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Abstract 
A well-known theoretical result in the contest literature is that greater heterogeneity 
decreases investments of contestants because of the “discouragement effect.” 
Levelling the playing field by favouring weaker contestants through strict bid-caps 
and favourable tie-breaking rules can reduce discouragement and increase the 
designer’s revenue. We test these predictions in a laboratory experiment. Our data 
confirm that placing bid-caps and using favourable tie-breaking rules significantly 
diminishes discouragement of weaker contestants. However, its impact on revenues 
is muted by the fact that the encouragement of weaker contestants is offset by 
stronger contestants competing less aggressively, even when not predicted by 
theory. We discuss deviations from the Nash predictions in light of different 
behavioural approaches.  
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1. Introduction 

Contests are fundamental in innovation races (Terwiesch and Xu, 2008), incentivizing 

workers (Lazear and Rosen, 1981), and advancing R&D (Harris and Vickers, 1985, 1987). A long-

standing question within the literature and practice is how to design contests to motivate the highest 

level of performance by contestants (Moldovanu and Sela, 2001; Che and Gale, 2003; for a survey, 

see Konrad, 2009).  

One of the main challenges in contest design is that most contests are between 

heterogeneous contestants (Baye et al., 1993; Che and Gale, 1998). A well-known theoretical result 

in the contest literature is that greater heterogeneity decreases performance of contestants (Konrad, 

2009).1 The reason for this is the so-called “discouragement effect”: weaker contestants, with 

either higher marginal costs or a lower value of winning, cut back expenditures when facing a 

stronger contestant. Such a discouragement effect has been shown to hold in the field (Brown, 

2011), and it is supported by a large body of experimental research (Dechenaux et al., 2015).2 

One solution suggested by theoretical analysis is to level the playing field by imposing 

strict caps on expenditures (Che and Gale, 1998; Gavious et al., 2002, Hart, 2016).3 Via such bid-

caps, weaker contestants are encouraged to compete more intensively, which also increases overall 

competition. Szech (2015) extends this analysis by showing that a combination of tie-breaking 

rules favouring the disadvantaged contestants together with appropriately chosen, mild bid-caps 

                                                 
1 The typical finding in the literature is that greater heterogeneity is associated with lower total effort. However, 
Ryvkin (2013) shows that this result is not universal. That is, there are instances in which greater heterogeneity implies 
higher total effort. See also Drugov and Ryvkin (2017). 
2 Experimental studies found support for the discouragement effect in all-pay auctions (Davis and Reilly, 1998; Müller 
and Schotter, 2010; Deck and Sheremeta, 2012; Fehr and Schmidt, 2018), lottery contests (Fonseca, 2009; Kimbrough 
et al., 2014), rank-order tournaments (Weigelt et al., 1989; Schotter and Weigelt, 1992), and real-effort tournaments 
(Cason et al., 2010; Gill and Prowse, 2012). 
3 The literature has proposed several policies to level the playing field. For example, sequential bidding gives an 
advantage to the second bidder (Fischer et al., 2021). In some settings, this can be used to favor the weaker bidder 
(Cohensius and Segev, 2018). 
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can enhance competition even more.4 Both of these policies aim to reduce heterogeneity among 

contestants, to encourage weaker contestants, and to strengthen overall competition. This also 

translates into higher revenue for the designer of the contest. 

Despite a well-established theoretical literature, little empirical research has been done to 

evaluate how bid-caps and tie-breaking rules impact individual behaviour and revenue in contests 

between heterogeneous contestants. To address this gap, we conduct a laboratory experiment in 

which heterogeneous contestants compete in an all-pay auction.  

Our data confirm that when there is no bid-cap and the tie-breaking rule is symmetric, a 

significant discouragement effect causes the weaker contestant to bid less than the stronger 

contestant. Consistent with theory, strengthening the weaker contestant using bid-caps and 

favourable tie-breaking rules increases the average bid of the weaker contestant. Thus, our data 

show that, consistent with theory, tie-breaks and bid-caps can significantly diminish 

discouragement. Differences in revenues, however, are much smaller than predicted. This is due 

to the fact that the encouragement of the weaker contestant via favourable tie-breaking goes hand 

in hand with the stronger contestant bidding less aggressively, even when not predicted by theory.  

One systematic departure from theoretical predictions is that players of both types abandon 

the competition by placing a significant mass of bids at 0. In the last section of the paper we discuss 

how this and other deviations can be accommodated by different behavioural approaches. We 

conclude that level-k is a useful theory to organize the behavioural data from our experiment. 

                                                 
4 Kaplan and Wettstein (2006) argue that if caps are not rigid, the existence of a cap will not result in increased 
spending. Cotton (2009) shows that under certain circumstances, a tax on spending is strictly preferred to a spending 
limit. Fang (2002) demonstrates that introducing a cap does not increase total revenues in lottery contests. Finally, 
Szech (2015) shows that the counterintuitive result that caps increase total revenue no longer holds when ties are 
always broken in favor of the stronger contestant. 
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Our paper contributes to the growing experimental literature examining behaviour in all-

pay auctions.5 The studies most closely related to ours are done by Rapoport and Amaldoss (2000, 

2004) and Amaldoss and Jain (2002).6 All of these studies examine behaviour in all-pay auctions 

with “coarse” strategy space and a budget constraint (a form of a bid-cap). However, none of the 

studies treat a bid-cap as a design tool for eliminating the discouragement effect and increasing 

revenue. Finally, all-pay auctions with a discrete strategy space have asymmetric equilibria 

(Dechenaux et al., 2006), complicating the interpretation of the actual behaviour of participants. 

Our paper attenuates this issue by having a fine grid rather than a coarse bidding space.7 There are 

other details of our study that make it different from the existing studies, but most importantly, our 

study is the first to examine how bid-caps and tie-breaks impact individual behaviour and revenue 

in contests between heterogeneous contestants. 

Our study also contributes to the vast literature on rent-seeking that followed the seminal 

papers of Tullock (1967) and Krueger (1974). In contrast to innovation contests, however, 

expenditures in rent-seeking contests are often considered to be socially wasteful. Using a 

theoretical model, Che and Gale (1998) show that a strict bid-cap may actually increase aggregate 

expenditures. However, they caution the reader against generalizing their results without a proper 

empirical investigation. Our experimental examination shows that such caution is indeed 

                                                 
5 For an overview, see Dechenaux et al. (2015). 
6 Two other studies by Cohen et al. (2012) and Gelder et al. (2015) investigate the impact of a tie-breaking rule on 
behaviour of symmetric contestants. In both studies, a tie represents a “status quo” and unless one contest outperforms 
the other by some critical threshold, the status quo does not change. 
7 The fine grid is assumed to approximate the situation of continuous bidding. From a theoretical point of view, Szech 
(2015) demonstrates that for the parameters studied here, under continuous bidding, the equilibrium is unique. The 
only potential places for atoms on bids are at zero and/or at the cap. At all other potential bids, if they were played 
with positive probability, at least one bidder would prefer to deviate. With a sufficiently fine grid, this logic should 
carry through in the sense that bidders should not play larger atoms on bids different from zero and/or the cap. Yet, 
multiplicity of equilibrium cannot be ruled out in the discrete case. This provides an additional motivation to run the 
experiment. 
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warranted – although the unwanted effects on aggregate spending may emerge only if caps are 

mild. 

We review the theoretical findings on all-pay auctions with bid-caps and tie-breaks in 

Section 2. Section 3 outlines the experimental design, procedures and hypotheses. Section 4 

presents our main results, along with sub-sections focusing on different parts of the data. We 

discuss implications of our results in Section 5. 

 

2. Theory 

Consider an all-pay auction with two risk-neutral contestants. Contestant H values the prize 

at vH and contestant L at vL, where vH > vL. These values are common knowledge. Contestants 

simultaneously submit their bids bH and bL, which are capped at m. The prize is awarded to the 

highest bidder, but both contestants need to pay their bids. In the case of a tie, the tie-breaking rule 

α, where 0 ≤ α ≤ 1, assigns the prize to contestant H with probability α and to contestant L with 

probability 1 - α. The designer’s revenue is R = bH + bL. If m > vL, equilibrium behaviour is as in a 

standard all-pay auction without a cap (Baye et al., 1996). In the mixed strategy Nash equilibrium, 

the two contestants submit bids according to cumulative distribution functions FH(b) = b/vL and 

FL(b) = 1 - vL/vH + b/vH on an interval [0,vL]. Therefore, the stronger contestant H, who has higher 

valuation for winning, randomly chooses a bid from the interval [0,vL]. The weaker contestant L, 

who has lower valuation for winning, chooses to bid 0 with probability 1 - vL/vH, and with the 

remaining probability randomly chooses a bid from the interval [0,vL]. The expected equilibrium 

bids of contestants H and L are E(bH) = vL/2 and E(bL) = vL
2/(2vH). This results in an expected total 

revenue of R = (vH + vL)vL/(2vH) for the designer. The weaker contestant L earns an expected payoff 
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of 0, while the stronger contestant H earns the difference between the valuations vH - vL (in 

expected terms). 

Che and Gale (1998) show in their game-theoretic analysis that competition can be 

enhanced by using a rather strict bid-cap. They focus on the case of symmetric tie-breaking (i.e., 

the probability that the stronger contestant wins the tie is α = 1/2). Through the use of strict bid-

caps, the weaker contestant can be encouraged to bid at the cap in equilibrium. Che and Gale 

(1998) show that if m < vL/2, the equilibrium bid of both contestants is the bid-cap m, and thus the 

total revenue for the designer is 2m. Within this class, revenue is maximized for m* = vL/2.8 This 

leads to a total revenue of R* = 2m* = vL for the designer, which is an improvement over the 

revenue R = (vH + vL)vL/(2vH) from the unrestricted auction of Baye et al. (1996). However, 

although m* increases the organizer’s revenue, it reduces the efficiency of the all-pay auction, 

since it reduces the probability of winning for the high-valuation contestant. 

The basic idea of strengthening competition by levelling the playing field is further 

elaborated in Szech (2015), who shows that combining a moderate bid-cap with an asymmetric 

tie-breaking rule in favour of the weaker contestant can further increase competition and revenue. 

The revenue-maximizing combination is the bid-cap m** = (1 - α**)vL and the tie-breaking rule 

α** = vL/(vH + vL). In equilibrium, both contestants bid m**, and both earn zero in expectation. 

The total revenue for the designer is R** = 2m** = 2vHvL/(vH + vL), which is a further improvement 

over the revenue R* = 2m* = vL from the capped auction of Che and Gale (1998). 

 

  

                                                 
8 At m* = vL/2 there is a multiplicity of equilibria, which can be eliminated by reducing the cap by a small ɛ. 
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3. The Experiment  

3.1. Experimental Design 

To study the effects of bid-caps and tie-breaks on behaviour in all-pay auctions, we employ 

five treatments as shown in Table 1. In all treatments, two contestants compete against each other. 

The stronger contestant’s valuation for winning, vH, is 180 Talers (experimental currency), and the 

weaker contestant’s valuation for winning, vL, is 60 Talers. The treatments differ along two 

dimensions: the bid-cap m and the tie-breaking rule α. We denote treatments by m_ α. 

[Insert Table 1 around here] 

Treatment 200_1/2 is our baseline treatment. Given the valuations of the contestants, the 

cap of 200 should not be binding, as in Nash equilibrium, contestants should bid up to 60, following 

mixed strategies. Theoretically, tie breaking should be of low importance in this treatment, as ties 

should practically never occur. For this treatment, we chose the symmetric tie-breaking rule of α 

= 1/2. According to the theoretical predictions, revenue in treatment 200_1/2 should be 40, with 

the stronger contestant bidding 30 and the weaker contestant bidding 10 in expectation. 

Treatment 29_1/2 approximates the policy suggested by Che and Gale (1998). Contestants 

are restricted to bid up to m* = 29, and tie-breaking is symmetric, i.e., α = 1/2.9 According to the 

Nash equilibrium prediction, the designer’s revenue in this treatment should increase to 58, with 

both contestants bidding the cap of 29. 

Szech (2015) suggests combining a tie-breaking rule in favour of the weaker contestant 

with a mild bid-cap in order to further encourage the weaker contestant, to intensify overall 

competition, and thus, to increase the designer’s revenue. To approximate the globally optimal 

combination of a bid-cap m** and tie-breaking rule α**, we implement treatment 53_1/6. In the 

                                                 
9 We choose 29 instead of 30 to avoid the multiplicity of equilibria, see footnote 8. 
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case of a tie, the stronger contestant wins with a probability of α** = 1/6 while the weaker 

contestant wins with a probability of 5/6.10 Theoretically, treatment 53_1/6 should lead to the 

expected revenue of 80.3, with an expected bid of 47 by the weaker contestant and 33.3 by the 

stronger contestant. 

It may be difficult for participants to understand a tie-breaking rule that works differently 

from simple winning probabilities such as 0, 1/2 (i.e., the toss of a fair coin), or 1. A way to 

eliminate this problem is to approximate the theoretically optimal solution with a tie-breaking rule 

that is easy to understand. As a simplification of treatment 53_1/6, we also run treatment 53_0, in 

which the tie-breaking rule α = 0 is always in favour of the weaker contestant. Theoretically, 

treatment 53_0 should lead to the revenue of 68, an expected bid of 45.2 by the weaker contestant 

and 23.4 by the stronger contestant. Thus, this treatment should still lead to a higher revenue than 

the unrestricted all-pay auction, and it should still outperform the policy of Che and Gale (1998). 

Finally, to complete our understanding of the impact of tie-breaks, we also run treatment 

53_1/2 with a symmetric tie-breaking rule of α = 1/2. This treatment facilitates comparisons with 

treatments 53_1/6 and 53_0 as well as with treatment 29_1/2. Theoretically, treatment 53_1/2 

should generate a revenue of 40. The stronger contestant is expected to bid 30, and the weaker 

contestant is expected to bid 10. 

To summarize, our treatments can be separated into two sets. The first set of treatments 

looks at the effects of introducing bid-caps under symmetric tie-breaking in order to study the 

predictions of Che and Gale (1998). We thus compare treatments 29_1/2, 53_1/2, and 200_1/2. 

The second set studies the predictions of Szech (2015). We thus focus on treatment 53_1/6 as the 

global optimum, and compare it to treatments 200_1/2 and 29_1/2. Moreover, in order to 

                                                 
10 Using the winning probability of 1/6 has the advantage that participants may recall this probability from playing 
board games involving dice throws. 
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understand the effect of tie-breaks under a mild bid-cap, we compare treatments 53_1/6 to 

treatments 53_0 and 53_1/2. 

 

3.2. Experimental Procedures 

We conducted the experiment at the University of Bonn. 240 participants were recruited 

via ORSEE (Greiner, 2015) from the participant pool consisting mainly of undergraduate students. 

We ran 10 experimental sessions (2 per treatment) with 24 participants in each session (between-

subject design). Participants interacted via visually isolated computer terminals, and the 

experiment was programmed and conducted with the experiment software z-Tree (Fischbacher, 

2007). At the beginning of the experiment, each participant received a copy of the instructions 

(available in the Appendix), which an experimenter read out loud.  

Each session consisted of two parts of 20 periods each. The design of the auction was kept 

identical across all 40 periods. At the beginning of the first part, participants were assigned to the 

specific role of either contestant H (framed as player 1) or contestant L (framed as player 2), and 

participants kept their roles throughout the part. In the second part, participants switched their 

roles, so all contestants H became contestants L and vice versa.11 In each session, 24 subjects were 

divided into 3 matching groups, each of which had an equal number or participants with role H 

and L. Participants were randomly matched in pairs in each period within each matching group, 

and there were no interactions with participants belonging to different matching groups throughout 

the experiment. Therefore, we treat each matching group as an independent observation. This gives 

                                                 
11 The process of role switching after period 20 was used to mitigate any concerns about fairness and inequality among 
participants in the experiment. One concern about the change of role is that it might trigger participants to think of 
'meta strategies'. However, most results are robust to using only the data of the second part. 
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a total of 6 independent observations per treatment (2 sessions per treatment × 3 matching groups 

per session). 

 In the baseline treatment, participants could bid any amount between 0 and 200 Talers (the 

experimental currency), up to one decimal point. In the other treatments, participants could bid 

any amount between 0 and the bid-cap, up to one decimal point. At the end of each period, the 

computer displayed individual bids as well as individual payoffs. To reinforce the one-shot 

incentives of the game, 4 of the 40 periods were selected for payment. Participants’ total earnings 

from these 4 periods were converted at the rate of 60 Talers to 1 euro, and added to their initial 

endowment of 15 Euros.12 Subjects earned an average of 17.58€, with minimum and maximum 

payoffs of 12.30€ and 21.62€ respectively. At the end of the experiment, participants answered a 

series of demographic and socioeconomic questions. The experimental sessions lasted about 90 

minutes each. 

 

3.3. Hypotheses 

Our experiment consists of five treatments (summarized in Table 1) designed to test the 

theoretical predictions of Che and Gale (1998) and Szech (2015). Our hypotheses are the 

following:  

Hypothesis 1 (H1). Under symmetric tie-breaking, a strict bid-cap (i.e., m = 29) increases 

the average bid of the weaker contestant, with the predicted ordering of treatments:  

𝑏𝑏200_1/2
𝐿𝐿 = 𝑏𝑏53_1/2

𝐿𝐿 < 𝑏𝑏29_1/2
𝐿𝐿 . 

                                                 
12 If the total payoff of the 4 selected periods was negative, the absolute value of this amount was subtracted from the 
initial endowment. This was the case for 15% of the subjects. 
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Hypothesis 2 (H2). Under symmetric tie-breaking, a bid-cap should not significantly 

impact the average bid of the stronger contestant, with 𝑏𝑏29_1/2
𝐻𝐻 + 1 = 𝑏𝑏53_1/2

𝐻𝐻 = 𝑏𝑏200_1/2
𝐻𝐻 . 

Hypothesis 3 (H3). Under symmetric tie-breaking, a strict bid-cap (i.e., m = 29) increases 

the average revenue compared to an unrestricted all-pay auction and an all-pay auction with a mild 

bid-cap (i.e., m = 53), with the predicted ordering of treatments: 𝑅𝑅200_1/2  = 𝑅𝑅53_1/2 < 𝑅𝑅29_1/2. 

Hypothesis 4 (H4). A mild bid-cap (i.e., m = 53) combined with a tie-breaking in favour 

of the weaker contestant (i.e., α = 1/6) generates higher average revenue than a strict bid-cap 

(𝑅𝑅53_1/6 > 𝑅𝑅29_1/2), an unrestricted all-pay auction (𝑅𝑅53_1/6 > 𝑅𝑅200_1/2), and other treatments with 

the same bid-cap but different tie-breaking (𝑅𝑅53_1/6 > 𝑅𝑅53_1/2 and 𝑅𝑅53_1/6 > 𝑅𝑅53_0). 

Hypothesis 5 (H5). An advantage in tie-breaking for the weaker contestant (i.e., α < 1/2) 

increases the average bid of the weaker contestant compared to symmetric tie-breaking: 𝑏𝑏53_1/2
𝐿𝐿 <

𝑏𝑏53_1/6
𝐿𝐿  and 𝑏𝑏53_1/2

𝐿𝐿 < 𝑏𝑏53_0
𝐿𝐿 . 

Hypothesis 6 (H6). Tie-breaking has a non-monotonic effect on the average bid of the 

stronger contestant, with the predicted ordering of treatments: 𝑏𝑏53_0
𝐻𝐻 < 𝑏𝑏53_1/2

𝐻𝐻 < 𝑏𝑏53_1/6
𝐻𝐻 . 

Our first set of hypotheses (H1, H2 and H3), based on treatments 200_1/2, 53_1/2 and 

29_1/2, is designed to test the predictions of Che and Gale (1998) that levelling the playing field 

through bid-caps under a symmetric tie-breaking rule can significantly reduce discouragement of 

the weaker contestant L and increase revenue in all-pay auctions.  H1 compares average revenues 

across treatments, while H2 and H3 compares the bidding behaviour of low and high types 

respectively. 

Our second set of hypotheses (H4, H5 and H6) relates to the predictions on having a mild 

cap. According to Szech (2015), combining a milder bid-cap than in Che and Gale (1998) with a 

tie-breaking rule in favour of the weaker contestant can further increase revenue and reduce 
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discouragement in the weaker contestant. We approximate the theoretical optimum via treatment 

53_1/6 in which the stronger contestant only wins in one out of six cases if he ends up in a tie with 

the weaker contestant. H4 compares aggregate revenues, H5 compares the bidding behaviour of 

low types across treatments and H6 does the same for high types. 

 
 
4. Results 

In the following analysis, we focus on the second half of each part (periods 11-20 and 31-

40) to allow for learning in the initial periods.  We test our hypotheses with the non-parametric 

Fisher-Pitman permutation test. In order to test predicted null effects, we complement this with 

Bayesian analysis based on linear regressions. When performing these tests, we use the average 

within a single re-matching group of 8 participants as one independent observation. 

Average bids, payoffs, and revenue in all treatments are summarized in Table 2. Figure 1 

shows the average bid by treatment and type, and Figure 2 displays the revenues. 

[Insert Table 2 around here] 

[Insert Figures 1 and 2 around here] 

 

 

4.1. Bid-Caps under Symmetric Tie-Breaking 

We begin by focusing on treatments with a symmetric tie-breaking rule. In treatment 

200_1/2, consistent with the theoretical predictions, the weaker contestant bids approximately 

three times less than the stronger contestant (12.4 versus 33.3; p-value < 0.01).13 

                                                 
13 When comparing to the theoretical predictions, the average bid of the stronger contestant is not significantly different 
from the theoretical prediction (33.3 versus 30.0; p-value = 0.125), while the weaker contestant bids significantly 
more than predicted (12.4 versus 10.0; p-value = 0.063). Non-parametric tests comparing average bids of the weaker 
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The prediction of Che and Gale (1998) is that placing a strict bid-cap should enhance 

competition, reduce the discouragement effect, and increase L’s average bid. In line with these 

predictions, treatment 29_1/2 significantly increases the average bid by the weaker contestant 

compared to the baseline treatment 200_1/2 (20.2 versus 12.4; p-value < 0.01), supporting H1 and 

indicating that the strict cap of m = 29 significantly diminishes discouragement.14 In treatment 

53_1/2, the average bid by the weaker contestant lies between the other two symmetric treatments, 

and but none of these differences are statistically significant from zero (p-value = 0.145 and 0.446 

for 200_1/2 and 29_1/2, respectively). 

 

Result 1. Consistent with Hypothesis 1, a strict bid-cap significantly increases the 

average bid by the weaker contestant. However, contrary to Hypothesis 1, we find 

no significant differences between the mild and the strict bid-cap. 
 

We now turn to the bidding behaviour of the stronger contestant. In line with the Nash 

equilibrium prediction and consistent with H2, we find no significant difference in average bidding 

behaviour between treatments 53_1/2 and 200_1/2 (35.2 versus 33.3; p-value = 0.487).15 

Theoretical analysis further predicts only a marginal decrease when the cap is m = 29, with the 

contestant bidding at the cap. Our data reveal a more substantial and significant decrease to an 

average bid of 25.2 (p-value = 0.031), which is significantly lower than in treatments 53_1/2 and 

200_1/2 (p-value < 0.01 in both cases).  

 

                                                 
contestant, bids of the stronger contestant and revenues across all treatments as well as tests against the theoretical 
predictions can be found in Appendix A. 
14 The average bid of the weaker contestant is significantly lower than the theoretical prediction (20.2 versus 29.0; p-
value = 0.02). 
15 Average bids are higher than the predicted level of 30.0 in both cases, but these differences are not significantly 
different from zero (both p-values are 0.125). The Bayesian posterior of an effect of no more than 5 is 83.11%. See 
the supplementary material for details. 
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Result 2. Contrary to Hypothesis 2, a strict bid-cap significantly reduces the 

average bid by the stronger contestant. 
 

Finally, we examine the impact of bid-caps on the average revenue. Contrary to the 

theoretical predictions, the average revenue in treatment 29_1/2 is lower than in treatments 

200_1/2 and 53_1/2. While the difference with 200_1/2 is virtually null (45.4 vs 45.7), the 

difference with 53_1/2 is more substantial (45.4 vs 52.8). However, find that revenue is not 

statistically significantly different across any of the pairwise comparisons (see Table 3).16 

Therefore, we reject H3.  

 

Result 3. Contrary to Hypothesis 3, a strict bid-cap does not significantly increase 

the average revenue with respect to the treatments with a mild cap or no cap. 
 

The reason for this departure from theory is twofold. First, revenue in treatments 200_1/2 

and 53_1/2 is significantly higher than predicted (45.7 vs 40.0 and 52.8 vs 40.0; p-values = 0.094 

and 0.063).17 Second, revenue in treatment 29_1/2 is significantly lower than predicted (45.4 vs 

58.0; p-value = 0.031). Recall that in this treatment the Nash equilibrium strategy of both players 

is at the upper boundary of the bidding space (i.e., both bidders should bid at the cap), so any 

deviation from equilibrium implies a lower-than-predicted revenue.18 

[Insert Tables 3, 4 and 5 around here] 

 

 

                                                 
16 The difference in revenues between treatments 200_1/2 and 53_1/2 is 7.05. The Bayesian posterior that the 
(absolute) difference is no more than 10 is 71.07%. 
17 Such overbidding is common in all-pay auction experiments (Davis and Reilly, 1998; Gneezy and Smorodinsky, 
2006; Lugovskyy et al., 2010). 
18 This problem of equilibrium predictions at the boundary has been well recognized in linear public good experiments, 
where the dominant strategy is to contribute nothing. For a review, see Laury and Holt (2008). 
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4.2. Optimal Combination of Bid-Caps and Tie-Breaking Rules 

As indicated by Szech (2015), combining an asymmetric tie-breaking rule that favours the 

weak contestant with the right cap can further increase revenues. With our experimental 

parameters, the global optimum in revenue is approximated by treatment 53_1/6. Although the 

average revenues in this treatment are higher than the ones observed in treatments 29_1/2 and 

200_1/2 (51.9 vs 45.7 and 45.4 respectively), none of these differences are statistically significant 

from zero (p-values = 0.284, and 0.225).19 Also, contrary to H4, we find no significant differences 

between treatments 53_1/6, 53_0, and 53_1/2 (p-values > 0.221 in all cases).20 

 

Result 4. Contrary to Hypothesis 4, we find that a mild bid-cap combined with a 

tie-breaking in favour of the weaker contestant does not generate higher average 

revenue than a strict bid-cap and an unrestricted all-pay auction. Moreover, under 

the mild bid-cap, average revenue does not change significantly with the tie-

breaking rule. 

 

To further understand the impact of tie-breaks, we examine contestants’ behaviour in 

treatments with a mild bid-cap. Consistent with H5, treatment 53_1/6 significantly increases the 

average bid by the weaker contestant compared to treatment 53_1/2 (26.1 versus 17.5; p-value = 

0.058). However, the magnitude of the effect is more than four times smaller than predicted (8.6 

instead of 37). Theory also predicts that a further favouring of the weaker contestant, so that the 

stronger contestant never wins the tie, leaves the high bid of the weaker contestant virtually 

unchanged (47 versus 45.2). The data show that indeed, the average bid of the weaker contestant 

                                                 
19The average revenue in treatment 53_1/6 is significantly lower from the theoretical prediction (57.2 versus 80.26; 
p-value = 0.031). 
20 In fact, unlike predicted, the average revenues are higher in treatments 53_0 and 53_1/2 than in treatment 53_1/6. 
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in treatment 53_0 is not significantly different from treatment 53_1/6 (31.2 and 26.1; p-value = 

0.154).  

 

Result 5. Consistent with Hypothesis 5, a tie-breaking rule favouring the weaker 

contestant significantly increases the average bid of the weaker contestant 

compared to a symmetric tie-breaking rule.  

 

When examining the behaviour of the stronger contestant, theory predicts that his average 

bid should be the highest in treatment 53_1/6 where competition is the toughest, followed by 

treatment 53_1/2 and treatment 53_0. Contrary to this prediction, we find that the average bid of 

the stronger contestant in treatment 53_1/2 is significantly higher than in treatments 53_1/6 and 

53_0 (p-values = 0.011 and 0.013 respectively). When comparing treatments 53_1/6 and 53_0, we 

find no significant difference in bidding behaviour (25.7 versus 27.0; p-value = 0.595). Thus, the 

stronger contestant becomes more easily discouraged by a non-favourable tie-breaking rule than 

theory predicts. 

 

Result 6. Contrary to Hypothesis 6, a tie-breaking rule favouring the weaker 

contestant significantly decreases the average bid of the stronger contestant. 

 

 

4.3. Distribution of Bids 

In order to better understand departures of our data from the Nash equilibrium, we examine 

the distribution of bids across types and treatments. Figure 3 displays the realized and the 
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predictive cumulative distributions of bids for each treatment and type.21 Overall, we see that the 

observed data is fairly consistent with the theoretical predictions, with some systematic deviations 

that we will discuss. 

[Insert Figure 3 around here] 

In the unrestricted treatment 200_1/2, as predicted by standard theory, most bids by both 

types are between 0 and 60.0.22 The cumulative distribution of bids of the weak contestants is 

remarkably close to the predicted one. The stronger ones, however, and unlike predicted by theory, 

place a significant mass point around 60 (which explains the overbidding by these types). 

In treatment 29_1/2, theory predicts that all bids should be concentrated at the bid-cap of 

m = 29. We find that the stronger contestant follows this strategy 84.4% of the time, while weak 

contestants do it 67.9%. The most remarkable departure from theory is a mass point around 0 in 

the bid distribution of weak types: 21.9% of the bids are exactly zero. 

The only difference across the three treatments with a mild bid-cap of m = 53 is the tie-

breaking rule α. We see that effects of tie-breaking on bidding behaviour are substantial. The 

weaker contestant shifts mass from 0 to the cap as the tie-breaking rule becomes more favourable. 

At the same time, the stronger contestant displays the reverse bidding behaviour by shifting mass 

from the cap to 0 as the tie-breaking rule becomes less favourable for him. Focusing on treatments 

53_0 and 53_1/2 in which the tie-breaking rule is relatively easy to understand, the shifts in the 

mass points are in line with the Nash equilibrium prediction. This is not the case for treatment 

53_1/6. Here, we observe again substantial mass at 0, which is not predicted by theory. 

 

                                                 
21 In order to have more data and smoother distribution functions, this section considers data from all periods. The 
qualitative results, however, are very similar to the ones restricting the analysis to the data from the second half of 
each block. The same applies to section 4.4 on observed behaviour. 
22 Only 2.5% of bids are strictly above 61.0, and only 1.1% are strictly above 65.0. 
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Result 7. In contrast to theory, the empirical distribution of bids displays a mass 

point at 0 in most treatments. 

 

Finally, in order to establish whether the distribution of bids is independent across rounds, 

we analyse contestants’ behaviour in response to previously observed behaviour. Table 3 displays 

panel regressions by treatment and type, demonstrating the impact of different lag variables in 

period t-1 on bid in period t. Theory predicts that participants should randomly and independently 

choose their bids according to the mixed strategy Nash equilibrium. Instead, we find two important 

deviations from this prediction. First, the significant bid-lag variable in all specifications shows 

that participants’ bids are serially correlated. Second, the significant otherbid-lag variable shows 

that participants respond to the opponents’ behaviour in the past period. Both of these observations 

point out that, instead of using mixed strategies, contestants are influenced by the salience of their 

experiences. These results are in line with previous results that show the difficulty of participants 

to play mixed strategies (see, for instance, Brown and Rosenthal, 1990; Ochs, 1995; Foster and 

Young, 2003). 

 

4.4. Best Response to Observed Behaviour 

In this section, we analyse the expected payoffs of each bid for both types of contestants in each 

treatment. According to the theoretical predictions, contestants should be indifferent between bids 

that are played with positive probability. However, when computing the expected payoffs playing 

against the distribution of bids observed in the experiment, this might not be the case for two 

reasons. First, even if contestants play according to the theoretical predictions, the distribution of 

realized bids might not perfectly reflect the theoretical distribution. And second, as we saw 

previously, there are significant departures from theoretical predictions. 
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In the unrestricted treatment 200_1/2, the best response to empirical frequencies observed 

in the experiment for the stronger contestant is to bid 42.1, which yields an expected payoff of 

124.7. But, as Figure 4 shows, the expected payoff function is relatively flat: any bid between 10.1 

and 68.8 gives a payoff of at least 110.23 The best response for the weaker contestant is to bid 2.2, 

which yields an expected payoff of 5.1. The expected payoff function is also relatively flat around 

the maximum, but overall, the expected payoff tends to decrease with the bid, and any bid higher 

than 18.6 yields a negative payoff (with the exception of bids between 20.2 and 20.5). 

[Insert Figure 4 around here] 

The best response to empirical frequencies in treatment 29_1/2 is in line with the theoretical 

predictions – to bid at the cap. The expected payoff for the stronger contestant bidding at the cap 

is 91.8, while the expected payoff of other bids is, at most, 46.7. But unlike the theoretical 

prediction, due to the high frequency of weaker contestants bidding 0, the expected payoff of any 

bid is strictly positive and no less than 19.3.24 The incentive to bid at the cap by the weaker 

contestant is of course lower: the expected payoff of bidding at the cap is 6.2 while the expected 

payoff of other bids is at most 3.0. 

[Insert Figure 5 around here] 

Figure 5 summarizes the expected payoff of different bids for both contestants for the 

treatments with a cap of 53. The three treatments display similar patterns. The weaker contestant 

receives a positive expected payoff for low bids, but this payoff decreases with the bid, except for 

bids exactly at the cap. When examining the expected payoff of the stronger contestant, we see 

that in treatment 53_0, the expected payoff is flat (between 46.29 and 51.90) for bids between 30.1 

and the cap. In the other two treatments, there is a clear best response to observed behaviour: 

                                                 
23 Any bid between 1.3 and 79.2 gives an expected payoff of at least 100. 
24 If we exclude bidding zero, the minimum expected payoff of a stronger contestant is 32.3. 



 20 

bidding at the cap. In treatment 53_1/6, bidding the cap delivers an expected payoff of 72.3, while 

the expected payoff of other bids is at most 62.4. In treatment 53_1/2, bidding at the cap brings a 

payoff of 98.7, but other bids yield as much as 92.6. In particular, any bids between 5.1 and 9.3 

and between 10.0 and 22.6 yield at least 88.0. 

An important conclusion from this analysis is that bidding 0 by the stronger contestant 

leads to significantly lower expected payoff than the one obtained by any other bid below 

min{60,cap}. The reason is that usually, a small bid different from 0 leads to a higher payoff than 

bidding at 0. 

 

Result 8. Bidding 0 by the stronger contestant leads to lower expected payoff than 

bidding any other amount below min{60,cap}. 

 

Therefore, a substantial mass at 0 by the stronger contestant documented in Section 4.3 is 

not only inconsistent with the theoretical predictions, but it is not a best response to observed 

behaviour either. To explain this apparent inconsistency, we revert to behavioural explanations. 

 

4.5. Behavioural Explanations 

A potential candidate to explain a substantial mass point at 0 is loss aversion (Kahneman 

and Tversky, 1979). It is well-documented both, by the theoretical and experimental literature on 

all-pay auctions, that loss and risk aversion impacts bidding behaviour (Müller and Schotter, 2010; 

Baye et al., 2012; Mago et al., 2013; Dechenaux et al., 2015).25 However, it is easy to demonstrate 

that neither risk nor loss aversion can explain excessive bidding at 0. To show this, assume that 

                                                 
25 Looking at our data on self-reported willingness to take risks (where 0 denotes “completely unwilling to take risks” 
and 10 denotes “completely prepared to take risks”), we find that participants who indicate that they are unwilling to 
take risks avoid bidding at the cap of 29. A random effects GLS regression of the probability of bidding zero on our 
risk measure shows a significant relationship (p-value < 0.01). 
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bidders are loss averse so that a negative payoff receives higher weight. Under this assumption, 

some standard characteristics of equilibrium still apply. Specifically, it cannot happen in 

equilibrium that both bidders place mass on zero. If both bidders played zero with positive 

probability, one bidder could profitably deviate to a slightly higher bid (see Szech, 2015). The data 

from treatments 53_1/6 and 29_1/2 violate this, since in these treatments both bidders 

simultaneously place significant mass on 0. 

Other potential candidates are the models of bounded rationality such as quantal response 

equilibrium (McKelvey and Palfrey, 1995) or cursed equilibrium (Eyster and Rabin, 2005). Goeree 

et al. (2002) show that quantal response equilibrium can indeed account for some of the departures 

observed in private value first price auctions. In our setup, however, quantal response equilibrium 

cannot account for the pronounced peaks observed at zero and the cap. Also, since our game is a 

game of complete information, cursed equilibrium coincides with the Nash prediction. 

Finally, we examine whether deviations from Nash equilibrium in our experiment can be 

explained by the level-k model of reasoning (Stahl and Wilson, 1994, 1995; Nagel, 1995). This 

model assumes that the population is partitioned into types that differ in their depth of reasoning. 

A level-0 type is nonstrategic and follows a simple decision rule. The level-1 type behaves as if 

best-responding to the belief that the other is a level-0 type. Similar logic applies to other types. 

People typically exhibit reasoning on lower levels; it is very uncommon to observe level-4 

reasoning or higher (Arad and Rubinstein, 2012; Crawford et al., 2013).26  

[Insert Table 4 around here] 

                                                 
26 Level-k reasoning has been used to explain the behaviour in auctions (Crawford and Iriberri, 2007), beauty contests 
(Nagel, 1995), guessing games (Stahl and Wilson, 1994, 1995), coordination games (Crawford et al., 2008), and 
centipede games (Kawagoe and Takizawa, 2012). 
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Table 4 displays bidding behaviours according to level-k for the stronger contestant H and 

the weaker contestant L. The three panels (Panel A, B and C) show the predictions based on how 

we model a level-0 type. Panel A assumes that level-0 randomly chooses a bid between 0 and the 

bid-cap (60 in the baseline treatment). Panel B assumes that level-0 bids 0. Panel C assumes that 

level-0 bids the minimum of vL and m.  

Recall that the most puzzling behaviour that we observe in our experiment is the excessive 

bidding at 0 by the stronger contestant.27 While this type of behaviour is inconsistent with best 

responding to both theoretical predictions and observed behaviour, it can be explained by the level-

k model of reasoning. From Table 4, we see that despite how we model a level-0 type, bidding 0 

(or near 0) is a strategy employed by at least one of the levels of reasoning.  

The level-k model also captures the comparative statics with respect to the tie-breaking 

rule well. The bid distribution for the stronger contestant displays mass points at the cap of 

comparable sizes when the tie-breaking rule is α = 0 and α = 1/6 (see Panels A and C), and a much 

more pronounced mass point at the cap when the rule is α = 1/2. The bid distributions for the 

weaker contestant, on the other hand, show a reverse pattern: the frequency of bidding 0 increases 

when the tie-breaking rule becomes less favourable. 

 

Result 9. Deviations from the standard game-theoretic predictions are in line with 

level-k reasoning. 

 

 

 

                                                 
27 Another departure from theory reported in section 4.4 is that subjects react to passed own and rivals’ bids. None of 
these models can explain such departure given their static nature. While this is out of the scope of this paper, it might 
be interesting to extend the analysis to dynamic models that can explain both features.  
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5. Conclusion 

It has been well recognized that the discouragement effect can decrease the performance 

of contestants.28 One solution that has been proposed is to impose a rather strict cap on 

expenditures (Che and Gale, 1998). Theoretically, even better effects are attainable when 

implementing a mild bid-cap combined with a tie-breaking rule favouring the weaker contestant 

(Szech, 2015).  

In this paper, we provide empirical evidence that these policies are indeed powerful. 

Compared to the unrestricted baseline auction, our data show that the average bid of the weaker 

contestant is more than 70% higher when the strict bid-cap suggested by Che and Gale (1998) is 

in place. An appropriate combination of a mild bid-cap and a favourable tie-breaking rule can 

further increase the average bid of the weaker contestant, whose bids are over 170% higher 

compared to the unrestricted contest. However, these policies seem less effective at raising total 

revenues. While treatments with a mild bid-cap generate higher revenues than the strict bid-cap 

and the unrestricted all-pay auctions, these differences are not statistically significant.  

Our study contributes to a growing literature on innovation contests (Terwiesch and Xu, 

2008, Boudreau et al., 2011). Our empirical findings may explain why in practice, contest 

designers sometimes place relatively small restrictions on contestants and often stick to symmetric 

tie-breaking when focusing on overall revenues (Jeppesen and Lakhani, 2010; Boudreau et al., 

2011).29 In other cases, objectives may include encouraging weaker contestants, as for example in 

sports competitions (to level the playing field and create more of a thrill for viewers) or labour 

markets (to increase diversity); here, tie-breaking rules in favour of the weaker contestants are 

frequently used, and may successfully apply. Anti-discrimination policies that solve ties in favour 

                                                 
28 See, for example, Brown (2011) for evidence in the field or Dechenaux et al. (2015) for evidence in the lab. 
29 Innovation contests provide a good example in which tie-breaking rules are typically symmetric. 
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of specific subgroups of a population may benefit from these effects. Our data illustrates that 

policies designed to diminish the discouragement effect do not harm revenue, instead, they can 

increase it compared to unrestricted contests. 
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Table 1: Overview of treatments and theoretical predictions 

 
Treatment Type 200_1/2 29_1/2 53_1/2 53_1/6 53_0 
Cap m  – 29 53 53 53 
Tie-breaking rule α  1/2 1/2 1/2 1/6 0 

Expected bid E(b) H 30.0 29.0 30.0 33.3 23.4 
L 10.0 29.0 10.0 47.0 45.2 

Expected revenue R  40.0 58.0 40.0 80.3 68.6 

Bidding strategy 
according to Nash 
equilibrium 

H Uniform 
mixing on 

[0,60] 

Atom of 1 
at 29 

Atom of 0.23 at 
53, uniform 

mixing on [0,46] 
with remaining 

probability 

Atom of 0.51 at 
53 and atom of 

0.03 at 0, uniform 
mixing on [0, 28] 
with remaining 

probability 

Atom of 0.11 
at 0, mixing on 

[0,53] with 
remaining 
probability 

L Atom of 0.67 
at 0, uniform 

mixing on 
[0,60] with 
remaining 
probability 

Atom of 1 
at 29 

Atom of 0.67 at 0 
and atom of 0.08 

at 53, uniform 
mixing on [0,46] 
with remaining 

probability 

Atom of 0.85 at 
53, uniform 
mixing on  

[0, 28] with 
remaining 
probability 

Atom of 0.71 
at 53, uniform 

mixing on 
[0,53] with 
remaining 
probability 

 
 
 

Table 2: Average bid, payoff and revenue by treatment 
 

Treatment Type 200_1/2 29_1/2 53_1/2 53_1/6 53_0 
 Periods 11-20 and 31-40 

Average bid H 33.3 (22.7) 25.2 (9.1) 35.2 (22.4) 25.7 (23.2) 27.0 (22.5) 
L 12.4 (19.8) 20.2 (13.0) 17.5 (22.9) 26.1 (23.9) 31.2 (22.2) 

Average payoff H 106.9 (69.4) 91.0 (84.1) 99.7 (74.9) 57.0 (84.3) 32.5 (78.1) 
L 0.8 (20.6) 1.0 (25.6) -2.5 (23.5) 6.2 (24.0) 8.9 (20.3) 

Average revenue  45.7 (30.5) 45.4 (16.6) 52.8 (34.6) 51.9 (34.9) 58.2 (31.4) 
 All 40 periods 

Average bid H 35.2 (26.5) 25.3 (8.7) 38.6 (21.1) 29.3 (22.8) 27.0 (22.9) 
L 11.7 (19.3) 20.2 (12.8) 20.5 (23.9) 27.9 (23.5) 32.3 (21.8) 

Average payoff H 111.0 (66.6) 88.0 (84.8) 94.3 (76.1) 56.7 (83.9) 31.7 (77.3) 
L -0.4 (20.2) 1.9 (25.5) -4.8 (24.3) 3.3 (23.7) 8.0 (21.7) 

Average revenue  46.9 (33.9) 45.5 (16.0) 59.1 (34.6) 57.2 (33.9) 59.4 (31.8) 
       
Standard deviation in parenthesis. 
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Table 3: Random effects regression of the bid on lag variables 
 Treatment 
Dependent variable, bid 200_1/2 29_1/2 53_1/2 53_1/6 53_0 
 Type H 
bid-lag 0.48*** 0.44*** 0.66*** 0.65*** 0.62*** 
    [own bid in t-1] (0.15) (0.04) (0.04) (0.07) (0.07) 
otherbid-lag 0.31*** 0.09*** 0.09*** 0.03 -0.15*** 
    [other bid in t-1] (0.04) (0.02) (0.02) (0.02) (0.03) 
win_lag -2.55 -0.36 -3.14** 0.26 -5.33*** 
    [dummy for win in t-1] (3.61) (0.72) (1.52) (2.12) (1.43) 
period 0.12 -0.00 -0.06 -0.20*** -0.02 
    [linear period trend] (0.17) (0.01) (0.14) (0.04) (0.10) 
switch -1.19 1.34* -0.63 2.19** -1.36 
    [dummy for role switching] (5.17) (0.71) (3.78) (1.07) (2.05) 
constant 13.36*** 11.99*** 14.88*** 11.85*** 17.71*** 
 (4.95) (1.44) (2.25) (2.34) (3.12) 
 Type L 
bid-lag 0.34*** 0.66*** 0.65*** 0.70*** 0.56*** 
    [own bid in t-1] (0.13) (0.05) (0.07) (0.04) (0.06) 
otherbid-lag 0.00 0.04 0.02 0.09*** 0.22*** 
    [other bid in t-1] (0.03) (0.06) (0.02) (0.03) (0.03) 
win_lag 1.76 -1.10 1.06 -4.70*** -2.08 
    [dummy for win in t-1] (1.99) (0.89) (1.74) (1.47) (2.78) 
period 0.08 0.04 -0.21** -0.04 -0.04 
    [linear period trend] (0.10) (0.04) (0.10) (0.08) (0.07) 
switch -0.07 -1.50 2.09 0.87 0.79 
    [dummy for role switching] (1.60) (1.56) (2.60) (1.47) (2.11) 
constant 5.77** 6.41*** 9.28** 8.57*** 9.97*** 
 (2.29) (1.54) (3.64) (2.03) (1.69) 
* significant at 10%, ** significant at 5%, *** significant at 1%. The standard errors in parentheses are 
clustered at the group level. All models include a random effects error structure, with the individual 
subject as the random effect, to account for the multiple decisions made by individual subjects. 
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Table 4: Level-k bids by contestant type and by treatment 

 
Treatment 200_1/2 29_1/2 53_1/2 53_1/6 53_0 
 H L H L H L H L H L 

Panel A: Level-0 is uniformly distributed 
Level-0 U[0,60] U[0,60] U[0,29] U[0,29] U[0,53] U[0,53] U[0,53] U[0,53] U[0,53] U[0,53] 
Level-1 60 Nash 29 29 53 53 53 53 53 53 
Level-2 U[0,60] 0 29 29 53 0 0 0 0 53 
Level-3 “0.1” Nash 29 29 “0.1” 0 “0.1” “0.1” 0 “0.1” 

Panel B: Level-0 is 0 
Level-0 0 0 0 0 0 0 0 0 0 0 
Level-1 “0.1” “0.1” “0.1” “0.1” “0.1” “0.1” “0.1” “0.1” “0.1” 0 
Level-2 “0.2” “0.2” “0.2” “0.2” “0.2” “0.2” “0.2” “0.2” “0.1” “0.1” 
Level-3 “0.3” “0.3” “0.3” “0.3” “0.3” “0.3” “0.3” “0.3” “0.2” “0.1” 

Panel C: Level-0 is the minimum of vL and m 
Level-0 60 60 29 29 53 53 53 53 53 53 
Level-1 “60.1” 0 29 29 53 0 0 0 0 53 
Level-2 “0.1” 0 29 29 “0.1” 0 “0.1” “0.1” 0 “0.1” 
Level-3 “0.1” “0.2” 29 29 “0.1” “0.2” “0.2” “0.2” “0.2” 0 
Panel A: U[A,B] denotes a uniform distribution with boundaries A and B. “0.1“ approximates the theoretical solution of 
ε as subjects could adjust their bid to a tenth of the in-game currency. Panel B: “0.1“, “0.2”, and “0.3” approximate the 
theoretical solutions of ε, 2ε, and 3ε, respectively, as subjects could adjust their bid to a tenth of the in-game currency. 
Panel C: “0.1“, “0.2”, and “60.1” approximate the theoretical solutions of ε, 2ε, and 60+ε as subjects could adjust their 
bid to a tenth of the in-game currency.  
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Figure 1: Average bid by treatment and type  
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Figure 2: Average Revenue by treatment 
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Figure 3: Cumulative distribution of bids by treatment and type 

 

 
The Nash predicted distribution is the dashed red line and the observed distribution is 
the solid blue line. 
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Figure 4: Expected payoff conditional on bids in treatments 200_1/2 and 29_1/2 by type  

 
 

The expected payoff is calculated based on the observed frequencies of bids in the 
experiment. The theoretically predicted payoff is the dashed red line and the observed 
expected payoff is the solid blue line. 
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Figure 5: Expected payoff conditional on bids in treatments with a mild cap, by type 

 

 
The expected payoff is calculated based on the observed frequencies of bids in the 
experiment. The theoretically predicted payoff is the dashed red line and the observed 
expected payoff is the solid blue line. 

 
  

-5
0

0
50

10
0

-5
0

0
50

10
0

-5
0

0
50

10
0

0 20 40 60 0 20 40 60

53_0, H 53_0, L

53_1/2, H 53_1/2, L

53_1/6, H 53_1/6, LEx
pe

ct
ed

 P
ay

of
f

Bid



 36 

Appendix 
 
Appendix A:  Non-parametric Tests  

 
Table A1: Pairwise comparisons of the weaker contestant’s bids across treatments 

 
 29_1/2 53_0 53_1/6 53_1/2 
200_1/2 < < < = 
 p = 0.009 p = 0.002 p = 0.004 p = 0.145 
29_1/2  < < = 
  p = 0.004 p = 0.078 p = 0.446 
53_0   = > 
   p = 0.154 p = 0.009 
53_1/6    > 
    p = 0.058 
Two-sided Fisher-Pitman permutation tests. > (<) indicates that 
the column (row) is signifficantly higher. = indicates that there 
is no signifficant difference at 10% level. P-values are indicated 
below this sign. 

 
 

Table A2: Pairwise comparisons of the stronger contestant’s bids across treatments 
 

 29_1/2 53_0 53_1/6 53_1/2 
200_1/2 > > > = 
 p = 0.006 p = 0.026 p = 0.024 p = 0.487 
29_1/2  = = < 
  p = 0.314 p = 0.810 p = 0.002 
53_0   = < 
   p = 0.595 p = 0.013 
53_1/6    < 
    p = 0.011 
Two-sided Fisher-Pitman permutation tests. > (<) indicates that 
the column (row) is signifficantly higher. = indicates that there 
is no signifficant difference at 10% level. P-values are indicated 
below this sign. 

 
 

Table A3: Pairwise comparisons of the revenue across treatments 
 

 29_1/2 53_0 53_1/6 53_1/2 
200_1/2 = < = = 
 p = 0.952 p = 0.006 p = 0.284 p = 0.223 
29_1/2  < = = 
  p = 0.006 p = 0.225 p = 0.175 
53_0   = = 
   p = 0.221 p = 0.305 
53_1/6    = 
    p = 0.877 
Two-sided Fisher-Pitman permutation tests. > (<) indicates that 
the column (row) is signifficantly higher. = indicates that there 
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is no signifficant difference at 10% level. P-values are indicated 
below this sign. 

 
 

Table A4: Comparisons with theoretical predictions 
 

 200_1/2 29_1/2 53_1/2 53_1/6 53_0 
Bids Weaker Player 0.063 0.031 0.031 0.063 0.031 
Bids Stronger Player 0.125 0.031 0.063 0.125 0.031 
Revenues 0.094 0.031 0.031 0.063 0.031 

Two-sided Fisher-Pitman permutation tests. 
 

Table A5: Stronger vs weaker contestant bids 
 

200_1/2 29_1/2 53_1/2 53_1/6 53_0 
0.031 0.031 0.813 0.031 0.250 

Two-sided Fisher-Pitman permutation tests.  
 
 

 
Appendix B:  Instructions for Treatment 53_1/6  

 
Instructions for other treatments were identical except for the value of the cap and the probability of winning in case 
of a tie. 
 
GENERAL INSTRUCTIONS 

Thank you for participating in this experiment. Please read these instructions carefully. If you have any 
questions, or need assistance of any kind, raise your hand and an experimenter will come to you and answer your 
questions privately. Please do not ask anything aloud. It is very important that you remain silent and do not look at 
other people’s work. If you talk, laugh, exclaim out loud, etc., you will be asked to leave and you will not be paid. We 
expect and appreciate your cooperation. 

During this experiment you can earn a substantial amount of money. The currency used in the experiment is 
Talers. Talers will be converted to euros at a rate of _60_ Talers to _1_ euro. The earnings from all parts will be added 
to a participation fee of 15 euros. At the end of today’s experiment, you will be paid in private and in cash. 

There are 24 participants in today’s experiment. At this time we proceed to Part 1 of the experiment. 
 
INSTRUCTIONS FOR PART 1 
YOUR DECISION 

The first part of the experiment consists of 40 decision-making periods. At the beginning of the first period, 
you will be randomly assigned either as participant 1 or as participant 2. You will stay in the same role assignment 
for the first 20 periods and then change your role assignment for the last 20 periods of the experiment. Each period 
you will be randomly re-paired with another participant of opposite assignment to form a two-person group. So, if 
you are participant 1, each period you will be randomly re-paired with another participant 2. If you are participant 2, 
each period you will be randomly re-paired with another participant 1. You will not know the identity of the person 
you are matched with, and vice versa. 

Each period, you may bid for a reward. The reward is worth 180 Talers to participant 1 and 60 Talers to 
participant 2. You may bid any number between 0 and 53 Talers (including 0.1 decimal points). 
 
YOUR EARNINGS 

After both participants make their bids, the computer will assign the reward to a participant who makes 
the highest bid. So, for example, if participant 1 bids 30 Talers while participant 2 bids 30.1 Talers then the computer 
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will assign the reward to participant 2. In case of tie, the computer will assign the reward either to participant 1 or 
participant 2. The chance that the computer will assign the reward to participant 1 is 1 out of 6 (16.7% chance), while 
the chance that the computer will assign the reward to participant 2 is 5 out of 6 (83.3% chance). Therefore, in case 
of a tie, participant 2 is five times more likely to receive the reward than participant 1. 

Remember, the reward is worth 180 Talers to participant 1 and 60 Talers to participant 2. Regardless of who 
receives the reward, both participants will have to pay their bids. Thus, the period earnings will be calculated in the 
following way: 

If participant 1 receives the reward: 
  Participant 1’s earnings = 180 – Participant 1’s Bid 
  Participant 2’s earnings = 0 – Participant 2’s Bid 

If participant 2 receives the reward: 
  Participant 1’s earnings = 0 – Participant 1’s Bid 
  Participant 2’s earnings = 60 – Participant 2’s Bid 

Remember you have already received a 15.00 euro participation fee (equivalent to 600 Talers). Depending 
on the outcome in a given period, you may receive either positive or negative earnings. At the end of the experiment 
we will randomly select 2 out of the first 20 periods and 2 out of the last 20 periods of the experiment for actual 
payment. You will sum the total earnings for these two periods and convert them to a U.S. dollar payment. If the 
earnings are negative, we will subtract them from your participation fee. If the earnings are positive, we will add them 
to your participation fee. 

At the end of each period, your bid, the other participant’s bid, whether you received the reward or not, and 
your earnings for the period are reported on the outcome screen. Once the outcome screen is displayed you should 
record your results for the period on your Personal Record Sheet under the appropriate heading. 

 
IMPORTANT NOTES 

At the beginning of the first period, you will be randomly assigned either as participant 1 or as participant 2. 
You will stay in the same role assignment for the first 20 periods and then change your role assignment for the last 
20 periods of the experiment. Each period you will be randomly re-paired with another participant of opposite 
assignment to form a two-person group. So, if you are participant 1, each period you will be randomly re-paired with 
another participant 2. If you are participant 2, each period you will be randomly re-paired with another participant 1. 

Both participants will bid for a reward. The reward is worth 180 Talers to participant 1 and 60 Talers to 
participant 2. The computer will assign the reward to a participant who makes the highest bid. In case of tie, participant 
2 is five times more likely to receive the reward than participant 1. Regardless of who receives the reward, both 
participants will have to pay their bids. At the end of the experiment we will randomly select 2 out of the first 20 
periods and 2 out of the last 20 periods for actual payment using a bingo cage. You will sum the total earnings for 
these two periods and convert them to a U.S. dollar payment. 

Are there any questions? 
 
INSTRUCTIONS FOR PART 2 
YOUR DECISION 

In this part of the experiment we ask you to fill out a questionnaire. Although you will not be paid for this 
task, we ask you to pay careful attention to each question and answer each question honestly. The answers to these 
questions are completely anonymous and will be used only to analyze the data. 

Are there any questions? 
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