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ABSTRACT
BACKGROUND: Antidepressants are a first-line treatment for depression. However, only a third of individuals
experience remission after the first treatment. Common genetic variation, in part, likely regulates antidepressant
response, yet the success of previous genome-wide association studies has been limited by sample size. This
study performs the largest genetic analysis of prospectively assessed antidepressant response in major
depressive disorder to gain insight into the underlying biology and enable out-of-sample prediction.
METHODS: Genome-wide analysis of remission (nremit = 1852, nnonremit = 3299) and percentage improvement (n =
5218) was performed. Single nucleotide polymorphism–based heritability was estimated using genome-wide complex
trait analysis. Genetic covariance with eight mental health phenotypes was estimated using polygenic scores/
AVENGEME. Out-of-sample prediction of antidepressant response polygenic scores was assessed. Gene-level
association analysis was performed using MAGMA and transcriptome-wide association study. Tissue, pathway,
and drug binding enrichment were estimated using MAGMA.
RESULTS: Neither genome-wide association study identified genome-wide significant associations. Single
nucleotide polymorphism–based heritability was significantly different from zero for remission (h2 = 0.132, SE =
0.056) but not for percentage improvement (h2 = 20.018, SE = 0.032). Better antidepressant response was
negatively associated with genetic risk for schizophrenia and positively associated with genetic propensity for
educational attainment. Leave-one-out validation of antidepressant response polygenic scores demonstrated
significant evidence of out-of-sample prediction, though results varied in external cohorts. Gene-based analyses
identified ETV4 and DHX8 as significantly associated with antidepressant response.
CONCLUSIONS: This study demonstrates that antidepressant response is influenced by common genetic variation,
has a genetic overlap schizophrenia and educational attainment, and provides a useful resource for future research.
Larger sample sizes are required to attain the potential of genetics for understanding and predicting antidepressant
response.

https://doi.org/10.1016/j.bpsgos.2021.07.008
Major depressive disorder (MDD) is the third leading cause of
years lived with disability worldwide (1) and is a substantial risk
factor for suicide (2). MDD confers a major personal, societal,
and economic burden (3), partly because of the limited efficacy
of treatment options.

In 2011 to 2014, 12.7% of individuals in the United States
12 years of age and over reported antidepressant medication
021 THE AUTHORS. Published by Elsevier Inc on behalf of the Society o

N: 2667-1743 Biological Psychia
use (4). The rate of antidepressant prescriptions is also
increasing, with the number of prescriptions doubling in the
United Kingdom in the decade prior to 2018 (5). Antidepres-
sants are robustly linked to a reduction in depressive symp-
toms (6), but they are often ineffective: approximately 35% of
patients remit after their primary treatment (7) and approxi-
mately 40% develop treatment-resistant depression (TRD),
f Biological Psychiatry. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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defined as not remitting after two or more antidepressants (8).
For patients, the process of trialing antidepressants can be
lengthy and demoralizing, delaying recovery and exposing
patients to a range of potential side effects that reduce
adherence and willingness to try new drugs (9). There is
therefore great potential to improve treatment of depression
through better understanding of the factors that control
response to antidepressants and implementing this knowledge
through individually tailored treatment.

Pharmacogenetic studies were expected to uncover loci
with large effects on drug response and adverse events due to
effects of pharmacokinetic or pharmacodynamic mechanisms.
While associations between antidepressant plasma levels and
drug-metabolizing enzymes CYP2D6 and CYP2C19 have been
identified (10–12), previous research suggests that genes
encoding these enzymes and other candidate genes account
for a small proportion of variation in drug response (13,14).
However, genotyping complexities for such candidate genes
may contribute to limited findings.

Several genome-wide association studies (GWASs) have
been performed to identify genetic predictors of antidepres-
sant response. Although no robustly replicated associations
have been detected to date (15–19), common single nucleotide
polymorphisms (SNPs) are reported to explain 42% (SE =
18%; 95% confidence interval [CI], 7%–77%) of the variance
(20). Pharmacogenetic studies are intensive to perform,
requiring disease severity measures at baseline pretreatment
and then longitudinally, with many studies being performed as
part of a randomized controlled trial (15–18). This clinically
assessed approach provides high-quality data, though it has
led to previous studies being limited in sample size, with
,3000 patients with MDD in the largest GWAS to date. Further
efforts to combine these individual cohorts to increase sample
size for genetic studies are therefore required. Use of lighter
phenotyping approaches such as electronic health record–
derived TRD (21) may also provide novel insight, though it is
unclear whether these different measures of antidepressant
response have a common genetic basis.

In this study, we analyze genome-wide genetic data on
clinically assessed antidepressant response from 5843 pa-
tients treated for MDD, combined from 13 international
research studies. Using this novel data resource, we perform
GWAS of remission and percentage improvement after
receiving antidepressant medication, and undertake extensive
post-GWAS analyses, made feasible through this increased
sample size. This study aims to elucidate the genetic archi-
tecture of antidepressant response and use polygenic scores
to establish the relationship between antidepressant response
and mental health outcomes. We find, for the first time, a
replicable polygenic signal of antidepressant response across
studies.

METHODS AND MATERIALS

Primary Samples and Measures

This study analyzed 13 cohorts (Table 1). Ten cohorts were of
European ancestry and 3 were of East Asian ancestry
(Supplement 1). All subjects provided written informed consent
for pharmacogenetic analyses. These primary cohorts include
individuals with a clinical diagnosis of MDD, who were
116 Biological Psychiatry: Global Open Science April 2022; 2:115–126
assessed for depressive symptoms before and after treatment
with antidepressants.

Two measures of antidepressant response were defined:
remission and percentage improvement. Remission is a binary
measure attained when a patient’s depression symptom score
decreases to a prespecified threshold for the rating scale
(Supplement 1).

All analyses included covariates of the first 20 principal
components of population structure, age, and gender. Ana-
lyses using the remission measure of response also included
the baseline symptom score as a covariate, to control for
depression severity.

Each cohort underwent standard quality control and 1000
Genomes Project phase 3 imputation using the RICOPILI
pipeline on the LISA server (22) (Supplement 1 and Table S1 in
Supplement 2).

Genome-wide Association Study

GWAS was performed using the RICOPILI pipeline (22) sepa-
rately for studies with participants of European and of East
Asian ancestry (Supplement 1). All other analyses were per-
formed using only the European ancestry cohorts due to the
limited sample size of the East Asian cohorts.

Gene-Level Association Analysis

Gene associations were estimated using MAGMA (23) and
transcriptome-wide association study (TWAS) (24).

The MAGMA v1.06b SNP-wise mean model (610-kb win-
dow) was used to perform gene-level association analysis
based on the remission and percentage improvement GWAS p
values. The analysis was based on genetic variants and linkage
disequilibrium in the 1000 Genomes Project phase 3
dataset available on the MAGMA website (g1000_eur.bed/bim/
fam). SNPs were assigned to genes using the MAGMA
NCBI37.3.gene.loc file with a 10-kb window. False discovery
rate (FDR) correction was used to control for multiple testing.
See Supplement 1 for a description of gene set enrichment
analysis using MAGMA.

TWAS integrates GWAS associations with external
expression quantitative trait loci data to infer whether differ-
ential gene expression estimated from SNP data is associated
with the GWAS phenotype. TWAS was performed using
FUSION software (http://gusevlab.org/projects/fusion/) and
precomputed multi-SNP predictors of gene expression based
on data collected from multiple specific brain regions, thyroid
tissue, pituitary gland, liver, and blood (Table S2 in
Supplement 2). The transcriptome-wide significance threshold
of p , 2.51 3 1026 was estimated using a permutation pro-
cedure (25). To test whether the same causal SNP affects both
the GWAS phenotype and gene expression, colocalization
analysis was performed using the coloc package in R software
(version 3.5.0; R Foundation for Statistical Computing) (26), as
implemented by FUSION software.

Estimation of SNP-Based Heritability

The SNP-based heritability of remission and percentage
improvement was estimated using individual-level data by
genomic relatedness–based restricted maximum likelihood
(GREML) in the software GCTA (genome-wide complex trait
www.sobp.org/GOS
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Table 1. Cohorts of Individuals Diagnosed With Major Depressive Disorder and Assessed for Depressive Symptoms Before and After Treatment With
Antidepressant Medication

Study (Reference)
Country,
Region

Study
Design

Study Length,
Weeks Medication(s) Measure

Median Age,
Years

IQR for Age,
Years Female Na

npercentage
improvement nremit nnonremit

European Ancestry

STAR*D (52) United States Open label 12 Citalopram QIDSC 44 32–53 58% 1163 1163 506 657

GSRD (17) Europe Naturalistic .4 Various MADRS 52.5 43–61 66% 1152 1152 189 963

GENDEP (53) Europe Partially randomized
RCT

12 Escitalopram, nortriptyline MADRS 43 33–51 63% 783 783 291 365

DAST (see
Supplement 1)

Germany Naturalistic inpatient 6 Various HAMD-21 50 37–62 57% 586 586 245 303

PGRN-AMPS (54) United States Open label 8 Citalopram, escitalopram QIDSC 38.5 28–49 63% 490 392 200 290

GENPOD (18) United
Kingdom

Open label 12 Citalopram, reboxetine BDI 38 30–48 69% 474 474 169 305

PFZ (18) United States RCT 6-8 Sertraline, fluoxetine,
paroxetine

HAMD-17 43 32–54 67% 309 309 99 210

Mayo (16) United States Open label 8 Citalopram, escitalopram HAMD-17 37 29–51 62% 156 156 80 76

GSK (18) United States RCT 8 Escitalopram HAMD-17 36 25.75–45 55% 132 132 56 76

GODS (18) Switzerland Open label 8 Paroxetine MADRS 37 29.5–43.5 52% 71 71 17 54

East Asian Ancestry

Miaoli (16) Taiwan Open label 8 Escitalopram, paroxetine HAMD-17 41 30–52 82% 233 233 103 130

Taipei (16) Taiwan Open label 8 Fluoxetine, citalopram HAMD-17 46 34–59 55% 174 174 45 129

Japan (16) Japan RCT 6 Fluvoxamine, paroxetine HAMD-17 44.5 32–56 47% 120 120 78 42

Total 5843 5745 2078 3600

BDI, Beck Depression Inventory; DAST, Depression and Sequence of Treatment; GENDEP, Genome Based Therapeutic Drugs for Depression; GENPOD, GENetic and clinical Predictors
Of treatment response in Depression; GODS, Geneva Outpatient Depression Study; GSK, Glaxo Smith Kline; GSRD, Group for the Study of Resistant Depression; HAMD-17, 17-item
Hamilton Depression Rating Scale; HAMD-21, 21-item Hamilton Depression Rating Scale; IQR, interquartile range; MADRS, Montgomery–Åsberg Depression Rating Scale; PFZ, Pfizer;
PGRN-AMPS, Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study; QIDSC, Quick Inventory of Depressive Symptomatology; RCT, randomized
controlled trial; STAR*D, Sequenced Treatment Alternatives to Relieve Depression.

aNumber of participants included after quality control of genetic and clinical data.
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analysis) (27,28). The analysis was performed 1) across all
cohorts, including a study covariate (mega-GREML); and 2)
separately within each cohort and then inverse variance meta-
analyzed (meta-GREML) (Supplement 1). Comparison of
mega- and meta-GREML estimates can provide insight into
the heterogeneity between cohorts, as only mega-GREML
accounts for genetic covariances between cohorts. We con-
verted SNP-based heritability estimates for remission to the
liability scale using assuming a population prevalence of 0.357,
reflecting the prevalence of remission across the cohorts in this
study.

Leave-One-Out Polygenic Scoring

To determine whether polygenic scores derived from the
remission and percentage improvement GWAS summary sta-
tistics predict antidepressant response in an independent
sample, a leave-one-out polygenic scoring approach was
used. This involves calculating polygenic scores within each
cohort based on GWAS summary statistics derived using all
other cohorts. Polygenic scores were calculated using PRSice
V2 (29) (Supplement 1). One-sided p values were used to
assess statistical significance, as we are testing the one-sided
hypothesis that the polygenic score has a positive association
with the outcome in the target sample.

Estimation of Genetic Overlap With Mental Health
Phenotypes

We tested for evidence of genetic overlap between antide-
pressant response measures and seven mental health phe-
notypes: major depression (30), bipolar disorder (31),
schizophrenia (32), attention-deficit/hyperactivity disorder (33),
autism spectrum disorder (ASD) (34), anxiety (35), and prob-
lematic drinking (Alcohol Use Disorders Identification Test
problem subscale) (36). Educational attainment (37) was also
included, as it has strong correlations with the mental health
disorders tested. Evidence of genetic overlap was assessed
using polygenic scoring with AVENGEME (38), and linkage
disequilibrium score regression (39). To avoid sample overlap
between the major depression GWAS and the antidepressant
response cohorts in this study, we used major depression
GWAS summary statistics excluding overlapping cohorts
(STAR*D [Sequenced Treatment Alternatives to Relieve
Depression], GENPOD [GENetic and clinical Predictors Of
treatment response in Depression], GENDEP [Genome Based
Therapeutic Drugs for Depression], PFZ [Pfizer]).

AVENGEME aggregates polygenic score association results
across p-value thresholds to estimate genetic covariance be-
tween antidepressant response and the eight mental health
phenotypes. AVENGEME parameters are provided in Table S3
in Supplement 2. Bonferroni correction was used to account
for multiple testing for the eight discovery GWASs used.

Replication Cohorts and Analyses

Out-of-Sample Prediction. External validation of poly-
genic scores derived using the full GWAS results was also
carried out. Five independent samples were used (Supplement
1). In brief, Janssen (N = 190, remission rate = 11.8%) (40), the
Douglas Biomarker Study (N = 127, remission rate = 23.6%)
(41), and the IRL-GREY (Incomplete Response in Late Life
118 Biological Psychiatry: Global Open Science April 2022; 2:115–126
Depression: Getting to Remission) study (N = 307, remission
rate = 52.4%) (42) prospectively assessed depressive symp-
toms, concordant with the discovery GWAS samples. In
contrast, Generation Scotland (ntreatment resistant = 177,
nnon–treatment resistant = 2455) (21) assessed electronic pre-
scription data, and the AGDS (Australian Genetics of Depres-
sion Study) study (nresponders = 4368, nnonresponders = 6879) (43)
collected retrospective self-report questionnaire data. Poly-
genic score association results were meta-analyzed across the
prospectively assessed cohorts given their more comparable
study design and antidepressant measures. One-sided
p values were used to assess statistical significance.

Comparison of Genetic Covariance With Mental
Health Phenotypes. Individual-level data were available for
Generation Scotland enabling estimation of genetic covariance
between TRD and mental health-related phenotypes using
AVENGEME, as described above. Analyses in Generation
Scotland were controlled for age, gender, and 20 principal
components of population structure. When estimating genetic
covariance between TRD and major depression, we used
major depression GWAS summary statistics excluding Gen-
eration Scotland to avoid sample overlap.

RESULTS

Descriptive statistics for the cohorts used in this study are
available in Table 1 and in Figures S1 to S5 in Supplement 1.

GWAS of Antidepressant Response

Across the 10 European studies, 5151 individuals with remis-
sion data (1852 [36.0%] patients remitting) and 5218 partici-
pants with percentage improvement data were available. No
variants were significantly associated with remission or per-
centage improvement (Figures S6 and S7 in Supplement 1,
Tables S4 and S5 in Supplement 2). There was no evidence of
confounding (Figures S8 and S9 in Supplement 1, Table S6 in
Supplement 2)

No significant associations were identified in the East Asian
GWASs (N = 527) (Figures S10 and S11 in Supplement 1). A
comparison between East Asian and European GWAS results
is shown in Supplement 1.

Gene-Level Association Results

MAGMA identified a significant association on chromosome
17 for ETV4 with both remission (pFDR = .016) and percentage
improvement (pFDR = .016). Within the same region, DHX8 was
also significantly associated with remission (pFDR = .046). The
SNP associations within this region span multiple genes
(Figure S12 in Supplement 1). Full MAGMA gene-based
association results are shown in Tables S7 and S8 in
Supplement 2.

TWAS identified no association achieving transcriptome-
wide significance (p , 2.51 3 1026). Further inspection of
TWAS associations within the chromosome 17 region impli-
cated by MAGMA highlighted SNP-associations with upregu-
lation of BRCA1 (remission p = 1.96 3 1024; percentage
improvement p = 9.21 3 1025; GTeX brain–caudate [basal
ganglia]) and upregulation of TMEM106A (remission p = .0011;
percentage improvement p = .0018; Young Finns Study
www.sobp.org/GOS
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[blood]). Colocalization analysis of these associations indi-
cated shared casual variants for these genes’ differential
expression and antidepressant response. Full TWAS results
are given in Tables S9 and S10 in Supplement 2.

See Supplement 1 for gene set enrichment analysis results.

SNP-Based Heritability

Analysis across all samples (mega-GREML) showed remission
to have a significant nonzero SNP-based heritability (h2 =
0.132; SE = 0.056; 95% CI, 0.022 to 0.241; p = .009, liability
scale assuming population prevalence of 0.357), whereas the
SNP-based heritability for percentage improvement was not
significantly different from zero (h2 = 20.018; SE = 0.032; 95%
CI, 20.080 to 0.045; p = .303) (Figure 1).

The SNP-based heritability estimates from meta-analysis of
within-sample estimates (meta-GREML) were significant for
both remission (h2 = 0.396; SE = 0.153; 95% CI, 0.096 to
0.696; p = .010, liability scale assuming population prevalence
of 0.357) and percentage improvement (h2 = 0.215; SE = 0.105;
95% CI, 0.009 to 0.421; p = .041) (Figure 1). See Figures S18
and S19 in Supplement 1 for meta-analysis forest plots.

See Supplement 1 for SNP-based heritability sensitivity
analyses.

Out-of-Sample Prediction

Leave-one-out polygenic score analysis provided evidence
that polygenic scores derived using remission and percentage
improvement GWAS results could both explain a statistically
significant amount of variance out-of-sample (Figure 2). Both
remission and percentage improvement explained w0.1% of
the variance, with polygenic scores for multiple p-value
thresholds associated at nominal significance.

Validation of polygenic scores based on the full antide-
pressant response GWAS summary statistics was carried out
using five samples. Meta-analysis of polygenic score
*

*

*
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Figure 1. Single nucleotide polymorphism–based heritability (SNP-h2)
estimates for remission and percentage improvement with SE bars.
Figure shows across (mega-) and within (meta-) sample genomic
relatedness–based restricted maximum likelihood (GREML) estimates.
*Estimate is significantly different from zero, at p , .05.

Biological Psychiatry: Glob
associations across the three prospectively assessed cohorts
(Janssen, Douglas Biomarker Study, and IRL-GREY study)
showed nominally significant evidence of association for the
remission polygenic score (maximum liability R2 = 0.8%, p =
.015) and a nonsignificant association for the percentage
improvement score (maximum R2 = 0.2%, p = .091)
(Figure S21 in Supplement 1). Results were highly variable
across each prospectively assessed cohort. No association
was found between polygenic scores in Generation Scotland
or AGDS study cohorts. Full polygenic score replication results
are in Tables S14 to S17 in Supplement 2.

Genetic Overlap With Mental Health Phenotypes

Both remission and percentage improvement showed a sig-
nificant negative genetic covariance with schizophrenia, and
significant positive genetic covariance with educational
attainment (Figure 3; Tables S18 and S19 in Supplement 2).
Percentage improvement also showed a significant negative
covariance with major depression and bipolar disorder, and a
significant positive genetic covariance with ASD. Linkage
disequilibrium score regression genetic correlation estimates
were broadly concordant, although they were nonsignificant
(Figure S22 in Supplement 1). Subsequent conditional anal-
ysis, covarying for educational attainment polygenic scores,
showed that the associations with psychiatric disorders were
independent of the association with educational attainment
(Figure S23 in Supplement 1).

Genetic overlap estimates between TRD in Generation
Scotland and mental health phenotypes were congruent with
results from primary samples, showing that genetic risk for
schizophrenia was greater among individuals with TRD, and
educational attainment genetic propensity was greater among
individuals with non-TRD (Figure S24 in Supplement 1).

DISCUSSION

Antidepressants are a common and effective strategy for
treating MDD; however, remission rates are typically low, and
factors affecting antidepressant response are poorly under-
stood. This study is the largest genetic investigation of anti-
depressant response based on clinically defined cohorts. For
the first time, we identify a polygenic profile for antidepressant
response, which can predict across cohorts, and shows ge-
netic correlations with traits that reflect clinical observations.

This study finds significant evidence that antidepressant
response is influenced by common genetic variation. Meta-
analysis of SNP-based heritability estimates within each
cohort indicates that 20% to 40% of the variance in antide-
pressant response is attributable to common genetic variation,
consistent with a previous analysis of a subset of these studies
(20). However, the SNP-based heritability decreased sub-
stantially when estimating across cohorts simultaneously.
Although the change in SNP-heritability was not statistically
significant, these results suggest that antidepressant response
in a broad context has a heritable component, but genetic
differences can explain additional variability in antidepressant
response within more specific contexts. Despite the apparent
heterogeneity across individual cohorts, the sample sizes for
antidepressant response are sufficiently large to detect a
polygenic signal. Genetic studies for susceptibility to
al Open Science April 2022; 2:115–126 www.sobp.org/GOS 119
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Figure 2. Polygenic prediction of antidepressant
response from leave-one-out polygenic scoring for
(A) remission and (B) percentage improvement. R2

estimates are signed to indicate positive or negative
association. One-sided p values are shown above or
below the bars, with p values , .05 highlighted in
red.
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psychiatric disorders show that findings accrue after an in-
flection point in sample size is reached (30–32). This study’s
findings for SNP-based heritability and out-of-sample poly-
genic prediction indicate that sample sizes for antidepressant
response are reaching the inflection point and that larger
studies will uncover more of the genetic component (44). Po-
wer calculations for detecting genome-wide significant varia-
tion, and the variance explained by corresponding polygenic
scores, are provided in Figure S25 in Supplement 1. Interest-
ingly, our findings suggest that the SNP-based heritability of
remission is higher than for percentage improvement. The
percentage improvement score might have lower heritability
because of increased noise, in which this measure is more
susceptible to random variation in depressive symptoms, is
less comparable across the different depressive symptom
scales used, or captures increases in depressive symptoms.

This study provides novel insight into the shared genetic
basis between antidepressant response and mental health
phenotypes. We show an association between high genetic
liability of psychiatric disorders and poorer response, which
mirrors conclusions of clinical studies (45). The schizophrenia
120 Biological Psychiatry: Global Open Science April 2022; 2:115–126
polygenic risk score was negatively associated with antide-
pressant response, which is replicated in the TRD phenotype in
Generation Scotland. Previous studies have shown that in-
dividuals with TRD may respond to antipsychotic medication
(46). Our findings extend those reports by suggesting that in-
dividuals with antidepressant resistance also have a higher
burden of schizophrenia genetic risk. We found some evidence
that genetic liability to major depression is associated with
poorer response to antidepressants. However, this association
was only statistically significant for percentage improvement,
and it requires replication. In addition, we report a novel finding
that high ASD genetic liability increased the chance of remis-
sion. Another recent study reported that ASD genetic liability is
associated with poorer response to cognitive behavioral ther-
apy (47). If both these findings are replicated, it would suggest
ASD genetic liability could serve as a differential predictor of
response to antidepressants and cognitive behavioral therapy.
We also identified a significant association between genetic
propensity for educational attainment and improved antide-
pressant response as well as between genetic propensity for
educational attainment and non-TRD. This may reflect the
Figure 3. Genetic covariance (gcov) estimates
between antidepressant response phenotypes and
seven mental health phenotypes and educational
attainment. Confidence intervals (CIs) were corrected
for multiple testing. ADHD, attention-deficit/
hyperactivity disorder; ASD, autism spectrum
disorder.
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indirect measurement of socioeconomic status captured by
educational attainment, which is supported by previous liter-
ature showing a positive association between antidepressant
response and socioeconomic status (48). Future research
should explore whether individuals with higher educational
attainment have improved response due to factors such as
adherence or joint psychological treatment.

Polygenic scores derived from the remission and percent-
age improvement GWASs both significantly predicted antide-
pressant response out of sample using a leave-one-out
design. This is the first GWAS of antidepressant response able
to predict significantly out of sample, representing an impor-
tant advance in the field of antidepressant response genetics.
Although the variance explained is low (R2 = 0.1%) and p
values are close to the nominal significance threshold, this
result is encouraging given the sample size of this study. For
example, a recent GWAS of MDD explains only 1.9% of the
variance in MDD, despite having a sample size 100 times
greater than this study (30). Our finding suggests that a
renewed effort to systematically collect new samples in which
genetic associations with antidepressant response can be
identified will improve the prediction of antidepressant
response, helping to uncover its biological mechanisms and
clinical associations, and eventually enable more accurate
clinical predictors to be developed and applied.

This study provided limited insight into the biological un-
derpinnings of antidepressant response implicating one locus
on chromosome 17 surrounding ETV4 and DHX8. A previous
study using neuronal cell lines and mouse models found that
ETV4 mediates brain-derived neurotrophic factor (BDNF)
induced hippocampal dendrite development and plasticity (49),
congruent with the hypothesis that the mechanism of action
for antidepressants is via hippocampal neuroplasticity (50).
DHX8 has a less clear mechanistic link to antidepressant
response with a broader function in messenger RNA splicing
(51). Replication of the association at this locus is required
before further experimental investigation.

In addition, no association was detected with genetic vari-
ation within classical pharmacokinetic candidate genes, such
as CYP2D6 and CYP2C19, which have previously been
robustly associated with antidepressant plasma levels (11).
Although the enzymatic activity of CYP2D6 and CYP2C19 is
largely regulated by common genetic variation, these variants
include structural variants that are not well captured by GWAS
arrays, and large effects on enzymatic activity are typically
conferred by combinations of genetic variants (haplotypes),
which GWAS does not assess. Therefore, the absence of an
association at this point may be a false negative result.
Furthermore, looking across individuals that have not been
treated with a specific antidepressant or antidepressant class
will reduce the likelihood of detecting pharmacokinetic effects.

Owing to a limited sample size, it was not possible to esti-
mate genetic correlations between longitudinally assessed
antidepressant response and TRD defined using electronic
health records. However, comparison of shared genetic etiol-
ogy with other mental health phenotypes indicated that these
distinct measures of antidepressant response have a shared
genetic basis. Further comparison and integration of these two
approaches is warranted and may prove fruitful given the large
Biological Psychiatry: Glob
gains in sample size that electronic health record–derived
phenotypes can provide.

There are several limitations to this study that should be
addressed in the future. First, large sample sizes are essential
for robust identification of associated genetic variation and
out-of-sample prediction. However, combining independently
collected datasets inevitably introduces heterogeneity.
Obtaining large homogeneous samples is particularly chal-
lenging for pharmacogenetic studies, as heterogeneity is
driven not only by patient characteristics such as diagnosis
and patient ascertainment, but also by differences in treatment
such as the drug, dosage, duration, and co-pharmacotherapy.
Although the cohorts within this study have many features in
common, heterogeneity in antidepressant treatment is present.
As sample sizes grow, analyses stratified by these factors will
become more feasible, enabling detection of genetic effects
relevant to each antidepressant, antidepressant class, or other
treatment characteristics. Second, an important question to
consider is whether the variance in depressive symptoms after
treatment is due to antidepressant response or to other vari-
ables altering the course of depression. Although antidepres-
sants have a significant effect on depressive symptoms, and
their administration is the core feature of participants in this
study, individuals may vary in depressive symptoms due to
other factors affecting disease progression, such as clinical
and sociodemographic variables and placebo response. This
is a difficult issue to resolve but should be considered when
interpreting the results. Future genetic studies incorporating
the placebo arm of clinical trials may help identify genetic as-
sociations specific to antidepressant response. Third, this
study has focused on changes in total depressive symptoms
without considering symptom domain-specific changes or the
presence of side effects. Given the wide range of depressive
symptoms and the influence side effects can have on efficacy,
consideration of these features may provide additional in-
sights. Fourth, although this study included three cohorts of
East Asian ancestry, further inclusion of cohorts with diverse
ancestries is an important area. Genetic analysis within diverse
populations helps to ensure that the findings are applicable to
worldwide populations and can help fine-map causal variants
underlying genetic associations.

In summary, this study identifies a polygenic profile for an-
tidepressant response that predicts across studies and is
negatively correlated with genetic susceptibility to schizo-
phrenia, which could be used for prognostic purposes. While
the current results have no clinical utility as a pharmacogenetic
test, they indicate that studies with larger sample sizes could
provide predictions explaining a substantial proportion of an-
tidepressant response. We note that a prognostic test that
enables even a modest increase in the proportion of patients
that respond to antidepressants would have a substantial
impact on recovery for many patients, given the high preva-
lence of depression. We hope that this study prompts both
replication and extension to accelerate the development of
pharmacogenetic testing for psychiatry.
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