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Intrinsic Instabilities in Premixed Hydrogen Flames:
Parametric Variation of Pressure, Equivalence Ratio, and Temperature.

Part 1 - Dispersion Relations in the Linear Regime

Lukas Bergera,∗, Antonio Attilib, Heinz Pitscha

aInstitute for Combustion Technology, RWTH Aachen University, 52056 Aachen, Germany
bInstitute for Multiscale Thermofluids, School of Engineering, University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom

Abstract

The impact of intrinsic combustion instabilities is studied for lean premixed hydrogen flames by means of a series of simulations at
different equivalence ratios [0.4-1.0], unburned temperatures [298K-700K], and pressures [1bar-20bar]. In addition to the Darrieus-
Landau, or hydrodynamic, instability, lean premixed hydrogen flames are prone to thermodiffusive instabilities, which lead to
significant flame front wrinkling and a chaotic process of formation and destruction of cellular structures along the flame front.
Theoretical models are not yet capable of accurately describing the evolution of such flames, so the propensity of lean hydrogen
flames to develop instabilities is studied numerically in a parametric variation in this work. A stability analysis is conducted, in
which planar flames are initially exposed to weak harmonic perturbations and the response of the flame is studied. In the initial
phase referred to as linear phase, a growth or decrease of the initially imposed perturbation amplitude is observed, while for long
times, chaotic cellular structures are formed along the flame front, which are studied in part 2 of this work (L.Berger et al., Combust.
Flame, 2021). The growth rates of the perturbation amplitude that are obtained from the initial phase are a measure of the strength of
the intrinsic instability mechanisms and vary with respect to the wave number of the harmonic perturbation yielding characteristic
dispersion relations. A decrease of equivalence ratio and unburned temperature and an increase of pressure are found to enhance
the growth rates and hence intrinsic instabilities. The variation of dispersion relations is analyzed with respect to variations of
the expansion ratio, the effective Lewis number of the mixture, and the Zeldovich number. For the lean hydrogen flames, with
increasing pressure a decrease of the cut-off wave number, which represents the change of the sign of the dispersion relation at
high wave numbers, is observed. This is the opposite trend compared to flames that are not affected by thermodiffusive instabilities.
Further, numerical growth rates are compared to theoretical models. The results show that lean hydrogen flames are prone to develop
instabilities at conditions that are relevant to several combustion devices such as gas turbines that operate at lean equivalence ratios,
elevated pressures and temperatures or domestic and industrial heaters that operate at low temperatures and ambient pressure.

Keywords: Thermodiffusive Instability, DNS, Hydrogen, Premixed, Preferential Diffusion

1. Introduction

The recent rise of electricity production from renewable en-
ergy sources has increased the need for appropriate energy stor-
age, thus promoting the use of hydrogen as a carbon-free en-
ergy carrier [1]. One possibility to integrate hydrogen into the
existing energy infrastructure is its thermochemical energy con-
version [2]. However, a variety of challenges and opportuni-
ties arises for combustion processes that involve hydrogen as a
fuel. In particular, lean hydrogen/air flames are prone to com-
bustion instabilities, which can substantially change flame dy-
namics, heat release rates, and flame speed. These aspects are
highly relevant for safety considerations in any combustion de-
vice, e.g., to avoid flame flash back, but can be also exploited
to increase thermal efficiencies [3].

In lean premixed hydrogen flames, combustion instabilities
originate from the low Lewis number of molecular hydrogen,
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which induces strong differential diffusion effects within the
flame front. The low Lewis number of hydrogen results from
the high molecular diffusion of hydrogen compared to the ther-
mal diffusivity of the mixture. The disparity of the heat and
hydrogen mass fluxes leads to an amplification of small flame
front perturbations such that strongly wrinkled flame fronts
are observed leading to significantly enhanced fuel conversion
rates. This instability mechanism is known as the thermodiffu-
sive instability. Additionally, the flame propagation is affected
by the hydrodynamic instability mechanism, which arises from
the density jump across the flame front, and exists for any pre-
mixed flame irrespective of the Lewis number.

Extensive theoretical analyses of such instabilities and their
impact on the stability of planar flames have been conducted,
but yet, none of the theoretical models is capable of accurately
describing the flame evolution of lean premixed hydrogen. The
theoretical studies by Clavin and Williams [4] and Matalon and
Matkowsky [5] assumed a global one-step reaction with large
activation energy. In this model, all reactions are assumed to
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occur in a thin region compared to the preheat zone and the
flame sheet iso-surface is located close to the burned gases. The
model formulation was extended by Giannakopoulos et al. [6]
and Clavin and Graña-Otero [7] by considering different iso-
surfaces within the flame such that the effect of flame curva-
ture, strain rate, and stretch on the flame speed is determined
for different choices of iso-surfaces. However, in these analy-
ses [4–7], the flame stretch rate, curvature, and strain rate are as-
sumed to be small compared to the flame time and flame thick-
ness and the mixture’s effective Lewis number is assumed to be
close to unity. In contrast, the analyses of Sivashinsky [8, 9]
allow for large values of the stretch rate and for Lewis num-
bers sufficiently smaller than unity as it is the case for lean pre-
mixed hydrogen flames, but assume the density jump through-
out the flame front to be small. For these conditions, an integro-
differential equation is derived that predicts the evolution of a
corrugated flame front and can qualitatively reproduce the for-
mation of cellular structures along the flame front that are typi-
cal features of thermodiffusively unstable flames.

Theoretical models are presently not capable of accurately
describing the evolution of lean premixed hydrogen flames, as
either Lewis numbers close to unity are assumed, whereas the
Lewis number of hydrogen is significantly lower than unity, or
small variations of density are assumed, while significant den-
sity variations are observed in actual flames. Attili et al. [10]
showed that even for methane/air flames, whose Lewis num-
ber is close to unity and which do not feature thermodiffusive
instabilities, the theoretical models are missing certain trends
and lack an accurate description. Thus, since thermodiffusive
instabilities can significantly affect the flame evolution, a com-
prehensive quantification of intrinsic instabilities in lean hydro-
gen/air flames is necessary. For instance, Berger et al. [11]
showed that thermodiffusive instabilities can lead to four times
higher consumption speeds in lean hydrogen/air mixtures at
ambient conditions. For this, a series of high-fidelity simula-
tions that employ a detailed chemical mechanism to avoid as-
sumptions related to the reduction of chemical mechanisms and
resolve all length and time scales, such as spatial gradients and
the characteristic time scales of chemical reactions, has been
performed. A rigorous assessment of the strength of the in-
trinsic instability mechanisms can be pursued by means of a a
stability analysis, in which a planar flame is initially exposed to
a weak harmonic perturbation and the response of the flame is
studied. In the initial phase referred to as linear phase, an ex-
ponential growth or decrease of the initially imposed amplitude
of the perturbation is observed and measuring the respective
growth rates with respect to the wave length of the initial per-
turbation yields a dispersion relation. Studying such dispersion
relations at different conditions allows for a rigorous assess-
ment of the impact of the instability mechanisms.

Frouzakis et al. [12] numerically investigated dispersion re-
lations of hydrogen/air flames at different equivalence ratios
of 0.5 < φ < 2.0 at atmospheric conditions using a detailed
chemical mechanism. While good agreement among the nu-
merical and theoretically predicted dispersion relations is seen
for the cases with φ ≥ 0.75, large discrepancies are observed
for the leaner case, where the thermodiffusive mechanism be-

comes dominant. Similar findings are observed by Altantzis et
al. [13], who studied a lean hydrogen/air flame at φ = 0.6 at
5bar and an unburned temperature of 298K using a single-step
global reaction. As expected for lean conditions, the model of
Matalon et al. [14] does not capture the inflection point at small
wave numbers and no stabilization at high wave numbers oc-
curs. The model by Sivashinsky [9] leads to a significant under-
prediction as the variation of densities is neglected. Further nu-
merical studies on dispersion relations have been performed by
Kadowaki et al. [15], Yuan et al. [16], Sharpe [17], and Denet et
al. [18], who all used a one-step global reaction and controlled
the conditions of the flame by global flame parameters, such
as the Zeldovich number, the expansion ratio, and the Lewis
number, instead of choosing a specific fuel for their parametric
variations. An increase of the expansion ratio or a reduction
of the Lewis number are shown to increase growth rates and
also lead to an increase of the cut-off wave number, which rep-
resents the wave number when the dispersion relation changes
sign at high wave numbers. A similar observation regarding the
cut-off wave number is reported by Attili et al. [10], who nu-
merically investigated dispersion relations of lean methane/air
flames at different pressures using detailed chemistry. They
demonstrated that an increase of pressure leads to an increase of
the cut-off wave number even for unity Lewis number flames; a
trend that is not observed in theoretical models, which predict a
pressure independent value.

While several studies have numerically investigated disper-
sion relations by means of global flame parameters, such as the
expansion ratio and the Lewis number, dispersion relations of
real fuels have been only studied for selected conditions. In par-
ticular, a comprehensive study of lean hydrogen/air flames that
provides quantitative growth rates in a large parametric space
while using realistic transport models including for instance
the Soret effect, which was shown to be important in hydrogen
flames [19, 20], is yet missing, but is required to quantitatively
assess at which conditions the effects of thermodiffusive insta-
bilities have a leading order effect or may be negligibly small.
Further, such data can be used in various kinds of models, e.g.
to estimate the relevant region of intrinsic instabilities in the tur-
bulent combustion regime diagram, for which the characteristic
turbulent time scales are compared with the time scales of the
intrinsic instabilities. The latter are typically estimated by theo-
retical models [21] due to the lack of data, but could be replaced
by the data obtained in this work.

Thus, in the first part of this work, dispersion relations of lean
hydrogen/air flames are computed at various conditions for a
large parametric space of equivalence ratios, unburned temper-
atures, and pressures. The variation of growth rates with differ-
ent conditions is analyzed and linked to a change of the intrinsic
flame parameters such as the expansion ratio, the Lewis num-
ber, or the Zeldovich number and a comprehensive compari-
son with theoretical models is provided. The flame behavior
for long times, which is referred to as non-linear phase and fea-
tures the formation of chaotic cellular structures along the flame
front, is studied in part 2 of this work [22]. The manuscript is
structured as follows: First, theoretical models to predict dis-
persion relations are discussed. Thereafter, the numerical con-
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figuration, the governing equations, and the conditions of the
parametric variation are introduced. Then, the analysis of the
numerically obtained dispersion relations are presented and dis-
cussed.

2. Theoretical Background

Planar flames that are exposed to an initial weak harmonic
perturbation will react to such disturbances and lead to an in-
crease or decrease of the amplitude of the initial perturbation.
Further, the flame’s response is found to depend on the wave
number of the initial perturbation as typically, small wave num-
bers are destabilizing due to the hydrodynamic instability while
a stabilization is observed for large wave numbers due to the
thermodiffusive processes within the flame front. If the har-
monic perturbation of a planar flame front is sufficiently weak,
an exponentially increasing or decreasing amplitude can be ob-
served. The dependence of the exponential growth rate ω on
the wavelength k of the perturbation is referred to as dispersion
relation. The initial phase, during which an exponential growth
rate is observed, will be referred to as linear phase. This phase
is terminated by the transition to the non-linear phase, when the
shape of the perturbed flame does not follow a harmonic signal
anymore.

Dispersion relations represent an efficient way to study the
impact of instabilities at different conditions and the analysis of
such flames does not introduce additional assumptions as the
determination of growth rates is well defined. Furthermore, the
dispersion relations can be directly compared to theoretical pre-
dictions as these flames are only weakly stretched, which is a
typical assumption in theoretical derivations. As this work also
provides a comparison with theoretical predictions, the relevant
theoretical models are presented in the following.

If the mixture’s Lewis number is sufficiently close to unity,
Matalon et al. [14] derived a dispersion relation of the following
form

ω = ωDLk − δ[B1 + β(Leeff − 1)B2 + PrB3]k
2
, (1)

where the growth rate ω = ωτF and wave number k = klF
are non-dimensional variables that are normalized by the flame
time τF and the flame thickness lF. The thermal flame thick-
ness lF is defined by the maximum gradient criterion in a one-
dimensional unstretched flame as

lF =
Tb − Tu

max (∇T )
, (2)

where Tu and Tb are the unburned and adiabatic flame temper-
ature, respectively. The flame time is defined as

τF = lF/sL, (3)

where sL is the laminar burning velocity of an unstretched
flame. In Eq. 1, the term ωDL refers to the linear growth rate
resulting from the hydrodynamic instability mechanism, and
δ = lD/lF is the ratio between the thermal flame thickness lF
and the diffusive flame thickness lD = Dth/sL, which is defined
by the thermal diffusivity Dth and the laminar unstretched burn-
ing velocity sL. Note that δ is defined analogously to Altantzis

et al. [13], who also normalized the wave number by the ther-
mal flame thickness, while Matalon et al. [14] used a different
normalization, which requires a different definition of δ. Leeff

is the effective Lewis number of the two reactants, β is the Zel-
dovich number, and Pr is the Prandl number. The coefficients
B1, B2, and B3 depend on the variation of the transport coeffi-
cients such as the conductivity with respect to temperature and
the expansion ratio and their definitions are provided in the sup-
plementary material. It is worth noting that the coefficients B1,
B2, and B3 are always positive and B1 ≥ 1, B2 ≥ 1/2, and
B3 ≥ 0. The expansion ratio σ is defined by the unburned and
burned density, ρu and ρb, respectively, as

σ =
ρu

ρb
. (4)

The Zeldovich number β is given by

β =
E
R

(Tb − Tu)
T 2

b

, (5)

where R is the universal gas constant, Tb is the adiabatic flame
temperature, and E is the activation energy that can be deter-
mined from [23]

E
R

= −2
d(ρusL)
d(1/Tb)

. (6)

Following Sun et al. [24], the derivative in Eq. 6 is evaluated
from two one-dimensional flamelets by diluting the mixture
with a tiny amount of nitrogen (∆YN2 ≈ ±0.3%) while keep-
ing equivalence ratio, pressure, and unburned temperature the
same. According to Joulin et al. [25], the effective Lewis num-
ber Leeff is defined as a weighted sum of the Lewis number of
the excess reactant LeE and the Lewis number of the deficient
reactant LeD yielding

Leeff = 1 +
(LeE − 1) + (LeD − 1)A

1 +A
, (7)

where, for lean mixtures, the factorA is given by

A = 1 + (φ−1 − 1) · β (8)

and φ is the equivalence ratio. Eq. 8 is obtained if unity reaction
orders are assumed, but no significant effect is observed for the
conditions of this study if choosing non-unity reaction orders as
discussed in the supplementary material.

The term related to the hydrodynamic instability is destabi-
lizing for any wave number (ωDL ≥ 0). According to Lan-
dau [26] and Darrieus [27], its growth rate can be expressed
as

ωDL =

√
σ3 + σ2 − σ − σ

σ + 1
(9)

and only depends on the expansion ratio σ. The second term
appearing in Eq. 1 describes the effect of the thermal-diffusive
processes and is often negative and hence stabilizing. How-
ever, for a sufficiently small effective Lewis number as for lean
premixed hydrogen flames, this term becomes positive and the
series expansion should be carried out to higher terms of the
wave number k to include a stabilizing term.
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Figure 1: Case ’Ref’: Snapshot of the initial temperature field. Unburned mix-
ture is entering the domain at the bottom while burned gases leave the domain
at the top. The configuration is periodic in lateral direction and the flame front
is perturbed with a small sinusoidal perturbation with wave length λ = 24lF.
Coordinates in y-direction are normalized by lF and coordinates in x-direction
are normalized by λ.

Sivashinsky [8, 9] derived a dispersion relation that allows
for Lewis numbers sufficiently smaller than unity as it is the
case for lean premixed hydrogen flames, but assumes the den-
sity jump within the flame front and hence, the expansion ratio
to be small. Sivashinsky [8] derived the following implicit dis-
persion relation

0 =
(Le − q)(p − r)
Le − q + p − 1

−
β

2
, (10)

where the terms q, p, r are given as follows

p =
1
2

[
1 +

√
1 + 4(δω + δ2k

2
)
]
, (11)

q =
Le
2

[
1 +

√
1 +

4(δωLe + δ2k
2
)

Le2

]
, (12)

r =
1
2

[
1 −

√
1 + 4(δω + δ2k

2
)
]
. (13)

Following Sivashinsky [28], for Lewis numbers close to the
critical Lewis number, Eq. 10 yields

ω = δ

[
β

2
(1 − Le) − 1

]
k

2
− 4δ3k

4
. (14)

It is worth noting that in the limit σ = 1, Eq. 1 derived by
Matalon et al. [14] becomes identical to Eq. 14 as B1 → 1,
B2 → 1/2, and B3 → 0 if σ → 1, but Eq. 14 additionally
contains a fourth order term that is stabilizing irrespective of
the mixture’s effective Lewis number.

3. Configuration and Numerical Methods

3.1. Configuration
The simulations for the analysis of the linear regime are con-

ducted in two-dimensional rectangular domains as shown in
Fig. 1, where the lateral size of the domain Lx is selected to
be equal to the wave length λ = 2π/k of the harmonic perturba-
tion. Periodic boundary conditions are applied in lateral direc-
tion x and, in streamwise direction denoted by y, an inflow at
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Figure 2: Visualization of the parametric variation of equivalence ratio, un-
burned temperature, and pressure.

the bottom of the domain and an outlet at the top of the domain
are prescribed. At the inlet, unburned mixture with a veloc-
ity equal to the laminar unstretched burning velocity enters the
domain while the burned gases downstream of the flame leave
the domain at the outlet, c.f. Fig. 1. The domain length in the
streamwise direction is chosen sufficiently large, i.e. Ly = 12lF
such that all species and temperature profiles possess zero gra-
dients at the boundary conditions. The simulation is initialized
by a one-dimensional unstretched flamelet that is aligned in y-
direction and is obtained from a FlameMaster [29] calculation.
The flame front is then perturbed with a weak harmonic pertur-
bation F(x) of the form

F(x) = A0 · cos(kx), (15)

where A0 is the perturbation’s amplitude. In particular, the ini-
tial solution is obtained by mapping one-dimensional flamelets
into the simulation domain and shifting them in y-direction ac-
cording to the imposed perturbation.

Tab. 1 summarizes all simulations that have been performed.
As a reference case, the conditions of the unburned mixture are
set to an equivalence ratio of φ = 0.5, an unburned temperature
Tu = 298K, and a pressure of p = 1bar. Parametric variations
are conducted with respect to equivalence ratio, unburned tem-
perature, and pressure while the other parameters are kept con-
stant. In addition to these three variations, a fourth variation of
pressure at φ = 0.5 and Tu = 700K has been performed to in-
clude high pressure, high temperature conditions that represent
characteristic conditions for gas turbine applications [30]. A vi-
sualization of the four different parametric variations is shown
in Fig. 2. Tab. 1 lists the burning velocity sL and the thermal
flame thickness lF of a one-dimensional laminar unstretched
flame, the flame’s expansion ratio σ, the Zeldovich number β,
and the effective Lewis number Leeff for each case.

3.2. Governing Equations and Numerical Methods

The flow is modeled by the reacting Navier-Stokes equations
in the low-Mach limit [31]. The fluid is assumed to be an ideal
gas and chemical reactions are modeled by the mechanism of
Burke et al. [32] that contains 9 species and 46 reactions. The
viscosity of the mixture is determined by the formula accord-
ing to Wilke [33] and the species viscosities are determined ac-
cording to kinetic theory [34]. The thermal conductivity of the

4



Table 1: Overview of the performed simulations. For each case, the equivalence ratio φ, the pressure p, the unburned temperature Tu, the laminar unstretched
burning velocity sL, the flame thickness lF, the expansion ratio σ, the Zeldovich number β, and the effective Lewis number Leeff are given.

Case name φ p Tu sL lF τF σ β Leeff

[bar] [K] [cm/s] [µm] [ms]
Reference case:
Ref 0.5 1 298 45.2 438 0.97 5.04 9.2 0.37
Variation of equivalence ratio:
Eq040 0.4 1 298 17.4 714 4.35 4.44 11.4 0.34
Eq065 0.65 1 298 99.8 363 0.36 5.79 7.4 0.43
Eq100 1.0 1 298 228.9 372 0.16 6.84 6.4 0.68
Variation of unburned temperature:
Tu500 0.5 1 500 179.6 441 0.25 3.31 8.5 0.39
Tu700 0.5 1 700 523.2 533 0.10 2.57 3.8 0.44
Variation of pressure:
p05 0.5 5 298 21.5 119 0.55 5.04 12.6 0.35
p10 0.5 10 298 12.0 92 0.76 5.04 16.5 0.34
Variation of pressure at Tu = 700K:
Tu700p03 0.5 3 700 395.0 128 0.033 2.58 5.5 0.41
Tu700p10 0.5 10 700 216.8 33 0.015 2.58 7.5 0.38
Tu700p20 0.5 20 700 132.9 18 0.014 2.59 8.9 0.37

species are computed according to Eucken [35] and the thermal
conductivity of the mixture is evaluated as suggested by Mathur
et al. [36]. The species diffusivities Di are determined from
the thermal conductivity λ, the density ρ, and the specific heat
capacity cp as Di = λ/(ρcpLei) by imposing spatially homoge-
neous Lewis numbers. The Lewis numbers were taken from
the burned gas region of one-dimensional unstretched premixed
flames, which was found to yield the best approximation for the
unstretched laminar burning velocity. A table of relevant Lewis
numbers for the different cases is provided in the supplemen-
tary material. Following Zhou et al. [19] and Schlup et al. [20],
molecular diffusion due to the Soret effect is also included and a
summary of the model is provided by Schlup et al. [37]. For the
species diffusion velocity appearing in the species and temper-
ature equations, a velocity-correction approach [38] is applied
to enforce mass conservation.

A semi-implicit finite difference code, based on the Crank-
Nicolson time advancement scheme, and an iterative predictor
corrector scheme is employed [39]. Spatial and temporal stag-
gering is used to increase accuracy and stability. The Poisson
equation for the pressure is solved by the multi-grid HYPRE
solver [40]. Momentum equations are discretized with a sec-
ond order scheme. In the species and temperature equations,
the convective term is discretized with a third order WENO
scheme [41] and the diffusion operator is discretized with sec-
ond order central differences. The temperature and species
equations are advanced by utilizing Strang’s operator splitting
[42]. The time integration of the chemical source terms em-
ploys a time-implicit backward difference method, as imple-
mented in the stiff ODE solver CVODE as part of the SUNDI-
ALS suite [43]. The initial amplitude of the harmonic perturba-
tion A0 = A(t = 0) is set to A0 = 0.04lF requiring meshes with a

resolution of ∆x = 0.01lF. It is worth noting that the high mesh
resolution of these simulations is only required to adequately
resolve the flame perturbation as the laminar flame speed, heat
release, temperature, and species profiles of a one-dimensional
premixed unstretched flame computed by FlameMaster [29] are
already adequately recovered with ten to fifteen grid points per
flame thickness.

4. Results and Discussion

4.1. Determination of Dispersion Relations from Numerical
Simulations

Fig. 3 shows different iso-lines of temperature at different
time instances (solid lines) for case ’Ref’ with an initial pertur-
bation of λ = 4lF. Furthermore, a harmonic signal is fit to the
iso-surfaces (dashed lines) in Fig. 3. The amplitude of the per-
turbation is seen to grow in time while the shape of the flame
front initially follows the harmonic signal but increasingly starts
deviating from a harmonic signal for later times. The amplitude
A(t) of the flame iso-lines is measured in time and the exponen-
tial growth rate ω is determined as

ω =
d ln(A(t))

dt
. (16)

If the amplitude follows an exponential growth A(t) = exp(ωt),
a constant growth rate ω is obtained. Fig. 4 shows that, after an
initial transient, the growth rate ω levels off at a constant value
indicating an exponential growth while for later times, ω starts
deviating from the constant value as the flame evolution enters
the non-linear phase. The deviation from the constant value in
Fig. 4 is consistent with the deviation of the iso-surfaces from
the harmonic shape in Fig. 3. The constant value corresponds to
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the growth rate of the linear phase. Note that a negative value
indicates a reduction of the amplitude of the initial perturba-
tion. Measuring these growth rates for different values of the
perturbation wave length λ, yields the dispersion relation.

Figure 3: Case ’Ref’: Visualization of the increase of the initial perturbation
with λ = 4lF by means of iso-surfaces of temperature at different time instances.
Coordinates in y-direction are normalized by lF and coordinates in x-direction
are normalized by λ.

Figure 4: Case ’Ref’: Growth rate ω of the exponentially growing amplitude
A(t) for different perturbation wave lengths λ. Growth rates and time are nor-
malized by the flame time τF.

4.2. Discussion of Numerical Dispersion Relations

Fig. 5 shows the numerical dispersion relations for different
values of the equivalence ratio, the unburned temperature, the
pressure at low unburned temperatures, and the pressure at el-
evated unburned temperatures. Symbols refer to simulations,
from which growth rates are determined numerically, and to im-
prove the visualization, a spline is fitted to the data points (solid
lines). Fig. 5 also contains the growth rates ωDL of the hydro-
dynamic instability mechanism from Eq. 9 (dashed lines). It is
worth noting that additional simulations have been performed
at even larger wave numbers at k ≈ π, which are not shown in
Fig. 5 due to their large negative growth rate values.

All dispersion relations reveal positive growth rates for
a wide range of wave numbers. The cut-off wave length
λc = 2π/kc, for which the growth rate changes sign, is in the
range of 2.3lF < λc < 3.0lF and the wave length of the maxi-
mum growth rate is found to be between 4.5lF < λωmax < 5.6lF.
Certain cases, e.g. case ’Ref’, possess growth rates that exceed
the growth rate associated with the hydrodynamic instability
ωDL indicating a positive contribution of the thermodiffusive
instability mechanism for small wave numbers while for other

(a) φ-Variation at p = 1 bar and Tu = 298 K

(b) Tu-Variation at φ = 0.5 and p = 1 bar

(c) p-Variation at φ = 0.5 and Tu = 298 K

(d) p-Variation at φ = 0.5 and Tu = 700 K

Figure 5: Dispersion relations for variations of φ, Tu, and p. Black lines and
symbols refer to the reference case ’Ref’ (φ = 0.5, Tu = 298 K, p = 1 bar).
Symbols refer to the growth rates extracted from simulations, solid lines rep-
resent cubic spline fits to these growth rates, and dashed lines are the growth
rates associated with the hydrodynamic instability, cf. Eq. 9. For each case,
growth rates and wave numbers are normalized by the flame time τF and flame
thickness lF of the corresponding unstretched one-dimensional flamelet.

cases such as case ’Tu700’, the numerical growth rates are al-
ways below the growth rates related to the hydrodynamic in-
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Figure 6: Variation of the peak growth rate ωmax, the wave length of the peak λωmax , and the cut-off wave length λc with respect to the four different parametric
variations of equivalence ratio φ, unburned temperature Tu, pressure p, and pressure at elevated unburned temperatures p(700K). Both wave lengths are normalized
by the values of case ’Ref’ that are λc,Ref = 2.6lF and λωmax ,Ref = 4.8lF.

Figure 7: Variation of the expansion ratio σ, the Zeldovich number β, the effective Lewis number Leeff, and the laminar unstretched burning velocity sL with respect
to the four different parametric variations of equivalence ratio φ, unburned temperature Tu, pressure p, and pressure at elevated unburned temperatures p(700K).

stability mechanism indicating that the thermodiffusive mecha-
nism has a negative contribution to the growth rates of the dis-
persion relation at any wave number. Generally, the measured
dispersion relations allow to quantify the level of instability and
therefore, cases with high peak growth rates will be considered
as more unstable than cases with small peak growth rates. It
is worth noting that a variation of pressure does not change the
expansion ratio of the flames such that the growth rates of the
hydrodynamic instability remain unaffected, so only one single
dashed line is displayed for the pressure variations. Further,
note that for k → 0, the numerical dispersion relations are ex-
pected to coincide with the dashed line of the hydrodynamic
instability, so further simulations would be required to properly
explore this limit, which is outside the scope of this work.

Fig. 6 highlights the variation of the peak growth rates with
respect to equivalence ratio, unburned temperature, and pres-
sure. A decrease of equivalence ratio and unburned tempera-
ture and an increase of pressure are found to enhance intrin-
sic instabilities. It is worth stressing the propensity of intrinsic
instabilities to increase with rising pressure as many combus-
tion devices operate at elevated pressures. Furthermore, Fig. 6
shows the cut-off wave length λc and the wave length of the
peak growth rate λωmax , which are normalized by the value of
case ’Ref’. Both wave lengths are only weakly affected by
the parametric variation and it is worth noting that the deter-
mination of λωmax is subject to a relative error of about 13-21%
(if allowing an error of 1% for the determination of the peak

growth rate) for all cases. Hence, the peculiar reduction of λωmax

for case ’Tu700p03’ occurs within the estimated uncertainties.
However, uncertainties for λc are significantly lower (< 1% for
all cases if allowing for the same amount of error, namely an
error of 1% of the peak growth rate, for the determination of
the growth rate, where the dispersion relation changes sign)
and generally, a weak tendency of an increasing cut-off wave
λc length towards unstable conditions is observed, most promi-
nently visible during the increase of pressure at elevated tem-
peratures. This is interesting if compared to the study of Attili
et al. [10], who reported the opposite trend for lean methane/air
mixtures, namely a decrease of λc for increasing pressure. This
difference is discussed in detail in the remainder of this paper.

In the following, the correlation between the variation of the
numerical dispersion relations, in particular their peak growth
rates, and the flame parameters σ, β, and Leeff is discussed.
Fig. 7 shows the variation of σ, β, and Leeff with respect to the
four different parametric variations. The variation of pressure
only affects the Zeldovich number β while the expansion ratio
σ and the effective Lewis number Leeff remain constant, so the
increased peak growth rates can be linked to an increase of β
for the pressure variation. However, the effect of σ and Leeff on
the growth rates cannot be isolated as the variations of unburned
temperature and equivalence ratio affect at least two of the three
parameters σ, β, and Leeff. For this reason, a power law fit of
the peak growth rates ωmax with respect to σ, β, and Leeff is
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Figure 8: Comparison of numerically measured peak growth rates (abscissa)
versus growth rates predicted by Eq. 17 (ordinate). Each symbol represent one
case of Tab. 1 and case ’Ref’ is marked by a black symbol.

considered,

ωmax = ωmax,Ref ·

(
σ

σRef

)ασ( β

βRef

)αβ( Leeff

Leeff,Ref

)αLeeff

, (17)

to assess the impact of each parameter on ωmax. It is important
to stress that Eq. 17 is not derived from first principles, but rep-
resents a simple fit as one way among other possible options to
efficiently disentangle the effect of the different parameters on
the peak growth rates. Similar power law fits have been already
suggested, e.g. to assess the critical radius, which character-
izes the onset of intrinsic instabilities in spherically expanding
flames [44], to assess the variability of the cut-off wave length
with pressure [10], or generally, for flame parameters such as
the laminar burning velocity [45]. In the following, the suit-
ability of assessing ωmax by Eq. 17 is discussed. For this, the
three scaling coefficients αi are fitted to the values of σ, β, Leeff,
and ωmax of the different cases and the values of case ’Ref’ are
taken as reference values. The data from cases ’Tu700p03’,
’Tu700p10’, and ’Tu700p20’ are not used to fit the coefficients
αi but used for an assessment of the quality of the fit.

Fig. 8 shows a comparison of the peak growth rates ωmax
from the simulations and the values predicted by Eq. 17. It is
worth noting that case ’Tu700’ is displayed twice (blue dot that
contains a grey box) as it belongs to the parametric variations
of unburned temperature and pressure at elevated temperatures.
Good agreement among the actual and predicted values is ob-
served. Even for the parametric variation of pressure at elevated
unburned temperatures that has not been used for the fit, good
agreement is achieved indicating a constant value of αβ for dif-
ferent conditions. The least square fit yields the following val-
ues for the exponents

ασ = 0.93, αβ = 0.73, αLeeff
= −1.03. (18)

It is worth noting that in Eq. 17, case ’Ref’ has been used for
scaling the growth rates and flame parameters. While choos-
ing a different case or using instead a power law with a fitted
constant of proportionality that replaces the coefficients labeled
by the index ’Ref’ could affect the values of the exponents αi,
it is shown in the supplementary material that such variations

do not significant affect the determination of the exponents αi.
Thus, an increase of Zeldovich number β and expansion ratio
σ enhances the peak growth rates and an increase of Lewis
number decreases the peak growth rates. Hence, the steep in-
crease of the Zeldovich number and the reduction of the effec-
tive Lewis number for decreasing equivalence ratios compen-
sate the reduction of the expansion ratio yielding an increase
of peak growth rates. It is worth noting that in addition to the
power law proposed in Eq. 17, a similar power law using the
term (1 − Leeff) instead of Leeff for scaling, which is motivated
by the theoretical formulas of Matalon [14] and Sivashinsky [9],
has been tested yielding almost identical predictions of ωmax
and values of αi just that αLeeff

≈ −α(1−Leeff). Thus, consistently,
an increase of Lewis number decreases the peak growth rates.
The corresponding figure and coefficients αi are shown in the
supplementary material.

It is interesting to compare the trends observed here with
those reported by Attili et al. [10] for the hydrodynamic in-
stability mechanism in methane/air flames. Attili et al. [10]
reported an increase of cut-off wave numbers with increasing
pressure, while for the present results at elevated temperature,
a weak reduction of cut-off wave number with increasing pres-
sure is observed. However, the same trends for the Zeldovich
number and maximum growth rates (both increase with pres-
sure) are seen in Attili et al. [10]. As pointed out by Attili
et al. [10], the increase of Zeldovich numbers at higher pres-
sures relates to a changing balance between the chain branching
and chain termination reactions, which applies to methane/air
as well as hydrogen/air flames, so the same trend is observed.
Similarly for the other parametric variations, the cut-off wave
length remains constant or reveals a weak increase towards
unstable conditions, revealing an opposite trend of the cut-off

wave length in thermodiffusively unstable flames compared to
flames that are not affected by thermodiffusive instabilities.

One possible explanation, why the cut-off wave length λc is
not increasing with pressure, is that λc is already close to the
thermal flame thickness for the present cases in contrast to the
methane/air flames of Attili et al. [10], so a significant further
reduction of λc towards unstable conditions cannot be expected.
For any fuel, even for the ones that are prone to thermodiffusive
instabilities such as hydrogen, one would expected that the cut-
off wave length λc is always larger or equal to a value that is in
the order of the flame thickness λc & lF. For example for lean
hydrogen flames, the differential diffusion of hydrogen, which
leads to an accumulation of hydrogen in convex flame regions,
can only lead to an instability if the variation of the hydrogen
mass fraction along the flame front are sustained until the reac-
tion layer is reached. However, if the scale of the perturbation is
in the order of the flame thickness λ ≈ lF, the spatial separation
of the locations, where hydrogen is accumulated, is not large
enough compared to the thickness of the preheat zone such that
the hydrogen fluctuations are equalized by diffusion within the
preheat zone before the reaction layer is reached and no insta-
bility is seen.
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(a) Case ’Ref’

(b) Case ’Eq100’

(c) Case ’Tu700’

(d) Case ’p10’

Figure 9: Comparison of numerical dispersion relations and different theoret-
ical models: Symbols refer to growth rates obtained from simulations, solid
black lines represent cubic spline fits to the simulation data, and dashed lines
are the growth rates associated with the hydrodynamic instability. Theoretical
models: Eq. 1 by Matalon et al. [14] (purple solid lines labeled MCB), Eq. 10
by Sivashinsky [9] (green solid lines), and Eq. 19 that fits a polynomial to the
numerical data (blue solid lines labeled Fit). For each case, growth rates and
wave numbers are normalized by the flame time τF and flame thickness lF .

4.3. Comparison with Theoretical Models

Fig. 9 shows a comparison of the theoretical models and nu-
merical dispersion relations for selected cases. The comparison
of all cases can be found in the supplementary material. For the
cases ’Ref’ and ’p10’, the model by Matalon et al. [14] predicts
an indefinite increase of growth rates for large wave numbers
as the second order term has a positive contribution due to the
low effective Lewis number and large Zeldovich number. As
this model does not contain terms of order larger than two in its
series expansion, it is expected that it cannot capture the flame
stabilization at large wave numbers. For the cases ’Eq100’ and
’Tu700’, a stabilization at large wave numbers is predicted as
the second order term has a negative contribution, but the de-
cline of growth rates towards large wave numbers is signifi-
cantly smaller compared to the numerical dispersion relations.
However, the trends of the model by Matalon et al. [14] are
qualitatively in agreement with the findings obtained from the
power law fit of Eq. 17, where an increase of σ and β increases
growth rates while an increase of Leeff decreases growth rates.
It is worth noting that the model of Matalon et al. [14] can also
reproduce the changing nature of the thermodiffusive mecha-
nism from a stabilizing to a destabilizing mechanism if β is in-
creased. For example, for case ’Tu700’, the numerical growth
rates and the model prediction are always below the ones asso-
ciated with the hydrodynamic instability at any wave number in
Fig. 9c indicating that the contribution of the thermodiffusive
mechanism is negative. However, when the Zeldovich num-
ber increases due to the increase of pressure, numerical growth
rates and model predictions that exceed the growth rates of the
hydrodynamic instability are visible, e.g. for case ’Tu700p20’
(cf. supplementary material), indicating that the themodiffusive
mechanism acts destabilizing at intermediate values of the wave
number.

The model by Sivashinsky [9] significantly underpredicts
growth rates for all cases as it neglects the effect of density
variation throughout the flame front, which is particularly rele-
vant for the contribution of the hydrodynamic instability mech-
anism. However, consistent with the power law fit of Eq. 17,
it is found to also predict an increase of growth rates if β is
increased or if Leeff is decreased.

To assess whether an extension of the model by Matalon et
al. [14] by a fourth order term, as suggested in Eq. 14 and simi-
lar to Yuan et al. [16], could improve predictions, the following
dispersion relation is analyzed

ω = ωDL · k + Πk2,Fit · k
2
− Πk4,Fit · k

4
, (19)

where the coefficients Πk2,Fit and Πk4,Fit are fitted to the numer-
ical dispersion relations for each case. It is worth noting that
Πk4,Fit is constrained to be positive while the value of Πk2,Fit is
unconstrained. In Fig. 9, the least unstable cases ’Eq100’ and
’Tu700’ are reasonably well approximated by Eq. 19 while for
the strongly unstable cases ’Ref’ and ’p10’, qualitatively differ-
ent shapes are obtained for the fits compared to the numerical
values. Particularly towards small wave numbers, the fit under-
predicts growth rates and the peak growth rate is located at dif-
ferent wave numbers. To match the numerical growth rates of

9



Table 2: Comparison of the second order term Πk2 ,MCB in the model of Matalon
et al. [14] with the model of Eq. 19 that fits a second and fourth order term,
Πk2 ,Fit and Πk4 ,Fit, to the numerical dispersion relations.

Case name Πk2,MCB Πk2,Fit Πk4,Fit

Ref 0.55 0.30 0.17

Eq040 1.62 0.66 0.25
Eq065 -0.03 -0.16 0.08
Eq100 -0.37 -0.66 < 10−6

Tu500 0.06 0.01 0.06
Tu700 -0.06 -0.23 < 10−6

p05 2.08 0.85 0.29
p10 4.07 1.15 0.36

Tu700p03 0.01 -0.05 0.03
Tu700p10 0.31 0.19 0.10
Tu700p20 0.73 0.44 0.20

the unstable cases ’Ref’ and ’p10’ with the fit of Eq. 19 at small
wave numbers, a large positive value of Πk2,Fit would be re-
quired. However, this would induce very large discrepancies at
large wave numbers that cannot be adequately compensated by
the fourth order term. This suggests that for the unstable cases
’Ref’ and ’p10’, higher order terms of the expansion series of
the wave number k are missing in Eq. 19 or in other words,
a series expansion in k may not be an adequate description of
the dispersion relation while the dispersion relations of the sta-
ble cases ’Eq100’ and ’Tu700’ appear to be well described by a
low-order polynomial function. In general, a good agreement of
Eq. 19 and the numerical dispersion relations is only obtained
for cases ’Eq100’ and ’Tu700’, while for all other cases, qual-
itative differences with respect to the shape of the curves are
visible.

Furthermore, Tab. 2 compares the values of Πk2,Fit with the
corresponding term in the model by Matalon et al. [14]. The
coefficient Πk2,MCB in the model is defined as

Πk2,MCB = −δ[B1 + β(Leeff − 1)B2 + PrB3]. (20)

From Tab. 2, it becomes evident that Πk2,Fit < Πk2,MCB for all
cases. The fitted values Πk2,Fit may change if fitting higher order
polynomials to the numerical dispersion relations as the numer-
ical and fitted dispersion relations possess different shapes, but
for the less unstable cases ’Eq100’ and ’Tu700’, the fits are in
good agreement with the numerical dispersion relations indicat-
ing that these cases can be well represented by a second-order
polynomial function (note that Πk4,Fit < 10−6). Thus, the defi-
ciencies of the model by Matalon et al. [14] for these cases are
most likely not related to the negligence of higher order terms
in Eq. 1, but possibly arise from the effective Lewis numbers of
these cases that are not close to unity in contrast to the model
assumption.

5. Conclusion

A series of detailed numerical simulations of lean premixed
hydrogen flames with varying equivalence ratio, unburned tem-
perature, and pressure has been performed to extract numeri-
cal dispersion relations at different conditions. In this stability
analysis, the growth rates of weak harmonic perturbations of
the flame front were measured with respect to the wave length
of the perturbation. This allowed for a rigorous analysis of the
contributions of the different intrinsic instability mechanisms
such as the hydrodynamic and thermodiffusive instability.

A decrease of equivalence ratio and unburned temperature
and an increase of pressure have been found to enhance growth
rates in the dispersion relation and, hence, intrinsic instabili-
ties. In particular, the propensity of intrinsic instabilities to in-
crease with rising pressure is relevant to several combustion de-
vices that operate at elevated pressures. Growth rates have been
found to be increased if either the expansion ratio or the Zel-
dovich number are increased or if the effective Lewis number
of the mixture is decreased. The numerical dispersion relations
have been compared to various theoretical models, but none can
quantitatively predict the numerical dispersion relations at any
conditions. However, trends with respect to the expansion ratio,
the Zeldovich number, and the effective Lewis number are qual-
itatively correctly captured. Furthermore, a polynomial whose
form has been adopted from theoretical models has been fitted
to the dispersion relations. Cases, in which the thermodiffu-
sive mechanism is stabilizing, have been found to be well rep-
resented by a second-order polynomial function while cases,
in which the thermodiffusive mechanism is destabilizing, could
not be matched by a fourth-order polynomial function indicat-
ing that several higher-oder terms are required for an accurate
prediction.

The analysis of strongly corrugated flame fronts in the non-
linear phase of the flame evolution is pursued in the second part
of this work [22].
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