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Abstract

This thesis presents three major contributions for commercial aviation planning and disruption recovery in
commercial aviation. The first contribution presented in this thesis consists of a flight planning model
to calculate Block Time and Fuel (BTF) consumed for an aircraft model during the flight. The BTF
model computes the ground distance between the origin and destination airports, derives the flight’s
cruise altitude, and by integrating two institutional data sets calculates the duration and the fuel consumed
for the whole of taxi-out, take-off, climb, cruise, descent, approach, landing, and taxi-in phases. The
model renders very good results for block time and consumed fuel however, it does not consider aircraft
weight loss neither the influence of the wind. The second contribution of this thesis consists of a recovery
procedure for disrupted aircraft rotations, the Constructive Heuristic for the Aircraft Recovery Problem
(CHARP). The CHARP recovers the infeasible rotation combining a meta-heuristic that performs a
pincer movement over the search space and Constraint Programming (CP). Additionally, the CHARP
uses Constraint Propagation to reduce the size of the search therefore reducing computing. The initial
experiments demonstrated that if Constraint Propagation was not used computing time would double. The
recovery strategy included flight creation delays and cancellations however it did not include aircraft swap.
The third contribution of this thesis combines the BTF model and the CHARP. Since the BTF model
returns lower block time flights than those used by the CHARP this thesis investigates six disruption
scenarios with shorter block time.
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Chapter 1

Introduction and Overview

1.1 Background on Commercial Aviation Management

Commercial aviation started in the early twenty century and through its course made a remarkable
evolution. Aircraft became an efficient and safe means of transportation over long distances, and nowadays
the airline industry transports millions of customers around the globe, on business and on vacation. This
section provides a high-level overview of the procedures that airlines must implement and the challenges
they face to provide their service.

Airline planning is among others one of its most challenging problems. The objective is to determine
the optimal flight network that should be operated by the company in a certain time period in the future.
The commercial flight must serve with reasonable and sufficient satisfaction the passenger, so that he
will want to buy more. The flight planning stage involves researching the average demand between the
locations to better manage the flights and achieve profitability for the company.

In addition to forecasting the number of passengers, it is also necessary to determine the fleet that
best fits the demand. A fleet is a set of aircraft with different models, each of which suited for specific
flight ranges. The next step consists of developing the flight schedules. The latter are mapped out several
months in advance by the schedule planning teams. After which aircraft models are assigned for each
flight. This procedure is known as the Fleet Assignment Problem (FAP) (Hane et al., 1995), (Bélanger
et al., 2006), (Salazar-González, 2014).

When the schedule design and fleet assignment are determined, the flight network is decomposed into
sub-networks to each fleet. The next step consists in determining the aircraft rotation. This part of the
planning process specifies the route taken by each aircraft, given a set of flights that must be performed
with a certain type of fleet, with pre-specified locations, duration and maintenance frequencies (Clarke
et al., 1997).

Even though there are considerable number of resources allocated to develop accurate airline planning
there are also many factors that can make the airline industry low profitable. Commercial aviation is
characterised by high fixed operating and overhead costs. Considering the direct operating cost of a
given flight, in most civil aviation flights, three types of costs are present: fuel costs, time-dependent
costs, and fixed costs. Time-dependent costs include, among others, maintenance or flight crew related
costs. Fixed costs are independent of the time or fuel consumption such as landing fees or aircraft ground
handling. Therefore, not only fuel consumption but also time-related costs are considered when airlines
try to minimise their total operating cost.
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This relation is particularly important during the longest phase of the flight, where the aircraft flies at
cruise speed. As shown in figure 1.1, fuel and time-dependent costs vary as a function of the flight cruise
speed. Aircraft operators have to trade-off between the amount of fuel consumed and the time needed to
fly a certain route.

Fig. 1.1 Aircraft operating costs as a function of the cruise speed (source (Delgado and Prats, 2011)).

To comply with the airline policy regarding its operating costs, aircraft equipped with flight man-
agement systems use the Cost Index (CI) parameter when optimising their flight trajectories. The CI
expresses the ratio between the cost of the flight time and the cost of fuel (Boeing, 2007).

Thus, a CI set to zero means that the cost of the fuel is infinitely higher than the cost of time and the
aircraft will fly at the speed which minimises the fuel consumed per unit of distance flown: the Maximum
Range Cruise (MRC), figure 1.1. The maximum value of the CI gives priority to the flight time, regardless
of the fuel needed. In this case, and in accordance with the manufacturer safety margins, the aircraft
will fly at the maximum operating speed. By choosing and introducing the CI in the flight management
computer, the pilot is changing the ratio of cost between fuel and time and, therefore, is determining the
speed that minimises the total cost. This speed is called the Economic Speed (ECON).

According to figure 1.1 flying below or above ECON will cause an increase of total costs. For low
speed the fuel savings will not compensate the inevitable higher time costs and vice versa for higher speed.
However, ECON depends significantly of the flight conditions (fuel cost curve is dependent on the gross
weight of the aircraft, assigned Flight Level (FL), air temperature as well as wind conditions), hence the
relation between speed and operating costs is more complex.

The objective of commercial aviation is to operate flights according to a schedule, in order to maximise
their profits. Therefore, airlines generally create tight schedules in order to increase their profitability.
These tight schedules, have a minimum slack between flights legs, because airlines rely on the assumption
that the flight legs will be operated as planned. However, this process is in many occasions subject to
deviations that can complicate the execution of the planned flight schedule.
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1.2 Background on Commercial Aviation Disruption

A significant number of factors, such as mechanical failures, crew delays, problems with ground operations,
industrial action, inclement weather, congestion at airports, cause disruptions such as flight delays or
cancellations. A disruption is a situation that is likely to appear unexpectedly during the time an operation
is executed in which its impact is large enough to urge planners to revise the original operation. In other
words, disruption makes the initial flight schedule become inefficient in the sense that it cannot deliver
a passenger’s itinerary. Financial results in the aviation industry have been mixed. According to the
(Airlines of America, 2022), between 1990 and 1993, the world industry lost a total of 20.3 billion dollars,
consequence of the Gulf War and the ensuing economic recession. However, in the period between 1995
and 1999, industry profits reached about 35 billion. In the first decade of the twenty first century only in
2006, 2007 and 2010 the results were positive and between 2001 and 2005 the losses amounted to 41,5
billion dollars.

Events such as 9/11, the financial crisis of 2007-2010 and fuel price increase have led to the accumu-
lation of losses. According to recent information, during 2015 the performance of commercial aviation
was influenced by weather, mainly snowfall at the start of 2015, industrial action within airlines such as
Lufthansa and Norwegian, as well as air traffic control disruptions mainly in France, gave origin to peaks
in operational cancellations of planned flights. Likewise, similar causes have also resulted in delays in the
US. Fig. 1.2 shows the leading causes of flight delays by the share of total delay minutes in the US from
2004 to 2019. The statistic shows the leading cause of flight delays by the share of total delay minutes in
the U.S. from 2004 to 2019. In 2019, the leading cause of flight delays was late aircraft arrival which
accounted for 39.7% of the total delay minutes.

Fig. 1.2 Share of total minutes flights were delayed in the US from 2004 to 2019, by cause (source
(Statista, 2021)).

More recently in the year 2020 the airline industry had 139.1 billion dollars in net losses (Airlines of
America, 2022), due to the disruptive events related with the COVID-19 pandemic. Figure 1.3 depicts
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the economic performance for the years 2019 and 2020, grouped by geographical areas (IATA, 2020)
(IATA, 2019). The suffix ’E’ and ’F’ in the column names stand for ’Expected’ and ’Forecast’. Revenue
Passenger Kilometres (RPK) is an airline industry metric calculated multiplying the number of paying
passengers by the distance travelled. Available Seat Kilometres (ASK) is a measure of an airline’s carrying
capacity to generate revenue, taken from multiplying the available seats on any given aircraft by the
number of kilometres flown on a given flight. The load factor is an indicator that measures the percentage
of available seating capacity that is filled with passengers. Net post-tax profit per passenger, revenue, RPK,
ASK and the load factor decreased between 2019 and 2020. Consequently, the break-even load factor
had to increase to face the losses. As demonstrated in figure 1.3 the events related with the COVID-19
pandemic were unable to be forecast in 2019 (column 2020F).

In commercial aviation, the airline schedule represents the central element of planning (Grosche, 2009).
If airline companies cannot deliver on time the passenger itinerary, they are liable to pay compensation
for the resulting passenger inconvenience. This outcome has a negative financial impact on an airline. It
thus becomes of the most importance to resume normal operations as quickly as possible. The process
of monitoring and allocating resources near the day of operations to bring operations back on schedule
as rapidly as possible, while incurring minimal costs is designated Disruption Management (DM) (Kohl
et al., 2007).

In conclusion, in case of disruptions to the planned flight schedule, a flight schedule must be determined
for a period of time designated by recovery period, and an effective solution must be found to minimise
the resulting costs and the potential impacts to passengers.

1.3 Current Approaches on Disruption Recovery

This section introduces the relation cause effect between disruption in commercial aviation and recovery
methods commonly used to resume normal activity.

(Leung, 2004), mentions that disruption management is a process that requires the ability to dynami-
cally revise the original schedules to suit the newly changed operational environment.

Delay is a critical indicator to evaluate schedule performance. Generally, the delays can be specified
into two parts, namely, the primary delay (also called non-propagated or independent delay) and Propagated
Delay (PD). Thus, many studies focused on robust schedule via delay or PD minimisation.

(AhmadBeygi et al., 2008) investigates the relation between schedule planning and delay propagation.
The data source used is the Bureau of Transportation Statistics (BTS) to measure the propagation of a
single flight delay through the entire network. The modelling consists of a network of resources used
during the flight (e.g. cockpit crew and aircraft). The work of (AhmadBeygi et al., 2008) uses a set of Key
Performance Indicators (KPI) to measure the effects of a root delay in the network:

1. PD: The sum of the delays (in minutes) imposed on downstream flights by an initial root delay in a
propagation tree.

2. Magnitude: The ratio of PD to root delay.

3. Severity: The number of disrupted flights, excluding the root flight itself.

4. Depth: The number of nodes in the longest path in a propagation tree, not counting the root delay.

5. Depth ratio: The ratio of depth to severity in a propagation tree.
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Fig. 1.3 Economic performance of the airline industry for 2019 and 2020 (source (IATA, 2020) (IATA,
2019)).

6. Stay: The number of nodes (disrupted flights) in which the crew and the aircraft are the same as in
the preceding node.

7. Crew-out: The number of nodes (disrupted flights) in which the crew is not the same as the preceding
node, because the crew in the preceding node has ended their pairing.
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8. Split: The number of nodes (disrupted flights) in which either the crew or the aircraft is not the
same as the preceding flight, because these resources split to serve two different subsequent flights.

9. Split ratio: The ratio of split to severity in a propagation tree.

The case study used in (AhmadBeygi et al., 2008) involves creating delays that last between 15 to
180 minutes in increments of 15 minutes and constructing the propagation tree. The comparison using
the KPI are made between hub-and-spoke carrier and point-to-point carrier. The authors conclude that in
terms of delay propagation the consequences are more extended if the root flight delay is earlier, because
there are more opportunities for delay. Delay can be eliminated by the end of the day, due to overnight
break, but some flight delays do propagate overnight, because the crews have short overnight rest periods
forcing them to delay their first flight the next day. The delay propagation has significant difference when
factoring by departure time of the day, with severity, depth, and magnitude decreasing as the origin time
of the root flight increases later into the day. Considering the latter, (AhmadBeygi et al., 2008) concluded
that a disrupted flight early in the day will benefit more substantially from increased slack to absorb
disruption than will a flight disrupted later in the day.

The work of (Gopalakrishnan et al., 2016) provides an approach to analyse a set of networks consisting
of airports connected by flight delays in order to identify characteristic delay states and characteristic
types of day that take into account both spatial and temporal patterns and connectivity. The state of the
air transportation network is represented as a weighted directed graph in which the nodes represent the
airports, and the weight of the edges consists of the delays experienced between the origin airport and the
destination airport. The study uses a set of algorithms to determine clusters of traffic delay in the network,
and to determine sequences of delays. These patterns of delay are evaluated using eigenvector centralities
and the hub and authority scores of different nodes. The paper also covers the grouping of airports based
on their closeness in terms of delay state. To model the problem, (Gopalakrishnan et al., 2016) first build a
set of networks using the BTS as the data source. The data was collected for a period of two years, and the
set of networks was built using the hourly delay as the weight for the edges. The total number of networks
for the two year period is:

731 days × 24 hours = 17,544 networks

To reduce complexity in comparing networks the authors chose to study features that represent the
nodes namely integrated in-degree and out-degree, eigenvector centralities, and the hub and authority
scores of nodes to evaluate the similarity between nodes. Eigenvector centrality identifies which nodes
have a wide-reaching influence within a given network. Hub and spoke authority scores reflect the
connectivity and the propensity for delay to propagate into and out of a node in a network. This score
is based on the links made to a specific node from other nodes, therefore the authors of this work chose
the importance of a node in the network would be given by eigenvector centrality. The process used to
compare two networks uses the Euclidean distance to measure similarities between their feature vectors.
K-means and k-medoids algorithms were used to determine clusters of similar graphs. Gopalakrishnan
et al. 2016 conclude that spatial and time series patterns obtained can be used to develop predictive models
of air traffic network delays that can result in advancements in decision support for stakeholders and air
traffic managers.
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Most researchers choose string-based networks to model PD because delay propagates along the
routes. (Liang et al., 2015) present an accurate computation of the Expected Propagated Delay (EPD) of a
string. Because computing the EPD of a string could be time-consuming, they use a tight lower bound
for estimating the EPD and propose a two-stage column generation method that makes use of the lower
bound to speed up the solution process. Large test cases with more than 6000 flights per week can be
solved within 3 hours.

Instead of minimising EPD, (Yan and Kung, 2018) sought to minimise the maximal possible PD.
When flight leg delays lie in a pre-specified uncertainty set, using a robust optimisation approach, they
propose an exact decomposition solution approach under a column-and-row generation framework. Their
approach is reported to outperform the local approach provided by (Dunbar et al., 2014) by reducing both
mean and extreme total PD.

As aforementioned, many studies on disruption recovery are based on the string-based network.
However, because of the large number of possible connections, enumerating all feasible strings is
impractical. The column generation framework has been proven efficient and effective for such problems
with a huge number of strings. Other methods, such as Branch and Bound (BaB), Lagrangian Relaxation
(LR), Benders Decomposition (BD), etc. are also proposed to solve different models.

Another important approach to mitigate the effects of disruption that has gained attention from the
scientific community consists in changing cruise speed. In the work (Marla et al., 2017) the authors
explore the trade-off between delays and fuel burn. This work makes use of the CI for a flight to capture
both the flight time and fuel burn. In terms of the applied concept, it explores two alternatives, the first
consisting in flight speed changes to reduce the travel time, and the second consisting in combining flight
speed changes with holding strategies to preserve passenger connections. Using an airline disruption
management simulator the authors evaluated, for each possible flight speed, the trade-off between the fuel
cost versus passenger-related delay costs to the airline. The authors used JetPlan™, a flight planning tool
developed by Jeppesen Commercial and Military Aviation™.

1.4 Aims and Objectives

Flight planning is the basis of airline scheduling and there are many publications that model specific
parts of the flight e.g. ground and air movements. Since flight planning studies are focused in specific
flight phases there are no scientific models that integrate each flight phase from gate to gate. Additionally,
each of the data sets are difficult to obtain, modelling is complex, and most importantly and obviously
companies do not share their core business knowledge base.

Modelling airline disruption even in the simplest form, is an arduous task, that requires a deep
understanding of the data sets, parameters and decision variables that are involved in the process, namely
those related to flight routes, aircraft specifications, airport capacity and passenger itineraries. Moreover,
it is also important to have access to data that can be used to simulate the occurrence of disruptions such as
flight delays, airport capacity decrease and aircraft availability shortage. Due to its complexity, from the
perspective of computer science, finding solutions for this type of problem is quite challenging. Recover
aircraft rotations is designated as the Aircraft Recovery Problem (ARP) and it implies finding solutions
that comply with a set of constraints, namely flight continuity, transit or turn-round time, maintenance, and
airport capacity. In its essence the ARP is a Constraint Satisfaction Problem (CSP). CSPs are commonly
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tackled using an approach that formulates the problem and systematically employs deductive reasoning to
reduce the search space. This method is designated by CP.

Considering the nonexistence of a comprehensive flight planning model, and CP formulation for the
ARP, exposed in the previous paragraphs one should question:

1. Could it be possible to develop a flight planning model that combines all phases of a flight? Calculate
block time and the fuel consumed by an aircraft on a flight from the origin gate to the destination
gate airport in a matter of seconds? Even though this modelling is to be made in a chaotic system
such as Earth’s atmosphere, one can actually combine statistical data and answer these questions.

2. Is it possible to create a disruption recovery procedure based on CP?

3. Moreover, in the presence of disruption, is it possible to mitigate or recover its effects by speeding
up flights?

This PhD dissertation answers these questions by:

1. Developing the BTF model, designed for flight planning, in Chapter 3. The contributions are
aggregating all the flight phases, calculating the time taken for a flight between the departure and
the arrival gate, and calculating the fuel consumed by the aircraft.

2. Developing the Constructive Heuristic for the Aircraft Recovery Problem (CHARP) based in CP, in
Chapter 4. The novelty of this contribution consists of an algorithm that can find feasible solutions
using constraint propagation to reduce the search space and therefore reduce computing time (Vilain
and Kautz, 1986), (Demassey et al., 2005).

3. Merging the BTF, which decreases the the initial block time, with the CHARP, in Chapter 5. The
contribution is to determine the disruption scenarios for which smaller block times render lower
cost recovery.

1.5 Summary of the Thesis

Chapter 2: Literature Review

Chapter 2 is divided in six sections. Section 2.1 provides a review of relevant work done regarding flight
planning, in particular the methods and techniques to model flight trajectory and flight phases using
institutional data. Section 2.2 presents examples of real-world situations solved efficiently using CP
models, Section 2.3 reviews the methods to recover disrupted aircraft rotations, Section 2.4 extends the
latter topic by including in the disruption model the Crew Recovery Problem (CRP) and the Passenger
Recovery Problem (PRP). Section 2.5 reviews the publications that investigate the general benefits of
flight speed changes to save fuel, manage flight time, and as a mean for flight disruption recovery. Section
2.6 summarises the literature review on these topics and areas of further research.

Chapter 3: The Block Time and Fuel Model

Chapter 3 is divided in five sections. Section 3.1 introduces the topic, Section 3.2 describes the flight
phases, Section 3.3 describes the BTF model, Section 3.4 presents the results and finally Section 3.5 draws
the conclusions and future work.
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Chapter 4: The Constructive Heuristic for the Aircraft Recovery Problem

Chapter 4 introduces the ARP model and the method that is used to find solutions, Section 4.2 describes the
ARP model, its parameters and formulation, Section 4.3 describes the constraint programming concepts
that will be used to find solutions for the ARP, Section 4.4 provides a detailed overview of the algorithms
and the workflow of the CHARP, Section 4.5 presents the computational results for different scenarios and
compares them with published work. Section 4.6 makes an extensive comparison regarding the solution
methods, disruptions, recovery actions and problem characteristics, between published literature on the
ARP and the CHARP. Finally, Section 4.7 presents the conclusions and future work.

Chapter 5: The Impact of Smaller Block Times in Disruption Recovery

Chapter 5 presents the inclusion of the BTF results in the data set that is used by the CHARP. Section
5.2 compares block time differences between the BTF and the data set for westbound and eastbound
flights. Section 5.3 presents the CHARP results using smaller block time flights for three distinct scenarios.
Section 5.4 studies the effects of smaller block times for six different disruption scenarios. Finally, Section
5.5 presents the conclusions and future work.

Chapter 6: Contributions and Future Work

Chapter 6 summarises all models developed and the methods that were used to solve them, highlighting
first and foremost the contributions of this thesis. Additionally, this section makes use of critical thinking
to expose some of the limitations of the models proposed.





Chapter 2

Literature Review

This chapter is entirely devoted to analysing published scientific papers related with the topics of research
of this thesis. Whilst doing this literature review, it should be clear that the use of the expression "the
authors" addresses the specific paper under consideration.

Flight planning is the process that intends to describe a proposed aircraft flight. It involves safety-
critical aspects such as fuel calculation, to ensure that the aircraft can safely to the destination, along an
optimised trajectory. Section 2.1 makes an extensive overview of flight trajectory modelling namely in
Subsection 2.1.1 studies fuel consumption, 4D trajectories, and optimisation methods. Flight planning
aims at reducing fuel consumption, environmental impact and mitigate risks of aircraft collision or
crashing. Subsection 2.1.2 reviews the studies that have evaluated the benefits of continuous or optimised
profile descents and climbs. In general terms, these works are based on flight paths obtained from airspace
control agencies. These flight paths and other flight information are then used in conjunction with an
aircraft performance model, such as Eurocontrol’s Base of Aircraft Data (BADA) (EUROCONTROL,
2014) to estimate fuel consumption and the flight altitude profile. BADA is an aircraft performance model
which is based on the total energy model of the aircraft and can be considered as a reduced point-mass
model and it also provides data sets for flight modelling based of the aircraft. By the end of Section 2.1
the reader should be familiarised with the flight phases, numerical methods, and algorithms to model
flight trajectories, consumed fuel, and pollutant emissions during a flight.

Commercial aviation industry is quite diversified and heavily regulated. Several problems such as
scheduling and sequencing are CSP and are typically solved using a form of search. CP is a powerful
technique for solving these problems. CP was developed by the artificial intelligence community in the
late 1980s (Jaffar and Lassez, 1987) and (Jaffar and Maher, 1994), (Van Hentenryck, 1989). Currently, it
successfully solves many decision problems and optimisation problems. However, it is often inaccessible
to users without expert knowledge in the area, excluding the wide-spread use of CP techniques. These
techniques combine search algorithms with Constraint Propagation (CPr) to try to find good solutions
quickly without testing each possible combination of variable assignments. Some approaches are system-
atic and guaranteed to produce an optimal solution while others give up optimality in an effort to find
near-optimal solutions faster. Section 2.2 reviews the CP models used to solve commercial aviation related
problems and by the end of it one should be clued in with its potential for solving complex problems in
commercial aviation.

A considerable number of factors, such as mechanical failures, crew delays, problems with ground
operations, industrial action, inclement weather, congestion at airports can cause disruptions such as flight
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delays or cancellations. As a result, the initial rotation becomes inefficient in the sense that flights must be
delayed or cancelled. Since airline companies are liable to pay compensation for the resulting passenger
inconvenience in these situations which in turns leads to a negative financial impact on an airline’s profits.
It thus becomes of the utmost importance to resume normal operations as quickly as possible. Section 2.3
presents some of the relevant literature in aircraft recovery classified according to the methods used to
find solutions for the ARP. Even though the topic of this dissertation does not cover integrated recovery
Section 2.4 reviews the topic since it also covers the methods to find solutions for the ARP.

Flight speed changes is the concept of adjusting the block time of a flight. For example, if a
flight’s departure is delayed by five minutes due to industrial action, the delay can be mitigated by a
subsequent flight speed change decision that decreases the block time. On the other hand, if the Air Traffic
Management (ATM) informs in advance that the aircraft will be on hold before landing the pilot can adjust
the cruise speed to allow the aircraft to fly slower with the same or lower fuel consumption in the original
flight. Therefore, flight times are increased, and the holding delay can be partially performed in the air, at
no extra fuel cost for the operator. Section 2.5 verses about the benefits of flight speed changes on aircraft
fuel consumption, and in the block time as a means of recovery of disrupted flights.

2.1 Flight Planning

This section outlines pertaining flight trajectory modelling and the use of BADA.

2.1.1 Flight Trajectory Modelling

In one of the initial studies that modelled the trajectory for fuel consumption optimisation, (Neuman
and Kreindler, 1985) created an algorithm capable of calculating the minimum fuel consumption during
the climb phase from 2,000 feet to 10,000 feet for long-haul flights (6 to 12 hours of flight). (Neuman
and Kreindler, 1985) derived a system of dynamic equations considering small angles of attack and
trajectory, coordinated turns, absence of atmospheric winds, and also assumed that the weight of the
aircraft remained constant. Approach altitude is considered above 2,000 feet and climb, approach and
landing speeds are set for a commercial jet airliner. The authors concluded that the trajectories combined
with latero-directional and longitudinal flight were optimal in terms of fuel consumption when there was
little variation in altitude. Finally, the authors concluded that the amount of fuel that can be optimised
during the climb and descent phase in the terminal area of the flight is small compared to the fuel spent
during the cruise phase, nevertheless it is important to have these costs in account in flight planning.

Moreover, (Grimm et al., 1986) sought to quantify the importance of the change in the aircraft
weight of the aircraft due to fuel consumption by developing a model that took into account two different
approaches: the first assuming the aircraft has constant weight, and the second considering weight decrease
as fuel is consumed. The authors used the Direct Multiple Shooting Method (DMSM). This method,
which is used for optimising boundary constraints only in the state domain, consists basically of dividing
the range at which solutions are searched into several smaller ranges. Because it is quite iterative, DMSM
becomes heavy for processing systems such as 4D path optimisation problems.
In order to design an optimal trajectory for a commercial aircraft, taking into account realistic constraints
along the trajectory, (Betts and Cramer, 1995) applied the direct transcription method. The goal was to
achieve results that met civil aviation safety standards. In order to interpolate the points in the dataset



2.1 Flight Planning 13

and guarantee smoothness at the data points, aircraft aerodynamics and propulsion data were processed
using a cubic spline product tensor. Cubic spline interpolants are continuous in the zeroth through
second derivatives and pass through all the data points, therefore becoming the choice to model the
aircraft’s equations of motion. This procedure was investigated for two different approaches through data
interpolation and least squares taking into account the turning restrictions. This method may be fast due
to the approach by cubic splines, but this is only an approximation and for a more accurate approach the
need for continuous derivation can complicate the results.

Also, in the context of of 4D trajectories optimisation, Hagelauer and Mora-Camino (1998) conducted
a study, in which they presented a method based on Dynamic Programming (DP), in the presence of
various time constraints. A discrete formulation of the problem was proposed, and the optimisation
problem was solved using a progressive DP framework. Processing time was decreased using neural
networks to calculate the costs associated with each decision step in the search process. In this study, a
two layer neural network has been found to be sufficient to provide good fuel flow approximations. In
order to reduce the computation time of the simulated neural network, the classical sigmoid activation
function has been replaced by 2.1:

f (x) =
x

|x|+1
(2.1)

This method was called Soft Dynamic Programming (SDP). Comparing this method with the one,
described in the previous paragraph, the authors concluded that the use of neural networks to calculate
fuel consumption in each decision step reduced by 88.2% the time spent processing.

More recent work (Franco et al., 2010), based on (Neuman and Kreindler, 1985), consisted of analysing
the cruise fuel minimisation problem for a fixed altitude and arrival time as a simple optimisation problem.
The objective of this work was to verify the influence of cruising altitude in the calculation of optimal
trajectories, calculating the minimum fuel required. Results were presented for a Boeing 767-300ER.
The authors concluded that for higher altitude cruise levels, there is little influence on the Mach number
variation with the aircraft weight. In fact, the highest fuel consumption optimisation rates are obtained at
higher altitudes.

The flight phases in which an aircraft consumes more fuel are undoubtedly the climb and cruise.
(Turgut and Rosen, 2012) studied the relationship between fuel consumption and altitude variation during
the descent phase for a commercial transport aircraft. To find approximate solutions, the authors used a
Genetic Algorithm (GA) composed of five modules, figure 2.1.

The first module includes features includes the population, iteration, crossover and mutation ratios
and accuracy degree. Small intervals of variables are investigated for a wide range of data, which are
obtained for real flight conditions from the flight data records. In the second module, the genomes are
ranked to the values of the actual count of each genome. At the end of this task, the genomes that have a
zero value of actual counts are replaced by genomes which have a maximum actual count. Modules three
and four involve codes that perform the tasks of crossover and mutation. In the fifth module, the outputs
of the first iteration are recorded in a data set. The output having the best solution in terms of objective
function is also recorded on another data set with the values for variables along with the results from the
iterations. Within the modules, auxiliary tasks are also conducted, such as routines for checking the proper
performance of crossover and mutation and to prevent the loss of the best output from the population after
the tasks of crossover and mutation. After analysing the results, the authors concluded that the optimum
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Fig. 2.1 Genetic algorithm proposed by (Turgut and Rosen, 2012)

fuel consumption values occur when, during descent, the aircraft is kept as long as possible at higher
altitudes.

The work of (Murrieta-Mendoza et al., 2017) optimises the fuel burn of the vertical profile of a
commercial aircraft. The airspace was modelled under the form of a unidirectional graph. The selection
of waypoints where to execute the changes in altitudes that provided the most economical flight cost in
terms of fuel burn was determined using the Particle Sworm Optimisation (PSO) algorithm. To compute
the flight cost the flight trajectory is divided in equidistant segments of 20 nautical miles. The authors
claim that by doing so it is possible to achieve a good compromise between accuracy and computation
time. At the beginning of each segment the model subtracts to the aircraft’s gross weight the fuel burned
required to travel the previous segment; the ground speed is computed considering the wind speed, wind
direction and temperature; linear interpolations are executed to compute the fuel flow or the fuel burn
and the horizontal travelled distance. Fuel burn was computed in two different ways depending on the
cruise regime: steady altitude or change of altitude. The total fuel burn is calculated by aggregating all the
segments taking into account, if necessary, the change of altitude cost. Aviation products from specialised
numerical weather prediction predict the evolution of weather elements that can affect aircraft in flight,
such as turbulence and icing (ice accumulation on aircraft), therefore the weather forecast was introduced
in the model using Environment Canada. The trajectories provided by the algorithm developed in this
paper were compared against simple geodesic trajectories to validate its optimisation potential, and against
as flown trajectories. The authors claim that the results have showed that up to 6.5% of fuel burn can be
saved comparing against simple trajectories, and up to 3.1% was optimised comparing against as flown
trajectories.

In the work of (Hartjes et al., 2018) a tool is developed that optimises the trajectories of multiple
airliners that seek to join in formation to minimise overall fuel consumption or direct operating cost. When
in formation, a discount factor is applied to simulate reduction in the induced drag of the trailing aircraft.
Using the developed tool, a case study has been conducted pertaining to the assembly of two-aircraft
formation flights across the North-Atlantic, nevertheless information regarding aircraft distance between
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them was not provided.
The authors mention that the results of the various numerical experiments show that formation flight can
lead to significant reductions in fuel consumption compared to flying solo, even when the original trip
times are maintained and that the performance and the characteristics of the flight formation mission -
notably the location of rendezvous and splitting points - are affected when one aircraft seeking to join the
formation suffers a departure delay.

A fuel flow rate model was developed in (Oruc and Baklacioglu, 2020) using flight altitude, True
Air Speed (TAS) and fuel flow rate values obtained from B737-800 type passenger aircraft Flight Data
Records (FDRs). In the model, fuel flow rate is achieved as a function of altitude and TAS. The fuel flow
rate model uses a Cuckoo Search Algorithm (CSA) for the climbing phase of the flight. The CSA used in
this study uses a combination of local and global search. The authors claim that this approach increases
search richness and versatility while using Lévy flights makes the search area more efficient.

The European current political agenda includes two programmes to improve safety, environmental, and
efficiency indicators, SESAR 2020 and Clean Sky 2, respectively. One of the ways to reduce the negative
impact of air transport on the environment and improve its efficiency is to reduce fuel consumption and
pollutants emissions resulting from fuel combustion. (Pawlak et al., 2021) focused their work in the cruise
phase when aircraft flies at a constant altitude with a constant air speed. The result of the analysis was the
development of methodology for fuel consumption and emission of main pollutants in cruise conditions.
The model calculates fuel consumption for the thrust required for horizontal flight at cruising altitude.
The procedure consists of four steps. The first consists in determining the performance parameters of
the aircraft engines for a given altitude and cruising speed. The second calculates the emission indexes
of CO, NOx, HC, and CO2 for the cruise phase of flight. The third calculates the emission intensity for
the aforementioned pollutants. Finally, in the fourth step the model computes the fuel consumed. The
research was carried out for two flight variants — a route from Rome to Athens and a route from Athens to
Rome. These routes have between 7 to 8 daily flights departing from Rome and landing in Athens airport,
and vice versa, (Flightaware, 2022). Each flight will emit between 69 to 115 Kg of CO2 per passenger
(Google, 2022). Therefore, modelling these route’s trajectory will potentially drive the reduction of daily
CO2 emissions. In both cases, this work assumes identical meteorological conditions for this geographical
area, however the direction of the wind on the aircraft was symmetric. To determine the shortest path
the authors used Dijkstra’s algorithm. The model uses a network where the distances between vertices
are the graph edges. The weights of the graph edges were determined based on wind parameters (wind
speed and direction). Each edge weight corresponded to the time needed to pass over a given edge length.
The Boeing 737-300 aircraft was selected to conduct the research. During the research, different flight
trajectories were determined to minimise pollutant emissions. The authors conclude that the trajectory
optimisation has a significant impact on the reduction of pollutants emission in the jet engines exhausts.
Emission depends directly on the engine’s run time, and the shorter the run time (shorter flight duration),
the lower the emission.

2.1.2 Flight Modelling Using BADA

In the work of (Melby and Mayer, 2008), the authors analysed trajectory data at 34 US airports in one day
focusing on the continuity of vertical flight profiles at air terminals and the benefits that could be achieved
by implementing vertical orientation Performance Based Navigation (PBS) procedures. For this, they
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applied a metric that considers the time in level flight during the descent or ascent to the trajectories. The
time in level flight metric evaluated the time selected departure operations required to climb through 100 ft
of altitude. Similarly, the metric evaluated the average time selected arrival operations required to descend
through 100 ft of altitude. Fuel consumption estimates were made with the BADA based model. The
results show that operators could save 380 million dollars annually and associated reductions in carbon
dioxide emission gases of 850,000 metric tons with more efficient descent and climb profiles.

To estimate the benefits of continuous descents in congested airspace (Robinson III and Kamgarpour,
2010), developed a model that built trajectories from flight plans at 8 air terminals in the US over a period
of thirty to sixty days (depending on the airport). The descent phase flight segments were identified, and
two types of continuous descent trajectories were modelled. In the first, level flight segments were moved
to higher altitudes and a distance-only constraint was applied to simulate non-congested airspace. In the
second, the level flight segments were also moved to higher altitudes, but now with a time constraint, to
simulate congested airspace. BADA was used in this work as well, and the results show that potential
savings are sensitive to the size and diversity of traffic analysed (e.g. number of days, flights, aircraft mix,
etc.). The authors mention that in general, the mean fuel savings per flight is between 20% to 80% greater
than the median fuel savings for the same traffic sample. One cause of the disparity between the mean
and median values is that fuel flow rates vary by aircraft type. For example, fuel flow rates for aircraft
of the super-heavy and heavy weight-classes are 2 to 4 times larger than those of aircraft of the large
weight-class, and more than eight times larger than those of regional and business jets. Thus, whereas
aircraft of the super-heavy and heavy weight-class represent approximately 8% of all operations, they
account for approximately 22% of the potential fuel savings.

In (Knorr et al., 2011), in addition to continuous descents, cruising speed reductions are exploited to
absorb delays. This is encouraged by the fact that much of the extra fuel consumed is related to aircraft
sequencing problems at the terminal. The authors’ methodology was based on four principles: the first
consisting of supporting the analysis of a large number of flights, without detailed wind or aircraft weight
data. The second consisting of the use of surveillance data for position information. The third consisting
of the use of BADA table for aircraft performance information, and the fourth consisting of the potential
benefit expressed in terms of time and fuel. The results show that the potential for improvement at the
terminals averages 3 minutes per flight or 100 kg of fuel. Reductions in cruising speed can save up to 30%
of total extra fuel, compared to optimal trajectory.

Using similar techniques, (Howell and Dean, 2017) assesses the impact of the Federal Aviation
Administration (FAA) initiatives on the US flight efficiency during the descent phase. For this purpose,
flight path data was collected between the years 2010 and 2015. Potential fuel savings were calculated for
each flight, identifying FL segments in the descent phase, and comparing the total fuel burned on each
FL segment with the total fuel that would have been burned if all these FL segments were moved to the
cruise phase. The calculation for potential time savings followed the same method. BADA was used for
aircraft fuel consumption estimates. The results show that there has been a significant improvement in
fuel efficiency, especially in places where optimized profile descents have been adopted.

The previous studies concentrate in the CCD phases, however aircraft surface movements in airports
have also been the focus of research. (Khadilkar and Balakrishnan, 2012) built a model that, given the
taxi trajectory (for example, from a surface surveillance system), can estimate the resultant fuel burn from
observations of the aircraft’s position, velocity and acceleration during taxiing. The authors used the flight
data recorder (FDR) measurements of key aircraft parameters. FDR archives belonging to an international
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airline, from over 2300 flights in the year 2004, were used in this study and introduced into two linear
models for estimation of the taxi-out fuel burn. The first model is based on an initial hypothesis consisting
of the total fuel burn on the ground would be a function of the taxi time, number of stops and number
of turns made by the aircraft. The second incorporates lessons learned from the first model namely, that
other factors might be more important determinants of fuel burn. The authors removed the number of
stops and the number of turns from the regression, and instead added the number of acceleration events as
an independent variable. The logic behind this decision was that fuel flow rates were seen to increase
for aggressive starts from standstill, as opposed to gradual ones. The parameters of both models were
calculated using least-squares regression. According to the authors, taxi time is the main driver of fuel
consumption. Their work presented an accurate estimate of the fuel burn index 1 and, proved that a good
estimate of the fuel consumption of a surface trajectory can be obtained using just the taxi time.

In (Ravizza et al., 2013) the authors have developed a prediction model that combines both airport
layout and historic taxi time information within a multiple linear regression analysis, identifying the
most relevant factors affecting the variability of taxi times for both arrivals and departures. The two
main applications for this research are for total taxi time prediction and for use in a ground movement
decision support system. The authors use multiple linear regression to find a function which could more
accurately predict the taxi times than existing methods and concluded that the average speed between the
gate and runway (and between the runway and gate) was found to be highly correlated to the taxi distance,
with higher speeds being expected for longer distances. Arrivals had higher taxi speeds than departures,
due to departure queues at the runway, and the quantity of traffic at the airport was also found to have a
significant impact upon the average taxi speed, as identified by several variables in the resulting model.
During taxiing the authors also concluded that turning angle and the operating mode (which runways
were in use) were also highly correlated to the average taxi speed. (Ravizza et al., 2014) uses the same
explanatory variables and shows an extensive analysis of different regression approaches for predicting
taxi times at airports to demonstrate the performance of each. Six different approaches were analysed
in detail: multiple linear regression, least median squared linear regression, support vector regression,
M5 model trees, Mamdani fuzzy rule-based systems and Takagi-Sugeno-Kang (TSK) fuzzy rule-based
systems.

In (Chen et al., 2016) the authors present a new active routing (AR) framework to model fuel
consumption, with the aim of providing a more realistic, cost-effective, and environmentally friendly
surface movement. The paper focuses on optimal speed profile generation using a physics-based aircraft
movement model. The two modelling approaches were based respectively in BADA and in the ICAO
engine emissions database. The authors tested the model for Manchester International Airport and
concluded that the results reveal an apparent trade-off between fuel burn and taxi times irrespective of
fuel consumption modelling approaches.

The aim of (Gardi et al., 2016) is to review the current scientific knowledge regarding the optimisation
of transport aircraft flight trajectories with respect to multiple and typically conflicting objectives arising
from the inclusion of multiple environmental and operational criteria, and to deduce or infer all the
useful notions for the development of algorithms that are specifically conceived for the implementation in
novel Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics
(CNS+A) systems. The Multi-Objective Trajectory (MOTO) model proposed in this work consists of
an optimisation process split between control inputs and state variables. From these two the authors

1The authors defined fuel burn index in [kg/(s
√

Tamb)]
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establish a network of relations between the aircraft’s engine thrust, fuel consumption, dynamics models
and the atmosphere. These relations return the inputs for the emissions, noise and contrail models, which
will return the values for the output and state variables. The authors conclude that MOTO algorithms
have a clear potential to enable real-time planning and re-planning of more environmentally efficient and
economically viable flight routes by simultaneously addressing the dynamic nature of both weather and
air traffic conditions.

There are several approaches regarding fuel burn estimations and in order to compare them the work
of (Enea et al., 2017) summarises the collaboration between researchers from several globally recognised
institutions to address the question of fidelity of fuel estimation. Interviews were conducted initially to
categorise common elements that typical ATM studies share. An international team of fuel modellers was
assembled and participated by running their models on a common set of inputs. The outputs generated
by these models, were categorised using metrics on empirical trajectories and other operational data,
including predicted fuel burn. The set of flights analysed for this study was recorded in June 2015 from
various airports in the US. The sample included flights with variable length, different origin-destination
pairs, and various aircraft types and for different day of the month of June 2015. Flights from 19 different
days, 65 origin-destination pairs and 16 different aircraft types were selected. To present a meaningful
cross-comparison of the fuel burn models evaluated, only the subset of common flights was used for this
analysis. This subset represented the maximum number of flights with valid fuel and Take-Off Weight
(TOW) predictions from all the models. There was wide variability in the observed fuel burn error across
all models, the smallest median error was obtained with the Dali 2 BADA 3 run with -3.9% while the
largest median error was observed for the AFEST 3 run without known TOW, with -13.1% the latter
representing a deterioration from the AFEST run with known TOW that presented a median error of
-9.5%, hence showing the impact of the initial TOW error. The authors concluded that even the highest
fidelity model will significantly under-perform if low quality input data is provided, thus one of the results
of this work is that fuel burn estimation models with different level of complexity, present different level
of accuracy performance.

In order to model the descent and approach to the destination airport (Glaser-Opitz et al., 2020)
propose a Landing System where this phase can be done more efficiently and safe using performance
based on terrain reference navigation using own created terrain elevation database, based on radar altimeter
measurements compared to the overflown terrain. The simulations were performed for a flight arriving at
Kosice airport Kosice Airport (KSC), a Boeing 737-800 aircraft, and the descend trajectory was modelled
with BADA performance model as a continuous descent approach from proposed merging point to the
KSC runway. The descend procedure for this airport was designed in cooperation with professional
pilots and all simulations were created for KSC as continuous descent approach; procedures, based
on real world airline data in compliance with Initial 4D (i4D)4 trajectory and proposed merging point.
Based on mentioned models and simulations, the Landing System prototype was developed, with BADA
model based trajectory prediction capability. The authors developed a client/server interface for testing
and further research activities which enabled the Landing System prototype to communicate with flight
simulator and with datalink communication simulator. Although, the authors described thoroughly the

2Dali consists of an aircraft trajectory modeling toolbox and is developed by Airservices
3AFEST is developed by the Modeling and Simulation Branch in the NextGen Office at the FAA William J. Hughes Technical

Center
4The core characteristic of i4D is making sure that trajectories are always synchronised between air and ground, which

enables more efficient handling and certainty of flight profiles.
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methods used to derive the landing system, they did not make any explicit conclusions regarding its
efficiency or safety.

On the overall the previous paragraphs describe several methods for modelling ground movements,
or Climb, Cruise and Descent (CCD) phases of a flight. The methods range from solving differential
equations to linear regression, and the models do not encompass the complete flight from the departure to
arriving gate. Integrating each of the flight phases can be achieved as it shall be demonstrated in Chapter
3, by combining data from institutional sources e.g. European Monitoring and Evaluation Programme
(EMEP)/European Environment Agency (EEA) and BADA, and using Newtonian Mechanics.

2.2 Constraint Programming Models and Applications

CP models are commonly solved using a tree-search algorithm similar to branch-and-bound. In CP every
variable is initialised at the root of the search tree with a set of possible values, known as its domain,
which is continually reduced by the constraints as the search progresses deeper into the tree. The search
continues until either the domain of every variable contains exactly one value or until the domain of at
least one variable is empty. In the first case, the values represent a solution, and in the second case, the
empty domain represents a violation of a constraint. Central to the success of constraint programming are
propagators, contracting functions removing values proven not to be in any solution of a given constraint
(Bessière, 2011), (Allignol et al., 2012), (Schwartz, 2015).

Practical applications of CP are discussed, for example, in (Freuder and Wallace, 2000), (Rossi et al.,
2006b), (Wallace, 2007). This section presents a review of commercial aviation related problems with
time-dependent action costs, as well as CP approaches that have been used to solve them.

2.2.1 Constraint Programming Applications in the Commercial Aviation

CP has been an area of research since the late 1980s and is now a mature technology that has been
successfully used for tackling a wide range of real-world complex problems, especially for scheduling,
(Baptiste et al., 2001). For the aircraft sequencing problem on a single runway, (Fahle et al., 2003)
compared different exact and heuristic methods including a CP model. For the same single runway
problem, (Díaz and Mena, 2005) presented a CP implementation and pre-processing techniques. In this
paper describes an application that solves the problem of aircraft sequencing in airports using a single
runway. The model assumes that the air traffic controller must compute a landing (take off) time for each
plane in the horizon or airport. The cost is associated with the difference between the preferred time (for
landing or taking off) and the time assigned to it. There is also a minimum separation time between planes
that must be respected to avoid accidents.

Two independently developed column generation methods, (Junker et al., 1999), (Yunes et al., 2000)
solve the pricing sub-problem using CP techniques. Both approaches integrate mathematical programming
and constraint satisfaction techniques, taking advantage of their particular abilities in modelling and
solving specific parts of the crew scheduling problem. This method was applied to a wide range of
applications. A survey is made by (Gualandi and Malucelli, 2009), in which the authors collect several
applications and advances of the CP-based column generation framework, where the master sub-problem
is solved by traditional Operations Research (OR) techniques, while the pricing sub-problem is solved by
CP.
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Within the area of short term airline operational planning, the Tail Assignment (TA) problem consists
of assigning flight legs to individual identified aircraft while satisfying all operational constraints, and
optimising some objective function. TA should be solved as part of both the short and the long term
airline planning (Grönkvist, 2006), (Gabteni and Grönkvist, 2009). A hybrid column generation and
constraint programming solution is proposed. The authors claim this approach can be used to quickly
produce solutions for operations management, and also to produce near optimal solutions for long and
mid term planning scenarios.

Airline crew assignment problems are large-scale optimisation that can be formulated as a constraint
satisfaction problem. In the work of (Fahle et al., 2002) each airline regulation is encoded by one or
several constraints. The authors introduce an additional constraint which encapsulates a shortest path
algorithm for generating columns with negative reduced costs. This constraint reduces the search space
significantly. The resulting domain reductions are propagated to the other constraints which additionally
reduces the search space. The authors used data of a large European airline and claim the the model
demonstrates the potential of the proposed approach.

Airport runway scheduling can be affected by inclement weather namely in winter during snowfall.
Runways can be temporarily closed to clear them from snow, ice and slush. (Pohl et al., 2021) propose an
integrated optimisation model to simultaneously plan snow removal for multiple runways and to assign
runways and take-off and landing times to aircraft. The authors present a time-discrete binary model
formulation using clique inequalities and an equivalent CP model. To solve the winter runway scheduling
problem optimally, the authors use a start heuristic based on CP that generates a feasible initial start
solution. A column generation scheme is used to identify all variables of the binary program which are
required to solve it optimally. Finally, the algorithm uses a branch-and-bound procedure to the resulting
binary program. Additionally, the authors propose a method to discretise the planning horizon, which
enables improved solutions and allows an efficient balance between solution quality and model size. This
algorithm was applied to realistic instances from Munich International Airport. An analysis of resulting
model sizes proves the ability of the approach to significantly reduce the number of required variables and
constraints of the time-discrete binary program. The authors claim that this method computes optimal
schedules in a short amount of time and often outperforms a time-continuous formulation as well as a
pure CP approach.

2.3 Aircraft Recovery Methods

Researchers on airline disruptions in schedules focused on aircraft rotation recovery. A reason could be
that aircraft are the scarcest resources in an airline and also the rules that determine airline schedules are
straight forward (Clausen et al., 2010). Aircraft recovery is typically modelled as a network problem. Like
many network routing problems, the adopted models are usually arc-based or path-based. Subsections 2.3.1
to 2.3.5 categorise the problem solving approaches used in literature based on the network representation
models that were developed.

2.3.1 Connection Networks

In the seminal work of (Teodorović and Guberinić, 1984), the authors developed a network model that
minimises the total passenger delay on an airline network and solved the problem of finding new routing
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and scheduling plan to optimality using a BaB heuristic. The authors model passenger delays explicitly
but they assume that all passenger itineraries contain only a single flight leg. Given the considerable
number of routings for even modest sized problems, it is doubtful that their approach could be materialised
for practical problems. On the other hand, since companies manage their operations using hub and spoke
5 flights, this study would also have limited scope of application.

In the connection network, presented in the work of (Abara, 1989) (figure 2.2) each airport has two
timelines, namely, departure and arrival. Nodes represent the time points of the departure and arrival
of legs. The connection network uses three types of arcs, which are leg arcs, connection arcs, and
original/terminal arcs.

Fig. 2.2 Connection network proposed by (Abara, 1989)

The leg arcs represent different flights between airports. The connection arcs signify the possible
aircraft connection between an arrival flight and a departure flight. The original arcs represent aircraft
departing from the airport at the beginning of the day, and the terminal arcs represent aircraft arriving
and remaining at the airport for the rest of the day. The objective of this formulation is to maximise
the contributions of the flight legs over the costs of aircraft ownership, the cost of aircraft shortages
(imbalances) and the cost of stations (airports). The constraints for this model enforce that each flight leg
is assigned to exactly one aircraft type, only available aircraft are assigned, and that each aircraft type is
assigned to the same number of flight legs arriving at the station as departing that station. (Rosenberger
et al., 2003) presented an optimisation model for the aircraft schedule recovery problem, as a set-packing
problem in which each leg is either in exactly one route or cancelled. In the procedure presented, aircraft
recovery problem is solved for each fleet separately. The goal is to minimise the cost of flight leg
cancellation and route re-assignment. Although set-packing problems are NP-Hard, the authors overcame
this difficulty using an aircraft selection heuristic that allows to determine the subset of aircraft to reroute.

5A hub is a central airport that flights are routed through, and spokes are the routes that planes take out of the hub airport.
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2.3.2 Time Line Networks

Linear Programming (LP) modelling is widely used to solve minimum cost network optimisation problems.
Linear programming is a way of choosing interdependent activities, with inputs and outputs, so as to
achieve an optimum in some dimension (e.g., profits or some index of welfare). The simplex method starts
with a guess at a set of activities that are run in some measure. Then a set of prices are chosen to make the
activities operate at zero profit. If none of the unchosen activities are profitable at these prices, then the
initial set is optimum. If one is profitable, it is chosen, and one of the previously chosen ones is eliminated.
The process is then repeated. In the end, the optimal set of activities will be obtained, (Dantzig, 2016).
The simplex method is one of the most useful and efficient algorithms ever invented, and it is still the
standard method employed on computers to solve optimisation problems. However, the simplex method
is prone to get trapped into local maxima. The results of a simplex run depend on the starting conditions.
In order to raise the chance of finding the global optimum, one should repeat several simplex runs with
different starting conditions.

A great number of practical network problems are Nondeterministic Polynomial-Time Complete
(NP-Complete) and therefore impossible to solve in a reasonable computing time. In such circumstances,
it may be compelling to solve a simplified problem to obtain approximations or bounds on the initial
hardest problem. Considering the optimisation problem where f : Rn −→ R and S⊆ Rn:

Minimise f (x) (2.2)

Sub ject to x ∈ S (2.3)

A relaxation of the above problem has the following form:

Minimise fR(x) (2.4)

Sub ject to x ∈ SR (2.5)

Where fR : Rn −→ R is such that fR(x) ≤ f (x), ∀x ∈ S, S ⊆ SR. The optimal solution f ∗R of the
relaxation is a lower bound of the optimal solution of the initial problem. A large number of these
problems have an underlying network structure. The goal of LR is to try to use the underlying network
structure of these problems in order to use efficient algorithms, (Held and Karp, 1970), (Held and Karp,
1971), Geoffrion (1974). The LR is a method of decomposition: the constraints S = S1∪S2 of the problems
are separated into two groups, namely the easy constraints S1 and the hard constraints S2, (Fisher, 2004).
The hard constraints are then removed, i.e., SR = S1 and transferred into the objective function, i.e., fR

depends on f and S2. Since SR is a set of easy constraints, it will be possible to solve the relaxation
problem. Moreover, the interest of the LR is that, in some cases, the optimal solution of the relaxed
problem actually gives the optimal solution of the initial problem.

Time-line Networks base their implementation on the use of ground arcs, flight arcs and overnight
arcs. Jarrah et al., 1993 present an overview of a decision support system for the aircraft recovery problem
with the attempt of conceptualising the problem. The authors used a minimum cost network model, one
delay model and one cancellation model and implemented an algorithm that solves the shortest path
problem repeatedly to determine the necessary flows. Their decision support framework was to enable
flight controllers decide when to cancel or delay flights. The possibility of swapping aircraft during the
recovery period was considered where the swaps could involve spare aircraft or overnight layovers. The
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timeline network in this case had two node types (aircraft node and flight node) per station used to model
the assignment of aircraft to flights. The research tested cases for both minor and major disruptions. The
test scenarios were based on United Airlines’ Boeing 737 fleet and a regional subdivision of America.
One of the major drawbacks of this work consists of not having solutions that combine both flight delay
and cancellation.

(Yan and Yang, 1996) developed a model that combined flight delays, cancellations, and ferrying
that solved the perturbations of flight schedules using a time-space network flow model. Their model
used simplex method to solve pure network flow problems and LR with sub-gradient methods solved
the network flow problems with side constraints. Their paper presented four variations of the model,
two of which are pure network flow problems while the other two are network flow problems with side
constraints.

(Yan and ping Tu, 1997) extended the work of (Yan and Yang, 1996) focused on a single fleet, to
accommodate multiple fleet. Their model was further extended to address cases of airport closures and
multiple aircraft fleet substitutions for a network that consisted of 24 cities, 7 fleets and 273 flights with
computation time below 30 minutes.

(Yan and Lin, 1997) developed a framework to help carriers handle schedule perturbation, due to
temporary closure of airports, and resume their normal services as possible. This framework is based on a
time-space network flow model, where the arcs in the network represent airborne flights, grounded flights,
and overnight connections. The research was conducted over a set of scenarios, mathematically formulated
either as pure network flow problems or network flow problems with side constraints, the former solved
using simplex method and the latter using a LR-base algorithm, respectively. These models minimise
the schedule-perturbed time after incidents so that carriers can resume their normal services as soon as
possible. The salient features of the models consist in combining systematically flight cancellations, flight
delays, the modification of multi-stop flights, the ferrying of idle aircraft and the swapping of aircraft.
This procedure aims at adjusting effectively a schedule following incidents, so that a carrier can maintain
its profitability. The authors confine the scope of this research to the operations of a single fleet as well as
simplifying multi-leg flights by considering that the time block is from the beginning of the first leg to the
end of the last leg.

(Cao and Kanafani, 1997a) and (Cao and Kanafani, 1997b) extended the work developed by Jarrah
et al. (1993) evaluating solutions with flight cancellations and delays. The authors used a linear program-
ming approximation algorithm based on a quadratic programming model that included both flight delays
and cancellations. One of the major limitations of this work relates to the approach being limited to aircraft
assigned to routes containing at most two flight legs. (Thengvall et al., 2000) solves the aircraft recovery
problem for a single fleet over the entire flight schedule with an objective function that accounts for flight
revenues, delays, cancellations, and an incentive to minimise deviations from the original schedule. The
objective function consists in minimising total operating costs, but crew and passenger disruptions are not
considered. The problem is modelled using a time-space network and solved as an integer linear program
using an optimisation software. To represent the delays for a particular flight leg, a series of delay arcs are
introduced to consider the available options for later flights. To ensure that only a single flight is chosen, a
side constraint must be added requiring that the sum for all arcs representing the same flight is less or
equal to one. The model was able to accommodate recovery periods of arbitrary length that begin and end
at arbitrary periods of the day. In addition, a rounding heuristic is introduced to obtain feasible integer
solutions from the linear programming relaxation of the mixed-integer programming formulation. As
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mentioned by the authors one weakness of the model is that it does not track individual passengers and
thus does not consider passenger connections.

2.3.3 Time Band Networks

A time-band chart is defined as a chart containing two dimensions representing time intervals and airport
stations respectively. (Thengvall et al., 2001) extended the work of (Arguello et al., 1997) and (Thengvall
et al., 2000) by solving the multi-fleet aircraft schedule recovery, using multi-commodity network-type
models during a hub closure. The model consisted of three cases, the first was a pure network with side
constraints, the second a generalised network, and the last was a pure network with side constraints where
the time horizon is discretised. The first two cases aimed at maximising the profit function while the
other cases aimed at reducing the sum of delay and cancellation costs. The data spans 2 and 1/2 days and
includes 332 active aircraft from 12 different fleets. Each fleet has from one to six sub-fleets for a total of
28 different types of aircraft. The schedule includes 2921 flights between 149 domestic and international
locations.

2.3.4 Integer Programming

In their paper, (Andersson and Värbrand, 2004) use a mixed integer multi-commodity flow model with side
constraints further reformulated into a set packing model with generalised upper bound constraints and
using the Dantzig Wolfe decomposition. Disruptions are solved using cancellations, delays and aircraft
swaps and the model ensures that the schedule returns to normal within a certain time. Computational
tests and results show the capability of the model to provide quality optimised solutions in seconds and
therefore, fit to be used as a dynamic decision support tool by airlines.

The model proposed by (Hu et al., 2011) established an integer programming model based on a
time-band network and a passenger transiting network for the combined aircraft and passenger recovery
problem. Solutions for single-fleet aircraft recovery were obtained by first solving the linear programming
relaxation and then applying a rounding heuristic. A simulation entailing disturbance experiment included
temporary airport closure. The hybrid method provided an efficient short-haul schedule recovery solution.

Constructing the network for each aircraft and solving the corresponding integer linear program can
be very time-consuming. To achieve real-time performance (Vink et al., 2020) developed a selection
algorithm comprising three stages. The number of selected aircraft involved in each stage is limited in
order to speed up the solving process. If no solution is found by the selected aircraft, the set of candidate
aircraft is expanded and moved to the next stage. Based on historic data from the Reporting Carrier
On-Time Performance database6, probability distributions of different disruption events (e.g. flight delay,
aircraft unavailability) were derived. Using these distributions, 370 disruption events were randomly
generated and solved. Each disruption event contains one or more disruptions. In total these disruption
events contain 565 individual flight disruptions. For 96% of the 370 scenarios, the Selection Algorithm
Solution (SA)7 had the same cost as the Dynamic Global Solution (DG)8. In 88% of the 370 events,

6Published by the United States Department of Transportation
7The best solution found by selection algorithm presented in this work, after considering all the selections of aircraft candidate

to solve the disruption events
8The solution when the entire fleet of candidate aircraft is used. Determining this solution takes too long to be suitable for

real-time use. However, this solution corresponds to the global optimum solution to the disruption problem, as defined in this
work. This is used as the reference solution in the analysis of the results.
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the SA found the trivial solution9. There are a few outliers for which the solution found by SA is more
expensive. In five of the 370 events the SA found a solution which was more than twice the cost found
by the DG solution. Such cases are rare (1.35% of the cases) and they occur when the DG uses a large
combination of aircraft that are not considered in the same iteration by the selection algorithm.

2.3.5 Heuristics in Aircraft Recovery

The research led by (Arguello et al., 1997) used a greedy randomised adaptive search procedure (GRASP)
meta-heuristic to minimise flight cancellation and delay costs associated with a recovery aircraft routing,
as a response to groundings and delays. The GRASP described in the study is adapted for use as a
randomised neighbourhood search technique. In the procedure, the neighbours of an addressed solution
are evaluated, and the most desirable are placed on a restructured candidate list. Neighbour generation
operations are performed on pairs of aircraft routes. The authors introduced a series of constraints to
enforce the model to share operational practices namely that, every flight in each aircraft route must depart
from the airport where its previous flight arrived (balance constraint), a minimum turn-round time must be
enforced between each flight arrival and subsequent departure, the recovery period extends to the end
of the current day, aircraft must be positioned at the end of the recovery period in a specific airport so
that the flight schedule can be resumed next day, airport departures are restricted in the curfew period
and aircraft with planned maintenance will not have their original route altered. The approach was tested
on data supplied by Continental Airlines and the results proved that the GRASP could produce in most
cases optimal or near-optimal solutions.

(Løve et al., 2001) defined the Dedicated Aircraft Recovery Problem (DARP) as given an original
flight schedule and one or more disruptions, the DARP consists of changing the flight assignments of
the aircraft to produce a feasible and more preferable revised flight schedule. The authors compared the
results obtained using various versions of a heuristic, namely the Iterated Local Search (ILS) with Variable
Neighbourhood Search (VNS) incorporated and, a Steepest Ascent Local Search (SALS) along with a
Repeated Steepest Ascent Local Search (RSALS). The latter performs entirely like SALS but is repeated
for different initial conditions. According to the authors, ILS algorithms were able to find solutions within
the first 10 seconds, which proved to be robust. After 24-hour test runs, significantly better solutions were
not found. As for the SALS the authors mention that the algorithm quickly finds a local optimum and that
once reached it is not easy to escape from. The latter proved not to be a drawback when the local optimum
is close to the value of the global optimum. However, the further the distance to the best solution ever
found, the worse the objective values get. This correlation provides a strong indication that the solution
space has a profile with a plateau, like that illustrated in figure 2.3. The authors conclude that many local
optima are close to the global optimum since the SALS was able to increase the solutions’ revenue when
revising the flight schedules of all problem instances.

Since the results achieved were very auspicious, British Airways (BA), provided some of their flight
data for realistic testing of the RSALS heuristic. After a few simplifications, 10 BA flight schedules were
extracted, which had an average of 80 active aircraft, 44 airports, and 340 flights. Each flight schedule was
disrupted and afterwards the RSALS heuristic was used to improve the flight schedules by delaying flights,
swapping aircraft, and cancelling flights. The model proved to deliver well recovered flight schedules, by

9The solution which is found taking only the disrupted aircraft in consideration. This solution resembles the immediate
solution that a controller would find during operations and it is the first solution obtained by the selection algorithm. It is found
in about two to three seconds, because the resulting problem involves few aircraft and is therefore small.



26 Literature Review

Fig. 2.3 Connection network proposed by (Løve et al., 2001)

solving a SALS heuristic using the subjacent network representation of the problem. The authors conclude
that further advancements should be performed to include crew scheduling and passenger itineraries.
As for the initial claim made by the authors that the time for a tool to find solutions for such problem,
should be less than three minutes, (Andersson, 2006) refers that this benchmark varies depending on the
envelopment of the problem, and also on quality of the solutions delivered. In (Andersson, 2006) Tabu
Search (TS) and Simulated Annealing (SA) methods were used to solve the ARP. TS is a metaheuristic
local search method used for mathematical optimisation. Local search methods have the tendency to be
stuck in suboptimal regions. TS enhances the performance of these techniques by prohibiting already
visited solutions or others through user-provided rules. After evaluating the quality of the solutions and
the robustness of the method TS proved to be the preferable solution strategy.

2.3.6 Constraint Programming

This section finalises introducing the application of CP in the ARP. The work of (Guimarans et al., 2013)
aims at minimising the losses, caused by the uncertainty external factors, in aircraft schedules, Stochastic
Aircraft Recovery Problem (SARP). This work uses CP and simulation to solve the SARP. The method
solves the problem through the rescheduling of the flight plan using delays and swaps. The main objective
is to restore as much as possible the original flight schedule, minimising the total delay. This method is not
tested using real data scenarios and the authors mention that it may be extended to tackle more complex
variants of the problem that can include crew scheduling. The formulation proposed by (Guimarans
et al., 2015) for the ARP is based on the CP. The authors based the optimisation approach on the Large
Neighbourhood Search (LNS) metaheuristic, combined with simulation at different stages in order to
ensure solutions’ robustness. The method is tested on a set of instances with different characteristics,
including some instances originating from real data provided by a Spanish airline.

2.4 Integrated Airline Recovery

When scheduling flights, passenger travel demand is clearly a key consideration for commercial airlines.
The efficient flow of passengers is critical, especially when regular operations are affected by disruptions,
however in practice, passenger recovery is observed as the last stage of the sequential recovery approach.
Due to the high dependency of passenger schedules on aircraft and crew schedules, passenger recovery is
either integrated with aircraft recovery or with both aircraft and crew recovery. This section describes
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different approaches in literature to solve the integrated recovery problem. Subsection 2.4.1 focuses on
integrated recovery of aircraft and passengers while subsection 2.4.2 covers relevant literature in integrated
aircraft, crew and passenger recovery.

2.4.1 Integrated Aircraft and Passenger Recovery

In the work of (Zhang and Hansen, 2008) the authors present a model for a hub-and-spoke network that
uses various modes of transportation to accommodate passengers whose travel plans have been perturbed.
This strategy, referred to as real-time intermodal substitution (RTIMS), used mathematical programming
to help airlines decide how to delay, cancel or substitute flights with buses. A numerical scenario for a
four-hour recovery period consisting of 40 flights and 736 passengers was evaluated. After substituting
transport, results showed a massive decrease in cost since the number of disrupted passengers dropped.
However, their model rescheduled only flights that would arrive or depart from the affected airports, and it
did not consider the downstream effect of the delayed or cancelled flights.

The mathematical model proposed by (Jafari and Zegordi, 2011), simultaneously recovered airline
schedules by recovering disrupted aircraft and passengers. The authors proposed a formulation of recovery
by considering flight re-timing, aircraft swapping, ferry fight, reserved aircraft and flight cancellations.
The overall objective of the model was to reduce costs associated with flight cancellation, aircraft recovery,
and passenger disruption related costs. A data set consisting of two disruption scenarios was used to
evaluate the model. The data set contained 13 aircraft divided into 2 fleet, 100 flights, 19 airports and
2236 passengers with 8 itineraries and 55 connections. The authors concluded that the recovery procedure
will, not only, directly affect the passengers on that particular flight, but it may also, indirectly, affect the
passengers on the next flight in the route for the aircraft in question, and claim their model gives a solution
for this situation. Another important conclusion made by the authors is that using the aircraft rotation
instead of flights helps to limit scope of disruption and is useful to recover the schedule efficiently.

The model proposed by (Bisaillon et al., 2011) consists of a very efficient large neighbourhood (LNS)
search containing three phases, construction, repair and improvement. Figure 2.4 demonstrates a summary
of the three phases the model presented.

Fig. 2.4 LNS model proposed by (Bisaillon et al., 2011)
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The construction phase consists of constructive heuristic that tries to create feasible solutions, by
removing flight sequences until all constraints, with the possible exception of airport capacity constraints,
are satisfied. The repair phase makes use of a heuristic that proceeds in three steps. First, by delaying
flights to respect all airport capacity constraints. Second, by re-inserting flights that were removed during
the construction phase, between two successive flights whose time interval is long enough to accommodate
them. The authors argument that this approach yields expressive cost improvements in few iterations.
Third, by accommodating passengers whose itineraries have been cancelled by repeatedly solving shortest
path problems for a network of flights. The source node represents the origin airport of the itinerary at
the departure time and the sink node represents the destination airport of the itinerary at the arrival time.
This process attempts to assign to the path the largest number of passengers satisfying the aircraft seating
capacity and is iterated if new passenger can be accommodated. Although the solutions obtained are
feasible, they possibly are sub-optimal since many itineraries may have been cancelled. The improvement
phase consists of a procedure that attempts to extend the repair phase by delaying some flights in the
hope of accommodating additional passengers. Just like in the repair phase passengers are re-assigned by
repeatedly solving shortest path problems. The global process is iterated introducing diversification in
the construction phase, by randomly sorting the aircraft to treat them in a different order each time the
construction phase is performed. Finally, whenever improved cost is found, the corresponding solution
replaces the current one. On the overall, the algorithm executes a very large number of simple and fast
actions. By doing so, not only it finds quickly feasible solutions, but also does not rely on any knowledge
of the current flight network.

Considering more flights, fleets, and nodes will increase exponentially the complexity of the integrated
aircraft and passenger recovery problem, leading to intractable models for exact methods. The development
of math-heuristics has proven reduce the computational time in such complex models. (Mansi et al., 2012)
presented a model that combines a math-heuristic with an oscillation heuristic to improve the solutions
obtained. The math-heuristic consists of mixed integer programs that intends to maximise the number
of aircraft that satisfy the maintenance constraint and the number of passengers that arrive at their final
destination while minimising the total delay. However, this procedure may not render a feasible solution,
meaning that at least one aircraft will not be able to reach the airport assigned for maintenance on time
without cancelling flights. To make the solution feasible, a repair heuristic is applied to try to satisfy hard
maintenance constraints, and also to maximise the number of passengers arriving at destination. After
generating a feasible solution, the algorithm makes improvements alternating between constructive and
destructive phases, by adding or removing some parts of the aircraft routes.

The LNS proposed by (Bisaillon et al., 2011), was later on improved by (Sinclair et al., 2014) where
the authors included additional steps in each phase to make it more time efficient and cost effective. These
improvements offered a better understanding of the relation between the cost of delay and the cost of
cancelling a flight. Figure 2.5 illustrates the improvements add to the LNS proposed by (Bisaillon et al.,
2011).

More recently, the work of (Sun et al., 2021) extended the work of (Zhang and Hansen, 2008) by
implementing the proposed research approach to a real-time intermodal network. The model modified the
traditional time-band network used for representing the airline recovery problem so that many redundant
flight arcs and infeasible recovery flight arcs can be eliminated. This procedure reduces the size of the
mathematical model and feasible solution space without compromising optimality.In relation to passenger
recovery, the authors proposed a method for generating passenger candidate itineraries for reassigning



2.5 Modelling Flight Speed Changes and Consumed Fuel 29

Fig. 2.5 Improved LNS heuristic for an integrated aircraft and passenger recovery problem (source
(Sinclair et al., 2014))

disrupted passengers. The authors expanded the time-band network into an intermodal network with both
air and ground transportation modes and compared the disruption management performance with and
without ground transportation modes.

2.4.2 Integrated Aircraft, Crew and Passenger Recovery

In (Bratu and Barnhart, 2006) the authors focus on passenger recovery while incorporating rules and
regulations on aircraft and crew. They propose models for integrated recovery, using a flight schedule
network representing flight legs with flight arcs. Several copies of the flight arcs are made to account
for each possible departure time decision within the window of feasible departures for a specific flight.
The objective either minimises the sum of operating costs and disrupted passenger costs, or the sum
of operating costs and total passenger delay costs. To test the models the authors developed an Airline
Control Center Simulator, to simulate domestic operations of a major US airline. The airline’s data
consisted of 83,869 passengers on 9,925 different passengers’ itineraries per day, operated by 302 aircraft
divided into 4 fleets, 74 airports and 3 hubs. For all scenarios solutions are generated that resulted in
reductions in passenger delay and disruptions.

2.5 Modelling Flight Speed Changes and Consumed Fuel

The concept of speed change has already been studied in several publication whether to minimise potential
conflicts by reducing flight speed and absorb holding delays, or to speed up the flight to recover from
flight delays.
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If it is possible to reduce flight speed, aircraft can leave the airport earlier, therefore helping the
management of congestion at a surface level in the airport of origin. Another advantage will be the
psychological effect on passengers, who will spend less time waiting at the airport of origin or even inside
the aircraft while waiting at the departure gate. The work of (Delgado and Prats, 2012) proposes an
en route speed reduction to complement current ground delay practices aimed at absorbing part of the
air traffic flow management delays. Instead of performing the ground delays at the airport of origin the
authors demonstrate that by flying slower, flight times are increased and can absorb holding delays at the
destination airport, with no extra fuel cost for the airline.

Accurate estimation of the fuel consumed during aircraft operation is key for determining the fuel
load, reducing the airline operating cost, and mitigating environmental impacts. In the work of (Patrón
et al., 2015) the authors describe an algorithm to be implemented in an flight management system to create
optimal flight trajectories and reduce fuel burn by analysing CCD phases. A complete wind model is used
to calculate a more accurate assessment of the aircraft fuel burn, as well as to analyse the influence of the
winds during a flight. The algorithm’s objective is to obtain the maximum reduction in the flight cost,
but it did not consider air traffic management constraints. The flights simulated to verify the algorithm’s
optimisation capabilities at reducing fuel consumption were performed using real flight information
obtained from FlightAware™. The CI was set to zero, indicating that the only parameter to consider was
the fuel consumed and not the flight time. The tests simulated flights from Lisbon to Toronto and London
to Toronto. The results from the tests performed show an average flight cost reduction of 5.92%, and an
average flight time reduction of 2.57%.

To study the correlation between flight time and fuel consumption and cost index selection on flight
management systems, the work of (Wickramasinghe, 2015) proposes an optimisation model that introduces
a performance index through DP. The performance index is built by considering the minimum cost with
the trade-off between fuel consumption and flight time. The objective of the model consists in creating
fuel-optimal-only trajectories and fuel optimal trajectories with arrival time constraints, as a function
of the CI. The study was conducted in Japan and a series of flight data was measured by a commercial
Global Positioning System (GPS) receiver, to perform trajectory optimisation and discuss the influence of
operational procedures in the current system towards the selection of CI setting. The model simulates
scenarios for 4D trajectory optimised for both aircraft’s lateral and vertical profiles and 3D trajectory
optimisation for the aircraft’s vertical profile with a fixed trajectory. The authors claim that the airline
flight procedures were time-oriented and airline companies select a CI which could be considered as not
optimal in means of fuel saving strategies. Several optimal flights tend to select the flight path almost
identical to Y20 RNAV10 route, although the large variations in jet stream winds position over Japan’s
airspace suggest that, air route setting should consider seasonal wind conditions to increase the efficiency
in flight operations. The authors claim that there is room for improvement in descent operations for fuel
saving and that with newer aircraft, capable of performing at high altitudes, selecting higher cruising
altitudes to avoid strong headwinds could reduce fuel consumption.

Although flight time management is a recovery strategy to deal with the disruptions, in practice its
benefit has been limited because it does not consider network wide integrated effects, (Aktürk et al., 2014).
Instead of simply delaying flight the work of (Aktürk et al., 2014) propose a flight rescheduling model

10Area navigation (RNAV) is a method of navigation that permits aircraft operation on any desired flight path within the
coverage of ground- or space-based navigation aids, or within the limits of the capability of self-contained aids, or a combination
of these
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that includes adjusting cruise stage speed on a set of affected and unaffected flights as well as swapping
aircraft optimally. The authors claim that their work successfully integrates cruise speed control action in
the recovery model. In addition to the additional fuel cost of speeding up flights, the authors manage to
integrate environmental costs and constraints. The authors report that cruise speed control can provide
significant cost savings. One of the major contributions of (Aktürk et al., 2014) is enabling the use of
a realistic fuel cost function based on the fuel flow model developed by BADA. This approach focuses
only aircraft schedules however, disruptions can have severe effects on existing aircraft rotations, crew
scheduling, and passenger itineraries. To overcome this shortcoming (Arikan et al., 2016), developed
a flight network based representation for the integrated airline recovery problem that includes the flow
of each aircraft, crew member, and passenger. This model allows common recovery decisions such as
departure delays, aircraft/crew rerouting and passenger re-accommodation. Additionally, the authors
implemented flight time management as a result of aircraft cruise speed changes. The authors in their
conclusions claim that speeding up flights may be ticket cancellations, and flight cancellations. beneficial
to help mitigate delays and preserve passenger connections in cases of disruptions. However, speeding up
a flight increases fuel consumption, therefore an additional fuel cost is incurred. Since the relation between
fuel consumption and aircraft speed is non-linear the formulation uses second order cone programming.
With this representation the problem is solved with a commercial mixed integer programming solver,
within reasonable computing time.

2.6 Literature Review Summary

The literature review versed about plethora of topics regarding commercial aviation. The main focus
concerns flight planning models, CP and disruption recovery algorithms. Commercial aviation modelling
is highly data driven, most of which is proprietary, hence becoming extremely difficult to come over.
BADA is a very comprehensive data source and proves be quite useful for modelling ground movements
and flight planning.

CP has proved to be an efficient approach to tackle management problems in commercial aviation
such as tail assignment, crew scheduling, airport runway management and is also gaining room in
ARPs. However, the CP papers that were reviewed do not provide details regarding CPr or backtracking
techniques to reduce search space or tackle infeasible solutions.

In relation to the ARP the literature review covered an extensive set of recovery methods and strategies
such as departure holding flight cancellation, aircraft rerouting, aircraft ferrying, and the use of spare
aircraft. It was also verified that time management, namely the introduction of flight delays, proves to be
an alternative for disruption recovery however, the latter often involves propagating delays in downstream
flights.

The integrated recovery problem is highly complex and solution strategies can include crew rerouting,
crew deadheading, passenger ticket cancellation, passenger reallocation. A real-time solution requirement
for this problem is challenging when dealing with large networks.

Finally, It is possible to conclude from the literature review that aircraft speed can have a practical
effect in the entire block time of a flight. Time controllability can be used as strategy for disruption
recovery in commercial aviation. Nonetheless, the specific conditions and scenarios are not addressed in
detail. One should ask what is the point of speeding up a flight if there is no airport arrival capacity, to
allow the airport to land in the desired time slot.





Chapter 3

The Block Time and Fuel Model

3.1 Introduction

Block time consists of the total amount of time a flight takes, from pushing back from the departure gate,
to arriving at the destination gate. This chapter defines the various phases of the flight plan and matches
them to the data provided by EMEP / EEA and BADA. For each of the flight phases the model calculates
the time they take, ground distance covered and consumed fuel. Finally, the model is validated using real
airline data, and exploratory data analysis. To the best of our knowledge, we are the first to provide such
computational results from departure to arrival gates for an extensive list of flights.

The remainder of this chapter is organised as follows. In Section 3.2 we will review the most important
concepts regarding the flight phases. Section 3.3 makes the integration of the EMEP/EEA emissions data
set with BADA aircraft performance data tables to derive the BTF model and deliver reliable block time,
and consumed fuel. Section 3.4 describes minutely the results, and compares them against the ROADEF
2009 Challenge data set, the published literature and with real flight plans. Finally, Section 3.5, performs
the appraisal of the results, derives the conclusions and foresees future work.

3.2 Flight Phases

This section defines the flight phases that make part of a flight. The phases have different rate of fuel
consumed during, since the aircraft’s engine thrust is also different for each of them. The BTF model
considers that the flight begins at the time the aircraft is ready to move with the purpose of flight and
continues until such time it comes to rest at the end of the flight and the primary propulsion system is shut
down.
Each aircraft has a flight plan consisting of a document that can include, among others, information
regarding the:

• Aircraft such as Fuel On Board (FOB), TOW.

• Flight such as origin and destination airports, flight type, expected departure and arrival time,
cruising speed, maximum expected altitude, chosen route and an alternate route.

• Weather such as the forecast during the flight.
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All this information will help the cockpit crew to pilot the aircraft safely during the flight phases.
Block time encompasses all the phases of the flight and typically, a flight has the following phases:

• Taxi-out is the controlled movement of an aircraft on the ground, under its own power, between its
parking area and the point of the runway from which its taking-off operations will occur.

• Take-off is the phase of flight in which an aircraft moves from the runway to flying in the air.

• Climb is the phase of flight during which the aircraft ascents to a predetermined cruising altitude
after take-off. Although a single climb phase is typical, multiple step climb phases may also occur.

• Cruise occurs between the climb and descent phases and is usually the longest part of a journey.
It ends as the aircraft approaches its destination and the descent phase of the flight commences
in preparation for landing. During the cruise phase, because of operational or Air Traffic Control
(ATC) reasons, aircraft may climb or descend from one FL to a higher or lower FL. During very
long flights, aircraft are able to fly higher as the weight of the fuel aboard decreases. Usually, pilots
ask ATC to allow them to fly at the optimum FL for the aircraft they are operating. This optimum
FL is dependent on, for example, the type of aircraft, its operating weight and the length of the
flight. ATC generally accepts this request if it does not jeopardise safety. For most commercial
passenger aircraft, the cruise phase of a flight consumes the majority of the fuel.

• Descent is the phase of flight during which the aircraft decreases its altitude in preparation for
landing and is the opposite of the climb phase. Similarly to the climb, descent can be continuous
or stepped as a consequence of operational or ATC decisions; continuous descent is the most
fuel-efficient option.

• Final approach is the last leg of an aircraft’s approach to landing, when the aircraft is in line with
the runway and descending for landing.

• Landing is the part of a flight when an aircraft returns to the ground up to the point at which taxi-in
starts.

• Taxi-in is the movement of an aircraft on the ground, under its own power, which occurs from the
point that the aircraft turns off the landing runway (after returning to normal taxi speed) to the point
at which it parks on the ground and shuts down its engines.

The vertical profile of the flight, also known as the aircraft altitude profile, consists of three main
phases: climb, cruise and descent (CCD). Commercial aircraft, regardless of the route they are taking,
usually cruise at an altitude between 30,000 feet and 41,000 feet (FL300 and FL410 respectively) above
sea level. There are several reasons for choosing altitudes in this range such as better fuel economy and
passenger comfort. Within this altitude range, the aircraft encounters less resistance to travel, which
makes the engine’s thrust lower with increasing altitude, hence saving even more fuel. It would be logical
to imagine that if aircraft were to fly even higher, the economy of consumption would be greater. The
problem is that from a certain altitude, which varies with each aircraft model, they reach the so-called
service ceiling (around 41,000 feet of altitude). The definition of the service ceiling is the height above
sea level at which an aircraft is unable to climb at a rate greater than 100 feet per minute. With altitude,
the atmosphere gets less dense, with fewer oxygen molecules per volume of air, therefore the aircraft’s
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engine will produce less and less power. A service ceiling is not really an absolute limit on the altitude
that a particular design can achieve, but one at which the aircraft begins to run out of climb capability.

3.3 The Block Time Fuel model

This section demonstrates how to model the block time and fuel consumed, using Newtonian Mechanics
and the public available data sets EMEP/EEA and BADA. The BTF model comprises the following three
subsections:

• Subsection 3.3.1 demonstrates how to calculate the ground distance and bearing between an origin
and destination. The BTF model uses these two results to define the cruising altitude.

• Subsection 3.3.2 demonstrates, given the aircraft model, how to use the EMEP/EEA data set to
determine the duration, fuel flow and fuel consumed for taxi-out, take-off, approach, landing and
taxi-in phases.

• Subsection 3.3.3 describes how to use BADA’s aircraft performance data table to determine for
each time instant of a flight the fuel flow and fuel consumed for CCD phases.

3.3.1 Calculating Ground Distance and Defining Cruise Altitude

To calculate the ground distance between the origin and the destination airport it is necessary to have
beforehand:

φo latitude for the origin airport
λo longitude for the origin airport
φd latitude for the destination airport
λd longitude for the destination airport

The latitude difference is:
∆φ = φd−φo (3.1)

and the longitude difference is:
∆λ = λd−λo (3.2)

using the auxiliary calculation:

a = sin2
(

∆φ

2

)
+ cos(φo)× cos(φd)× sin2

(
∆λ

2

)
(3.3)
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Assuming that Earth is perfect sphere with a radius R of 6378.137 kilometres, it is possible to
determine the physical distance d between the origin and destination airports using the Haversine formula
in 3.4:

d = 2×R×atan
( √

a√
1−a

)
(3.4)

To avoid collisions between aircraft travelling in opposite directions it is necessary to impose a vertical
separation. The ICAO1 semi-circular rule defines the available flight levels in the conventional airspace
and also in the Reduced Vertical Separation Minima (RVSM) airspace when applicable between FL290
and FL410. The default worldwide semi-circular rule, can be observed in figure 3.1 and is applied
according the aircraft’s magnetic bearing: if this value is between 0◦ and 179◦ (eastbound flights), FL or
altitude must be odd FL310, FL330, FL350, etc, whereas if the aircraft has a magnetic bearing between
180◦ and 359◦ (westbound flights), the FL must be even FL320, FL340, FL360, etc.

Fig. 3.1 ICAO Cruising Levels (RVSM). Source: ICAO

The cruise altitude (flight level) depends on the ground distance (Pagoni and Psaraki-Kalouptsidi,
2017), table 3.1. (Pagoni and Psaraki-Kalouptsidi, 2017) noticed that short-haul flights present significant
deviations in cruise altitude even for shorter distances. On the other hand, longer flights tend to have a
more homogeneous flight performance. Their study adopts a distance increment of 250 statute miles 2

(sm) to present the data.
The BTF model uses an extended flight distance profile. The one used by (Pagoni and Psaraki-

Kalouptsidi, 2017), from 500 sm to 2500 sm, covers a wide spectrum of US domestic flight distances.
Indeed, those flights comprise 87.4% of total passenger miles in 2012.

1ICAO is a United Nation’s specialised agency, established by states in 1944 to manage the administration and governance of
the Convention on International Civil Aviation (Chicago Convention).

2The US statute mile, also called a survey mile, measures 1609.3472 meters, a difference of 3.2 millimetres (1/8 inch) per
mile. This is due to a usage of the equation of a survey foot equalling 1,200/3,937 meters rather than 30.48 centimetres.
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Table 3.1 Flight level for westbound and eastbound flights during cruise phase

Westbound flights Eastbound flights
Distance range [sm] FL FL
310 - 500 340 330
500 -750 360 350
750 - 2500 380 370

3.3.2 Modelling Taxi-out, Take-off, Approach, Landing and Taxi-in Phases

For taxi-out, take-off, approach, landing and taxi-in phases the BTF model uses the data set provided by
the EMEP/ EEA air pollutant emission inventory guidebook 2016 1.A.3.a Aviation – Annex 5 – LTO
emissions calculator 2016. The fuel burnt and emission data provided in this set are for supporting the
European Union (EU) and the member states of the EEA in the maintenance and provision of European
and national emission inventories. Fuel burn and emission data in this spreadsheet are modelled estimates
and not absolute values. Where only one type of engine is associated with a particular aircraft type, it is
the most common type of engine (as seen in Europe), or the best equivalent type of engine, for that aircraft
type. Where several types of engines are associated with a particular aircraft type, the most-common type
of engine is highlighted.

The first part of our modelling will use the EMEP/EEA data set and consists of determining the
duration and fuel flow for the taxi-out and take-off phases, based on the type of the aircraft, origin airport
and year. The mass of fuel burnt Mout during the taxi-out phase is calculated using equation 3.5:

Mout = Tout ×E7×Ne (3.5)

Tout is the taxi-out time [s], E7 is the rate of fuel burn [kg/s/engine] during taxi-out and Ne is the
number of engines of the particular aircraft performing the flight. EMEP/EEA assumes that during the
taxi-out phase the engine thrust is set to 7% following the ICAO convention. Similarly, the mass of fuel
burnt Mo f f during take-off is calculated using equation 3.6:

Mo f f = To f f ×E100×Ne (3.6)

where To f f is the take-off time [s], E100 is the rate of fuel burn [kg/s/engine] during take-off. In this
phase EMEP/EEA assumes that during the take-off phase the engine thrust is set to 100% following the
ICAO convention.

The mass of fuel burnt Mal during the approach and landing phase is calculated using equation 3.7:

Mal = Tal×E30×Ne (3.7)

Tal is the approach and landing time [s], E30 is the rate of fuel burn [kg/s/engine] during approach and
landing. In this phase EMEP/EEA assumes that during the approach and landing phase the engine thrust
is set to 30% following the ICAO convention.
The mass of fuel burnt Min during the taxi-in phase is calculated using equation 3.8:

Min = Tin×E7×Ne (3.8)
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Tin is the taxi-in time [s], E7 is the rate of fuel burn [kg/s/engine] during taxi-in and Ne is the number
of engines of the particular aircraft performing the flight. EMEP/EEA assumes that during the taxi-in
phase the engine thrust is set to 7% following the ICAO convention.

3.3.3 Modelling Climb Descent and Cruise Phases

To model the CCD phases the BTF model uses the BADA Performance Table Files (PTF) for each specific
aircraft. In table 3.2 we present the performance data structure within the file.

Table 3.2 BADA performance data structure

Column name Units
Flight level [FL]
Cruise TAS (nominal mass) [knots]
Cruise fuel consumption (low mass) [kg/min]
Cruise fuel consumption (nominal mass) [kg/min]
Cruise fuel consumption (high mass) [kg/min]
Climb TAS (nominal mass) [knots]
Rate of climb with reduced power (low mass) [ft/min]
Rate of climb with reduced power (nominal mass) [ft/min]
Rate of climb with reduced power (high mass) [ft/min]
Climb fuel consumption (nominal mass) [kg/min]
Descent TAS (nominal mass) [knots]
Rate of descent (nominal mass) [ft/min]
Descent fuel consumption (nominal mass) [kg/min]

In order to model the the CCD phases the BTF model uses Newton’s equations of motion:

v = a× t + v0 (3.9)

r = r0 + v0× t +
1
2
×a× t2 (3.10)

r = r0 +
1
2
× (v+ v0)× t (3.11)

v2 = v2
0 +2×a× (r− r0) (3.12)

r = r0 + v× t− 1
2
×a× t2 (3.13)

Where r0 is the initial position, r the final position, v0 the initial velocity, v is the final velocity, a the
acceleration and t is the time interval.
During the climb phase, the Rate of Climb and Descent (ROCD) and fuel flow, the BTF uses the nominal
mass level. The reason that underlies this assumption is to prevent the fact that for high mass level there
are several aircraft models that do not have any climb data available. During the climb phase, the model
will interpolate between pairs of flight levels (current FLc and next FLn respectively), the pairs of values
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for true airspeed (TASc,TASn), fuel flow ( fcc, fcn), rate of climb and descent (Rc,Rn).
Figure 3.2 depicts the interpolation process during the climb phase between FL0 to FL5 and FL5 to FL10.

Fig. 3.2 Climb between flight levels FL0 to FL5 and FL5 to FL10

Since the ROCD consists of the variation of altitude with time, the BTF model considers it to be the
aircraft’s vertical speed component. Since the ROCD changes with altitude, it is necessary to compute
its rate of change with time. The latter consists of the vertical component of the aircraft’s acceleration
acv and it is calculated by interpolating between the current (FLc) and next (FLn) flight level, the rate of
climb and descent Rc and Rn, respectively. Based in equation 3.12 the interpolation equation is expressed
as follows:

acv =
1
2
× R2

n−R2
c

FLn−FLc
(3.14)

After determining the aircraft’s vertical acceleration the BTF model computes, based in equation 3.9,
the time tc the aircraft took to travel from FLc to FLn :

tc =
Rn−Rc

acv
(3.15)

The longitudinal component of the aircraft’s acceleration acl is determined, based on equation 3.9,
measuring the variation of TAS between the current and the next FL, TASc and TASn respectively:

acl =
TASn−TASc

tc
(3.16)
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The longitudinal distance dcl that the aircraft flew during the ascent between the current and next FL,
can be calculated based on equation 3.11, and thus be obtained by:

dcl = TASc× tc +
1
2
×acl× t2

c (3.17)

The aircraft’s trajectory angle γc is obtained by:

γc = arcsin
(

FLn−FLc

dcl

)
(3.18)

The ground distance dcg is obtained projecting the longitudinal distance dcl on the horizontal plane:

dcg = dcl× cos(γc) (3.19)

Finally, for the climb phase, the BTF model derives the amount of fuel consumed using a similar
approach. It first calculates the variation of the fuel flow Fc f during the time interval tc, according to:

Fc f =
fcn− f cc

tc
(3.20)

where fcn and fcc are the fuel flow for the next and current flight levels. The total amount of fuel
consumed Cc during the time interval tc is obtained using:

Cc = fcc× tc +
1
2
×Fc f × t2

c (3.21)

During the climb phase, the interpolation procedure will terminate when the aircraft reaches the cruise
FL. For some aircraft models there are no data points for the specific cruise FL, for instance for an A320
that will cruise at FL340 the PTF only has data points (TASc, Rc and fc) for FL330 and FL350. Figure 3.3
depicts the interpolation between FL330 and FL340.

Fig. 3.3 Climb between flight levels FL330 to FL340
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In the next part the BTF model will calculate for the descent phase the values of the vertical accelera-
tion adv, time of descent td , longitudinal acceleration adl , longitudinal distance ddl , aircraft’s trajectory
angle γd , ground distance ddg, fuel flow variation Fd f and total amount of consumed fuel Cd . The de-
scent phase is symmetrical to the climb phase, thus in the descent phase the BTF model will interpolate
between flight levels, starting at cruise altitude until 3000 feet (FL30), since from there on the BTF
model will be using EMEP/EEA to compute the approach, landing and taxi-in phases. The reason for this
procedure derives from the fact the EMEP/EEA data set aggregates in a single phase approach and landing.

Finally, for the cruise phase, the BTF model initially calculates the ground distance dg that it is needed
to be covered using:

dg = d− (dcg +ddg) (3.22)

To calculate the time tcr that it takes to fly the ground distance the BTF model assumes that its value is
the same as the one the aircraft will travel. The value for the TAS can be obtained directly from the PTF if
the cruise FL is present, otherwise the BTF model interpolates between the two pairs, lower and upper FL
and lower and upper TAS. Thus the cruise time tcr is obtained by:

tcr =
dg

TAS
(3.23)

Similarly, the value for the fuel flow (Φ) during the cruise phase can be obtained directly from the
PTF if the cruise FL is present, otherwise the BTF model interpolates between the two pairs, lower and
upper FL and lower and upper Φ. Thus, the consumed fuel F during the cruise phase is obtained by:

F = Φ× tcr (3.24)

With the final equation 3.24 the BTF model achieves a complete integration of all phases of a flight.
The next section calculates for each of them the start and end time, consumed fuel, start and end altitude
and ground distance.

3.4 Computational Results

In our numerical experiments, the BTF model computed for a discrete set of time instants the values for
fuel flow, altitude, and ground distance. Table 3.3 describes the flight block, grouped in seven phases, for
the flight between CDG in Paris and BCN, operated by a Airbus A320 aircraft.

For clarity purposes, the next subsections describe the previous flight in detail, namely in Subsection
3.4.1, the variation through time of the fuel flow. Since it was possible to obtain flight data from
FlightAware™ Flight Track Log (AFR1148, 2019b), Subsection 3.4.2 compares the results for the altitude
profile and in Subsection 3.4.3 ground distance versus the time. Subsection 3.4.4 presents the exploratory
data analysis of the results using the distance data set from the ROADEF 2009 Challenge. Subsection 3.4.5
compares the results for the BTF model with those presented in the literature review. Finally, Subsection
3.4.6 compares the BTF results with those used by the flight planning software Lido™.
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Table 3.3 Flight block

Phase Start time
[min]

End time
[min]

Consumed
fuel [Kg]

Start altitude
[FL]

End altitude
[FL]

Ground dis-
tance [Km]

Taxi-out 00:00 17:34 219.3 0 0 0
Take-off 17:34 18:16 95.1 0 0 0
Climb 18:16 40:20 1634.9 0 360 271.1
Cruise 40:20 68:43 1016.0 360 360 391.5
Descent 68:43 84:41 120.8 360 30 177.4
Approach
and land-
ing

84:41 88:41 149.8 30 0 19.4

Taxi-in 88:41 93:48 63.9 0 0 0
Total 3299.6 859.4

3.4.1 Fuel flow vs. Time

Figure 3.4 depicts in detail, the pattern of each of the seven phases. From the initial instant to 17:34 it
is possible to observe a flat fuel flow for the taxi-out phase, after which there is a sharp increase for 42
seconds corresponding to the take-off phase. After the aircraft takes off the fuel flow will start to decrease
for 22 minutes and 6 seconds, until the aircraft reaches cruising altitude. When the aircraft reaches cruise
altitude the fuel flow will first decrease instantly and then will become a flat line for 28 minutes and 23
seconds until the aircraft starts the descent phase. When the aircraft starts the descent phase the fuel
flow again decreases abruptly and increases very slowly for the next 15 minutes and 58 seconds until
the aircraft starts the approach and landing phase. During the approach and landing phase the fuel flow
will increase instantaneously and maintain flat rate for 4 minutes. Finally, after landing, the aircraft will
initiate the taxi-in phase. This phase will have a duration of 5 minutes and 7 seconds and the fuel flow
will be constant. The fuel flow presented in the our model not only is consistent to the one presented by
(Alam et al., 2009), but it also extends the work of these authors by including taxi-out, take-off and taxi-in
phases.

3.4.2 Altitude vs. Time

Figure 3.5 compares the results for the altitude profile for the BTF model and the values retrieved from
FlightAware™ Flight Track Log (AFR1148, 2019b). FlightAware™ provides the information for each
flight; the aircraft’s location and speed sampling occur at approximately each minute, providing an
extensive flight profile. The end time value retrieved from FlightAware™ flight (AFR1148, 2019a), for
the taxi-out phase is 11 minutes however there is no data regarding the duration for the take-off. It is
possible to verify that the BTF model, takes 6 minutes and 34 seconds longer for the taxi-out phase.
As for the climb phase, the FlightAware™ flight ends 6 minutes and 55 seconds earlier and in terms of
duration takes 22 minutes and 30 seconds whereas the BTF takes 22 minutes and 6 seconds. The FL
configured for the BTF model to end the climb phase (and thus start the cruise phase) is FL360, however
the FlightAware™ flight ends the climb phase at FL341.
In respect to the cruise phase, as already mentioned, the FlightAware™ FL is lower than the BTF model.
Added to the latter the duration for FlightAware™ is 36 minutes and 36 seconds whereas the BTF model
takes 28 minutes and 23 seconds. In conclusion, the cruise phase finishes 1 minute and 21 seconds earlier
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Fig. 3.4 A320 aircraft fuel flow vs. time during the flight CDG-BCN

than FlightAware™ .
As for the descent phase our model starts earlier and it is important to refer that since it is an exact represen-
tation of BADA’s PTF file it will not fit perfectly the usual descent profile depicted by FlightAware™ data.
In the descent phase, aircraft are piloted to glide as much as possible to save fuel, hence the descent phase
for FlightAware™ shows clearly changes in the slope. It is also possible to observe from FlightAware™
data that, in the time interval from 89 to 94 minutes, the altitude remains constant at FL 57. This can be
explained as an holding period for which the aircraft had to wait until it was given authorisation by the air
traffic controllers to complete the descent phase and land safely.
For time comparison purposes the BTF model aggregates the descent and approach and landing phases.
The duration for the BTF model is 12 minutes and 18 seconds less than FlightAware™ . As a consequence,
the FlightAware™ flight lands 13 minutes and 5 seconds later that the BTF model.
Finally for the taxi-in phase, the BTF model takes 5 minutes and 7 seconds whereas FlightAware™ takes
3 minutes and 12 seconds.
On the overall the block time difference between the FlightAware™ flight and the BTF model is 11
minutes and 11 seconds.

3.4.3 Ground Distance vs. Time

In terms of ground distance covered, in figure 3.6 it is possible to observe, that it varies linearly with time
soon after the aircraft take-off until the end of the descent phase at FL30. However, after taking off the
aircraft in the BTF model flies faster than FlightAware™’s and overruns it at a distance of 400 kilometres
and at instant 47 minutes.
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3.4.4 Benchmarking the BTF Model Results Against ROADEF 2009 Challenge

Every two years the French Society of Operational Research and Decision Making releases the ROADEF
Challenge, which consists on a competition to solve a complex optimisation problem that occurs in
industry. In the ROADEF 2009 Challenge there is a step-wise simplification of a model, for disruption
management in commercial aviation that aims at finding recovery planning of flights, aircraft assignments
and passengers (including flight leg cancellation) on a given maximal horizon, so that a sum of penalties
corresponding to various costs or discomforts is minimised.
The ROADEF Challenge 2009 provides a data set with the duration of flights between an origin and a
destination airport; however, these values do not have in consideration the aircraft model.
This section compares the BTF model results for block time with those supplied by the ROADEF 2009
Challenge (see table in Appendix A.1 for the extended result set). The sample has a total of 60 distinct
flight tuples consisting of origin airport, aircraft model and destination airport and retrieved the real flight
block time distribution from (Flightaware, 2019) between the 7th and the 23rd of July 2019.

The comparison methods that are used consist of percentile versus distance and root mean square error
versus distance. Figure 3.7 illustrates the block time percentile of the BTF model and ROADEF versus
the ground distance. This graph gives the percentage of block time retrieved from (Flightaware, 2019)
that are below the block time values of the BTF model or the ROADEF 2009 Challenge. The number of
percentile values less than 100 presented in the BTF model exceeds those presented by ROADEF 2009
Challenge, which leads us to conclude that our results for block time can be used as a lower bound for
simulation or validation procedures.

Fig. 3.7 Block time percentile for the BTF model and ROADEF, benchmarked to FlightAware™ vs.
distance
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Figure 3.8 illustrates RMSE for the BTF model and ROADEF 2009 Challenge versus the ground
distance. The RMSE for each flight’s block time is obtained using equation 3.25:

rmsei f =

√
∑

k
n=1(tn− ti f )2

k
, i = 1,2, f = 1...60 (3.25)

where k is the sample size for each flight f , tn is the block time retrieved from (Flightaware, 2019) and t is
the block time value either from the BTF model (i = 1) or the ROADEF 2009 Challenge (i = 2).

Fig. 3.8 Block time RMSE for the BTF model and ROADEF, benchmarked to FlightAware™ vs. distance

The RMSE for the BTF model and the ROADEF 2009 Challenge, confirms that the percentile results,
in the sense that the BTF model presented a larger set of lower values than the one presented by ROADEF.

As for the results regarding consumed fuel it is not possible to make the full comparison between the
BTF model and the ROADEF 2009 Challenge since it does not have this data.

3.4.5 Comparing the BTF Model Results and Literature Review

This section compares the results obtained using the BTF model and those published in the literature
review. The BTF calculates the fuel consumed by an aircraft considering each flight phase encompassed
in the flight, from the origin to the destination airport gates. The cruise FL is derived from the physical
distance between the origin and destination airports.
The work of (Oruc and Baklacioglu, 2020) consists in determining a fuel flow function for the climb
phase, for a Boeing 737-800. In respect to the latter, the BTF model uses the fuel flow data provided by
BADA, in the performance table for the Boeing 737-800. The authors modelled the fuel function for five
flights, and made the respective error analysis. Since it is not possible to have access to the TAS values the
authors used to derive the fuel function, one cannot make the exact comparison between the values used
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for the BTF and those obtained using the CSA or the real ones. However, since the authors published the
graphs of fuel flow versus altitude, one can make a qualitative comparison by superimposing the values
used in the BTF model. Using this method one can observed that, with the exception of flight five, the
values used in the BTF model are in close accordance with those derived by the CSA and the real ones, as
demonstrated in Appendix A.2 .

Table 3.4 compares the results of (Murrieta-Mendoza et al., 2017) with those obtained using the BTF
model.

Table 3.4 PSO and BTF results

Consumed fuel Relative difference
Flight Geodesic [Kg] Optimal [Kg] BTF [Kg] Diff. Geodesic [%] Diff. Optimal [%]
Montreal (YUL)
Paris (CDG)

28,076 26,976 31,929 13.7% 18.4%

Toronto (YYZ)
London(LDH)

28,846 27,633 32,931 14.2% 19.2%

Montreal (YUL)
Vienna (VNN)

31,154 29,727 37,250 19.6% 25.3%

In the work of (Murrieta-Mendoza et al., 2017) there is no explicit reference to which phases, or aircraft
models considered when modelling fuel burn using the geodesic or the optimal trajectory. The assumption
is that the authors considered only CCD phases and, regarding the aircraft models our assumption is based
on our research of FlightAware™ for the most common aircraft models used on the same flights namely
the Boeing 787-900 for the flights from Montreal to Paris and Toronto to London. Regarding the latter,
the authors, refer to the flight from Toronto to London using the International Air Transport Association
(IATA) airport codes YYZ and LDH respectively. After checking IATA codes it was not possible to
find out any airport in London with such IATA code, hence it was assumed London Heathrow (LHR)
airport. As for the flight from Montreal to Vienna, since it was not possible to find any direct flights,
it was considered the aggregated consumed fuel from two legs, the first from Toronto to Amsterdam
using a Airbus 330-200, and the second one from Amsterdam to Vienna using a Boeing 737-800. As
for the results it is possible to observe relative differences that range from 13.0% to 25.3% which can be
accounted mainly for the fact that neither the aircraft models, neither the flight levels for the cruise phase
are provided in their work.
In the work of (Hartjes et al., 2018) the authors modelled the flights, from London to Atlanta and from
Madrid to New York, using a Boeing 747-400. The comparison between the results of the BTF model and
those presented in (Hartjes et al., 2018) requires the same aircraft model and the precise airport locations
for each of the flights, as shown in table 3.5.

Table 3.5 Solo flight, formation flight and and BTF results

Solo flight Formation flight BTF model
Consumed
fuel [Kg]

Time
[h]

Distance
[Km]

Consumed
fuel [Kg]

Time
[h]

Distance
[Km]

Consumed
fuel [Kg]

Time
[h]

Distance
[Km]

London (LHR)
Atlanta (ATL)

79,093 7.92 6,760 75,530 8.09 6,825 77,051 8.18 6,768

Madrid (MAD)
New York (JFK)

66,239 6.80 5,760 67,238 6.90 5,835 65,989 6.98 5,768
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In the work of (Hartjes et al., 2018) during the cruise phase, the fight level increases with time and
TAS decreases with time. The BTF model assumes that the cruise altitude is FL380 and that the TAS
has a constant value 451 Kts. Although these distinctions exist, one can see that the relative differences,
presented in table 3.6, between the results of work of (Hartjes et al., 2018) and the BTF model are minimal.
The latter observation leads to the conclusion that, the more information, the better the fit between real
values, for solo flights and, the BTF model. Finally, the consistent pattern, even though negligible, is that
the BTF time is always greater than the ones presented for solo or formation flights.

Table 3.6 Solo flight, formation flight and and BTF relative differences

BTF vs. Solo flight BTF vs. Formation flight
Consumed
fuel [Kg]

Time
[h]

Distance
[Km]

Consumed
fuel [Kg]

Time
[h]

Distance
[Km]

London (LHR)
Atlanta (ATL)

-1.3% 3.3% 0.1% 3.3% 1.1% -0.8%

Madrid (MAD)
New York (JFK)

-0.9% 2.6% 0.1% -0.6% 1.2% -1.1%

3.4.6 Comparing the BTF Model Results with Lido™

Lido™ consists of a software solution from Lufthansa Systems™ that offers extensive automation and
optimisation functions for flight planning and control processes. Lido™’s flight plans are very extensive
documents with information regarding the aircraft, the route and the weather.

This section compares the BTF model results for block time and consumed fuel, against Lido™’s
flight plans. Figure 3.9 consists of the front page of the flight plan TP446/15/LIS/ORY. According to this
flight plan the aircraft departs from Lisbon’s Humberto Delgado Airport (IATA code: LIS, ICAO code:
LPPT) and arrives in Paris’ Orly Airport (IATA code: ORY, ICAO code: LFPO). It is assumed that the
flight’s block time that is going to be used in our comparisons is the difference between the Estimated
Time of Departure (ETD) at 19:40 and the Estimated Time of Arrival (ETA) at 22:08. The fuel consumed
during the flight is the difference between the Planned (PLN) TOW and the PLN Landing Weight (LW),
61,303 and 56,518 Kg respectively, plus the fuel mass consumed for 14 minutes of taxi-out (TAXI), 168
Kg. The flight plan does not provide the mass of fuel consumed during the taxi-in. The time the flight plan
takes to do taxi-in is the difference between ETA and the Estimated Landing Time (ELDT), 3 minutes.
Since the flight plan does not provide the mass of fuel during taxi-in, it will not be considered in the
comparisons. Finally, instead of using the physical distance between origin and destination airports, the
distance between the airports used in the BTF model is the Air Distance (AIR DIST) 806 nautical miles.
This is justified by the fact that the AIR DIST is the distance through the air, hence based on the aircraft
speed through the air. If the aircraft has a tailwind, that means the air mass is moving along with the
aircraft, thus decreasing the actual distance through air to get from the origin to the destination airport. As
a corollary a tailwind effectively decreases the flight plan air distance while a headwind increases it. In
conclusion by assuming this assumption it is possible to account for the effect of the wind.

Appendix A.3 provides the remaining Lido™’s flight plan extracts for the flights that are being
compared with the BTF model. Table 3.7 presents the comparison between the results obtained for block
time and consumed fuel. It is possible to observe significant differences
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Fig. 3.9 Lido flight plan TP446 for the Lisbon, Orly flight

Table 3.7 Comparing block time and consumed fuel between the BTF model and Lido™’a flight plans

BTF model Lido flight plans Relative difference
Flight Block time

[min.]
Consumed
fuel [Kg]

Block time
[min.]

Consumed
fuel [Kg]

Block time Consumed
fuel

TP757/15/CPH/LIS 237 8651 233 8629 1.69% 0.25%
TP946/20/LIS/GVA 158 5467 167 5929 -5.70% -8.45%
TP672/17/LIS/AMS 168 6110 177 6230 -5.36% -1.96%
TP586/17/LIS/CGN 168 6183 176 6134 -4.76% 0.79%
TP446/15/LIS/ORY 135 4958 148 4953 -9.63% 0.10%

To better understand the results in table 3.7, figure 3.10 plots the block time relative differences vs.
BTF block time, figure plots 3.11 the block time relative differences vs. air distance, figure plots 3.12
consumed fuel relative differences vs. BTF block time and, figure 3.13 plots consumed fuel relative
differences vs. air distance. The respective linear regression was added and the goodness-of-fit measure
for linear regression value R2 is calculated. It is possible to verify a significant goodness-of-fit for the
linear regression for block time relative difference vs. BTF block time and, block time relative difference
vs. air distance. However, for consumed fuel relative difference vs. BTF block time and, consumed fuel
relative difference vs. air distance, the R2 value is very low, hence the linear regression does not explain
the variation in the consumed fuel relative difference.

In conclusion, the observed relative differences for consumed fuel cannot be entirely accounted by
block time or air distance. Factors such as meteorology play an important role in flight planning and
aircraft trajectory optimisation (Cheung et al., 2015), (Lindner et al., 2020). Weather conditions for all
altitudes such as wind’s direction and speed, cloud cover, visibility, and precipitation influence block
time and fuel consumed during a flight. Additionally, fog, snow, ice, and crosswinds mean that air traffic
controllers have to increase the gap between planes that are landing, reducing the number of aircraft that
an airport can manage. The same weather can make it slower and more difficult for the aircraft to taxi
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Fig. 3.10 Block time relative difference vs. BTF block time

Fig. 3.11 Block time relative difference vs. Air distance

between the runway and the terminal building. Therefore, weather conditions and uncertain weather
forecasts might induce the necessity to re-optimize ground movements and the trajectory during the flight.
However, the re-optimisation leads to a complexity increase in the flight planning model, which must
be balanced with the benefit of the re-optimisation. From this follows the option for not accounting for
weather conditions in the BTF model, since it would require access to real-time weather forecast and a
substantial increase of computing time. Another important factor that should be accounted for in flight
planning is the aircraft’s weight. Weight is a force that acts on the aircraft and is always directed toward
the centre of the Earth. The magnitude of the weight depends on the mass of all the aircraft parts, plus
the amount of fuel, plus any payload on board (people, luggage, freight, etc.). During the flight as fuel is
consumed the aircraft’s weight decreases, however the BTF model assumes that the weight of the aircraft
during the flight does not change, therefore the modelling uses the same mass level during the entire flight.
Including the aircraft weight change in the modelling, would mean the possibility of mass level change
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Fig. 3.12 Consumed fuel relative difference vs. BTF block time

Fig. 3.13 Consumed fuel relative difference vs. Air distance

during the flight, which would result in changing the data points for ROCD, TAS and fuel flow used by the
BTF. The complexity of the algorithm would become extremely high since the mass level change could
happen at any point of the trajectory. The former requires a structural change in the algorithm, which can
only be considered in the scope of future work.

To further compare the BTF and Lido™ values for block time, figure 3.14 presents the percentile for
each of the flights when compared with the distribution retrieved by FlightAware™.

Similarly, figure 3.15 illustrates the RMSE of the BTF model and Lido™ for block time when
compared with FlightAware™, versus the ground distance.

The complete set of results are presented are presented in table A.3. As for the plots, it is possible to
observe that they are in line with those obtained for ROADEF in figures 3.7 and 3.8. Again it possible to
observe lower percentile and lower RMSE for the BTF.



3.5 Conclusion and Future Work 53

Fig. 3.14 Block time percentile for the BTF model and Lido ™ vs. distance

Fig. 3.15 Block time RMSE for the BTF model and Lido ™ vs. distance

3.5 Conclusion and Future Work

This chapter models flights integrating each of its composing phases starting from the departure gate
and ending at the arrival gate. The BTF model integrates the ground movements using the data from
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EMEP/EEA emissions data set with BADA aircraft performance data tables. To model the flight when the
aircraft is airborne the BTF model uses Newtonian Mechanic. It is assumed the Earth as a perfect sphere
and to calculate the distance between the origin and destination airports the Haversine formula is used.

As a general rule, the aircraft reaches its FL, then its cruising speed, in that order. From the moment
the FL is reached, the excess thrust (compared to the drag) would accelerate the aircraft, however the BTF
uses constant cruise speed. Additionally, due to the loss of mass (due to fuel burn) the lighter aircraft
would tend to climb, however the BTF does not consider this and, during the cruise phase the altitude
does not vary. Similarly, the BTF does not account for the change in the mass level and only uses the
nominal mass level ROCD and fuel flow. As for the descent it is assumed that it is continuous in the sense
that trajectory does not have periods in which it is flat. In reality in this phase there are periods in which
pilots will correct the descent trajectory making it a stable flat line for short periods.

Although the ROADEF 2009 Challenge provides a complete data set to model airline disruption, it
lacks data regarding the operational characteristics for the aircraft, namely the amount of fuel consumed
during a flight. In order to overcome this shortage, this thesis uses the values obtained from literature
review, and it was possible to concluded that the BTF model results have a good fit for time and consumed
fuel for the CCD phases, provided that the inputs for origin and destination airports, and also the aircraft
model are known. To extend the validation of the BTF results, block time and consumed fuel comparisons
are made with Lido™ flight plans. It is possible to conclude that the BTF shows a good fit and that the
differences in the block time can be accounted for. As for the observed differences in consumed fuel
further investigation should be made in future work to reflect the effects of mass level changes during the
flight.

It is possible to conclude that aggregating EMEP/EEA data with BADA PTF data files provides a
simple and fast approach to calculate block time and consumed fuel. Hence, it is possible to confirm the
conclusion of (Alam et al., 2009) that, BADA fuel flow tables are a good approach when computational
cost is a factor. Using this method one was able to extend the work of (Alam et al., 2009), (Murrieta-
Mendoza et al., 2017) and (Hartjes et al., 2018) not only in terms of the number flights evaluated but also
for all the flight phases.

Finally it was also possible to conclude that the BTF model can calculate block times lower than those
used in the ROADEF 2009 data set but still on 90th percentile when compared with real ones obtained
using Fligtaware™. In Chapter 5 the values used in the ROADEF Challenge 2009 for block time, will be
replaced with those obtained from the BTF results in order to study the impact of smaller block times in
the ARP.



Chapter 4

The Constructive Heuristic for the
Aircraft Recovery Problem

4.1 Introduction

The financial objective of airline companies is maximising their profits while operating flights according to
a schedule. Therefore, airlines create tight schedules to increase their profitability. These tight schedules,
have a minimum slack between flight legs, because they rely on the assumption that the flight legs will be
operated to the planned rotation. A rotation consists in assigning an aircraft to a flight schedule while
complying with operational constraints such as, aircraft maintenance, flight continuity, turn-round time
and airport capacity for departure and arrival.

In case of disruptions, it is necessary to recover the rotation during the period of time designated
by the Recovery Time Window (RTW). During the RTW it is necessary to find a feasible rotation that
mitigates the impact of disruptions. This process is designated by disruption recovery.

Disruption recovery is a real-time practice that requires finding a fast solution when irregularities
occur. Often, disruptions take place during operations (i.e., only in few cases, it is possible to know a
disruption in-advance), and a provisional plan must be provided quickly. Thus, it is necessary to construct
efficient algorithms to have feasible solutions in minutes, moreover because when disruptions occur, they
can affect more than just the directly disrupted flight and can send a shockwave of disruptions through the
network.

When building a feasible solution for a disrupted aircraft rotation it is mandatory to satisfy the model’s
constraints, therefore a disruption recovery procedure is a CSP. CP is a method for solving CSPs. CP uses
consistency techniques (so-called constraint propagation) that can effectively reduce the search space and
early identify inconsistencies, along the search, by deduction, (Hooker and van Hoeve, 2017).

The contribution of this chapter consists of modelling the ARP as a CSP and implement the recovery
for large data instances in a reduced computing time using CP and CPr.

The structure of this chapter is as follows, Section 4.2 introduces the ARP model, Section 4.3 describes
the CP concepts that are in the base of the CHARP, Section 4.4 presents all the algorithms of the CHARP,
Section 4.5 presents the computational results for the CHARP under two scenarios, Section 4.6 presents
the comparison between the CHARP and published work, and finally the conclusions obtained and future
work are presented in Section 4.7.
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4.2 Aircraft Recovery Problem Model

The ARP can be defined as the problem of modifying the aircraft rotation to compensate the presence of
disruptions during operations that make the rotation infeasible. The strategy to overcome the disruptions,
can only be implemented during the RTW. The ARP model presented in this section follows the ROADEF
2009 Challenge and uses its data set (see Appendix B.1) to run the experiments. This data set has thirty
two data instances divided into three sets A, B and X . In respect to the dimension of the problem, the
smaller instances have 608 flights whereas the biggest have 2,178 flights distributed for RTWs spanning 1
to 3 days. These flights are operated by a proportional number of aircraft, for the smaller instances 85
and for the biggest 255. As for the number of airports, it varies from 35 to 168 and finally the number of
itineraries is distributed between 1,943 for the smaller instances and 28,308 for the biggest. Each of the
data instances has scenario combining disruptions for flights, aircraft and airport capacity. In the following
subsections we will describe each of the data instances’ sets that are being used to model the ARP.

4.2.1 Nomenclature for the ARP

The purpose of this subsection is to introduce the sets, parameters and iterators that oft the ARP, tables
4.1, 4.2 and 4.3 respectively.

Table 4.1 ARP sets

Sets Description
A Airport set
∆ Block time set
P Aircraft set
φ Flight set
ρ Rotation set
D Flight disruption set
B Aircraft disruption set
R Airport disruption set

Table 4.2 ARP sets’ iterators

Iterator Description
a Airport iterator
h Time window iterator
δ Block time iterator
p Aircraft iterator
i Flight leg iterator
d Flight disruption iterator
b Aircraft disruption set

4.2.2 Airport Departure and Arrival Capacity

The key infrastructure in commercial aviation consists of airports. In this problem, they have also an
essential role since their capacity consists of a hard constraint that limits the maximum number of arrivals
and departures per hour. The airports form a set A. For each a ∈ A and for each window h⊆ RTW , the
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Table 4.3 ARP parameters

Parameter Description
clh

a Maximum number of airport arrivals
c jh

a Maximum number of airport departures
δa1a2 Block time between airports a1 and a2
Op Origin airport for aircraft p
ρo

p(i) Origin airport fro the ith flight leg for aircraft p
ρ

f
p (i) Destination airport for the ith flight leg for aircraft p

ρd
p(i) Scheduled departure time for the ith flight leg for aircraft p

ρa
p(i) Scheduled departure time for the ith flight leg for aircraft p

t Delay [minute]
s Starting time of an aircraft disruption
e End time of an aircraft disruption
z Affected airport activity
c Airport new capacity
H Day time [hour]

value clh
a is the maximum number of arrivals that can occur during the time window h at airport a and c jh

a

the maximum number of departures. It is necessary to discretise these hourly capacities to incorporate
them within the model’s formulation. For example, the recovery time window between [12:00,16 : 00[
comprises four unit time windows, and as an illustration, if the departure capacity of an airport between
[14 : 00,15 : 00[ is equal to 3, this indicates there can be at most three flights departing form this airport
between 14:00 and 14:59.
The A set encodes for each element the departure and arrival airport capacities, which correspond to
a maximum number of operations allowed per one-hour interval, for a typical day. These thresholds
depend upon the time of day (peak time, normal time, night time, possible curfew). Each airport is coded
according to IATA codes, followed by a series of quadruples specifying the capacities associated with
each time period. Capacities are non-negative integers, and the time periods are characterised by two
entries of type “time” corresponding to the start time and end time of the period e.g.:

NCE 0 0 00:00 03:00 5 0 03:00 07:00 20 20 07:00 19:00 5 10 19:00 21:00 0 0 21:00 00:00

The above example describes a typical day (in Greenwich Mean Time (GMT)) for Nice Côte d’Azur
Airport (NCE):

• Neither departures nor arrivals between 21:00 and 3:00.

• Maximum 5 departures per one-hour interval [H, H + 1[ between 3:00 and 7:00 (and no arrivals).

• Maximum 20 departures and 20 arrivals per one-hour interval [H, H + 1[ between 7:00 and 19:00.

• Maximum 5 departures and 10 arrivals per one-hour interval [H, H + 1[ between 19:00 and 21:00.

For simplicity, some real constraints are not taken into account in the problem (e. g. the maximum
number of aircraft in the airport surface).
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4.2.3 Block Time Between Airports

The ∆ set encodes the block time for each airport pair, as well as the flight type. More exactly, for
each airport pair ⟨a1,a2⟩ ∈ A,a1 ̸= a2, the block time between a1 and a2 is δa1a2 ∈ ∆. Note that, for a
given airport pair, the flight times may depend on the direction of the flight. Each element δ ∈ ∆ has the
three-letter IATA codes of the origin and destination airports, the flight time and the flight type e.g.:

CDG NCE 95 D

NCE CDG 95 D

The above example provides the block time between NCE and CDG (95 minutes in both directions) and
specifies that the flight is domestic (D).

4.2.4 Aircraft specification

Let P denote the set of aircraft, where each aircraft p ∈ P has the following set of operational characteris-
tics:

• Aircraft type: it defines the family, model, and configuration; subsets of aircraft with common
characteristics are grouped within families (e. g., A318, A319, A320, and A321 in the Airbus Small
family). Operational characteristics are common to all aircraft of a given model: turn-round time,
transit time, range, and set of possible configurations. The configuration provides the number of
seats for each cabin class, economic, business and first.

• Transit time: corresponds to the minimum time between the arrival and departure of multi-leg
flight operated by the same aircraft. The advantage of this configuration is that it allows for a
reduction in the time necessary to prepare the aircraft for the second leg.

• Turn-round time: defines the minimum idle time between two different consecutive flights operated
by the same aircraft.

• Scheduled maintenance: an aircraft needs to undergo scheduled maintenance on a specified airport
during a period of time, in which it is unavailable for flight duty, and a maximum allowable flying
range before the maintenance is due.

Each aircraft p ∈ P encodes the following characteristics e.g.:

A320#1 A320 AirbusSmall 0/20/150 480 1500.0 30 30 CDG CDG-10/01/08-14:00-10/01/08-20:00-900

A320#2 A320 AirbusSmall 10/30/110 480 1500.0 30 30 NCE NULL

TranspCom#1 TranspCom TranspCom -1/-1/-1 60 0.0 5 5 CDG NULL

TranspCom#2 TranspCom TranspCom -1/-1/-1 60 0.0 10 10 ORY NULL

The above example provides the characteristics of the first two Airbus A320 in the fleet. Note that
they have several common characteristics, but their configurations are different. The first one is located in
CDG, and must undergo maintenance there on 10/01/08 between 14:00 and 20:00 (it cannot fly more than
15 hours between two consecutive maintenance actions). The second one is located in Nice and has no
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planned maintenance. The remaining two consist of surface transportation vehicles 1 and 2. Both of them
belong to the family TranspCom, have infinite seating capacities, and operating costs of zero. Vehicle 1 is
located at CDG in the beginning of the period, whereas vehicle 2 is in Orly Airport (ORY).They are not
accountable in terms of airport capacity.

4.2.5 Flights and Rotations

The flight set φ provides information regarding the flights operated by the airline. For each flight, the
following data is provided: unique identification number (strictly positive integer), origin and destination
airports, departure and arrival times, and the flight number of the preceding leg (strictly positive in the
case of multi-leg flights, 0 otherwise) e.g.:

1 NCE CDG 14:00 15:35 0

2 SIN LHR 15:20 05:30+1 0

3 LHR CDG 06:30 07:45 2

4 ORY CDG 08:30 09:00 0

The above example describes flight number 1, leaving from NCE at 14:00 GMT and arriving at CDG
at 15:35 GMT. It also describes the multi-leg flight from Singapore Changi Airport (SIN) to CDG via
London Heathrow Airport (LHR), composed of flights numbered 2 and 3. The first leg (intercontinental)
leaves from SIN at 15:20 GMT and arrives at LHR at 5:30 GMT the following day; the second flight
(continental) departs LHR at 6:30 GMT and arrives in CDG at 7:45 GMT. The last line describes flight
number 4 from ORY to CDG, corresponding to a surface transportation “flight”.

The ρ set describes rotations for all aircraft throughout the planning period. Each flight is uniquely
defined by a flight number (strictly positive integer) and a departure date. The aircraft operating the flight
is also provided. The lines are grouped by aircraft and sorted chronologically for each aircraft e.g.:

2 20/01/08 B747#5

3 21/01/08 B747#5

2 21/01/08 A340#2

3 22/01/08 A340#2

4 21/01/08 TranspCom#2

The above example describes the rotations of the Boeing 747 number 5, the Airbus A340 number 2,
and the surface vehicle number 4 throughout the recovery period, which is from 20/01/08 to 21/01/08.
These rotations consist of flights number 2 and 3 (multi-leg flights from SIN to CDG) on 20/01 and 21/01,
and of the surface trip from ORY to CDG on 21/01, respectively.

The result of the match between the φ set with the ρ , over the flight number, returns the aircraft fleet
rotation for the planning horizon. An aircraft p performs a rotation which is a sequence ρp of flight legs
starting from an origin airport Op. The ith flight leg in the aircraft rotation ρp(i) is defined as the direct
flight connecting an origin ρo

p(i) to a destination airport ρ
f
p (i) without any stop in between. Each of

these flights is also characterised by a scheduled departure time ρd
p(i) and an arrival time ρa

p(i). A ro-
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tation can be extended for several days and the recovery procedure can be made only made during the RTW.

4.2.6 Flight Disruptions

Flight disruptions, consists of multiple flight delays or cancellations. The set of flight delays D is such that
each delay d ∈D can be defined by a triplet ⟨p, i, t⟩ ∈ P×N+×N+ with p the affected aircraft, i the index
of the affected leg in ρp, and t the delay in minutes. The set of flight cancellations is defined by a couple
⟨p, i⟩ ∈ P×N+ with p the affected aircraft and i the index of the affected leg in ρp. The D set provides the
disruptions happening to flights operated by the considered airline, namely delays and cancellations. Each
impacted flight is uniquely identified by a flight number and a departure date. The information regard-
ing the flight disruption conists of the length of the delay in case of delay, and -1 in case of cancellation e.g.:

2 20/01/08 45

1 21/01/08 -1

The above example specifies a delay of 45 minutes on flight number 2 (SIN - LHR) on 20/01/08 and
the cancellation of flight number 1 (NCE - CDG) on 21/01/08.

4.2.7 Aircraft Disruptions

Aircraft mechanical failures or the absolute need of maintenance are the reasons for aircraft disrup-
tions. The set of aircraft disruptions B is such that each aircraft disruption b ∈ B forms a triplet
⟨p,s,e⟩ ∈ P×N+×N+ with p the affected aircraft, s the start of the aircraft’s period of unavailability and
e the end time of the aircraft’s unavailability period. The B set provides the periods of unavailability of
aircraft. Each element contains the aircraft identification number of the unavailable aircraft, the date and
time of the beginning of the period of unavailability, and the date and time of the end of the period of
unavailability e.g.:

A320#1 20/01/08 04:00 20/01/08 20:00

The above example mentions that the Airbus A320 number 1 will not be available between 4:00 and
20:00 on 20/01/08.

4.2.8 Airport Disruptions

Airport disruptions results in capacity reduction in the number of departures or arrivals per hour, caused by
inclement weather or industrial action. The set of airport capacity reductions R is such that each reduction
r ∈R is defined by a quadruplet ⟨a,h,z,c⟩ ∈ A×RTW ×{ j, l}×N+ with a the affected airport, h the
time window during which the capacity reduction occurs, z the affected activity (departure or arrival), and
c the new capacity. The R set provides the periods of temporary reductions in airport capacities. Each
element contains the three-letter code of the airport where the reduction occurs, the date and time of the
start of the period of reduction, the date and time of the end of the period of reduction, and the applicable
departure and arrival capacities during the period of reduction. The capacities are non-negative integers
e.g.:
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LHR 20/01/08 04:00 20/01/08 10:00 0 2

The above example corresponds to a scenario of dense fog in LHR: no departures and only two arrivals
are allowed per one hour interval [H, H + 1[ from 4:00 to 10:00.

4.2.9 Aircraft Constraints

Since this model is a simplification of the real problem, neither crew scheduling nor passenger re-
accommodation will be considered. The crew scheduling problem is an NP-hard optimisation problem
that must be solved under numerous constraints (Deveci and Demirel, 2016). Due to the difficulty of
solving the airline crew scheduling problem, it is generally divided into two sub-problems consisting of
the crew pairing problem (CPP) and the crew rostering problem (CRP). However, ideally it should be one
integrated problem and model. As for the passenger re-accommodation problem, it can be formulated as
follows: given a recovered flight and crew schedule and a set of disrupted passenger itineraries, re-assign
to each disrupted itinerary the (recovered) flights necessary (given seat availability) to accommodate
passengers from their current position to their destination while minimising cost. Add crew scheduling and
passenger re-accommodation would increase the complexity of the model, therefore increasing computing
time. Additionally, solutions that satisfy aircraft, crew, and passenger recovery would become harder to
find and substantially more costly.

Rotation continuity

A rotation ρp starting at the origin airport ρo
p(1) = Op, must be connected. In expression 4.1 for all flight

legs in the interval from the first flight to the open end of the rotation size, the arrival airport of the current
flight equals the departing airport of the next flight:

∀i ∈ [1, |ρp|[ , ρ
f
p (i) = ρ

o
p(i+1) (4.1)

|ρp| being the number of flights in aircraft p rotation

Turn-round Time

The aircraft p must respect the turn-round duration trp between the consecutive legs:

∀i ∈ [1, |ρp|[ , ρ
a
p(i)+ trp ≤ ρ

d
p(i+1) (4.2)

The same applies for transit time between multi leg flights.

Maintenance

The maintenance constraints are hard constraints. For a subset Pm ⊂ P, each aircraft p ∈ Pm must undergo
maintenance in a certain airport during a period of time.
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4.3 Constraint Programming Concepts and Applications

A constraint is simply a logical relation among several unknowns (or variables), each taking a value in a
given domain. A constraint thus restricts the possible values that variables can take, it represents some
partial information about the variables of interest. IBM, 2022 defines CP as the method of optimising a
function subject to logical, arithmetic, or functional constraints over discrete variables or interval variables.
The basic idea in constraint programming is that the user states the constraints and a general purpose
constraint solver is used to solve them. Constraints are just relations, and a CSP states which relations
should hold among the given decision variables.

A CSP P is defined by a triple P = ⟨X ,D ,C ⟩where X is an n-tuple of variables X = ⟨x1,x2, ...,xn⟩
D is a corresponding n-tuple of domains D = ⟨D1,D2, ...,Dn⟩ such that xi ∈ Di, C is a t-tuple of con-
straints C = ⟨C1,C2, ...,Ct⟩. A constraint C j is a pair ⟨RS j ,S j⟩ where RS j is a relation on the variables in
Si = scope(Ci). In other words, Ri is a subset of the Cartesian product of the domains of the variables in
Si (Rossi et al., 2006a).

A solution to the CSP P is an n-tuple A = ⟨a1,a2, ...,an⟩ where ai ∈ Di and each C j is satisfied in
that RS j holds on the projection of A onto the scope S j . In a given task one may be required to find the set
of all solutions, sol(P), to determine if that set is non-empty or just to find any solution, if one exists. If
the set of solutions is empty the CSP is unsatisfiable.

We will consider the algorithms for solving CSPs under two broad categories: inference and search,
and various combinations of those two approaches. If the domains Di are all finite, then the finite search
space for putative solutions is Ω =▷◁i Di (where ▷◁ is the join operator of relational algebra).

In inference techniques, local constraint propagation can eliminate large subspaces from Ω on the
grounds that they must be devoid of solutions. Search systematically explores Ω, often eliminating
subspaces with a single failure. The success of both strategies hinges on the simple fact that a CSP
is conjunctive: to solve it, all of the constraints must be satisfied so that a local failure on a subset of
variables rules out all putative solutions with the same projection onto those variables.

Many algorithms for solving CSPs search systematically through the possible assignments of values
to variables. Such algorithms are guaranteed to find a solution, if one exists, or to prove that the problem
is insoluble. Thus, the systematic search algorithms are sound and complete 1. The main disadvantage of
these algorithms is that they take a very long time to do so. As opposed, an incomplete method for solving
a general constraint satisfaction problem is one that does not provide the guarantee that it will eventually
either report a satisfying assignment or declare that the given formula is unsatisfiable. In practice, most
such methods are biased towards the satisfiable side: they are typically run with a pre-set resource limit,
after which they either produce a valid solution or report failure; they never declare the formula to be
unsatisfiable.

Generate and Test (GaT) method originates from the mathematical approach to solving combinatorial
problems. It is a typical representative of algorithms that search the space of complete assignments.
First, the GaT algorithm generates some complete assignment of variables and then it tests whether this
assignment satisfies all the constraints. The GaT algorithm search systematically the space of complete
assignments, i.e., it explores each possible combination of the variable assignments. The number of
combinations considered by this method is equal to the size of the Cartesian product of all the variable
domains.

1A proof system is sound if everything that is provable is in fact true, and complete if everything that is true has a proof.
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When a variable is instantiated a value from its domain is picked and assigned to it. Then constraint
checks are performed to make sure that the new instantiation is compatible with all the instantiations made
so far. If all the completed constraints are satisfied this variable has been instantiated successfully and we
can move on to instantiate the next variable. If it violates certain constraints, then an alternative value
when available is picked. If all the variables have a value noting that all the assignments are consistent the
problem is solved. If at any stage no value can be assigned to a variable without violating a constraint
backtracking occurs. In general, that means the most recent instantiated variable has its instantiation
revised and a new value if available is assigned to it. However, as it will be demonstrated in Section 4.4.8,
in the case of the CHARP it is necessary a search procedure to find the particular variable assignment that
needs to be revised.

CPr is aimed at transforming a CSP into an equivalent problem that is hopefully easier to solve. CPr
works by reducing the domain size of the variables in such a manner that no feasible solutions are ruled
out. The CHARP uses repeatedly CPr to satisfy constraints such as airport landing and arrival capacity
and, flight turn-round time, to reduce the size of the search space. By dramatically reducing the size of the
search space, CPr methods accelerates the search procedure Grönkvist (2006).

CSPs have associated constraint graphs where the nodes represent variables and the edges binary
constraints. The simplest degree of consistency that can be enforced on a CSP is node consistency which
concerns only the unary constraints. A CSP is node consistent if and only if for all variables all values
in its domain satisfy the unary constraints on that variable. If a CSP is not node consistent then there
exists a certain variable xi and a certain value a in its domain, such that value a does not satisfy the unary
constraints on variable xi. This means the instantiation of xi to d ∈ Di always results in an immediate
failure. In other words, value d is redundant and will not be in any solution tuples. In Section 4.4.4 we
make sure that every domain value satisfies airport departure and arrive capacity.

A stronger degree of consistency is Arc-consistency (AC). AC concerns the binary constraints in a
CSP and considers binary constraints between one pair of variables at a time. Arc (xi,x j) is arc consistent
if and only if for every value a in the current domain of xi there exists some value b in the domain of x j

such that xi = a and x j = b are permitted by the binary constraint between xi and x j. In this thesis the
rotation’s flights are represented by (flight) arcs. Subsection 4.2.9 introduced the turn-round constraint 4.2
and Subsection 4.4.5 describes the method used to enforce arc consistency and reduce the search space.

4.4 The Constructive Heuristic for the Aircraft Recovery Problem

Given the original aircraft rotation and a set of disruptions the CHARP creates a new combination of
aircraft routes during the RTW that minimises the two tiered objective, first number of flight cancellations
and second the amount of delay necessary to comply with the operational constraints. The next subsections
describe in detail the objective in Subsection 4.4.1, the algorithms that compose the CHARP, namely in
Subsection 4.4.2 the algorithm that creates the flights in the presence of flight or aircraft disruption, in
Subsection 4.4.3 the algorithm that checks the rotation’s feasibility, in Subsection 4.4.4 the algorithm that
computes the flight domains and intervals, in Subsection 4.4.5 the algorithm that propagates constraints
and enforces AC, in Subsection 4.4.6 the Lower Heuristic Algorithm (LHA), in Subsection 4.4.7 the
Upper Heuristic Algorithm (UHA), in Subsection 4.4.8 the Backtracking Algorithm (BTA), in Subsection
4.4.9 the Taxi Flights Algorithm (TFA), and finally in Subsection 4.4.10 the CHARP algorithm.



64 The Constructive Heuristic for the Aircraft Recovery Problem

4.4.1 Objective

Some of the recovery strategies that will be used consist of cancelling flights and delaying them. the cost
of flight cancellation is greater than the cost of flight delay, hence the objective of the CHARP is two
tiered, the first priority is to minimise the number of cancellations, expression 4.3, and the second priority
is to minimise the difference of minutes of delay for each recovered aircraft rotation, expression 4.4.

Min
|P|

∑
p=1

|ρ ′p|

∑
i=1

ρ
′d
p (i)[ρ ′dp (i) =−1] (4.3)

Min
|P|

∑
p=1

|ρ ′p|

∑
i=1

ρ
′d
p (i)−ρ

d
p(i) (4.4)

From the algorithmic standpoint the CHARP implements solutions as vectors whose elements are
either the option to cancel a flight, encoded as -1, or the amount of delay encoded as a non-negative integer.
Hence the best solution consists of the vector with the same size as the rotation’s part that needs to be
recovered. Each element of this vector is initialised with the cancellation value -1, afterwards Algorithm
1 guides, in each iteration, the search procedure towards the objectives 4.3 and 4.4. The inputs are the
best solution bestSol and the new solution row. bestSol encodes the amount of cancellation, minutes of
delay and the best solution. Every time a new solution is to be tested the algorithm calculates the number
of cancellations, the amount of delay, and encodes them into a new solution newSol, lines 1 to 3. Since
the amount of cancellation is a negative number, if the amount of cancellation for the new solution is
lower than the best solution the algorithm does not accept the new solution and returns null, lines 4 and
5. If the amount of cancellation for the new solution is equal to the amount of cancellation for the best
solution and, the amount of delay for the new solution is greater than the best solution, the algorithm
rejects the new solution and returns null, lines 6 and 7. Finally, if the above conditions are not respected
the algorithm returns the new solution, line 8.

Algorithm 1: Objective function
Input: bestSol,row
Output: newSol

1 noCancel← ∑i row(i), if row(i) =−1 /* The sum is a negative number */

2 totalDelay← ∑i row(i), if row(i) ̸=−1
3 newSol←{noCancel, totalDelay,row}
/* bestSol[0] has the amount of cancellation */

4 if newSol[0]< bestSol[0] then
5 return null
/* bestSol[1] has the amount of delay */

6 if (newSol[0] = bestSol[0])∧ (newSol[1]≥ bestSol[1]) then
7 return null

8 return newSol
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4.4.2 New Flights Algorithm

Before starting the New Flights Algorithm (NFA) (algorithm 2), the main algorithm checks the rotation
for cancelled flights or aircraft breakdown periods that also lead to flight cancellation. If these disruptions
exist, the main algorithm adds empty flight slots ρn

p, to the aircraft rotation ρp.
Algorithm 2 describes the creation of new flights in the case of aircraft disruption. The algorithm

receives as inputs the aircraft rotation, the block time set, the maximum flight number M, the aircraft
breakdown period, and the end time of the recovery window (RTWe). The algorithm will return the
aircraft rotation with the new flight and the updated maximum flight number. This algorithm starts by
initialising two sub-rotations containing available flight slots, the cancelled flights and the starting time
(that corresponds to the end time of the aircraft disruption Bpe) from which new flights can be created
(lines 1 to 3). Algorithm 2 will afterwards loop through the new flight slots and cancelled flights and
calculate the departure time and the flight time (line 6). If the departure time added to the flight time of
the new flight overshoots the end time of the RTWe, the loop breaks and the algorithm returns the rotation
with the new flights and the number of the last flight, otherwise the flight number is incremented, and the
new flight slot is updated (lines 11 to 15). Finally, the algorithm checks if the new flight’s arrival time
added with the transit time overshoots the end time of the recovery time window. If true, the algorithm
breaks the loop and returns the rotation with the new flights and the number of the last flight.

For flight cancellation, an identical algorithm can be derived from algorithm 2 by simply allocating
the new flight slots to those that were cancelled.

Algorithm 2: New Flights Algorithm
Input: ρp,∆,M,Bp,RTWe

Output: ρp,M
1 ρn

p ← Subset of available new flights in ρp

2 ρc
p← Subset of cancelled flights in ρp

3 start←Bpe /* End time of aircraft disruption */

4 for ρn
p(i),ρ

c
p(i) in ρn

p,ρ
c
p do

5 if i ̸= 0 then
6 start← ρna

p (i−1)+ trp

7 δo f ← ∆(ρco
p (i),ρc f

p (i))
/* Check if the departure is outside the RTW */

8 if start +δo f > RTWe then
9 break

10 M←M+1
11 ρn

p(i) = M/* Assign the new flight number */

12 ρnd
p (i)← start /* Departure time */

13 ρno
p (i)← ρco

p (i)/* Origin airport */

14 ρna
p (i)← start +δo f /* Landing time */

15 ρ
n f
p (i)← ρ

c f
p (i)/* Destination airport */

16 if ρna
p (i)+ trp > RTWe then

17 break

18 return ρp,M
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4.4.3 Feasibility Verification Algorithm

The CHARP’s next step uses the Flight Verification Algorithm (FVA) (algorithm 3) to traverse the rotation
and check if the following constraints are being respected:

• Flight schedule continuity.

• Transit or turn-round time between consecutive flights or transit time between multi leg flights.

• Departure and arrival airport capacity.

• Aircraft arrive on time for maintenance.

The algorithm receives as inputs the aircraft rotation and the airport set. The algorithm will verify
the infeasibilities in the rotation regarding, continuity, transit time, airport departure and arrival capacity,
and maintenance (lines 1 to 5). In line 6 the algorithm concatenates all the infeasibility sets in a single
set. If the latter is not empty it returns the rotation and the index of the first infeasibility, otherwise if the
rotation is feasible the algorithm returns an empty set and -1. Consequently, the rotation will be added to
the recovery solution, the departure and arrival airport capacity are updated and the algorithm loops to the
next aircraft.

Algorithm 3: Feasibility Verification Algorithm
Input: ρp,A
Output: ρp, index

1 in f 1← continuityFunc(ρp)

2 in f 2← ttFunc(ρp)

3 in f 3← depFunc(ρp,A)
4 in f 4← arrFunc(ρp,A)
5 in f 5← maintFunc(ρp)

6 in f ← in f 1∪ in f 2∪ in f 3∪ in f 4∪ in f 5 /* All infeasibility indices */

7 if in f ̸= {} then
8 index← min(in f ) /* Index of the first infeasible flight in the rotation */

9 return ρp, index

10 else
11 return {},−1

4.4.4 Flight Domain Algorithm

The Flight Domain Algorithm (FDA) (algorithm 4) returns the domains for each of the flights, starting
at the first infeasible flight until the end of the rotation, the latter designated henceforth the second
sub-rotation (ρ+

p ). The FDA searches for each flight, in the second sub-rotation, the domain where it
is possible to depart and land without breaching airport departure and arrival capacity constraints. This
search is done incrementally, and it will allow delaying the rotation’s flights. Added to the latter, and
except for those flights that are already subject to a disruptive delay, the algorithm also adds the option to
cancel the flight as a delay valued -1.

To implement this procedure, algorithm 4 receives as inputs the second sub-rotation, the airport
capacity, the maximum amount of delay, and the delay increment. After initialising the variables to record
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the rotation’s flight domains, singletons, flight intervals, size of the search space, and cancellations (lines
1 to 5) the algorithm loops through the rotation to compute and retrieve their respective values (lines 6 to
25).

The flight domain for the ith leg is initialised in line 7 and if it has been disrupted, or is outside
the RTW, its domain assumes a single value of zero thus becoming a singleton (line 9). The function
checkSingletonFunc, adds zero to the flight domain, checks if there are flight assignments that make the
singleton infeasible, and if so adds it to the singleton set. The singleton set will be used by the BTA
(algorithm 8), to remove aircraft rotations that make the singleton an infeasible assignment. In line 10 the
algorithm adds, the flight’s departure time less the turn-round time, and the arrival time to the intervals
set. In line 11 FDA continues to the next flight in the rotation. If the flight is neither disrupted nor departs
outside the RTW, then the algorithm adds the cancellation option (lines 12 to 14). Afterwards it will loop
incrementally through the range of delay values starting at zero and add any of them that comply with
airport departure and arrival capacity (lines 16 to 22). In lines 23 to 25 algorithm 4 adds the domain to the
flight domain set, the intervals to the flight intervals set, and updates the number of combinations. Finally
in line 27 algorithm 4 returns the sub-rotation’s flight domain and flight intervals.

Each flight domain is coded in a dictionary, where the flight legs correspond to the keys of 4.5. The
latter is coded by combining the flight number and flight date. The values consist of each flight leg domain,
coded as vectors with the option to cancel flights (-1) and the time delays that respect airport departure
and arrival capacity.

f lightDomain = {′784501/03/08′ : [−1,0,600,660,720,780,840,900],
′784002/03/08′ : [−1,0,60,120,180,240,300,360,420,480,600,660,840],

′785302/03/08′ : [−1,0,60,120,180,240,300,360,420],
′785402/03/08′ : [−1,0,60,240],

′788302/03/08′ : [−1,0]}

(4.5)

Consistent with the CSP formulation in Section 4.3, the ARP variables are the flight legs departure
time and the domains are the vectors with the delays and option to cancel flights (-1).

Flight intervals in 4.6 is a similar representation of the flight domains, however the former includes
information for the second sub-rotation’s flight departure, turn-round and arrival time. In equation 4.6,
there are several negative intervals, which represent the cancellation intervals for each of the flights.

intervals = {′784501/03/08′ : [[−1,−1], [1115,1260], [1715,1860],

[1775,1920], [1835,1980], [1895,2040], [1955,2100], [2015,2160]],
′784002/03/08′ : [[−2,−2], [1740,1915], [1800,1975], [1860,2035],

[1920,2095], [1980,2155], [2040,2215], [2100,2275], [2160,2335],

[2220,2395], [2340,2515], [2400,2575], [2580,2755]],
′785302/03/08′ : [[−3,−3], [2155,2310], [2215,2370], [2275,2430],

[2335,2490], [2395,2550], [2455,2610], [2515,2670], [2575,2730]],
′785402/03/08′ : [[−4,−4], [2320,2495], [2380,2555], [2560,2735]],

′788302/03/08′ : [[−5,−5], [2550,2690]]}

(4.6)
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Algorithm 4: Flight Domain Algorithm
Input: ρ+

p ,A,maxDelay,delayIncrement
Output: f lightDomain,singletonList, totalCombos, intervals

1 f lightDomain←{}
2 singletonList←{}
3 intervals←{}
4 totalCombos← 1
5 cancel← 0
6 for ρ+

p (i) in ρ+
p do

7 domain(i)←{}
/* Check if the flight is fixed */

8 if (ρ+
p (i)∩D ̸= {})∨ (ρ+d

p (i)< RTWs)∨ (ρ+d
p (i)> RTWe) then

9 checkSingletonFunc(ρ+
p (i),A,singletonList,domain(i))

10 intervals[ρ+
p (i)]← intervals[ρ+

p (i)]∪{ρ+d
p (i)− trp,ρ

+a
p (i)}

11 continue

12 domain(i)← domain∪{−1} /* Add the cancellation to the domain */

13 cancel← cancel−1
14 interval←{{cancel,cancel}} /* Create a new cancellation interval */

/* Loop through the time window of delay */

15 for delay in range(0,maxDelay,delayIncrement) do
16 ρ−d

p (i)← ρ+d
p (i)

17 ρ−a
p (i)← ρ+a

p (i)
18 ρ−d

p (i)← ρ−d
p (i)+delay

19 ρ−a
p (i)← ρ−a

p (i)+delay
/* Add the delay to the domain if there is airport capacity for the flight */

20 if (depFunc(ρ−p (i),A) = {})∧ (arrFunc(ρ−p (i),A) = {}) then
21 domain(i)← domain(i)∪delay
22 interval(i)← interval(i)∪{ρ−d

p (i)− trp,ρ
−a
p (i)}

23 f lightDomain[ρ+
p (i)]← domain(i) /* Add the delay domain to the flight domain set */

24 intervals[ρ+
p (i)]← interval(i) /* Add the interval domain to the intervals set */

25 totalCombos← totalCombos×|domain(i)|
26 return f lightDomain,singletonList, totalCombos, intervals
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4.4.5 Arc-consistency and Constraint Propagation

After algorithm 4 returns the flight domains, it is possible to compute the size of the search space, by
multiplying the size of each flight domain. The search space consists of the matrix that results from the
Cartesian product between the flight domain vectors. Each column represents a flight, and each row has
the values for delays or cancellations, such as matrix 4.7:

Flight domain
search space

=



−1 −1 −1 −1 −1
−1 −1 −1 −1 0
−1 −1 −1 0 −1
...

900 840 420 60 0
900 840 420 240 −1
900 840 420 240 0


(4.7)

Each row of 4.7 represents a solution. During the experiments, it was verified that the size of the
search spaces that results from the computation of the Cartesian product of the flight domains can have an
order of magnitude up to 1025. The latter value is not tractable in reasonable computing time. Additionally,
the delay added to the flight, in each row of the search space, will render new departure and arrival times,
some of which overlapping. Hence the intervals search space in 4.8 is a better representation to understand
how to perform CPr.

Intervals
search space

=



[−1,−1] [−2,−2] [−3,−3] [−4,−4] [−5,−5]
[−1,−1] [−2,−2] [−3,−3] [−4,−4] [2550,2690]
[−1,−1] [−2,−2] [−3,−3] [2320,2495] [−5,−5]

...

[2015,2160] [2580,2755] [2575,2730] [2380,2555] [2550,2690]
[2015,2160] [2580,2755] [2575,2730] [2560,2735] [−5,−5]
[2015,2160] [2580,2755] [2575,2730] [2560,2735] [2550,2690]


(4.8)

The Constraint Propagation Algorithm (CPrA) (algorithm 5), receives as input the intervals values in
the form of the matrix 4.9.

Intervals
values

=


[[−1,−1], [1115,1260], [1715,1860], [1775,1920],

[1835,1980], [1895,2040], [1955,2100], [2015,2160]],
...

[[−4,−4], [2320,2495], [2380,2555], [2560,2735]],
[[−5,−5], [2550,2690]]

 (4.9)

Algorithm 5 uses cpmpy and cpmpy_hakank libraries to flat the sets and perform CP. The first
step consists of flattening the intervalsValues matrix into a cmp_array (lines 1 to 5). The algorithm
afterwards retrieves the maximum and minimum value in the flatten set (lines 6 and 7), and the size of
intervalsValues, (line 8). Each of intervalsValues vector’s size is recorded in lens (lines 9 to 11). The CP
model is initialised in line 12, same as the array of interval variables x in line 13. Considering equation



70 The Constructive Heuristic for the Aircraft Recovery Problem

4.6 x[i] is the selected interval (ith ∈ 0..4), each with a maximum size of 13. Similarly, it is possible to
recognise from 4.6 that each set of values has specific lengths, hence in lines 14 and 15 the algorithm
adds to the model length constraints for each x[i] interval variable. In lines 16 and 17 interval variables
starts/ends are initialised. These variables define the start/end of the ith interval for each starts[i]/ends[i]
interval variable. The algorithm afterwards adds the values of the selected intervals (lines 18 to 20) to
the model using the Element object. In lines 21 to 24 the algorithm adds to the model the constraint that
ensures that the ith selected interval does not overlap with the rest of the intervals (the jth interval). Finally,
in lines 25 and 26 the algorithm solves the model and returns the reduced intervals search space.

4.4.6 Lower Heuristic Algorithm

As referred subsection 4.4.5 the search space can have orders of magnitude up to 1025. To tackle these
situations the CHARP uses two algorithms, the LHA and the UHA. The LHA finds solutions for search
spaces whose order of magnitude is below the lower bound. On the other hand, if the order of magnitude
of the size search space is greater than the upper bound the CHARP uses the UHA.

The lower bound is initialised by default at 4×104. The LHA loops through every row of the reduced
intervals search space in order to find the optimal solutions that minimise the number of cancelled flights
and the total amount of delay. Algorithm 6 receives as inputs the original rotation, the index of the first
infeasibility and the reduced intervals search space. The algorithm will recover the infeasible rotation
and will output the recovered one. It starts by initialising the best solution and reconverting the intervals
search space into flight domains search space. Henceforward it will loop through the search space to
find its best value. In lines 4 and 5 algorithm 6 sums the cancelled flights and the total amount of delay
for each row. In line 6 it assigns them to the new solution. The algorithm compares the new solution
with the best one and if the new one is not better it will iterate (lines 7 to 11). Based on the values
coded in row, in line 12 the algorithm creates the new rotation by cancelling or delaying flights in the
original rotation ρp. Afterwards if any constraint is violated the LHA continues (lines 13 and 14), else
the new feasible solution updates the best solution (lines 15). After traversing the entire search space,
the algorithm updates the original aircraft rotation with the optimal solution and returns it (lines 16 and 17).

4.4.7 Upper Heuristic Algorithm

The main purpose of the UHA is to recover the aircraft rotation part (infeasible second sub-rotation),
starting from the index of the first infeasibility, when the search space is not tractable in a reasonable
computing time. To cover the intractable search space the UHA upper bound is initialised by default
at 3×1012. The UHA decomposes the infeasible second sub-rotation into partial sub-rotations whose
search space size is lower than the lower bound defined for the LHA. The UHA loops through every
partial sub-rotation until it finds a feasible solution for the entire second sub-rotation. Although this
procedure may not return an optimal solution, it can find feasible solutions in a reasonable computing
time. Algorithm 7 receives as inputs the infeasible rotation, the index of the first infeasibility, and the
flight domains. The reason for using flight domains is related to the fact that the computing time proved
to be less than using reduced intervals, because this method is relatively expensive for very compact
interval sets. The recovered sub-rotation and the lower index of the partial sub-rotation are initialised,
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Algorithm 5: Constraint Propagation Algorithm
Input: intervalsValues
Output: reducedIntervals

1 intervalsFlatten←{}
/* Flat all the intervals into an array */

2 for interval in intervalsValues do
3 intervalsFlatten∪ cmp_array( f latten_lists(interval))

4 intervalsFlatten← cpm_array(intervalsFlatten)
/* We need all values to create the domains of the selected interval values */

5 allValues← f latten_lists(intervalsFlatten)
6 maxVal← max(allValues) /* Max. value in the intervals */

7 minVal← min(allValues) /* Min. value in the intervals */

8 n← |intervalsValues| /* Interval’s size */

9 lens←{}
/* Get the size of each interval */

10 for interval in intervalsValues do
11 lens∪{interval}
12 model←Model() /* Instantiate the model */

/* x[i] is the selected interval for the i’th interval list */

13 x← intvar(0,max(lens),shape← n,name← ”x”)
/* Reduce the domain (the possible values) of each interval list since they have

different lengths */

14 for i in range(n) do
15 model∪{x[i]< lens[i]}

/* starts[i] is the start value of the i’th selected interval */

16 starts← intvar(minVal,maxVal,shape← n,name← ”starts”)
/* ends[i] is the end value of the i’th selected interval */

17 ends← intvar(minVal,maxVal,shape← n,name← ”ends”)
/* Main constraints: */
/* Pick exactly one of the intervals from each intervals list */

/* Ensure that there are no overlaps between any of the selected intervals */

18 for i in range(n) do
/* Use Element to obtain the start and end values of the selected interval */

19 model∪{starts[i] = Element(intervalsFlatten[i],x[i]×2+0),
20 ends[i] = Element(intervalsFlatten[i],x[i]×2+1)]}

/* Ensure that the i’th selected interval doesn’t overlap w the rest of the intervals

(the j’th interval) */

21 for i in range(n) do
22 for j in range(i+1,n) do

/* Ensure that the start value of one interval is not inside the other interval */

23 model∪{¬((starts[i]> starts[ j])∧ (starts[i]< ends[ j])),
24 ¬((starts[ j]> starts[i])∧ (starts[ j]< ends[i]))]}

25 reducedIntervals← ortools_wrapper2(model,x,get_solution)/* Get the solutions */

26 return reducedIntervals
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Algorithm 6: Lower Heuristic Algorithm
Input: ρp, index,reducedIntervals
Output: ρ ′p

1 bestSol←{}
/* Convert intervals in delays */

2 f lightDomains← convert2FlightDomainsFunc(reducedIntervals)
3 for row in f lightDomains do
4 noCancel← ∑i row(i), if row(i) =−1/* Get the amount of cancellations */

5 totalDelay← ∑i row(i), if row(i) ̸=−1/* Get the amount of delay */

6 newSol←{noCancel, totalDelay,row}
/* Compare the new solution w/ the best solution */

7 if bestSol ̸= {} then
8 if newSol[0]< bestSol[0] then
9 continue

10 if (newSol[0] = bestSol[0])∧ (newSol[1]≥ bestSol[1]) then
11 continue

12 ρ ′p← solRotFunc(ρp, index,row)/* Assign the new temporary solution */

/* Check if the new temporary solution is feasible */

13 if allContraints(ρ ′p) ̸= {} then
14 continue

15 bestSol← newSol

16 ρ ′p← solRotFunc(ρp,(bestSol[2]))/* Assign the new best solution */

17 return ρ ′p

the latter with the value of the index of the first infeasibility. In line 3 the algorithm uses the function
upperIndexFunc computes the upper index for the partial sub-rotation that will be recovered and extracts
the corresponding partial flight domains. In line 4 the algorithm computes the search space and in line
5 reduces the flight domains for the partial sub-rotation that is to be recovered. From lines 6 to 28 the
algorithm will loop through every partial sub-rotation, recovering each one of them. The algorithm finds
the best solution to recover each partial sub-rotation using the same method as the LHA (lines 8 to 20).
In line 21 the partial sub-rotation part between the lower and the upper index is updated with the best
solution. If the upper index equals the size of the recovered rotation this means the recovery procedure
is terminated and it returns the recovered rotation (lines 22 and 23) otherwise, the algorithm assigns the
previous upper index to the current lower index, computes the new upper index, new partial flight domains,
the search space and updates the remaining flight domains (lines 24 to 28).

It is important to notice that in order to optimise the looping over the search space, the LHA and UHA
compare the current solution with the new one and if the latter is not better, they will not proceed to test
feasibility, thus saving significant computation time. As for the overarching algorithm, in every iteration
it loops through the aircraft list and based on the size of the search space decides which heuristic will
find the solution to recover the infeasible rotations while minimising the number of cancelled flights and
the total amount of delay. However, if the search space size is above the lower bound or below the upper
bound, the infeasible rotation will not be recovered. To overcome this situation the algorithm iterates
the aircraft loop using the list of aircraft left with infeasible rotations, increments the lower bound, and
decrements the upper bound. This procedure results in a pincer movement that will entrap the entire
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Algorithm 7: Upper Heuristic Algorithm
Input: ρp, index, f lightDomains
Output: ρ ′p

1 ρ ′p← ρp

2 lIndex← index
3 uIndex, partialFlightDomains← upperIndexFunc(lIndex,ρ ′p, f lightDomains)
4 matrix← productFunc(partialFlightDomains.values()) /* Assign the partial sub-rotation

*/

5 removeFlightDomainsFunc( f lightDomains,ρ ′p(i)∀i ∈ [uIndex, |ρp|])
6 while True do
7 bestSol←{}

/* Recover the partial sub-rotation */

8 for row in matrix do
9 noCancel← ∑i row(i), if row(i) =−1;

10 totalDelay← ∑i row(i), if row(i) ̸=−1
11 newSol← [noCancel, totalDelay,row]
12 if bestSol ̸= {} then
13 if newSol[0]< bestSol[0] then
14 continue

15 if (newSol[0] = bestSol[0])∧ (newSol[1]≥ bestSol[1]) then
16 continue

17 newPartialRotationFunc(row,ρ ′p(i)∀i ∈ [lIndex : uIndex])
18 if allContraints(ρ ′p) ̸= {} then
19 continue

20 bestSol← newSol

21 newPartialRotationFunc(bestSol[2],ρ ′p(i)∀i ∈ [lIndex : uIndex])
22 if uIndex = |ρ ′p| then
23 return ρ ′p

24 else
/* Get the new partial sub-rotation */

25 lIndex← uIndex /* Assign the upper index to the lower index */

26 uIndex, partialFlightDomains← upperIndexFunc(lIndex,ρ ′p, f lightDomains)
27 matrix← product(partialFlightDomains.values()) /* Assign the new partial

sub-rotation */

28 removeFlightDomainsFunc( f lightDomains,ρ ′p(i)∀i ∈ [uIndex, |ρ ′p|])
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search space, making sure that every infeasible sub-rotation is recovered, figure 4.1.

Fig. 4.1 Pincer Meta-heuristic (PMH)

4.4.8 Backtracking Algorithm

In CSP it is common to find variables that have domain size 1, such variables are designated by singletons.
Since both heuristics are based on constraint satisfaction, the rotations that are known in advance having
variables with domain size 1, are handled first. In the case of rotations with scheduled maintenance, the
algorithm treats them as a flight without turn round time and with the same origin and destination. Thus,
the first elements of the aircraft list have scheduled maintenance. The flights that are disrupted by delays
are designated as fixed flights and they too cannot be moved. In this case, the domain is a singleton
consisting of value {0} and if this value is infeasible because there is no available departure and/or arrival
airport capacity, the BTA removes the rotation of another aircraft that can release the necessary airport
capacity.

Algorithm 8 receives as inputs the singleton set, the airport capacity, the aircraft set whose rotations
are feasible, the ARP current solution, the aircraft rotation with the singleton(s), and the index of the
first infeasibility. The algorithm will return the ARP solution without the rotation that will allow the
singleton to become feasible and the updated aircraft solution set (line 20). Algorithm 8 will loop while
the singleton set is not empty (line 1). Afterwards it verifies if the first singleton’s infeasibility is on the
departure and/or in the arrival airport capacity (lines 2 and 11). Depending on the situation the algorithm
computes the airport time slot for the departure/arrival (lines 3, 4, and lines 12, 13) and based on the
origin/destination airport (lines 5 and 14), searches the flights and aircraft to cancel (lines 6, 7 and lines
15, 16 ). The algorithm will then remove the aircraft from the solution list, and the respective rotation
from the ARP solution (lines 8, 9 and lines 17, 18). Finally, algorithm 4 checks if there are any more
infeasible singletons (lines 10 to 19).
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Algorithm 8: Backtracking Algorithm
Input: singletonList,A,aircra f tSolList,solutionARP,ρp, index
Output: solutionARP,aircra f tSolList
/* Loop as long as there are singletons to be removed */

1 while singletonList ̸= {} do
/* Check if the airport departure capacity causes the singleton */

2 if singletonList(0) =′ dep′ then
/* Assign the index of the time slot */

3 startInt← 60× int(singletond(0)/60)
4 endInt← startInt +60
5 origin← singletono(0)/* Assign the origin airport */

6 f light2Cancel← solutionARP[(origin,startInt,endInt)]
7 airc2Cancel← updateMulti( f light2Cancel,A,solutionARP])
8 aircra f tSolList.pop(airc2Cancel)/* Remove the aircraft from the solution */

9 solutionARP.pop(airc2Cancel)/* Remove the rotation from solution */

10 f lightRanges,singletonList, totalCombos← domainFlights(ρp(i)∀i ∈
[index, |ρp|],A, index)

/* Check if the airport arrival capacity causes the singleton */

11 if singleton(0) =′ arr′ then
/* Assign the index of the time slot */

12 startInt← 60× int(singletona(0)/60)
13 endInt← startInt +60
14 destination← singleton f (0)/* Assign the destination airport */

15 f light2Cancel← solutionARP[(destination,startInt,endInt)]
16 airc2Cancel← updateMulti( f light2Cancel,A,solutionARP)
17 aircra f tSolList.pop(airc2Cancel)/* Remove the aircraft from the solution */

18 solutionARP.pop(airc2Cancel)/* Remove the rotation from solution */

19 f lightRanges,singletonList, totalCombos← domainFlights(ρp(i)∀i ∈
[index, |ρp|],A, index)

20 return solutionARP,aircra f tSolList
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4.4.9 Taxi Flights Algorithm

After finding a feasible solution the algorithm verifies if continuity is breached between the origin airport
and the first leg of the recovered rotation. Algorithm 9 receives as inputs the set of aircraft disruptions,
the set of distances, the origin airport, the recovered rotation, and the maximum flight number. As for
the output, it returns the updated recovered rotation and the maximum flight number. Algorithm 9 will
either create a taxi flight to connect the origin airport and the recovered rotation or cancel flights in the
recovered rotation until the continuity infeasibility is removed.

In line 1 algorithm 9 retrieves the time slots where there is available departure capacity in the aircraft
origin airport. Afterwards the algorithm will loop through the flight legs of the recovered rotation and if
their origin is the same as the origin airport it returns the updated recovered rotation and the maximum
flight number (lines 2 to 4). In line 6 the algorithm computes the distance from the origin airport and
the origin of the flight in the recovered rotation. In line 7 the algorithm extracts the upper slots from
the origin slots by subtracting the flight’s departure time in the recovered rotation, the distance, and
the turn round time. In line 8 the upper slots and the aircraft breakdown period are subtracted from
the origin slots in order to retrieve the lower slots from where the aircraft can depart. If there are no
available departure slots the algorithm cancels the flight in the recovered rotation and continues to the
next flight (lines 9 to 11). If there are available departure slots at the origin, the algorithm tries to find
destination slots with available airport arrival capacity. To achieve the latter the algorithm finds the
destination slots with available capacity, the upper destination slots (lines 12 and 13). By subtracting the
latter from the former and the aircraft breakdown period, it determines the lower destination slots (line
14). If there are no lower destination slots, the algorithm cancels the flight in the recovered rotation and
continues to the next flight. Since A is a dictionary, it is necessary to extract the destination intervals and
initialise the destination index i and the time offset from which the flight departs and arrives in feasible
airport slots (lines 18 to 22). The algorithm will then loop through the origin slots and in line 24 it will
initialise the object ob j with the starting and end time of the original lower slots plus the distance, and
in line 25 determines the index of intersection in the destination slot and the offset. If the index i is
different from -1 the algorithm will create the taxi flight and add it to the recovered rotation (lines 26 to 34).

4.4.10 The CHARP Algorithm

The CHARP algorithm receives as inputs the sets for the aircraft, flight and aircraft disruptions, flights,
rotations, airports, lower bound, upper bound, lower increment and upper increment, algorithm 10. After
implementing its logic the CHARP algorithm returns the solution with the recovered rotations. After
receiving its inputs algorithm 10 initialises the aircraft set by removing the TranspCom since they are
not accounted for airport capacity, line 1. The algorithm afterwards initialises the ARP’s solution, line 2.
From line 3 to 39 algorithm 10 loops until all aircraft rotations are recovered. In line 4 the algorithm loops
through the aircraft set that have aircraft whose rotation (line 5) may not be recovered. If there are flight
or aircraft disruption in the rotation the algorithm adds new flights (line 6 and 7). In line 8 the algorithm
checks if the rotation is infeasible or not. In the best case scenario, the aircraft rotation is feasible, hence
the algorithm adds it to the ARP’s solution. Additionally, the algorithm also adds the aircraft p to the
aircraft solution set and updates the airport capacity (lines 35 to 37). On the other hand, if the aircraft
rotation ρp is infeasible, the algorithm tries to recover it. Using algorithm 4, in line 10, the algorithm
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Algorithm 9: Taxi Flights Algorithms
Input: B,∆,Op,ρ

′
p,A,M

Output: ρ ′p,M
1 originSlots← A(Op) if c jh

a > noDep /* Origin airport time slots w/ departure capacity */

2 for ρ ′p(i) in ρ ′p do
3 if ρ ′op(i) = Op /* Continuity is restored */

4 then
5 return ρ ′p, M

6 δo f ← ∆(Op,ρ
′o
p (i)) /* Calculate the block time from the origin to the destination

airport */

7 originSlotsU pper← originSlots if endInt > ρ ′dp (i)−δo f − trp

8 originSlotsLower← originSlots−originSlotsU pper− [Bs
p,B

e
p] /* Airport time slots w/

departure capacity */

9 if originSlotsLower = {} then
10 cancel(ρ ′p(i)) /* Cancel the flight in the recovered rotation */

11 continue

12 destinationSlots← A(ρ ′op ) if clh
a > noArr

13 destinationSlotsU pper← destinationSlots if endInt > ρ ′dp (i)− trp

14 destinationSlotsLower← destinationSlots−destinationSlotsU pper− [Bs
p,B

e
p] /* Airport

time slots w/ arrival capacity */

15 if destinationSlotsLower = {} then
16 cancel(ρ ′p(i)) /* Cancel the flight in the recovered rotation */

17 continue

18 destIntervals←{}
19 i←−1
20 o f f set←−1
21 for x ∈ destinationSlotsLower do
22 destIntervals← destIntervals∪ [xs,xe]

/* Loop through origin airport w/ available capacity */

23 for os(i) in originSlotsLower do
24 ob j← interval(oss,ose)+δo f

25 i,o f f set← ob j. f indIntersection(destIntervals) /* offset fits the flight between

the origin and the destination airport */

/* Check if the block time is inside a departure and a time slot */

26 if i ̸=−1 then
/* Create taxi flight */

27 taxiFlighto← Op /* Taxi flight origin airport */

28 taxiFlightd ← os[startInt]+o f f set/* Taxi flight departure time */

29 taxiFlight f = ρ ′op (i) /* Taxi flight destination airport */

30 taxiFlighta = taxiFlightd +δo f /* Taxi flight arrival time */

31 taxiFlight[ f lightNumber] = M/* Taxi flight number */

32 M←M+1 /* Increment flight number */

33 ρ ′p← ρr primep + taxiFlight/* Add taxi flight to the rotation */

34 return ρ ′p,M
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computes the flight domains, the singleton set, the size of the search space and the flight intervals. If the
size of the search space is bigger than the upper bound (line 11), or lower than lower bound the algorithm
recovers the infeasible rotation. Otherwise, the algorithm 10 loops to the next aircraft. For both paths of
recovery the algorithm always backtracks if there are singletons (lines 12 to 14 and lines 22 to 24), adds
taxi flights if necessary (lines 16 and 17, and lines 27 and 28), and finally adds the recovered rotation to
the ARP’s solution, the aircraft p to the aircraft solution set and updates the airport capacity (lines 18 to
20 and lines 29 to 31). The difference between the paths of recovery consists in using flight domains for
the UHA (line 15), or using the reduce intervals for the LHA (lines 25 and 26).

4.5 Computational Results

This section presents the CHARP results for the recovery cost, computing time, and the influence of
adding new and taxi flights for the overall thirty two data instances.

It is important referring that the results presented were obtained after a long research procedure. The
initial set of experiments were done in an Intel® Xeon Gold CPU @ 2.3GHz box with 72 CPU(s), 128
GiB of RAM box and did not included CPr (algorithm 5). Computing time for the worst case scenarios
was in the order of magnitude 103. The recovery procedure was also tried using a genetic algorithm,
instead of using the UHA (algorithm 7). The former proved to be inappropriate for search spaces of order
of magnitude 1025. Not only the solution took a long time to improve, but the improvement also proved to
be very weak.

The results presented hereafter are for the CHARP, algorithm 10, and were obtained running in
parallel the 32 data instances through the maximum delay time window in 4.10. Each batch of the 32 data
instances was processed in a specific CPU and during processing resource usage was monitored, figure
4.2.

Time window = [720,780,840,900,960,1020,1080,1140,1200,1260] (4.10)

Each of the values of 4.10 consist of the maxDelay parameter that is used in algorithm 4 to compute
the flight domain.

Apart from computing time the results presented for cost, amount of delay, cancelled flights, new
flights and taxi flights are the aggregated value of each data instance recovery. The computing time is
collected when the last data instance finishes the recovery.

The remainder of this section consists of, Subsection 4.5.1 describing the default scenario for which it
is studied the impact of adding new flights and taxi flights. Since the heuristic performs a pincer movement
Subsection 4.5.2 presents the results for different speeds by changing the decremental and incremental
steps.

4.5.1 Default scenario

The default scenario is defined in table 4.4:
Figure 4.3, represents the results for "Flights added" which considers both new flights and taxi flights

to the CHARP, "No flights added" where the CHARP has no new or taxi flights added. "Only new flights
added" and "Only taxi flight added", are self explanatory.
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Algorithm 10: CHARP Algorithm
Input: P,D ,B,F,ρ,A,βl,βu,εl,εu

Output: solutionARP
1 aircra f tList← P\{TranspCom}
2 solutionARP←{}
3 while |aircra f tSolList| ̸= |aircra f tList| do
4 for p in aircra f tList do
5 ρp← F ∩ρ

6 if (D(ρp) ̸= {})∨ (B(ρp) ̸= {}) then
7 ρp,M← Algorithm 2 /* Add new flights to replace cancelled */

8 ρp, index← Algorithm 3 /* Check rotation feasibility */

9 if index ̸=−1 then
/* Get flight domains, singleton list, search space size, and intervals */

10 f lightDomain,singletonList, totalCombos, intervals← Algorithm 4
11 if totalCombos > βu/* Check if the search space is above the upper bound */

12 then
13 while |singletonList| > 0 /* Remove singletons */

14 do
15 solutionARP,aircra f tSolList← Algorithm 8
16 f lightDomain,singletonList, totalCombos, intervals← Algorithm 3

17 ρ ′p← Algorithm 7 /* Recover the rotation w/ the UHA */

18 if Op ̸= ρ ′p(0)/* Check continuity */

19 then
20 ρ ′p,M← Algorithm 9 /* Create taxi flight */

21 solutionARP∪ρ ′p/* Add the recovered rotation to the solution */

22 aircra f tSolList ∪ p/* Add the aircraft solution list */

23 updateAirportCapacityFunc(A)/* Update airport capacity */

24 else if totalCombos < βl/* Check if the search space is bellow the lower bound

*/

25 then
26 while |singletonList| > 0/* Remove singletons */

27 do
28 solutionARP,aircra f tSolList← Algorithm 8
29 f lightDomain,singletonList, totalCombos, intervals← Algorithm 3

30 reducedIntervals← Algorithm 5/* Constraint propagation algorithm */

31 ρ ′p← Algorithm 6/* Recover the rotation w/ LHA */

32 if Op ̸= ρ ′p(0)/* Check continuity */

33 then
34 ρ ′p,M← Algorithm 9 /* Create taxi flight */

35 solutionARP∪ρ ′p/* Add the recovered rotation to the solution */

36 aircra f tSolList ∪ p/* Add the aircraft solution list */

37 updateAirportCapacityFunc(A)/* Update airport capacity */

38 else
39 continue

40 else
41 solutionARP∪ρp/* Add the rotation to the solution */

42 aircra f tSolList ∪ p/* Add the aircraft to the solution list */

43 updateAirportCapacityFunc(A)/* Update airport capacity */

44 βu← βu− εu/* Decrement the upper bound */

45 βl ← βl + εl/* Increment the lower bound */

46 return solutionARP
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Fig. 4.2 Resources usage while running the CHARP

Table 4.4 Default Scenario

delayIncrement [min] 60
βu 3.0×1012

εu 1.0×1011

βl 4.0×104

εl 1.0×104

It is possible to observe that the best aggregate cost is always lower for the heuristic that has flights
added (new flights and taxi flights). This result was expected since adding new flights or taxi flights
consists of adding new arcs which in turn can increase the flow of the flight network.

It is possible to observe the influence of taxi flights in computing time, which for the best case (time
window 840 minutes (14 hours)) is 220.9 seconds. The latter can be explained on a series of cascading
effects: adding taxi flights will decrease the available airport capacity, which in turn will decrease the size
of the domains hence resulting in a smaller size search space which needs less time to be traversed.

It is observable that extending the time window increases the total amount of delay returned by the
CHARP. This results from the fact that there are more time slots available to delay the flight. As for the
total number of cancellations, it is lowest for the heuristic that has new flights and taxi flights added. The
tendency of this results is consistent with the aggregate cost. Finally, the total number of new flights is



4.5 Computational Results 81

in the order of magnitude of 125 and the total number of taxi flights is in the order of magnitude of 200.
Both values do not change substantially with the size of the time window.

Regarding the addition of new flights, the best results are obtained for the time windows of 780
minutes (13 hours) for "Flights added", and for the 900 minutes (15 hours) for "Only new flights", as
shown in figure 4.4. The maximum number of taxi flights, 209, occurs for the 1140 minutes time window.

Figure 4.4 draws the Pareto front and it is possible to verify that the solution’s best result for aggregate
cost do not coincide with computing time. The best result for aggregate cost, 6.235× 108, is for the
category "Flights added" and for the time window of 900 minutes (15 hours) of maximum delay. On the
other hand, the best result for computing time, 220.9 seconds, is achieved for the category "Only taxi
flights added" and for the time window of 840 minutes (14 hours) of maximum delay. One can conclude
that the aggregate cost is in conflict with computing time. Looking back, one can conclude that this
observation results from the added complexity of adding new flights.

4.5.2 Impact of the Pincer Speed

The CHARP uses the UHA and the LHA to perform a pincer movement over the search space. This closing
movement can be performed at different speeds. Since Subsection 4.5.1 demonstrated that the category
"Flights added" has the best results for aggregate cost, this subsection investigates if its computing time
can be improved.

To study the impact of the pincer speed we define the set of increment and decrement values in table
4.5.

Table 4.5 Pincer speeds

εl εu

Speed 0.5 0.5×104 0.5×1011

Speed 1 1.0×104 1.0×1011

Speed 2 2.0×104 2.0×1011

Speed 3 3.0×104 3.0×1011

Speed 4 4.0×104 4.0×1011

Speed 5 5.0×104 5.0×1011

Speed 6 6.0×104 6.0×1011

The εl and εu values are used to increment and decrement the lower and the upper bound in each
iteration of the CHARP.

In figure 4.5 it is possible to observe that the minimum aggregate cost is improved for speed 5 in the
900 minutes (15 hours) time window, taking 236 seconds. Once again it does not coincide with the best
results for computing Time. The latter was obtained for speed 2, 205.9 seconds.

For the total amount of delay, it increases with the time window and that the different speeds observe
the same pattern of behaviour. In relation to the total number of flight cancellations, the values have a
sharp decrease from 720 to 780 minutes (12 to 13 hours), after which they stabilise between a minimum
of 2076 at speed 1 for the 960 minutes (16 hours) time window. As for the number of new flights, they
increase steadily with the size of the time window. Finally, in relation to the number of taxi flights we
observe again a sharp decrease in value for the time window of 900 minutes (15 hours), the remaining
values distribute themselves between 196 at speed 3 for the 1260 minutes (21 hours) time window and
226 at speed 3 for the 1020 (17 hours) minutes time window.
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To have a better understanding of the solution quality in figure 4.6 draws the Pareto front considering
the aggregate cost versus the computing time for the different speeds. With speed 5 it is possible to
confirm the improvement for both aggregate cost and computing time. Speed 2 has the lowest value for
computing time, 205.9 seconds.

4.6 Comparing the CHARP with the ARP Published Work

This section makes an extensive comparison between the published work from 2009 to 2020 and the
CHARP. Subsection 4.6.1 compares the modelling used to solve the ARP, Subsection 4.6.2 compares
the disruptions, Subsection 4.6.3 compares recovery actions, and finally Subsection 4.6.4 the problem
characteristics.

Tables 4.6, 4.7, 4.8 and 4.9 use as legend the following abbreviations:

’EX’: Exact method

’MH’: Meta-heuristic

’HH’: Hyper-heuristic

’CP’: Constraint programming

’O’: Optimisation

’Y’: Included or mentioned

’N’: Not included nor considered

’X’: Not mentioned or not relevant

’F’: Airport flow restriction

’C’: Airport closure

’G’: Generated data

’RL’: Real-life data

’CPU’: Computation time in seconds

4.6.1 ARP Solution Methods

(Qiang et al., 2009) developed a greedy simulated annealing algorithm, combining characteristics of
Greedy Randomised Adaptive Search Procedure (GRASP) and SA. The combination of heuristics im-
proves the efficiency of the neighbourhood selection and decreases the probability of falling into local
optimal solution. The objective of the model is to minimise the total passenger delay time. However, the
objective function does not consider all cost incurred by irregular operations e.g. the cost of ferrying and
fleet substitution is not taken into account. To obtain the cost of ferrying (taxi flights), and creating new
flights, this thesis uses the cost function supplied by ROADEF 2009 Challenge. We were able to confirm
that it is beneficial both financially and also in terms of computing time.

(Eggenberg and Salani, 2009) presented a modelling framework to solve aircraft recovery by allowing
consideration of operational constraints within the Column Generation (CG) scheme. This column
generation algorithm solved aircraft recovery problem considering maintenance planning. A time-band
recovery network was constructed for each aircraft to incorporate maintenance constraints by introducing
a maintenance arc.
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(Liu et al., 2010) presented a hybrid heuristic that combined an Adaptive Evaluated Vector (AEV) and
an inequality-based multi-objective GA formulation that was used to search for Pareto solutions to the
daily short-haul recovery problems. The AEV was used to guide the search and the GA was to provide
the multi-objective solution. Although considering aircraft swap and re-timing options, the model does
not consider flight cancellations as a recovery method, table 4.8.

(Wu and Le, 2012) developed a model based on flight strings instead of individual flights. They
transform these strings into a time–space model that considers maintenance constraints and regulations.
The model is solved with a heuristic that was developed by the authors called the Iterative Tree Growing
with Node Combination.

(Xiuli and Yanchi, 2012) used a hybrid heuristic that combined a GRASP with Ant Colony Opti-
misation (ACO). Compared to the original GRASP algorithm, it provides a high global optimisation
capability.

(Le et al., 2013) transformed the aircraft recovery problem into a vehicle routing problem with
time window modelling. The formulation considers aircraft recovery and passenger delivery. In the
model, aircraft are vehicles, passengers are commodities and airports are nodes. Each aircraft rotation is
considered a route.

(Arias et al., 2013) combined constraint programming with a simulation approach to solve the SARP.
The goals of the model are to restore the original flight schedule as much as possible, minimising the total
flight delay and the number of cancelled flights. The recovery actions used consist of the rescheduling of
the flight plan using delays, swaps, and cancellations, table 4.8. The robustness of the solutions is assessed
by comparing the standard deviation from the simulation results with the variation of the probability
distribution that was used for generating the stochastic delays and the expected propagation.

(Aktürk et al., 2014) were the first to successfully integrate cruise speed control to deal with the ARP.
The authors consider the option of speeding up flights to reduce delays, at the cost of higher fuel costs. Due
to the non-linearity of fuel burn in cruise speed, the authors use a conic quadratic optimisation approach
to solve the problem with minimisation of recovery related costs like aircraft swap, fuel consumption, and
passenger delay. CO2 emission cost was integrated next to the additional fuel cost of speeding up flights.
It is stated in the paper that significant cost savings can be achieved with cruise speed control, making it a
suitable recovery approach to include in aircraft recovery studies.

(Vos et al., 2015) established a dynamic framework, named Disruption Set Solver (DSS) for the
aircraft schedule recovery. The framework handles disruptions as they happen and builds on the solutions
of previous disruptions i.e. the recovery problem is solved as disruptions happen, involving the solutions
of new disruption but also considering the decision of the incumbent solution. The framework relies on
the combined usage of an efficient aircraft selection algorithm and a linear programming model which can
track the status of individual aircraft on parallel time–space networks.

(Sousa et al., 2015) presented a ACO. The proposed algorithm combines the Aircraft Assignment
Problem (AAP) with the ARP and aims to minimise the operational cost and re-schedules flights dynami-
cally by using a rolling time window. When the algorithm first runs it receives information about which
routes are needed to assign aircraft, as well as where and how many aircraft are available. Therefore, its
first objective is to create a valid aircraft assignment such that all flights are feasible while minimising the
cost. On the other hand, the algorithm keeps running in order to adapt its schedule in case of a sudden
disruption, where the original solution is modified so that all flights remain feasible with the lowest cost
raise.
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(Zhu et al., 2015) propose a two-stage stochastic recovery model to deal with the ARP. The first stage
is a resource assignment model to minimise delay and cancellation cost. The second stage re-times the
aircraft routings obtained in the first stage, with the objective of minimising the expected cost on the
resource strategy of the first stage plan due to uncertainty of aircraft recovery time. The authors use a
stochastic algorithm framework combining Greedy Simulated Annealing (GSA) and a simple re-timing
strategy. Based on different scenarios of restoration time, the second stage model can be decoupled in
several linear models.

(Xu et al., 2015) presented a time-band approximation model to compute delay cost considering a
random time around the planned flying time. The Random Flying Time (RFTO) model is formulated as a
Mixed Integer Linear Programming (MILP) and solved using a commercial LP solver.

(Guimarans et al., 2015) described a methodology for the SARP, that considers the stochastic nature
of air transportation systems. The methodology is based on the LNS metaheuristic, combined with a
simulation run at different stages to ensure robustness. A CP formulation is developed to solve the
deterministic ARP. The work does not consider cancellations in our approach. In these situations,
connecting flights are generally cancelled so the aircraft may be assigned to a later flight from the same
airport. In other cases, aircraft may be ferried, i.e. flying without passengers, to the destination airport in
order to restore the original schedule.

(Xu and Han, 2016) presents the Weighted Time-band Approximation Model (WTBAM) incorporating
simplex group cycles for flight operations recovery. The objective of the WTBAM is to minimise both the
delay costs and the cancellation costs through implementation of a weighted threshold.

(Hu et al., 2017) presented a solution approach for solving a multi-objective recovery problem by
combining ε− constraints and neighbourhood search methods. The ε− constraints method is in charge
of seeking the Pareto front for the multi-objective ARP and the neighbourhood search algorithm is
responsible for improving the locally feasible solutions of the ARP in each iteration of the ε−constraints
method. The problem includes three conflicting objectives, the first objective minimises the total deviation
from the original flight schedule, the second minimises the maximum flight delay time, and the third
objective minimises the number of aircraft swapped.

(Zhang, 2017) use feasible Lines od Flights (LOF) as the basic variables in the model, where LOF are
defined as a sequence of flights flown by one aircraft within one day. A two-stage heuristic is presented to
reduce the number of included LOF, thereby reducing the run-time. In the first stage, LOF are scored and
selected based on the number of swaps (less is better) and the number of flight legs included in the LOF
(more is better). In the second stage, flow balance constraints for the aircraft were aggregated by creating
constraints for each airport only.

(Khaled et al., 2018) proposed a multi-objective integer linear programming problem for the tail
assignment problem which minimises the operating cost and the deviation from the original solution.

(Šarčević et al., 2018) described a methodology where the Artificial Bee Colony (ABC) algorithm
was applied to the aircraft disruption problem.

(Zhao and Chen, 2018) presented a weight-table heuristic algorithm for the aircraft recovery problem.
The stochastic recovery problem was also proposed by (Lee et al., 2020). The authors propose

an innovative reactive and proactive approach to solve the ARP problem. By forecasting systematic
delays at hub airports, their study optimises recovery actions that respond to both realised disruptions
and anticipated future disruptions. The authors combine a stochastic queuing model to capture airport
congestion, with a commercial flight planning tool, and with a dynamic integer programming solution
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to model the disruption recovery. A solution based on a look-ahead approximation and sample average
approximation is proposed to solve the modelling framework.

Table 4.6 Comparison of ARP solution methods with the CHARP

Bibliographic reference
and CHARP

Network Type Solution approach

(Qiang et al., 2009) Flight strings MH + HH GRASP and simulated annealing algo-
rithm

(Eggenberg et al., 2010) Time band HH Dynamic programming with column
generation

(Liu et al., 2010) Connection MH Hybrid multiobjective genetic algo-
rithm

(Wu and Le, 2012) Time-space MH Iterative tree growing with node combi-
nation method

(Xiuli and Yanchi, 2012) X MH GRASP combined with Ant colony
(Le et al., 2013) X MH Time Window Modelling and Genetic

Algorithm
(Arias et al., 2013) X O Constraint programming with simula-

tion
(Aktürk et al., 2014) Time-space EX Conic quadratic mixed integer program-

ming
(Vos et al., 2015) Time-space MH + EX Aircraft Selection Heuristic with MILP
(Sousa et al., 2015) Connection MH Dynamic Aircraft Scheduling with Ant

Colony Optimization
(Zhu et al., 2015) X MH Stochastic Greedy Simulated Annealing

algorithm
(Xu et al., 2015) Time-band EX Time-band approximation with MILP
(Guimarans et al., 2015) X O Constraint programming with LNS and

simulation
(Xu and Han, 2016) Time-band MH Weighted time-band approximation

with MILP
(Hu et al., 2017) Connection MH Neighborhood search algorithm with -

constraints
(Zhang, 2017) Connection MH Two stage heuristic for LOF reduction
(Khaled et al., 2018) Time-space MH Multiobjective LP with e-constaint for

Pareto frontier N
(Šarčević et al., 2018) X MH Artificial Bee Colony algorithm imple-

mented in MASDIMA
(Zhao and Chen, 2018) Time-spce MH Weight-table based heuristic algorithm
(Lee et al., 2020) Tim-space O Dynamic stochastic integer program-

ming framework Y
(CHARP, 2022) Time-space CP + MH Constraint programming with meta-

heuristic

The CHARP finds solutions for the ARP using CP. The first objective is to minimise the number
of cancellations and the second, the amount of delay. Following the guidelines of CP, the model gives
priority to the recovery of infeasible rotations with smaller search space or singletons. The CHARP
decomposes the ARP iterating through the aircraft fleet. Each infeasible aircraft rotation is recovered
traversing the search space, obtained from the Cartesian product of the flight domains. In each iteration
the is covered by the Pincer Meta-heuristic (PMH). The latter uses the LHA or the UHA. Some of the
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methods cited in this section consist of meta-heuristics that mimic biologic events or genetic improvement.
The CHARP was tested against these methods however, due to the size of the search space, the recovery
was very slow. The search space played a major role in the choice of CP in particular in the use of CPr.
To reduce the search space the CHARP uses CPr, by removing infeasible solutions, (Hooker et al., 1999).
From this viewpoint, CP operates on the set of possible solutions, narrows it, and ultimately reduces
computing time needed to traverse the search space. In situations where the infeasible rotation cannot be
recovered, because airports do not have capacity, the CHARP backtracks, by removing from the solution
an aircraft rotation that can increase airport capacity. Both backtracking and CPr were not not mentioned
in the references cited in this section, therefore one can admit novelty in the usage of CP in the CHARP.

4.6.2 ARP Disruptions Scenarios

The ARP models are a limited representation of reality, hence some assumptions are needed to model the
disruption problem. A common assumption, followed by almost all papers, is that crew is always available
to perform the flights in the recovered schedule, (Sousa et al., 2015), (Vos et al., 2015). Another common
simplification is the exclusion of airport capacity constraints or slot availability (Liu et al., 2010), (Arias
et al., 2013). The CHARP assumes that the crew is always available however it considers airport capacity
constraints and disruptions. The majority of the papers cited in this section do not present explicitly the
disruption scenarios however, for the remainder the most common is aircraft breakdown, followed by
flight delay, airport capacity shortage, and flight cancellation, table 4.7. For instance, the disruptions
included in (Zhang, 2017) are airport closures and aircraft unavailability due to unplanned maintenance.
Zhao and Chen, 2018, only consider disruptions from airport closures due to bad weather conditions. The
CHARP not only considers all the aforementioned disruption scenarios singly, but also combinations of
two of them, flight and aircraft, flight and airport, and aircraft and airport.

4.6.3 ARP Recovery Actions

It is possible to observe from table 4.7, that there are many papers do not provide explicit information
regarding the recovery actions, namely for the usage of reserve aircraft, ferry aircraft and cruise speed. In
general, the more recovery actions the bigger the search space becomes. The latter impacts on computing
time, hence many papers choose not to include flight creation. In the case of the CHARP, flight creation
decreases computing time. It is also observable that the most common and explicit recovery procedure is
flight cancellation, followed by flight delay and aircraft swap.

4.6.4 ARP Characteristics

(Liu et al., 2010) tested the model on a daily flight schedule of a Taiwanese airline with 7 aircraft (single
fleet) during a 1 hour airport closure, impacting 39 flights. The authors mention the heuristic presents
results in 3.6 minutes on average (7.5 minutes maximum).

(Wu and Le, 2012) is tested on a data set from China Airlines consisting of 170 flights, 5 fleets, 35
aircraft, and 51 airports. The computing time is not reported.

(Xiuli and Yanchi, 2012) state that the model was tested on a multi-fleet network with 50 aircraft and
more than 5 aircraft types. This work does not present the number of flights in the case study nor the
computation time.
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Table 4.7 ARP disruptions

Bibliographic refer-
ence and CHARP

Flight
delay

Flight
cancella-
tion

Aircraft
break-
down

Airport
capacity
shortage

(Qiang et al., 2009) X X Y Y
(Eggenberg et al.,
2010)

X X Y Y

(Liu et al., 2010) X X X Y
(Wu and Le, 2012) X X Y X
(Xiuli and Yanchi,
2012)

X X X X

(Le et al., 2013) X X Y X
(Arias et al., 2013) Y X X X
(Aktürk et al.,
2014)

Y X X X

(Vos et al., 2015) Y X Y X
(Sousa et al., 2015) X X Y X
(Zhu et al., 2015) X X Y X
(Xu et al., 2015) X X Y X
(Guimarans et al.,
2015)

Y X X X

(Xu and Han, 2016) X X Y X
(Hu et al., 2017) X X Y X
(Zhang, 2017) X X Y Y
(Khaled et al.,
2018)

X X Y Y

(Šarčević et al.,
2018)

Y X Y Y

(Zhao and Chen,
2018)

X X X Y

(Lee et al., 2020) X Y Y Y
(CHARP, 2022) Y Y Y Y

The proposed model by (Arias et al., 2013) is tested with real data from a commercial airline with a
total of 51 flights, 13 airports, and 11 aircraft. The proposed model can match the optimal solution in 14
cases out of 20. According to the authors, the results suggest that the inherent uncertainty of the ARP
makes it a suitable candidate for combining simulation and optimisation methods

The framework used by (Vos et al., 2015) is applied to a set of real disruptive days in the operation of
Kenya Airways. In 93.3% of the times, the DSS found solutions within 10 minutes. Furthermore, the
authors showed that the solution costs are underestimated when computed using a static approach.

The work of (Sousa et al., 2015) consist of two different experiments, both using real data from a
commercial airline. On a problem with 100 flights, the ACO outperforms (non-truncated) BaB and Depth
First Search (DFS) in terms of solution quality, although it takes 40% more time on average. This trade-off
between time and quality will probably be an issue to take into account when applying this approach in
larger data sets.



92 The Constructive Heuristic for the Aircraft Recovery Problem

Table 4.8 ARP recovery actions

Bibliographic refer-
ence and CHARP

Flight
Delay

Flight
cancella-
tion

Create
flight

Aircraft
swap

Reserve
aircraft

Ferry
aircraft

Cruise
Speed
Control

(Qiang et al., 2009) Y Y N Y X X X
(Eggenberg et al.,
2010)

Y Y N Y X X X

(Liu et al., 2010) Y Y N Y X X X
(Wu and Le, 2012) X Y Y N Y X X
(Xiuli and Yanchi,
2012)

X Y Y N Y X X

(Le et al., 2013) Y N N Y X X X
(Arias et al., 2013) Y Y Y Y N N N
(Aktürk et al.,
2014)

Y N N Y X X Y

(Vos et al., 2015) Y Y N Y X X X
(Sousa et al., 2015) Y Y N Y X X X
(Zhu et al., 2015) Y Y N Y X X X
(Xu et al., 2015) Y Y N N X X X
(Guimarans et al.,
2015)

Y N N Y X X X

(Xu and Han, 2016) N Y N X X X X
(Hu et al., 2017) Y Y N Y X X X
(Zhang, 2017) Y Y N Y X X X
(Khaled et al.,
2018)

N Y N Y X X X

(Šarčević et al.,
2018)

Y Y N Y X X X

(Zhao and Chen,
2018)

Y Y N Y X X X

(Lee et al., 2020) X Y Y N Y X Y
(CHARP, 2022) Y Y Y N N Y N

With data on the actual flying time and the planned flying time from 400 flights in a day of Sichuan
Airlines, (Xu et al., 2015) create a uniform probability density function which predicts the flying time of
flights. The model is tested on a network of generated data with 3 aircraft and 11 flights.

The proposed methodology by (Guimarans et al., 2015) was tested on several instances with different
characteristics, some of which were obtained from real data provided by a Spanish airline.

(Xu and Han, 2016) uses actual data from Air China show that the weighted time-band approximation
model is feasible. The authors mention also that the results of stochastic experiments using actual data
from Sichuan Airlines show that the flight disruption and computation time are controlled by the airline
operations control centre, which aims to achieve a balance between the flight disruption scope and depth,
computation time, and recovery value.

The methodology is tested on real-world empirical data for a Boeing 737 fleet consisting of 104
aircraft from a major Chinese airline covering 410 flights. The computation times range between 12 and
20 min, depending on the disruption instance.
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The approach in (Zhang, 2017) is tested on five real life test scenarios. The largest instance included
44 aircraft and 638 flights; the computation time was 150 seconds.

The model proposed in (Khaled et al., 2018) computes solutions in less than 30 seconds for the
adapted test case involving 111 flights and 10 aircraft.

The system in (Šarčević et al., 2018) is tested on a month worth of real airline data, however,
dimensions of the case study and required runtime are not given.

(Zhao and Chen, 2018) depicts a single case study consisting of 6 aircraft and 31 flights. The
computation times are not presented.

The data instances tested using the CHARP includes aircraft maintenance, a planning horizon of 1 to
3 days and number of flights between 608 and 2178. The testing is performed over 32 data instances each
of which has its specific aircraft fleet and flights. It is possible to verify that it comprises biggest number
of aircraft and flights. However, the use of CP reduces significantly computing time. The data used is
publicly available and it has been tested extensively.

Table 4.9 ARP problem characteristics

Bibliographic reference
and CHARP

Multi-
Fleet

Maintenance Data Aircraft Fleets Flights Computing
time [sec.]

(Qiang et al., 2009) X N N 50 1 200 < 120
(Eggenberg et al., 2010) Y Y RL 100 1 760 63
(Liu et al., 2010) N N RL 7 1 72 81 to 450
(Wu and Le, 2012) Y Y RL 35 5 170 X
(Xiuli and Yanchi, 2012) Y Y RL 50 5 X X
(Le et al., 2013) Y N RL 6 3 30 < 98
(Arias et al., 2013) X N RL 11 X 51 X
(Aktürk et al., 2014) Y N RL 60 6 207 202
(Vos et al., 2015) X Y RL 43 1 X < 600
(Sousa et al., 2015) N N RL 72 1 100 18
(Zhu et al., 2015) N N RL 6 1 23 < 900
(Xu et al., 2015) N N RL + G 3 1 11 < 1
(Guimarans et al., 2015) N N RL 40 1 163 < 226
(Xu and Han, 2016) X N RL 60 X 254 < 1006
(Hu et al., 2017) Y N RL 104 1 410 1200
(Zhang, 2017) N Y RL 44 1 638 150
(Khaled et al., 2018) N Y RL 10 1 111 < 30
(Šarčević et al., 2018) X N X X X X X
(Zhao and Chen, 2018) X N RL 6 X 32 X
(Lee et al., 2020) Y N RL X 3 852 < 300
(CHARP, 2022) Y Y Y 618 8 2178 < 206

To compare the performance of the different bibliographic references and the CHARP, table 4.10
presents the ratio between computing time per number of flights and aircraft. Similarly, figure 4.7 presents
the same results using the logarithmic scale (in the vertical axis) for the same ratio.

4.7 Conclusion and future work

ARP is a practical problem that needs to be solved during operations, therefore, the efficiency of the
method in terms of computational time is a very important characteristic. The CHARP loads the respective
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Table 4.10 Performance comparison

Bibliographic reference and CHARP Computing time per flight per aircraft
(CHARP, 2022) 1.53E-04
(Eggenberg et al.,2010) 8.29E-04
(Sousa et al.,2015) 2.50E-03
(Zhang,2017) 5.34E-03
(Qiang et al.,2009) 1.20E-02
(Aktürk et al.,2014) 1.63E-02
(Khaled et al.,2018) 2.70E-02
(Hu et al.,2017) 2.81E-02
(Xu et al.,2015) 3.03E-02
(Guimarans et al.,2015) 3.47E-02
(Xu and Han,2016) 6.60E-02
(Le et al.,2013) 5.44E-01
(Zhu et al.,2015) 6.52E+00

data, introduces the disruptions and allocates flight slots to replace the cancelled flights. It afterwards
recovers infeasible rotations splitting them in two. The recovery procedure consists of delaying, cancelling
and creating new flights. It is done using the upper or the lower heuristic depending on the size of the
search space. When necessary and if possible, the recovery procedure creates taxi flights to connect the
aircraft’s origin airport with the first flight of the recovered rotation. In the impossibility of the latter, the
algorithm will cancel the flights in the recovered rotation until the continuity constraint is satisfied. The
data instances vary in size comprising a number of flights ranging from 608 to 2178, aircraft from 85 to
618 and airports from 35 to 168. Each of the data instances has a disruption scenario that can include one
or two types of disruptions. Flights can be delayed or cancelled, aircraft can have a breakdown period and
airports can have their capacity for departure and arrival shorted. The experiments were run simultaneously
and starting from the base scenario it was demonstrated that computing time can be improved by changing
the incremental and decremental values of the CHARP’s pincer movement. This chapter demonstrated
the use of a novel heuristic based in CP, to run thirty two data instances simultaneously, and we were
able to find solutions in 206 seconds of computing time for the biggest data instance. This result opens
perspectives to include crew and passenger recovery. Additionally, it also allows the study of the impact
of block time changes in the ARP.

The main conclusion that can be drawn from the comparison with the published work in Section 4.6
is that the airline disruption management problem is still a growing field of research. In this chapter we
proved that CP combined with the PMH can be used successfully to tackle the ARP, in a reasonable
computing time, overcoming situations where the problem is not tractable. The upper heuristic is initially
used when the search space is bigger than 1012. One could be tempted to propose the use of a quantum
algorithm for such an intractable problem from the standpoint of classical computing. In the previous
decades, the world has witnessed a number of major breakthroughs in quantum algorithms that provably
exceed the finest classical algorithms. However, it is currently unknown if quantum algorithms can
leverage computing power over classical computing, and if so, how much, or how to create quantum
algorithms that achieve such benefits. Heuristic algorithms, have shown to be effective empirically, but
have not been mathematically demonstrated to outperform other approaches, that are used to solve many
of the most difficult computational real world problems. Although quantum heuristic algorithms have been
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proposed, empirical testing won’t be achieved until quantum computation hardware is mature, (Biswas
et al., 2017).

Several practical and methodological challenges can be identified and stimulate future research.
Chapter 5 follows recent developments that include flight time variability (Arıkan et al., 2017), (Wen et al.,
2020) to recover airline disruption. The CHARP will be extended by integrating the results, for block
time and fuel obtained by (de Lemos and Woodward, 2021) since the latter proved to be reliable and the
block time is lower than the one used in the ROADEF 2009 data set.
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Chapter 5

The Impact of Smaller Block Times in
Disruption Recovery

5.1 Introduction

While working on this thesis’ goals, Chapter 3 presented the BTF flight planning model, that given two
airports - origin and destination airport - and an aircraft model to fly between them, calculates the distance
between the two airports, derives the flight profile and computes the block time and consumed fuel. The
BTF model proved to compute reliable results for the block time and consumed fuel for a specific aircraft
model. When comparing its results for block time with those of the ROADEF 2009 Challenge, they
proved to be smaller. The comparison with the block time obtained from Flightaware™ demonstrated that
the BTF values for the block time cluster in the 90th percentile. Added to the latter comparing the BTF
values with those used in Lido™ flight plans also proved the values for block time and consumed fuel
obtained from the BTF are quite accurate.

Chapter 4 describes a novel algorithm to tackle the ARP, the CHARP. The latter consists of a CP
model combined with he PMH to find solutions for the ARP in a reasonable computing time. The CHARP
uses flight delays or cancellations and creates new flights to recover from disruption. To reduce the search
space the CHARP uses CPr, the latter renders a substantial reduction in computing time. Comparing the
CHARP’s with other models demonstrated that it outperforms them in terms of computing time per flight
and aircraft.

During the research process, it was also noted that one of the disruption recovery strategies that lately
caught the attention of researchers consists in speeding up flights. Implicitly one expects that speeding up
flights will reduce block time. Since the BTF computes block time values lower than those in the data sets
it is natural to try disruption recovery using these values. Hence, this chapter studies the effect of smaller
block times in the CHARP. In particular, it researches for which disruption scenarios, a lower block time
is a viable alternative to recover disruption in commercial aviation. The experiments to study the effects
of smaller block times were made in an Intel® Xeon Gold CPU @ 2.3GHz box with 72 CPU(s), 128 GiB
of RAM box.

The remaining sections of this chapter have the following content, Section 5.2 compares the block time
differences with the ROADEF 2009 Challenge data set for westbound and eastbound flights, Section 5.3
presents the effects of smaller block time in the CHARP, Section 5.4 compares for six different disruptions
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types the results for the default scenario defined in table 4.4 and the smaller block time, and finally Section
5.5 presents the conclusions and future work.

5.2 Block Time Comparison

While developing the BTF model, we considered the difference between westbound and eastbound flight,
figure 3.1. It is also also known that flights with longer ground distance have higher cruise flight level.
Table 5.1 presents the parametric analysis of block time differences with respect to the cruise flight level.
From table 5.1 the values for maximum, minimum, average and standard deviation increase with the cruise
flight level. This pattern is also observed for westbound flights, table 5.2. To understand qualitatively how
the block time differences vary with flight level, for eastbound and westbound flights, ground distance is
also added to the plot, figures 5.1 and 5.2.

Table 5.1 Parametric analysis of block time differences for west bound flights

FL Max. [min.] Min.[min.] Average [min.] Stand. dev. [min.]
340 40 1 12.4 6.8
360 46 1 14.7 6.0
380 69 2 20.6 12.2

Table 5.2 Parametric analysis of block time differences for east bound flights

FL Max. [min.] Min. [min.] Average [min.] Stand. dev. [min.]
330 35 1 11.6 6.5
350 28 1 12.0 5.2
370 85 1 21.4 15.5

The overall parametric analysis, for east and west bound flights is presented in table 5.3. Since this
chapter aims at understanding the effects of block time differences for all flights are also presented.

Table 5.3 Parametric analysis of block time differences for all flight types

Flights Max. [min.] Min.[min.] Average [min.] Stand. dev. [min.]
All east bound 85 1 13.7 9.7
All west bound 69 1 14.6 8.6
All flights 85 1 14.2 9.1

5.3 Effects of Smaller Block Time in the CHARP

This section uses the smaller block times computed by the BTF model and introduces them in the aircraft
rotations inside the RTW. The CHARP will then recover the data set using the parameters defined in
Section 4.5.1, table 4.4. The following subsections present the CHARP graphical results using the smaller
block times for all flights in 5.3.1, only disrupted flights in 5.3.2, only non-disrupted flights 5.3.3 and
finally Subsection 5.3.4 presents a quantitative comparison between the previous scenarios and the default
scenario.
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Fig. 5.1 Block time difference vs. ground distance for westbound flights

5.3.1 Smaller Block Time for All Flights Inside the RTW

In our first attempt to understand the impact of a smaller block time the model recreated the rotations
replacing the flights inside the RTW with the smaller block times calculated using the BTF model. The
results in figure 5.3 compared with default scenario in figure 4.3 show that the best results for aggregate
cost are for the "Flights added" scenario. It is also possible to observe that the aggregate cost and
computing did not improve. The minutes of delay show the same tendency however with the current
scenario their value has increased. Similar results can be observed with the number of cancellations. The
number and the tendency of new flights created is quite similar to the default scenario. The number of
taxi flights is bigger and notably, it increases for the 900 minutes time window, as opposed to the default
scenario.

5.3.2 Smaller Block Time for Disrupted Flights Inside the RTW

In the previous section it was possible to conclude that the recovery, with a smaller block time for all
flights inside the RTW did not improve the results. This section presents the graphical results upon the
introduction of new block times only for disrupted flights inside the RTW. Apart from computing time,
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Fig. 5.2 Block time difference vs. ground distance for eastbound flights

the results in figure 5.4 are equal to the default scenario. The computing time as aforementioned is greater
than the default scenario.

5.3.3 Smaller Block Time for Non-disrupted Flights Inside the RTW

In the previous section it was possible to conclude that it was not possible to improve the results. The
only remaining option to consider, consists of updating the block time for non-disrupted flights inside the
RTW. The results for this scenario presented in figure 5.5 are similar to those presented in figure 5.3.

5.3.4 Smaller Block Time Quantitative Result Comparison

This section compares the results between the default scenario defined in Section 4.5.1, table 4.4, and
scenarios presented in the previous three sections. In terms of aggregate cost, the best recovery strategy
includes the creation of new flights and taxi flights, therefore all results henceforth presented are for
the "Flights added" scenario. The first pattern that emerges from the results presented in tables 5.4, 5.5,
5.6, 5.7, 5.8 and 5.9 is that replacing flights with smaller block times render worse solutions. In each of
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Fig. 5.3 Impact of smaller block time for all flights inside the RTW

Fig. 5.4 Impact of smaller block time for flights inside the RTW
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Fig. 5.5 Impact of smaller block time for non-disrupted flights inside the RTW

these tables, the cells highlighted in grey are the minimum value and those highlighted in green are the
maximum value.

Except for computing time, the other pattern that is visible is that the results presented for the default
scenario are equal to the results presented for smaller block times in disrupted files. Similarly, the results
presented for smaller block times for all flights are equal to the results presented for smaller block times
for non-disrupted flights. Therefore, the impact of smaller block times for disrupted flights is null.
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Table 5.10 summarises the average differences, between the default scenario and scenarios for smaller
block times for all flights, only disrupted flights and non-disrupted flights inside the RTW. The average
difference considers all time windows, and it is possible to confirm previous observations.

Table 5.10 Average differences between the default scenario and smaller block time scenarios

All flights Disrupted flights Non-disrupted flights
Aggregate cost 42.78% 0.00% 43.07%
Computing time 38.96% 1.68% 38.81%
Minutes of delay 54.33% 0.00% 54.33%
Number of cancellations 51.82% 0.00% 51.82%
Number of new flights -2.00% 0.00% -2.00%
Number of taxi flights 18.68% 0.00% 18.68%

5.4 Effects of Smaller Block Time for Disruption Scenarios

This section aims to understand if there are any circumstances where having smaller block times render
a better solution. The results are presented according to the types of disruption(s) that happen, flight
disruption in Subsection 5.4.1, aircraft disruption in Subsection 5.4.2, airport disruption in Subsection
5.4.3, flight and aircraft disruption in Subsection 5.4.4, flight and airport disruption in Subsection 5.4.5
and finally aircraft and airport disruption in Subsection 5.4.6. To prevent the results from overlapping
and become invisible, henceforth the latter will be presented using bar graphs. For each of the disruption
scenarios an additional table is presented summarising the relative differences for the aggregate cost.

5.4.1 Flight Disruption

In figure 5.6 it is possible to observe that in face of flight disruption, smaller block times when compared
with the default scenario, do not show any improvement for the aggregate cost, computing time, number
of minutes of delay and number of cancellations. It is only possible to notice an exceedingly small
improvement in the number of new flights, time window 1080. As for the number of taxi flights created
it is possible to observe that for smaller block times it is triple the number for the default scenario, 6 to
2 respectively. Since the results figure 5.6 do not show any improvement, the next research step is to
granulate the data to confirm this observation. Table 5.11, presents the aggregate cost and its relative
difference. Finally yet importantly, it is possible to see evidence of improvement whilst having smaller
block time, data instances A1, A2, A6, and A7. It is noticeable that these data instances, have a smaller
number of flights and the RTW has the duration of one day, as opposed to the remaining B instances
where the RTW spans for two days. It is also observable that extending the time window does not impact
the improvement for the A data instances, whereas the opposite happens to the B data instances making
the aggregate cost increase.
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Fig. 5.6 Effects of smaller block time for flight disruption

Table 5.11 Aggregate cost relative differences of smaller block time for flight disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

720 A1 31,352.85 28,387.90 -10.44%
720 A2 45,984.10 45,237.95 -1.65%
720 A6 35,965.75 32,540.70 -10.53%
720 A7 57,620.75 56,661.05 -1.69%
720 B1 22,621,894.15 34,604,127.05 34.63%
720 B2 21,990,602.05 38,241,507.20 42.50%
720 B6 28,366,139.10 42,530,924.90 33.30%
720 B7 26,662,429.95 46,979,285.70 43.25%
720 Average relative difference 16.17%

780 A1 31,352.85 28,387.90 -10.44%
780 A2 45,984.10 45,237.95 -1.65%
780 A6 35,965.75 32,540.70 -10.53%
780 A7 57,620.75 56,661.05 -1.69%
780 B1 19,783,267.70 33,488,335.50 40.92%
780 B2 21,551,845.45 37,082,320.70 41.88%
780 B6 24,608,852.55 40,949,484.35 39.90%
780 B7 25,880,693.05 44,873,286.40 42.32%
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Table 5.11 Aggregate cost relative differences of smaller block time for flight disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

780 Average relative difference 17.59%

840 A1 31,352.85 28,387.90 -10.44%
840 A2 45,984.10 45,237.95 -1.65%
840 A6 35,965.75 32,540.70 -10.53%
840 A7 57,620.75 56,661.05 -1.69%
840 B1 17,216,123.90 33,633,019.25 48.81%
840 B2 20,320,886.45 37,885,946.80 46.36%
840 B6 21,342,334.75 41,220,533.05 48.22%
840 B7 24,262,338.55 45,518,962.20 46.70%
840 Average relative difference 20.72%

900 A1 31,352.85 28,387.90 -10.44%
900 A2 45,984.10 45,237.95 -1.65%
900 A6 35,965.75 32,540.70 -10.53%
900 A7 57,620.75 56,661.05 -1.69%
900 B1 17,003,379.90 31,947,215.40 46.78%
900 B2 19,988,418.95 37,704,760.85 46.99%
900 B6 20,592,662.65 38,518,068.45 46.54%
900 B7 23,989,632.20 45,215,529.50 46.94%
900 Average relative difference 20.37%

960 A1 31,352.85 28,387.90 -10.44%
960 A2 45,984.10 45,237.95 -1.65%
960 A6 35,965.75 32,540.70 -10.53%
960 A7 57,620.75 56,661.05 -1.69%
960 B1 17,003,379.90 31,112,596.45 45.35%
960 B2 19,988,418.95 36,516,349.80 45.26%
960 B6 20,592,662.65 37,675,314.75 45.34%
960 B7 23,989,632.20 43,954,485.60 45.42%
960 Average relative difference 19.63%

1020 A1 31,352.85 28,387.90 -10.44%
1020 A2 45,984.10 45,237.95 -1.65%
1020 A6 35,965.75 32,540.70 -10.53%
1020 A7 57,620.75 56,661.05 -1.69%
1020 B1 16,582,880.50 31,858,155.55 47.95%
1020 B2 19,935,279.55 36,088,951.60 44.76%
1020 B6 19,678,203.40 38,174,834.50 48.45%
1020 B7 23,711,828.90 43,416,577.40 45.39%
1020 Average relative difference 20.28%

1080 A1 31,352.85 28,387.90 -10.44%
1080 A2 45,984.10 45,237.95 -1.65%
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Table 5.11 Aggregate cost relative differences of smaller block time for flight disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

1080 A6 35,965.75 32,540.70 -10.53%
1080 A7 57,620.75 56,661.05 -1.69%
1080 B1 17,224,058.55 31,395,333.05 45.14%
1080 B2 19,782,494.50 36,560,202.25 45.89%
1080 B6 20,117,658.25 37,783,625.30 46.76%
1080 B7 23,463,628.70 43,788,666.20 46.42%
1080 Average relative difference 19.99%

1140 A1 31,352.85 28,387.90 -10.44%
1140 A2 45,984.10 45,237.95 -1.65%
1140 A6 35,965.75 32,540.70 -10.53%
1140 A7 57,620.75 56,661.05 -1.69%
1140 B1 16,976,934.05 31,934,688.85 46.84%
1140 B2 19,906,616.90 35,629,876.25 44.13%
1140 B6 19,857,512.25 38,748,783.35 48.75%
1140 B7 23,370,848.05 42,886,839.05 45.51%
1140 Average relative difference 20.11%

1200 A1 31,352.85 28,387.90 -10.44%
1200 A2 45,984.10 45,237.95 -1.65%
1200 A6 35,965.75 32,540.70 -10.53%
1200 A7 57,620.75 56,661.05 -1.69%
1200 B1 17,555,330.85 32,363,041.20 45.76%
1200 B2 20,660,593.20 36,055,745.05 42.70%
1200 B6 20,501,129.15 38,968,354.50 47.39%
1200 B7 24,231,551.05 43,387,724.10 44.15%
1200 Average relative difference 19.46%

1260 A1 31,352.85 28,387.90 -10.44%
1260 A2 45,984.10 45,237.95 -1.65%
1260 A6 35,965.75 32,540.70 -10.53%
1260 A7 57,620.75 56,661.05 -1.69%
1260 B1 17,792,420.85 32,746,668.85 45.67%
1260 B2 20,660,593.20 35,748,303.25 42.21%
1260 B6 20,797,398.95 39,374,131.70 47.18%
1260 B7 24,231,551.05 43,258,326.35 43.98%
1260 Average relative difference 19.34%



110 The Impact of Smaller Block Times in Disruption Recovery

5.4.2 Aircraft Disruption

In figure 5.7 it is possible to observe that in face of aircraft disruption, smaller block times when compared
with the default scenario, do not show any improvement for the aggregate cost, computing time, number of
minutes of delay, number of cancellations and number of new flights created. However, the scenario with
smaller block times, as opposed to the default scenario, creates taxi flights. Additionally, for the aircraft
disruption scenario, the main difference between the smaller block time scenario and the default scenario
is the minutes of delay necessary for recovery. The order of magnitude of the time windows greater
than 780 is 102 . In terms of the relative difference for the aggregate cost, in table 5.12 it is not possible
to observe any improvement in the X2 and X4 data instances. The grand average relative difference is
43.43%.

Fig. 5.7 Effects of smaller block time for aircraft disruption

Table 5.12 Aggregate cost relative differences of smaller block time for aircraft disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

720 X2 1,960,194.50 3,358,459.15 41.60%
720 X4 2,168,904.95 3,866,983.75 43.91%
720 Average relative difference 42.76%

780 X2 1,960,194.50 3,340,808.15 41.30%
780 X4 2,168,904.95 3,857,586.30 43.78%
780 Average relative difference 42.54%
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Table 5.12 Aggregate cost relative differences of smaller block time for aircraft disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

840 X2 1,960,194.50 3,340,808.15 41.30%
840 X4 2,168,904.95 3,857,586.30 43.78%
840 Average relative difference 42.54%

900 X2 1,960,194.50 3,114,814.25 37.04%
900 X4 2,168,904.95 3,664,037.05 40.81%
900 Average relative difference 38.92%

960 X2 1,960,194.50 3,262,530.40 39.89%
960 X4 2,168,904.95 3,689,560.10 41.22%
960 Average relative difference 40.55%

1020 X2 1,960,194.50 3,262,530.40 39.89%
1020 X4 2,168,904.95 3,689,560.10 41.22%
1020 Average relative difference 40.55%

1080 X2 1,960,194.50 3,262,530.40 39.89%
1080 X4 2,168,904.95 3,687,975.80 41.19%
1080 Average relative difference 40.54%

1140 X2 1,960,194.50 3,282,076.45 40.25%
1140 X4 2,168,904.95 3,687,975.80 41.19%
1140 Average relative difference 40.72%

1200 X2 1,960,194.50 3,282,076.45 40.25%
1200 X4 2,168,904.95 3,687,975.80 41.19%
1200 Average relative difference 40.72%

1260 X2 1,521,838.45 4,103,283.70 62.91%
1260 X4 1,706,760.70 5,014,345.15 65.96%

5.4.3 Airport Disruption

In figure 5.8, it is possible to observe that in face of airport disruption, once again, smaller block times
when compared with the default scenario, do not show any improvement for the aggregate cost, computing
time, number of minutes of delay, number of cancellations and number of new flights created. The way
the CHARP works it does not create flights if there are none that were initially cancelled by flight or
aircraft disruption. Nonetheless, why should they be created if, due to airport capacity shortage, there are
no time slots available? In an opposite direction it is possible to observe that, unlike the flight and aircraft
disruption scenarios, the CHARP creates a big number of taxi flights. This observation results from the
fact that RTW has an early start, and although many flights get cancelled due to the decrease in airport
capacity, the CHARP, re-connects the initial airport with the recovered rotation. It is also observable that
the size of the time window plays an important role because it allows to extend the minutes of delay.
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Fig. 5.8 Effects of smaller block time for airport disruption

As for the relative differences in the aggregate cost, even though there is no improvement, it is
observable that the average is quite similar to the result obtained for the flight disruption scenario.

Table 5.13 Aggregate cost relative differences of smaller block time for airport disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

720 A5 14,690,167.60 16,819,556.75 12.66%
720 A10 17,430,567.25 20,383,437.40 14.49%
720 B5 72,910,445.75 100,414,460.45 27.39%
720 B10 90,838,407.65 124,227,533.20 26.88%
720 Average relative difference 20.35%

780 A5 13,292,798.90 15,278,189.75 12.99%
780 A10 15,963,866.70 19,206,976.70 16.89%
780 B5 74,421,160.15 97,698,257.55 23.83%
780 B10 92,314,065.60 120,175,342.30 23.18%
780 Average relative difference 19.22%

840 A5 15,035,562.80 15,668,232.75 4.04%
840 A10 18,013,321.65 19,215,855.40 6.26%
840 B5 75,573,470.05 97,229,602.45 22.27%
840 B10 93,684,190.90 119,264,216.30 21.45%
840 Average relative difference 13.50%
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Table 5.13 Aggregate cost relative differences of smaller block time for airport disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

900 A5 13,193,238.25 14,109,892.50 6.50%
900 A10 15,688,235.40 17,296,453.80 9.30%
900 B5 75,337,021.05 98,176,639.30 23.26%
900 B10 93,817,153.20 120,035,355.35 21.84%
900 Average relative difference 15.23%

960 A5 11,996,263.95 13,668,927.45 12.24%
960 A10 13,905,589.90 17,027,685.00 18.34%
960 B5 76,342,060.95 98,053,396.70 22.14%
960 B10 95,024,218.10 119,839,478.55 20.71%
960 Average relative difference 18.36%

1020 A5 13,373,381.00 14,108,576.55 5.21%
1020 A10 15,934,541.90 17,652,190.35 9.73%
1020 B5 77,083,154.55 95,602,772.05 19.37%
1020 B10 94,593,672.20 116,623,881.60 18.89%
1020 Average relative difference 13.30%

1080 A5 12,264,907.45 13,682,095.70 10.36%
1080 A10 15,561,766.60 16,616,151.20 6.35%
1080 B5 77,468,292.30 97,654,744.20 20.67%
1080 B10 96,014,102.30 119,654,576.15 19.76%
1080 Average relative difference 14.28%

1140 A5 12,173,298.80 13,038,527.00 6.64%
1140 A10 14,822,046.40 15,914,844.25 6.87%
1140 B5 77,935,952.30 97,301,366.05 19.90%
1140 B10 96,745,517.35 119,831,090.20 19.27%
1140 Average relative difference 13.17%

1200 A5 12,525,933.85 13,123,189.40 4.55%
1200 A10 14,672,673.05 15,825,720.65 7.29%
1200 B5 76,664,519.60 99,056,206.80 22.61%
1200 B10 94,912,417.45 122,144,704.45 22.30%
1200 Average relative difference 14.18%

1260 A5 13,165,899.70 12,966,643.40 -1.54%
1260 A10 15,556,048.15 15,670,646.05 0.73%
1260 B5 78,823,794.80 100,004,299.10 21.18%
1260 B10 97,821,206.70 123,711,316.50 20.93%
1260 Average relative difference 10.33%
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5.4.4 Flight and Aircraft Disruption

In figure 5.9, it is possible to observe the previous pattern of no improvement for the aggregate cost,
computing time, number of minutes of delay and number of cancellations. Additionally, with the
exceptions of the 780 and 840 time windows the number of new flights created for the smaller block time
scenario, the remaining time windows do not show any improvement. Unlike the default scenario, the
smaller block time scenario creates taxi flights.

Fig. 5.9 Effects of smaller block time for flight and aircraft disruption

As for the relative difference in the aggregate cost, it is possible to observe in table 5.14 that for some
of the values are quite similar having values lower than 1%, while others are greater than 40%.

Table 5.14 Aggregate cost relative differences of smaller block time for flight and aircraft disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

720 A3 531,738.20 541,115.00 1.73%
720 A8 758,704.45 773,527.85 1.92%
720 B3 23,286,201.60 35,343,794.35 34.12%
720 B8 29,151,411.80 42,948,791.90 32.13%
720 XA1 1,031,607.95 1,040,984.75 0.90%
720 XA3 1,479,332.15 1,494,155.55 0.99%
720 XB1 24,941,586.90 36,761,481.30 32.15%
720 XB3 32,887,911.55 46,234,619.50 28.87%
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Table 5.14 Aggregate cost relative differences of smaller block time for flight and aircraft disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

720 Average relative difference 16.60%

780 A3 534,261.20 536,959.75 0.50%
780 A8 763,195.45 766,615.70 0.45%
780 B3 19,964,072.65 33,804,938.60 40.94%
780 B8 24,707,993.95 41,432,969.30 40.37%
780 XA1 1,034,130.95 1,036,829.50 0.26%
780 XA3 1,483,823.15 1,487,243.40 0.23%
780 XB1 21,900,819.65 35,639,932.70 38.55%
780 XB3 27,099,023.10 44,125,800.20 38.59%
780 Average relative difference 19.99%

840 A3 540,810.20 543,619.40 0.52%
840 A8 769,363.45 773,008.70 0.47%
840 B3 17,062,641.65 33,875,372.20 49.63%
840 B8 20,958,015.95 41,286,222.55 49.24%
840 XA1 1,040,679.95 1,043,489.15 0.27%
840 XA3 1,489,991.15 1,493,636.40 0.24%
840 XB1 18,988,754.75 35,690,198.80 46.80%
840 XB3 24,407,161.90 43,778,373.20 44.25%
840 Average relative difference 23.93%

900 A3 540,810.20 543,619.40 0.52%
900 A8 769,363.45 773,008.70 0.47%
900 B3 16,875,549.05 32,694,235.45 48.38%
900 B8 20,313,346.15 39,722,769.80 48.86%
900 XA1 1,040,679.95 1,043,489.15 0.27%
900 XA3 1,489,991.15 1,493,636.40 0.24%
900 XB1 18,863,732.05 33,811,441.70 44.21%
900 XB3 24,541,802.45 42,797,119.50 42.66%
900 Average relative difference 23.20%

960 A3 540,810.20 543,619.40 0.52%
960 A8 769,363.45 773,008.70 0.47%
960 B3 16,873,008.95 32,103,448.15 47.44%
960 B8 20,308,031.35 38,829,065.50 47.70%
960 XA1 1,040,679.95 1,043,489.15 0.27%
960 XA3 1,489,991.15 1,493,636.40 0.24%
960 XB1 18,837,569.15 32,953,562.00 42.84%
960 XB3 24,541,802.45 42,082,409.35 41.68%
960 Average relative difference 22.64%

1020 A3 540,810.20 543,619.40 0.52%
1020 A8 769,363.45 773,008.70 0.47%
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Table 5.14 Aggregate cost relative differences of smaller block time for flight and aircraft disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

1020 B3 17,678,534.15 32,404,863.60 45.44%
1020 B8 20,929,492.20 38,743,029.80 45.98%
1020 XA1 1,040,679.95 1,043,489.15 0.27%
1020 XA3 1,489,991.15 1,493,636.40 0.24%
1020 XB1 19,713,518.75 32,480,889.15 39.31%
1020 XB3 24,508,113.90 42,547,592.50 42.40%
1020 Average relative difference 21.83%

1080 A3 540,810.20 543,619.40 0.52%
1080 A8 769,363.45 773,008.70 0.47%
1080 B3 18,481,652.10 32,339,201.05 42.85%
1080 B8 21,477,335.65 38,755,353.20 44.58%
1080 XA1 1,040,679.95 1,043,489.15 0.27%
1080 XA3 1,489,991.15 1,493,636.40 0.24%
1080 XB1 20,434,861.90 33,135,636.90 38.33%
1080 XB3 24,746,768.95 42,626,127.65 41.94%
1080 Average relative difference 21.15%

1140 A3 540,810.20 543,619.40 0.52%
1140 A8 769,363.45 773,008.70 0.47%
1140 B3 18,286,579.70 32,592,913.95 43.89%
1140 B8 21,270,807.65 39,454,283.75 46.09%
1140 XA1 1,040,679.95 1,043,489.15 0.27%
1140 XA3 1,489,991.15 1,493,636.40 0.24%
1140 XB1 20,313,176.70 33,442,610.15 39.26%
1140 XB3 25,403,670.05 42,778,619.25 40.62%
1140 Average relative difference 21.42%

1200 A3 540,810.20 543,619.40 0.52%
1200 A8 769,363.45 773,008.70 0.47%
1200 B3 18,392,900.60 32,872,615.40 44.05%
1200 B8 21,606,507.25 39,533,524.50 45.35%
1200 XA1 1,040,679.95 1,043,489.15 0.27%
1200 XA3 1,489,991.15 1,493,636.40 0.24%
1200 XB1 20,152,075.20 34,484,967.05 41.56%
1200 XB3 25,526,286.45 42,470,592.30 39.90%
1200 Average relative difference 21.54%

1260 A3 540,810.20 543,619.40 0.52%
1260 A8 769,363.45 773,008.70 0.47%
1260 B3 18,392,900.60 32,872,615.40 44.05%
1260 B8 21,606,507.25 39,533,524.50 45.35%
1260 XA1 1,040,679.95 1,043,489.15 0.27%
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Table 5.14 Aggregate cost relative differences of smaller block time for flight and aircraft disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

1260 XA3 1,489,991.15 1,493,636.40 0.24%
1260 XB1 19,960,976.30 34,484,967.05 42.11%
1260 XB3 25,064,203.65 42,474,093.30 40.99%
1260 Average relative difference 21.75%

5.4.5 Flight and Airport Disruption

In figure 5.9, it is possible to observe the previous pattern for flight and aircraft disruption. However, for
the flight and airport disruption, there is no creation of new flights. As for taxi flights both disruptions,
flight and aircraft, flight and airport, create the same amount.

Fig. 5.10 Effects of smaller block time for flight and airport disruption

In table 5.16 it is possible to observe a substantial improvement in the aggregate cost for the A1 and
A9 instances. This improvement tends to increase with the size of the time window and stabilises for 960
minutes onward. However, in the opposite direction, it is possible to observe an increase in the aggregate
cost relative difference for the B4 and B9 instances, the latter having a bigger number of aircraft and
flights and their RTW extends for two days. Lastly, the grand average relative difference for the aggregate
cost is negative.
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Table 5.15 Aggregate cost relative differences of smaller block time for flight and airport disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

720 A4 441,085.65 415,272.30 -6.22%
720 A9 506,093.80 469,780.75 -7.73%
720 B4 23,286,878.25 39,167,481.35 40.55%
720 B9 29,278,539.50 47,897,637.85 38.87%
720 Average relative difference 16.37%

780 A4 446,080.65 222,232.30 -100.73%
780 A9 514,448.80 278,950.40 -84.42%
780 B4 22,983,934.40 37,546,809.65 38.79%
780 B9 28,624,255.65 46,312,585.45 38.19%
780 Average relative difference -27.04%

840 A4 446,080.65 222,134.35 -100.82%
840 A9 514,448.80 280,273.40 -83.55%
840 B4 20,337,460.50 36,535,033.05 44.33%
840 B9 25,306,862.75 44,631,284.30 43.30%
840 Average relative difference -24.18%

900 A4 451,516.65 222,134.35 -103.26%
900 A9 521,735.80 280,273.40 -86.15%
900 B4 20,282,190.40 35,279,667.65 42.51%
900 B9 24,421,705.85 43,239,592.95 43.52%
900 Average relative difference -25.85%

900 A4 457,195.65 222,134.35 -105.82%
900 A9 526,784.80 280,273.40 -87.95%
900 B4 20,502,079.35 35,030,036.55 41.47%
900 B9 24,786,779.25 42,566,603.65 41.77%
900 Average relative difference -27.63%

1020 A4 457,195.65 222,134.35 -105.82%
1020 A9 526,784.80 280,273.40 -87.95%
1020 B4 20,380,647.75 35,050,635.40 41.85%
1020 B9 24,446,483.80 42,722,467.70 42.78%
1020 Average relative difference -27.29%

1020 A4 457,195.65 222,134.35 -105.82%
1020 A9 526,784.80 280,273.40 -87.95%
1020 B4 19,118,226.45 35,297,341.50 45.84%
1020 B9 22,735,433.05 42,531,879.20 46.54%
1020 Average relative difference -25.35%

1140 A4 457,195.65 222,134.35 -105.82%
1140 A9 526,784.80 280,273.40 -87.95%
1140 B4 19,291,054.95 35,208,102.30 45.21%
1140 B9 22,936,471.85 42,904,318.15 46.54%
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Table 5.15 Aggregate cost relative differences of smaller block time for flight and airport disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

1140 Average relative difference -25.51%

1200 A4 457,195.65 222,134.35 -105.82%
1200 A9 526,784.80 280,273.40 -87.95%
1200 B4 19,179,376.65 35,178,144.25 45.48%
1200 B9 22,878,868.35 42,496,090.70 46.16%
1200 Average relative difference -25.53%

1260 A4 457,195.65 222,134.35 -105.82%
1260 A9 526,784.80 280,273.40 -87.95%
1260 B4 19,179,376.65 35,347,476.20 45.74%
1260 B9 22,878,868.35 42,725,864.50 46.45%
1260 Average relative difference -25.40%

5.4.6 Aircraft and Airport disruption

Having reached the final subsection it is possible, once again, to observe in figure 5.11, the same patterns.
There is a trend of increasing minutes of delay whilst increasing the time window. As for taxi flights both
disruptions, airport, aircraft and airport, create the same amount.

Fig. 5.11 Effects of smaller block time for aircraft and airport disruption
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In terms of improvement, it is possible to observe from table 5.16 improvement happens for the XA2
and X3 data instances in the 720 and 1260 time windows. Other than this there is no improvement for the
remaining data instances.

Table 5.16 Aggregate cost relative differences of smaller block time for aircraft and airport disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

720 X1 2,550,004.50 4,080,152.05 37.50%
720 X3 3,214,415.70 3,815,975.80 15.76%
720 XA2 17,847,730.55 17,456,133.35 -2.24%
720 XA4 20,900,892.60 21,212,335.05 1.46%
720 XB2 72,783,526.25 100,990,299.05 27.93%
720 XB4 92,121,412.40 124,927,990.05 26.26%
720 Average relative difference 17.78%

780 X1 2,542,654.50 3,902,640.30 34.85%
780 X3 2,706,850.90 3,144,737.85 13.92%
780 XA2 15,407,902.35 16,072,256.85 4.13%
780 XA4 18,372,614.90 20,783,376.95 11.60%
780 XB2 76,420,706.30 97,827,953.60 21.88%
780 XB4 92,525,663.30 121,114,774.45 23.60%
780 Average relative difference 18.33%

840 X1 2,554,408.50 3,817,111.55 33.08%
840 X3 2,696,107.90 3,144,737.85 14.27%
840 XA2 16,009,015.35 16,400,173.05 2.39%
840 XA4 19,225,213.30 19,840,723.60 3.10%
840 XB2 75,986,401.90 98,009,127.30 22.47%
840 XB4 95,464,035.35 120,621,377.75 20.86%
840 Average relative difference 16.03%

900 X1 2,554,408.50 3,809,067.95 32.94%
900 X3 2,702,032.90 3,168,134.85 14.71%
900 XA2 15,084,847.00 15,123,021.00 0.25%
900 XA4 17,543,948.65 18,578,127.10 5.57%
900 XB2 75,752,479.20 98,968,982.70 23.46%
900 XB4 95,638,338.55 119,386,205.50 19.89%
900 Average relative difference 16.14%

960 X1 2,539,858.50 3,804,153.95 33.23%
960 X3 2,706,601.90 3,166,256.85 14.52%
960 XA2 14,725,586.80 15,278,221.05 3.62%
960 XA4 17,664,267.50 18,877,820.60 6.43%
960 XB2 77,646,446.30 98,404,578.05 21.09%
960 XB4 96,498,068.00 120,829,182.10 20.14%
960 Average relative difference 16.50%

1020 X1 2,547,361.50 3,811,656.95 33.17%
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Table 5.16 Aggregate cost relative differences of smaller block time for aircraft and airport disruption

Default scenario All flights

Time window Data instance Aggregate cost Aggregate cost Relative difference

1020 X3 2,690,044.90 4,261,966.05 36.88%
1020 XA2 14,377,296.55 14,417,920.20 0.28%
1020 XA4 17,241,635.25 18,041,630.30 4.43%
1020 XB2 80,323,908.55 96,669,121.55 16.91%
1020 XB4 97,282,323.85 119,325,900.10 18.47%
1020 Average relative difference 18.36%

1080 X1 2,547,361.50 3,489,358.65 27.00%
1080 X3 2,691,943.90 4,275,459.75 37.04%
1080 XA2 13,337,800.00 14,672,371.65 9.10%
1080 XA4 16,642,069.95 17,741,346.45 6.20%
1080 XB2 76,883,295.95 98,334,513.70 21.81%
1080 XB4 97,522,717.30 120,434,206.85 19.02%
1080 Average relative difference 20.03%

1140 X1 2,547,493.50 3,508,904.70 27.40%
1140 X3 2,693,494.90 4,252,149.75 36.66%
1140 XA2 12,271,738.55 13,793,214.75 11.03%
1140 XA4 14,783,507.45 16,658,393.55 11.25%
1140 XB2 78,790,039.55 96,458,551.95 18.32%
1140 XB4 99,102,529.75 121,579,624.45 18.49%
1140 Average relative difference 20.52%

1200 X1 2,547,493.50 3,508,904.70 27.40%
1200 X3 2,705,779.90 3,949,310.25 31.49%
1200 XA2 13,430,461.85 14,301,864.55 6.09%
1200 XA4 15,987,588.95 17,216,739.30 7.14%
1200 XB2 76,468,628.65 99,734,763.85 23.33%
1200 XB4 98,626,459.00 136,176,968.05 27.57%
1200 Average relative difference 20.50%

1260 X1 2,359,490.25 3,508,904.70 32.76%
1260 X3 4,110,622.20 3,949,310.25 -4.08%
1260 XA2 13,696,970.60 14,201,588.25 3.55%
1260 XA4 16,356,905.10 16,900,456.35 3.22%
1260 XB2 78,522,145.95 100,528,698.80 21.89%
1260 XB4 97,744,790.50 126,771,805.55 22.90%
1260 Average relative difference 13.37%
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5.5 Conclusions and Future Work

This chapter analyses the effects of replacing the original block times with smaller ones computed by
the BTF model presented in Chapter 3. The analysis of results obtained by the BTF for the block time
showed they were in agreement with the real ones, obtained from Flightaware™. Additionally, it also
demonstrated that consumed fuel had no significant differences when compared with the planned values
obtained from Lido™. Therefore, no additional cost was introduced, upon replacement.

The disrupted rotations were subsequently recovered using the CHARP defined in Chapter 4. The
analysis presented in Section 5.4 compared the default scenario (Section 4.5.1, table 4.4) with the
introduction of smaller block times for all flights, disrupted flights and non-disrupted flights, during the
RTW. The introduction of smaller block times aimed at understanding if these would reduce the cost of
recovery, therefore proving to be a suitable strategy. It is possible to conclude that, inside the RTW there
are no differences between the default scenario and the disrupted flights with smaller block times scenario.
Similarly, there are no differences between the scenarios having all or only non-disrupted flights, with
smaller block times. Most strikingly, it was not possible to detect any improvement using smaller block.

In principle this result was not expected, one is to expect that if a flight is delayed, speeding it would
mitigate the effects of this disruption. However, there is more than one scenario of disruption to be
considered, therefore Section 5.4 analysis six different disruption scenarios. It was possible to demonstrate
that, for flight, flight and airport, disruption scenarios, reducing block times can render a decrease in the
recovery cost. The reduction in the recovery aggregate cost was also demonstrated, on a small scale for
the aircraft and airport disruption scenario. In relation to published work, the results presented in this
chapter not only confirm the conclusions obtained in (Aktürk et al., 2014), but also extend the scope of
the research in terms of the nature of the disruption. It is important to mention that speeding up flights
may not be a suitable strategy in the face of airport capacity shortages. This chapter presents an extended
result set in terms of number of aircraft and flights, table 4.9, and also presents results classified according
to 6 disruption scenarios.

Although the BTF modelling does not include CI changes it is also possible to confirm (Marla et al.,
2017). Unlike the latter, the flight modelling performed in this thesis was done without the use of
commercial software.

The final conclusion is that reducing block time to achieve recovery with lower cost is highly dependent
on the nature of the disruption, the size of the RTW, and the time window of delay.

In terms of future work, it would be worth considering changing the order in which new flights are
created, making sure that they are allocated to airports with available capacity. Added to this feature,
swapping aircraft is a very common recovery feature that could be included in the recovery strategy.



Chapter 6

Contributions and Future Work

This chapter summarises the contributions of this dissertation, a flight planning model, a novel disruption
recovery model based in CP and a model for disruption recovery using smaller block times, Section 6.1.
Additionally, since any model has its shortcomings, Section 6.2 presents a set of topics that can improve
and extend the models presented.

6.1 Contributions

The first step that was taken during research was to understand the envelopment regarding commercial
aviation. However, due to the size and complexity of this industry, this was narrowed down to flight
planning. The literature review demonstrated that research is mostly focused on specific phases of
the flight, and to our best knowledge there are no flight planning models published that encompass all
the flight phases for a specific aircraft model. On this note, this thesis gathered the data for ground
movements, air phases and aircraft performance to create the BTF model. Using EMEP/EEA historical
data from pollutant emissions the BTF model is able to find how long it takes for an aircraft to taxi-out,
take-off, approach, land and taxi-in. Added to the latter by using BADA aircraft performance tables, and
Newtonian mechanics it is possible to model CCD phases and calculate ground distance, flight times
and consumed fuel. The results for block time obtained from the BTF model were benchmarked against
the real ones obtained from Flightaware™, using percentile and RMSE. This comparison was also made
against published work and Lido™flight plans. It was possible to conclude that the block time result sets
computed by the BTF were quite accurate. In terms of consumed fuel, it was also possible to confirm the
accuracy of the BTF model results, by comparing them with published literature and Lido™. Other than
being an accurate model the BTF model, also proved to be very efficient in terms of computing time.

On occasions, flights cannot be operated according to the original flight plan. There is a series of
factors that affect a flight to the point that it can become delayed or cancelled. Events such as aircraft
malfunction, inclement weather and industrial action can cause disruptions in the aircraft rotation, making
it infeasible. Hence, faced with disruption, ATM systems are fundamental to provide recovery solutions
that can mitigate disruption costs in a reasonable computing time. Disruption recovery in commercial
aviation encompasses three steps, first the aircraft rotations, second the crew roster and third passenger
itineraries. ATMs follow this order of recovery and every time a feasible solution cannot be found
they backtrack to the previous step. From the standpoint of computer science, disruption recovery in
commercial aviation consists of a NP-hard combinatorial problem. Due to the aforementioned complexity
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this thesis focus solely on the recovery of aircraft rotations, commonly known as the ARP. Since the latter
is a scheduling problem, it can be modelled as a CSP. The approach that is most suited to solve CSP is CP.
According to Google™:

"CP is based on feasibility (finding a feasible solution) rather than optimisation (finding an optimal
solution) and focuses on the constraints and variables rather than the objective function. In fact, a CP
problem may not even have an objective function — the goal may simply be to narrow down a very large
set of possible solutions to a more manageable subset by adding constraints to the problem."

Chapter 4, defines the ARP model and introduces CP concepts, such as CPr and backtracking. The
former two are introduced into the CHARP. The CHARP consists of a set of nine algorithms that upon
finding infeasible rotations, recovers them by creating new flights, adding delays, cancellations and
creating taxi flights. To perform these actions the CHARP finds the flight domains and computes the
search space. If the search space size is greater than the upper bound, the upper heuristic tries to perform
the recovery. On the other hand, if the search space size is below the lower bound the procedure using
CPr, reduces the size of the search space even further. Afterwards, the lower heuristic algorithm tries to
perform the recovery. Whenever recovery is not possible the CHARP performs backtracking and removes
a recovered rotation from the solution. Additionally, if the recovered rotation breaks continuity from
the original airport, the CHARP reconnects it by creating taxi flights. The CHARP handles a spectrum
of search spaces with sizes from 101 to 1025 using a meta-heuristic that performs a pincer movement,
combining the upper and the lower heuristic. By reducing the size of the search space, the CPr algorithm
also reduces computing time. Comparisons with published literature demonstrate that the CHARP can
handle six distinct disruption scenarios, and the biggest number of flights, aircraft and airports. The
computing time also proved to be suited for industrial applications.

In recent years disruption recovery research has been focusing on cruise speed changes. Published
work is promising however it does not get into detail regarding the disruption scenarios, the planning
horizon or the aircraft model. By integrating the BTF with the CHARP Chapter 5 includes all these
factors. In Section 5.4 flight, flight and airport, disruption scenarios, demonstrated that reducing block
times can render a decrease in the recovery cost for some data instances. Hence, the results show that
it is possible to reduce the cost of recovery by reducing block time however, this conclusion is highly
dependent on the problem’s nature.

Finally, it is important to mention that the BTF model is published and cited in (Montlaur et al.,
2021). The CHARP was presented in the OR63 Conference on the 14th of September under the category
"Applications in Aviation".

6.2 Future Work

The BTF assumed that the Earth is a perfect sphere, while in fact the Earth is not a perfect sphere but
rather closer to an ellipsoid. However, even an ellipsoid does not adequately describe the Earth’s unique
and ever-changing shape. Our planet is "pudgier" at the equator than at the poles by about 21 Km. This is
due to the centrifugal force created by the earth’s constant rotation. During the flight, the BTF model also
assumes the aircraft does not change its weight. This assumption impacts modelling because the BTF
uses the constant nominal mass level defined in the BADA aircraft performance tables. In fact, the aircraft
can start at a high mass level and afterwards change to nominal due to the loss of weight. This change
has an impact, no less than, on the ROCD, fuel consumption rate, engine thrust, cruising altitude, and
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TAS. Due to the jet stream, the BTF distinguishes eastbound from westbound flights however, it does not
incorporate the daily weather conditions. The weather and in particular the wind have an important effect
on the aircraft speed. Ultimately inclement weather can have a strong impact on flight planning to the
point of causing flight cancellation.

In order to mitigate the effects of disruption, this thesis developed and presented the CHARP. This
heuristic uses a set of steps to perform recovery, which do not include aircraft swap as a recovery strategy.
The latter can become part of future work and in addition, the CHARP can be extended to include an
improvement phase that can introduce additional flights.

The observations provided in in Chapters 3, 4 and 5 leads to conclude that this thesis opens many
possibilities for disruption recovery. The introduction of smaller block times can on occasions reduce the
recovery cost, therefore it would be interesting to understand in which situations flights should be sped up.
This procedure would require the introduction of itineraries in the objective function and due to the added
complexity, it would be important to consider the introduction of a hyper-heuristic to guide the solution.

At the moment the author of this thesis is writing the paper "Computing Time Benefits of Constraint
Propagation". Overall the work presented in this thesis has major contributions and can be extended with
further investigation.
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A.2 Fuel flow for the climb phase for the B737-800

Table A.2 BTF data for fuel flow vs. altitude for the climb phase for the B737-800

Fuel flow [100,000 Kg/h] Altitude [1,000,000 ft]
0.010 0.06666
0.012 0.06420
0.014 0.06174
0.016 0.05928
0.018 0.05676
0.020 0.05430
0.022 0.05178
0.024 0.04926
0.026 0.04674
0.028 0.04422
0.029 0.04290
0.031 0.03996

Fig. A.1 Fuel flow vs. altitude for flight 1
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Fig. A.2 Fuel flow vs. altitude for flight 2

Fig. A.3 Fuel flow vs. altitude for flight 3
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Fig. A.4 Fuel flow vs. altitude for flight 4

Fig. A.5 Fuel flow vs. altitude for flight 5
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A.3 Lido™ flight plan extracts

Fig. A.6 Lido flight plan TP586 for the Lisbon, Cologne flight

Fig. A.7 Lido flight plan TP672 for the Lisbon, Amsterdam flight
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Fig. A.8 Lido flight plan TP757 for the Copenhagen, Lisbon flight

Fig. A.9 Lido flight plan TP946 for the Lisbon, Geneva flight



144 BTF Extended Results and Data Sets

A
.4

Fl
ig

ht
da

ta
fo

r
th

e
B

T
F

m
od

el
,L

id
o

™
an

d
Fl

ig
ht

Aw
ar

e
™

Ta
bl

e
A

.3
C

om
pa

ri
ng

th
e

B
T

F
m

od
el

re
su

lts
w

ith
L

id
o™

’a
fli

gh
tp

la
ns

O
ri

gi
n

ai
r-

po
rt

A
irc

ra
ft

m
od

el
D

es
tin

at
io

n
ai

rp
or

t
B

T
F

bl
oc

k
tim

e
[m

in
.]

A
ir

di
s-

ta
nc

e
[K

m
]

B
T

F
m

od
el

co
n-

su
m

ed
fu

el
[K

g]

B
T

F
m

od
el

pe
r-

ce
nt

ile

B
T

F
m

od
el

R
M

SE

L
id

o
pl

an
ne

d
bl

oc
k

tim
e

[m
in

.]

L
id

o
pe

r-
ce

nt
ile

L
id

o
R

M
SE

Sa
m

pl
e

si
ze

Sa
m

pl
e

av
-

er
ag

e
fli

gh
t

tim
e[

m
in

.]

L
IS

A
32

0
A

M
S

16
8

19
11

61
10

81
.3

20
.6

17
7

93
.8

28
.0

16
15

2
L

IS
A

32
0

C
G

N
16

8
19

52
61

83
50

.0
8.

7
17

6
77

.8
12

.2
9

16
7

L
IS

A
31

9
G

VA
15

8
18

46
54

67
10

0.
0

38
.5

16
7

10
0.

0
47

.3
9

12
0

C
PH

A
32

0
L

IS
23

7
27

53
86

51
10

0.
0

18
.9

23
3

10
0.

0
15

.1
3

21
9

L
IS

A
32

0
O

RY
13

5
14

92
49

58
76

.7
10

.6
14

8
10

0.
0

21
.4

30
12

8



Appendix B

Constructive Heuristic for the Aircraft
Recovery Problem Data Sets



146 Constructive Heuristic for the Aircraft Recovery Problem Data Sets

B
.1

R
O

A
D

E
F

20
09

C
ha

lle
ng

e
D

at
a

Se
ts

Ta
bl

e
B

.1
In

st
an

ce
se

tA
ch

ar
ac

te
ri

st
ic

s

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

N
o.

of
fli

gh
ts

60
8

60
8

60
8

60
8

60
8

60
8

60
8

60
8

60
8

60
8

N
o.

of
ai

rc
ra

ft
85

85
85

85
85

85
85

85
85

85
N

o.
of

ai
rp

or
ts

35
35

35
35

35
35

35
35

35
35

N
o.

of
iti

ne
ra

ri
es

1,
94

3
1,

94
3

1,
94

3
1,

94
3

3,
95

9
1,

87
2

1,
87

2
1,

87
2

1,
87

2
3,

77
3

N
o.

of
fli

gh
td

is
ru

pt
io

ns
63

10
7

83
41

0
63

10
7

83
41

0
N

o.
of

ai
rc

ra
ft

di
sr

up
tio

ns
0

0
1

0
0

0
0

1
0

0
N

o.
of

ai
rp

or
td

is
ru

pt
io

ns
0

0
0

2
35

0
0

0
2

35
R

T
W

[d
ay

s]
1

1
1

1
2

1
1

1
1

2

Ta
bl

e
B

.2
In

st
an

ce
se

tB
ch

ar
ac

te
ri

st
ic

s

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
10

N
o.

of
fli

gh
ts

1,
42

2
1,

42
2

1,
42

2
1,

42
2

1,
42

2
1,

42
2

1,
42

2
1,

42
2

1,
42

2
1,

42
2

N
o.

of
ai

rc
ra

ft
25

5
25

5
25

5
25

5
25

5
25

5
25

5
25

5
25

5
25

5
N

o.
of

ai
rp

or
ts

44
44

44
44

44
44

44
44

44
44

N
o.

of
iti

ne
ra

ri
es

11
,2

14
11

,2
14

11
,2

14
11

,2
14

11
,2

14
11

,5
65

11
,5

65
11

,5
65

11
,5

65
11

,5
65

N
o.

of
fli

gh
td

is
ru

pt
io

ns
22

9
25

4
22

8
22

9
0

22
9

25
4

22
8

22
9

0
N

o.
of

ai
rc

ra
ft

di
sr

up
tio

ns
0

0
1

0
0

0
0

1
0

0
N

o.
of

ai
rp

or
td

is
ru

pt
io

ns
0

0
0

1
2

0
0

0
1

2
R

T
W

[d
ay

s]
2

2
2

2
2

2
2

2
2

2



B.1 ROADEF 2009 Challenge Data Sets 147

Ta
bl

e
B

.3
In

st
an

ce
se

tX
ch

ar
ac

te
ri

st
ic

s

X
1

X
2

X
3

X
4

X
A

1
X

A
2

X
A

3
X

A
4

X
B

1
X

B
2

X
B

3
X

B
4

N
o.

of
fli

gh
ts

2,
17

8
2,

17
8

2,
17

8
2,

17
8

60
8

60
8

60
8

60
8

1,
42

2
1,

42
2

1,
42

2
1,

42
2

N
o.

of
ai

rc
ra

ft
61

8
61

8
61

8
61

8
85

85
85

85
25

5
25

5
25

5
25

5
N

o.
of

ai
rp

or
ts

16
8

16
8

16
8

16
8

35
35

35
35

44
44

44
44

N
o.

of
iti

ne
ra

ri
es

28
,3

08
28

,3
08

29
,1

51
29

,1
51

1,
94

3
3,

95
9

1,
87

2
3,

77
3

11
,2

14
11

,2
14

11
,5

65
11

,5
65

N
o.

of
fli

gh
td

is
ru

pt
io

ns
0

0
0

0
82

0
82

0
22

8
0

22
7

0
N

o.
of

ai
rc

ra
ft

di
sr

up
tio

ns
1

1
1

1
3

3
3

3
3

1
4

3
N

o.
of

ai
rp

or
td

is
ru

pt
io

ns
1

0
1

0
0

35
0

35
0

2
0

2
R

T
W

[d
ay

s]
3

3
3

3
2

2
2

2
2

2
2

2





B.1 ROADEF 2009 Challenge Data Sets 149


	Acronyms
	List of figures
	List of tables
	Table of contents
	1 Introduction and Overview
	1.1 Background on Commercial Aviation Management
	1.2 Background on Commercial Aviation Disruption
	1.3 Current Approaches on Disruption Recovery 
	1.4 Aims and Objectives
	1.5 Summary of the Thesis

	2 Literature Review
	2.1 Flight Planning
	2.1.1 Flight Trajectory Modelling
	2.1.2 Flight Modelling Using BADA

	2.2 Constraint Programming Models and Applications
	2.2.1 Constraint Programming Applications in the Commercial Aviation

	2.3 Aircraft Recovery Methods
	2.3.1 Connection Networks 
	2.3.2 Time Line Networks
	2.3.3 Time Band Networks
	2.3.4 Integer Programming
	2.3.5 Heuristics in Aircraft Recovery
	2.3.6 Constraint Programming

	2.4 Integrated Airline Recovery
	2.4.1 Integrated Aircraft and Passenger Recovery
	2.4.2 Integrated Aircraft, Crew and Passenger Recovery

	2.5 Modelling Flight Speed Changes and Consumed Fuel
	2.6 Literature Review Summary

	3 The Block Time and Fuel Model
	3.1 Introduction
	3.2 Flight Phases
	3.3 The Block Time Fuel model
	3.3.1 Calculating Ground Distance and Defining Cruise Altitude 
	3.3.2 Modelling Taxi-out, Take-off, Approach, Landing and Taxi-in Phases
	3.3.3 Modelling Climb Descent and Cruise Phases

	3.4 Computational Results
	3.4.1 Fuel flow vs. Time
	3.4.2 Altitude vs. Time
	3.4.3 Ground Distance vs. Time
	3.4.4 Benchmarking the BTF Model Results Against ROADEF 2009 Challenge
	3.4.5 Comparing the BTF Model Results and Literature Review
	3.4.6 Comparing the BTF Model Results with Lido™

	3.5 Conclusion and Future Work

	4 The Constructive Heuristic for the Aircraft Recovery Problem
	4.1 Introduction
	4.2  Aircraft Recovery Problem Model
	4.2.1 Nomenclature for the ARP
	4.2.2 Airport Departure and Arrival Capacity
	4.2.3 Block Time Between Airports
	4.2.4 Aircraft specification 
	4.2.5 Flights and Rotations
	4.2.6 Flight Disruptions
	4.2.7 Aircraft Disruptions
	4.2.8 Airport Disruptions
	4.2.9 Aircraft Constraints

	4.3 Constraint Programming Concepts and Applications
	4.4 The Constructive Heuristic for the Aircraft Recovery Problem
	4.4.1 Objective
	4.4.2 New Flights Algorithm
	4.4.3 Feasibility Verification Algorithm
	4.4.4 Flight Domain Algorithm
	4.4.5 Arc-consistency and Constraint Propagation
	4.4.6 Lower Heuristic Algorithm
	4.4.7 Upper Heuristic Algorithm
	4.4.8 Backtracking Algorithm
	4.4.9 Taxi Flights Algorithm
	4.4.10 The CHARP Algorithm

	4.5 Computational Results
	4.5.1 Default scenario
	4.5.2 Impact of the Pincer Speed

	4.6 Comparing the CHARP with the ARP Published Work
	4.6.1 ARP Solution Methods
	4.6.2 ARP Disruptions Scenarios
	4.6.3 ARP Recovery Actions
	4.6.4 ARP Characteristics

	4.7 Conclusion and future work

	5 The Impact of Smaller Block Times in Disruption Recovery
	5.1 Introduction
	5.2 Block Time Comparison
	5.3 Effects of Smaller Block Time in the CHARP 
	5.3.1 Smaller Block Time for All Flights Inside the RTW
	5.3.2 Smaller Block Time for Disrupted Flights Inside the RTW
	5.3.3 Smaller Block Time for Non-disrupted Flights Inside the RTW
	5.3.4 Smaller Block Time Quantitative Result Comparison

	5.4 Effects of Smaller Block Time for Disruption Scenarios
	5.4.1 Flight Disruption
	5.4.2 Aircraft Disruption
	5.4.3 Airport Disruption
	5.4.4 Flight and Aircraft Disruption
	5.4.5 Flight and Airport Disruption
	5.4.6 Aircraft and Airport disruption

	5.5 Conclusions and Future Work

	6 Contributions and Future Work
	6.1 Contributions
	6.2 Future Work

	References
	Appendix A BTF Extended Results and Data Sets
	A.1 Flight data for the BTF model, ROADEF and FlightAware ™
	A.2 Fuel flow for the climb phase for the B737-800
	A.3 Lido™  flight plan extracts
	A.4 Flight data for the BTF model, Lido ™  and FlightAware ™

	Appendix B Constructive Heuristic for the Aircraft Recovery Problem Data Sets
	B.1 ROADEF 2009 Challenge Data Sets


