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Abstract. In this paper, we investigate the performance of message-passing algorithms for the
weighted min-max flow (WMMF) problem which was introduced by Ichirnori et al. (1980).
WMMF was well studied in combinational optimization, as it provides important applications
in time transportation problem and the storage management problem. We develop a message-
passing algorithm called min-max belief propagation (BP) for determining the optimal solution
of WMMF . As the main result of this paper, we prove that for a digraph of size n, BP
converges to the optimal solution within O(n3) time after O(n) iterations if the optimal solution
of the underlying min-max flow problem instance is unique. To the best of our knowledge, the
fastest polynomial time algorithm forWMMF runs in essentially O(n6) time among the known
algorithms, where n represents the number of vertices. On the other hand, it is one of a very
few instances where BP are proved correct with fully-polynomial running time.

Key words. Belief Propagation, Min-Max BP algorithm, message-passing algorithm, min-max
flow.

1. Introduction

As an algorithmic framework, message passing is extremely powerful and has been widely
used on various graphical models (GMs). Belief propagation (BP), proposed by Pearl
in 1988 [17], is a message-passing heuristic algorithm and has wide applications in the
context of variety of disciplines including satisfiability in discrete optimization [1,16], error
correcting code in information theory [15,18], and data clustering in machine learning [9].
The great popularity of BP can be attributed to two main reasons. Firstly, it is easy to
implement due to its simple and message-passing nature. Secondly, it performs well in
many practical applications. The wide scope of application, simplicity, and experimental
success of BP has gained a lot of attention recently [16,18,23].

BP is known to converge to the correct solutions on GMs with no cycles [17]. When
the underlying graph is a tree, the BP algorithm essentially performs the recursion of
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dynamic programming (DP) leading to a correct solution. Specifically, BP provides a
natural parallel iterative version of the DP in which message passing occurs between the
variable nodes along edges of the graphical model. Surprisingly, even for GMs with cycles,
the BP heuristic performs well in many case, some of which are with rigorous analysis
of optimality and convergence [4, 7, 11, 19, 20], while the correctness and convergence
properties of BP for general combinatorial optimization problems are still open.

As a major breakthrough, Bayati et al. [4] and Cheng et al. [6] were the first to
simplify the BP algorithm independently to obtain essentially the same algorithms for the
maximum weight matching (MWM) in a bipartite graph. They established the correctness
and convergence of BP algorithm for MWM in pseudo-polynomial time. Sanghavi et
al. [19] as well as Bayati et al. [2] generalized the result to the minimum cost b-matching
problem on arbitrary graphs and established that BP algorithm converges to the optimal
solution, in pseudo-polynomial time, as long as the corresponding linear programming
relaxation has no fractional solutions. Furthermore, MWM can be viewed as a special
case of the minimum cost flow (MCF) problem. Recently, Gamarnik et al. [11] studied
the performance of BP algorithm for finding the optimal solution of MCF and proved
that BP algorithm converges to the optimal solution in the pseudo-polynomial time,
provided that the optimal solution is unique. Brunsch et al. [5] studied BP algorithm in
the framework of smoothed analysis and proved that with high probability the number of
iterations needed to compute maximum-weight matchings and min-cost flows is bounded
by a polynomial if the weights or costs of the edges are randomly perturbed.

Although BP can converge to the optimum of some combinatorial optimization prob-
lems in finite iterations, the running time of them are actually pseudo-polynomial even
if the problem itself has other fully polynomial time algorithms, like the MWM and M-
CF mentioned above. Gamarnik et al. [11] also presented a simple modification of BP
to obtain a fully polynomial time randomized approximation scheme for MCF. However,
as they said themselves in [11], the ‘near optimal’ solution is ‘rather fuzzy’. In order to
identify the class of optimization problems solvable in fully polynomial time using the
BP algorithm, we study the weighted min-max flow (WMMF) problem and develop a
min-max BP algorithm for determining the optimal solution of WMMF . As a variant
of the maximum flow problems,WMMF was introduced by Ichirnori et al. [12] and was
well studied in combinational optimization [8,10,13], as it provides important applications
in time transportation problem [3] and the storage management problem [21].

In this paper, we will investigate the convergence and correctness of the min-max
BP algorithm for finding the optimal solution of WMMF on arbitrary digraphs. As
the main result, we establish that our algorithm converges to the optimal solution of
WMMF after at most n/2 iterations where n represents the number of vertices, provided
that the optimal solution is unique. From the description of min-max BP algorithm, it
may seem that each of the messages can be computed in O(n2) time. Then due to the
distributed nature of BP algorithm, the computational cost of the algorithm is O(n3) in
O(n) iterations. As a result, the min-max BP algorithm we developed is a fully polynomial
time algorithm. On the one hand, our algorithm is one of a very few instances where BP
are proved correct with fully-polynomial running time. On the other hand, to the best
of our knowledge, the fastest polynomial time algorithm for WMMF runs in essentially
O(n6) time [14] among the known algorithms, where n represents the number of vertices.
According to our theoretical analysis, it may explain why BP can perform well for most
of combinational optimization problems and run fast in practice.
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The rest of the paper is organized as follows. In Section 2, we introduce the the weighted
min-max flow problem (WMMF). In Section 3, we describe the min-max BP algorithm
for WMMF , and state our main result. Proofs of correctness and convergence for our
algorithm are given in Section 4. Finally, Section 5 presents the conclusions and directions
for future research.

2. Definitions and Problem Statement

Given a weighted digraph (or network) G = (V,E) where V,E denote the set of vertices
and arcs, respectively with |V | = n, |E| = m. To each arcs e ∈ E, assign a nonnegative
weight we and a positive capacity ce. For a given source vertex s ∈ V and a sink t ∈ V ,
the value of the maximum flow from source s to sink t is denoted by f ∗. For any vertex
i ∈ V , let E−i and E+

i be the set of arcs incident inside and out of i, respectively. We
assume for simplicity that source s has no arcs incident into s and that sink t has no arcs
incident out of t. The weighted min-max flow (WMMF) problem aims to minimize the
maximum value of arc-flow (multiplied by arc-weight) among all flows of maximum flow
values. Then, the WMMF on G can be formulated as the following linear program:

min max
e∈E

wexe (I)

s.t.
∑
e∈E+

i

xe −
∑
e∈E−i

xe = fi =


f ∗, i = s

−f ∗, i = t

0, i ∈ V \ {s, t}
(1)

0 ≤ xe ≤ ce, ∀ e ∈ E (2)

where the variables xe represent flow value assigned to each arc e ∈ E. The constraints
(1) state that the difference of out-flow and in-flow equals the value of function f at each
node i ∈ V , and the constraints (2) state that flow value on each arc e ∈ E is at most its
capacity ce.

Next, we will show that (I) can be translated into a factorized optimization problem.
Let Ei = E−i ∪ E+

i and xEi
= {xe : e ∈ Ei} for each i ∈ V . Define factor and variable

functions φ, ψ for each e ∈ E, i ∈ V , respectively as follows: φe(xe) = wexe and

ψi(xEi
) =

0 if
∑

e∈E+
i

xe −
∑

e∈E−i

xe = fi,

+∞ otherwise.

Then, we can formulate WMMF as an unconstrained optimization problem as follows.

min max
e∈E,i∈V

{
φe(xe), ψi(xEi

)
}

s.t. 0 ≤ xe ≤ ce, ∀e ∈ E.

Note that to enable the instance of network flow to be feasible, we assume w.l.o.g. that
|Ei| ≥ 2 for each i ∈ V .

3. BP Algorithm for WMMF

In this section, we will define the message functions, derive the updating rules, develop
an algorithm for WMMF , and state our result.
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Fig. 1: An example of a 2-level computation tree T 2
v1v2 .

3.1. Computation tree

Before define the message functions, we need to give the definition of computation tree
first, which has been used in most of the previous analysis of BP algorithms [4,11,19,22].
Let TN

a denote the N -level computation tree associated with root a ∈ E. In fact, T 0
a is

the tree consists only of arc a. Let N(u) = {v : uv ∈ E or vu ∈ E}. Due to the local
connectivity of the graph, TN

a can be defined by the following recursive rules:
(a) For any a = ij ∈ E, the arc between vertices labeled i and j in TN

a is also denoted as
a for simplicity and is assigned the same weight wij as that in G;
(b) TN

a has a root a = ij;
(c) All labels in the set N(i) \ {j} and N(j) \ {i} are the children of vertices i and j,
respectively;
(d) All labels in the set N(i′)\{j′} are the children of each non-leaf vertex i′ whose parent
is j′.
TN
a is often called the unwrapped tree rooted at a. One can view a run of BP as sending

the messages in the computation tree from the leaves to the root, although the messages
are sent in the original graph. An example of a computation tree is given in Figure 1.

Given a root a, let V o(TN
a ) ⊂ V (TN

a ) denote the set of all the vertices which are not
on the N -th level of TN

a . Then the problem of WMMF on TN
a can be formulated as

WMMFN
a :

min max
e∈E(TN

a )
weye (II)

s.t.
∑

e∈E+
k (TN

a )

ye −
∑

e∈E−k (TN
a )

ye = fk, ∀ k ∈ V o(TN
a ) (3)

0 ≤ ye ≤ ce, ∀ e ∈ E(TN
a ). (4)

3.2. Algorithm and result

For each arc e = ij on the computation tree, define a message function me→j(xe) on the
subtree below e with e included. Let the function me→j(xe) return the maximum value
of arc-flow (multiplied by arc-weight) of the WMMF on that subtree. Similarly, define
the message function mi→e(xe) which returns the maximum value of arc-flow (multiplied
by arc-weight) of the WMMF on the subtree below i including i but not e. Due to the
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Algorithm 1 Min-Max BP for WMMF

1: Initialize t = 0, message m0
i→e(xe) = wexe for each e = ij ∈ E.

2: for t = 1, 2, ..., N do
3: For each e = ij ∈ E update messages as follows:

mt
e→j(xe) = max

{
φe(xe),m

t−1
i→e(xe)

}
,

mt
i→e(xe) = min

xEi\e

{
max{ψi(xEi), max

e′∈Ei\e
mt

e′→i(xe′)}
}
.

4: t := t+ 1
5: end for

6: For each e = ij ∈ E, set the belief function as bNe (xe) = max
{
mN

e→i(xe),m
N
e→j(xe)

}
.

7: Calculate the belief estimate by finding x̂Ne ∈ arg min
0≤xe≤ce

bNe (xe) for each e ∈ E.

8: Return x̂N = {x̂Ne | e ∈ E} as an estimation of the optimal solution.

nature of tree structure, these two message functions can be recursively defined as follows:
for any arc e = ij,

me→j(xe) = max
{
φe(xe),mi→e(xe)

}
, (5)

mi→e(xe) = min
xEi\e

{
max{ψi(xEi

), max
e′∈Ei\e

me′→i(xe′)}
}
. (6)

Using (5)-(6), starting from leaves, the message functions me→j(xe) and mi→e(xe) can be
computed for all e ∈ E, i ∈ V . Then, the update messages for each vertex and arc is as
follows:

mt
e→j(xe) = max

{
φe(xe),m

t−1
i→e(xe)

}
,

mt
i→e(xe) = min

xEi\e

{
max{ψi(xEi

), max
e′∈Ei\e

mt
e′→i(xe′)}

}
.

Finally, combine the messages mer→ir(xer) and mer→jr(xer) at the root arc er = irjr, we
can derive the estimation of belief at the end of iteration t on the computation tree T t

er

as
bter(xer) = max

{
mt

er→ir(xer),m
t
er→jr(xer)

}
.

The parallel algorithm called min-max BP for solving WMMF is described in detail as
Algorithm 1.

Next, we will state our result, the proof of which is presented in Section 4.

Theorem 1 For a digraph G of order n, if the WMMF on G has a unique optimal
solution x∗, then Algorithm 1 converges to x∗ within n

2
iterations, i.e., x̂N = x∗ after

N ≥ n
2
iterations.

4. Proof of Correctness and Convergence

In this section, we will establish the convergence of BP to the optimal solution of the
WMMF under the assumption of the uniqueness of the optimal solution, namely we
shall prove Theorem 1. Note that our strategy is somewhat similar to that of [11], but
the technical details are quite different.
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Lemma 2 Let x̂Na be the value of the output of the BP algorithm at the end of iteration N
on arc a ∈ E. Then there exists an optimal solution y∗ of WMMFN

a such that y∗a = x̂Na
where a is the root of TN

a .

Proof. Let a = ij be the root of TN
a . By definition, TN

a has two components connected
by the arc a. Denote the component containing i by C and TN

a→j denotes C with arc a
(indeed TN

a→j is a tree). Let V 0(TN
a→j) be the set of all the vertices which are not on the

N-th level of TN
a→j. Define WMMFN

a→j(z) as follows.

min max
e∈E(TN

a→j)
weye (WMMFN

a→j(z))

s.t.
∑

e∈E+
k (TN

a→j)

ye −
∑

e∈E−k (TN
a→j)

ye = fk, ∀ k ∈ V o(TN
a→j)

ya = z

0 ≤ ye ≤ ce, ∀ e ∈ E(TN
a→j).

Now, we show that under the BP algorithm the value of mN
a→j(z) is the same as the weight

of the optimal assignment forWMMFN
a→j(z). This can be established inductively. When

N = 1, the statement is easy to be checked. For N > 1 and each b ∈ Ei\a with b = wi
(or iw), let TN−1

b→i be the subtree of TN
a→j that includes b and does not include i. Consider

the subproblem WMMFN−1
b→i (z) as follows.

min max
e∈E(TN−1

b→i )
weye (WMMFN−1

b→i (z))

s.t.
∑

e∈E+
k (TN−1

b→i )

ye −
∑

e∈E−k (TN−1
b→i )

ye = fk, ∀ k ∈ V o(TN−1
b→i )

yb = z

0 ≤ ye ≤ ce, ∀ e ∈ E(TN−1
b→i ).

By induction hypothesis, it is easy to see that the value of mN−1
b→i (z) equals the weight of

the solution of WMMFN−1
b→i (z). Given this hypothesis and the relation of sub-tree TN−1

b→i

for all b ∈ Ei\a with TN
a→j, it follows that the problem WMMFN

a→j(z) is equivalent to

min max
{
waz, max

b∈Ei\a
mN−1

b→i (yb)
}

s.t.
∑

e∈E+
i (TN

a→j)

ye −
∑

e∈E−i (TN
a→j)

ye = fi,

ya = z

0 ≤ yb ≤ cb, ∀ b ∈ Ei\a.

This is exactly the same as the relation between mN
a→j(z) and message function mN−1

b→i (·)
for b ∈ Ei\a as

mN
a→j(z) = max

{
waz, max

b∈Ei\a
mN−1

g→i (yb)
}
.

That is,mN
a→j(z) is exactly the same as the weight of optimal assignment ofWMMFN

a→j(z).
Using this equivalence, we will complete the proof of Lemma 2.
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For given a = ij with 0 ≤ z ≤ ca, the problem WMMFN
a (z) is equivalent to

min max
{

max
e∈E(TN

a→i)
weye, max

e∈E(TN
a→j)

weye

}
s.t.

∑
e∈E+

k (TN
a )

ye −
∑

e∈E−k (TN
a )

ye = fk, ∀ k ∈ V o(TN
a ) ∩ (V o(TN

a→k) ∪ V o(TN
a→j))

0 ≤ ye ≤ ce, ∀ e ∈ E(TN
a→i) ∪ E(TN

a→j).

That is, the maximum value of arc-flow (multiplied by arc-weight) of an optimal solution

of the problem WMMFN
a (z) equals max

{
mN

a→i(z),mN
a→j(z)

}
, for any 0 ≤ z ≤ ca. Now

the claim of Lemma 2 follows immediately.

It is clear that Lemma 2 establishes the relation between BP algorithm and compu-
tation tree TN

a . Next, we shall show the correctness and convergence of min-max BP
algorithm for WMMF as follows.

Proof of Theorem 1: To the contrary, we suppose that there is an arc e0 ∈ E such
that x̂Ne0 6= x∗e0 where N > n

2
. We assume w.l.o.g. x̂Ne0 > x∗e0 . Then, by Lemma 2, there is

an optimal solution y∗ of WMMFN
e0

such that y∗e0 > x∗e0 .
Let e0 = uv be the root of the computation tree TN

e0
as above. Since x∗ and y∗ are the

feasible solutions of WMMF and WMMFN
e0

, respectively,

fu = x∗e0 +
∑

e∈E+
i \e0

x∗e −
∑
e∈E−i

x∗e, (7)

fu = y∗e0 +
∑

e∈E+
i (TN

e0
)\e0

y∗e −
∑

e∈E−i (TN
e0

)

y∗e . (8)

Due to the inequality y∗e0 > x∗e0 , using (7)-(8), there exists an arc e1 6= e0 incident to u
such that y∗e1 > x∗e1 if e1 and e0 have the same orientation at u (e1 is ingoing from u and e0
is outgoing from u), or y∗e1 < x∗e1 , otherwise. Similarly, we can find arc e−1 6= e0 incident
to v such that y∗e−1

> x∗e−1
if e−1 and e0 have the same orientation at v, or y∗e−1

< x∗e−1
,

otherwise. A similar argument can be applied recursively utilizing the inequalities between
value of components of x∗, y∗ and the equality constraint (1), (3) in linear programming
(I) and (II) on each vertex, respectively. Continuing further all the way down to the
leaves of TN

e0
, we will finally obtain a path denoted by P = {e−N , ..., e−1, e0, e1, ..., eN}

such that for −N ≤ i ≤ N ,

y∗ei > x∗ei ⇔ both ei and e0 have the same orientation,

y∗ei < x∗ei ⇔ both ei and e0 have the opposite orientation.

According to the definitions of x∗ and y∗, such a path is guaranteed to exist. Figure 2
depicts an example of such a path given by dashed arcs.

Let maxE(x) = max{wexe : e ∈ E} where x is a feasible solution of the WMMF . If
a feasible solution y′ of WMMFN

e0
can be obtained by modifying y∗ such that

max
E(TN

e0
)
(y∗) > max

E(TN
e0

)
(y′), (9)
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Fig. 2: An example of the path P on a computation tree T 2
v1v2 with dashed arcs.

then a contradiction arises to the the optimality of y∗. Define A = {e ∈ P : y∗e > x∗e} and
B = {e ∈ P : y∗e < x∗e}. As both A and B are finite sets, there exists ε > 0 such that
y∗e − ε ≥ x∗e for any e ∈ A and y∗e + ε ≤ x∗e for any e ∈ B. Let

y′e =


y∗e − ε, e ∈ A
y∗e + ε, e ∈ B
y∗e , otherwise.

Then y′e = y∗e − ε ≥ x∗e ≥ 0 for any e ∈ A and y′e = y∗e + ε ≤ x∗e ≤ ce for any e ∈ B, which
satisfies all the capacity constraints of (II). Furthermore, for any vertex i on V o(TN

e0
), let

e′ and e′′ be the arcs incident to i and belonging to E(TN
e0

). Then we have that for any
vertex i on V o(TN

e0
),

• if e′ and e′′ have the same orientation as e0, then e′, e′′ ∈ A and∑
e∈E+

i (TN
e0

)

y′e −
∑

e∈E−i (TN
e0

)

y′e = (−ε+
∑

e∈E+
i (TN

e0
)

y∗e)− (−ε+
∑

e∈E−i (TN
e0

)

y∗e) = fi.

• if e′ and e′′ have the opposite orientation as e0, then e′, e′′ ∈ B and∑
e∈E+

i (TN
e0

)

y′e −
∑

e∈E−i (TN
e0

)

y′e = (ε+
∑

e∈E+
i (TN

e0
)

y∗e)− (ε+
∑

e∈E−i (TN
e0

)

y∗e) = fi.

• if e′ has the same orientation and e′′ has the opposite orientation as e0, then∑
e∈E+

i (TN
e0

)

y′e −
∑

e∈E−i (TN
e0

)

y′e =
∑

e∈E+
i (TN

e0
)

y∗e − (−ε+ ε+
∑

e∈E−i (TN
e0

)

y∗e) = fi.

or ∑
e∈E+

i (TN
e0

)

y′e −
∑

e∈E−i (TN
e0

)

y′e = (−ε+ ε+
∑

e∈E+
i (TN

e )

y∗e0)−
∑

e∈E−i (TN
e0

)

y∗e = fi.

This implies y′ satisfies all the other equality constraints of (II), and thus y′ is a feasible
solution of WMMFN

e0
.
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Next, we only need to show that maxE(TN
e0

)(y
∗) > maxE(TN

e0
)(y
′). Since the only dif-

ference between y∗ and y′ is the arcs in P , it is sufficient to show that maxE(P )(y
∗) >

maxE(P )(y
′). Suppose on the contrary that

max
E(P )

(y∗) ≤ max
E(P )

(y′). (10)

Note that P can be decomposed into a simple undirected path and some simple undirected
cycles in G. Let C denote the set of these simple undirected cycles. Since the length of
the path P after N iterations is 2N + 1 and thus 2N+1

n
≥ n+1

n
> 1, there must exist at

least one undirected cycle C ∈ C . Let

x′e =


x∗e + ε, e ∈ A ∩ E(C)

x∗e − ε, e ∈ B ∩ E(C)

x∗e, otherwise.

By a similar argument as y′, it is not difficult to show that x′ is a feasible solution of
WMMF on the original graph G. According to the definitions of x′ and y′, it follows
from (10) that

max
E(P )

(x′) ≤ max
E(P )

(x∗). (11)

Due to (11), we have that

max
E

(x∗) ≥ max
E(P )

(x∗) ≥ max
E(P )

(x′) ≥ max
E(C)

(x′).

Since the only difference between x∗ and x′ is the arcs in C, by the definitions of x′, it is to
see that x′ is a feasible solution of WMMF such that maxE(x′) ≤ maxE(x∗). This leads
to a contradiction that x∗ is the unique optimal solution of WMMF which completes
the proof.

5. Conclusion

As a distributed, message-passing algorithm, Belief Propagation (BP) algorithm has been
widely used in areas like modern statistics, coding theory, combinatorial optimization and
artificial intelligence. Despite empirical successes of BP algorithm in many practical sce-
narios, the theoretical understanding of the performance of BP algorithm remains far from
complete. In this paper, we derive a min-max BP algorithm for the weighted min-max
flow (WMMF) problem and analyze the correctness and convergence of the algorithm
presented. We prove that min-max BP algorithm converges to the optimal solution with
fully-polynomial running time, provided that the optimal solution is unique. Moreover,
based on the research results and contributions of Gamarnik et al. [11], a simple modi-
fication of BP algorithm can be provided to obtain a fully polynomial-time randomized
approximation scheme (FPRAS) without requiring the uniqueness of the optimal solution.
Finally, it remains open for future research to study more general optimization problems
and viability of BP algorithms for them.
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