T (J) ≥ Tmin
w , then A(J) < (1− δ + 3ϵ)Q(S).

(d) If w is a good round such that |w−r| ≤ s for any r ∈ S and T (J) ≥ Tmin
w , then D(S)+A(J ′) <

(1 + ϵ)p(h(S) + |J ′|) where J ′ denotes the set of adversarial queries in S.

We conclude that almost all executions (that are polynomially bounded by κ and λ) are typical.

Theorem 3. Assuming the ITM system (Z, C) runs for L steps, the probability of the event “E is
not typical” is bounded by O(L2)(e−λ + 2−κ).

4.4 Proof Roadmap

In the remainder of this section we present an overview of the analysis. Note that the predicates in
Definition 5 are proved in an inductive way over the space of typical executions in a (γ, s)-respecting
environment.

First, we focus on the steady block genetation rate. For a warm-up, we argue that an adversarial
fork cannot happen too long ago and then extract the common prefix parameter. Equipped with
this knowledge, we show that if good skews and certain time adjustment calculations are maintained
during a target recalculation epoch, the block production rate will be properly controlled in the
next epoch.

Lemma 4. GoodRound(r − 1) =⇒ NoStaleChains(r).

Lemma 5. GoodRound(r − 1) ∧GoodSkew(r − 1) =⇒ CommonPrefix(r).

Lemma 7. GoodRound(r−1)∧GoodChains(r−1)∧GoodSkew(r−1)∧GoodShift(r−1) =⇒
BlockLength(r).
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Lemma 8. GoodRound(r − 1) =⇒ GoodChains(r).

Corollary 9. GoodRound(r − 1) =⇒ GoodRound(r).

Next, we move to the properties w.r.t. clocks. We argue that if at the onset, the PoW difficult is
appropriately set and the steady block generating rate lasts during the whole clock synchronization
interval, the beacon set used by parties to update their clock will be identical and the majority
of these beacons will be produced and emitted by alert parties. For synchronized parties, this
good beacon set implies that the differences between alert parties’ local clocks are still narrow after
they enter the next interval and that the shift value they computed is well-bounded. Furthermore,
regarding newly joining parties, we also provide an analysis of the joining procedure showing that
joining parties starting with no a-priori knowledge of the global time, they can listen in and
bootstrap their logical clock and become alert parties. The above two aspects imply that a bounded
skew is maintained over the whole execution.

Lemma 11. GoodRound(r − 1) =⇒ GoodBeacons(r).

Lemma 13. GoodSkew(r − 1) =⇒ GoodShift(r)

Lemma 16. GoodSkew(r − 1) ∧GoodBeacons(r − 1) =⇒ GoodSkew(r).

To sum up, a “safe” start and a (γ, s)-respecting environment guarantee that good properties
can be achieved during the whole execution. We work out the related parameters (in Theorem 18)
and conclude that Timekeeper solves the clock synchronization problem.

4.5 Typical Executions Maintain a Steady Block Generation Rate

We first show that the adversary cannot create a fork that happened too long ago compared with
the current time. We consider a novel partition strategy (different from the approach in [GKL20])
that is better suited to the new target recalculation function.

Lemma 4. GoodRound(r − 1) =⇒ NoStaleChains(r).

Proof. Suppose—towards a contradiction—C ∈ Sr and has not been extended by an honest party
for at least ℓ + 2(Φ +∆) rounds and r is the least (nominal) round with this property. Let B be
the last honestly-generated block of C (possibly the genesis) and let w be the (nominal) round it
was computed. We consider S = {u : w + (Φ +∆) ≤ u ≤ r − (Φ +∆)} and U = {u : w ≤ u ≤ r}
(|S| ≥ ℓ by assumption). Suppose that the blocks of C after B (we denote these blocks by B) span
k epochs with corresponding targets T1, . . . , Tk. For i ∈ [k] let mi be the number of blocks with
target Ti and set M = m1 + . . . + mk and d = m1/T1 + . . . + mk/Tk. Our plan is to contradict
the assumption that C ∈ Sr by showing that all chains in Sr have more difficulty than C. By
Chain-Growth Lemma 1, all the honest parties have advanced (in difficulty) during the rounds in
U by Q(S). Therefore, to reach a contradiction it suffices to show that d < Q(S).

Consider the following partition on B: we partition B into u sections Bv, v ∈ [u] and associate
each section Bv with the target of its first block Tv. Section Bv starts with either the block after
B (if v = 1) or the ⌈mi/2⌉-th block in an epoch (if v > 1); it ends at either the last block of the
chain (if v = u) or the ⌊mi/2⌋-th block such that in epoch i+1 the target is less than Tv/τ . Under
such construction, the next block after partition Bv is exactly the first block of partition Bv+1.

For u ≥ 2, we claim that for partition Bv, it has the following properties: (1) for all blocks
in Bv, their target is at least Tv/τ ; (2) the number of blocks in Bv is at least M/2. Property (1)
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holds because of the strategy of our partition that will stop before it exceeds the lower bound for
the targets and thanks to Equation (5) we need to pass at least two boundaries of epochs so the
circumstance that no blocks exist in such partition will never happen. To reason why property
(2) stands, consider those epochs that are split into two different sections. For an epoch ep whose
blocks are split into two sections Bv, Bv+1, since in epoch ep + 1 the target is larger than that in
ep (if not, it does not satisfy the criteria of the partition), there are at least M blocks in epoch ep.
Otherwise, Equation (5) will raise the target. By the rule of partition, at least M/2 blocks are in
each sections. Hence for every partition, either its head or tail has at least M/2 blocks in the same
epoch, and this implies the lower bound of the total number of blocks.

For each v ∈ {1, 2, . . . , u}, let jv ∈ J denote the index of the query during which the first
block of the v-th section was computed and set Jv = {j : jv ≤ j < ji+1} (Definition 7(c) assures
ji < ji+1). We have

d =
k∑

i=1

mi

Ti
<
∑
v=1

(1 + ϵ)|Jv| ≤ (1 + ϵ)p|J | ≤ Q(S).

The difficulty of the blocks acquired in Jv is at most A(Jv) by property (1) and their number at
most TvA(Jv). Since property (2) above shows that the adversary acquired at least M/2 blocks in
Jv, the desired bound follows from Lemma 2(b). The final inequality is Lemma 2(a).

If u = 1, let J denote the queries in U starting from the first adversarial query attempting to
extend B. Then, T1 = T (J) and Ti ≥ T (J)/τ(i > 1); thus, d ≤ A(J). If A(J) < (1 + ϵ)p|J |,
then A(J) < Q(S) is obtained by Lemma 2(a). Otherwise, A(J) < (1ϵ + 1)τα(J) = 2(1ϵ + 1)(1ϵ +
ϵ
3)τλ/T (J). However, we have

Q(S) > (1− ϵ)[1− (1 + δ)γ2f ]∆+Φ · pnuℓT1

γT1

>
(1− ϵ)[1− (1 + δ)γ2f ]∆+Φfℓ

2γ3T (J)
≥ 2(1− ϵ)(1 + 3ϵ)τλ

ϵ2T (J)
≥ A(J)

by considering only the first ℓ rounds in S hence n(S) ≥ nuℓ/γ.

Lemma 5. GoodRound(r − 1) ∧GoodSkew(r − 1) =⇒ CommonPrefix(r).

The proof is presented in Appendix D.

Previous works [GKL17, GKL20] consider the common prefix parameters in terms of the number
of blocks parties have to prune, which directly maps to the number of blocks produced in the time
period implied by Lemma 5. With an imperfect local clock FILClock as well as the new definition
of common prefix (in terms of the number of rounds that we are going to remove), parties have to
prune more rounds in order to guarantee it. We establish the new Common Prefix parameter k in
Corollary 6, which coincides with the K boundaries of Isync(·) in Equation (2), and will be helpful
in order to argue the good properties of clock skews.

Corollary 6. For a typical execution in a (γ, s)-respecting environment, if all predicates in Defi-
nition 5 hold till r − 1, for any two alert parties P1,P2 holding chains C1, C2 at round r, it holds

that C⌈k1 ≼ C2, where k = ℓ+ 2∆+ 4Φ.

Proof. Lemma 5 shows that common prefix can be acquired by pruning the blocks produced in the
last ℓ+ 2∆+ 2Φ nominal rounds. We consider the timestamp of the first honest block B produced
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during such nominal rounds. GoodSkew(r − 1) indicates that the timestamp of B can be up to
Φ-rounds behind, if B is produced by an alert party that is Φ-rounds behind other alert parties.
Meanwhile, GoodShift(r−1) implies that up to Φ logical rounds may be skipped at the boundary
of an interval. Note that parties can pass at most two intervals within ℓ+2∆+2Φ nominal rounds,
and setting back local clocks does not hurt common prefix in that it is safe to prune more blocks.
By summing them up, we conclude k = ℓ+ 2∆+ 4Φ.

Lemma 7. GoodRound(r−1)∧GoodChains(r−1)∧GoodSkew(r−1)∧GoodShift(r−1) =⇒
BlockLength(r).

Proof. Suppose—towards a contradiction—that BlockLength(r) is false. Then, there exists a
w ≤ r and a chain C ∈ Sw with an epoch of target T and duration Λ that does not satisfy

1

2(1 + δ)γ2
·Mf ≤ Λ ≤ 2(1 + δ)γ2 ·Mf.

We consider the earliest epoch ep with this property.

For the lower bound, we show that alert parties can alone produce enough blocks. Let u, v
denote the first and last nominal round such that all alert parties are in epoch ep. Such u, v exist
since GoodSkew(r − 1) holds. Define S = {i : u + ℓ + 2∆ + 2Φ ≤ i ≤ v − (ℓ + 2∆ + 2Φ)}.
We consider the length of S. Since one epoch consists of 4 intervals and GoodShift(r − 1),
GoodSkew(r − 1) holds, we get v − u ≥ M − 4Φ − 2Φ = M − 6Φ (we prune Φ rounds at the
beginning and end to ensure that alert parties stay in ep). Further, by applying Condition (C1)
we get |S| ≥ M− (2ℓ+ 4∆+ 10Φ) ≥ (1− ϵ)M. We have

Q(S) > (1− ϵ)[1 + (1 + δ)γ2f ]∆+Φ · f |S|
2γ2T

≥ (1− ϵ)3 · Mf

2γ2T
≥ Mf

2(1 + δ)γ2
· 1
T
.

The first inequality follows that nominal round u−1 belongs to target recalculation zone Zep and is
good (note that hu−1 ≥ hw/γ,w ∈ S holds); the second and third inequalities comes from the lower
bound on |S| and Condition (C2). By Chain Growth (Lemma 1), this implies that alert parties has
produced at least Mf/2(1 + δ)γ2 blocks.

For the upper bound, we show that even if the alert parties and the adversary join force, they
cannot produce more than 2(1 + δ)γ2 ·Mf blocks with timestamp ⟨ep, ·⟩. Let u, v denote the first
and last nominal round such that at least one alert party is in epoch ep. Define S = {i : u ≤ i ≤ v}
and S′ = {i : u− (ℓ+ 2∆+ 2Φ) ≤ i ≤ v + ℓ+ 2∆+ 2Φ}, and J the set of queries available to the
adversary during the rounds in S′ starting with the first query for target T (so that T (J) = T ).
CommonPrefix(r) implies that all adversarial queries that contributed to epoch ep are all in
J . By GoodShift(r − 1) and GoodSkew(r − 1) we get |S| ≤ M + 8Φ + 2Φ = M + 10Φ (we
add Φ rounds at the beginning and end to ensure that at least one alert parties stay in ep).
Furthermore, |S| < |S′| ≤ M + 2ℓ + 4∆ + 14Φ ≤ (1 + ϵ)M by Condition (C1). Since u − 1 is a
nominal round within target recalculation zone Zep and hw ≤ γhu−1 for all w ∈ S′, it follows that
ph(S) ≤ pγhu−1|S| ≤ (1 + δ)γ2f |S|/T . Hence,

D(S) < (1 + ϵ)ph(S) ≤ (1 + ϵ)(1 + δ)γ2f |S| · 1
T

< (1 + ϵ)2 · (1 + δ)γ2Mf · 1
T
.

Regarding the adversary A, if τTB(J) < ϵMf/4, the total number of blocks is less than 2(1 +
δ)γ2Mf and we are done. Otherwise,

B(J) < (1 + ϵ)p|J | ≤ (1 + ϵ)(1− δ)(1 + δ)γ2f |S′| · 1
T
≤ (1 + ϵ)2(1− δ)(1 + δ)γ2Mf · 1

T
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The second inequality holds because tw < (1 − δ)hw for all w ∈ S′, and the last one follows from
the upper bound on |S′|. Note that ϵ < δ/4 (by Condition C2), we have (1 + ϵ)2(2 − δ) < 2. I.e.,
the total number of blocks is less than 2(1 + δ)γ2Mf .

Note that the length of S′ in the above proof implies that we should require s ≥ M+2(ℓ+2∆+
7Φ).

Lemma 8. GoodRound(r − 1) =⇒ GoodChains(r).

Proof. Recall that the first target recalculation zone Z1 (which consists of merely the first round)
is good in our assumption, it suffices to show that if a recalculation zone Zep is good, then the next
one Zep+1 is also good. Let Λ denote the number of blocks in epoch ep. we wish to show that, for
all z ∈ Zep+1, f/2γ ≤ phzTep+1 ≤ (1 + δ)γf .

We first conisder the lower bound. Consider a round w ∈ Zep and a round z ∈ Zep+1. If
Λ ≤ Mf/γ, we get Tep+1 ≥ γTep according to the target recalculation function (see Equation (5)).
Hence, phzTep+1 ≥ phwTep+1/γ ≥ phwTep ≥ f/2γ in that w belongs a good recalculation zone.

If not, assume Λ > Mf/γ. Let u, v denote the first and last nominal round such that at least
one alert party is in epoch ep and consider S = {i : u ≤ i ≤ v}, S′ = {i : u− (ℓ+ 2∆+ 2Φ) ≤ i ≤
v+ ℓ+2∆+2Φ}. Let J denote the set of queries available to the adversary in S′. By Lemma 5, all
blocks contributed to Λ were computed during honest queries in S or adversarial ones in J . From
the discussion in Lemma 7 we learn that |S| < |S′| ≤ M+ 4∆ + 14Φ ≤ (1 + ϵ)M. In addition, for
any round z ∈ Zep+1, h(S

′) ≥ hz|S′|/γ in that |S′| < s; similarly, h(S) ≥ hz|S|/γ. Thus, recall
that M = (Tep+1/Tep)(1/f)Λ, we have

B(J) < (1− δ)(1 + ϵ)ph(S′) ≤ (1− δ)(1 + ϵ)2pγhuM

and D(S) < (1 + ϵ)ph(S) ≤ (1 + ϵ)2pγhuM. For any z ∈ Zep+1, assume phzTep+1 < f/2γ, we get
he following contradiction.

2pγhzM = 2pγhz ·
Tep+1

Tep
· Λ · 1

f
< Λ · 1

Tep
≤ D(S) +B(J) < (2− δ)(1 + ϵ)2pγhzM < 2pγhzM.

In order to prove the upper bound (f ≤ (1 + δ)γf), consider a round w ∈ Zep and a round
z ∈ Zep+1. If Λ ≥ γMf , we get Tep+1 ≤ Tep/γ. Thus, phzTep+1 ≤ pγhwTep+1 ≤ phwTep ≤ (1+δ)γf
in that w belongs a good recalculation zone and we are done.

Otherwise, assume Λ < γMf . Let u, v denote the first and last nominal round such that all alert
parties are in epoch ep and consider S = {i : u+ ℓ+ 2∆+ 2Φ ≤ i ≤ v− (ℓ+ 2∆+ 2Φ)}. Following
the argument in Lemma 7 we get |S| ≥ (1− ϵ)M. For any t ∈ Zep+1, assume phzTep+1 > (1 + δ)γf
and recall that M = (Tep+1/Tep)(1/f)Λ, we obtain the following contradiction.

phzM

(1 + δ)γ
=

phz
(1 + δ)γ

·
Tep+1

Tep
·Λ· 1

f
> Λ· 1

Tep
≥ Q(S) ≥ (1−ϵ)(1−(1+δ)γ2f)∆+Φ · phz|S|

γ
≥ phzM

(1 + δ)γ
.

The second ineuqality comes from Chain Growth (Lemma 1) (recall that C ∈ Sr and the adversary
can discard alert parties for at most ℓ+2∆+2Φ rounds at the beginning and end of epoch as a result
of CommonPrefix(r), Lemma 5); the next one holds in that M < s and hence h(S) ≥ hz|S|/γ;
the last inequality follows Condition (C2).
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Corollary 9. GoodRound(r − 1) =⇒ GoodRound(r).

Proof. Consider any C ∈ Sr. Let Zep be its last target recalculation zone before r. If r ∈ Zep,
it follows directly by Lemma 8 that it is good. Otherwise, consider a round w ∈ Zep (recall that
f/2γ ≤ phwTep ≤ (1 + δ)γf). Since GoodShift(r − 1), GoodSkew(r − 1) implies r − w <
M+8Φ+Φ = M+9Φ < s, we have hr/γ ≤ hw ≤ γhr. Combining these two bounds we obtain the
desired inequality.

4.6 Typical Executions Maintain Good Skews

In this section, we show that in a typical execution, alert parties maintain close local clocks, and
that the shift that they compute at the end of an interval is well-bounded. Before we consider
GoodBeacons(r), we establish the following lemma that bounds the adversary from pre-mining
for too long a time.

Lemma 10. Consider an interval itvl, and suppose r is the smallest nominal round where all alert
parties stay in the beacon mining and inclusion phase. Then the adversary can mine timestamp
beacons w.r.t. itvl no earlier than r − (2ℓ+ 4∆+ 9Φ).

Proof. Since we adopt the CRS recorded in the genesis block as the original fresh randomness, by
our simultaneously-start assumption, in interval itvl = 1 the adversary can start to mine beacons
at most K = ℓ+ 2∆+ 4Φ rounds before the alert parties.

Consider an interval itvl > 1. Recall that in Equation 1, the fresh randomness w.r.t. interval
itvl is computed by hashing the concatenation of all blocks in the previous interval, in order to
prove the lemma, it suffices to show that the production time of the last block is no earlier than
r − 2ℓ+ 4∆+ 9Φ. Otherwise, it implies a prediction (cf. Definition 6), which contradicts the fact
that execution is typical.

For the sake of a contradiction, assume that the last block B in interval itvl− 1 is computed
at a nominal round r′ < r− 2ℓ+ 4∆+ 9Φ. Let B′ be the first honest block after B. B′ is produced
at round at most r′′ = r′ + ℓ + 2∆ + 2Φ ≤ r − (ℓ + 2∆ + 7Φ); otherwise, the chain becomes stale
at round r′′. We consider the timestamp of B′. Since B′ is at least ℓ+ 2∆+ 7Φ (nominal) rounds
before all honest parties start to mine beacons (which happens when local clocks of all alert parties
pass ⟨itvl, (itvl− 1) ·R+ ℓ+2∆+4Φ⟩), B′ cannot report a timestamp ⟨itvl, ·⟩. This is because
GoodShift(r − 1) implies that the backward shift at the end of interval itvl − 1 is at most 2Φ;
GoodSkew(r−1) indicates that all alert parties will start to mine beacons at most Φ rounds after
at least one of them enter ⟨itvl, (itvl− 1) ·R+ ℓ+2∆+4Φ⟩ and parties will wait for ℓ+2∆+4Φ
round at the beginning of interval itvl. After summing them up we get ℓ + 2∆ + 7Φ. Hence, B′
must report a timestamp ⟨itvl− 1, ·⟩. This contradicts our assumption that B is the last block in
itvl− 1.

Next, we prove GoodBeacons(r). This predicate implies that at the boundary of every syn-
chronization interval, alert parties will use the same set of beacons to update their local clock;
further, the majority of these beacons are produced and issued by alert parties.

Note that, when the sequence of rounds S and queries J are appropriately selected, random
variables D(S) and A(J) directly map to the number of synchronization beacons that protocol
participants can produce during the beacon mining and inclusion phase. We are interested in using
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a typical execution to lower-bound the success of alert parties and upper-bound the success of the
adversary (i.e., lower-bound D(S) and upper-bound A(J) in Definition 7).

Lemma 11. GoodRound(r − 1) =⇒ GoodBeacons(r).

Proof. Consider an interval itvl and a chain C held by an alert party at local round ⟨itvl, itvl ·
R⟩. Let d denote the sum of difficulties of the synchronization beacons recorded in blocks with
timestamp round Isync(itvl).

Since K = ℓ+2∆+4Φ by Corollary 6, honest parties agree on the beacon mining and inclusion
phase in C. Hence, every honest party would have the same view of the beacon set they are going
to use. Now we prove that the majority of these beacons are prodcued by alert parties.

Let u denote the first (nominal) round such that all alert parties are mining beacons w.r.t.
interval itvl. Consider a set of consecutive nominal rounds S = {i : u ≤ i ≤ v} where v =
u+R− 2(ℓ+2∆+4Φ)−Φ, where all the honest queries in S are doing 2-for-1 PoW w.r.t. interval
itvl and hence contribute to the honset beacon set. Let B be the last block produced by honest
parties before round v and denote its production time by w (in terms of the nominal time index).
Since C will become stale if there is no honest block since w for ℓ + 2∆ + 2Φ rounds, we get that
w < v − (ℓ+ 2∆+ 2Φ).

Let S1 = {i : u ≤ i ≤ w− (∆+Φ)} and S2 = {i : u− (2ℓ+4∆+9Φ) ≤ i ≤ w+ (ℓ+2∆+2Φ)}.
S1 is the time interval that honest success can contribute to the beacon set w.r.t. interval itvl;
and S2 is for the adversary. The lower bound of S1 is derived from the definition of u and the upper
bound is because it will take up to ∆ + Φ rounds for all beacons to be diffused to and accepted
by all alert parties. The lower bound of S2 is acquired due to the unpredictability discussed
in Lemma 10. Regarding the upper bound of S2, it is achieved by considering the first honest
block B′ after v, which is produced no later than w′ = w + ℓ + 2∆ + 2Φ (otherwise it violates
NoStaleChains). The adversary can no longer include beacons to the mining and inclusion
phase after w′ as it can no longer revert B′, so all the subsecquent beacons produced after w′ are
invalid w.r.t. the current chain. Note that |S1| ≥ R− (3ℓ+ 7∆+ 12Φ) ≥ R− 3(ℓ+ 2∆+ 7Φ) and
|S2\S1| = 3ℓ+ 7∆+ 12Φ ≤ 3(ℓ+ 2∆+ 7Φ).

Let J denote the adversarial queries associated with S2. In order to prove that alert parties
can produce at least half of synchronization beacons, it suffices to show that

D(S1) > d/2.

We first show that the number of RO queries alert parties can make during S2 is at most 4ϵ more
than those in S1. We have

h(S2) ≤ (1+
γ|S2\S1|
|S1|

)h(S1) ≤ (1+
3γ(ℓ+ 2∆+ 7Φ)

R− 3(ℓ+ 2∆+ 7Φ)
)h(S1) ≤ (1+

3ϵ

1− 3ϵ/γ
)h(S1) < (1+4ϵ)h(S1).

The first inequality follows from Fact 1(b); the third one holds since ℓ + 2∆ + 7Φ ≤ ϵR/γ by
Condition (C1); the last inequality is a consequence of Condition (C2) (ϵ < 1/12). Next,

D(S1) ≥ (1− ϵ)ph(S1) > (1− 5ϵ)ph(S2) >
1− 5ϵ

2− δ
p[h(S2) + |J |]

>
1− 6ϵ

2− δ
[D(S2) +A(J)] >

1− 6ϵ

2− δ
[D(S1) +A(J)] ≥ 1

2
[D(S1) +A(J)] =

d

2
.
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The first inequality follows from typical execution (Definition 7(a)); the second one is achieved by
substituting h(S1) with h(S2); the next inequality follows from the honest majority assumption;
and the forth one is by applying Lemma 2(d); the last inequality holds due to Condition (C2)
(δ ≥ 12ϵ).

Given an honest-majority beacon set, we are ready to proveGoodSkew(r) andGoodShift(r).
Regarding the proof ofGoodSkew(r), note that we will consider both the synchronized parties and
the newly joining parties. The proof approach is as follows. We first prove that for parties in the
same interval, their local clock can deviate for up to Φ rounds (Lemma 12). Next, we show that the
shift computed at the boundary of each interval satisfies our GoodShift(p) redicate (Lemma 13).
Then, we argue that the 2Φ-drift holds for parties in different intervals (Lemma 14). For those
newly joining parties, we also prove that they can learn a clock value that is Φ-round close to any
of the alert parties (Lemma 15). Finally, combining Lemma 12, Lemma 14 and Lemma 15, we
obtain the desired clock skews.

Lemma 12. For a typical execution in a (γ, s)-respecting environment, if all predicates in Defini-
tion 5 hold till r − 1, then at round r, the local time of alert parties in the same interval differs by
at most Φ.

Proof. For nominal rounds that all alert parties stay in interval itvl = 1, their local clock can
differ with each other for up to Φclock < Φ rounds in that no clock synchronization happened and
only the adversary can set a Φclock-bounded drift. Recall that alert parties only adjust their local
clock (call SyncProc, see Appendix C.10) when it enters the last round of current interval.

Now we consider a nominal round r such that at least one alert party enters the next interval
itvl+ 1. We show that for those parties that have finished adjusting their clock, the logical time
that they report can deviate from each other for up to Φ rounds.

According to Lemma 11, alert parties will agree on the same synchronization beacon set (denoted
by SBitvl) at the end of itvl. Fix a beacon SB ∈ SBitvl. Consider two alert parties P1 and P2

that have enterd itvl+ 1. We are going to show that the quantity

µ(Pi, SB) ≜ ri + Timestamp(SB)− Pi.arrivalTime(SB)

will differ by at most Φ between any two alert parties P1 and P2, where ri refers to the time that
party Pi reports at nominal time r if it does not call SyncProc at the end of itvl. More precisely,
µ(Pi, SB) is the logical time that Pi will report at nominal round r11 if it adopts SB and computes
the corresponding shift shifti to update its clock (at the end of itvl).

The arrival time of SB bookkeeped by Pi can be represented by

Pi.arrivalTime(SB) = ri − (r − rSB) + δPi,SB + φPi,SB.

rSB is the nominal round that SB is emitted to the network if SB is honest, and is the first nominal
round such that at least one honest party receives SB if SB is adversarial. δPi,SB ∈ [∆] is the
time elapsed (counted by rounds in terms of the nominal time) for SB to be delivered to Pi.
φPi,SB ∈ [−Φclock, Φclock] is the drift of Pi when SB was sent (note that for two alert parties P1,P2

we have |φP1,SB − φP2,SB| ≤ Φclock by the clock drift assumption). By substituting we get

µ(Pi, SB) = ri + shifti = Timestamp(SB) + r − rSB − δPi,SB − φPi,SB. (7)

11We note that while an alert party may pass several logical rounds in a nominal round, it does not hurt our
argument here as long as the adversarial drift is bounded by an absolute value.
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Note that for different parties at nominal round r, Timestamp(SB) + r − rSB is a constant. Hence
|µ(P1, SB)− µ(P2, SB)| ≤ Φ. We highlight this holds for adversarially generated SB in that after SB
is delivered to at least one honest party (denoted by rSB), it will be delivered to all honest parties
within ∆ rounds.

Consider two alert parties P1,P2 ∈ Palert[r] with timestamp ⟨itvl+1, ·⟩ (i.e., they have finished
synchronization). Tuples (µ(P1, SB))SB∈Sitvl and (µ(P2, SB))SB∈Sitvl are all the potential times that
they will report. These two tuples are of the same size, and ∀SB ∈ Sitvl, |µ(P1, SB)−µ(P2, SB)| ≤ Φ.
Due to Fact 2 we get∣∣∣∣med

(
(µ(P1, SB))SB∈Sitvl

)
−med

(
(µ(P2, SB))SB∈Sitvl

)∣∣∣∣ ≤ Φ.

Recalling Equation (3), med(µ(Pi, SB))SB∈Sitvl = ri+med{Timestamp(SB)−Pi.arrivalTime(SB) |SB ∈
Sitvl} = ri + shiftPi

itvl is the logical time that Pi reports after the synchronization. Therefore alert
clocks that have already entered itvl+ 1 will deviate from each other for up to Φ rounds.

Finally, in order to conclude the proof, it suffices to show that during nominal rounds in interval
itvl > 1 that no adjustment happens, the difference of alert parties’ local clocks will not deviate
for more than Φ rounds. This always holds in that the difference of honest parties’ drifts in
the execution of Timekeeper is an absolute term (recall Φclock and the condition check in clock-
forward as well as clock-backward in FILClock), thus adversarial manipulation cannot set
φPi,SB to a value that violates the upper bound of clock skews.

Lemma 13. GoodSkew(r − 1) =⇒ GoodShift(r)

Proof. For a party P that calls SyncProc at nominal round r, we prove that −2Φ < shift < Φ.

Let SB denote the median beacon P adopted, and shift the corresponding shift value. Since
GoodBeacons(r−1) holds, we will have two alert parties P1 and P2 who produce synchronization
beacons SB1 and SB2, respectively. We denote the shifts w.r.t. SB1, SB2 by shift1, shift2 (based on P’s
local arrival timetable) and learn that shift1 ≤ shift ≤ shift2. This implies µ(P, SB1) ≤ µ(P, SB) ≤
µ(P, SB2) (recall the definition of µ(P, SB) in Lemma 12). Further, we extract these quantities by
Equation (7) in the following way. For µ(P, SB), we consider it with respect to the shift value, and
for the rest we substitute them in terms of the timestamp recorded in SBi (i.e., the last expression
in Equation (7)). We have

Timestamp(SB1)− rSB1 − δP,SB1 − φP,SB1 ≤ ri − r + shift ≤ Timestamp(SB2)− rSB2 − δP,SB2 − φP,SB2 .

By letting δP,SB1 = ∆, φP,SB1 = Φclock and δP,SB2 = φP,SB2 = 0, we get

Timestamp(SB1)− rSB1 − Φ ≤ ri − r + shift ≤ Timestamp(SB2)− rSB2 . (8)

Note that no clock adjustment on P happened during nominal time [min{rSB1 , rSB2}, r). Moreover,
if the adversary does not set a drift and the beacon is delivered to all alert parties immediately
after it was mined, we will have ri − r = Timestamp(SBi) − rSBi . Since the adversarial drift is
upper bounded by the absolute term Φclock, and the network is ∆-bounded delay, we learn that the
difference of Timestamp(SBi)− rSBi and ri − r is bounded by Φclock +∆ = Φ. Therefore, we get∣∣(Timestamp(SBi)− rSBi)− (ri − r)

∣∣ ≤ Φ. (9)

After combining Equations (8) and (9), we get the desired range for shift, namely, −2Φ < shift <
Φ.
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Lemma 14. For a typical execution in a (γ, s)-respecting environment, if all predicates in Defini-
tion 5 hold till r − 1, then at round r, the local time of alert parties in different interval differs by
at most 2Φ.

Proof. Consider two alert parties P1,P2 that P1 finishes running SyncProc at nominal time r and
P2 does not. Note that before the synchronization, r1 − Φ ≤ r2 < r1 holds becasue they are alert
and hence skew predicate satisfies (and, since P1 runs SyncProc first, its local time is larger than
P2). Let r

′
1 = r1 + shift1 denote the logical time that P1 owns after synchronization, we have

|r2 − r′1| ≤ 2Φ

after combining r1 − Φ ≤ r2 < r1 and −2Φ < shift1 < Φ from Lemma 13.

Lemma 15. For a typical execution in a (γ, s)-respecting environment, if all predicates in Defini-
tion 5 hold till r − 1, then for a newly joining party who concludes the join procedure at round r,
the following properties hold.

(a) Let Cjoin denote the chain held by Pjoin at nominal round r′ ≤ r and Pjoin is in Phase C or D;

let Calert denote a chain held by Palert at the same nominal time. Then C⌈Kalert ⪯ Cjoin.
(b) The index value i∗ set in line 34 of its joining procedure JoinProc satisfies i∗ ≥ 1.
(c) When the joining party becomes alert, it will report a logical clock that is at most Φ-rounds

apart from any other alert party that is in the same interval.

Proof. Regarding claim(a), notice that the heaviest chain selection rule used in Selectchain (Ap-
pendix C.8) does not involve the local time localTime of the party executing it. Pjoin and Palert

would make the same decision except that Pjoin may consider and adopt those chains in the
futureChains set of Palert. Therefore, it suffices to show that no chain with future timestamps and
more accumulated difficulties than Calert can have a fork from Calert that is too earlier with respect
to r′.

Assume at nominal round r′, Pjoin is in Phase C or D holding a chain Cjoin such that diff(Cjoin) >
diff(Calert) and C⌈Kalert ̸⪯ Cjoin. Consider a virtual execution for party Palert (cf. [BGK+18]). This is
an artificial random experiment that consists of the execution of the protocol with an additional
“virtual” party Pvirt that participates from the beginning, and is always alert. Pvirt does not query
the random oracle thus is passive. Starting from the point of execution where Pjoin joins the system,
Pvirt advances exactly like Pjoin and receives the same messages in the same round and order as Pjoin.
When Pjoin adopts a chain Cjoin that Pvirt does not adopt at nominal round r′, since it contains more
difficulties, we have Cjoin ∈ Sr′ . By Lemma 5 we know that the creation time of head(Cjoin ∩ Cvirt)
is larger than r′ − (ℓ + 2∆ + 2Φ). With the similar argument in Corollary 6 (note that a chain

received by Pvirt will be considered by Palert within (∆+ Φ) nominal rounds) we get C⌈Kalert ⪯ Cjoin.

Moving to claim(b), in order to prove i∗ ≥ 1, we show that Pjoin has observed at least one full

synchronization interval that started at least tpre rounds after the beginning of Phase C. Let r
(j)
start

denote the nominal time such that at least one alert party passes local round ⟨j, (j−1) ·R+K⟩ (in
other words, enters the beacon mining and inclusion phase w.r.t. interval j). Since GoodSkew(r−
1) and GoodShift(r − 1) holds, we have

r
(j+1)
start − r

(j)
start ≤ R+ 3Φ.
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Let i∗ denote the minimal i such that r
(i)
start ≥ tjoin + toff + tpre where tjoin is the norminal time such

that Pjoin start to run JoinProc. In other words, r
(i∗)
start occurs at least tpre rounds after the beginning

of Pjoin’s Phase C. We have

r
(i∗)
start ≤ tjoin + toff + tpre +R+ 3Φ ≤ tjoin + toff + tgather − R.

The first inequality comes from the upper bound on the distance of r
(j)
start and r

(j+1)
start ; the next

ineuqality follows from the values of tgather and tpre.

Since the length of a beacon mining and inclusion phase is R− 2K, r
(i∗)
start is at least R nominal

rounds before the end of Phase C. On the other hand, it takes at most ∆+Φ rounds to diffuse the
beacons. Pjoin will record the arrival time of all beacons in interval i∗. Note that the length of tpre
and the upper bound on duration of pre-mining stage in Lemma 10 guarantees that the adversary
cannot produce valid beacons w.r.t. interval i∗ before the begining of Phase C.

Finally, for claim(c), we show that every time Pjoin will adopt the same beacon set as Palert to
update its local clock, and then they will update to a local time that maintains a good skew. Recall

that in claim(b) we show that r
(i∗)
start is at least R nominal rounds before the end of Phase C, at the

end of Phase C the blocks in beacon mining and inclusion phase w.r.t. interval i∗ went into the
settled blockchain. This also concludes that Pjoin will use the same beacon set as Palert. Regarding
i ≥ i∗ they can be proved in the same way.

The rest of the proof follows that in Lemma 12. Note that in Equation (7), the new local time
after adjustment is irrelevant to its previous local time, hence after the computation, the distance
of Palert and Pjoin’s local clocks will differ for at most Φ rounds.

Lemma 16. GoodSkew(r − 1) ∧GoodBeacons(r − 1) =⇒ GoodSkew(r).

The proof directly follows from Lemma 12, Lemma 14 and Lemma 15.

Theorem 17. For a typical execution in a (γ,M + 2(ℓ + 2∆ + 7Φ))-respecting environment, if
Condition C1 and Condition C2 are satisfied, then all predicates in Definition 5 hold.

Finally, we are able to prove our promised goal:

Theorem 18. Consider an execution of Timekeeper in a (γ,M+2(ℓ+2∆+7Φ))-respecting environ-
ment. If Conditions (C1) and (C2) are satisfied, then the protocol achieves clock synchronization
(Definition 1) with parameter values

Skew = 2Φ, shiftLB = 3Φ/R, shiftUB = 2Φ/R,

except with probability negligibly small in κ and λ.

Proof. The proof of bounded skews and the value of Skew directly follow from Lemma 16. Regarding
linear envelope, consider a nominal round r > R and an alert party P ∈ Palert[r]. Consider a virtual
execution for party Palert (cf. [BGK+18]) with an additional party Pvirt who keeps alert from the
beginning of the execution. Intuitively, the largest local time of Pvirt is achieved when Pvirt keeps
skipping Φ rounds at the beginning of each interval; the lowest local time will be reported when
Pvirt always set backward his local time for 2Φ rounds instead. In other words, when the local
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clock of Pvirt passes one interval, the nominal time elapsed is bounded by R−Φ and R+ 2Φ. Now,
consider the local time r that Palert will report at nominal round r. We have

r − 2Φ ·
⌈ r − R

R+ 2Φ

⌉
≤ r ≤ r + Φ ·

⌈ r − R

R− Φ

⌉
.

Note that there is no adjustment at the beginning of first interval. By dropping the ceil and
rearranging we get

1

1 + 3Φ/R
· r ≤ r ≤ 1

1− 2Φ/R
· r.

We then conclude an alert party’s local clock stays in the (U,L)-linear envelope with parameters
shiftLB = 3Φ/R and shiftUB = 2Φ/R.
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A Mathematical Facts

Fact 1 captures some facts (Especially, the relation between the total number of hash queries in S
and the number of queries in a specific round) within a (γ, s)-respecting environment.

Fact 1. Let U be a set of at most s consecutive rounds in a (γ, s)-respecting environment and
S ⊆ U .

(a) For any h ∈ {hr : r ∈ U}, h
γ < h(S)

|S| ≤ γh.

(b) h(U) ≤ (1 + γ|U\S|
|S| h(S)).

(c) |S|
∑

r∈S(phr)
2 ≤ γ(ph(S))2.

Definition 8. [DP09, Definition 5.3] A sequence of random variables (X0, X1, . . .) is a martingale
with respect to the sequence (Y0, Y1, . . .), if, for all n ≥ 0, Xn is determined by Y0, . . . . , Yn and
E[Xn+1 | Y0, . . . , Yn] = Xn.

Theorem 19. Let (X0, X1, . . .) be a martingale with respect to the sequence (Y0, Y1, . . .). Suppose
an event G implies

Xk −Xk−1 ≤ b (for all k) and V =
∑
k

Var[Xk −Xk−1 | Y1, . . . , Yk−1] ≤ v.

Then, for non-negative n and t,

Pr[Xn ≥ X0 + t ∧G] ≤ exp
{
− t2

2v + 2bt/3

}
.

Fact 2. Let (ai)
n
i=1 and (bi)

n
i=1 be two sequences of n integers each, with the property that ∀i ∈

[n], |ai − bi| ≤ Φ. Then we have |med((ai)
n
i=1)−med((ai)

n
i=1)| ≤ Φ.
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B Model (Cont’d)

B.1 Imperfect Local Clock Functionality

Functionality FΦclock
ILClock

The functionality manages the set P of registered identities (i.e., parties P = (pid, sid)) and
the set F of functionalities (together with their session identifier). It also manages an integer
variable time. Initially, P := ∅,F := ∅ and time = 1.
For each identity P := (pid, sid) ∈ P it manages variable dP ∈ {ongoing, done}, an integer
bP and an integer driftP. Initially, dP = ongoing, bP = 1 and driftP = 0. For each pair
(F , sid) ∈ F it manages variable d(F ,sid) ∈ {ongoing, done} (initially set to ongoing).

Synchronization:
� Upon receiving (clock-update, sidC) from some party P ∈ P set dP := done and bP :=

bP − 1; execute Round-Update and forward (clock-update, sidC ,P) to A.
� Upon receiving (clock-update, sidC) from some functionality F in a session sid

such that (F , sid) ∈ F set d(F ,sid) := 1, execute Round-Update and return
(clock-update, sidC ,F) to this instance of F .

� Upon receiving (clock-forward, sidC ,P) from A where P ∈ P, if driftP −
min{driftP} ≥ Φclock or driftP ≥ Φclock or dP = ongoing, ignore the message.
Otherwise, update driftP := driftP + 1, dP = ongoing and bP := bP + 1; return
(clock-forward-ok, sidC ,P) to A.

� Upon receiving (clock-backward, sidC ,P) from A where P ∈ P, if max{driftP} −
driftP ≥ Φclock or driftP ≤ −Φclock or dP = ongoing, ignore the message. Otherwise,
update driftP := driftP − 1 and bP := bP − 1; return (clock-backward-ok, sidC ,P)
to A.

� Upon receiving (clock-tick, sidC) from any participant P—including the environment
on behalf of a party—or the adversary on behalf of a corrupted party P (resp. from
any ideal—shared or local—functionality F), execute procedure Round-Update, return
(clock-tick, sidC , dP) (resp. (clock-tick, sidC , d(F ,sid))) to the requestor (where sid is
the sid of the calling instance).

� Upon receiving (clock-read, sidC) from the environment, the adversary or the wap-
per functionalities of random oracle (W(FRO)), return (clock-read, sidC , time) to the
requestor.

Procedure Round-Update: For each session sid do: If d(F ,sid) = done for all F ∈ F and

dP = done ∧ bP ≤ 0 for all honest parties P = (·, sid) ∈ P, then update time := time + 1,
d(F ,sid) := ongoing and bP := bP+1 for all parties P = (·, sid) ∈ P. Afterwards, for all parties
P = (·, sid) ∈ P with bP > 0, update dP := ongoing.

Functionality FILClock maintains an internal variable time (the nominal time) to record how
many times the sub-procedure Round-Update resets the round status for suitable honest parties and
other functionalities. This variable will never be revealed to neither honest parties nor registered
functionalities, which captures the fact that clocks are local, and it is only accessible by FILClock,
the environment Z, the adversary A and the (wrapped) random oracle functionalityW(FRO), after
they send a clock-read command. Notably, W(FRO) has to know the exact nominal time in
order to coordinate with the environment so as to apply restrictions on adversarial queries and
model dynamic participation. (More details on the wrapped RO functionality and the notion of a
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respecting environment below.)

FILClock also keeps track of the set of honest parties P and the registered functionalities F .
For all honest parties and functionalities, FILClock associates each of them with a bit variable
d ∈ {ongoing, done} which tracks if the corresponding party/functionality has claimed finishing its
local round, and returns a response to command clock-tick to indicate whether the requester
should update its local clock. Importantly, every honest party P is associated with a (possibly
negative) integer bP which indicates the “tick budget” allocated for P during the current nominal
round. If no adversarial clock drift is set, at the end of a nominal round bP is reset to 1 by Round-
Update and consumed by the party when P sends clock-update in the next nominal round. This
captures the fact that, without adversarial manipulation, local clocks proceed with exactly the
same speed. Additionally, a (possibly negative) integer drift is associated with P to record the
total drift that is applied to its local clock.

An honest party P sends the clock-update command to FILClock to indicate conclusion of
its current local round. The main purpose of this command is to set the variable d associated with
P to done and consume one tick from its budget (i.e., bP ← bP − 1). When party P is activated,
ti sends (clock-tick, sid) to FILClock to check if its corresponding indicator d has been reset to
ongoing. If this happens, P updates its local clock and enters the next local round; if not, this
implies that P need to wait for other participants.

Regarding the Round-Update procedure, FILClock will update the nominal time only when (1)
all honest parties and registered functionalities have claimed finishing the current round (i.e., the
corresponding indicator d = done), and (2) all the tick budgets allocated to honest parties have
been consumed (i.e., bP ≤ 0 for every party). When the party/functionality statuses pass the
above checks, Round-Update moves the nominal time forward (time ← time + 1). Then, Round-
Update issues a new tick budget for all honest parties (i.e., all budget variables b are increased
by 1); afterwards, for all registered functionalities and honest parties whose bP is positive, their d
indicators are reset to ongoing.

Next, we elaborate on the “imperfect” aspect of the clock and on the adversarial manipulation
of clock drifts. Specifically, in addition to Round-Update, we also allow the adversary to set some
drifts to parties’ local clocks, which will accelerate or stall their local clock; such values are globally
bounded by Φclock. This assumption allows local clocks to proceed at “roughly” the same speed.

Further, the adversaryA can adaptively manipulate the drift of honest parties’ clocks by sending
clock-forward and clock-backward12 after they conclude the current round. If A issues
clock-forward for party P, it will enter a new local round before FILClock updates the nominal
time, and this can be repeated as long as P’s drift is not Φclock rounds larger than other honest
parties. On the other hand, if A issues clock-backward, it will set P’s budget to a negative
value, thus preventing FILClock from updating dP at the end of the nominal round. I.e., P will still
be in the same logical round during these two nominal rounds. Again, this process can be repeated
by A as long as the drift on P is not Φclock rounds smaller than others. As a consequence, the
targeted party’s local clock may remain static for several nominal rounds.

12As such, our clock functionality is a more natural model of the real world compared to [BGK+21]’s, as it allows
A to manipulate the clock in both directions, backward, and forward; in [BGK+21], only forward manipulation is
allowed. Nonetheless, this does not result in a more powerful adversary.
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B.2 Global Random Oracle Functionality and its Wrapper

By convention, we model parties’ calls to the hash function used to generated proofs of work as
assuming access to a random oracle; this is captured by the functionality FRO. FRO internally
maintains an updatable table H; it is parameterized with security parameter κ as H’s output
length. Upon receiving a query (eval, sid, x), if H(x) = ⊥ (i.e., no pair of the form (x, ·) is in H),
a value y is chosen uniformly at random from {0, 1}κ and returned to the party (FRO also updates
H(x) = y). If H(x) ̸= ⊥ (i.e., x has been queried before), the corresponding y is returned.

Functionality FRO

The functionality is parametrized by the security parameter κ. It maintains a dynamically
updatable function table H where H[x] = ⊥ denotes the fact that no pair of the form (x, ·)
is in H. Initially, H = ∅.
� Upon receiving (eval, sid, x) from some party P ∈ P (or from A on behalf of a corrupted

P), do the following:
1. If H[x] = ⊥ sample a value y uniformly at random from {0, 1}κ and set H[x]← y.
2. Return (eval, sid, x,H[x]) to the requestor.

Notice that with regards to bounding access to real-world resources, functionality FRO as defined
fails to limit the adversary on making a certain number of queries per round. Hence, we adopt
a functionality wrapper [BMTZ17, GKO+20] W(FRO) that wraps the corresponding resource to
capture such restrictions. We highlight that our wrapper W(FRO) improves on previous wrappers
in two aspects, in order to provide a more natural model of the real world:

1. We capture the pre-mining stage by letting the adversary query the RO with no restrictions
before the CRS is released. More specifically, W(FRO) is initialized with internal time counter
time = ⊥, and the adversary can make as many queries as he wants (albeit polynomially
bounded) and the wrapper simply forwards all these queries to FRO as long as time = ⊥.
This pre-mining stage ends when the time counter time is set to 1, which happens immediately
after W(FRO) receives (Retrieved, sid) from the CRS functionality FD

CRS.
This pre-mining stage captures the fact that a hash function is usually available before the

protocol execution begins. Nonetheless, thanks to the CRS with sufficiently high entropy, all
adversarial queries made during the pre-mining stage can benefit the adversary in the later
execution only with negligible probability.

2. The wrapper limits adversarial access per nominal round by bounding the total number of
queries that A can make. After the CRS is released, W(FRO) keeps track of the corrupted
party set. Upon receiving queries from corrupted parties, W(FRO) first checks if FILClock

advances the nominal time (W(FRO) can directly access FILClock’s internal time counter). If
FILClock enters the next round, W(FRO) updates its internal clock counter as well and resets
the adversarial RO counter tA to 0. As long as tA < ttime, where ttime is a predetermined
value provided by the environment Z for nominal round time, W(FRO) forwards the queries
to FRO. When tA ≥ ttime, which implies that the adversary has consumed all its allowed
budget, the wrapper stops interaction with the adversary.

This “migration” from the q-bounded adversarial model ([GKL15] and follow-ups) to bound-
ing the total number of queries thatA can make allows us to dispose of the “flat” computational
model considered in previous works. We now define the computational power in terms of the
number of RO queries per round, which makes it possible to further refine the notion of a
“respecting environment” that is suited for imperfect local clocks.

41



Wrapper Functionality W(FRO)

The wrapper functionality is parameterized by a set of parties P, and an upper bound t
which restricts the F-evaluations of all corrupted party per round. (To keep track of rounds
the functionality registers with the global clock FILClock.) The functionality manages the
variable time (positive integer or ⊥) and the current set of corrupted miners P. It also
manages variable tA. Initially, time = ⊥.

General:
� The wrapper stops the interaction with the adversary as soon as the adversary tries to

exceed its budget of ttime queries per nominal round.

Relaying inputs to the random oracle:
� Upon receiving (eval, sid, x) from A on behalf of a corrupted party P ∈ P, if time = ⊥,

forward the request to FRO and return to A whatever FRO returns. Otherwise, first
execute Round Reset. Then, set tA := tA + 1 and only if tA ≤ ttime forward the request
to FRO and return to A whatever FRO returns.

� Upon receiving (Retrieved) from FD
CRS, set time = 1.

� Any other request from any participant or the adversary is simply relayed to the underlying
functionality without any further action and the output is given to the destination specified
by the hybrid functionality.

Corruption Handling:
� Upon receiving (corrupt, sid,P) from the adversary, set P := P ∪ P.

Procedure Round-Reset:
Send (clock-read, sidC) to FILClock and receive (clock-read, sidC , time

′) from FILClock.
If |time− time′| > 0 (i.e., a new round started), then set tA := 0 for the adversary and set
time := time′.

B.3 Common Reference String

Functionality FD
CRS

When activated for the first time on input (Retrieve, sid), choose a value d← D, and send
(Retrieve, d) back to the activated party; also send (Retrieved, sid) to W(FRO).
In each other activation return the value d to the activated party.

B.4 Diffusion Functionality

There are three types of messages that are exchanged in the network: blockchain messages (e.g.,
when a party mines a new block); regular messages (usually transactions), which are diffused to
the network when received by the environment; and synchronization beacons—a special message
that parties will use to perform the local time adjustment. For simplicity, we follow the convention
that each type of messages is diffused by its own network. We denote the network functionality
disseminating blockchain information by Fbc

Diffuse; the one diffusing transactions by F tx
Diffuse; and the

one circulating synchronization beacons by F sync
Diffuse, respectively. Parties will communicate with

Fbc
Diffuse and F tx

Diffuse to receive new chains and transactions in FetchInformation, and they will receive
synchronization beacons by sending requests to F sync

Diffuse in ProcessBeacons. Refer to Appendices C.5
and C.7 for further details.
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Functionality F∆
Diffuse

The functionality is parameterized with a set possible senders and receivers P. Any newly
registered (resp. deregistered) party is added to (resp. deleted from) P.
� Honest sender diffusion. Upon receiving (diffuse, sid,m) from some P ∈ P, where
P = {U1, . . . , Un} denotes the current party set, choose n new unique message-IDs
mid1, . . . ,midn of the form midi = (midn, i), initialize 2n new variables Dmid1 :=
DMAX

mid1
. . . := Dmidn := DMAX

midn
:= 1, a per message delay ∆midi = ∆ for i =

1, . . . , n and set M := M ∥ (m,mid1, Dmid1 , U1) ∥ . . . ∥ (m,midn, Dmidn , Un), and send
(diffuse, sid,m,P, (U1,mid1), . . . , (Un,midn)) to the adversary.

� Adversarial sender diffusion. Upon receiving (diffuse, sid,m) from some P ∈ P
(where = {U1, . . . , Un} denotes the current party set), do execute it the same way as an
honest-sender diffusion, with the only difference that ∆midi =∞.

� Honest party fetching. Upon receiving (fetch, sid) from P ∈ P (or from A on behalf
of P if P is corrupted):
1. For all tuples (m,mid, Dmid,P) ∈M, set Dmid := Dmid − 1.
2. Let MP

0 denote the subvector M including all tuples of the form (m,mid, Dmid,P) with
Dmid = 0 (in the same order as they appear in M). Then, delete all entries in MP

0 from
M and in case some (m,mid, Dmid,P) is in MP

0 , where P is honest, set ∆mid′ = ∆ for
any (m,mid′, Dmid′ ,P

′) in M and replace this record by (m,mid′,min{Dmid′ , ∆},P′).
Finally, send MP

0 to P.
� Adding adversarial delays. Upon receiving (delays, sid, (Tmidi1

,midi1), . . . ,
(Tmidiℓ

,midiℓ)) from the adversary do the following for each pair (Tmidij
,midij ): if

DMAX
midij

+ Tmidij
≤ δmidij

and midij is a message-ID registered in the current M, set

Dmidij
:= Dmidij

+ Tmidij
and set DMAX

midij
:= DMAX

midij
+ Tmidij

; otherwise, ignore this pair.

� Adversarially reordering messages. Upon receiving (swap, sid,mid,mid′) from the
adversary, if mid and mid′ are message-IDs registered in the current M, then swap the
triples (m,mid, Dmid, ·) and (m,mid′, Dmid′ , ·) in M. Return (swap, sid) to the adversary.

C The Timekeeper Protocol

In this section we give the full specification of the Timekeeper protocol. The description is presented
in UC-like notation.

C.1 The Main Protocol Instance

We first introduce the main Timekeeper protocol instance that dispatches to the relevant subpro-
cesses.

Protocol Timekeeperk(P, sid;Gledger,FILClock,FRO,F∆
Diffuse)

Global Variables:
� Read-only: R, M, toff , tgather, tpre
� Read-write: localTime, ep, r, Cloc, T ep

P , isInit, twork, buffer, futureChains, isSync,
fetchCompleted, lastTimeAlert, arrivalTimeSB(·).
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Registration / Deregistration:
� Upon receiving input (register,R), where R ∈ {Gledger,FILClock,FRO} execute proto-

col Registration-Timekeeper(P, sid, Reg,R).
� Upon receiving input (de-register,R), where R ∈ {Gledger,FILClock,FRO} execute

protocol Deregistration-Timekeeper(P, sid, Reg,R).
� Upon receiving input (is-registered, sid) return (register, sid, 1) if the local registry

Reg indicates that this party has successfully completed a registration with R = Gledger
(and did not de-register since then). Otherwise, return (register, sid, 0).

Interacting with the Ledger:
Upon receiving a ledger-specific input I ∈ {(submit, . . .), (read, . . .), (maintain-ledger,
. . .)} verify first that all resources are available. If not all resources are available, then
ignore the input; else (i.e., the party is operational and time-aware) execute one of the
following steps depending on the input I:
� If I = (submit, sid, tx) then set buffer ← buffer ∥ tx, and send (diffuse, sid, tx) to
F∆
Diffuse.

� If I = (maintain-ledger, sid,minerID) then invoke protocol LedgerMaintenance
(Cloc,P, sid,R); if LedgerMaintenance halts then halt the protocol execution (all future
input is ignored).

� If I = (read, sid) then invoke protocol ReadState(Cloc,P, sid,R).
� If I = (export-time, sid) then do the following: if isSync or isInit is false, then

return (export-time, sid,⊥) to the caller. Otherwise, call UpdateTime(P, R) and return
(export-time, sid, localTime) to the caller.

Handling calls to the shared setup:
� Upon receiving (clock-tick, sidC), forward it to FILClock and output FILClock’s re-

sponse.
� Upon receiving (clock-update, sidC), record that a clock-update was received in the cur-

rent round. If the party is registered to all its setups, then do nothing further. Otherwise,
do the following operations before concluding this round :
1. If this instance is currently time-aware but otherwise stalled or offline, then call

UpdateTime(P, R) to update localTime. If the party has passed a synchronization
interval, then set isSync← false.

2. If this instance is only stalled but isSync = true, then additionally execute
FetchInformation(P, sid), extract all new synchronization beacons from the fetched
chains and record their arrival times and set fetchCompleted ← true. Also, any
unfinished interruptible execution of this round is marked as completed.

3. Forward (clock-update, sidC) to FILClock to finally conclude the round.
� Upon receiving (eval, sidRO, x) forward the query to FRO and output FRO’s response.

C.2 Registration and De-registration

In order to perform basic operations, a party P needs to register to all resources. Note that P is
aware whether he is not synchronized not and will set the bit variable isSync correspondingly.
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Protocol Registration− Timekeeper(P, sid, reg,G)

1: if G ∈ {FILClock,FRO} then
2: send (register, sid) to G, set registration status to registered with G, and output

the value received by G.
3: end if
4: if G = Gledger then
5: if the party is not registered with FILClock or FRO or already registered with all

setups then
6: ignore this input.
7: else
8: Send (clock-tick, sidC) to FILClock and receive (clock-tick, sidC , tick).
9: Send (register, sid) to F∆

Diffuse.
10: Set localTime := ⟨1, 1⟩ and isSync← false.
11: If this is the first registration invocation for this ITI, then set isInit← false.
12: Output (register, sid,P) once completing the registration with all the above

resources F .
13: end if
14: end if

The deregistration process is an analogous aciton. Note that parties will record the last alert
time which might be used to synchronize if it is only stalled.

Protocol Deregistration− Timekeeper(P, sid, reg,G)

1: If the party is alert, set lastTimeAlert← localTime.
2: if G ∈ {FILClock,FRO} then
3: if G = FILClock then
4: Set isSync← false
5: end if
6: Send (de-register, sid) to G and set registration status as de-registered with G.
7: Output the value received by G.
8: end if
9: if G = Gledger then

10: Set isSync← false
11: Send (de-register, sid) to F∆

Diffuse, set its registration status as de-registered with
F∆
Diffuse and output (de-register, sid,P).

12: end if

C.3 Ledger Maintenance

We group all the steps in the main ledger operation in LedgerMaintenance. Note that what a party
might execute depends on its status.

Protocol LedgerMaintenance(Cloc,P, sid, R)

The following steps are executed in an (maintain-ledger, sid,minerID)-interruptible man-
ner:

45



1: if isInit = false then
2: Send (Retrieve, sid) to FD

CRS and receive (Retrieved, d).
3: end if
4: // From here the variables localTime, Cloc, isSync, can be used to read from as they

are guaranteed to be initialized.
5: if isSync and stalled before (and now up and running) then
6: Call SimulateClockAdjustments(P, sid,R)
7: end if
8: if not isSync then
9: Call JoinProc(P, sid,R, toff , tgather)

10: end if
11: // normal operation when alert
12: Call FetchInformation(P, sid) and denote the output by (C1, . . . , CN ), (tx1, . . . , txk)
13: Set buffer ← buffer ∥ (tx1, . . . , txk) and define futureChains ← futureChains ∥

(C1, . . . , CN )
14: Call UpdateTime(P,R)
15: // Ensures the processing of new beacons arrived in chains only.
16: Extract beacons B ← {SB1, . . . , SBn} contained in C1, . . . , CN and not yet contained in

syncBuffer.
17: Call ProcessBeacons(P, sid, B)
18: Let N0 be the subsequence of futureChains s.t. C ∈ N0 :⇔ ∀B ∈ C : Timestamp(B) ≤

localTime

19: Remove each C ∈ N0 from futureChains.
20: fetchCompleted← true
21: Call SelectChain(P, sid, Cloc,N0,R) to update Cloc
22: if twork < localTime then
23: Call UpdateMiningTarget(P,M) to udpate T C

ep

24: Call UpdateFreshRandomness(P,R) to update ηitvl
25: Call MiningProcedure(P, ep, r, buffer, Cloc)
26: Set twork ← localTime

27: if r = itvl · R then
28: Call SyncProc(P, sid, R)
29: end if
30: end if
31: Call FinishRound(P) // Mark normal round actions as finished.

C.4 Validity Checks of Chains and Beacons

Chain verification. A core procedure is to distinguish valid from invalid chains. The procedure
is depicted below. It adopts the verification rule of the main blockchain structure similar to that
in Bitcoin (cf. [GKL17, GKL20]), and extends it with beacon verifications.

Recall that Isync(itvl) defined in Equation (2) is a useful function which extracts the valid
timestamp set in beacon mining and inclusion phase w.r.t. interval itvl. In addition, isvalidate
is a prediate that checks whether transactions in the blockchain achieves a valid ledger state (for
details, see [BMTZ17]).
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Protocol IsValidChain(P, sid, C,R)

1: if C contains empty intervals or starts with a block with hash reference other than CRS,
or isvalidstate(

−→
st) = 0 then

2: return false
3: end if
4: if isSync and (∃B ∈ C : Timestamp(B) > localTime) then
5: return false
6: end if
7: for each interval itvl′ do
8: // Derive target and randomness for interval itvl′ as indicated by C
9: ep′ ← TargetRecalcEpoch(⟨itvl′, ·⟩)

10: Set T C
ep′ to be the target for epoch ep′ in C.

11: Set ηitvl′ ← G(ηitvl′−1 ∥ itvl′ ∥ v) where v is the concatenation of all block hash in
interval itvl′ − 1, and η1 ≜ CRS.

12: for each block B in C from interval itvl′ do // check 2-for-1 pow.
13: Parse B as ⟨ctr, h, st, ⟨itvl′, r′⟩, txLabel⟩.
14: // Check hash
15: Set badhash← (h ̸= H(B−1)), where B−1 is the last block in C before B.
16: // Check nonce
17: Set badnonce← (H(ctr, h, st, ⟨itvl′, r′⟩, txLabel) < T C

ep′) ∧ (ctr < 232)
18: // Check beacons
19: if ∃SB ∈ B and r′ /∈ Isync(itvl

′) then
20: Set badBeacon← true
21: else if ∃SB ∈ B : Timestamp(SB) > Timestamp(B) then
22: Set badBeacon← true
23: else
24: Parse SB as ⟨⟨itvl′, r′⟩,P′, ηSB, ctr, blockLabel⟩
25: if C contains more than one beacon with (r′,P′, ·) or ηSB ̸= ηitvl′ or r′ /∈

Isync(itvl
′) then

26: Set badBeacon← true
27: end if
28: u← H(ctr, r′, blockLabel, ⟨itvl′, r′⟩,P′, ηitvl′)
29: Set badBeacon← ([u]R < T C

ep′) ∧ (ctr′ < 232)
30: end if
31: if (badhash ∨ badnonce ∨ badBeacon) then
32: return false
33: end if
34: end for
35: end for

The beacon validity predicate. Beacons validity is related to chain validity as one need the
corresponding target as well as fresh randomness to check beacon validity. The details are found
below.
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Protocol ValidSB(P, sid, SB, C,R)

// Precondition: Chain C is valid. Returns true if the beacon is a valid beacon w.r.t. C,
undecided if no judgement is possible, and false if the beacon is invalid w.r.t. C.
1: Parse SB as ⟨⟨itvl′, r′⟩,P′, ηSB, ctr, blockLabel⟩
2: if C contains no block in interval itvl′ then
3: return undecided // no judgement possible for this beacon
4: end if
5: // Derive target and randomness for interval itvl′ as indicated by C
6: ep′ ← TargetRecalcEpoch(⟨itvl′, r′⟩)
7: Set T C

ep′ to be the target for epoch ep′ in C.
8: Set ηitvl′ ← G(ηitvl′−1 ∥ itvl′ ∥ v) where v is the concatenation of all block hash in

interval itvl′ − 1, and η1 ≜ CRS.
9: // Check nonce value and freshness

10: u← H(ctr, r′, blockLabel, ⟨itvl′, r′⟩,P′, ηitvl′)
11: if ([u]R < T C

ep) ∧ (ctr′ < 232) ∧ (ηitvl′ = ηSB) then
12: return true
13: end if
14: return false

C.5 Fetch information

Parties fetch information from two diffusion network—Fbc
Diffuse and F tx

Diffuse—to learn new chains
and transactions.

Protocol FetchInformation(P, sid)

1: if fetchCompleted then
2: Set fetchCount← 0
3: else
4: Set fetchCount← 1
5: end if
6: // Fetch on Fbc

Diffuse

7: Send fetchCount fetch-queries (fetch, sid) to Fbc
Diffuse; denote the i-th response from

Fbc
Diffuse by (fetch, sid, bi).

8: Extract chains C1, . . . , Ck from b1 . . . bfetchCount.
9: // Fetch on F tx

Diffuse

10: Send fetchCount fetch-queries (fetch, sid) to F tx
Diffuse; denote the i-th response from

F tx
Diffuse by (fetch, sid, bi).

11: Extract received transactions tx1, . . . , txk from b1 . . . bfetchCount.
12: if not isSync or P is stalled then
13: buffer← buffer ∥ (tx1, . . . , txn)
14: futureChains← futureChains ∪ {C1, . . . , Cn}
15: end if

Output: The protocol outputs (C1, . . . , Ck) and (tx1, . . . , txk) to its caller (but not to Z).
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C.6 Update Mining Target, Fresh Randomness and Local Time

Following Equation (5) and the rule regarding dampening filter τ , the targets for each epoch ep are
computed as following. Recall that EpochBlockCount defined in Equation (4) outputs the number
of blocks in the corresponding epoch, and T0 is a pre-determined target value (hardcoded in the
protocol) that guarantees a “safe” start in our assumption.

Protocol UpdateMiningTarget(P,M)

1: ep← TargetRecalcEpoch(localTime)
2: if ep = 1 then
3: Tep ← T0

4: else
5: Λ = |EpochBlocks(Cloc, ep− 1)|
6: Λ = min{max{Λ,Λepoch/τ}, Λepoch · τ}
7: Tep ← (Λepoch/Λ) · Tep−M/R

8: end if

Output: The protocol outputs Tep to its caller (but not to Z).

Parties will extract the fresh randomness in every synchronization interval from the block hash
in previous epoch. Note that G(·) is another hash function different from H(·) therefore it does
not interact with the random oracle FRO in the mining procedure.

Protocol UpdateFreshRandomness(P,R)

1: Set ηitvl ← G(ηitvl−1∥itvl∥v) where v is the concatenation of all block hash in interval
itvl− 1, and η1 ≜ CRS.

Output: The protocol outputs ηep to its caller (but not to Z).

Parties will send clock-tick to FILClock to check if it receives a tick = 0, which indicates the
beginning of a new (local) round. Note that alert parties will never change the interval index itvl

here when adding 1 to localTime (regarding the rules of addtion, see Section 3.1); they will only
adjust itvl in SyncProc (code in Appendix C.10). Meanwhile, for those stalled parties, their local
time will increase as if no adjuetment happens.

Protocol UpdateTime(P,R)

// Precondition: Only executed if time-aware.

1: Send (clock-tick, sidC) to FILClock and receive (clock-tick, sidC , tick)
2: if tick = 0 then
3: localTime← localTime+ 1
4: fetchCompleted← false
5: end if
6: ep← TargetRecalcEpoch(localTime)

Output: The protocol outputs localTime, ep to its caller (but not to Z).
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C.7 Process Beacons and Arrival Times

The following procedure processes imcoming beacons, bookkeeps their arrival times and filters out
invalid as well as duplicate beacons. The predicate to verify becaons is presented in Appendix C.4.
Regarding the duplicate beacons recording the same timestamp and miner indentity, only one with
the earliest arrival time will be preserved.

Protocol ProcessBeacons(P, sid, B)

1: if not fetchCompleted then
2: Send (fetch, sid) to F sync

Diffuse. denote the i-th response from F sync
Diffuse by (fetch, sid, b)

3: Extract all received beacons (SB1, . . . , SBk) contained in b ∪B.
4: for each SBi with arrivalTimeSB(SB) = ⊥ do
5: syncBuffer← syncBuffer ∪ {SB}
6: Let itvl′ be the interval index Timestamp(SB) belongs to
7: if isSync ∧ (itvl ≥ itvl′) then
8: Set arrivalTimeSB(SBi)← (localTime, final) // The measurement is final.
9: else// Will be adjusted upon next time shift.

10: arrivalTimeSB(SBi)← (localTime, temp)
11: end if
12: end for
13: // Buffer cleaning. Keep one representative arrival time.
14: if isSync then
15: Remove from syncBuffer all beacons s.t. ValidSB(P, sid, SB, Cloc,R) returns false
16: syncBuffervalid ← {SB′ ∈ syncBuffer | ValidSB(P, sid, SB′, Cloc,R) = true
17: Let L = (SB1, . . . , SBn) be a canonical ordering of syncBuffervalid
18: for each SB = ⟨⟨itvl′, r′⟩,P′, ηSB, ctr, blockLabel⟩ ∈ L do
19: QSB ← {SB′ = ⟨⟨itvl′′, r′′⟩,P′′, ·, ·, ·⟩ ∈ L | P′ = P′′ ∧ ⟨itvl′, r′⟩ = ⟨itvl′′, r′′⟩}
20: minSB ← min{arrivalTime(SB′) | SB′ ∈ QSB}
21: SB′ ← min{SB′′ ∈ QSB | arrivalTime(SB′′) = minSB} // Min w.r.t. ordering in L
22: Remove from syncBuffer all beacons ⟨⟨itvl′, r′⟩,P′, ·, ·, ·⟩ except SB′
23: end for
24: end if
25: end if

Output: ok to its caller (but not to Z).

C.8 Chain Selection

Parties drop invalid chains, and then select the a chain by heaviest difficulty chain selection rule
(cf. maxvalid in [GKL17]).

More specifically, max(C1, C2) will return themost difficult of the two. In case diff(C1) = diff(C2),
max(·, ·) always return the first operand to reflect the fact that parties adopt the first chain they
obtain from the network.
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Protocol SelectChain(P, sid, Cloc,N = {C1, . . . , Cn},R)

1: Set Cmax ← Cloc
2: for i = 1 to n do
3: if IsValidChain(P, sid, Ci,R) returns true then
4: Cmax ← max(Cmax, Ci)
5: end if
6: end for
7: Replace Cloc by Cmax.

Output: The protocol outputs Cmax to its caller (but not to Z).

C.9 Mining Procedure

Once a party P has prepared all information and updated its state, it can run the core mining pro-
cedure formally given below. When localTime reports a timestamp that satisfies r ∈ Isync(itvl)
(i.e., P stays in the beacon mining and inclusion phase), P will include the fresh beacons and check
if he succeeds in the beacon mining procedure.

Note that, in the “prepare block content” part, we follow [BMTZ17] and adopt several predicates
such as blockifyOC and validTXOC to generate the merkle root (st) of the block content. blockifyOC

is used to compute the root value, and validTXOC can justify whether an incoming transaction is
valid w.r.t. the current blockchain state. This part is not relevant to the topic of this paper; for
further discussion, we refer to [BMTZ17].

Protocol MiningProcedure(P, sid, itvl, r, buffer, Cloc)

The following steps are executed in an (maintain-ledger, sid, minerID)-interruptible man-
ner:

1: // Check if switch to a new chain.
2: if h ̸= H(head(Cloc)) then
3: h← H(head(Cloc))
4: end if
5: // Prepare block content.
6: Set buffer′ ← buffer,N← txbase−tx

P , and st← blockifyOC(N).
7: repeat
8: Parse buffer′ as sequence (tx1, . . . , txn)
9: for i = 1 to n do

10: if validTXOC(txi,
−→
st ∥ st) = 1 then

11: N← N ∥ txi
12: Remove tx′ from buffer′

13: Set st← blockifyOC(N)
14: end if
15: end for
16: until N does not increase any more
17: // Check if a beacon should be included.
18: if Isync(localTime) = true then
19: B ← {SB′ ∈ syncBuffer | ValidSB(P, sid, SB′, Cloc,R) = true}
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20: Remove from B all beacons SB = ⟨⟨itvl′, r′⟩,P′, ·, ·, ·⟩ that satisfy (Timestamp(SB) >
localTime)∨(Isync(Timestamp(SB)) = true)∨Cloc contains a beacon ⟨⟨itvl′, r′⟩,P′, ·, ·, ·⟩.

21: N← N ∥B
22: Set st← blockifyOC(N)
23: end if
24: // prepare 2-for-1 PoW.
25: blockLabel← h ∥ st, txLabel← P, ∥ηitvl
26: u← H(ctr, h, st, localTime,P, ηitvl)
27: // Check if block mining succeed.
28: if (u < T C

ep) ∧ (ctr < 232) then
29: Set B ← ⟨h, st, localTime, ctr, txLabel⟩ and update Cloc ← Cloc ∥ B
30: Send (diffuse, sid, Cloc) to Fbc

Diffuse and proceed from here upon next activation of
this procedure. // Diffuse the extended chain and wait.

31: end if
32: // Check if a PoW timestamp transaction mining succeed.
33: if ([u]R < T C

ep) ∧ (ctr < 232) ∧ (Isync(localTime) = true) then
34: SB← ⟨localTime,P, ctr, ηitvl, blockLabel⟩
35: Send (diffuse, sid, SB) to F sync

Diffuse and set anchor at end of procedure to resume on
next maintenance activation.

36: else
37: Give up activation and set anchor at end of procedure to resume on next maintenance

activation.
38: end if
39: ctr ← ctr + 1

C.10 Synchronization Procedure

The synchronization procedure is called when party’s local clock enters a clock synchronization
interval boundary (i.e., localTime = ⟨itvl, itvl ·R⟩). Note that thanks to the timestamp scheme
in Timekeeper, parties will only pass the interval boundary for once.

Protocol SyncProc(P, sid,R)

1: // Only called when: P is alert, localTime = ⟨itvl, itvl · R⟩ and itvl > 0
2: B ← {B | (B ∈ Cloc) ∧ (Timestamp(B) = ⟨itvl, ·⟩) ∧ (Isync(Timestamp(B)) = true)}
3: SB ← {SB |(SB ∈ B ∈ B)∧(Timestamp(SB) = ⟨itvl, ·⟩)∧(Isync(Timestamp(SB)) = true)}
4: for each SB = ⟨⟨itvl′, r′⟩,P′, ctr, ηSB, blockLabel⟩ ∈ SB do
5: // Find representative beacon and compute recommendation.
6: Find unique SB′ = ⟨⟨itvl′, r′⟩,P′, ·, ·, ·⟩ ∈ syncBuffer. If inexistent, set SB′ ← ⊥.
7: if SB′ ̸= ⊥ then
8: Set arrivalTimeSB(SB)← arrivalTimeSB(SB

′)
9: recom(SB)← Timestamp(SB)− arrivalTime(SB)

10: else
11: S ← S \ {SB} // Negligible probability event in execution.
12: end if
13: end for
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14: shifti ← med{recom(SB) | SB ∈ SB}
15: for each SB with arrivalTimeSB(SB) = (a, temp) do
16: arrivalTimeSB(SB)← (a+ shifti, final)
17: end for
18: if shifti = 0 then // No adjustment, simply enter next epoch
19: itvl← itvl+ 1
20: end if
21: if shifti > 0 then // Move fast forward
22: newTime← ⟨itvl+ 1, r+ shifti⟩, localTime← ⟨itvl+ 1, r⟩,Mchains ← ∅
23: while localTime < newTime do
24: localTime← localTime+ 1 // increment round counter in localtime by 1
25: Let N0 be the subsequence of futureChains s.t. C ∈ N0 :⇔ ∀B ∈ C :

Timestamp(B) < localTime

26: Remove each C ∈ N0 from futureChains

27: Call SelectChain(P, sid, Cloc,N0,R) to update Cloc
28: end while
29: Send (diffuse, sid,Mchains) to Fbc

Diffuse and proceed from here upon next activation
of this procedure.

30: end if
31: if shifti < 0 then // Set clock back
32: Set localTime← (itvl+ 1, r+ shifti)
33: end if

Output: The protocol outputs ok to its caller (but not to Z).

C.11 Reading the Ledger State

In order to read the ledger state, the party P first processes all relevant information and then
extracts the state (the settled ledger).

Protocol ReadState(P, sid, Cloc,R)

1: if isInit = false ∨ isSync = false then
2: Output the empty state (read, sid, ε) (to Z).
3: else
4: Call FetchInformation(P, sid) and denote the output by (C1, . . . , CN ), (tx1, . . . , txk)
5: Set buffer← buffer ∥ (tx1, . . . , txk) and define N ← {C1, . . . , CN}
6: Call UpdateTime(P,R)
7: Call ProcessBeacons(P, sid)
8: Let N0 := {C ∈ N ∪ futureChains | ∀B ∈ C : Timestamp(B) ≤ localTime}
9: Let N1 := {C ∈ N | ∃B ∈ C : Timestamp(B) > localTime}

10: futureChains← (futureChains \ N0) ∪N1

11: fetchCompleted← true
12: Call SelectChain(P, sid, Cloc,N0,R) to update Cloc
13: Extract the state st from the current local chain Cloc
14: Output (read, sid, st⌈k) (to Z) // st⌈k denotes the prefix of st by pruning blocks

with timestamps reporting the last k rounds
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15: end if

C.12 Simulate Clock Adjustments

If parties are merely de-registered from the random oracle FRO (namely, stalled for a limited time),
they can bootstrap easily to the reliable state and time. Note that if parties are stalled, their
localTime is still updated in UpdateTime and by computing the distance of round numbers in
lastTimeAlert and localTime we get the exact number of rounds that have elapsed during the
stall period.

Protocol SimulateClockAdjustment(P, sid,R)

1: simulatedTime← lastTimeAlert

2: Set r′ as round index in simulatedTime
3: for r− r′ iterations do
4: Let N0 be the subsequence of futureChains s.t. C ∈ N0 :⇔ ∀B ∈ C :

Timestamp(B) ≤ simulatedTime
5: Remove each C ∈ N0 from futureChains.
6: Emulate SelectChain(P, sid, Cloc,N0,R) with simulated time simulatedTime (instead of

localTime) to update Cloc
7: if simulatedTime = ⟨itvl, itvl · R⟩ for interval itvl then
8: Emulate SyncProc(P, sid,R) on simulated time simulatedTime (instead of

localTime)
9: end if

10: end for
11: Set localTime← simulatedTime
12: Set twork ← localTime− 1

Output: The protocol outputs ok to its caller (but not to Z).

C.13 Round Finish Procedure

Once a party P has done its actions in a round, P claims finishing current round by calling Fin-
ishRound and sending clock-update to FILClock. For details of the way to interact with FILClock

in a UC treatment, see [BGK+21].

Protocol FinishRound(P)

1: while A (clock-update,Z) has not been received during the current round do
2: Give up activation (set the anchor here)
3: end while
4: Send (clock-update, sidC) to FILClock. // Party will lose its activation here.

C.14 The Joining Procedure

Another main procedure of Timekeeper is JoinProc, where newly joint parties synchronize with other
alert parties by passively listening to the protocol execution, building blockchain and processing
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beacons to derive a local time that is close to all alert parties. The default value of the parameters
in each phase are summarized in Table 2.

Protocol JoinProc(P, sid, R, toff , tgather)

1: // Phase A, state-reset
2: Call UpdateTime(P,R) // Align with newest round.
3: if localTime > ⟨1, 1⟩ then
4: Set localTime← ⟨1, 1⟩
5: fetchCompleted← false, futureChains← ∅, buffer← ∅
6: Set beacon arrival timetable as empty array
7: end if
8: // Phase B, chain-convergence
9: while localTime < ⟨1, 1⟩+ toff do

10: if fetchCompleted = false then
11: Call FetchInformation(P, sid) and denote fetched chains by N := (C1, . . . , CN )
12: Call SelectChain(P, sid, Cloc,N ,R) to update Cloc
13: fetchCompleted← true
14: FinishRound(P)
15: end if
16: Call UpdateTime(P,R) to update localTime
17: end while
18: // Phase C, beacon-gathering
19: while localTime ≤ ⟨1, 1⟩+ toff + tgather do
20: if fetchCompleted = false then
21: Call FetchInformation(P, sid) and denote the output by (C1, . . . , CN ), (tx1, . . . , txk)
22: Set buffer← buffer ∥ (tx1, . . . , txk)
23: Set futureChains← futureChains ∥ (C1, . . . , CN )
24: Call ProcessBeacons to collect new beacons in this round. // All arrival times are

temporary
25: Call SelectChain(P, sid, Cloc, futureChains, R) to update Cloc
26: fetchCompleted← true
27: FinishRound(P)
28: end if
29: Call UpdateTime(P,R) to update localTime
30: end while
31: // Phase D, shift-computation
32: syncBuffervalid ← {SB′ ∈ syncBuffer | ValidSB(P, sid, SB′, Cloc,R) = true}
33: Initialize i := 0.
34: Set i to be the minimum positive integer such that ∀SB ∈ B ∈ B : SB ∈ syncBuffervalid∧

arrivalTime(SB) ≥ ⟨1, 1⟩ + toff + tpre where B ← {B | (B ∈ Cloc) ∧ (Timestamp(B) =
⟨i, ·⟩) ∧ (Isync(Timestamp(B)) = true)}. // if no interval exists, i is unchanged.

35: if i ≥ 1 then
36: for at most (tgather div R)) iterations do
37: B ← {B | (B ∈ Cloc) ∧ (Timestamp(B) = ⟨i, ·⟩) ∧ (Isync(Timestamp(B)) = true)}
38: SB ← {SB|SB ∈ B ∈ B∧(Timestamp(SB) = ⟨i, ·⟩)∧(Isync(Timestamp(SB)) = true)}
39: for each SB = ⟨⟨itvl′, r′⟩,P′, ctr, ηSB, blockLabel⟩ ∈ SB do
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40: QSB ← {SB′ = ⟨⟨itvl′′, r′′⟩,P′′, ·, ·, ·⟩ ∈ syncBuffervalid |P′ = P′′∧⟨itvl′, r′⟩ =
⟨itvl′′, r′′⟩}

41: if QSB ̸= ∅ then
42: minSB ← min{arrivalTime(SB) | SB ∈ QSB}
43: arrivalTimeSB(SB)← (minSB, final)
44: recom(SB)← Timestamp(SB)− arrivalTime(SB)
45: else
46: S ← S\{SB} // Negligible probability event in execution
47: end if
48: end for
49: shifti ← med{recom(SB) | SB ∈ SB}
50: for each SB with arrivalTimeSB(SB) = (a, temp) do
51: arrivalTimeSB(SB)← (a+ shifti, temp)
52: end for
53: if r+ shifti ≤ (i+ 1)R then
54: Set localTime← ⟨i+ 1, r+ shifti⟩
55: Break
56: else
57: Set localTime← ⟨i+1, r+ shifti⟩ // Temporarily invalid; will be adjust later.
58: set i← i+ 1 // continue iteration.
59: end if
60: end for
61: isSync← true; run SelectChain(P, sid, Cloc, futureChains,R) to update Cloc; twork ←
⟨itvl, r− 1⟩

62: for each beacon SB ∈ syncBuffervalid with Timestamp(SB) = ⟨itvl, ·⟩ do
63: Parse arrivalTimeSB(SB) as (a, temp). Define arrivalTimeSB(SB)← (a, final)
64: end for
65: end if

D Proofs Omitted from the Main Body

Proof of Lemma 1. If two blocks are obtained at nominal rounds which are at distance at least
∆+Φ, then we are certain that the later block increased the accumulated difficulty. To be precise,
assume S∗ ⊆ S is such that, for all i, j ∈ S∗, |i− j| ≥ ∆+ Φ and Yi > 0. We argue that, by round
v, every honest party has a chain of difficulty at least

d+
∑
r∈S∗

Yr ≥ d+Q(S).

Observe first that every honest party will receive the chain of difficulty d by round u+∆+ Φ and
so the first block obtained in S∗ extends a chain of weight at least d. Next, note that if a block
obtained in S∗ is the head of a chain of weight at least d′, then the next block in S∗ extends a chain
of weight at least d′.

Proof of Lemma 2. For the proof of Lemma 2(a)(b)(c), we refer to [GKL20]. Regarding Lemma 2(d),
note that we are under the same conditon as that in Lemma 2(c), we have

A(J ′) < A(J) < (1−δ+3ϵ)Q(S) ≤ (1−δ+3ϵ)(1+ϵ)ph(S) < (1−δ+3ϵ)(1+ϵ)(1−δ)p|J ′| < (1+ϵ)p|J ′|.
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The second inequality follows Lemma 2(c); the third one comes from Definition 7(a); the last
inequality is a consequence of Condition (C2).

By combining the upper bound on A(J ′) with D(S) < (1 + ϵ)ph(S) (which comes from the
definitions) we get the desired inequality.

Proof of Theorem 3. Definition 7 extends the definition of typical executions in [GKL20] by adding
lower bound on D(S) in item (a). Hence regarding the proof of the rest part in Definition 7, we
refer to [GKL20]. In this proof we only consider the probablity of violating the lower bound on
D(S) and the eventual error probability.

Fix a set of R ≥ ℓ consecutive rounds S = s1, s2 . . . , sR and let hj , j ∈ [R] denote the number
of honest queries make during round sj . We work on per qeury that alert parties make during S.
Let J denote the queries in S, ν = |J | = h(S), and Zi the difficulty of any block obtained from
query i. Consider the sequence of random variables

X0 = 0;Xk =
∑
i∈[k]

Zi −
∑
i∈[k]

E[Zi|Ei−1], k ∈ [ν].

This is a martingale sequence with respect to sequence (E0, E1, . . . , Eν) in that

E[Xk|Ek−1] = E[Zk − E[Zk|Ek−1]|Ek−1] + E[Xk−1|Ek−1] = Xk−1.

The last equation follows the linearity of conditional expectation and the facth that Xk−1 is a
deterministic function with respect to Ek−1.

Regarding the details relevant to Theorem 19, we pick t as

ϵ
∑
i∈[ν]

E[Zi|Ei−1 = Ei−1] ≤ ϵ
∑
j∈[R]

phj = ϵph(S)
def
= t

and consider an execution satisfying Gt. Fix i ∈ [ν], let j be the round sj that query i belongs to.
Let

Zi − E[Zi|Ei−1 = Ei−1] ≤
1

Tmin
j

=
phj

phjTmin
j

≤ γph(S)

phjTmin
j R

≤ γph(S)

fR/(2γ2)
=

2γ3t

ϵfR

def
= b

and we see that the event G implies Xk −Xk−1 ≤ b. To get the bound on V , note that

Var(Xk −Xk−1|Ek−1) = E[(Zi − E[Zi|Ei−1])
2|Ek−1] = E[Z2

i |Ek−1]− (E[Zk|Ek−1])
2 ≤ E[Z2

i |Ek−1].

Hence, based on the independence of random variables as well as Fact 1(c), we pick v as∑
k∈[ν]

E[Z2
i |Ek−1 = Ek−1] ≤

∑
j∈[R]

∑
i∈[hj ]

1

T 2
i

· pTi =
∑
j∈[R]

phj

Tmin
j

=
∑
j∈[R]

(phj)
2

phjTmin
j

≤ 2γ2

f

∑
j∈[R]

(phj)
2 ≤ 2γ3

fR
· (ph(S))2 ≤ 2γ3t2

ϵ2fR

def
= v.

In view of these bounds (note that bt = ϵv), by Theorem 19 and Condition (C1), we have

Pr[−Xν ≥ t ∧Gt] ≤ exp
{
− t2

2v(1 + ϵ
3)

}
≤ exp

{
− ϵ2fR

4γ3(1 + ϵ
3)

}
≤ e−λ. (10)

Combining Equation (10) and those error probablities in [GKL20], we get asymptotically the
same result. I.e., the probablity that “E is not typical” is bounded by O(L2)(e−λ + 2−κ).

57



Proof of Lemma 5. Suppose head(C ∩ C′) was created in round v and let u ≤ v be the greatest
round in which an honest party computed a block on C ∩ C′. Let U = {i : u < i ≤ r}, S = {i :
u + ∆ + Φ ≤ i ≤ r − (∆ + Φ)}, and let J denote the adversarial queries that correspond to the
rounds in U . Consider the following claim.

Below we say that d ∈ R is contained in a block B (and write d ∈ B), when B extends a chain
C and diff(C) < d ≤ diff(CB).

Claim. If r − v ≥ ℓ+ 2(∆+ Φ), then 2Q(S) ≤ D(U) +A(J).

Proof. Associate with each r ∈ S such that Qr > 0 an arbitrary honest block that is computed
at round r for difficulty Qr. Let B be the set of these blocks and note that their difficulties sum
to Q(S). We argue the existence of a set of blocks B′ computed in U such that B ∩ B′ = ∅ and
{d ∈ B : B ∈ B} ⊆ {d ∈ B : B ∈ B′}. This suffices, because each block in B′ contributes either to
D(U)−Q(S) or to A(J) and so Q(S) ≤ D(U)−Q(S) +A(J).

Consider, then, a block B ∈ B extending a chain C∗ and let d = diff(C∗B). If d ≤ diff(C ∩ C′)
(note that u < v in this case and head(C ∩C′) is adversarial), let B′ be the block of C ∩C′ containing
d. Such a block clearly exists and and was computed after u. Furthermore, B′ /∈ B, since B′ was
computed by the adversary. If d > diff(C ∩ C′), note that there is a unique B ∈ B such that d ∈ B
(recall the argument in Chain Growth Lemma 1). Since B cannot simultaneously be on C and C′,
there is a B′ /∈ B either on C or on C′ that contains d.

Since S ≥ ℓ and Lemma 4 implies that neither C nor C′ are stale, from Lemma 2(a)(c) we get
that D(U) < (1+5ϵ)Q(S) and A(J) < (1−δ+3ϵ)Q(S), which implies D(U)+A(J) < 2Q(S) when
δ ≥ 8ϵ (by Condition (C2)). This contradicts the claim above. Hence, r − v < ℓ+ 2(∆+ Φ).

E Glossary: Protocol Parameters and Variables

E.1 Main Parameters of Timekeeper

E.2 Main Variables of Timekeeper Participants
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Parameter Description

hr The number of honest RO queries in (nominal) round r.

tr The number of RO quries by A in (nominal) round r.

δ Advantage of honest parties (tr < (1− δ)hr for all r).

f
The probability at least one honest RO query out of n0

computes a block for target T0.

R
The length of a clock synchronization interval in number
of rounds.

M
The length of a target recalculation epoch in number of
rounds.

K
The length of convergence phase in a clock synchronization
interval in number of rounds.

∆ Network delay in rounds.

Φclock The upper bound of the drift that A can set.

Φ
The upper bound of the difference between honest parties’
local clocks. We require that Φ = Φclock +∆.

κ Security parameter; length of the hash function output.

(γ, s) Respecting environment parameter.

ϵ Quality of concentration of random variables.

λ Related to the properties of the protocol.

Table 3: Main Parameters of Timekeeper.

Variable Description

localTime The party P’s current timestamp in the form of ⟨itvl, r⟩.
itvl The interval that r belongs to.

ep The epoch that r belongs to.

Cloc
The local chain the party adopts based on which it does mining
and exports the ledger state.

buffer a buffer of transactions.

futureChains
A buffer to store chains with blocks whose timestamps belong
to the future (logical) rounds.

arrivalTimeSB(·)
A map that assigns to each synchronization beacon a pair (a, b),
where a is the arrival time and b is an indication of whether a
is final or temp.

arrivalTime(·) Shorthand for the first (arrival time) element of the pair
arrivalTimeSB(·).

isSync A bit variable to store the synchronization status.

fetchCompleted
A variable to store whether the round messages have been
fetched.

lastTimeAlert
The timestamp which stores the last alert time. Used for re-
joining if the party was only stalled.

Table 4: Main state variables in Timekeeper.
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