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Abstract

The central theme of the thesis is the application of modern on-shell techniques to
compute Scattering Amplitudes and Form Factors in various Effective Field Theories.
In particular, we apply such techniques in the context of the Standard Model Effective
Field Theories, focusing on the renormalisation group evolution of irrelevant operators,
and the study of the classical binary problem in gravitational theories, beyond General
Relativity including higher derivative interactions.

We first show how to find a basis of EFT interactions from a purely on-shell point of
view. From these EFT building blocks, any tree-level amplitude can be computed using
a recursive algorithm which requires only the knowledge of lower-point amplitudes.
Starting from these results, modern (generalised) unitarity techniques allow for the
computations of higher loop amplitudes which can be used to characterise precision
observables both for gravitational waves and for collider experiments. We will focus
on the computation of form factors in the context of Standard Model Effective Field
Theory which allowed us to compute for the first time the one-loop mixing matrix for
all the dimension-eight operators in the theory. Then, we will show how to compute
the deflection angle and the time delays induced by higher-derivative corrections to the
Einstein-Hilbert action from the eikonal form of gravitational scattering amplitudes.
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Chapter 1

Introduction to Scattering
Amplitudes

In this chapter, we are going to introduce the definition of the S-matrix and its main
properties, which will be fundamental in understanding the topics presented in the
following chapters of this thesis. In particular, the elements of the S-matrix, which
are called Scattering Amplitudes, are mathematical objects encoding the observables in
scattering experiments.

The typical set-up of collider experiments consists of two collections of particles (non-
interacting within each cluster), in states, which are initially separated on a macroscopic
scale and are made to interact at microscopic scales. The nature of the initial particles
can be completely different from the results of this scattering experiment, which is the
third bunch of (non-interacting) particles, out states. The mathematical object which
describes the probability that, given an initial state, we find a final state in a specific
kinematic configuration is what we called the Scattering Amplitude. This definition
makes manifest that such objects encode most of the features of relativistic quantum
mechanics which is relevant for experiments in high-energy physics.

The last thirty years have seen a great development of computational techniques and
more theoretical structure in the study of the S-matrix, in perturbation theory. Some
of these new results are the main subject of this thesis and are collectively referred to
as on-shell methods. For a comprehensive review of this topic, we refer to [1–7].

1.1 A definition for the S-matrix

Following [8], the elements of the S-matrix are the overlap between an in and an out
states:

Sα→β = ⟨Ψout
β |Ψin

α ⟩ , (1.1)

where such states (in the Heisenberg picture) are defined in terms of Møller operators
Ω(t), which intertwine states in a free theory with those of an interacting theory. In
particular,

|Ψin/out
α ⟩ = Ω(∓∞)|Φα⟩ , (1.2)

where
Ω(t) = eiHte−iH0t , (1.3)

11



12 CHAPTER 1. INTRODUCTION TO SCATTERING AMPLITUDES

where H is the Hamiltonian of the full theory, H0 is the Hamiltonian of the free theory
and |Φα⟩ are eigenstates of the H0:

H0|Φα⟩ = Eα|Φα⟩ ,
⟨Φβ|Φα⟩ = δ(Eα − Eβ) ,

(1.4)

where we ignored additional quantum numbers identifying the multi-particle states and

Eα =
∑

i∈α
Ep⃗i =

∑

i∈α

√
m2
i + p⃗ 2

i . (1.5)

In particular, the |Φα⟩ can be defined as vectors in a Fock space with a Lorentz-invariant
vacuum |0⟩ (of the free theory, with ⟨0|0⟩ = 1). For example, if we are dealing only
with bosons we can write vacuum and the one-particle states in terms of annihilation
and creation operators aσ(p) and a†σ(p) which satisfy canonical commutation relations

[
aσ(p), a

†
σ′(q)

]
= (2π)(d−1) 2Ep⃗ δσσ′ δ(d−1)(p⃗− q⃗) , (1.6)

where σ refers to the quantum number characterising the state. The annihilation and
creation operators act on the vacuum as follow:

aσ(p)|0⟩ = 0 , (1.7)

and
|pσ⟩ = a†σ(p)|0⟩ . (1.8)

The full Hilbert space of the theory is described by the Fock space of multi-particle
states, which is the direct sum of n-particle states obtained acting multiple times with
creating operators. Then the completeness relation read:

1 = |0⟩⟨0|+
∞∑

n=1

∑

{σ}

∫
dµn|pσ11 , . . . , pσnn ⟩⟨pσ11 , . . . , pσnn | , (1.9)

where dµn is the Lorentz-invariant phase space measure

dµn =
1

s1! · · · sm!
n∏

i=1

ddpi
(2π)d−1

Θ(Ep⃗i)δ(p
2
i −m2

i ) , (1.10)

si! are some Bose symmetry factors and Θ is the Heaviside theta.

A number of properties follow immediately from this definition of the S-matrix, most
of which have a long history and go back to the seminal works of Wheeler [9], Heisenberg
[10] and the S-matrix bootstrap approach (for a review, see [11–13]). We are not going
to present an extended review of the topic, but only mention those properties which
will be essential to understanding the following chapters.

• The S-matrix is a Poincaré invariant object. In particular, translation invariance
implies momentum conservation and the elements of the S-matrix can always be
written as

Sα→β = (2π)d δ(d)


∑

i∈β
pi −

∑

j∈α
pj


S (α→ β) , (1.11)

where S (α→ β) should always be thought as a function defined of the support
of the momentum-conserving delta function.
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• Lorentz invariance also implies that the S-matrix elements are functions only of

invariant quantities, like the Mandelstam invariants si1...in =
(∑n

j=1 pij

)2
and the

masses of the asymptotic states p2i = m2
i .

• Scattering amplitudes are covariant under little group transformations of the
asymptotic states, in case we are dealing with spinning particles. Then any scat-
tering amplitude can be written as

S (α→ β) =
∑

i

R(i)
α→β · T

(i)
α→β , (1.12)

where R(i)
α→β are rational function of some spinorial variables which encodes the

correct transformation properties under little group transformations, while T (i)
α→β

can include polylogarithms, elliptic or more complicated functions of the Man-
delstam invariants and the masses. The correct variables to describe R(i)

α→β are
commonly referred to as Spinor Helicity variables and they are specific to the
space-time dimensions d (see Appendix A for an introduction to spinor helicity
formalism in four and six dimensions). The little group is defined as the subgroup
of SO(1, d−1) which leaves the momentum of the corresponding particle invariant.
We can write momenta in a form which makes this invariance manifest. Indeed,
we can always write a momentum in terms of two spinors

/p = pµγ
µ = λI λ̃I , (1.13)

where the γ-matrices generate a Clifford algebra {γµ, γν} = ηµν1. The spinors
λ and λ̃ are matrices transforming in some (spin) representations of the (double)
covering of the Lorentz group and of the little group (the latter labelled by the
index I). These spinor helicity variables, properly symmetrised to form the correct
little group representations, define the rational terms R(i)

α→β .

• In natural units, the mass dimension of an n-point scattering amplitude, is

[An] = d− n . (1.14)

This property will be fundamental in the following chapter, where we consider a
perturbative expansion of the scattering amplitudes and we focus on the tree level.
Indeed, tree-level scattering amplitudes are particularly simple rational functions
as we will show in the following section. By definition, we have [pµ] = 1, [λ] = 1

2

and [λ̃] = 1
2 .

1.2 Unitarity and locality of the S-matrix

Although the properties we mentioned in the previous section and many other features
of the scattering amplitude hold at the non-perturbative level, in the following we will
focus only on perturbation theory around a free theory. In particular, in this section, we
are going to mention two of the fundamental properties of scattering amplitudes, namely
unitarity and locality. Such properties are made manifest in the standard approach to
perturbation theory in QFT, through the Feynman diagrams approach. On the other
hand, the ordinary formulation of QFT suffers from a number of gauge redundancies
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when we introduce particles with spin higher than one-half, which are not present in
the fully on-shell approach. In fact, as we will review in Chapter 3, gauge symmetries
are recovered from the above-mentioned principles of unitarity and causality.

Unitarity is one of the axioms of quantum mechanics and states that the time-
evolution of a system is governed by a unitarity operator, i.e. which preserves the
inner product of physical states. On the other hand, locality has no unique definition.
One possibility is to identify it with the cluster decomposition principle [8], which is
the requirement that the results of two independent experiments far apart from each
other must be uncorrelated (unless we put some special effort into preparing them in
an entangled state). In the scattering amplitudes, these two properties appear hand-
in-hand: in fact, locality dictates the position of the singularities of the amplitudes,
while unitarity fixes the “value” of the amplitudes across the singularities. In particular,
long-range interactions correspond to non-analytic terms in the scattering amplitudes,
which in turn must correspond to some propagating internal particle going on shell.
When a single exchanged particle goes on-shell, the amplitude develops a simple pole,
while an intermediate multi-particle state corresponds to a branch point. The residues
and the discontinuities are given by properly multiplying the corresponding lower-point
and/or lower loop amplitudes, in the perturbative expansion, and integrating over the
Lorentz-invariant phase space of the internal particles.

In the following, we show how such properties arise in the scattering amplitudes
and, in particular, we focus on the single particle exchange, which is all we need for
tree-level amplitudes, i.e. usually the leading terms in the perturbative expansion.
Beyond leading order, old-fashion unitarity is not the most efficient method to construct
loop-level amplitudes. Indeed, such an approach can be improved if we combine the
structures of scattering amplitudes with some insights coming from Feynman diagrams
(and Feynman integrals), as we will show in the next sections.

We start considering the S-operator

S = Ω(+∞)†Ω(−∞) , (1.15)

which is unitary
S†S = 1 . (1.16)

We can also write the S-operator as a trivial contribution, which keeps track of discon-
nected terms in the scattering1, plus a transition operator T which yields the non-trivial
part of the scattering matrix:

S = 1+ i T . (1.17)

A scattering amplitude A(α → β) is defined as the expectation value of i T (up to a
momentum conserving delta function):

i⟨Φβ|T |Φα⟩ = (2π)d δ(d)


∑

i∈β
pi −

∑

j∈α
pj


A (α→ β) . (1.18)

The unitarity of the S-operator can be written in terms of the T operator as

−i
(
T − T †

)
= T †T , (1.19)

1For example, when we consider a 3 → 3 scattering, the S-matrix must include the possibility to
have disconnected 1 → 1 and 2 → 2 scattering processes.
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which encodes most of the analytic structures of the scattering amplitudes. In partic-
ular, if we consider the expectation value of both the LHS and RHS and we insert the
completeness relation in the product T †T discarding all the multi-particle contributions
we find

i⟨Φβ|T |Φα⟩ − i⟨Φβ|T † |Φα⟩ = −
∑

σ

∫
dµ1⟨Φβ|T † |pσ⟩⟨pσ|T |Φα⟩+ . . . . (1.20)

Using crossing (for example, see [11]) on the LHS, this equation brings to

ReA(α→ β) = −π
∑

σ

δ
(
sα −M2

σ

)
A(α→ pσ)A∗(β → pσ) + . . . , (1.21)

where sα = (
∑

i∈α pi)
2 and Mσ is the mass of the intermediate state |pσ⟩. A delta-

function real part can be obtained from a simple pole (see, for example, the Chapter 24
of [14]):

i

sα −M2
σ + iϵ

= P
i

sα −M2
σ

+ π δ
(
sα −M2

σ

)
, (1.22)

where P is the principal value2 3. Then, the residues on these simple poles are given by

Res
s1...m=M2

σ

An(ph11 . . . phnn ) = if
∑

sI,hI

Am+1(p
h1
1 . . . phmm , phII )An−m+1(p

hI
I → p

hm+1

m+1 . . . p
hn
n ) ,

(1.23)
where f = (−1)∆s with ∆s the respective signature of the fermion ordering between
the LHS and the RHS, sI and hI are the type and the helicity of the intermediate
state propagating4. This equation will be fundamental in Chapter 3 in the bootstrap
of tree-level amplitudes in generic Effective Field Theories (EFTs)5.

1.2.1 Tree-level amplitudes from BCFW-like recursion relations

In the following, we consider for simplicity massless theory in four dimensions and
amplitudes in the perturbative expansion, unless otherwise specified.

In general, all the three-point scattering amplitudes can be fixed by symmetry, helic-
ity weight and mass dimension considerations, up to an overall coupling constant [16]. In
particular, the kinematic part of any massless three-point amplitude can be written as

A(1h1 , 2h2 , 3h3) =





i g ⟨12⟩h1+h2−h3⟨23⟩h2+h3−h1⟨31⟩h3+h1−h2 ∑
i hi = −n

i g h1 = h2 = h3 = 0

i g [12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2
∑

i hi = n

,

(1.24)

2A possible definition of the principal value is P
1

x
=

1

2

(
1

x+ iϵ
+

1

x− iϵ

)
, such that

∫ Λ

−Λ

P
1

x
= 0.

3To be more precise, equation (1.22) is only true O
(
(sα −M2

σ)
0
)
. These propagators are exact only

when we restrict to tree-level amplitudes in theories with two-derivative kinetic terms.
4We adopt the following convention: we indicate with A(L)

n (ph1
1 . . . phn

n ) an L-loop n-point scattering
amplitude with all the momenta outgoing and with A(L)

n (ph1
1 . . . phm

m → p
hm+1
m+1 . . . phn

n ) an L-loop n-
point amplitude with m incoming and n−m outgoing states. If the superscript (L) is absent, we mean
tree-level.

5Equation (1.23) works under the assumption that we are dealing with a well-defined basis of
asymptotic states. This is true in gapped theories, but it is not guaranteed to hold for theories with
massless particles (and infrared divergences), which introduce extra factorising terms [15].
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where n = 1, 2, . . . and the mass dimension of the coupling constant is [g] = 0 in the
first and last case or [g] = 1 for the purely scalar case. In general, g must be thought of
as a tensor describing the non-kinematic quantum numbers of the asymptotic states.

This classification exhausts all the relevant and marginal couplings in relativis-
tic QFTs with only massless particles, once we consider the four-scalar interaction
A(10, 20, 30, 40) = i λ. For example, a list of all the three-point amplitudes in the
Standard Model, with the proper colour and flavour structures, is presented in Ap-
pendix B.2. The on-shell classification of relevant and marginal couplings for theories
with massive particles can be found in [17–19]. While the most general classification
of irrelevant interactions in four-dimension EFTs has been presented [20] and will be
discussed in Chapter 2. We will argue that, in principle, the knowledge of such min-
imal amplitudes is enough to fix any higher-point and higher-loop amplitude and, in
this section, we will show how higher-point tree-level amplitudes are usually computed
using BCFW-like recursion relations.

Before going to the higher-point amplitudes, some comments are in order about
three-point amplitudes. First, such amplitudes do not receive any loop correction and,
then, are tree-level exact. Such a feature will be fundamental in Section 3.3. Second, the
three-point amplitudes are defined only in complex Minkowski space. In fact, massless
three-point kinematic is not allowed in real Minkowski space because we are forced to
have sij = 0, for i, j = 1, 2, 3. Then, we can consider λ and λ̃ spinors as independent
(not related by complex conjugation). Then, sij = 0 implies either ⟨ij⟩ = 0 or [ij] = 0
for all i, j. If we consider, for example, the three-vector amplitude in the so-called
maximal-helicity-violating (MHV) configuration, we have λ̃1 ∝ λ̃2 ∝ λ̃3 and momentum
conversation becomes equivalent to Schouten identity (⟨12⟩λ3 + ⟨23⟩λ1 + ⟨31⟩λ2 = 0).

In the amplitudes literature, the computation of higher-point tree-level amplitudes
from on-shell data is usually performed through BFCW recursion relation [21–23] or its
generalisations [24–28]. The strategy of BCFW-like recursion relations is the following:

• l momenta are shifted introducing a complex parameter z (l-line shift) in a way
which preserves momentum conservation and on-shell conditions, and the real
kinematics is recovered when we set z = 0.

• The original amplitude is computed as a contour integral in the complex z-plane

An(0) =
1

2πi

∮

z=0

An(z)

z
, (1.25)

using Cauchy’s theorem knowing that, under the assumption of good behaviour in
the z →∞ limit (i.e. An(z)→ zγ with γ ≤ −1), the other poles of the amplitude
correspond to factorisation channels and can be computed from (1.23).

These recursion relations are particularly well-suited for the computation of ampli-
tudes involving vectors and gravitons in four dimensions (thanks to the especially simple
massless spinor helicity formalism), for which the BCFW (two-line) shift gives rather
compact results summing over a small subset of the actual factorisation channels. The
most general criteria for the shifted amplitude to be well-behaved in the z → ∞ limit
are given in [29]: all renormalisable theories are shown to be five-line constructible and,
in particular, theories involving fermions and scalars charged under a U(1) are three-
line constructible, as in the case of the Standard Model. Moreover, non-renormalisable
amplitudes with no-derivative operator insertions are on-shell constructible, but it is
not generally true for operators with derivatives.
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On the other hand, recursion relations have some drawbacks. For n-line shifts with
n ≥ 3, we have to introduce non-physical reference spinors and the final result does
not depend on the choice of it. On the other hand, eliminating such dependence is
usually a non-trivial task. In general, they also give rather cumbersome results and, in
no case, locality is manifest in the final amplitude, because of the presence of spurious
poles. The residues over such poles are always zero, but re-writing the amplitude such
that this property becomes manifest is in general very non-trivial. Moreover, this is
an unpleasant feature because, when we use such tree-level amplitude to construct
integrands at loop level (through generalised unitarity, which will be explained in the
next section), all sorts of unphysical singularities seem to be present in the analytic
results of the integrand. Finally, general recursion relations are defined only in four
dimensions, while BCFW shift has been generalised in six dimensions [30]. On the
other hand, a generalisation to generic d dimensions, which would be necessary for
(conventional) dimensional regularisation at higher loops [31–33], is not known. In
Chapter 3, we will show how to overcome these issues at the cost of some efficiency,
while keeping the recursive features of the on-shell methods (which is the key difference
with respect to Feynman diagrams calculations). In particular, the method we will
present can be applied to any EFT, even with the insertion of irrelevant operators with
derivative interactions.

1.2.2 Loop-level amplitudes from generalised unitarity

While tree-level amplitude has at most simple pole singularities, at loop level we can
find all sorts of branch-point singularities associated with multiparticle unitarity. The
simplest singularities of this kind are normal thresholds and the unitarity constraint
(1.19) fixes the discontinuities across the corresponding branch cuts in terms of the
product of two (lower-loop) amplitudes, integrated over a n-particle Lorentz-invariant
phase space integral. Such discontinuities can be further analytically continued to non-
physical values of Mandelstam invariants and present branch points on some specific
kinematic points called Landau singularities [34]. In general, such discontinuities can
be computed by putting a certain number of internal propagators on-shell

i

s−M2
σ

→ π δ
(
s−M2

σ

)
, (1.26)

after glueing the resulting lower-loop amplitudes (i.e. summing over all the possible
states with mass Mσ which can be exchanged in the propagator) and integrating over
the phase space of the internal on-shell states.

These unitarity methods allow constructing recursively loop amplitudes from on-
shell tree amplitudes. In gauge or gravity theories, this also allows working only with
gauge-invariant quantities at every step, in contrast to Feynman diagrams. However,
the old-fashioned approach from the S-matrix bootstrap programme [11] suffered from
many problems: the reconstruction of the full amplitudes from the discontinuities is
not unique (indeed, we find subtraction terms which are left undetermined), and a
generalisation beyond four-point amplitudes had many technical issues and it was not
clear how to deal with massless particles. These difficulties have been overcome in
the perturbative approach by modern generalised unitarity, introduced in the seminal
paper [35], and powerful new methods were discussed in [21, 36–43] to refine generalised
unitarity at one loop (a review of generalised unitarity techniques, even beyond one loop,
can be found in [44–47]). Indeed, while the old-fashioned approach heavily relied on
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non-perturbative properties of the S-matrix, the modern generalised unitarity combines
unitarity properties with the knowledge of the structures appearing in the amplitudes
in the Feynman diagrammatic perturbative analysis.

An L-loop amplitude can be written schematically as

A(L)
n =

∑

i

∫ L∏

j=1

d4lj
(2π)4

1

Si

nici∏
αi
dαi

, (1.27)

where i labels all possible L-loop Feynman diagrams, lj are the l loop momenta, αi
label the propagators and Si some symmetry factor. The factors ni are polynomials of
Lorentz-invariant contractions of external and loop momenta and polarization vectors.
The constants ci capture all the information about coupling and gauge group structure.

There are new effects at loop level with respect to the analysis at tree level. The
first is ultraviolet (UV) divergences, which arise due to the bad high energy behaviour
of the loop integrals. They can be absorbed through a redefinition (renormalization)
of the bare parameters appearing in the Lagrangian. The standard way to deal with
these divergences is by defining the theory in d = 4 − 2ϵ dimensions (dimensional
regularization):

d4lj
(2π)4

−→ ddlj
(2π)d

. (1.28)

Then, after the appropriate parameters are renormalized, one can study the limit ϵ→ 0.
A second complication has to do with those theories involving massless particles, they
are infrared (IR) divergences. These divergences can also be dealt with in the framework
of dimensional regularization, analytically continuing to negative ϵ. IR divergences can-
cel in the IR safe cross-sections against corresponding divergences from real emissions.
The integrand is still a rational function which at most simple poles in specific kinematic
points, but the loop integration gives rise to the additional branch point singularities
mentioned above.

In this thesis, we will only present one-loop computations in four dimensions. Then,
in the remaining part of this section, we will briefly review one-loop generalised unitarity.
In general, if one is interested only in obtaining a result for scattering amplitudes up to
O(ϵ) terms, it can be shown [48, 49] that one can reduce a generic one-loop integral to
a linear combination of one-loop scalar integrals of four, three, two and one point type,
plus terms which are rational in the external variables and we will denote them as R.
This is the so-called Passarino-Veltman reduction and the result reads:

IN =
∑

i4

c4,i4I
i4
4 +

∑

i3

c3,i3I
i3
3 +

∑

i2

c4,i2I
i2
2 +

∑

i1

c1,i1I
i1
1 +R+O(ϵ) , (1.29)

where IiM denotes the scalar M -point integral and i refers to the possible distribution of
external momenta pj on the M vertices of IiM . The coefficients cM,i are algebraic four-
dimensional quantities related to the tree-level amplitudes and fixed by the unitarity
methods. For example, let us consider the triangles:

I3(p
2
1, p

2
2, p

2
3) = i

∫
ddl

(2π)d
1

d1d2d3
, (1.30)

where

dk = (l +

k−1∑

j=1

pj)
2 −m2

k + iε , (1.31)
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where pi is the sum of external momenta in the j-th vertex and
∑3

i=1 pi = 0, because of
momentum conservation. We shall also mention that UV divergences only occur in the
tadpoles and bubbles, IR divergences can only occur in some configurations of triangles
and boxes.

The idea behind modern generalized unitarity is to go beyond double cuts and to
construct the one-loop amplitude by applying also triple and quadrupole cuts. One
starts from the maximal number of cuts in order to find the corresponding box coeffi-
cients in terms of four tree-level amplitudes, by matching the RHS and LHS in equation
(1.29). From this one proceeds to triple, double and single cuts to reconstruct the lower
integral coefficients, subtracting carefully the contributions from higher cuts. Rational
terms R are not captured by four-dimensional generalised unitarity, but they can be
computed, for example, from locality considerations [50, 51] (see discuss in Section 3.3),
four-dimensional recursion relations [52–54] or through d-dimensional unitarity [55–60],
as discussed in Chapter 4.

1.3 Form factors and low energy expansion

Scattering amplitudes are fully on-shell quantities, in contrast with correlation functions
which are vacuum expectation values of multiple insertions of some operators. A nat-
ural question is whether it would be possible to extend on-shell techniques to off-shell
quantities, in the perturbative expansion [61]. As an intermediate step, we consider an
interpolating quantity between completely off-shell and on-shell quantities, namely the
form factors. This is defined as the transition matrix between the vacuum as in state
and a n-particle out state, with an insertion of a local gauge-invariant operator O(x).
∫

ddx ei q·x ⟨pσ11 . . . pσnn |O(x)|0⟩ = (2π)dδ(d)

(
q −

n∑

i=1

pi

)
⟨pσ11 , . . . , pσnn |O(0)|0⟩ , (1.32)

where
FO, n(p

σ1
1 , . . . , p

σn
n ; q) = ⟨pσ11 , . . . , pσnn |O(0)|0⟩ (1.33)

is the form factor.

Furthermore, form factors are also relevant in the context of EFTs. Indeed, form
factors can be physically interpreted as small perturbations of the S-matrix: setting
qµ = 0, equation (1.32) can be interpreted as the linear term in the expansion of the
exponential in the path-integral with a deformed action

S = S0 + α

∫
ddxO(x) . (1.34)

Such deformations are common in EFTs when we integrate out massive modes whose
mass Λ is much bigger than the scales involved in the processes under consideration. In
particular, if we consider the large-mass expansion of a propagator

i

s− Λ2
= − i

Λ2

∞∑

i=0

( s

Λ2

)i
. (1.35)

in an amplitude, we find that each contribution is equivalent to an irrelevant deforma-
tion of the action with a local operator (involving derivatives at higher order in the
expansion). This is equivalent to considering insertions in the amplitude of a local
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gauge-invariant operator (at qµ = 0) with the correct field content (fixed by the interac-
tion vertices connected by the expanded propagator). In particular, if we consider the
free theory limit of S0, using Wick’s theorem, we see that there is only one non-vanishing
form factor for the operator O(x) and it is completely local (polynomial) in the kine-
matic variables. Such quantities are called minimal form factors (for qµ = 0 or n = 2,
we will also refer to these polynomial terms as contact terms or minimal amplitudes)
and the one-to-one correspondence between its leading order term in perturbation the-
ory and kinematically independent (relevant, marginal or irrelevant) deformations of an
EFT action can be exploited to classify EFT operators. Such correspondence has been
first used in the context of Standard Model Effective Field Theory (SMEFT) in [62], as
there are several technical advantages in the on-shell classification:

• Invariance under field redefinition and the definition of field strengths [Dµ, Dν ] ∼
Fµν , where Dµ are covariant derivatives, are automatically taken into account.

• Fierz identities and Bianchi identities correspond to Schouten identities for the
spinor helicity variables.

• Integration-by-part identities
∫
ddx ∂µOµ = 0 correspond simply to momentum

conservation.

Then, a basis of linear independent polynomial structures is equivalent to a basis of
EFT operators. Such classification will be the subject of Chapter 2.

1.4 Applications of BCFW-like recursion relations

Before moving to more advanced topics, we present some explicit computations of
BCFW recursion relations to clarify the role of the quantities needed in the compu-
tations. Then, in this section, we will present two examples, to show both the power
and the limits of this method to bootstrap tree-level amplitudes from the knowledge of
few on-shell data which are the seeds of the recursion. These are three-point amplitudes
or amplitudes which are polynomial in the kinematic variables which will name in the
following as minimal amplitudes, which will be classified in Chapter 2.

The colour-ordered MHV amplitude in Yang-Mills theories

First, we consider the colour-ordered maximal-helicity-violating (MHV) amplitude with
n gluons.

Any n-gluon tree-level amplitude in Yang-Mills theory can be decomposed into sim-
pler amplitudes [63, 64]:

An
(
1h1,A1 , . . . , nhn,An

)
=

∑

σ∈Sn/Zn

τAσ(1)...Aσ(n)An

(
σ(1)hσ(1) , . . . , σ(n)hσ(n)

)
, (1.36)

where hi and Ai are the helicities and the color indices of the gluons, Sn is the set
of all permutations of n elements and Zn are the cyclic permutations, τAi1

...Ain are
the traces of n generators of the fundamental representation of the gauge group and
An(i

hi1
1 , . . . , i

hin
n ) are the color-ordered amplitudes. Such amplitudes satisfy a number

of properties, which are reviewed, for example, in [65]. Among such properties, it is
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important to stress that these amplitudes have poles only in adjacent channels: e.g.
An(1

h1 , . . . , nhn) have poles only at si,i+1,...,i+m = 0, where the sum of the indices is
modulo n, and they only depend on kinematic variables (all the information about
colour has been factorised away).

In this section, we will apply BCFW recursion relation to determine the color-ordered
MHV amplitudes An(1−, 2−, 3+, . . . , n+). All the amplitudes in Yang-Mills theories in
perturbation theory can be reconstructed from the (two) minimal three-point ampli-
tudes describing the interaction of three gluons (in a complex kinematic space) which
are fixed from little group, mass dimension and parity considerations in equation (1.24)
(with some constraints imposed by locality and unitarity as we will show in Chapter 3):

A3(1
−, 2−, 3+) = ig

⟨12⟩4
⟨12⟩⟨23⟩⟨31⟩ , (1.37)

A3(1
−, 2+, 3+) = −ig [23]4

[12][23][31]
. (1.38)

We want now to prove that the MHV colour-ordered amplitude we are interested in can
be written for any n as

An(1
−, 2−, 3+, . . . , n+) = i gn−2 ⟨12⟩4

⟨12⟩⟨23⟩ · · · ⟨n− 1n⟩⟨n1⟩ . (1.39)

We can consider the BCFW shift

λ̃1 → λ̃1 − zλ̃n ,
λn → λn + zλ1 ,

(1.40)

and any other spinor is left untouched in the shifted (complex) kinematics. In particular,
we can notice that such deformation preserves momentum conservation and the on-shell
condition. Using now Cauchy theorem in (1.25) and factorisation we have

An(1
−, 2−, 3+, . . . , n+) = An(1̂

−, 2−, 3+, . . . , n̂+)
∣∣
z=0

=

=

n−2∑

m=2

Am+1(1̂
−, . . . ,mhm , P̂±

Im
)
i

P 2
Im

An−m+1(P̂
±
Im
→ (m+ 1)+, . . . , n̂+)

∣∣∣∣∣
z=zPIm

= An−1(1̂
−, . . . , (n− 2)+, P̂+

n−1,n)
i

sn−1,n
A3(−P̂−

n−1,n, (n− 1)+, . . . , n̂+)

∣∣∣∣
z=zn−1,n

= i gn−2 ⟨12⟩4
⟨12⟩⟨23⟩ · · · ⟨n− 1n⟩⟨n1⟩ ,

(1.41)

where in the third step we used the fact that the all-plus (for any n) and single-minus (for
n > 3) amplitudes vanish at tree-level for pure Yang-Mills theories, while in the last step
we needed the amplitudes (1.39) (with n− 1 gluons) and (1.37), with zn−1,n = ⟨n−1n⟩

⟨1n−1⟩
and6

P̂n−1,n

∣∣∣
z=zn−1,n

= λn−1

(
λ̃n−1 −

⟨1n⟩
⟨1n− 1⟩ λ̃n

)
. (1.42)

Then, we showed recursively that the colour-ordered MHV amplitude takes the form
presented in (1.39). As we said, the BCFW recursion relations are particularly well

6We also adopted the convention λ−pα = i λpα and λ̃−p α̇ = i λ̃p α̇, such that λ−pαλ̃−p α̇ = −pαα̇.
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suited to compute tree-level amplitudes in Yang-Mills theories and Einstein-Hilbert
gravity. Already at this stage, we can notice that the alternative shift

λ1 → λ1 − zλn ,
λ̃n → λ̃n + zλ̃1

(1.43)

would give an amplitude which does not fall off as z →∞:

An(1̂
−, 2−, 3+, . . . , n̂+) ∼

z∼∞
z3 . (1.44)

In particular, one could show that in Yang-Mills theories, even beyond the simplest
MHV configuration, any other two-line shift

λa → λa − zλb ,
λ̃b → λ̃b + zλ̃a

(1.45)

gives the correct boundary behaviour if and only if we a and b do not correspond to a
helicity-minus and a helicity-plus gluons respectively [22]. Moreover, Yang-Mills tree-
level amplitudes can also be determined, for example, using MHV rules [66] (which can
be extended even to one-loop [67]), corresponding to the (three-line) Risager shift [24].

The dipole contribution to the A4

(
ψ̄+, ψ+, γ+, γ+

)
amplitude

We now consider a different scattering amplitude and, in particular, we want to focus on
the dipole contribution in the SMEFT to the ψ̄+ψ+ → γ−γ− process. For the moment,
we will only define the relevant minimal amplitude: we need two types of three-point
amplitudes7

A(1−
ψ̄
, 2+ψ , 3

−
γ ) = iQψ

⟨13⟩2
⟨12⟩ , A(1−

ψ̄
, 2+ψ , 3

+
γ ) = iQψ

[23]2

[12]
, (1.46)

A(1+
ψ̄
, 2+ψ , 3

+
γ ) = i

a6v

Λ2
[13][23] , A(1−

ψ̄
, 2−ψ , 3

−
γ ) = i

a6v

Λ2
⟨13⟩⟨23⟩ , (1.47)

where the first line is the renormalisable U(1) coupling of fermions with photons, with
Qψ the charge of the fermion, and in the second line we have the dipole coupling.
Although this will not be relevant in the following, we specify that v is the vacuum
expectation value of the Higgs field, Λ is some energy scale typical of new physics states
and a6 is a numerical Wilson coefficient. In general, a method to classify a basis of
minimal amplitudes in the a generic EFT (and, in particular, in the SMEFT) will be
presented in Chapter 2.

For the computation of this amplitude, we consider the so-called all-line shift [25]

λi → λ̂i = λi + zwiλX , (1.48)

where the wi have to satisfy
4∑

i=1

wi λ̃i = 0 , (1.49)

which guarantees momentum conservation in the shifted (complex) kinematics.
7In principle, we would need also the colour and flavour structures but, since these are only trivial

δ factors, we will ignore them in the following computations.
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Using the BCFW recursion formula, we find

A4(1
+
ψ̄
, 2+ψ , 3

+
γ , 4

+
γ ) = A3(1̂

+
ψ̄
, (P̂14)

+
ψ , 4̂

+
γ )

i

P 2
14

A3((P̂14)
+
ψ → 2̂+ψ , 3̂

+
γ )

∣∣∣∣
z=z14

+

A3(1̂
+
ψ̄
, (P̂14)

−
ψ , 4̂

+
γ )

i

P 2
14

A3((P̂14)
−
ψ → 2̂+ψ , 3̂

+
γ )

∣∣∣∣
z=z14

+ (3↔ 4)

=iQψ
a6v

Λ2

[14][23]

t

(
[14]
⟨1X⟩
⟨3X⟩ − [23]

⟨2X⟩
⟨4X⟩

)
+ (3↔ 4) .

(1.50)

Here we can notice some unpleasant features of BCFW-like recursion relations. The
amplitude is written in terms of some arbitrary spinor λX and one can check (for
example, numerically) that the former does not depend on the latter. In particular, the
result in (1.50) has some fake (spurious) poles at ⟨3X⟩ = 0 and ⟨4X⟩ = 0. In fact, one
can show that the result just obtained is equivalent to

A4(1
+
ψ̄
, 2+ψ , 3

+
γ , 4

+
γ ) = −2iQψ

a6v

Λ2

⟨12⟩[13][14][23][24]
tu

, (1.51)

but showing the equivalence of these two quantities is already non-trivial, and it becomes
a hopeless problem when we go beyond four points. Such spurious poles are particularly
disadvantageous when we use tree-level amplitude to construct the integrands of loop
amplitudes through generalised unitarity. Moreover, one can show that no BCFW (two-
line) shift can reproduce correctly such amplitude. This situation becomes even worse if
we would have considered interactions with explicit derivative insertions in the minimal
amplitudes [28] and such a shift could even not exist. Finally, we emphasise that the
method we will presented in Chapter 3 will bring directly to the result (1.51), for which
locality is manifest.

1.5 Modern applications

In recent years, on-shell methods have proved to be extremely powerful in the study of
EFTs. Among other applications, they appeared as prominent tools in the study of the
SMEFT and (classical) gravitational binary systems.

The SMEFT is a systematic and model-independent framework to characterise both
experimental deviation from predictions of the Standard Model (SM) and its possible
extensions (for a review, see [68] and references therein), assuming that the light de-
grees of freedom are all those of the SM. Indeed, up to now, most of the measurements
in accelerator experiments of cross-sections are compatible with SM theoretical predic-
tions and no new physics has been observed. Nonetheless, the SM is expected to be an
incomplete description of Nature: many theoretical puzzles are still unsolved, including
but not limited to the hierarchy problem, the magnitude of the quartic λ coupling of
the Higgs, the origin of CP violation in the quark sector, or the unnatural pattern of the
Yukawa couplings. More recently, also an experimental deviation from SM predictions
has been measured in the gµ−2 experiment. [69–71].
Then, how should we look for new physics beyond the SM? When considering extensions
of the SM, additional heavy modes with mass Λ can be integrated out at electro-weak
energy scales EEW ≪ Λ. In the Lagrangian formalism, we have some effective interac-
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tions which can be organised in terms of their mass dimension as

LSMEFT = LSM +
∑

i,j

c
(j)
i

Λj−4
O(j)
i . (1.52)

The first example is the dimension-five Weinberg operators [72] which generate light
Majorana-like neutrino masses:

LSMEFT = LSM +
Cmn
ΛL

(
ϵikϵjlL

i
mL

j
nH

kH l + ϵikϵjlL̄miL̄n jH̄kH̄l

)
, (1.53)

where m,n = 1, 2, 3 are flavour indices and i, j are SU(2) indices, and ΛL is the natural
cut-off of the effective theory. More precisely ΛL is the cut-off scale for effective inter-
actions which violate lepton and baryon numbers, as opposed to the scale Λ associated
with lepton/baryon number preserving interactions. Experimental constraints on the
neutrino masses put the lower bound on the cut-off scale at ΛL/Cmn ≳ 1015GeV, which
are scales currently impracticable for the observation of new physics.
In fact, the leading contributions to the SMEFT come from dimension-six operators
[73–79], but there are interesting processes for which the dominant contribution comes
from even higher-dimensional operators. Some examples include the light-by-light scat-
tering [80], the light production via gluon fusion [81] and the neutral bosons production
[82] and even, in some scenarios, the gµ−2 [83] and Higgs production in association with
a W boson [84], which receives the first contribution from dimension-eight operators.
dimension-eight operators can play a relevant role even when appearing as subleading
contributions [85], and recent studies of their impact on SMEFT have been performed
[86–90].

In this context, on-shell methods are acquiring a prominent role. They have been
used to discover non-interference theorems between dimension-six operators and the
SM [91], to study positivity bounds on Wilson coefficients [92–96] and natural zeros for
Wilson coefficient in the matching between UV and IR theory [97]. Crucially, on-shell
techniques played a key role in the study of the anomalous dimensions of irrelevant
interactions in the SMEFT [98–107], to understand the patterns of zeros in the one-
loop anomalous dimension matrix for dimension-six operators in the SMEFT [108–110]
and, as we have already mentioned, in the classification of SMEFT interactions [20,
111–122].

The breakthroughs in gravitational-wave science, with the observations by the LIGO
and Virgo collaborations [123, 124], has opened new windows to observations in astron-
omy, cosmology, and particle physics. Gravitational waves can be the key to answering
longstanding questions in these areas and offers an observational test of gravitational
processes involving huge energy scales, which could have never been probed by experi-
ment. The LIGO and Virgo detectors precision will grow further in future upgrades, and
this demands very accurate theoretical predictions, which will be encoded in waveform
templates utilized for the gravitational-wave detection and the extraction of source pa-
rameters. This calls for high-energy physicists to develop a new theoretical framework
to study signals with more and more accuracy.

Traditionally, this is approached using effective one-body, numerical relativity, gravi-
tational self-force, and perturbation theory in the post-Newtonian (PN), post-Minkowskian
(PM)8, and non-relativistic general relativity frameworks. In the context of on-shell

8The PN and PM are complementary perturbative expansions. The former is a double expansion
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techniques and scattering amplitudes, the new discoveries started a program for un-
derstanding the nature of gravitational wave sources by the collapse of binary systems
of celestial objects (black holes and neutron stars, mostly in the inspiral phase of the
merging). Although some studies in this context can be traced back to the seventies
[125, 126] with some more recent developments [127–129], the program for understand-
ing the nature of gravitational-wave sources is based on tools from scattering amplitudes
and effective field theory (EFT) exploded in the last five-ten years [130–143]. These
ideas culminated with advancing the state-of-the-art computation to order in the PM
expansion to O(G3) [144, 145]. This result has been confirmed in a number of stud-
ies [146–150], including radiation [151–155]. Moreover, scattering amplitude techniques
allowed to compute the conservative two-body scattering dynamics up to O(G4) in all
orders in velocity [156, 157], and to lower orders in G including spin effects [158–167],
tidal effects [168–172] and higher-derivative interactions [173, 174]9.

Besides the above-mentioned line of research, there are other important topics which
are very important in the development of on-shell methods which we will not mention in
this thesis: for example, the strong hint for hidden geometric structures in perturbative
scattering amplitudes [189] (for a review, see [190, 191] and references therein), the
colour-kinematics duality and the double copy map which links amplitudes in scalar,
gauge and gravitational theories [192, 193] (see [65, 194] and references therein), the
study and analytic calculation of Feynman integrals (for a modern and comprehensive
review, see [195–197]), the study of cosmological correlators in de Sitter spacetime using
on-shell inspired methods [198] (see also [199]), or the N = 4 Super-Yang-Mills high-
loop computations [200–206].

1.6 Summary of the thesis

This thesis is structured according to the following order:

• First, we consider amplitudes which are polynomial in the kinematic variables,
i.e. contact terms.

• Second, we show how to glue such contact terms to produce tree-level amplitudes.

• We show how d-dimensional generalised unitarity is enough to construct ampli-
tudes and form factors at loop level.

• Finally, we apply on-shell methods to study relevant (loop) amplitudes in the
context of SMEFT and classical General Relativity (GR).

In particular, the material in the various chapters is organised as follows:

1. In Chapter 2, we show the classification of the simplest scattering amplitudes, i.e.
contact terms. First, we introduced a new strategy for purely massless theories,

in the velocity squared and the inverse separation in units of the Schwarzschild radius, which are of
the same order due to the virial theorem (v⃗ 2 ∼ Gm

|r| ). In contrast, the PM expansion is organized
differently, including instead contributions to all orders in velocity at fixed order in G, and the nPM
order corresponds to O(Gn). On-shell methods are intrinsically relativistic, then we will always work
in the PM expansion.

9There is an PM alternative to the fully on-shell methods, which combines Feynman rules in the
worldline formalism with high-loop integration which is also giving promising results in this direction
[175–188].
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which can be generalised to give a basis of contact terms in any EFT in four
dimensions, with masses and higher-spin particles. This chapter is based on [20].

2. In Chapter 3, we present a recursive on-shell alternative to BCFW-like recursion
relations, which is valid for any theory. In particular, we first review how Lie al-
gebra structures follow from tree-level unitarity of four-point amplitudes in gauge
theories. Then, we show how to generalise the algorithm to higher-point tree-level
amplitudes. Finally, we show how unitarity and locality fix anomaly cancellation
conditions in the Standard Model. Most of this chapter is based on the work
presented in [104].

3. In Chapter 4, we show how Dimensional Reconstruction Techniques allow com-
puting loop amplitudes, including rational terms, from d-dimensional generalised
unitarity. We generalised these techniques to form factors which are relevant to
the Higgs decay into gluons, following the paper [207].

4. In Chapter 5, we present the techniques needed to compute the full mixing ma-
trix between dimension-eight operators in the SMEFT. Partial results are shown
explicitly for the operators relevant for the Higgs production in association with
a W -boson through p p scattering. The complete result is given in the ancillary
files of [104].

5. In Chapter 6, we present the calculations of the corrections to the deflection angle
and the time delay of light and gravitons from a heavy source (like a black hole),
induced by higher-derivative interactions beyond GR, using the eikonal (expo-
nential) form of the corresponding two-to-two gravitational scattering amplitude.
These results were presented in [174].

6. Finally, some appendices are presented. In Appendix A, we review (massless and
massive) spinor helicity formalism in four dimensions, massless spinor helicity
formalism in six dimensions, and some basics of momentum twistors relevant
for the generation of rational kinematics and some basic concepts of finite field
arithmetic. In Appendix B, we fix our conventions in the SMEFT and we provide
the three-point amplitudes of the Standard Model. In Appendix C, we give some
details on the computation of six-dimensional tree-level amplitudes relevant for
computations in Chapther 4. Finally, in Appendix D, we provide the analytic
results of the one-loop Feynman integrals appearing in this thesis.



Chapter 2

Minimal Amplitudes Bases for EFTs

In general, the classification of irrelevant operators in an EFT is a complicated task. The
counting of non-redundant operators can be performed via the Hilbert series method,
as shown in [208–210], however, explicit construction of the SMEFT operators is rather
involved. Traditional techniques require taking care separately of many sources of redun-
dancy, e.g. Bianchi identities and IBP identities of operators with derivative insertions,
field redefinitions and Fierz identities. More recently, as discussed in the introduction, a
more direct way of constructing this basis has been proposed, which relies on the classi-
fication of the independent effective interactions directly from their S-matrix elements,
and has been used to classify all the SMEFT operators up to mass dimension nine [117,
118]. Indeed, in the context of weakly coupled EFTs, the on-shell program provides
us with an alternative to the standard Lagrangian EFTs, where the information of the
theory beyond the IR physics is encoded by adding irrelevant operators. In particu-
lar, it exists a one-to-one correspondence between irrelevant independent operators and
minimal amplitudes, i.e. terms in the low-energy expansion of the S-matrix which are
polynomial in the kinematic variables (and are linear in the Wilson coefficients). This
means that from the S-matrix perspective the classification and enumeration of indepen-
dent operators [208–212] are equivalent to finding a basis of kinematically independent
polynomial structures in the amplitudes [62, 213]. From these “building blocks”, higher-
point tree-level amplitudes can be constructed from the knowledge of the factorisation
channels.

The classification program was carried out mainly in four dimensions where we take
advantage of the simplicity of both massless [214–217] and massive [18] spinor helicity
formalism. Generic techniques to classify fully massless interactions have been worked
out in previous works mentioned in the introduction. For massive particles, the authors
of [19, 116] introduced an unbolding/bolding procedure to classify massive structures
from their massless counterparts, and they presented a strategy to tackle this problem
for four-point contact terms and particles with spin S ≤ 1. An alternative strategy valid
for any multiplicity and any spin has been presented in [218], but this method does
not allow for a clear one-to-one correspondence between independent structures and
operators. A general method for massive particles with any mass, spin and multiplicity
has only been developed recently [20, 121]

In this chapter, we present the method to classify generic contact terms in four-
dimension of [20], for any mass, spin and multiplicity (n ≥ 4, the classification for
n = 3 is known [16–19]), starting from the graph method presented in [104], strengthen
by the unbolding/bolding procedure of [19, 116] which we implement at the level of

27
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Figure 2.1: The graph associate to the kinematic structures ⟨23⟩⟨31⟩3[12]2[14][32] and
⟨23⟩⟨34⟩[13][14][25] respectively.

graphs. In this algorithm, structures involving powers of any mass are always regarded
as kinematically independent from structures with fewer powers of mass. This allows
for a clear one-to-one correspondence between independent contact terms and operators
in massive EFTs.

This chapter is organised as follows. In Section 2.1 we review the graph method in-
troduced in [104], giving more details on the algorithm and its implementation. In Sec-
tion 2.2 we will extend the method to the structures involving massive spinor variables.
In Section 2.3, we work out explicitly four examples: the classification of SMEFT op-
erators (with some details about the identical particles and the Lie algebra structures),
the classification of D2nF 4 operators in SU(N) Yang-Mills theories, of dimension-six
interactions between (charged and uncharged) massive and massless vectors and of
quadratic-in-spin (spin-)tidal interactions in gravity.

2.1 The massless basis

2.1.1 Kinematic structures from graphs

A simple way to find all possible Lorentz invariant structures in four dimensions is to
identify them with an oriented graph with two types of edges, where each vertex is
associated with a particle, and the edges correspond to angle (red) or square (blue)
brackets, as shown in Figure 2.1. The orientation of the edges then keeps track of the
ordering in the spinor brackets and thus provides potential minus signs.

The valency of each vertex is given by two natural numbers vi = (via, v
i
s) such that

vis − via = 2hi is the helicity of the ith particle. In general, we consider polynomial
structures with an arbitrary number of momentum insertions n∂ ≥ 0. Each momentum
in the structure can be assigned to any of the n states, which increases the valency of
the corresponding vertex by (1, 1). Then the number of momenta associated with each
vertex is min{via, vis}. Moreover, for reasons which will become clear in the next section,
it is crucial to consider a circular embedding for our graphs, i.e. we take all the vertices
to be ordered points on a circle.

We can associate to each graph a couple of n× n adjacency matrices (A,S), whose
elements are non-negative integer numbers: each element Aij ≥ 0 (or Sij ≥ 0) indicates
the number of red (or blue) edges going from the ith-vertex to the jth-vertex. Finally,
there is a trivial map M from the adjacency matrices to the corresponding polynomial
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Figure 2.2: Graphical representation of the relation [13][24] = [14][23] + [12][34]. Then
Schouten identities are equivalent to untying crossings for both the two kinds of edges
(red and blue) in the graph.

spinor structure:

M(A,S) =

n∏

i,j=1

⟨ij⟩Aij [ij]Sij . (2.1)

This map is in general non-invertible, because the spinor brackets are antisymmetric
(⟨ij⟩ = −⟨ji⟩, [ij] = −[ji]). Then we restrict without loss of generality to upper-half
triangular adjacency matrices (Aij = 0 and Sij = 0 if i ≥ j), in order to make the
correspondence between polynomial structures and graphs one-to-one.

At this point, we are interested in finding a basis of structures that are independent
up to Schouten identity and momentum conservation. Notice that the former acts
separately on the angle and square invariants, while the latter mixes the two structures.
In the following sections, we will show how to deal with these identities in terms of the
graphs mentioned above.

2.1.2 Schouten identities

Schouten identities for angle and square brackets read

⟨i1i2⟩⟨i3i4⟩+ ⟨i2i3⟩⟨i1i4⟩+ ⟨i3i1⟩⟨i2i4⟩ = 0 ,

[i1i2][i3i4] + [i2i3][i1i4] + [i3i1][i2i4] = 0 .
(2.2)

Thinking of the kinematic structures in terms of graphs, specifically using the circular
embedding already mentioned, if (i1, i2, i3, i4) are arranged in cyclic order, we notice
that ⟨i1i3⟩⟨i2i4⟩ correspond to intersecting edges in the graph, while ⟨i1i2⟩⟨i3i4⟩ and
⟨i2i3⟩⟨i1i4⟩ do not (the same is true for the square brackets). This is illustrated in
Figure 2.2. In a generic graph, this relation can be applied recursively a finite number
of times until we end up with a sum over graphs that do not have any crossings. It is
then clear that a basis for kinematic structures that are independent under Schouten
identity can be obtained by classifying all planar graphs associated with a polynomial
kinematic structure.

It is easy to see that the planarity of the graph translates into a sharp condition on
the adjacency matrices associated with it:

if Aij ̸= 0 , Akl = 0 for i < k < j < l ≤ n , (2.3)

for any i = 1, . . . , n and j = i+2, . . . , n−1. Indeed, to have an intersection between the
edges (i, j) and (k, l), the vertices must have the order specified above. In particular,
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the number of crossings of a graph is given by the sum

n× =
n−1∑

i=1

n∑

j=i+1

Aij

n∑

l=j+1

j−1∑

k=i+1

Akl , (2.4)

where the extrema of the sums are consistent with the restriction to upped-half trian-
gular adjacency matrices.

This also provides an algorithmic method to write any non-planar structure in terms
of planar ones. Indeed, if we consider a graph (A,S) for which, for example, the red
edges are non-planar, i.e. if in (2.3) any of the Akl ̸= 0, then we can recursively untie
the corresponding crossing(s) using

M(A,S) = M(A+E
(i j)
(k l),S) +M(A+ F

(i j)
(k l),S) , (2.5)

where

E
(i j)
(k l), ab = −δa,i δb,j − δa,k δb,l + δa,i δb,k + δa,j δb,l , (2.6)

F
(i j)
(k l), ab = −δa,i δb,j − δa,k δb,l + δa,i δb,l + δa,j δb,k . (2.7)

Applying such decomposition a finite number of times, every non-planar structure can
be written as a linear combination of planar ones. A proof of this statement is given at
the end of this section.

This algorithm can be used to find a basis of SU(2) singlets in the tensor product
of any finite-dimensional representation of the SU(2) group. In fact, any tensor that
transforms in a representation 2q+ 1 can be written as a totally symmetric tensor
T a1 ··· aq = T (a1 ··· aq), where ai are indices in the fundamental of SU(2). The singlets are
given by contractions of any product of tensors of this kind with ϵa1a2 = −ϵa2a1 and the
Schouten identities are equivalent to

ϵ[a1a2ϵa3]a4 = 0 . (2.8)

Then to any tensor T we can associate a vertex with valency q, and the edges correspond
to contractions of two SU(2) indices through an ϵaiaj . Any loop is then automatically
zero because

T a1···ai···aj ···anϵaiaj = 0 . (2.9)

This observation is useful if we want to apply our method to select a basis of independent
SU(2) gauge structures (see for example [104]), or when we will consider polynomial
structures with masses involved because the little group for massive particles in four
dimensions is exactly SU(2). This could also be applied to the Lorentz group SL(2,C),
because the finite-dimensional representations are in one-to-one correspondence with
those of SU(2)× SU(2).

Reduction to the planar basis

In this section, we give details on the algorithm to decompose spinor structures corre-
sponding to a non-planar graph into our basis, given by the set of structures related to
planar graphs. Such decomposition amounts to repeatedly applying Schouten identities,
which act separately on angle and square invariants. Then for simplicity, we are going
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to consider Lorentz invariant structures with only angle invariants (Sij = 0 ∀ i, j). The
condition that identifies a crossing between the edges (i, j) and (k, l) is

Aab ̸= 0 , Acd ̸= 0 , a < c < b < d . (2.10)

Obviously, there are a finite number of edges (and crossings) associated with each vertex.
We can consider the total number of crossings of the matrices A and A+E

(a,b)
(c,d), which

we call n× and n′×, respectively. Then, proving that

n′× − n× < 0 , (2.11)

is equivalent to the statement that every non-planar graph can be decomposed as a sum
of planar ones in a finite number of steps. We have

n′× − n× =
n−1∑

i=1

n∑

j=i+1

n∑

l=j+1

j−1∑

k=i+1

(
AijE

(a b)
(c d), kl + E

(a b)
(c d), ijAkl + E

(a b)
(c d), ijE

(a b)
(c d), kl

)
, (2.12)

where

n−1∑

i=1

n∑

j=i+1

n∑

l=j+1

j−1∑

k=i+1

AijE
(a b)
(c d), kl =


−

b−1∑

i=c

n∑

j=c+1

−
b∑

i=c+1

n∑

j=d+1

+
b−1∑

i=a+1

b∑

j=c+1


Aij ,

(2.13)
n−1∑

i=1

n∑

j=i+1

n∑

l=j+1

j−1∑

k=i+1

E
(a b)
(c d), ijAkl =


−

a−1∑

i=1

b−1∑

j=c

−
c−1∑

i=1

b∑

j=c+1

+

b−1∑

i=c

d−1∑

j=b+1


Aij , (2.14)

n−1∑

i=1

n∑

j=i+1

n∑

l=j+1

j−1∑

k=i+1

E
(a b)
(c d), ijE

(a b)
(c d), kl = 1 . (2.15)

Summing these contributions, we find

n′× − n× ≤ −Aab −Acd + 1 < 0 . (2.16)

The same is true for the difference between the total number of crossings of A and
A+ F

(a,b)
(c,d).

Then, we need to choose a recursive way of eliminating all the crossings. We select
a, b, c, d so that we have (2.10) and they are the smallest (in the selected order). We
apply the decomposition in equation (2.5) min{Aab, Acd} times and we repeat this step
until we end up with a sum of planar structures. Obviously, this choice is not always the
fastest route, but the decomposition into planar graphs does not require an optimised
strategy.

2.1.3 Momentum conservation

Momentum conservation is more subtle and does not have a clear graph-based interpre-
tation. On the other hand, the classification above allows for a massive simplification
and the conditions to find a basis of spinor structures independent, up to both Schouten
identity and momentum conservation, are easy to implement.

We can take into account most of the relations coming from momentum conservation
simply by excluding the momentum of the nth-particle from the previous assignment.
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Then the nth-vertex will have valency ( |hn|+hn2 , |hn|−hn2 )1. This is equivalent to imposing
the constraint

pn = −
n−1∑

i=1

pi , (2.17)

and we can discard from our basis any graph whose adjacency matrix does not satisfy
the conditions

Ain = 0 or Sjn = 0 , (2.18)

for any i, j = 1, . . . , n− 1.

However, this is not the end of the story, because there are in general n additional
momentum conservation conditions that do not involve any insertions of the momentum
of the nth particles:

0 =





n−1∑
j=1
⟨ij⟩[jn] hn > 0

n−1∑
j=1
⟨nj⟩[ji] hn < 0

(2.19)

which are a consequence of the equation of motion for free particles pnαα̇ λ̃α̇n = 0 =
λαn pnαα̇. If hn = 0 the valency of the nth vertex is (0, 0) and there is only one additional
condition to consider:

(
n−1∑

i=1

pi αα̇

)2

=

n−2∑

i=1

n−1∑

j=i+1

sij = p2n = 0 . (2.20)

As already noticed in the previous section, Schouten identities do not change the
valency of vertices in the multigraph, so they do not change the number of momenta
associated with each vertex. Then, we have to find a set of elements in our planar basis
which can be written as a linear combination of the others via momentum conservation.
Once we have discarded all the polynomial structures in which we find the momentum
of the nth-particle, we need to carefully discard the structures that maximise their
appearance in conditions (2.19) and (2.20). Since the edges (1, n) and (n−1, n) are
always planar, the natural choice is to isolate terms where either p1 or pn−1 appears

1Fully eliminating the momentum of the nth-particle is a matter of choices and in principles we
could choose any other particle.
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and to write the additional momentum conservation conditions as 2





⟨i(n− 1)⟩[(n− 1)n] = −
n−2∑
j=1
⟨ij⟩[jn]

⟨(n− 1)1⟩[1n] = −
n−2∑
j=2
⟨(n− 1)j⟩[jn]

hn > 0 ,

s1n−1 = −
n−2∑
j=2

s1j −
n−2∑
i=2

n−1∑
j=i+1

sij hn = 0 ,





⟨n(n− 1)⟩[(n− 1)i] = −
n−2∑
j=1
⟨nj⟩[ji]

⟨n1⟩[1(n− 1)] = −
n−2∑
j=2
⟨nj⟩[j(n− 1)]

hn < 0 .

(2.21)

Notice that also the structures ⟨(n− 1)1⟩[1n] (for hn > 0, or s1n−1 and ⟨n1⟩[1n− 1] in
the other cases) are always planar, because any source of non-planarity would come from
⟨in⟩ invariants, which are always excluded by our choice of eliminating any momentum
insertions of the nth-particle. In other words, the valency of the nth-vertex is (hn, 0)
and (0, hn) for hn ≤ 0 and hn > 0, respectively.

The conditions on the adjacency matrices for the polynomial structures to be in our
basis are trivial. We are going to write them in the case hn < 0 for simplicity:

An−1n = 0 or Si n−1 = 0 ,

A1n = 0 or S1n−1 = 0 ,
(2.22)

Moreover, equations (2.21) provide an algorithmic way of writing linear relations of the
structures in terms of the elements of our basis.

2.1.4 A summary of the algorithm

In this section, we elaborate on the algorithms that follow from the considerations
discussed in the previous sections. In particular, we present, step-by-step, how to find a
basis of kinematically independent minimal amplitudes associated with a given particle
content (or field content of the associated irrelevant operators) and a specified mass
dimension. For the moment, we will ignore complications coming from colour structures,
which will be discussed briefly later in this chapter (for an extended discussion see for
example [117]).

1. We start with an initial trivial assignment of nodes valencies determined by the
field content of the operators we want to consider. In this step, we choose the
arbitrary ordering of the particles in the circular embedding.

2This is an actual choice between momenta of the 1st and the n − 1th momenta. We could choose
an equivalent basis by writing (2.19) as

⟨i1⟩[1n] = −
n−1∑
j=2

⟨ij⟩[jn]

⟨1(n− 1)⟩[(n− 1)n] = −
n−2∑
j=2

⟨1j⟩[jn]
hn > 0 ,


⟨n1⟩[1i] = −

n−1∑
j=2

⟨nj⟩[ji]

⟨n(n− 1)⟩[(n− 1)1] = −
n−2∑
j=2

⟨nj⟩[j1]
hn < 0 .
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2. Accordingly to their mass dimension, such operators can have a number n∂ of
derivatives. These derivatives correspond to momenta insertions in the associated
minimal amplitudes. Then, we must consider all the permutations of the parti-
tions of n∂ momentum insertions into at most n − 1 integers. By doing so, we
have already taken into account the conditions (2.18) coming from momentum
conservation, i.e. we exclude any insertion of nth momentum.

3. Each momentum insertion modifies the valency of nodes, as explained in 2.1.1.
Then, we have a set of possible valency assignations for the graphs and we need
to generate the corresponding structures which are kinematically independent:

(a) We classify all the planar graphs with the valency assignment just found.

(b) From this set of graphs, we exclude those not satisfying the conditions (2.22).

(c) Using the map M, we write down our basis of kinematically independent
spinor structures3.

4. Operators may involve multiple insertions of the same field, i.e. we have identical
particles in the minimal amplitude. For a detailed discussion see [212, 219]. In
these cases, the set of kinematically independent structures does not correspond
to an independent basis of EFT operators. In practice, we consider all the previ-
ously classified independent structures and we act on them with a proper Young
projector over the labels of the identical states, as explained in Section 2.3.1.
When summing over permutations we introduce terms which are not elements of
our planar basis and we need an algorithm to write them as a linear combination
of such elements4.

(a) The inverse map M−1 gives the graphs associated with such structures.

(b) We apply recursively (2.5) (both for the angles and squares invariants) a
finite number of times to write such graph as a sum of planar terms.

(c) We might end up with terms which do not satisfy (2.18) or (2.22). Such terms
must also be decomposed in our basis and the graph operations, equivalent
to (2.17), is

M(A,S) = −
n−1∑

k=1

M(A+G
(i)
(k),S+G

(j)
(k)) , (2.23)

where
G

(i)
(j), ab = −δa,iδb,n + δa,iδb,j . (2.24)

Similarly we take into account the relations (2.21). Obviously, such opera-
tions never introduce negative powers of the Lorentz invariant structures, by
construction.

(d) After applying momentum conservation identities, the terms in the sum
might not be all planar and we have to recursively apply (2.5) again.

3Each of the previous steps can be visualised in the Mathematica package MassiveGraphs, using the
function HelicityCategoryBasis (which perform the classification) and setting the option Echos to
True.

4This second part of the algorithm has not been made publicly available in the MassiveGraphs code
yet. On the other hand, an older version (valid only for purely massless structures) can be found in
the Mathematica package HelicityStructures and the function is called AllIdentities.

https://github.com/StefanoDeAngelis/MassiveEFT-Operators
https://github.com/StefanoDeAngelis/SMEFT-operators
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5. After this decomposition we end up with linear combinations of terms in the
chosen basis and transforming properly under permutations of the particles.

6. Finally we check whether there is a linear relation between such terms.

2.1.5 Checking the algorithm

We performed several non-trivial checks on the algorithm just presented.

1. The procedure seems to rely a lot on the cyclic order chosen for the vertices
of the graphs and the momenta which we want to eliminate (using momentum
conservation and equation of motion). Different choices correspond simply to
different but equivalent bases for the kinematic structures. We checked that the
number of elements in the basis does not depend on these choices in many non-
trivial examples, involving several particles, also with higher helicity, and a high
number of momenta insertions.

2. Generating all the graphs we classify all the corresponding structures. We veri-
fied numerically (on rational kinematic, as explained in Appendix A.3) that the
relations we find through our algorithm are correct and that they are all.

(a) In particular, once the basis {bi}i=1,...,N is generated, we might ask whether
additional identities exist, which have not been considered in our approach.
If such relation exist, we can find rational non-zero coefficients {αi}i=1,...,N

such that
N∑

i=1

αibi = 0 . (2.25)

We generate N independent rational kinematics and evaluate the RHS of the
previous equation. By doing so we obtain a homogeneous linear system of
N equations in N variables and, if its solution is αi = 0 ∀i, we checked the
full independence of the elements of the basis.

(b) In a similar way we can check completeness. It is easy to generate all the
graph corresponding to the helicity assignments and distribution of momen-
tum insertions {ci}i=1,...,M and we want to find numerically the rational
coefficients {βij}i=1,...,N, j=1,...,M such that

ci =

N∑

j=1

βijbj . (2.26)

We evaluate N +1 times both LHS and RHS on random rational kinematics
and we obtain an inhomogeneous linear system of M × (N +1) equations in
M ×N variables. If a solution exists, we have verified completeness. We can
also check the solution against the linear relations found from the graphic
decomposition described in detail in the previous section.

We always found that the bases were complete and their elements independent
in several non-trivial cases. The linear relations match with the results of the
graphic decomposition.
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2.2 The massive basis

The classification of independent structures in massive theories involves more technical
considerations, but a generalisation of the method presented above for fully massless
theories is possible. There are two sources of such additional complications:

1. The little group structures,

2. The equations of motion involving mass terms.

Indeed, when classifying irrelevant interactions for massive theories, we have to be
careful about the mass ordering of the independent structures, i.e. we should not
consider the operators O∆ and O∆+2 = m2

iO∆ as independent when listing operators
of dimension ∆ and ∆+ 2, for example.

In Section 2.1, we identified a basis of structures B = {bi} such that any other
combination of spinors with the proper mass dimension and helicity configuration can
be written as a linear combination of bi’s.

When dealing with massive particles, we fix the helicity category5 and the mass
dimension of the structures. We can identify a set of structures such that any element
within the above-mentioned helicity category can be written as a linear combination
in this basis. On the other hand, the latter will contain terms proportional to mi, m̃i

(through the equation of motion) and p2i , which are redundant when we exploit the
correspondence between polynomial kinematic structures and irrelevant operators.

Then, for a specified helicity category (S1, . . . , Sn) and mass dimension ∆, we will
identify different bases that are relevant for different purposes:

• Kinematic basis: any spinorial structures within the chosen helicity category and
mass dimension can be written as a linear combination of the terms in the basis.
This basis contains also structures in different helicity categories, multiplied by
powers of the masses. Such basis is the relevant one when we test our method nu-
merically on rational kinematics as explained in Section 2.1.5 or we are interested
in building an ansatz for amplitudes (for example, see [104]).

• Helicity category basis: any term proportional to mi or m̃i is ruled out. This gives
a basis of structures that are kinematically independent of each other modulo
identities across different helicity categories. This basis is the relevant one when
we classify independent minimal amplitudes in order of the mass dimension of
the corresponding EFT operators. For example, when classifying terms of mass
dimension ∆, any terms proportional to mi or m̃i have already been considered
with arbitrary coefficients in the basis for terms with mass dimension ∆−1. This
will allow us to work effectively up to terms proportional to any power of the
masses.

2.2.1 The Massive Little Group

When dealing with combinations of massive spinors, we must distinguish between
spinors whose little group indices are contracted and those with free indices (to which

5The helicity category [116] of a minimal amplitude is the helicity configurations of the structures
obtained unbolding the massive spinors [18, 19].
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Figure 2.3: Schouten identities w.r.t. LG indices (2.27) are again equivalent to untying
crossings of edges anchored to the spin and momentum vertices associated with the
same particle.

we will refer as free spinors). Since we are interested in structures that transform under
irreducible representations of the little group, the free indices associated with a particle
will automatically be fully symmetric6. This distinction suggests that we have to as-
sociate different vertices in the graph with each momentum (momentum vertices) and
free spinor (spin vertex ).

Schouten identities for the little group can involve either a momentum or a free spinor
(piαα̇ λ̃Iiβ̇ or piαα̇ λIiβ) or two momenta piαα̇ piββ̇ . We will show in detail that Schouten
identities are again equivalent to untying the crossing of two edges, both anchored to
momentum vertices and/or to the spin vertices. Indeed, considering the combinations
mentioned above, with piαα̇ = λIiαλiα̇I and antisymmetrising over two little group group
indices, we find

piαα̇ λ̃
I
iβ̇

= piαβ̇ λ̃
I
iα̇ − ϵα̇β̇piαγ̇ λ̃

Iγ̇
i ,

piαα̇piββ̇ = piβα̇piαβ̇ − ϵαβpiγα̇p
γ

iβ̇
,

(2.27)

and their “conjugates”, which are identical to the relations one would find applying the
antisymmetrisation directly over the SL(2,C) indices. We show their graph representa-
tion in Figure 2.3.

We should emphasise a crucial point: since we are looking for a basis of polynomial
structures with a well-defined notion of mass ordering, momentum vertices must be
all succeeding (or all preceding) the spin vertex. Indeed, we want the combinations
which are proportional to higher powers of the mass to be always planar. This is not
guaranteed if the condition mentioned above is lifted, as shown in Figure 2.4.

2.2.2 Equations of Motion

So far we find a proliferation of vertices, each particle is associated with a vertex carrying
both helicity weight and momentum insertions for massless particles and only spin

6For those spinors we will use the bold notation introduced in [18].
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Figure 2.4: The notion of mass ordering requires that momentum vertices succeed (or
precede) the spin vertex, as dictated by the on-shell conditions piαα̇λ̃α̇Ii = m̃iλ

I
iα and

piαα̇p
α̇β
i =M2

i δ
β
α.

weight for a massive one. Besides, in the latter case, we need to add a vertex next to
the spin vertex of the corresponding particle for each insertion of massive momenta.
The order of momentum vertices among themselves is irrelevant, even though it seems
crucial when we are dealing with planar graphs only.

In this section, we will show how the Dirac equation for the spinors allows map-
ping our problem to a finite set of fully massless classifications. Then, before dealing
with momentum conservation identities, we simplify our problem by using the graph
equivalent of the unbolding-bolding procedure presented in [116].

In the previous section, we have shown that choosing carefully the arrangement of
the momentum vertices in the circular embedding is essential to guarantee that any
polynomial structure can be written as a linear combination of structures in our basis
which have the same number of explicit mass powers or higher. This suggests that there
could be a way to classify independent spinor structures with fixed powers of mass,
i.e. a classification modulo equations of motion, excluding all the graphs where any
momentum vertex is connected to the corresponding spin vertex. The key observation
is the following: unbolded graphs, i.e. graphs for which we do not distinguish between
momentum and spin vertices, are in one-to-one correspondence with planar “massive”-
bolded graphs for which no momentum vertex is linked to the corresponding spin vertex
and between themselves, and the edges are not crossing. An example of this is illustrated
in Figure 2.5.

When we deal with massive structures, we have to introduce a notion of transver-
sality, because the spins characterise our structures only partially. Indeed, when we
consider, for example, a spin-1 particle, its polarisation tensor (that we define to be
dimensionless) could in principle be defined in several ways:

λ
(I
α λ

J)
β

m
,

λ
(I
α λ̃

J)
α̇

M
,

λ̃
(I
α̇ λ̃

J)

β̇

m̃
, (2.28)

which correspond to transversality −1, 0, and +1 in our notation. In general, the
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Figure 2.5: We considered the planar graphs associated terms in the helicity category
(110 , 210 , 3+1, 4−1) and mass dimension 6. For simplicity, we did not consider a priori
the ones with insertions of p4 and those proportional to any insertion of M1 and M2.
We are showing both the unbolded and the bolded versions of the graphs to make the
one-to-one correspondence evident. The two framed graphs correspond to our basis
after taking into account momentum conservation.

transversality can take the values C = −J,−J + 1, . . . , J and we will specify it as JC .
The set of transversalities and helicities identify the helicity category of the structure.

Any edge, linking a momentum vertex with its respective spin vertex, gives a power
of the mass and changes the transversality of the structure:

piαα̇λ̃
α̇I
i = m̃iλ

I
iα , pα̇αi λIiα = miλ̃

α̇I
i , (2.29)

or graphically

i pi
= mi

i , i pi
= m̃i

i .

Indeed, given the valency of the spin vertex of the ith-particle (via, v
i
s), then J =

via + vis and C = vis − via. When we classify the combinations in the helicity category
({iSi}i=1,...,n) (with Si = JiCi

or Si = hi for massive and massless particles, respec-
tively) and mass dimension ∆, the number of momentum insertions is ∆ −∑n

i=1 |Si|.
Then, if we are interested in the kinematic basis, in addition to the structures with the
chosen transversality and no mass insertion (helicity category basis), we need to consider
also the terms in which the equations of motion change the transversality. We consider
the example shown in Figure 2.5, i.e. (110 , 210 , 3+1, 4−1)6: we also need to classify
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(11+1 , 210 , 3+1, 4−1)5, (11−1 , 210 , 3+1, 4−1)5, (110 , 21+1 , 3+1, 4−1)5, (110 , 21−1 , 3+1, 4−1)5
(multiplied by m̃1,m1, m̃2,m2 respectively) and (11+1 , 21+1 , 3+1, 4−1)4, (11−1 , 21+1 , 3+1, 4−1)4,
(11+1 , 21−1 , 3+1, 4−1)4, (11−1 , 21−1 , 3+1, 4−1)4 (all multiplied by m̃1 m̃2, m1 m̃2, m̃1m2,
m1m2)7:

{⟨12⟩[12]⟨4|p2|3]2, −⟨14⟩⟨24⟩[13][23]⟨3|p2|3],
− m̃1⟨12⟩⟨14⟩[23]⟨4|p2|3], −m1[12]⟨24⟩[13]⟨4|p2|3]
− m̃2⟨12⟩⟨24⟩[13]⟨4|p2|3], −m2[12]⟨14⟩[23]⟨4|p2|3],
m̃1m2⟨14⟩2[23]2,m1m̃2⟨24⟩2[13]2} .

(2.30)

and the structures (110 , 210 , 3+1, 4−1)4, multiplied by both M2
1 and M2

2 :

{M2
1 ⟨14⟩⟨24⟩[13]⟨23⟩,M2

2 ⟨14⟩⟨24⟩[13]⟨23⟩} . (2.31)

Such terms are generated by the contractions piαα̇p
α̇β
i = M2

i δ
β
α and pα̇αi piαβ̇ = M2

i δ
α̇
β̇
,

or graphically

pi pi

k j

=M2
i
k j ,

pi pi

k j

=M2
i
k j .

The total power of the masses cannot exceed the number of momentum insertions
in the original structure. In particular, the maximum power of the ith-particle mass in
the kinematic basis is

min

{
max {|Ci − Ji|, |Ci + Ji|} ,∆−

n∑

i=1

|Si|
}

. (2.32)

2.2.3 Momentum Conservation

When dealing with massive structures, momentum conservation identities involve more
subtleties. First, we can always choose a particle whose momentum does never appear in
the structure: for example, the nth-state. Then, we can write the remaining momentum

7We have already taken into account momentum conservation identities, which will be described in
the next section. The reader might notice that in the example shown, with the fourth particle being
massless, momentum conservation identities are identical to the fully massless case, once we consider
the unbolded graphs.
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conservation identities as

pn−1|nI ] = −
n−2∑

i=1

pi|nI ]− pn|nI ] ,

⟨nI |pn−1 = −
n−2∑

i=1

⟨nI |pi − ⟨nI |pn ,

⟨nI |p1|(n− 1)J ] = −
n−2∑

i=2

⟨nI |pi|(n− 1)J ]

− ⟨nI |pn|(n− 1)J ]− ⟨nI |pn−1|(n− 1)J ] ,

⟨(n− 1)I |p1|nJ ] = −
n−2∑

i=2

⟨(n− 1)I |pi|nJ ]

− ⟨(n− 1)I |pn|nJ ]− ⟨(n− 1)I |pn−1|nJ ] ,

2 p1 · pn−1 =M2
n −

n−2∑

i=1

n−1∑

j=i+1

2 pi · pj −
n−1∑

i=1

M2
i ,

(2.33)

where the LG indices can be either contracted or not, or not be present at all (as the
corresponding particle could be massless). We write these identities such that the terms
with higher powers of the masses are independent, i.e. they can only be written as a
linear combination of the structures with the same or higher mass powers. This allows
us to effectively set them to zero and work modulo equations of motion (

D≃), as explained
in the previous section. For example, some of the equations in (2.33) look like

pn−1|nI ]
D≃ −

n−2∑

i=1

pi|nI ] ,

⟨(n− 1)I |p1|nJ ]
D≃ −

n−2∑

i=2

⟨(n− 1)I |pi|nJ ] ,

2 p1 · pn−1
D≃ −

n−2∑

i=1

n−1∑

j=i+1

2 pi · pj ,

(2.34)

which resemble fully massless identities (2.21). Classifying the structures up to equa-
tions of motion means that we can put forward the identification

⟨jJ |pi|kK ] λIi α
D≃ ⟨jJ iI⟩ pi|kK ]α , (2.35)

and its “conjugate”. This is equivalent to stating that the momentum conservation
conditions for unbolded graphs are identical to the fully massless case, i.e. that we
should not distinguish between spin and momentum vertices but only keep track of the
number of momentum insertions for each particle. In particular, if the nth particle is
either massless or Jn ≤ 1

2 , momentum conservation identities for unbolded graphs are
identical to the fully massless case, once we check if there are insertions of p1 or pn−1.

On the other hand, there is a subtlety when we consider fully massive structures
or, in general, we choose to fully eliminate the momentum of a spin-J massive particle
whose transversality C ̸= −J, J and J ≥ 1. In particular, in these cases, the structures
⟨nI |p1|(n− 1)J ] and ⟨(n− 1)I |p1|nJ ] are not guaranteed to be planar because the spin
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vertex of the nth-particle has non-vanishing valency for the edges corresponding to both
squares and angles, even if there are no momentum insertions associated to it. Never-
theless, these non-planar structures give additional momentum conservation constraints
which should be taken into account.

An ad hoc solution to overcome this problem is the following:

1) We classify and count the number m of independent structures, or planar graphs
after redefining the valencies of the vertices as

(v1a, v
1
s)→ (v1a − l, v1s − l) ,

(vn−1
a , vn−1

s )→ (vn−1
a − l1, vn−1

s − l2) ,
(vna , v

n
s )→ (vna − l2, vns − l1) ,

(2.36)

where l = l1 + l2. In this way, we classify the independent structures for which we
factorise the product ⟨(n− 1)I1 |p1|nJ1 ]l1⟨nJ2 |p1|(n− 1)I2 ]l2 .

2) If we restore the factorised edges in the graphs obtained in this classification as

Ai, 1n−1 → Ai, 1n−1 + l1 ,

Ai, 1n → Ai, 1n + l2 ,

Si, 1n−1 → Si, 1n−1 + l2 ,

Si, 1n → Si, 1n + l1 ,

(2.37)

for i = 1, . . . ,m, we obtain a series of planar and non-planar graphs. The structures
corresponding to planar graphs in this classification must be removed from our basis.

3) Non-planar structures must be treated separately. There is a unique source of non-
planarity in these graphs and, using iteratively Schouten identities, we can write
these non-planar structures as linear combinations of planar ones. In particular, we
find

n

1 i

n− 1

=

n

1 i

n− 1

+

n

1 i

n− 1

,

(2.38)

and its “conjugate”. Using momentum conservation on the LHS we can trade p1
insertions with a sum of structures which do not depend on neither p1, pn−1 nor
pn. This means that each non-planar structure gives a linear constraint for terms
appearing on the RHS.

4) Then, we can discard a number m of graphs whose adjacency matrices satisfy the
conditions

A1n > 0 , S1n > 0 , ∃i s.t. Si n−1 > 0 , (2.39)

or
A1n > 0 , Sn−1n > 0 , ∃i s.t. S1 i > 0 , (2.40)

or their “conjugates”.
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Figure 2.6: Planar structures to eliminate corresponding to the factorised term
⟨1n⟩[(n− 1)n]⟨(n− 1)|p2|1].

Surprisingly, if we consider cases in which Ji ≥ 1 and Ci ̸= −Ji, Ji for i = 1, n−1, n,
there is an additional relation to take into account:

⟨1n⟩[(n− 1)n]⟨(n− 1)|
n−2∑

i=2

pi|1]
D≃ [1n]⟨(n− 1)n⟩⟨1|

n−2∑

i=2

pi|n− 1] (2.41)

In order for the terms in this additional relation to be independent from the momentum
conservation conditions already considered, the momenta p1, pn−1, and pn must be
massive and none of them can appear in the structures in (2.41). The algorithm to
eliminate this additional constraint is identical to the one just presented, except for
the factorised structure, which we choose to be ⟨1n⟩[(n− 1)n]⟨(n− 1)|p2|1], and the
corresponding planar structures that we need to eliminate are shown in Figure 2.6.

These algorithms give the basis of the independent kinematic structures we are look-
ing for, modulo Schouten identities, momentum conservation, and equation of motion.
To find the complete kinematic basis we need to consider all the helicity categories bases
with lower mass dimensions multiplied by proper mass powers, as shown in Section 2.2.2.

2.2.4 A summary of the algorithm

We now present a summary of the algorithm for minimal amplitudes, including massive
particles. The general structure is the same presented for fully massless amplitudes,
with few key differences.

1. We start with an initial trivial assignment of vertex valencies determined by the
field content of the operators and the distribution of momentum insertions (i.e.
mass dimensions).

2. We are interested in the helicity category basis, then we will work up to terms
with explicit powers of the masses, i.e. we do not distinguish free spinors and
momentum vertices in the graphs.

3. We generate the corresponding structures which are kinematically independent8:
8As in the massless case, this classification correspond to the HelicityCategoryBasis function in

the MassiveGraphs code. If we are also interested in the terms proportional to powers of the masses,
i.e. to the kinematic basis, the function to use is KinematicBasis.
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(a) We classify all the planar graphs.

(b) From this set of graphs, we exclude some of the graphs thanks to momentum
conservation, as explained in Section 2.2.3.

(c) To each of the remaining graphs, we can associate a unique planar massive
graph9.

(d) Using the massive generalisation of the map M, we write down our basis of
kinematically independent spinor structures in the helicity category basis. It
is quite hard to write down an explicit (and clear) closed formula for such a
map, then we provide a couple of examples from Figure 2.5:

M ◦
4

1
2

p2

p2

3

= ⟨12⟩[12]⟨4|p2|3]2 ,

M ◦ = ⟨14⟩⟨24⟩[13][23]⟨3|p2|3] .
4

1
2

p2

3

4. When dealing with identical particles, we also need to decompose some structures
which do not appear in our basis. Since our algorithm relies on the unbold-
ing/bolding procedure at the level of graphs, we can find linear relations only up
to terms with masses, like equations (2.34), (2.35) or (2.41). The details can be
extrapolated from point (4) in Section 2.1.4 and the discussion of Section 2.2.3.
Even if such linear relations are not complete, the information they provide is
enough, as the missing terms are proportional for minimal amplitude with the
same field content, but a smaller mass dimension.

5. After this decomposition we end up with linear combinations of terms in the
chosen basis and transforming properly under permutations of the particles.

6. Finally we check whether there are linear relations between such terms.

7. The checks on the algorithm are exactly the same presented in Section 2.1.5.

2.3 Applications

In this section, we are going to present some applications of our method for the classi-
fication of irrelevant interactions in effective theories. The fully massless algorithm has
been used in [104] to list the SMEFT irrelevant operators up to dimension eight.

The method presented in this thesis can be applied to any number of particles with
arbitrary helicity and spin. In particular, we will show some details needed for the
construction of our SMEFT basis, the classification of D2nF 4 effective interactions in
SU(N) Yang-Mills theories, five-point effective interactions involving W , Z and γ vector

9For the interested reader, the bolding map at the level of graphs is not shown in this thesis, but it
can be found explicitly coded in the MassiveGraphs package.

https://github.com/StefanoDeAngelis/MassiveEFT-Operators
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bosons and spin-tidal interactions in gravity. In particular, in the last case, we will
show how our method is related to the strategy presented in [116], explicitly showing
the mass-complete relations relevant to the case considered.

In the first part, we will briefly mention how to treat identical particles and colour
structures, which have been extensively studied in the literature [116, 117, 210, 212,
219, 220].

All algorithms for massive particles have been implement in the Mathematica package
MassiveGraphs, which make use of the SpinorHelicity package. An older version of
this code, working only in the fully massless case and focusing on the construction of
a SMEFT basis of irrelevant interactions, is SMEFT-operators, which make use of the
package SpinorHelicity6D to deal with spinor helicity structures.

2.3.1 The on-shell classification of SMEFT operators

In this section we are going to extend the on-shell methods to the classification of
effective interactions [62, 113, 116] in the SMEFT [19, 111, 112, 114], corresponding in
the Lagrangian formalism to insertions of irrelevant operators [211, 221–223]. First, we
are going to classify all the independent kinematic structures in a generic theory in four
dimensions introducing a new algorithm in terms of graphs and then we will consider
the specific case of the Standard Model, combining these with the colour structures10.
A subset of the contact term basis for dimension-six and dimension-eight irrelevant
interactions, relevant for the study of deviation from the Standard Model in the process
pp→Wh, is shown explicitly in the next chapter, in Table 5.1 and 5.2. The full list up
to dimension-eight can be found in the ancillary files of [104].

Mass dimension and minimal amplitudes in massless gauge theories

As we explained in the previous sections, each effective interaction will be identified by
its minimal amplitude, i.e. the amplitude at leading order which does not vanish in free
theory (if we switch off all the other interactions). This has to be a contact term, i.e.
no intermediate modes are propagating.

As a first step in the classification procedure, we fix the mass-dimension [O] of the
irrelevant operators for which we want to find a complete basis. From the minimal
amplitudes, we strip off the coupling of the effective interaction, which is related to the
dimension of the corresponding irrelevant operator by

[gO] = 4− [O] . (2.42)

What we are looking for are the kinematic structures which have mass dimension

[O]− n ≥ 0 , (2.43)

where n is the number of external legs in the corresponding minimal amplitude. Equa-
tion (2.43) provides a constraint on n which can be further refined by taking into account
which types of particles are found in the amplitudes. In fact, to get helicity weights
right, each vector in the minimal amplitude will contribute with at least two spinor

10The approach presented in this section has been coded in Mathematica. The code and an example
notebook are available at the link https://github.com/StefanoDeAngelis/SMEFT-operators.

https://github.com/StefanoDeAngelis/MassiveEFT-Operators
https://github.com/StefanoDeAngelis/SpinorHelicity
https://github.com/StefanoDeAngelis/SMEFT-operators/releases/tag/v1.0
https://github.com/accettullihuber/SpinorHelicity
https://github.com/StefanoDeAngelis/SMEFT-operators
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(ng− , ng+ , nf− , nf+ , ns) Independent structures

(0, 0, 0, 0, 6) 1
(0, 0, 0, 0, 4) [12]⟨12⟩, [23]⟨2 3⟩
(0, 0, 0, 2, 3) [12]
(0, 0, 0, 4, 0) [12][34], [14][23]
(0, 0, 1, 1, 2) [23]⟨13⟩
(0, 0, 2, 0, 3) ⟨12⟩
(0, 0, 2, 2, 0) [34]⟨12⟩
(0, 0, 4, 0, 0) ⟨12⟩⟨34⟩, ⟨14⟩⟨3⟩
(0, 1, 0, 2, 1) [12][13]
(0, 2, 0, 0, 2) [12]2

(0, 3, 0, 0, 0) [12][13][23]
(1, 0, 2, 0, 1) ⟨12⟩⟨13⟩
(2, 0, 0, 0, 2) ⟨12⟩2
(3, 0, 0, 0, 0) ⟨12⟩⟨13⟩⟨23⟩

Table 2.1: All the independent structures and possible particle content for minimal
amplitudes corresponding to irrelevant operators of mass dimension six.

variables and each fermion with at least one. This leads to the stronger constraint11

[O]− n ≥ 2× 1

2
× ng +

1

2
× nf =⇒ 2ng +

3

2
nf + ns ≤ [O] , (2.44)

where ng, nf and ns are respectively the number of vectors, fermions and scalars and
clearly n = ng + nf + ns. Next, we need to take into account the constraints coming
from the condition that our kinematic structures must be SL(2,C) invariant. This
requires to further distinguish between helicities of the different particles, and to find
all the (ng− , ng+ , nf− , nf+ , ns)

12 compatible with the constraint (2.44). Once ng, nf
and ns are fixed, we take into account that every state can contribute to the kinematic
structures with powers of its momentum, which correspond to derivatives in the operator
language. The total number of momenta n∂ is fixed by saturating the mass dimension
constraint to

n∂ = [O]− 2ng −
3

2
nf − ns . (2.45)

This algorithm classifies efficiently all the SL(2,C)-invariant structures which are
polynomial in the spinor variables with fixed mass dimension and helicity configuration,
associated to each (ng− , ng+ , nf− , nf+ , ns). We notice that this algorithm can be applied
also beyond gauge theories and massless states. As an example, in Table 2.1 we show all
the possible particle configurations for minimal amplitudes corresponding to irrelevant
operators of mass dimension six in generic gauge theories.

The classification of the helicity structures is completely theory-independent and is
indeed not limited to gauge theories, but can be applied to effective field theories of
gravity, with (massive and spinning) matter as well. Information about the Standard
Model enters only in the SU(3)× SU(2)× U(1) (invariant) structures associated with
the chosen set of particles.

11This condition is not only necessary but also sufficient for having local interactions.
12The superscript of the subscript specify the helicity of the particles: ng = ng− + ng+ and

nf = nf− + nf+ .
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The gauge group structures

The classification of the invariant structures of the gauge groups can be worked out
using standard group theory techniques. In particular

• U(1): to each (ng− , ng+ , nf− , nf+ , ns) structure we associate all the possible com-
binations of Standard Model states for which the total hypercharge is zero.

• SU(2): we notice that the algorithm presented in the previous section can be
generalised to the case of SU(2) invariants with a single graph associated with the
invariants. Each oriented edge from the nth to the mth vertices correspond to an
ϵinim tensors and the valence of each vertex vi is fixed by the representation of the
ith-particle, labelled by its dimension vi + 1. The indices associated with the same
vertex must be taken as completely symmetric. In the case of the SU(2) group
there is no analogous of momentum conservation, so the independent structures
can be taken to be in one-to-one correspondence with planar graphs.

• SU(3): the SU(N) invariants have been studied a lot both in mathematic and
physic literature (see, for example, [224–226]), so we will not go into further details
here. In our algorithm we adopt the standard Littlewood-Richardson rule [227,
228] as suggested in [117, 118].

Once the kinematic structures associated to (ng− , ng+ , nf− , nf+ , ns) have been gen-
erated and a compatible set of gauge singlets was found, we combine all the invariants
to find a basis of independent structures enclosing information about both the kinemat-
ics and the colour. If no identical fields are present, these structures coincide with the
minimal amplitudes, else one needs to impose Bose-Einstein and Dirac-Fermi statistics
as explained in the next section.

Repeated fields and Young projectors

There are cases for which the minimal amplitude involves identical states, for example
for [gO] = −2 we could have minimal amplitudes with (G+, G+, G+) or (Q,Q, u, d).
The treatment of this subtlety has been systematically taken into account in [117,
219]. Starting from their classification, we take a slightly different approach, since we
deal with minimal amplitudes and not with operators. We distinguish between identical
bosons and fermions at the level of the minimal amplitude and impose the Bose-Einstein
statistic for the former and Dirac-Fermi statistic for the latter. In practice, we consider
all the previously classified independent structures and we act on them with a proper
Young projector over the labels of the identical states:

• in the case of n identical bosons we act on the structures with the symmetriser
projector

Y 1 ···n =
1

n!

n!∑

i=1

pi , (2.46)

where pi are all the permutations of the n labels associated with the identical
bosons.
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• in the case of n identical fermions we act on the structures with the total anti-
symmetriser projector

Y 1...
n

=
1

n!

n!∑

i=1

si pi , (2.47)

where si is the signature of the permutations pi.

Once, we apply the Young projectors to the independent minimal amplitudes, we will
end up with a sum over terms which will not necessarily belong to the basis of inde-
pendent structures chosen. To find the minimal amplitudes, we need to re-write these
symmetrised amplitudes in terms of elements of our structure basis and check if they
are linearly independent of each other (which in general will not be the case, some
structures will even be automatically zero after projection).

A further subtlety arises in the case of the Standard Model, due to the flavour of
fermions: to each particle, we can associate a further SU(Nf ) index, where Nf is the
number of flavours. The independent minimal amplitudes can then be classified in
terms of inequivalent irreducible representations of SU(Nf ), which are in one-to-one
correspondence with the irreducible representations of the symmetric group Sn, where
n is the number of identical fermions in the same family. For example, for dimension
6 operators we can consider the baryon number violating effective interactions with
(Q,Q,Q,L) (n = 3). Then we have a basis of four independent structures:

ϵa1a2a3ϵi1i4ϵi2i3 ⟨12⟩⟨34⟩ , (2.48)

ϵa1a2a3ϵi1i2ϵi3i4⟨12⟩⟨34⟩ , (2.49)

ϵa1a2a3ϵi1i4ϵi2i3⟨14⟩⟨23⟩ , (2.50)

ϵa1a2a3ϵi1i2ϵi3i4⟨14⟩⟨23⟩ . (2.51)

There are three inequivalent representations of S3, corresponding to the Young diagrams
, and . Then we can act on the independent structure with the projectors

associated to the standard Young tableaux 1 2 3 , 1 2
3

, 1
2
3

13. There is a unique linearly

independent structure associated with each irreducible representation:

C{3},{1}
m1m2m3,m4

Y 1
2
3

◦ ϵa1a2a3ϵi1i4ϵi2i3 ⟨12⟩⟨34⟩ , (2.52)

C{2,1},{1}
m1m2m3,m4

Y 1 2
3
◦ ϵa1a2a3ϵi1i4ϵi2i3 ⟨12⟩⟨34⟩ , (2.53)

C{1,1,1},{1}
m1m2m3,m4

Y 1 2 3 ◦ ϵa1a2a3ϵi1i4ϵi2i3 ⟨12⟩⟨34⟩ , (2.54)

where Cπ,{1}m1m2m3,m4 is a Wilson coefficient tensor associated with each effective mini-
mal amplitude, with π being the integer partition corresponding to the Young diagram
for the Q fields. Notice that Dirac-Fermi statistics forces the Wilson coefficient tensor
to have the “opposite” symmetry properties with respect to the Young tableau associ-
ated to the projector: e.g. C{3},{1}

m1m2m3,m4 = C
{3},{1}
(m1m2m3),m4

, C{2,1},{1}
m1m2m3,m4 = C

{2,1},{1}
[m1m2]m3,m4

,

13The fourth standard tableau 1 3
2

would not give an independent minimal amplitude, because it
could be obtained from the second one by relabelling: Y 1 3

2

= (2 3) ◦ Y 1 2
3

◦ (2 3), where (2 3) is the

permutation of the labels 2 and 3.
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C
{2,1},{1}
[m1m2m3],m4

= 0 and C{1,1,1},{1}
m1m2m3,m4 = C

{1,1,1},{1}
[m1m2m3],m4

. The number of independent opera-

tors for this specific case is14 (Nf+2) (Nf+1)Nf

6 , (Nf+1)Nf (Nf−1)
3 and Nf (Nf−1) (Nf−2)

6 for
each tensor respectively.

2.3.2 D2nF 4 interactions in gauge theories

We consider now a simple example in which all the particles are massless vector bosons in
SU(N) Yang-Mills theory with N > 3. We will consider in order the three independent
helicity configurations (+ + ++), (+ + +−) and (+ +−−).

All-plus configuration

The algorithm provides us with a basis of kinematically independent structures which
are compatible with the mass dimension 4 + 2n and the chosen helicity configuration.
In particular, we find

sn12[12]
2[34]2 , sn12[14]

2[23]2 , sn12[12][23][34][41] , {sn−k23 sk12[14]
2[23]2}k=0,...n−1 , (2.55)

which correspond to the only n + 3 graphs that meet all the requirements stated in
Section 2.1. A basis of independent colour structures for N > 3 is

C = {δA1A4δA2A3 , δA1A3δA2A4 , δA1A2δA3A4} ∪ {τA1AiAjAk}(i,j,k)=P3(2,3,4) , (2.56)

where P3(2, 3, 4) corresponds to the permutations of (2, 3, 4), and τA1A2A3A4 is the trace
of four SU(N) generators τA.

These two bases must be combined to find the effective interactions we are looking for.
At this point, we have 9× (3+ n) terms and, as we are dealing with identical particles,
we need to sum over all the permutations of the external legs in these structures. For
example, we can consider δA1A4δA2A3sn12[12]

2[34]2:

Y 1 2 3 4 ◦ δA1A2δA3A4sn12[12]
2[34]2 ≡ 1

3
δA1A2δA3A4sn12[12]

2[34]2 +
1

3
δA1A3δA2A4sn13[13]

2[24]2

+
1

3
δA1A4δA2A3sn23[14]

2[23]2 .

(2.57)

The structure sn13[13]2[24]2 does not belong to our basis and we have to rewrite it as
a linear combination of elements of our basis. We can do this using the algorithm
presented in Section 2.1 and we always verify such relations on rational kinematics,
as presented in Appendix A.3. This means that, after symmetrisation, not all the
9 × (3 + n) structures are kinematically independent. Indeed, it turns out that only
4+2⌊n2 ⌋ structures actually are. We are going to present a basis of effective interactions

14The counting can be performed using the Hook Content Formula.
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for n ≤ 8, which we will denote by B4+2n:

B4 = ([14]2[23]2 × C1) ∪ ([14]2[23]2 × C2) ,
B6 = s23 × B4 ,
B8 = (s12 × B6) ∪ (s12s23[14]

2[23]2 × C3),
B10 = s23 × B8 ,
B12 = (s12 × B10) ∪ (s12s

3
23[14]

2[23]2 × C1) ,
B14 = s23 × B12 ,
B16 = (s212s

2
23 × B8) ∪ (s212s

4
23 × B4) ,

B18 = s23B16 ,
B20 = (s412s

4
23 × B8) ∪ (s312s

5
23 × B8) ,

where

C1 = {δA1A4δA2A3 , τA1A2A3A4} ,
C2 = {δA1A3δA2A4 , τA1A2A4A3} ,
C3 = {δA1A2δA3A4 , τA1A3A2A4} ,

and the symmetrisation is understood for each element in the lists. For example, the
first element in B4 is

δA1A4δA2A3 [14]2[23]2 → 1

3
δA1A2δA3A4 [12]2[34]2 +

1

3
δA1A3δA2A4 [13]2[24]2

+
1

3
δA1A4δA2A3 [14]2[23]2 .

(2.58)

Single-minus configuration

In this case, the basis of kinematically independent structures consists of n elements:

{sn−k−1
12 sk23⟨24⟩2[12]2[23]2}k=0,...n−1 . (2.59)

After combining with the colour basis and symmetrising over the (1, 2, 3) we end up
with ⌊3n+1

2 ⌋ independent contact terms:

B6 = (⟨24⟩2[12]2[23]2 × C1) ,
B8 = (s23 × B6) ∪ {τA1A2A4A3s23⟨24⟩2[12]2[23]2} ,
B10 = s12s23⟨24⟩2[12]2[23]2 × (C1 ∪ C2) ∪ {τA1A3A4A2s12s23⟨24⟩2[12]2[23]2},
B12 = s23 × B10 ∪ {τA1A3A2A4s12s

2
23⟨24⟩2[12]2[23]2} ,

B14 = s12 × B12 ∪ s12s323⟨24⟩2[12]2[23]2 × C1 ,
B16 = s212s

3
23⟨24⟩2[12]2[23]2 × C ,

B18 = s212s
2
23 × B10 ∪ s12s223 × B12 ,

B20 = s12s23 × B16 ∪ s212s423 × B8 ,

where the symmetrisation is understood for each element in the lists.
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MHV configuration

In this configuration the basis of kinematically independent structures consists of n+1
elements:

sn12[12]
2⟨34⟩2, sn−1

12 [12]2⟨34⟩⟨3|p2p1|4⟩, {sn−k−2
23 sk12[12]

2⟨3|p2p1|4⟩2}k=0,...,n−2 , (2.60)

where the negative powers of the Mandelstam invariants for n = 0, 1 mean that such a
structure is not in the basis.

The number of effective interactions in the SU(N) gauge theories is 4+ ⌊7n2 ⌋ and the
choice of basis is given by

B4 = [12]2⟨34⟩2 × (C1 ∪ C3) ,
B6 = s12 × B4 ∪ [12]2⟨34⟩⟨3|p2p1|4⟩ × C′1 ,
B8 = s212 × B4 ∪ [12]2⟨3|p2p1|4⟩2 × (C1 ∪ C2 ∪ C3 ∪ {τA1A4A2A3}) ,
B10 = s12 × B8 ∪ s23[12]2⟨3|p2p1|4⟩2 × C′1 ,
B12 = s12 × B10 ∪ s223[12]2⟨3|p2p1|4⟩2 × (C1 ∪ C3) ,
B14 = s12 × B12 ∪ s323[12]2⟨3|p2p1|4⟩2 × C′1 ,
B16 = s212 × B12 ∪ s323[12]2⟨3|p2p1|4⟩2 × (C1 ∪ C2 ∪ C3 ∪ {τA1A4A2A3}) ,
B18 = s312 × B12 ∪ s23 × (B16 \ s212 × B12) ∪ s212s323[12]2⟨3|p2p1|4⟩2 × C′1 ,
B20 = s412 × B12 ∪ s223 × (B16 \ s212 × B12) ∪ s312s323[12]2⟨3|p2p1|4⟩2 × C′1

∪ s312s323[12]2⟨3|p2p1|4⟩2 × (C1 ∪ C3) ,

where
C′1 = C1 ∪ {τA1A3A2A4} . (2.61)

Clearly, the basis we found is not the most symmetric and recursive. In this section, we
wanted to show how our method can systematically deal with this problem of classifi-
cation. But it is easy to start from our basis and find more symmetric ones, as we will
show explicitly in Section 2.3.4.

2.3.3 Five-point interactions between W , Z and γ

In this section we show how our algorithm can be applied beyond the results of [116]
(beyond four-point and purely massive amplitudes), classifying the effective interac-
tion corresponding to dimension-six operators at five-point, with massive (both charged
and uncharged) and U(1) massless vector bosons, which we call W±, Z and γ. Such
operators can appear in various combinations: D(W+)2(W−)2Z, DW+W−Z3, DZ5,
Fγ(W

+)2(W−)2, FγW+W−Z2 and FγZ
4. Now we will deal with the purely massive

cases and the mixed case separately, as the purely kinematic structures are common in
the two cases.

Five-point massive effective interactions

First, we need to classify all possible contact terms using the algorithm presented in Sec-
tion 2.2: we need terms with mass dimension 6 and in the helicity category (110 , 210 , 310 ,
410 , 510), and terms with mass dimension 5 in the various helicity categories (11±1 , 210 ,
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310 , 410 , 510), plus the permutations needed to distinguish different particles. We are
not going to write all the structures explicitly as they are of order 102. As in the purely
massless case, after symmetrising over identical particles we find structures that are not
in our basis of kinematic independent structures. Nevertheless, we can use our algo-
rithm to write down explicitly the decomposition of such structures. When doing so,
it is important to distinguish between mi, m̃i, and Mi, and only at the very end set
mi = m̃i =Mi, as explained in the Appendix A.3.

It is important to note that in the massive case, such relations contain terms across
different helicity categories, which enter in the relations multiplied by powers of the
masses. Then, the linear independence of the symmetrised terms can be checked by
either setting all the masses to zero and working with a fixed helicity category, or by
keeping the masses and considering the independence across the different categories in
order of increasing mass dimension.

The number of independent contact terms in the three cases under consideration
D(W+)2(W−)2Z, DW+W−Z3, DZ5 are, respectively, 20, 14 and 0:

BW 4Z
6 ={MZ⟨15⟩⟨23⟩⟨45⟩[14][23],MW ⟨15⟩⟨24⟩⟨34⟩[15][23],MW ⟨14⟩⟨23⟩⟨45⟩[15][23],

MW ⟨12⟩⟨34⟩⟨45⟩[15][23],MW ⟨25⟩⟨34⟩[14][15][23],MW ⟨23⟩⟨45⟩[14][15][23],
MW ⟨13⟩⟨45⟩[15][23][24],MW ⟨12⟩⟨25⟩⟨34⟩[15][34],MW ⟨15⟩⟨24⟩[15][23][34],
MW ⟨12⟩⟨45⟩[15][23][34],MW ⟨15⟩⟨23⟩⟨24⟩[13][45],MW ⟨12⟩⟨23⟩⟨45⟩[13][45],
MW ⟨15⟩⟨24⟩[13][23][45],MZ⟨14⟩⟨23⟩[15][23][45], ⟨13⟩⟨45⟩[15][34]⟨2|p1|2],
⟨13⟩⟨45⟩[13][45]⟨2|p1|2], ⟨12⟩⟨45⟩[15][24]⟨3|p2|3], ⟨15⟩⟨24⟩[15][24]⟨3|p2|3],
⟨15⟩⟨23⟩[15][23]⟨4|p3|4], ⟨15⟩⟨23⟩[23][45]⟨4|p3|1]} ,

and

BW 2Z3

6 ={MZ⟨15⟩⟨25⟩⟨34⟩[14][23],MZ⟨15⟩⟨23⟩⟨45⟩[14][23],MZ⟨12⟩⟨35⟩⟨45⟩[14][23],
MW ⟨25⟩⟨34⟩[14][15][23],MW ⟨13⟩⟨45⟩[15][23][24],MW ⟨12⟩⟨25⟩⟨34⟩[15][34],
MZ⟨15⟩⟨24⟩[15][23][34],MZ⟨12⟩⟨45⟩[15][23][34],MW ⟨14⟩⟨15⟩⟨23⟩[25][34],
MZ⟨15⟩⟨24⟩[12][34][35], ⟨13⟩⟨45⟩[15][34]⟨2|p1|2], ⟨12⟩⟨45⟩[12][45]⟨3|p2|3],
⟨15⟩⟨24⟩[15][24]⟨3|p2|3], ⟨15⟩⟨23⟩[15][23]⟨4|p3|4]} .

All elements of these lists are understood to be properly symmetric under permutations:
the elements of the former must be symmetric in (1, 2) and (3, 4) and the latter in
(3, 4, 5). For example, if we consider the first element of BW 4Z

6 , we have:

MZ⟨15⟩⟨23⟩⟨45⟩[14][23]→
MZ

4
⟨14⟩⟨25⟩⟨35⟩[14][23] + MZ

4
⟨15⟩⟨23⟩⟨45⟩[14][23]

+
MZ

4
⟨15⟩⟨24⟩⟨35⟩[13][24] + MZ

4
⟨13⟩⟨25⟩⟨45⟩[13][24] .

Finally, keeping in mind the definition of the polarisation tensor for massive vectors
(2.28), we need to divide these polynomial structures by M4

WMZ and M2
WM

3
Z to obtain

contact terms with the correct mass dimension.

FγW
4, FγW

2Z2, FγZ
4 contact terms

This example is easier to follow than the previous one because there is only one helicity
category involved when we consider dimension-six operators. The kinematic basis has
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only six elements:

{⟨12⟩⟨34⟩[12][53][54], ⟨12⟩⟨34⟩[23][51][54], ⟨12⟩⟨34⟩[34][51][52],
⟨14⟩⟨23⟩[12][53][54], ⟨14⟩⟨23⟩[23][51][54], ⟨14⟩⟨23⟩[34][51][52]} . (2.62)

After the proper symmetrisations, we find that the number of contact terms for the
operators we are considering are 1, 3 and 0, respectively. In particular, we find

BγW 4

6 = { 1

M4
W

Y 1 2 ◦ Y 3 4 ◦ ⟨14⟩⟨23⟩[23][51][54]} ,

and

BγW 2Z2

6 =

{
1

M2
ZM

2
W

Y 3 4 ◦ ⟨12⟩⟨34⟩[12][53][54],
1

M2
ZM

2
W

Y 3 4 ◦ ⟨14⟩⟨23⟩[12][53][54],

1

M2
ZM

2
W

Y 3 4 ◦ ⟨14⟩⟨23⟩[23][51][54]
}
.

2.3.4 Spin-tidal interactions in gravitational EFTs

In this section, we will apply our algorithm to classify the operators that encode spin-
tidal interactions for spin Si = 1 in gravitational systems. This work has been carried
out for Si = 0, 12 in [169, 172]. In this section, we will massage the original basis
such that the terms appearing are easily recursive when going up in mass dimension.
Furthermore, we will highlight the difference between our strategy and the existing
procedure presented in [116]. We will study the helicity category (110 , 210 , 3+2, 4+2) in
detail and present the general result in Table 2.2 and 2.3.

The minimal mass dimension for such helicity category is 6, and the basis is

B6 = {⟨12⟩[12][34]4, ⟨12⟩[14][23][34]3} . (2.63)

A helicity category basis for higher mass dimensions is

B6+2n
D≃ {⟨12⟩[12][34]4s̃n−k12 s̃k23}k=0,...,n ∪ {⟨12⟩[14][23][34]3s̃n23} , (2.64)

where s̃ij = sij−M2
i −M2

j and
D≃means that these bases have been found from the origi-

nal basis from the algorithm Section 2.2, working on the graphs modulo terms with pow-
ers of the masses (and different helicity categories). Terms of the form ⟨12⟩[14][23][34]3s̃k12s̃n−k23

with k ̸= 0 are not kinematically independent from those in our basis. In particular, we
have the (mass completed) relation:

s̃12⟨12⟩[23][14][34]3 − s̃23⟨12⟩[12][34]4 =
− m̃2⟨12⟩[14][34]3⟨2|p1|3]− m̃1⟨12⟩[24][34]3⟨1|p2|3] +M2

2 ⟨12⟩[12][34]4 .
(2.65)

In the strategy of [116], in the helicity categories (11−1 , 210 , 3+2, 4+2) and (110 , 21−1 , 3+2, 4+2)
we would allow only (anti-symmetrised) spinor structures

m̃2⟨12⟩[14][34]3⟨2|p1|3]− m̃1⟨12⟩[24][34]3⟨1|p2|3] , (2.66)

such that we could consider s̃12⟨12⟩[23][14][34]3 and s̃23⟨12⟩[12][34]4 as independent.
On the other hand, our algorithm regards the two structures in the different helicity
categories as independent and excludes the terms mentioned above.
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Helicity category Bddim Bddim+2n

(11+1 , 21+1 , 3+2, 4+2)
[12]2[34]4

[14]2[23]2[34]4

[12][14][23][34]4

{[12]2[34]4sn−k12 sk23}k=0,...,n

[14]2[23]2[34]4s12s
n−1
23

[14]2[23]2[34]4sn23

(11+1 , 210 , 3+2, 4+2)
⟨2|p1|2][13][14][34]3
⟨2|p1|3][14]2[23][34]2

{⟨2|p1|2][13][14][34]3sn−k12 sk23}k=0,...,n

⟨2|p1|3][14]2[23][34]2sn23
(11+1 , 21−1 , 3+2, 4+2) ⟨2|p1|3]2[14]2[34]2 {⟨2|p1|3]2[14]2[34]2sn−k12 sk23}k=0,...,n

(110 , 21+1 , 3+2, 4+2)
⟨1|p2|3][12][24][34]3
⟨1|p2|3][14][23][24][34]2

{⟨1|p2|3][12][24][34]3sn−k12 sk23}k=0,...,n

⟨1|p2|3][14][23][24][34]2sn23
(110 , 210 , 3+2, 4+2)

⟨12⟩[12][34]4
⟨12⟩[14][23][34]3

{⟨12⟩[12][34]4s̃n−k12 s̃k23}k=0,...,n

⟨12⟩[14][23][34]3s̃n23
(110 , 21−1 , 3+2, 4+2) ⟨2|p1|3]⟨12⟩[14][34]3 {⟨2|p1|3]⟨12⟩[14][34]3s̃n−k12 s̃k23}k=0,...,n

(11−1 , 21+1 , 3+2, 4+2) ⟨1|p2|3]2[24]2[34]2 {⟨1|p2|3]2[24]2[34]2sn−k12 sk23}k=0,...,n

(11−1 , 210 , 3+2, 4+2) ⟨1|p2|3]⟨12⟩[24][34]3 {⟨1|p2|3]⟨12⟩[24][34]3s̃n−k12 s̃k23}k=0,...,n

(11−1 , 21−1 , 3+2, 4+2) ⟨12⟩2[34]4 {⟨12⟩2[34]4s̃n−k12 s̃k23}k=0,...,n

(11+1 , 21+1 , 3+2, 4−2) ⟨4|p2|3]4[12]2 {⟨4|p2|3]4[12]2s̃n−k12 s̃k23}k=0,...,n

(11+1 , 210 , 3+2, 4−2) ⟨4|p2|3]3⟨24⟩[12][13] {⟨4|p2|3]3⟨24⟩[12][13]s̃n−k12 s̃k23}k=0,...,n

(11+1 , 21−1 , 3+2, 4−2) ⟨4|p2|3]2⟨24⟩2[13]2 {⟨4|p2|3]2⟨24⟩2[13]2s̃n−k12 s̃k23}k=0,...,n

(110 , 21+1 , 3+2, 4−2) ⟨4|p2|3]3⟨14⟩[12][23] {⟨4|p2|3]3⟨14⟩[12][23]s̃n−k12 s̃k23}k=0,...,n

(110 , 210 , 3+2, 4−2) ⟨4|p2|3]2⟨14⟩⟨24⟩[13][23] {⟨4|p2|3]2⟨14⟩⟨24⟩[13][23]s̃n−k12 s̃k23}k=0,...,n

(110 , 21−1 , 3+2, 4−2) ⟨4|p2|3]3⟨12⟩⟨24⟩[13] {⟨4|p2|3]3⟨12⟩⟨24⟩[13]s̃n−k12 s̃k23}k=0,...,n

(11−1 , 21+1 , 3+2, 4−2) ⟨4|p2|3]2⟨14⟩2[23]2 {⟨4|p2|3]2⟨14⟩2[23]2s̃n−k12 s̃k23}k=0,...,n

(11−1 , 210 , 3+2, 4−2) ⟨4|p2|3]3⟨12⟩⟨14⟩[23] {⟨4|p2|3]3⟨12⟩⟨14⟩[23]s̃n−k12 s̃k23}k=0,...,n

(11−1 , 21−1 , 3+2, 4−2) ⟨4|p2|3]4⟨12⟩2 {⟨4|p2|3]4⟨12⟩2s̃n−k12 s̃k23}k=0,...,n

Table 2.2: The helicity category bases for the spin-tidal interactions at S = 1.

Until now, we have dealt with gravitons and spinning massive particles as different
between themselves. The basis is further restricted when we consider identical particles:

Bid6+4m = {⟨12⟩[12][34]4s̃2m−2k
12 s̃2k23}k=0,...,m , (2.67)

and

Bid6+4m+2 ={⟨12⟩[12][34]4s̃2m+1−2k
12 s̃2k23}k=0,...,m ∪ {⟨12⟩[14][23][34]3s̃2m+1

23 } , (2.68)

where the elements of the bases are always understood as properly symmetrised.
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Helicity category Biddmin+2n

(++,++)
Y 1 2 ◦ Y 3 4 ◦ [12]2[34]4s̃n−2k

12 s̃2k23 k = 0, . . . , ⌊n2 ⌋
Y 1 2 ◦ Y 3 4 ◦ [14]2[23]2[34]4s12sn−1

23

(+0,++)
Y 1 2 ◦ Y 3 4 ◦ ⟨2|p1|2][13][14][34]3sn−k−1

12 sk+1
23 k = 0, . . . , ⌊n2 ⌋ − 1

Y 1 2 ◦ Y 3 4 ◦ ⟨2|p1|3][14]2[23][34]2sn23 n even

(+−,++) Y 1 2 ◦ Y 3 4 ◦ ⟨2|p1|3]2[14]2[34]2sn−k12 sk23 k = 0, . . . , ⌊n2 ⌋
(0−,++) Y 1 2 ◦ Y 3 4 ◦ ⟨2|p1|3]⟨12⟩[14][34]3sn−k−1

12 sk+1
23 k = 0, . . . , ⌊n2 ⌋ − 1

(−−,++) Y 1 2 ◦ Y 3 4 ◦ ⟨12⟩2[34]4s̃n−2k
12 s̃2k23 k = 0, . . . , ⌊n2 ⌋

(++,+−) Y 1 2 ◦ ⟨4|p2|3]4[12]2s̃n−2k
12 s̃2k23 k = 0, . . . , ⌊n2 ⌋

(+0,+−) Y 1 2 ◦ ⟨4|p2|3]3⟨24⟩[12][13]s̃n−k12 s̃k23 k = 0, . . . , n

(+−,+−) Y 1 2 ◦ ⟨4|p2|3]2⟨24⟩2[13]2s̃n−k12 s̃k23 k = 0, . . . , n

(00,+−) Y 1 2 ◦ ⟨4|p2|3]2⟨14⟩⟨24⟩[13][23]s̃n−2k
12 s̃2k23 k = 0, . . . , ⌊n2 ⌋

(0−,+−) Y 1 2 ◦ ⟨4|p2|3]3⟨12⟩⟨24⟩[13]s̃n−k12 s̃k23 k = 0, . . . , n

(−−,+−) Y 1 2 ◦ ⟨4|p2|3]4⟨12⟩2s̃n−2k
12 s̃2k23 k = 0, . . . , ⌊n2 ⌋

Table 2.3: The amplitude bases for the different helicity categories, after taking into
account that we are dealing with identical bosons. On the right-hand side, we wrote
only the transversality and the helicity of each particle, separating massive and massless
states with a comma.
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Chapter 3

Bootstrapping Tree-Level
Amplitudes

In the previous chapter, we have introduced a systematic algorithm to classify poly-
nomial terms in four-dimensional scattering amplitudes. From such contact terms, we
can in principle compute any tree-level amplitude. In Section 1.2.1, we introduced the
strategy of BCFW-like recursion relations, emphasising their limits. In particular, when
it comes to effective field theories, such relations cannot fix amplitudes with insertions
of irrelevant interactions with derivative insertions and locality is never manifest in the
final result. Since in our approach we should consider all kinds of operators, we have to
find an alternative approach to recursion relations, which is anyway completely on-shell,
and in the following chapter we are going to argue that in our framework any effective
field theory is fully on-shell constructible from unitarity and locality. In particular, the
singularity structure will be manifest in the final result.

In this chapter, we will focus mainly on the Standard Model in the unbroken phase1

and the SMEFT as a playground for the development of the new recursive method.
But we will mention some possible extensions beyond fully massless theories and four
dimensions.

In particular, in Section 3.1 we will show, in the context of the Standard Model,
how consistent factorisation of four-point tree-level amplitudes constrains the (matrix)
couplings g in (1.24). Then, in Section 3.2, we will generalise the tree-level bootstrap to
higher-point amplitudes, constructing an ansatz consistent with locality and unitarity
and fixing all the unknown coefficients using factorisation of the tree level on finite
fields. Finally, in Section 3.3, we will move to one loop using generalised unitarity and
show that unitarity and locality also fix the anomaly cancellation conditions, from a
purely on-shell point of view.

3.1 The Standard Model from on-shell techniques

All the four-point amplitudes in the Standard Model, but A(H̄ i, H̄j , Hk, H l), can be
completely fixed by factorisation. This will be proven in Section 3.2.1 but we assume

1The mixing of EFT operators, discussed in Chapter 5, is a UV phenomenon, then we can work at
energies which are much larger than the electroweak scale (∼ 100GeV ). Effectively, we will ignore the
higgs vacuum expectation value in the SM Lagrangian and work with states transforming under the
full U(1)× SU(2)× SU(3) symmetry.

57
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it for the moment. Consistency between different factorisation channels at tree-level
for four-point amplitudes then constrains many of the structures in the three-point
amplitude. These constraints fix the (gauge-invariant) structures appearing and impose
relations between couplings [16].

The constraints imposed by factorisation are completely equivalent to those found
when we construct a consistent gauge-invariant Lagrangian describing a unitary QFT of
self-interacting vector bosons [229] and their minimal coupling to fermions and scalars,
i.e. the Lie algebra structures and the universality of Yang-Mills coupling (see, for
example, [230]). Moreover, we generalise this argument and find that factorisation
also imposes relations between the hypercharges associate to the minimal coupling of
matter with (non-self-interacting) U(1)-vectors, which are equivalent from a Lagrangian
perspective to the requirement that the Yukawa interactions are U(1)Y invariant, i.e.
scattering amplitudes are non zero only for hypercharge-conserving processes. Similar
arguments have been applied to supersymmetric theories and gravitational amplitudes
[18] and recently also to massive gauge theories [231].

3.1.1 Lie Algebras from Tree-Level Unitarity

Jacobi identities from factorisation

In this subsection we review the observations in [16], from a somewhat different per-
spective. We consider the three-gluon amplitudes2

A(GA−, GB−, GC+) = g3 f
ABC ⟨12⟩3
⟨23⟩⟨31⟩ , A(GA−, GB+, GC+) = −g3 fBCA

[23]3

[12][31]
, (3.1)

where fABC = f [ABC]3 to satisfy Bose-Einstein symmetry of the three-point ampli-
tude and we try to bootstrap the four-gluon amplitude from factorisation. The most
generic (slightly redundant) ansatz for the four-point amplitude which is compatible
with locality and unitarity is

A(GA−, GB−, GC+, GD+)
i⟨12⟩2[34]2 =

fABEfCDE

s12

(
c1
s13

+
c2
s14

)
+
fACEfBDE

s13

(
c3
s12

+
c4
s14

)

+
fADEfBCE

s14

(
c5
s12

+
c6
s13

)
.

(3.2)

The coefficients ci can be fixed from factorisation using (1.23) which in the 4-point
case reduces to4

−iRes
sij=0

A4 = A3 · A3 . (3.3)

Imposing this constraint for all the three distinct channels, we find




fABEfCDE(c1 − c2) + fACEfBDEc3 − fADEfBCEc5 = −g23 fABEfCDE
fABEfCDEc1 + fACEfBDE(c3 − c4)− fADEfBCEc6 = −g23 fACEfBDE
fABEfCDEc2 − fACEfBDEc4 + fADEfBCE(c5 − c6) = −g23 fADEfBCE

. (3.4)

2The relative minus sign between the so called MHV and MHV amplitudes is fixed by requiring
parity invariance of the theory.

3In principle, this assumption could be lifted and would follow from factorisation as well if the gauge
group is compact, but for simplicity we assume it from the beginning.

4We remind the reader that when fermions are present in the amplitudes, the RHS of (3.3) might get
a minus sign contribution from fermion reordering and a further factor of −i when crossing a fermion
from initial to final state. This subtlety will be relevant in the computations of the following sections.
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This linear system in general has no solutions, unless we impose the following quadratic
relations among the constants fABC :

fABEfCDE + fBCEfADE + fCAEfBDE = 0 , (3.5)

which can be recognised as the Jacobi identities for the structure constants of a Lie
algebra.

Lie algebras from factorisation

We can apply the same reasoning to scalars and fermions coupled to the non-abelian
spin-1 particles and find that also their minimal coupling is tightly constrained by local-
ity and unitarity [18]. We consider as an example the four-point amplitudeA(GA−, GB+, ūa, ub).
The three-point minimal coupling is fixed by little group and in principle can take the
general form

A(GA−, ūa, ub) = i g3,m τ
Aa
b

⟨12⟩2
⟨23⟩ , A(GA+, ūa, ub) = i g3,m τ

Aa
b

[13]2

[23]
, (3.6)

where, for the moment, τAab is some generic matrix encoding the interaction properties
of the fermions ua (ūa) and the vector bosons, and we factored out an overall numerical
coefficient. The most general ansatz for the four-point is then

A(GA−, GB+, ūa, ub)
i⟨13⟩2[23][24] =

fABCτC ab
s12

(
c1
s13

+
c2
s14

)
+
τAB ab
s13

(
c3
s12

+
c4
s14

)

+
τBAab
s14

(
c5
s12

+
c6
s13

) (3.7)

where τAB ab = τAac τ
B c
b . Again taking the residues and matching with the factorisa-

tion channels as in equation (3.3), we find:




fABCτC ab (c1 − c2) + τAB ab c3 − τBAab c5 = i g3 g3,m f
ABCτC ab

fABCτC ab c1 + τAB ab (c3 − c4)− τBAab c6 = g 2
3,mτ

AB a
b

fABCτC ab c2 − τAB ab c4 + τBAab (c5 − c6) = g 2
3,mτ

BAa
b

, (3.8)

This linear system has solutions if and only if

g3,m = g3 , (3.9)

τAB ab − τBAab = i fABCτC ab , (3.10)

i.e. iff the coupling constant of the interaction is universal and the matrices τAab are
representations of the elements of a Lie algebra, with fABC the structure constants.

Charge conservation and Yukawa coupling

Last we generalise the procedure of the previous sections to the minimal coupling of the
abelian vectors with scalars and fermions interacting via Yukawa coupling. Unitarity
and locality will then imply that the hypercharge associated to the minimal coupling of
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the matter states to the abelian vector is conserved. The relevant three-point amplitudes
are

A(B−, ē, e) = i g1Ye
⟨12⟩2
⟨23⟩ , (3.11)

A(B−, L̄
i, Lj) = i g1YLδ

j
i

⟨12⟩2
⟨23⟩ , (3.12)

A(B−, H̄
i, Hj) = i g1YHδ

j
i

⟨12⟩⟨31⟩
⟨23⟩ , (3.13)

A(Li, e, H̄j) = i Ȳ(3)δij [12] , (3.14)

where Yi is the hypercharge associated to the i-th state, and Y(3) is the Yukawa coupling
matrix for the electron family, with Ȳ(3) =

(
Y(3)

)†. The most generic ansatz consistent
with locality and unitarity is

A(B−, L
i, e, H̄j)

i⟨12⟩⟨13⟩[23]2 = δij

(
c1

s12s13
+

c2
s12s14

+
c3

s13s14

)
, (3.15)

and probing the three different factorisation channels we find the system:




c1 − c2 = −g1Ȳ(3)YL

c1 − c3 = +g1Ȳ(3)Ye ,

c2 − c3 = +g1Ȳ(3)YH

(3.16)

which has solutions if and only if we impose the hypercharge conserving condition:

YL = YH − Ye . (3.17)

Analogously, one can also find the charge conservation conditions for the processes
involving quarks, instead of leptons:

YQ = YH − Yd , (3.18)
YQ = −YH − Yu . (3.19)

3.2 Bootstrapping the tree-level amplitudes

The strategy presented for four-point amplitudes can be generalised to higher-point
amplitudes in generic massless effective field theories, keeping in mind the particular
example of the SMEFT. While the four-point cases can be worked out by hand analyt-
ically, the same procedure become rather cumbersome for higher points. In particular,
the number of terms in the ansatz grows and the relations between spinor helicity struc-
tures make the matching procedure on the cuts exponentially difficult. On the other
hand, generating the ansatz with computer algebra software and fixing the coefficients
evaluating the kinematics numerically make the following algorithm definitely more ef-
ficient than summing over all the Feynman diagrams and writing the amplitude in a
form which manifests both gauge invariance and locality.

At the end of this sections we will show a possible generalisation of the algorithm
(which relies heavily on four-dimensional spinor helicity formalism, so far) to d-dimensio-
nal scattering amplitudes, which are essential for generalised unitarity when we go
beyond one-loop [32, 33]. As an example, we will compute analytically the one-gluon
amplitude in the HEFT with two heavy sources, from the single-heavy-source amplitudes
presented in [232].
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3.2.1 Higher-point Amplitudes without Recursion Relations

The procedure can be roughly divided into two parts: the construction of an ansatz and
the matching procedure on the single-particle cuts to fix the free-parameters, which we
perform numerically over finite fields to speed up the computation.

Constructing an ansatz

A generic tree-level amplitude can be schematically written as

An(pa1,h11 , . . . , pan,hnn ) =
∑

i,j,k

C a1···an
i,j

Di
ci,j,kNi,j,k + Pa1···an , (3.20)

where pai,hii represents a generic state with helicity hi and gauge-group index ai. The
tensors Ca1···ani,j are the gauge-group invariant structure of the amplitude, whereas Dj
and Ni,j,k are kinematic denominators and numerators respectively, where the latter
carry the dependence on the helicity structure. The ci,j,k are rational coefficients as-
sociated to the different helicity structures Ni,j,k. Finally, the Pa1···an are terms with
polynomial dependence in the kinematic variables, in other words contact terms, which
vanish whenever we probe any factorisation channel. We will show that in our frame-
work the contact terms are irrelevant and the tree-level amplitudes are fully determined
by lower-point amplitudes from factorisation.

First we motivate this assumption for renormalisable theories through a simple di-
mensional analysis consideration: due to (1.14), for n > 4 we have [An] < 0. More-
over, all the couplings in the SM are dimensionless, we are considering only massless
states (there are no dimension-full parameters in the amplitude) and by construction
[Pa1···an ] ≥ 0. These considerations imply necessarily that for renormalisable massless
theories for n > 4 Pa1···an = 0 and every term in the amplitude must posses some
kinematic denominators Di. This means that the amplitudes can be fully determined
from factorisation, through a recursive procedure described below in this section.

This argument is somehow subtle for n = 4, because it is possible to build terms
of mass dimension zero which are ratios of spinor variables but vanish on any cut. An
example of such a structure for the all-plus four-gluon amplitudes is

[12]2[34]2

s212
=

[13]2[24]2

s213
=

[14]2[23]2

s214
, (3.21)

whose residue is zero on any of the three configuration s12=0, s13=0 or s14=0. These
structures do not introduce any correction to the factorisation channels of four-point
amplitudes (i.e. they are polynomial in the kinematic variables, thanks to the permuta-
tion symmetry). We will systematically ignore such contact terms at four points, except
for the four-scalar contact term (corresponding in the Lagrangian formalism to the λϕ4

interaction). Indeed, such terms are usually computed through d-dimensional gener-
alised unitarity techniques as one-loop finite rational terms [233, 234], hence they must
be vanishing at tree-level5. In particular, in the case of the four-scalar amplitude we
will add to the factorisable part a contact term whose kinematic dependence is trivial:

5For example, we know that such terms can never be generated by any local Lagrangian interaction
at tree-level.
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A4(H̄
i1H̄ i2H i3H i4) = −

(
g21 Y

2
H δ

i3
i1
δi4i2 + g22 σ

I i3
i1
σI i4i2

) s12 − s14
s13

−λ δi3i1δ
i4
i2
+(3↔ 4) .

(3.22)

We stress that for n > 4 non-singular terms such as (3.21) cannot appear: by dimen-
sional analysis considerations, there must be a singularity for renormalisable amplitudes
with more than four external particles.

This argument cannot be generalised to the case of scattering amplitudes with in-
sertions of effective interactions. For example, consider the six-scalar amplitude with
an insertion of a ∂2ϕ4 interaction, call it F6,6,∂2ϕ4 . There is no equivalent argument to
discard a ϕ6-like contact term contribution arising in the calculation of this amplitude.
On the other hand, any physical process which gets a contribution from F6,6,∂2ϕ4 will
also get one from F6,6,ϕ6 which is the contact interaction due to the operator ϕ6 itself.
Physically, the two contact term contributions cannot be disentangled, because they
provide the same description for the interaction between scalars. As a consequence, if
we are already considering an effective field theory with both ∂2ϕ4 and ϕ6 interactions in
our operator basis, neglecting the ϕ6-like contact term in F6,6,∂2ϕ4 can be compensated
by appropriately shifting the Wilson coefficient of the ϕ6 operator.

This argument can be generalised to more generic theories, like the SMEFT in our
case. What we wanted to convey is that, as long as we consider a complete basis
of operators up to a given dimension, contact terms can only contribute shifting the
Wilson coefficients of a different operator. Then we choose our basis of EFT interactions
such that it does not generate polynomial terms when computing higher-multiplicity
amplitudes and thus we can effectively neglect them in the computations, so Pa1···an = 0.

Now we present the algorithm to compute higher-point tree-level amplitudes from
factorisation.

1. We begin by enumerating all the possible singularity structures of the amplitude
consistent with locality, which are provided by all the possible ways the amplitude
can consistently factorise into tree graphs6. First, we enumerate all the possible
tree graphs with trivalent and quadrivalent internal vertices, and then we apply a
selection criterion to discard channels which are not compatible with the particles
associated to the external vertices and the Standard Model interactions.

2. We associate to each tree graph a unique kinematic denominator Di, which is the
product of the propagators corresponding to internal edges in the graphs, i.e. it
is a product of the Mandelstam invariants characterising the channels.

3. Unitarity also fixes the colour structures associated to each graph {Ca1···ani,j }j=1,...,s.
In particular, different colour structures correspond to different particles propa-
gating in the internal lines. Once the internal particles are determined, the colour
structures are obtained from the contraction of the colour structures in the three-
point amplitudes associated to each vertex.

4. Finally, the kinematic numerators are generated with the algorithm presented in

6The nodes of the tree graph must be either the Standard Model three-point interactions (plus the
quadrivalent scalar interaction −λ(H̄H)2/4) or, if we are considering amplitudes with effective operator
insertions, also any of the relevant effective interaction classified in Section 2.3.1.
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Section 2.1.17. The {Ni,j,k}k=1,...,h are h independent spinor structures in our
basis, and a set of these numerators is associated to each of the colour structure
Ca1···ani,j corresponding to the denominator Di. The latter fixes the mass dimension
of the numerators through [Ni,j,k] = [An] + [Di] whereas the helicity weights
are given by the external particles. Each of the Ni,j,k is multiplied by arbitrary
(rational) coefficients ci,j,k which will be fixed by the matching procedure over the
different factorisation channels described in detail later in the section. Notice that
the basis of numerators does obviously not depend on the colour structures, but
only on the mass dimension of the denominator structure: i.e. Ni1,j1,k = Ni2,j2,k
if [Di1 ] = [Di2 ] for any colour structure labelled by j1 and j2. This fact has been
exploited heavily to speed up the numerical evaluation of the ansatz when solving
for the coefficients {ci,j,k}.

5. Some of the coefficients can be fixed before the matching procedure by demanding
that the ansatz is not redundant. In particular, the simplifying observation is that
the various coefficients cannot combine in such a way that the sum over the related
structures is proportional to any of the Mandelstam invariants appearing in the
denominators, which are associate to a physical intermediate one-particle state.

6. Finally we solve for the {ci,j,k} by matching over the different factorisation chan-
nels as described below. The matching usually fixes all the coefficients {ci,j,k},
but there are cases where the ansatz is redundant. We have already encountered
the first example in the previous section: in fact, when we have particles with
helicity |hi| ≥ 1 we are forced to introduce some redundancy in the ansatz, as we
will explain later in this section.

We consider, as an example, the five-point amplitude A5(Q
a1,i1 , ua2 , H̄ i3 , H i4 , H i5).

There are 21 trivalent graphs compatible with this process, and some of them are shown
in Figure 3.1. Most of the graphs do not involve the scalar quadrivalent interaction,
except the last one. Indeed, we then have [Di] = 4 for i = 1, . . . , 20 and [D21] = 2 with:

{Di}i=1,...,21 = {s12s35, s14s35, s24s35, s12s34, s15s34, s25s34, s13s25, s14s25, s25s34, s13s24,
s15s24, s24s35, s15s24, s15s34, s14s25, s14s35, s13s24, s13s25, s12s34, s12s35, s12}

(3.23)

Next we build the kinematic numerators whose structure is fixed by the helicity
of the external particles along with the mass dimension of the amplitude and of the
denominators as

[An] = [Ni,j,k]− [Dj ] ⇒ [Ni,j,k] = 4− n+ [Dj ] . (3.24)

In our example we have then

{Ni,j,k}k=1,...,6 = {s12[12], s13[12], s23[12], s24[12], s34[12], ⟨34⟩[14][23]} , (3.25)

for i = 1, . . . , 20 and any j, and

{N21,j,k}k=1 = {[12]} . (3.26)

7The full algorithm presented in this section can be applied to the case of form factors as well. If
this was the case we were interested in, we should consider at this point a simplified version of the
algorithm presented in Section 2.1.1, in which we ignore momentum conservation.
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Figure 3.1: The splitting of A5(Q
a1,i1 , ua2 , H

i3 , H i4 , H i5) into trivalent graphs and the
associated colour factors and kinematic denominators. There are a total of 21 possible
trivalent graphs associated with this amplitude, we showed explicitly the first, the second
and the last, as significant examples. The second is a trivial instance of trivalent graphs
and there is a unique choice compatible with the Standard Model interactions of internal
particle propagating. The same is not true for the first factorisation channel, for which
we can have both Bs and W s propagating, which give us two different colour structures
C1,1 and C2,1, respectively. The last channel is the only one for this amplitude which
involves an insertion of the quadrivalent Higgs interaction.
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Computing the amplitude then reduces to fixing the rational coefficients ci,j,k multiply-
ing each of these numerators.

In fact, before proceeding with the system solution we can fine tune the ansatz in
order to remove combinations which would lead to cancellations in the denominators.
In particular, since there are two Mandelstam invariants for the first twenty denomina-
tors, this would fix a priori two coefficients for each denominator and for each colour
structures. We consider, for example, the first two trivalent graphs, shown in Figure
3.1. The general algorithm to fix the coefficient is the following:

• We have a set of independent helicity structures with a specified mass dimension
d, i.e. {Ni,j,k}k=1,...,h1 , and we assume the existence of a set of structures with
the same helicity configuration and mass dimension d− 2, i.e. {Mi,j,l}l=1,...,h2 . If
the latter do not exist, this procedure can be skipped, as in the case of N21,1,1.

• For each Mandelstam invariant si1...in appearing in the denominator Di we fix
some coefficients d(p)i,j,k through

h1∑

k=1

d
(p)
i,j,kNi,j,k = si1...inMi,j,l ∀ l . (3.27)

These conditions provide us with p = 1, . . . , [Di]
2 · h2 vectors d(p)i,j,k.

• Finally, we impose the orthogonality condition for the c’s with respect to the d’s

h1∑

k=1

ci,j,k d
(p)
i,j,k = 0 ∀ p , (3.28)

which fixes some of the ci,j,k, as anticipated. In our specific example, for D1

we find c1,j,1 = 0 and c1,j,5 = −c1,j,2 − c1,j,3 with j = 1, 2 and for D2 we find
c2,1,4 = −c2,1,1 and, again, c2,1,5 = −c2,1,2 − c2,1,3.

The case of external vector bosons

The procedure described so far works very well when we are dealing with amplitudes
with only scalars and fermions as external particles. But when vector bosons are in-
volved, or more in general massless particles with |h| ≥ 1, an extension of the method is
required. One has to take into account that these particles provide further kinematic de-
nominators which are not due to intermediate particle exchanges. A simple example has
already been shown in Section 3.1.1, where we considered the four-gluon amplitude. In-
deed, the four-point amplitude has mass-dimension zero, the helicity structure with the
smallest mass dimension is ⟨12⟩2[34]2 which has mass-dimension four, and consequently
a single 1

sij
(associated to a trivalent graph) is not enough to get the mass-dimensions

right8. Typically, once a set of denominators has been generated as described in the

8When we think of the problem in terms of a Feynman diagrammatic approach for |h| = 1, this
additional kinematic dependence is hidden in the polarisation vectors which in terms of spinor-helicity
variables can be written as

ϵ+αα̇(p, ξ) =
√
2
ξαλ̃α̇

⟨ξλ⟩ , ϵ−αα̇(p, ξ) =
√
2
λαξ̃α̇

[λ̃ξ̃]
, (3.29)
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previous section, we need to add at least one Mandelstam invariant to each denomina-
tor or possibly more in case of higher-point amplitudes. This is done in iterated steps:
we first add to every denominator a single Mandelstam invariant sij in all the possible
ways compatible with locality9, then we build the complete ansatz and try to solve
it. If the number of invariants considered for the denominators is insufficient we will
find no solution for the c’s, so we add all the possible terms with a further invariant in
the denominator and try to solve again. At every step clearly the number of possible
denominators grows quite drastically, and so does the number of possible numerators
since higher and higher mass-dimensions become available. The latter effect is however
counteracted by discarding those numerators which cancel any power of Mandelstam
invariants from the denominator, which would indeed reproduce a term of the ansatz
already present from previous iterations.

This part of the method proves to be the bottleneck when it comes to comput-
ing higher-multiplicity amplitudes, because we did not implement any systematic way
of combining different factorisation channels. Such combinations may be better un-
derstood in connection with the color-kinematic duality [192, 193] and/or geometries
described by the singularity structures [189, 235].

This procedure of adding Mandelstam invariants to the kinematic denominators is
clearly responsible for the “mixing” process between different factorisation channels
which brought us to the identities between colour structures at the level of the four-
point amplitudes in Section 3.1 and it is strictly related to gauge invariance.

Solution of the ansatz

So far we have built an ansatz of the form (3.20), where each of the Ni,j,k has an
associated coefficient ci,j,k. In order to fix these coefficients we impose the validity
of (1.23) in every single kinematic channel, and we do so through repeated numerical
evaluations:

−i Res
si1...im

An(ph11 . . . phnn )︸ ︷︷ ︸
ansatz

= f
∑

sI,hI

Am+1(p
hi1
i1

. . . p
him
im

, phII )An−m+1(p
hI
I → p

him+1

im+1
. . . p

hin
in

)
︸ ︷︷ ︸

lower point on-shell amplitudes

.

(3.30)
The lower point amplitudes in the RHS of (3.30) is known, because our algorithm is
recursive. On the LHS we take the residue on the ansatz, which selects a subset of
the denominator structures. Next we decompose, through the algorithms described in
Section 2.3.1, the colour structures on both sides of (3.30) in a suitable basis {C a1···an

l }:
C a1···an
i,j =

∑

l

bi,j,l C
a1···an
l . (3.31)

We impose the matching of the coefficients of the colour structures in this basis on both
sides of the equality (3.30) so we end up with a set of equations of the type

−i
∑

i′,j,k

bi′,j,l

D̃i′
ci′,j,kNi′,j,k = Kl . (3.32)

where pαα̇ = λαλ̃α̇ and ξ is an arbitrary reference spinor. In our approach, it is either a simple
dimensional analysis as for the four-gluon amplitude which forces us to add more denominators, or for
higher-point amplitudes it will be unitarity itself that does so.

9By this we mean exhausting the combinatorics of possible invariants without however adding those
already present in the denominator, which would of course lead to unphysical higher-order poles.
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Here i′ runs over the tree graphs in which the specified Mandelstam invariant si1...im
appears, the D̃i′ are the Di′ stripped of a factor si1...im and the ci,j,k are the rational
coefficients to be fixed. The Kl are kinematic coefficients defined by the product of
lower point amplitudes as

f
∑

sI,hI

Am+1(p
hi1
i1

. . . p
him
im

, phII )An−m+1(p
hI
I → p

him+1

im+1
. . . p

hin
in

) :=
∑

l

C a1...an
l Kl (3.33)

where the colour structures C a1...an
l are elements of the chosen colour basis. The Kl are

known analytic functions of the spinor invariants and Mandelstam invariants, and they
also contain the dependence on the couplings gk, Y(f) and λ. Each equation (3.32) now
only contains kinematic invariants, the ci,j,k for which we want to solve and products
of couplings. Thus we repeatedly evaluate the kinematics numerically and so obtain a
linear system in the ci′,j,k which upon solution yields a subset of the ci′,j,k as functions of
the couplings and possibly other c’s. Since numerical evaluations are performed on very
special kinematic points where intermediate states go on-shell, some of the coefficients
ci′,j,k might in principle drop out of the system. These coefficients are identified by an a
priori numerical evaluation, which then allows to only solve the system in the actually
relevant variables.

Repeating this procedure in every kinematic channel might still not completely fix
the ansatz, since some of the ci,j,k might be spurious in the sense that using momentum
conservation and Schouten identities appropriately they actually drop out altogether
from the final result. In particular this happens when we consider amplitudes with
external vectors. At the very end of the calculation, we take advantage of the arbitrary
nature of these coefficients to set them, for example, either to a value which makes the
final result more compact or to zero.

In order to get exact solutions and avoid possible issues tied to precision loss in
floating point arithmetic, we make use of finite fields arithmetic10 which is made possible
by the fact that at tree-level the kinematic dependence of the amplitudes in the spinor
variables is rational. More specifically for each subamplitude we generate a set of
momentum-twistors [238, 239], as explained in Appendix A.3, with components on Zp,
where twistors associated to different subamplitudes but to the same internal momentum
are by construction taken to be on the same plane11. From these components then we
compute the kinematic invariants and from there the products of the tree-amplitudes,
all of which naturally live on the field Zp. This approach in general greatly speeds up the
calculations, having as single minor drawback the fact that to obtain the solution to the
linear system on Q once it has been computed on Zp would generally require repeated
sampling for different values of the prime p (see appendix A.4). However, since the
coefficients involved in our calculations are typically very small compared to the prime p
we consider, the use of a single field is usually enough, further strengthened by checking
the solutions a posteriori on rational kinematic points. The system solution itself is
done through row reduction: the matrix A to be reduced is obtained from numerically
evaluating (3.32) t+ 1 times, with t being the number of ci′,j,k appearing in the latter
linear equation12, and can be schematically written as

10The use of finite fields in high-energy physics has been introduced in [236] in the context of IBP
reductions, and further pioneered in [237] where a much wider range of applications was explored. A
brief overview of the topic can be found in Appendix A.4.

11In twistor space, two intersecting lines define a null momentum, and a closed contour with n edges
defines n conserved null momenta. When generating kinematics for the two subamplitudes Am+1 and
An−m+1 in (3.33), pI is defined by the same intersecting lines for both of them.

12Generating and solving a system with an additional redundant equation ensures that when a
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



∑S
s=1 a0,sms = 0∑S
s=1 a1,sms = 0

...∑S
s=1 at+1,sms = 0

7→




a0,0 · · · a0,S
...

...
at+1,0 · · · at+1,S




︸ ︷︷ ︸
A



m0
...
mS




︸ ︷︷ ︸
V

= 0 , (3.34)

where the ai,j are numeric constants (from the numerical evaluations of the kinematic
parts) and the ms are the unknowns ci,j,k or monomials in the couplings g, Y and λ
and the imaginary unit i. The explicit mention of the imaginary unit is due to the fact
that it needs to be treated with some care when using finite fields. Imaginary units are
almost ubiquitous in our construction and we decided to treat them as symbolic objects
on the same footing as the coupling constants. Square roots would in principle require a
similar treatment, but these are easily removed by choosing appropriate normalisations
of the colour factors, and thus are never present in our calculation. Getting back to the
system solution, upon row-reducing the numeric matrix A on finite fields one gets to a
matrix B in row echelon form, which of course still satisfies V ′ ≡ B V = 0, with V the
vector of constants ci,j,k and couplings. The relation V ′ = 0 can then be trivially solved
for the couplings ci,j,k corresponding to the leading (the first non-vanishing) entries in
each row of B. These relations provide the solution to the system.

It is worth stressing that, differently from either a Feynman diagrammatic approach
or a BCFW-like calculation where consistency tests need to be performed a posteriori,
through factorisation every step of the calculation is in itself a consistency check on the
code. The systems of equations we obtain in the end always have a (possibly vanishing)
solution, unless there is some physical obstruction. This is indeed the case when vector
bosons are present among the external states (or more in general massless particles with
helicity |h| ≥ 1) and not enough invariants have been considered in the denominator
construction. An impossible solution is symptomatic of unitarity breaking telling us
that the ansatz was not general enough.

Thanks to many small, but at times significant, expedients13 the construction of the
numeric system is rather fast despite our use of Mathematica rather than dedicated
low-level language implementations, for example in C, which are usually better suited
for the task. As a consequence, the main bottleneck of the system-solving procedure
is the system solution itself. As an aside, we note that our ansatz construction is of
course independent of the ansatz solution method. More specifically, if the reader was
interested in getting analytic expressions for tree-level amplitudes and already had at
her/his disposal a routine for numerically evaluating the amplitude itself, say Berends-
Giele [240] recursion for example, then the ansatz solution could be clearly done in
one go solving a single large system in all the ci,j,k. Despite being viable, we consider
our approach far more appealing, not only conceptually because of the use of just on-
shell quantities but also practically: solving the ansatz on the different factorisation
channels leads to many small systems whose solution is faster than a single large one
and furthermore lends itself to effective parallelisation.

determined solution is found this is kinematics-independent and thus a true solution. Impossible
systems might still admit determined kinematic-dependent solutions which are clearly unacceptable.

13These include, for example, recycling numeric data whenever possible, storing and reusing directly
the exact invariant products making up the numerators instead of the single invariants, and generating a
minimal parametrization of the kinematic points first, reducing thus the numerical kinematic generation
to evaluations of polynomials in one/two variables.
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3.2.2 Generalisations and application to the heavy-mass EFT

This method does not apply only to massless theories in four-dimensions, but it can be
generalised for amplitudes with massive particles and in any spacetime dimensions. Re-
laxing the former restriction can be done by simply generating the possible numerators
in step (4) of the algorithm as elements of the kinematic basis for massive structures,
presented in Section 2.2. The numerical evaluation over finite fields is still possible,
generalising the twistor construction to the massive case, as shown in Appendix A.3.
But in this case polynomial terms must be treated carefully to preserve unitarity [231]
and contrary to the fully-massless case constrains like those presented in Section 3.1
are expected also at higher points in the massive scalar sector of the theory under con-
siderations [241, 242]. On the other hand, in generic space-time dimensions we would
need a systematic algorithm to classify kinematically independent numerators and an
algorithmic way of generating rational kinematics, but the strategy still works generi-
cally for any (effective) theory. As an explicit example, we show how to compute the
five-point colour-order amplitudes with two heavy scalars and an external gluon in the
HEFT [232, 243–245].

Five-point amplitudes with two heavy sources in the HEFT

The analytic form of the tree-level (n+ 2)-point amplitude with n external gluons and
one heavy source (two scalars) which makes colour-kinematic duality manifest has been
found in [246]. We use the three- and four-point amplitudes from this thesis and the
knowledge of the leading soft limit in Yang-Mills theories [247] to determine completely
the five-point with two massive sources (four-scalars) and one gluon. The five-point
kinematic can be represented as

p1

p2 p′2 = p2 − q2

p′1 = p1 − q1

k (3.35)

In this parametrisation, momentum conservation reads kµ = qµ1 +q
µ
2 and the on-shell

condition for the external scalar, after taking the heavy-mass limit, becomes

pi · qi = O(m0
i ) . (3.36)

In the HEFT, massive propagators are linear and the amplitude is a homogeneous
function of the masses of degree 1 (in gauge theories, while is it homogeneous of degree
2 in gravitational theories). This point will be fundamental in constructing an ansatz
with a very limited number of terms. Also, the factorisation channels with internal heavy
scalars cannot be probed in the heavy-mass limit, because such kinematics lays beyond
the regime of validity of the HEFT, as suggested by condition (3.36). Nevertheless,
we will show that the knowledge of the massless poles (together with the leading-order
soft behaviour) is enough to fully fix the amplitude, thanks to the mixing of channels
induced by the presence of the external gluon. Finally, we should mention that gauge
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invariance will be always manifest, both in the ansatz and in the factorisation channels
because we will use the gauge-invariant amplitudes of [232, 246].

• In the generation of the amplitude a power counting analysis is essential. We will
perform it in four dimensions for simplicity, but the result is not dependent on
this. The five-point amplitude has mass dimension

[A5] = −1 , (3.37)

and the Yang-Mills coupling is dimensionless ([g] = 0).

• The massless pole are q21 and q22. Then, we want to generate an ansatz

A5

ig3
=
N1

q21
+
N2

q22
+
N3

q21 q
2
2

+Nc , (3.38)

which has no redundancy, i.e. Ni|q2j=0 ̸= 0 and they are finite, as we want that
all the massless singularities are in the explicit propagators. Nc is a term which
as no massless propagator and we improperly call contact term, as it still have
(linear) massive propagators, which can be probed by taking the soft-k limit.

• In order to guarantee both gauge invariance and little group covariance, we require

A5 = Fµνk A5µν , (3.39)

where Fµνk = kµϵν − kνϵµ is the linearised field strength. Schematically, then we
must have

Ni =
Fk ⊗

⊗
p
⊗ni,j

j⊗
p
⊗mi,j

j

, pj = {p1, p2, q1, q2, k} , (3.40)

with
∑

j

ni,j −mi,j = 0 , ([Ni] = 1) , (i = 1, 2) (3.41)

∑

j

n3,j −m3,j = 2 , ([N3] = 3) . (3.42)

Trivially
∑

j ni,j and
∑

jmi,j must be even and, since Fk
µ
µ = 0, we must have∑

jmi,j ̸= 0. In the denominators only massive propagators are allowed: in
particular, only p1 · k and p2 · k can appear (p1 · q2 = p1 · k and p2 · q1 = p2 · k
in the heavy-mass limit). We will assume that only single powers of these linear
propagators can appear (which will be enough for the gauge theory amplitudes,
while it would not work for gravity).

• As we have said already, we are computing HEFT amplitudes which are homoge-
neous in the mass and, in particular, proportional to m1m2.

• First, we consider N1 and N2. A single factor pi · k is not enough, because the
homogeneity forces any term to be zero. Then we need both massive propagators
and there is a unique term contributing:

Ni = αi
p1 · p2 p1 · Fk · p2

p1 · k p2 · k
, i = 1, 2 . (3.43)
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• N3 is more convoluted:

N3 = N (0)
3 +

N (1′)
3

p1 · k
+
N (1′′)

3

p2 · k
+

N (2)
3

p1 · k p2 · k
, (3.44)

where

N (0)
3 = β1 p1 · Fk · p2 ,

N (1′)
3 = β2 p1 · p2 q1 · Fk · p1 + β′2 p1 · p2 q2 · Fk · p1 ,

N (1′′)
3 = β3 p1 · p2 q1 · Fk · p2 + β′3 p1 · p2 q2 · Fk · p2 ,
N (2)

3 = β4 q1 · q2 p1 · Fk · p2 + β5 (p1 · p2)2 q1 · Fk · q2 .

(3.45)

But q2 · Fk · p = −q1 · Fk · p and q1 · Fk · q2 = 0 (from the equation of motion
kµF

µν
k = 0). Moreover, q1 · q2 ∝ q21 + q22 (from k2 = 0). Then, we can choose

β′2 = β′3 = β4 = β5 = 0, such that we do not have a redundant ansatz. Anyway,
there is still a source of redundancy which we did not consider. Indeed, the
following non-trivial identity holds:

(q21 − q22) p1 · Fk · p2 = 2p1 · k q1 · Fk · p2 − 2p2 · k q1 · Fk · p1 . (3.46)

Then we can also impose
α = α1 = α2 , (3.47)

without any restriction.

• The complete non-redundant ansatz is

A5

ig3
=

1

q21 q
2
2

[
α

(
q21 + q22

)
p1 · p2 p1 · Fk · p2

p1 · k p2 · k
+ β1 p1 · Fk · p2 + (p1 · p2)×

×
(
β2
q1 · Fk · p1
p1 · k

+ β3
q1 · Fk · p2
p2 · k

)]
+Nc .

(3.48)

• We fix these four remaining coefficients (α, β1, β2, β3) by matching the residues on
the massless poles with the factorisation channels:

−i Res
q21=0
A5(p1, p2; q1, q2, k) = A3(p1; q1)A4(p2; k, −q1)|q21=0

= −2 p1 · Fk · p2
q22

+
2 p1 · p2 q1 · Fk · p2

q22 p2 · k
,

−i Res
q22=0
A5(p1, p2; q1, q2, k) = A4(p1; −q2, k)A3(p2; q2)|q22=0 =

= −2 p1 · Fk · p2
q21

+
2 p1 · p2 q1 · Fk · p1

q21 p1 · k
,

(3.49)

and solving the resulting linear system we find




α = −1
4

β1 = −1
β2 =

1
2

β3 =
1
2

. (3.50)
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• Finally, we notice that homogeneity and mass dimension considerations do not
allow for any contact term with a single power of linear propagators at the de-
nominators. On the other hand, higher powers would introduce more singular
terms in the soft-k limit which cannot be compensated by any of the terms in
(3.48). Then, simple power counting considerations give

Nc = 0 . (3.51)

We checked that (3.48) and (3.50) match the computations with Feynman diagrams.

3.3 Anomalies from Amplitudes ⇐ Locality and Unitarity

On top of the relations we found so far, it would be nice to be able to further relate
Ye and Yu as is done by the anomaly cancellation condition YL + 3YQ = 0. Indeed, it
has long been known that in gauge theories with chiral fermions anomalies arise from
fermion loops [248, 249]. These gauge anomalies impose consistency conditions on the
theory, which in the case of the SM translate into relations among the hypercharges of
the fermions. Interestingly, as first noticed in [50, 51], the same cancellation conditions
are required from a purely on-shell point of view by a clash of unitarity and locality
in some one-loop amplitudes. In this section, we apply this method to recover the SM
anomaly cancellation conditions.

The core of the idea is that one-loop amplitudes can be computed using generalised
unitarity methods, up to rational terms which have no branch points. Such amplitudes
by construction are unitary, however locality is not guaranteed (spurious poles can
appear in the final result) and needs to be restored by appropriately fixing the rational
terms to which the unitarity methods are blind. These rational terms might in turn
introduce new corrections to the factorisation of the four-point amplitude, which is
inconsistent with the fact that the three-point amplitudes are tree-level exact and fixed
by helicity and mass dimension. When this happens additional properties of the theory
need to be required for these terms to vanish. In particular, in this section we will
show that for the Standard Model this leads to well known anomaly constraints on the
fermion hypercharges.

We will specifically consider a fermion loop coupled to four external gauge bosons
in the MHV configuration. The full one-loop amplitudes in the Standard Model can be
schematically written as

A1−loop = A1−loop
vec +A1−loop

ferm +A1−loop
scal , (3.52)

where the three contributions correspond respectively to vector bosons, fermions or
scalars running in the internal loop, the specific type of these particles depending on
the external states. We want to focus here on the fermion loop contributions, which are
infrared finite and are the only part contributing to the chiral anomaly. The kinematic
information of these amplitudes is entirely captured by the coefficients of Figure 3.2
with cyclic rotations providing the other orderings. For later convenience we define
the following kinematic combinations, which turn out to be ubiquitous in the one-loop
amplitudes

Keven :=
⟨24⟩2[13]2
s12s14

∑

i,j

(cfi,j + cfi,j)Ii(j) , Kodd :=
⟨24⟩2[13]2
s12s14

∑

i,j

(cfi,j − c
f
i,j)Ii(j) ,

(3.53)
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Figure 3.2: Kinematic coefficients from generalised unitarity [41], here a kinematic
contribution of the type ⟨24⟩2[13]2

s12s14
has been factored out.
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with i = 2, 3, 4 and j = s12, s14, and I2, I3 and I4 being the bubble, triangle and
box integrals given in Appendix D. Notice that in the chosen helicity configuration
in the one-loop amplitude there are no discontinuities in the s13 channel, because all
the tree-amplitudes entering the fermion loop contribution in the generalised unitarity
calculation vanish in this channel.

Then we consider as a first example the one-loop amplitude with two W s and two
Bs as external states, and consequently Q/Q̄ and L/L̄ as the only possible fermions
running through the loop. We find

A1−loop
ferm (W I

+, B−,W
J
+, B−)

∣∣∣
cut

= g21g
2
2(Y

2
L + 3Y 2

Q) δ
IJ Keven . (3.54)

The presence of only Keven was to be expected due to the interplay of the colour part
with the kinematics. The SU(3) colour part is trivial being absent in the case of the
L/L circulating in the loop and contributing a numeric factor δaa = 3 for the Q/Q loop.
The SU(2) part on the other hand contributes with a factor of Tr σIσJ = 1

2δ
IJ in both

the s12 and s14 channels, which then leads to an additive combination of the kinematic
parts into Keven. Studying the behaviour of Keven in the small-s13 limit one finds that

Keven
s13→0−−−−→ ⟨24⟩

2[13]2

s12s14

(
−s

2
12

s213
− s12
s13

+O(s013)
)
, (3.55)

thus, in order to restore locality, this amplitude requires a rational term whose kinematic
part is of the form

Reven = −⟨24⟩
2[13]2

s213
, (3.56)

which cancels both the spurious poles of (3.55) and does not produces any modification
to the residues in the s12 and s14 channels. Adding together the cut-constructible and
rational piece one gets the complete fermion loop contribution

A1−loop
ferm (W I

+, B−,W
J
+, B−) = g21g

2
2(Y

2
L + 3Y 2

Q) δ
IJ (Keven +Reven) . (3.57)

On the other hand, considering three external W and a single B, one ends up with

A1−loop
ferm (W I

+,W
J
−,W

K
+ , B−)

∣∣∣
cut

=
i

2
g1g

3
2(YL + 3YQ) ϵ

IJK Kodd , (3.58)

where once again the SU(2) colour structure, which is Tr σIσJσK = i
4ϵ
IJK in the s12

channel and Tr σIσKσJ = − i
4ϵ
IJK in the s14 channel, is responsible for the relative

sign among the kinematic structures and the combination into Kodd.

Now Kodd in the small-s13 limit goes as

Kodd
s13→0−−−−→ ⟨24⟩

2[13]2

s12s14

(
−s12
s13

+O(s013)
)
, (3.59)

requiring a compensating rational term of the form

Rodd = ⟨24⟩2[13]2 s12 − s14
2s12s13s14

, (3.60)

which would lead to a complete fermion loop contribution of

A1−loop
ferm (W I

+,W
J
−,W

K
+ , B−) =

i

2
g1g

3
2(YL + 3YQ) ϵ

IJK (Kodd +Rodd) . (3.61)



3.3. ANOMALIES FROM AMPLITUDES ⇐ LOCALITY AND UNITARITY 75

However, Rodd introduces (unphysical) corrections to the residues in the s12 and s14
channels, because the one-loop four-point amplitude cannot have any factorisation chan-
nel and thus it cannot appear in the one loop amplitude14. In order to get an answer
which satisfies both unitarity and locality we must then enforce the coefficient of the
amplitude to vanish, which means imposing

YL + 3YQ = 0 . (3.62)

In a similar fashion, when looking at the one-loop interaction of three gluons with a
single B we get the condition

2YQ = Yu + Yd , (3.63)

which is necessary for the fermion-loop contribution to recombine in the physically
meaningful form

A1−loop
ferm (GA+, G

B
−, G

C
+, B−)

∣∣∣
τABC

= −2g1g33(Yu + Yd) (Keven +Reven) . (3.64)

On the other hand, it is not clear with amplitudes we need to study in order to
obtain the additional textbook constraint on the hypercharges

(
2Y 3

L − Y 3
e

)
+ 3

(
2Y 3

Q − Y 3
u − Y 3

d

)
= 0 , (3.65)

and
(2YL − Ye) + 3 (2YQ − Yu − Yd) = 0 . (3.66)

The former may be found studying unitarity and locality properties of the three-point
form factor with a Lagrangian insertion (which is any way reminiscent of the classical
treatment of anomalies in perturbative QFT), while for the latter we need to couple the
Standard Model to Einstein-Hilbert gravity.

14Three-point amplitudes are exact at tree-level and fixed by helicity and mass dimensions consider-
ation. This make the poles of four-point amplitudes tree-level exact, i.e. there are no loop corrections
to the residues of these poles.
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Chapter 4

Form Factors from Unitarity in 6D

The aim of this chapter is to construct complete, analytic form factors of gauge-invariant
operators at one loop. In supersymmetric theories, four-dimensional unitarity [35, 36]
is sufficient to obtain complete answers for amplitudes at one loop. Without supersym-
metry or for form factors of non-protected operators this is no longer the case because
of the appearance of rational contributions. In the amplitude context, this problem
has been addressed in different ways. In one approach, one makes use of factorisation
to establish a recursion relation that allows to reconstruct rational terms [52, 53] (see
[250, 251] for recent elegant applications to two-loop amplitudes in pure Yang-Mills).
Another approach is to shift the dimensionality of internal states in the loop away from
four dimensions [55, 252] where rational terms acquire a singularity which can then
be detected using unitarity cuts. This method requires that the internal lines, corre-
sponding to virtual particles, are kept in d dimensions, while momenta and polarisation
vectors of external particles live in four dimensions.

Having the internal particles in arbitrary, non-integer dimensions introduces compli-
cations, since tree amplitudes are no longer simple and the power of the spinor-helicity
formalism is lost. Moreover, it is not possible to numerically evaluate d-dimensional
amplitudes in non-integer dimensions. A solution to these problems is offered by “di-
mensional reconstruction” [59, 60, 233, 253, 254]. In this approach, one investigates the
dependence of the loop amplitudes on the dimensionality of spacetime, which turns out
to be polynomial in pure Yang-Mills theory, at the level of the integrand. Then one
computes the amplitudes with virtual particles kept in integer dimension d > 4 to fix
the coefficients in the polynomial by interpolation, which leads by analytic continuation
to an expression valid for any non-integer dimension d. The dimensional reconstruction
approach can also be effectively combined with the spinor-helicity formalism in six di-
mensions of [30], which allows for compact expressions of the on-shell building blocks.
At higher loops, these techniques were used in [255] to derive the five-point all-plus gluon
amplitude integrand in pure Yang-Mills, while a generalisation to incorporate fermions
was carried out in [256]. Recent numerical as well as analytical results for arbitrary he-
licity configurations of five partons were derived in [257–259]. Six-dimensional unitarity
has also been used in [260] to test conjectures about rational terms in two-loop all-plus
gluon amplitudes up to nine-points. In this framework, a systematic prescription for
complete form factors, including rational terms, have been presented in [207].

As already explained in the general introduction, a form factor is defined as the
overlap of an n-particle state and the state produced by an operator O(x) acting on
the vacuum. Notable examples of form factors include the form factor of the hadronic
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electromagnetic current with an external hadronic state, which feature in the e+e− →
hadrons and deep inelastic scattering matrix elements, and the form factor of the elec-
tromagnetic current, which computes the (electron) g − 2. The form factors which will
be considered in this thesis are related to scattering processes of the Higgs boson and
many gluons. In the large top-quark mass approximation or considering an BSM heavy
particle, we find infinite series of higher-dimensional interactions of the Higgs with the
gluon field strength and its derivatives, in addition to couplings to light degrees of free-
dom, which we will consider to be just pure Yang-Mills. More precisely, this effective
Lagrangian reads

Leff = ĉ0O0 +
1

M2

4∑

i=1

ĉiOi +O
(

1

M4

)
, (4.1)

where the leading-order term in the expansion is O0 := h TrF 2 [261–264] and h is the
Higgs field, Oi, i = 1, . . . , 4 are dimension-7 operators made of gluon field strengths and
covariant derivatives [265–268], M is the mass of the heavy particle integrated out, and
ĉ0, ĉi are Wilson coefficients1. In the study of Higgs + gluon processes one replaces
q2 with the squared mass of the Higgs m2

H to obtain the amplitudes relevant for this
process.

In this thesis we will apply the approach discussed so far to form factors of operators
of the form TrFn, for n = 2, 3, 4, both for minimal and non-minimal form factors up
to four external gluons. Modern amplitude techniques were applied to form factors of
TrF 2, which compute the leading contribution to Higgs + multi-gluon amplitudes in the
effective Lagrangian approach, including MHV diagrams [66, 67] at tree level [269, 270]
and one loop [271], and a combination of one-loop MHV diagrams and recursion relations
[272]. Recent work [273–277] addressed the computation of the four-dimensional cut-
constructible part of Higgs+multi-gluon scattering from operators of mass dimension
seven using generalised unitarity applied to form factors [278–290]. The key point
of this chapter is that we extend dimensional reconstruction to any form factor of
operators involving vector fields, which requires the subtraction of form factors of an
appropriate class of scalar operators that we identify. Along the way we have also found
a generalisation of this procedure to any loop order, for amplitudes and form factors.

The rest of the chapter is organised as follows. In Section 4.1 we review the dimen-
sional reconstruction technique at one loop and generalise it to form factors involving
vector fields. We also discuss its generalisation to any number of loops, which for one
and two loops is in agreement with known results. In Section 4.2 we study tree-level
form factors for a wide class of operators involving field strengths in four and six di-
mensions. These quantities are needed in the one-loop unitarity-based calculations of
Section 4.3. There, we begin by reproducing the well-know one-loop form factors for
TrF 2 with two and three external gluons. Then we prove that the minimal form factor
for TrF 3 has no rational terms, as argued in the literature. Finally, we calculate for the
first time the non-minimal one-loop form factor for TrF 3 and the minimal form factor
for TrF 4 with different helicity configurations. We also generalise some of these results
for a class of form factors of the TrFn operators.

1The Wilson coefficients are proportional to v the Higgs field vacuum expectation value. If we
consider the Wilson coefficients in the EFT after integrating out the top quark in the loops, then they
will be proportional to 1/v. Their precise form will be of no relevance for this thesis.
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4.1 The Dimensional Reconstruction Technique

In the first part of the section, we look at DR technique at the one-loop case from a
different perspective, which lends itself to a systematic generalisation to form factors in
generic Yang-Mills theory. The new viewpoint we adopt presents also a much desirable
advantage: it allows for a natural generalisation to any loop order, for both amplitudes
and form factors, which will be discussed in the second part of the section.

4.1.1 One-Loop Dimensional Reconstruction

The first step in our study is to identify the dependence of the loop amplitude on the
dimensionality of the spacetime. In the literature, a common procedure is to distinguish
the two sources of this dependence:

• the first is the number of spin-eigenstates, which is a function of the dimension of
the spacetime ds (for example, gluons have ds − 2 spin degrees of freedom);

• the second is the integration over the loop momentum, which lives in a d-dimensio-
nal space.

In the following, we will show how such dependence can be disentangled.

As we said, we consider pure Yang-Mills theory in dimensional regularisation (d =
4− 2ϵ):

L = −1

4

(
F aµνF

aµν
)
(x) , (4.2)

and we are interested in calculating amplitudes (and form factors) involving four-
dimensional real2 external gluons. At one loop it is possible to write a generic ansatz
for the amplitude

A(1)
(d) ({pi, hi}) =

∫
ddl

(2π)d
N ({pi, hi})∏

iDi
, (4.3)

where N d({pi, hi}) depends on d, through the number of spin eigenstates of the gluons
and the loop momentum. Since all external momenta are four-dimensional, the latter
dependence (i.e. the additional components of l) enter the amplitude only through the
square of the loop momentum, which can always be written as

l2 := (l(4))2 − µ2 . (4.4)

The dependence of the amplitude on µ2 manifests itself in a number of additional
integrals with non-trivial numerators, which have to be added to the usual master
integral basis. These integrals have the form:

∫
ddl

(2π)d
µ2p

D1 · · ·Dn
:= Idn[µ

2p] , (4.5)

which can be evaluated as ordinary integrals, but in higher dimensions [55]. The pres-
ence of these integrals cannot be probed using four-dimensional unitarity cuts, i.e. such
terms do not have discontinuities in four dimensions. In particular, such integrals cor-
respond to the rational terms we are looking for.

2Here real is used in contrast with virtual, which describes both internal particles propagating and
soft emissions, which must be treated on the same footing to preserve unitarity.
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Consider now the explicit dependence of the amplitude on spin. One-loop integrands
involving only vector bosons are explicitly linearly dependent on d. The origin of such
dependence is the contraction of the metric tensor, coming from vertices and propaga-
tors, in a closed loop. Since we were able to tell these two sources on d, we can write
the amplitude as

A(1)
(ds,d)

({pi, hi}) =
∫

ddl

(2π)d
dsN1({pi, hi})−N0({pi, hi})∏

iDi
, (4.6)

where we distinguished between d and ds and the physical meaning of such distinction
will be clarified in a moment.

By definition d are the dynamical dimensions of the theory and we can always choose
ds ≤ d, following a procedure reminiscent of dimensional reduction [291]: indeed, it is
sufficient to write a d-dimensional vector as Aaµ =

(
Aaµ̂, ϕa,1, . . . , ϕa,d−ds

)
, where Aaµ̂

transforms as a vector under transformations of the Lorentz group in ds dimensions, and
to ignore any contribution to the amplitudes from the ϕa,i scalars. On the other hand,
since the dependence of the amplitude on ds is trivial, we can analytically continue it to
ds > d [292]. Then, it is sufficient to compute the amplitude in two integer dimensions,
for example d0 and d1 = d0 + 1, and write it in the Four Dimensional Helicity (FDH)
scheme [293]. The result of the interpolation is given by [59]:

A(1)
(4,d) = (d1 − 4)A(1)

(d0,d)
− (d0 − 4)A(1)

(d1,d)
. (4.7)

On the other hand, the d1-dimensional gluon behaves as a d0-dimensional one plus a
real scalar. In terms of the Lagrangian, we have

Ld1 = Ld0 +
1

2
Dµϕ

aDµϕa . (4.8)

It is easy to conclude that the one-loop d1-dimensional amplitude A(d1,d)
3 can be ex-

pressed as the sum of two contributions: the first contribution is given by the equivalent
one-loop gluon amplitude with internal particles living in d0 dimensions A(d0,d), the sec-
ond one, denoted in the following as AS(d), takes into account also scalar interactions
coming from the second term on the right-hand side of (4.8). It is also important to
stress that AS(d) is a gauge-invariant quantity in its own right and it is the sum of dia-
grams with a scalar running in the loop and the gluons as external particles. As a result
of these observations, (4.7) can be written as:

A(1)
(4,d) = A

(1)
(d0,d)

− (d0 − 4)AS(d) . (4.9)

Up to some additional considerations, the above discussion holds true for form factors
as well, and so does (4.9). In particular, the scalar quantity that we have to subtract
from the form factor with d0-dimensional internal gluons is obtained by trading the gluon
loop with a scalar one. However, in contradistinction with the amplitude case, there
are two sources for scalars when we are dealing with form factors. Inside the loop, one
can have scalars coupled to gluon lines coming from terms of the form 1

2Dµϕ
aDµϕa in

the “dimensionally-reduced” Lagrangian (as in the case of amplitudes), but also scalars
coming from the same operator as the form factor insertion. This procedure will be clear

3This notation denotes an amplitude for which the virtual gluons have momenta defined in d di-
mensions, while their polarization vectors live in d1 > d.
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in the calculation of the non-minimal TrF 2 form factor, described in Section 4.3.2, where
we will emphasise the role of these two distinct contributions (see also [254]).

We need is to identify such scalar contributions for a generic operator in Yang-
Mills theories to extend the DR technique and, again, the procedure is reminiscent
of dimensional reduction, as in (4.8). In particular, for the only two operators with
mass-dimension six involving solely gluons, namely Tr(DF )2 and TrF 3, the scalar con-
tribution comes from

DµF
a
νρD

µF aνρ 7→ DµDνϕ
aDµDνϕa , (4.10)

and
fabcF aµ νF

b ν
ρF

c ρ
µ 7→ fabcDµϕ

aDνϕ
bF c µν , (4.11)

where scalar operators associated to each operator come from the dimensional reduction
from ds + 1 to ds. On the other hand for the TrF 4 operator, which we will consider
later in this thesis, at one-loop we get

TrFµ νF
ν
ρF

ρ
σF

σ
µ 7→ TrDµϕDνϕF

ν
ρ F

ρµ , (4.12)

where in the last equation the trace is in colour space. The proportionality coefficients
are still to be fixed and we will give the right prescription for them within the full
tree-level calculation in Section 4.2.

4.1.2 An L-loop Generalisation

The arguments leading to (4.7) can be extended to arbitrary loop order. Considering
pure Yang-Mills theory, any L-loop amplitude can be written as a degree L polynomial
in ds dimensions4,

A(L)
(ds,d)

=
L∑

i=0

(ds − 4)iKi , (4.13)

where Ki are quantities to be determined. In particular, note that the four-dimensional
amplitude in the FDH scheme [292, 293] coincides with the zero-degree coefficient:
K0 = A(L)

(4,d). In order to find the coefficients Ki, we can interpolate the polynomial in
L+ 1 distinct integer dimensions di > d. Writing the problem in matrix form, one has




A(L)
(d0,d)

A(L)
(d1,d)
...

A(L)
(dL,d)




=




1 (d0 − 4) (d0 − 4)2 · · · (d0 − 4)L

1 (d1 − 4) (d1 − 4)2 · · · (d1 − 4)L

...
...

1 (dL − 4) (dL − 4)2 · · · (dL − 4)L







K0

K1

...

KL



, (4.14)

where we recognise the Vandermonde matrix. Inverting this matrix, it is possible to
express the Ki as functions of the higher-dimensional amplitudes A(L)

(di,d)
for i = 0, . . . , L.

In particular K0, which is the amplitude in the FDH scheme, can be written as

A(L)
(4,d) = K0 =

L∏

j=0

(dj − 4)

L∑

i=0

1

(di − 4)

L∏

k=0
k ̸=i

1

(dk − di)
A(L)

(di,d)
. (4.15)

4As already mentioned, the ds dependence comes from traces of η tensors, and there can be at most
L closed loops leading to such a trace.
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AS (6)
(d0,d,2,0)

AS (6)
(d0,d,2,1)

Figure 4.1: Two of the many possible diagrams contributing to the scalar amplitudes at
six loops. On the left-hand side an example contribution to AS (6)

(d0,d,2,0)
is shown. On the

right-hand side the same diagram but with one of the gluon loops involving a four-point
interaction replaced by a scalar. The latter diagram contributes to AS (6)

(d0,d,2,1)
.

We can always choose d0 > d to be the smallest dimension among the di’s, and we
also know that at most d dimensions are dynamical. Then, we can write the Lagrangian
of pure Yang-Mills theory in di > d0 dimensions as:

Ldi = −
1

4
F aµνF

aµν +
1

2

di−d0∑

i=1

Dµϕ
a
iD

µϕai −
λ

2
fabcfade

di−d0∑

i,j=1
j>i

ϕbiϕ
c
jϕ
d
i ϕ

e
j , (4.16)

where µ, ν are d0-dimensional Lorentz indices, a, b, c are colour indices and fabc are the
structure constants of the gauge group. The vector field in di dimensions is decomposed
in a (d0-dimensional) vector Aaµ and di−d0 scalars ϕai . The coupling of the ϕ4 interaction
is given by

λ = g2 , (4.17)

and we call it λ for reasons that will be clear in a moment.

From (4.16), we can compute the amplitude with only external gluons5

A(L)
(di,d)

= A(L)
(d0,d)

+
L−1∑

m=0

(di − d0 − 1)m
L−m∑

n=1

(di − d0)nAS (L)
(d0,d,n,m) , (4.18)

where A(L)
(d0,d)

is the complete L-loop amplitude where all the internal legs are vectors

and AS (L)
(d0,d,n,m) are specific combinations of diagrams with at least one scalar loop.

Specifically, the diagrams contributing to AS (L)
(d0,d,n,m) are of order λm, i.e. they contain

m four-scalar interactions, and in addition have n distinct purely scalar subdiagrams.

The coefficients for the scalar contributions in (4.18) can be understood as follows.

1. The number of distinct flavours of scalars is di − d0 and they all give the same
contribution.

5In this section, for the sake of clarity, we reserve the word vector only for the d0-dimensional vector,
whereas we refer to the four-dimensional equivalents as gluons.
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di − d0

di − d0

di − d0 − 1

di − d0

Figure 4.2: Two two-loop diagrams for comparison. In the first case there are two
disconnected scalar loops, and every loop admits di − d0 different flavours leading to
an overall factor (di − d0)2. The second diagram represents two scalar loops connected
by a flavour-changing four-scalar vertex (highlighted in green). In this case there are
di− d0 allowed flavours in one loop but only di− d0− 1 in the second loop, which leads
to an overall factor (di − d0)(di − d0 − 1).

2. Given a set of contiguous scalar propagators inside a diagram, when we draw
the first scalar propagator, we need to multiply the diagram by a di − d0 factor,
corresponding to the distinct possible flavours.

3. Inside the same set of contiguous scalar propagators, each vertex with two scalars
and one vector must preserve the scalar flavour, while the four-scalar vertex
changes it. Thus each power of λ brings a di − d0 − 1 factor.

4. Every distinct set of scalar propagators leads to an additional di − d0 factor.

5. Since there are no external scalars, the number of distinct sets of scalar propaga-
tors plus the number of scalar quartic interactions coincides with the number of
scalar loops:

n+m = # scalar loops (4.19)

6. Clearly the number of scalar loops can be at most L.

We can substitute (4.18) in (4.15) and, for simplicity, we choose

di = d0 + i (4.20)

with i = 0, . . . , L. The final result should not depend on this choice, because the
coefficient of a polynomial cannot depend on which point we choose for the fitting.
After some manipulations, we find a closed expression which relates complete L-loop
four-dimensional amplitudes to the same amplitudes in a higher integer dimension d0
up to subtractions of scalar contribution:

A(L)
(4,d) = A

(L)
(d0,d)

+

L−1∑

m=0

L−m∑

n=1

(4− d0)n(3− d0)mAS (L)
(d0,d,n,m) . (4.21)

The whole reasoning can be applied to a more generic scheme where ds = 4 (FDH
scheme) is replaced by a generic ds (e.g. the HV scheme [294] with ds = d = 4 − 2ϵ).
As long as we keep di > ds and di ≥ d, all the previous steps are still applicable, and
we arrive at

A(L)
(ds,d)

= A(L)
(d0,d)

+

L−1∑

m=0

L−m∑

n=1

(ds − d0)n(ds − d0 − 1)mAS (L)
(d0,d,n,m) , (4.22)
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which at first sight is identical to (4.18). The non-trivial difference between the two
expressions is that ds < d0, while we need di > d0 (i = 1, . . . , L) in order to write (4.18).
Moreover, as we stressed before, the quantity (di − d0) has a precise physical meaning:
it is the number of distinct flavours of scalars in the dimensional reduced theory (4.16).
On the other hand, (ds − d0) takes into account the number of extra spin degrees of
freedom in dimensional regularisation6.

The fact that the two expressions are exactly the same is a consequence of our pre-
vious considerations. Indeed, one could have recognised the polynomial dependence of
the amplitude on the dimensionality ds already from (4.18), and further identified (4.22)
as its analytic continuation for ds − d0 < 0. Thus, starting from the “dimensionally-
reduced” Lagrangian (4.16), the dependence on the dimensionality ds emerges naturally,
and the preceding considerations relating the di to ds through the Vandermonde matrix
may appear redundant. However, starting from the analysis of the dimensional depen-
dence of the amplitudes provides a clear physical picture of the relation between ds, d
and di.

Our expression reproduces the known results at one loop [59]

A(1)
(ds,d)

= A(1)
(d0,d)

+ (ds − d0)AS (1)
(d0,d,0,1)

, (4.23)

and two loops [255]

A(2)
(ds,d)

= A(2)
(d0,d)

+ (ds − d0)∆S
(d0,d)

+ (ds − d0)2∆2S
(d0,d)

, (4.24)

where

∆S
(d0,d)

= AS (2)
(d0,d,0,1)

−AS (2)
(d0,d,1,1)

, ∆2S
(d0,d)

= AS (2)
(d0,d,0,2)

+AS (2)
(d0,d,1,1)

. (4.25)

Considering the two-loop expression in more detail, one sees that in [255] the four-scalar
vertex is interpreted in terms of three fictitious flavour contributions:

−→ + +

The two continuous lines in the grey blob represent the colour flow inside the vertex.
Considering Figure 4.2 we see that, in our interpretation, the only diagram which at
two loops involves this vertex contributes with a factor (ds−d0)(ds−d0− 1). However,
splitting the vertex according to colour flow as above, the contribution of the same
diagram can be attributed to terms containing a factor (ds − d0)

2 as well as (ds −
d0). Taking into account this different interpretation of the four-scalar vertex, the two
methods perfectly match.

We emphasise that individually eachAS (L)
(d0,d,n,m) is a gauge-invariant quantity. Indeed,

we know that A(L)
(d0,d)

is gauge invariant by its own right and we might consider a theory
for which λ ̸= g2 and a number of scalars ns ̸= ds− d0: then, the respective coefficients
in the sums in (4.22) would change but the full answer would still be gauge-invariant.

As in the case of the one-loop procedure, (4.21) can be applied also to form factors,
as far as we bear in mind that more scalar operators are involved in higher-loop calcula-
tions, in addition to those entering already at one loop. These additional terms emerge

6There is no dynamics in the dimensions di − d0, while this could be not true for the dimensions
d0 − ds.
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clearly from (4.16). Indeed, for the operator TrF 2, beyond one-loop calculations we
also need to subtract the scalar contribution from the ϕ4 operator:

F aµνF
aµν 7→ g2fabdfacdϕbϕ̃cϕdϕ̃e , (4.26)

where ϕ and ϕ̃ are scalars with different flavour. Its contribution has to be carefully
taken into account in the subtraction with the right ds-dependence. In particular, in the
form factor equivalent of (4.18), its insertion brings a (di − d0)(di − d0 − 1) coefficient,
because of the flavour changing.

An equivalent reasoning is also valid for higher-dimensional operators. For exam-
ple, from the dimensional reduction procedure of the TrF 3 operator, we find that the
additional scalar operators entering higher-loop calculations are

fabcF aµ νF
b ν

ρF
c ρ

µ 7→
{

gfabcfadeDµϕ
bDµϕ̃cϕdϕ̃e

g3fabcfadef bfgf chiϕdϕ̃eϕf ϕ̂gϕ̃hϕ̂i
, (4.27)

where the former enters the calculation at two-loop level, while the latter from three
loops. We stress that ϕ, ϕ̃ and ϕ̂ represent three different scalar flavours. Then, in
the generalisation of (4.18) to form factors, the insertion of the scalar operators bring
a factor of (di − d0)(di − d0 − 1) and (di − d0)(di − d0 − 1)(di − d0 − 2) respectively.
Following the same procedure one can recover the scalar operators for TrF 4, which we
do not write explicitly.

In the following we are going to apply this technique to one-loop calculations for
form factors. We will always choose d0 = 6, due to the existence of a powerful Spinor
Helicity Formalism in six dimensions [30, 60].

A technical comment is in order here. In performing loop calculations, initially we
treat the loop momenta as living in d0=6 dimensions, instead of d. This procedure is
well defined at the integrand level, as we showed. Indeed, first we have to sum over the
helicity states of the internal gluons and reduce to four-dimensional components for the
external one. Then, knowing the functional dependence of the integrand on the d − 4
components of the loop momenta, which appear only through rational combinations
of l(−2ϵ)

i · l(−2ϵ)
j and µ2i

7, we can identify these combinations and we can treat the
loop momenta as being d-dimensional and integrate over them. The choice d0 = 6 is
guaranteed to be good enough for the integrands at least up to two loops because we do
not introduce any additional Gram determinant identity. Power counting and symmetry
arguments may extend the validity of the six-dimensional computations beyond two
loops in some special theories, see for example [60].

4.2 Tree-Level Amplitudes and Form Factors

In this section we will provide all the analytic expressions of the tree-level colour-ordered
form factors required for loop calculations.

The tensorial structure of the field strength in four dimensions is given by the anti-
symmetric product of two vector representations

(
1

2
,
1

2

)
∧
(
1

2
,
1

2

)
= (1, 0)⊕ (0, 1) , (4.28)

7It is worth mentioning that in terms of the six-dimensional spinor components the quantity men-
tioned above reads as follows: l

(−2ϵ)
i · l(−2ϵ)

j = 1
2
(mim̃j +mjm̃i) and µ2

i = mim̃i.
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where we can choose each component to correspond to the helicity configurations ±1.
We then define the self-dual component of the free field strength as8

FSD,αα̇ββ̇
:= λαλβϵα̇β̇ , (4.29)

which has helicity −1 and transforms in the (1, 0) representation of the Lorentz group9.
Then, the anti-self-dual component, transforming in the (0, 1) representation is

FASD,αα̇ββ̇ = ϵαβλ̃α̇λ̃β̇ . (4.30)

In terms of SU∗(4) representations, the six-dimensional free field strength transforms
in the 6 ∧ 6 = 15, which is the traceless part of 4⊗ 4̄. Thus it can be written as [295]

FABaȧ CD = α δ
[A
[CFaȧ

B]
D] , (4.31)

where α is a numerical coefficient to be fixed and Faȧ A B is such that Faȧ A A = 010. In
spinor helicity variables this quantity is [295]

Faȧ
A
B = λAa λ̃ȧB , (4.32)

which is indeed traceless thanks to the six-dimensional Dirac equation (A.28). Upon
dimensionally reducing, (4.32) down to four dimensions we match it with (4.29) and
(4.30), which fixes the proportionality coefficient to be α = 2.

4.2.1 TrF 2 Form Factors

In this section we consider the operator

O2 := F aµνF
aµν . (4.33)

In four dimensions O2 splits naturally into the sum of the traces of the self-dual and
the anti-self-dual components of the field strength:

TrF 2 = TrF 2
SD +TrF 2

ASD . (4.34)

It is trivial to identify these two four-dimensional components of the colour-ordered
form factor:

F
(0)
O2

(1+, 2+; q) = 2[12][21] ,

F
(0)
O2

(1−, 2−; q) = 2⟨12⟩⟨21⟩ .
(4.35)

On the other hand, the six-dimensional form factor is

F
(0)
O2

(1aȧ, 2bḃ; q) = 2⟨1a 2ḃ]⟨2b 1ȧ] , (4.36)

8To clarify the abuse of nomenclature, the quantity is the field strength in momentum space corre-
sponding to a polarisation vector of given helicity.

9We could have used as definition the following: FSD,αα̇ββ̇ := pαα̇ε
−
ββ̇

− pββ̇ε
−
αα̇ = −

√
2λαλβϵα̇β̇ . As

we can see the only difference is a −
√
2 normalisation factor.

10A,B, . . . = 1, . . . , 4 are indices in the (anti)fundamental representation of SU∗(4) and a, ȧ are
indices of the six-dimensional little group (for a detailed discussion see Appendix A.2).
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where the definitions of the spinor brackets, in both four and six dimensions, and the
conventions adopted can be found in Appendices A.1 and A.2. Using the particular
embedding of the four-dimensional into the six-dimensional space introduced in Ap-
pendix A.2 we find that11

F
(0)
O2

(111̇, 211̇; q)
∣∣∣
4D

= F
(0)
O2

(1+, 2+; q) , F
(0)
O2

(122̇, 222̇; q)
∣∣∣
4D

= F
(0)
O2

(1−, 2−; q) .

(4.37)
An analogous statement is true also for tree-level amplitudes, where all the four-dimensional
helicity configurations can be recovered from the six-dimensional amplitude.12

The scalar form factor is obtained from (4.8), and we find

F
(0)
O2,s

(1, 2; q) = −⟨1a, 2ḃ]⟨1a, 2ḃ] = 2s12 , (4.38)

where
O2,s ∝ (Dϕ)2 := Dµϕ

aDµϕa . (4.39)

The normalisation of (4.38) has been fixed by matching the four-dimensional limit
of this operator with that of the scalar components of (4.36) (i.e. reducing first to four
dimensions and selecting the helicity components (1, 2̇) or (2, 1̇)), which must yield the
same result. An equivalent prescription would be computing the minimal form factors
of the two operators with the relative normalisation fixed by the Lagrangian (4.8). But
the four-dimensional matching prescription is faster for more complex operators.

It is also important to stress that it would not be possible to implement the scalar
subtraction just by excluding the little group components that in four dimensions behave
like scalars. Indeed, this would bring us to a result which is not invariant under a
little group transformation of the internal (six-dimensional) legs. In particular, for the
subtraction we need a quantity that behaves as a scalar in six dimensions and matches
the scalar components of the dimensional-reduced gluon in four dimensions, as shown
in Appendix C.1.

Using BFCW recursion relation [21, 22] in six dimensions [30] we have derived the
six-dimensional non-minimal form factors with three external legs at tree level, both for
the gluon and the scalar operators. The results for O2 with three gluons reads

F
(0)
O2

(1aȧ, 2bḃ, 3cċ; q) =
2

s23s31
⟨1a 2ḃ]⟨2b 1ȧ]⟨3c|/p1/p2|3ċ] + cyclic

+ 2

(
1

s12
+

1

s23
+

1

s31

)(
⟨1a 2ḃ]⟨2b 3ċ]⟨3c 1ȧ]− [1ȧ 2b⟩[2ḃ 3c⟩[3ċ 1a⟩

)
,

(4.40)

which agrees with the analogous result computed from Feynman diagrams in [254],
upon some algebraic manipulation. As a further consistency check we verified that in
the four-dimensional limit the different helicity components match the results of [269].

Furthermore, as it will be clear from the discussion in the next section, in the scalar
subtraction we need to take into account both the form factor of the operator O2 with
two external scalars and one gluon, which is different from zero:

F
(0)
O2

(1, 2, 3cċ; q) = −
2

s12
⟨3c|/p1/p2|3ċ] , (4.41)

11Four-dimensional limit here means choosing appropriate little-group indices corresponding to the
desired helicity configuration in four dimensions, and the taking mi, m̃i → 0 for any particle i.

12Further details on the relation between four and six-dimensional tree-level quantities can be found
in Appendix C.1.
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and the non-minimal scalar form factor of O2,s:

F
(0)
O2,s

(1, 2, 3cċ; q) = −
2q2

s23s31
⟨3c|/p1/p2|3ċ] . (4.42)

For a detailed derivation of (4.40)-(4.42) see Appendix C.1.1. The sum of (4.41) and
(4.42) agrees with the result of [254].

4.2.2 TrF 3 Form Factors

Consider now the operator
O3 := TrFµ νF

ν
ρF

ρ
µ . (4.43)

Similarly to the case of TrF 2, this operator splits, in four dimensions, into a self-dual
and anti-self dual part

O3 := TrF 3 = TrF 3
SD +TrF 3

ASD . (4.44)

Consequently, the only possible helicity configurations of the minimal tree-level form
factors are all-plus and all-minus:

F
(0)
O3

(1+, 2+, 3+; q) = −2[12][23][31] ,

F
(0)
O3

(1−, 2−, 3−; q) = 2⟨12⟩⟨23⟩⟨31⟩ .
(4.45)

In six dimensions the minimal form factor is given by

F
(0)
O3

(1aȧ, 2bḃ, 3cċ) = FAB1 aȧ CDF
CD
2 bḃ EFF

EF
3 cċ AB

= −⟨1a2ḃ]⟨2b3ċ]⟨3c1ȧ] + [1ȧ2b⟩[2ḃ3c⟩[3ċ1a⟩ ,
(4.46)

where FABaȧ CD is defined in (4.31). From (4.11), we find the scalar operator associated
to the scalar subtraction:

O3,s ∝ Tr(Dϕ)2F := TrDµϕDνϕF
µν , (4.47)

and
F

(0)
O3,s

(1, 2, 3cċ) :=
1

2
pAB1 p2CDF

CD
3 cċ AB = ⟨3c|/p1/p2|3ċ] , (4.48)

where, once again, the normalisation is fixed by matching the four-dimensional limits
of this quantity with the scalar configuration of (4.46).

As a final remark, we point out that O3 is not the only mass-dimension six operator
which appears in the Yang-Mills theories (also with matter). One also has a contribution
from

Õ3 := DαF aµνDαF
a
µν . (4.49)

However, it is easy to see that the minimal form factor for Õ3 can be related to the one
of O2 as

F
(0)

Õ3
(1aȧ, 2bḃ; q) = s12F

(0)
O2

(1aȧ, 2bḃ; q) . (4.50)

It can be shown that any other contraction for operators built from two covariant
derivatives and two field strength, such as DµF aνµ DρF aρν , are not independent and can
be expressed in terms of Õ3 up to a normalisation factor. Moreover, we must highlight
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that Õ3 itself must not be regarded as an independent operator. Indeed, as explained
in the introduction of this chapter, the study of this form factors may be relevant in the
context of the effective field theory as correction to the jet production through Higgs
decay in the Standard Model. Then, the form factor can be thought as the correction
to the h + jets amplitude due to the irrelevant deformation hÕ3 and we notice that
s12 = q2 = m2

h, in (4.50). Then, from the Lagrangian point of view, it exists a field
redefinition which maps hÕ3 to m2

hhO2 at leading order in the irrelevant deformation.
For a detailed discussion on this point from an off-shell point of view using equation of
motion, see [296].

Finally, we provide the tree-level expressions needed for the one-loop computation
of the non-minimal form factor of O3 which are:

• the non-minimal tree-level form factor of O3 with four gluons

F
(0)
O3

(1aȧ, 2bḃ, 3cċ, 4dḋ; q) = Baȧbḃcċdḋ + Caȧbḃcċdḋ +Daȧbḃcċdḋ , (4.51)

with

Baȧbḃcċdḋ =
(
−⟨1a 2ḃ]⟨2b 3ċ]⟨3c 1ȧ] + [1ȧ 2b⟩[2ḃ 3c⟩[3ċ 1a⟩

) ⟨4d|/p1/p3|4ḋ]
s34s41

+ cyclic ,

Caȧbḃcċdḋ =
⟨1a 2ḃ]⟨2b 4ḋ]⟨4d 3ċ]⟨3c 1ȧ] + [1ȧ 2b⟩[2ḃ 4d⟩[4ḋ 3c⟩[3ċ 1a⟩

s34
+ cyclic ,

Daȧbḃcċdḋ = −
(

4∑

i=1

1

si i+1

)
(
⟨1a 2ḃ]⟨2b 3ċ]⟨3c 4ḋ]⟨4d 1ȧ] + [1ȧ 2b⟩[2ḃ 3c⟩[3ċ 4d⟩[4ḋ 1a⟩

)

(4.52)

• the non-minimal tree-level form factor of O3 with two external scalars

F
(0)
O3

(1, 2, 3cċ, 4dḋ; q) =
1

s12

(
⟨3c 4ḋ]⟨4d|/p1/p2|3ċ]− ⟨4d 3ċ]⟨3c|/p1/p2|4ḋ]

)
(4.53)

• the non-minimal tree-level form factor of O3,s with two external scalars

F
(0)
O3,s

(1, 2, 3cċ, 4dḋ; q) =
⟨3c|/p4/p2|3ċ]⟨4d|/p1/p2|4ḋ]

s23s34
+
⟨4d|/p1/p3|4ḋ]⟨3c|/p1/p2|3ċ]

s34s41

+ ⟨3c|/p2/p1|4ḋ]⟨4d 3ċ]
(

1

s34
+

1

s23
+

1

s41

)

− ⟨4d|/p2/p1|3ċ]⟨3c 4ḋ]
1

s34
+ ⟨3c|/p2|4d⟩[3ċ|/p1|4ḋ]

(
1

s23
+

1

s41

)
.

(4.54)

These formulas have been obtained generating an ansatz similar to the one presented
in (3.20) and by requiring the six-dimensional form factor to match, upon taking the
four-dimensional limit, the known four-dimensional expressions in different helicity con-
figurations [266, 273, 297, 298]. The resulting ansatz was then numerically compared
with the results from Feynman diagrams and a complete match was found.
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A rather surprising fact is that the result obtained from the six-dimensional gen-
eralisation of the BCFW recursion relations precisely matches this expression as well.
This is quite remarkable because the two-line shift does not reproduce the correct re-
sult for TrF 3 amplitudes with generic helicity configurations in four-dimensions [25,
298]. In particular, the all-plus (and all-minus) configuration cannot be obtained cor-
rectly with a two-line shift. While it exists a specific BCFW-shift which reproduces
the single-minus (and single-plus) helicity configuration. The origin of this might be
the helicity-averaging introduced by the tensor Xaȧ in equation (C.15), which “select”
the best large-z behaviour, cancelling any pole at infinity. Such observation deserves a
more detailed analysis.

4.2.3 TrF 4 and Higher Dimensional Form Factors

The fourth power in the field strength can be considered as a turning point in the
general behaviour of the operators, for reasons which will become clear in a moment.
The renormalisation properties of gluonic operators of dimension up to eight was carried
out in [299], and more recently in [104, 300]. It turns out that we can have four
possible independent (single-trace) operators involving different contractions of four
field strengths in d-dimensions:

TrFµ νF
ν
ρF

ρ
σF

σ
µ , TrFµνFµνF

ρσFρσ ,

TrFµ νF
ρ
σF

ν
ρF

σ
µ , TrFµνF ρσFµνFρσ .

(4.55)

In pure gauge theories, which we are considering in this work, all these operators can
appear with independent coefficients, while they are no more independent in the low
energy effective action from the superstring theory [301–303]. In this section we will
focus only on the first operator, which we will refer to as TrF 4:

O4 := TrF 4 := TrFµ νF
ν
ρF

ρ
σF

σ
µ . (4.56)

This encloses all the main features of the operators with higher powers in the field
strength, and at the end of this section we will be able to generalise some results to a
peculiar operator involving a consecutive chain of n field strengths.

In four dimensions the main difference between TrF 4 and the lower-power cases
is that the structure of this operator allows the mixing of the self- and anti-self-dual
components, i.e. schematically

TrF 4 ≃ TrF 4
SD +Tr

(
F 2
SDF

2
ASD

)
+TrF 4

ASD . (4.57)

Thus the usual all-plus (all-minus) minimal form factors appear along with MHV-like
quantities:

F
(0)
O4

(1+, 2+, 3+, 4+; q) = 2[12][23][34][41] ,

F
(0)
O4

(1+, 2+, 3−, 4−; q) = [12]2⟨34⟩2 ,

F
(0)
O4

(1+, 2−, 3+, 4−; q) = [13]2⟨24⟩2 ,

(4.58)

and all the other configurations can be obtained by symmetry and parity arguments.
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In six dimensions the minimal form factor is

F
(0)
O4

(1aȧ, 2bḃ, 3cċ, 4dḋ; q) =F
AB
1 aȧ CDF

CD
2 bḃ EFF

EF
3 cċ GHF

GH
4 dḋ AB

=⟨1a2ḃ]⟨2b3ċ]⟨3c4ḋ]⟨4d1ȧ] + [1ȧ2b⟩[2ḃ3c⟩[3ċ4d⟩[4ḋ1a⟩
+ ⟨1a2b3c4d⟩[1ȧ2ḃ3ċ4ḋ] ,

(4.59)

where we notice that at this power of the field strength the new structure ⟨· · · ·⟩[· · · ·]
involving four-spinor invariants appears, which is very reminiscent of the four-point
amplitude, in (C.1). This new structure gives us the MHV-like components in (4.58)
when we consider the appropriate little-group configurations in the four-dimensional
limit (see Appendix C.1).

We have already identified the scalar operator associated to TrF 4 in (4.12) and we
define

O4,s ∝ TrDµϕDνϕF
ν
ρF

ρµ (4.60)

such that its minimal form factor is

FO4,s(1, 2, 3cċ, 4dḋ; q) =
1

2
pAB1 p2CDF

CD
3 cċ EFF

EF
4 dḋ AB

= −⟨3c|/p2/p1|4ḋ]⟨4d 3ċ] +
1

4
⟨2a2a3c4d⟩[1ȧ1ȧ3ċ4ḋ] .

(4.61)

The expression of TrF 4 gives us some insight about the operators involving the nth

power of the field strength, where the Lorentz indices are contracted between adjacent
field strengths, which we will refer to as TrFn:

On := TrFn = TrFµ1
µ2Fµ2

µ3 · · ·Fµn−1
µnFµn

µ1 . (4.62)

It is easy to show that this operator can be decomposed in a sum of double traces
(in the Lorentz indices) on the self-dual and anti-self-dual parts, schematically13:

TrFn ≃
n∑

i=0

Tr
(
Fn−iSD F iASD

)
. (4.63)

Take two disjoint and ordered subsets of labels S+ = {pk}k=1...i and S− = {qk}k=1...n−i,
with S+ ∪ S− = {1, . . . , n}. Then all tree-level minimal form factors, for any helicity
configuration, can be written in a very compact way:

F
(0)
On

(1h1 , . . . , nhn ; q) = cn,i

i∏

k=1

[pkpk+1]
n∏

k=i+1

⟨qkqk+1⟩ , (4.64)

where the overall coefficient is

cn,i =





2 i = 0

(−1)n−i i ̸= 0, n .

(−)n2 i = n

(4.65)

13We stress that this general structure was hidden by lower power-operators because the field strength
is traceless: TrFn−1

SD FASD = TrFSDFn−1
ASD = 0.
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An explicit example of this general formula is given by

F
(0)
O5

(1−, 2+, 3−, 4−, 5+; q) = −⟨13⟩⟨34⟩⟨41⟩[25][52] . (4.66)

The structure of TrFn form factors in six dimensions is much more complicated than
the four-dimensional one, the number of terms grows very fast, but nonetheless some
general pattern can be observed. In particular if we restrict to a kinematic configuration
for which only some of the legs are truly six dimensional and the others are defined on
the embedded four-dimensional subspace, the formulae are much easier and compact.
In principle, this is all we need in order to calculate rational terms with the dimensional
reconstruction technique, since we need to consider only the limited number of internal
loop legs as six dimensional. As an example, consider the minimal form factor of TrFn

with two six-dimensional legs and n − 2 four-dimensional legs in the all-plus helicity
configuration. The general expression is given by

TrFn(1aȧ, 2bḃ, 3
+, . . . , n+) =

(
⟨1a2ḃ]⟨2b31̇][34]⟨n11ȧ] + [1ȧ2b⟩[2ḃ31⟩[34][n1̇1a⟩+

+ ⟨1a2bn131⟩[1ȧ2ḃ31̇41̇]
) n−1∏

i=4

[ii+ 1] .
(4.67)

This result can be found by observing that the combination λAi aλ̃i Bȧ appears only
once for each six-dimensional leg, which allows to write an ansatz comprising every
possible combination with arbitrary coefficients to be fixed. The coefficients can then
be determined by taking the four-dimensional limit of the six-dimensional gluons and
requiring the form factor to match (4.64).

4.3 One-Loop Form Factors

In this section we will consider a number of one-loop applications of the dimensional
reconstruction procedure discussed in Section 4.1. The results obtained for the minimal
form factors of TrF 2 and TrF 3 were already known in the literature. We show that
the latter has no rational terms, as it has also been argued by [266]. These calculations
will be useful to set the stage and give an example of the procedure before dealing with
more involved operators and kinematic configurations. In particular, we reproduce the
known non-minimal form factor of TrF 2 with three positive-helicity external gluons.
Finally, we compute the complete minimal form factor of TrFn with n = 4 at one loop
and generalise some of the results to arbitrary n.

4.3.1 The Minimal TrF 2 Form Factors

As a first proof of concept of the method we will confirm the well known statement that
the minimal form factor of the operator TrF 2 in pure Yang-Mills does not have any
rational terms. In particular, we will consider the all-plus helicity configuration.

The quantity we want to compute can be written as

F
(1)
O2

(1+, 2+; q) := F
(0)
O2

(1+, 2+; q) · f (2) (s12)
= 2[12][21] · f (2) (s12) ,

(4.68)
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Figure 4.3: Two-particle cut of the one-loop form factor TrF 2 in six dimensions.

where we factored out all the helicity dependence in the tree-level prefactor, and f (2)(s12)
is a function only of the Mandelstam variable s12. As explained in Section 4.1 this quan-
tity can be computed using (4.9):

f (2) (s12) = f
(2)
6D (s12)− 2f

(2)
ϕ (s12) , (4.69)

where f26D (s12) and f2ϕ (s12) are the form factors with six-dimensional internal gluons
or scalars respectively, normalised by the corresponding tree-level quantity.

At one loop, the two-particle cut represented in Figure 4.3 is14

f
(2)
6D (s12)

∣∣∣
2−cut

=
1

2[12][21]

∫
dLIPS F

(0)
O2

(−laȧ1 ,−lbḃ2 ) A(0)
g (l2 bḃ, l1 aȧ, 111̇, 222̇) . (4.70)

In order to simplify this expression we decompose the six-dimensional quantities in terms
of four-dimensional ones, as explained in detail in Appendix A.2. These calculations
are rather lengthy and we have devised a MATHEMATICA package to deal with them.
Imposing that the external legs are defined in four dimensions is equivalent to setting
mj = 0 and m̃j = 0 for j = 1, 2, which automatically removes any dependence of f (2)

on µjα and µ̃jα̇. From (A.39), momentum conservation implies
∑

i

mi = 0 ,
∑

i

m̃i = 0 . (4.71)

Only the two internal legs l1 and l2 have to be kept in six dimensions, in other words
p5i , p

6
i ̸= 0 for i = l1, l2, which implies

ml2 = −ml1 := −m , m̃l2 = −m̃l1 := −m̃ , (4.72)

where
µ2 = mm̃ , (4.73)

with µ2 defined in (4.4). We immediately arrive at

f
(2)
6D (s12)

∣∣∣
2−cut

=

∫
dLIPS

(
−i s12
s2l2

+ 2i
µ2

s2l2

)
. (4.74)

Next we repeat a similar computation for the two-particle cut with internal gluons
replaced by scalars:

f
(2)
ϕ (s12)

∣∣∣
2−cut

=
1

2[12][21]

∫
dLIPSF

(0)
O2,s

(−l1,−l2) A(0)(l2, l1, 1aȧ, 2bḃ)

=

∫
dLIPS i

µ2

s2l2
.

(4.75)

14The explicit expression of Ag can be found in Appendix C.1.
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Taking the difference between (4.74) and twice (4.75) leads to the desired four-
dimensional result

f (2) (s12)
∣∣
2−cut

= −is12
∫

dLIPS
1

s2l2
. (4.76)

We can directly read off the one-loop result from (4.76):

f (2) (s12) = −is12 ·

p1

p2

q

l

. (4.77)

In this section we are only interested in showing that our method correctly computes
those terms which are not captured by four-dimensional unitarity techniques. Then,
we will always show the result in terms of the integral basis, rather then the integrated
result. The triangle integral with outgoing momenta (p1, p2, q) is defined in Appendix D.

As anticipated, our result (4.77) does not contain any µ2 term i.e. any rational term,
and is thus in agreement with the very well known result. An equivalent result holds
for the all-minus helicity configuration. As expected, there are no bubbles in the result,
because both TrF 2

SD and TrF 2
ASD are protected operators in N = 4 super-Yang-Mills

and the form factor does not depend on the extra particle content of the theory.

4.3.2 The Non-Minimal TrF 2 Form Factor

In this section we address the computation of the one-loop non-minimal form factor of
the operator TrF 2. As usual we begin by defining the normalised quantity f (2;3) as

F
(1)
O2

(1+, 2+, 3+; q) := 2[12][23][31] · f (2;3) (s12, s23, s13) , (4.78)

with

f (2;3) (s12, s23, s13) = f
(2;3)
6D (s12, s23, s13)− 2f

(2;3)
ϕ (s12, s23, s13) , (4.79)

Notice that we decided not to normalise by the corresponding tree-level form-factor,
which carries additional non-trivial dependence on the Mandelstam variables, but simply
by a factor [12][23][31] which only captures the complete helicity dependence of the
operator. Computing the discontinuity in the s12-channel we have

f
(3)
6D ({sij})

∣∣∣
s12−cut

=
1

2[12][23][31]

∫
dLIPS F

(0)
O2

(laȧ1 , l
bḃ
2 , 311̇) A(0)(−l2 aȧ,−l1 bḃ, 111̇, 222̇),

(4.80)
which, upon algebraic manipulations, becomes

f
(2;3)
6D (s12, s23, s13)

∣∣
s12−cut

= i
[12]

[23][31]

∫
dLIPS [3| /l (4)1 /l

(4)
2 |3] I

(2;3)
6D , (4.81)

with

I(2;3)6D =
q4s12 − 2µ2q2s12 − 4µ2s3l1s3l2

s212s2,−l2s3l1s3l2
. (4.82)

Performing the appropriate scalar subtraction for the non-minimal configuration of
the operator TrF 2 is more subtle than in the minimal case. The double cut one needs
to compute is represented in Figure 4.4. There are two different tree-level form factors
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f
(2;3)
φ

∣∣
s12−cut

= q

3+

O2

+ q

O2,s

3+

1+

2+
q

Figure 4.4: A double cut of the scalar contribution to TrF 2 non-minimal. The red
boxes highlight the two different operator insertions.

to be inserted into the cut: the non-minimal form factors with two external scalars and
one gluon of the operators TrF 2 and (Dϕ)2. The tree-level expression for these form
factors are given in (4.41) and (4.42) respectively. Computing the complete result for
the double-cut of the scalar contribution leads to

f
(2;3)
ϕ (s12, s23, s13)

∣∣
s12−cut

= i
[12]

[23][31]

∫
dLIPS [3| /l (4)1 /l

(4)
2 |3] I

(2;3)
ϕ , (4.83)

with

I(2;3)ϕ = −µ2 q
2s12 + s3l1s3l2
s212s2,−l2s3l1s3l2

. (4.84)

Upon subtracting twice (4.83) from (4.81), uplifting the cut and performing some alge-
braic manipulations on the numerator, one ends up with the final expression:

f (2,3)(s12, s23, s13)
∣∣
s12−disc

= − iq4

2s31

p3 p2

p1q

− iq4

2s23

p2 p1

p3q

− iq4(s31+s23)
s12s23s31

·




q

p1

p2

p3

+ q

p3

p1

p2




+ 4i
s212
·

q

p3

p1

p2
µ2 + 2i

s12
·

p1

p2

q

p3

µ2

(4.85)
where all integrals can be found in Appendix D.

Clearly the double cuts in the channels s23 and s13 can be derived from (4.85) by
symmetry arguments, thus the only invariant channel left to compute would be s123,
see Figure 4.5. This double-cut involves the use of the five-point amplitudes in six
dimensions with five gluons as well as with three gluons and two scalars15, combined

15Their analytic expression is given in Appendix C.1.
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Figure 4.5: Two-particle cut of the one-loop form factor TrF 2 in the s123 channel in six
dimensions.

with the minimal form factor of O2 and O2,s respectively. The only topology probed
by this cut, which is not probed by any of the previous cuts, is the bubble with the
form factor in one of the two vertices and all the momenta in the other. Performing
the calculation, the associated coefficient turns out to be zero. Thus (4.85) and its
permutations give the complete result, which matches the one given in [254, 304].

4.3.3 The Minimal TrF 3 Form Factors

We now consider the TrF 3 form factor in the all-plus helicity configuration. The proce-
dure we follow is exactly the same as in the TrF 2 case. First we factor out the helicity
dependence as an overall tree-level prefactor:

F
(1)
O3

(1+, 2+, 3+; q) := F
(0)
O3

(1+, 2+, 3+; q) · f (3) (s12, s23, s13)
= −2[12][23][31] · f (3) (s12, s23, s13) ,

(4.86)

then we compute f (3) as the difference f (3)6D − 2f
(3)
ϕ . We start with the two-particle cut

in the s12 channel represented in Figure 4.6, which reads

f
(3)
6D (s12)

∣∣∣
s12−cut

= − 1

2[12][23][31]

∫
dLIPS F

(0)
O3

(−laȧ1 ,−lbḃ2 , 311̇) A(0)(l2 aȧ, l1 bḃ, 111̇, 222̇)

= i

∫
dLIPS

(
[12][3| /l (4)1 /l

(4)
2 |3]

s2l2 [23][31]
+ µ2

[3| /l (4)1 /l
(4)
2 |3]

[3| /p1 /p2|3]

)
.

(4.87)

Computing the scalar contribution in a similar fashion leads to

f
(3)
ϕ (s12, s23, s13)

∣∣
s12−cut

=
i

2

∫
dLIPSµ2

[3| /l (4)1 /l
(4)
2 |3]

[3| /p1 /p2|3]
, (4.88)

and finally

f (3)(s12, s23, s13)
∣∣
s12−cut

= i
[12]

[23][31]

∫
dLIPS

[3| /l (4)1 /l
(4)
2 |3]

s2l2
. (4.89)

Then, it is possible to write f (3) in terms of Mandelstam invariants:

f (3)(s12, s23, s13)
∣∣
s12−cut

= −i
∫

dLIPS

(
s12
s2l2

+ 2

)
(4.90)
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Figure 4.6: Two-particle cut of the one-loop form factor TrF 3 in the s12 channel in six
dimensions.
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Figure 4.7: Two-particle cut of the one-loop non-minimal form factor TrF 3 in the s123
channel.

modulo terms which integrate to zero, and uplifting this result leads to:

f (3)(s12, s23, s13)
∣∣
s12−disc

= −is12 ·

p1

p2

q

p3 l

− 2i ·
q

p3

p1

p2
l

. (4.91)

Combining the discontinuities in the three channels s12, s23 and s31 we arrive at the
complete one-loop form factor

f (3)({sij}) =
n∑

k=1

f (3)({sij})
∣∣
sk k+1−disc

, (4.92)

where every term in the sum can be obtained from (4.91) by relabelling the external
legs.

4.3.4 The Non-Minimal TrF 3 Form Factor

In the previous sections we reproduced known results for form factors through the
generalisation of the dimensional reconstruction technique. In this section we derive for
the first time the complete form factor of the operator TrF 3 with four gluons in the
all-plus helicity configuration.

The procedure we follow has been described in detail earlier, hence we now only
sketch the relevant derivations and provide the main results. There are two independent
unitarity cuts to be computed, say in the s12-channel and s123-channel, up to cyclic
permutation. Starting from the s123-cut, one needs to evaluate the difference shown in
4.7. The tree-level form factor in the scalar subtraction term (second term in the figure)
is the minimal form factor of the operator Tr

(
DµϕDνϕF

µν
)
. The Passarino-Veltman
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reductions of the resulting tensor integrals have been performed using the Mathematica
package FeynCalc [305, 306]. From the two-particle cuts in the s123-channel we obtain
the following functions:

F
(1)
O3

(1+, 2+, 3+, 4+; q)
∣∣
s123−disc

= D
[0]
0

p3 p2

p1
q

p4

+ C
[0]
0

p1

p3

q

p4
p2

+ C
[0]
1

p1

p3

q

p4

p2
+B

[0]
0

q

p4

p1

p3

p2 ,

(4.93)
with the coefficients

D
[0]
0 = −iF(1, 2, 3; 4) ,

C
[0]
0 = −is12 + s31

s12s23
F(1, 2, 3; 4) ,

C
[0]
1 = −is23 + s31

s12s23
F(1, 2, 3; 4) ,

(4.94)

where

F(1, 2, 3; 4) :=
s123
s231

(s12[13][24] + s31[12][34]) (s23[13][24] + s31[23][14]) . (4.95)

Finally the coefficient of the bubble can be written as

B
[0]
0 = 2i[12][23][34][41] b

[0]
0 , (4.96)

where the helicity-invariant function b
[0]
0 is defined as

b
[0]
0 =

s2123
s12s23

(
1

s12 + s31
+

1

s23 + s31

)
+
[13][24]

[12][34]

s2123
s23s31

· 1

s12 + s31
+
[13][24]

[14][23]

s2123
s12s31

· 1

s23 + s31
.

(4.97)
The result also contains a box integral with a µ2 in the numerator, which after integra-
tion is of O(ϵ). For completeness we quote its coefficient:

D
[2]
0 = −2is123

(
[12]2[34]2

s12
+

[23]2[41]2

s23
+

[13]2[24]2

s31

)
. (4.98)

Next we consider the two-particle cut in the s12-channel and, as discussed in earlier
sections, the discontinuity of the complete form factor is determined from the difference

F
(1)
6D (1+, 2+, 3+, 4+; q)

∣∣
s12−cut

− 2F
(1)
ϕ (1+, 2+, 3+, 4+; q)

∣∣
s12−cut

, (4.99)

where the second term is the scalar subtraction. As in the case of the non-minimal form
factor of TrF 2, there are two contributions to the scalar quantity F (1)

ϕ (1+, 2+, 3+, 4+; q),
which are represented in Figure 4.8. The first contribution comes from the operator
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Figure 4.8: A two-particle cut of the scalar contribution to the non-minimal TrF 3 form
factor. The red boxes highlight the two different operator insertions.

TrF 3 with two scalars and two gluons, whereas the second one comes from the scalar
operator TrDµϕDνϕF

µν .

After tensor reductions, we find

F
(1)
O3

(1+, 2+, 3+, 4+; q)
∣∣
s12−disc

= D
[0]
0

p3 p2

p1
q

p4

+D
[0]
1

p2 p1

p4
q

p3

+ C
[0]
1

p1

p3

q

p4

p2
+ C

[0]
2

p4

p2

q

p3
p1

+ C
[0]
3

p1

p2

q

p3

p4 + C
[2]
3

p1

p2

q

p3

p4 µ2

+ B
[0]
1

q

p3

p1

p2

p4 +B
[2]
1

q

p3

p1

p2
µ2p4 ,

(4.100)
where we checked that the coefficients D[p]

0 , D[p]
1 , C [p]

0 and C [p]
2 match the ones found in

the previous calculation, up to relabelling. The other coefficients for the triangles are

C
[0]
3 = i[12][23][34][41] c

[0]
3 ,

C
[2]
3 =

4i

s12
[12][34][13][24] ,

(4.101)
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where

c
[0]
3 =

s12 + s31
s23

+
s12
s34

(
1 +

s13
s14

+
s24
s23

)
− [13][24]

[14][23]

[
s123(s12 + s31)− s213

s213
− s12
s34

]

− [13][24]

[12][34]

s12
s213s23

[
s123(s23 + s31)− 2s231

]
+ (1, 4)←→ (2, 3) ,

(4.102)

while for the bubbles

B
[0]
1 = 2i[13]2[24]2

(
1

s31
− 1

s23
+

s12
s23s31

)
+ 2i[12]2[34]2

(
2

s23
− 2s12
s23(s13 + s23)

)

+ 2i[12][34][13][24]

(
1

s12
+

4

s23
− 2

s34
− 4s24
s23s34

)
+ (1, 4)←→ (2, 3) ,

(4.103)

and
B

[2]
1 =

4i

s212
[12][34] ([13][24] + [23][14]) . (4.104)

We have checked that our result satisfies the expected infrared consistency conditions.
In particular, using the results for the coefficients D0, C0 and C1, one immediately finds
that the coefficient of (−s123)−ϵ

ϵ2
vanishes, as required. We have also confirmed that the

coefficient of (−s12)−ϵ

ϵ2
is proportional to the corresponding tree-level non-minimal form

factor derived in [273],

F
(0)
O3

(1+, 2+, 3+, 4+; q) = −2[12][23][34][41]
s12

(
1 +

[13][24]

[23][41]
− s24
s41

)
+ cyclic . (4.105)

4.3.5 The Minimal TrF 4 Form Factors

In this section we consider the form factors of TrF 4 in all possible helicity configura-
tions. The case where all particles have the same helicity is interesting since it admits
an immediate generalisation to the minimal form factors of operators of the form TrFn

defined in (4.62). In this family, TrF 4 is the first operator whose minimal form factor
contains rational terms. We are going to consider the quantities in the planar limit of
the theory, i.e. at one loop we will probe only the discontinuities in the Mandelstam
invariants of adjacent momenta in the colour-ordered form factor. At this point it is im-
portant to stress that non-planar contributions would need an additional consideration:
as one can see from (4.12) there is no “non-planar” scalar operator, i.e. the scalars can
only appear next to each other in the colour-ordered form factor, and then the complete
four-dimensional contribution coincides with the diagrams with purely six-dimensional
internal gluons.

All-Plus Helicity Configuration

We begin by defining

F
(1)
O4

(1+, 2+, 3+, 4+; q) := 2[12][23][34][41] · f (4) ({sij}) . (4.106)

At one loop, we can make the following observations:
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• The cut-constructible part, coming from the form factor involving only gluons,
has the same structure as F (1)

O3
(1+, 2+, 3+; q), with both UV and IR divergences.

• Terms proportional to µ2 and µ4 now appear. As already mentioned, these could
not arise for n < 4 because of the limited kinematic, as we will show below. The
new integrals are two triangles with µ2 and µ4 numerators16 and when expanded
in powers of the dimensional regulator ϵ give a finite contribution in the ϵ → 0
limit. They are exactly the rational terms that cannot be seen by the completely
four-dimensional cut construction, where clearly µ2 = 0.

Following the procedure outlined in the previous sections, we find

f4({sij})
∣∣
s12−disc

= −i
(
1 + [13][24]

[14][23]

)
·

q

p3

p4

p1

p2
l

− i s12 ·

p1

p2

q

p3

p4

l

+ i [12][34][23][41] ·

p1

p2

q

p3

µ2p4

l

− i [34]
[3| /p2 /p1|4] ·

p1

p2

q

p3

µ4p4

l

(4.107)
Notice that in the final result the integral I43 [µ4] appears. In general, in a renormalis-
able gauge theory one would expect triangle integrals to appear with at most a third
power of the loop momentum in the numerator, which allows for at most a µ2 triangle
contribution. However we are considering an effective field theory with an operator of
mass-dimension eight, hence the possibility of having also an I43 [µ4] term. The last step
of the calculation is the sum over all the possible channel discontinuities, as we did in
(4.92) for TrF 3.

The above result can be immediately generalized to TrFn for arbitrary n in the
all-plus helicity configurations, where we define

TrFn(1+, . . . , n+; q)
∣∣
1-loop := (−)n 2

n∏

k=1

[kk + 1] · f (n) ({sij}) , (4.108)

and

f (n)({sij})
∣∣
s12−disc

= −i
(
1 + [13][2n]

[1n][23]

)
·

q

p3

p1

p2
l

− i s12 ·

p1

p2

q

p3 l

+i [12][3n][23][n1] ·

p1

p2

q

p3

µ2

l

− i [3n]
[3| /p2 /p1|n] ·

p1

p2

q

p3

µ4

l

(4.109)

This simple generalisation is due to the fact that, upon properly normalising with the
corresponding four-dimensional quantities, the six-dimensional minimal tree-level form

16For analytic expressions of such integrals see for example Appendix D.
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factor of TrFn is identical to that of TrF 4 up to the replacement 4 7→ n, as can be
seen from (4.67). As a final remark, notice that we can a posteriori explain the absence
of rational terms for TrF 3: indeed we can recover (4.91) by simply replacing n 7→ 3 in
(4.109). Then, rational terms vanish since they are proportional to [3n].

MHV Configuration: the Alternate and Split-Helicity Form Factors

We define the MHV colour-ordered form factor with alternate-helicity gluons as follows:

F
(1)
O4

(1+, 2−, 3+, 4−; q) := ⟨24⟩2[13]2 · f (4)a ({sij}) . (4.110)

Since this case presents some peculiarities in the calculations, we will give more
details about it. In particular, the cut of the form factor with six-dimensional internal
gluons in the s12-channel is given by

f
(4)
a,6D ({sij})

∣∣
s12−cut

=−
∫

dLIPS
i

s12s2l2

I 2
6D

⟨24⟩2[13]2

=−
∫

dLIPS
i

s12s2l2
(2k · l2)2 ,

(4.111)

where
I6D = 2µ2⟨24⟩[13] + ⟨2|/l (4)1 |3]⟨4|/l

(4)
2 |1] + ⟨2|/l

(4)
2 |3]⟨4|/l

(4)
1 |1] (4.112)

and in the last step we removed terms proportional to ⟨2|/l (4)2 |1] that vanish upon inte-
gration. Also kµ is a massive momentum defined by

kαα̇ =
[12]

[13]
λ2αλ̃3α̇ −

⟨12⟩
⟨24⟩λ4αλ̃1α̇ , (4.113)

and it is easy to prove that it satisfies the following relations:

k2 = 2p1 · k = 2p2 · k = s12 . (4.114)

Surprisingly, the scalar contribution is identically zero after integration:

f
(4)
a,ϕ ({sij})

∣∣
s12−cut

=

∫
dLIPS

i

s12s2l2

⟨4|/l (4)1 |3]⟨4|/l
(4)
2 |3]⟨2|/l

(4)
2 |1]2

⟨24⟩2[13]2 = 0 , (4.115)

because of the presence of the term ⟨2|/l (4)2 |1]2. Thus the discontinuity in the s12-channel
is completely given by the pure six-dimensional contribution (4.111), which after the
integral reduction can be written as

f (4)a ({sij})
∣∣
s12−disc

= −is12 ·

p1

p2

q

p3 l

. (4.116)

It is worth stressing that all the other planar contributions can be obtained from the
previous one easily by symmetry arguments.

As usual, for the split-helicity configuration we factorise the tree-level form factor:

F
(1)
O4

(1+, 3+, 2−, 4−; q) := [13]2⟨24⟩2 · f (4)s ({sij}) . (4.117)
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Unlike the previous case, in the planar limit we have two different cuts which can-
not be related by symmetry: in particular, we can perform the cut in channels with
same or opposite helicity gluons. The discontinuity in the s12-channel, after the scalar
subtraction, is given by

f (4)s ({sij})
∣∣
s13−disc

= −is13 ·

p1

p3

q

p2 l

. (4.118)

The cut in the s23-channel is reminiscent of the alternate-helicity case, with vanishing
scalar contribution up to integration:

f (4)s ({sij})
∣∣
s23−cut

≃ −
∫

dLIPS
i

s13s3l2
(2k · l2)2 , (4.119)

where the momentum kµ is defined by

kαα̇ =
[23]

[13]
λ2αλ̃1α̇ +

⟨23⟩
⟨24⟩λ4αλ̃3α̇ , (4.120)

and it satisfies the following relations:

k2 = 2p2 · k = 2p3 · k = s23 . (4.121)

The cut in the s23 channel is

f (4)s ({sij})
∣∣
s23−disc

= −is23 ·

p2

p3

q

p4 l

(4.122)

Let us emphasise some relevant features of the result:

• The final result is free of rational terms. Thus we would have found the same,
complete, quantity even with four-dimensional unitarity-cuts.

• The only operator that contributes in four dimensions is Tr
(
F 2
SDF

2
ASD

)
, which is

a descendant of Trϕ4 in N = 4 SYM17.

• We note the absence of bubbles in the final result for this (unrenormalised) form
factor. This may be related to the independence of the bare quantity on the
matter content of the theory. One could then regard the computation as if it was
performed in N = 4 SYM, where the operator under consideration belongs to a
protected multiplet.

• An unrelated observation is that the colour-ordered form factors with alternate
and split-helicity configurations are the same:

F
(1)
O4

(1+, 2−, 3+, 4−; q) = F
(1)
O4

(1+, 3+, 2−, 4−; q) . (4.123)

This is an accident due to the simple topology of the integral basis combined with
the fact that bubbles do not appear. At first, the equality (4.123) could appear as
a consequence of the photon decoupling identities which hold in Yang-Mills theory.
However these identities are no longer valid when one considers interactions with
higher powers of the field strength.

17See for example Table 7 in [307].
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Chapter 5

One-Loop Anomalous Dimensions
in the SMEFT

On-shell techniques provide powerful strategies to study the UV mixing in (non-supers-
ymmetric) EFTs, as first pointed out in [98] using techniques developed for the study
of the anomalous dimension of operators in N = 4 super-Yang-Mills [308–311] (for a
review, see [312] and references therein) from scattering amplitudes and form factors
[287–290, 313–318] and recently applied to the SMEFT [99–107]. Furthermore, on-shell
techniques also provided a good understanding of the mysterious pattern of zeros in the
one-loop anomalous dimension matrix of the SMEFT [108–110]. At one-loop, such a
calculation requires only two main ingredients: the tree-level (four-point) amplitudes in
the SM and the identification of a complete (but not redundant) basis of EFT interac-
tions/operators, which have been studied in the Chapters 2 and 3.

The first systematic and complete computation of the one-loop anomalous dimension
matrix for dimension-six operators in the SMEFT has been carried out in [319–321]. So
far, the study of the anomalous dimension of SMEFT interactions has been completed
only partially in the literature for operators up to dimension 8 [104, 322–329]. In this
chapter, we present the general on-shell set-up which will allowed us to fully compute
the one-loop anomalous dimension matrix for all the operators in the SMEFT of mass
dimension 8. As a proof of concept, we reproduce know results for the mixing matrix
of operators of dimension 5, 6 and 7 and we present the mixing matrix of dimension 8
operators for the SMEFT considering a single flavour family Nf = 1. We compute the
anomalous dimension matrix to linear order in the Wilson coefficients, i.e. we ignore
the mixing between dimension-six and dimension-eight operators, which are however
partially known in the literature (see Table 5 of [329]).

The present chapter is organised as follows. In Section 5.1, we review the computa-
tion of the one-loop anomalous dimension matrix from on-shell data through unitarity.
We make use of the presented techniques to reproduce known results for dimension 5,
6, and 7 operators as well as to compute the mixing of dimension 8 operators at linear
order in the Wilson coefficients and leading (quadratic) order in the renormalisable cou-
plings. These general results are made available in separate ancillary files of the paper
[104]. In Section 5.2 we present the explicit mixing coefficients for dimension 6 and 8
operators relevant for Higgs production with a W boson.

105
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5.1 The UV anomalous mass dimension matrix at leading
order

In Chapter 3 we argued that any tree-level amplitude in the Standard Model can be
fully determined from its factorisation channels, and in Chapter 2 we gave a general
algorithm to find all the SMEFT interactions. These are all the ingredients needed to
compute the UV mixing matrix for the SMEFT interactions γUV

d→d
1, where d is the mass

dimension of the corresponding effective operators for d = 5, 6, 7, 8. In this chapter we
restrict to the case of Nf = 1 and we leave the treatment of full flavour dependence for
future work. The results for γUV

d→d were provided in the ancillary files of the work [104],
and at the end of this chapter we show as an example the mixing coefficients of the
dimension 6 and 8 operators relevant for Higgs plus W production from pp-scattering.

Sticking to the notation introduced in Section 3.1, we write the amplitudes with a
single insertion of an irrelevant interaction as Fn,d,i(pa1,h11 , . . . , pan,hnn ), where d is the
dimension of the irrelevant operator and i is its corresponding label (for example, in the
case of Nf = 1 and d = 6, i = 1, . . . , 84), in order to distinguish it from amplitudes A
with only relevant and marginal couplings. The central formula for our computations
has been presented in [98] and gives the action of the dilatation operator D = ∂

∂ log µ on
the amplitude in terms of its discontinuity2:

e−iπD F∗ = S ⊗F∗ , (5.1)

where S is the full S-matrix and on the RHS the product has to be interpreted as
a matrix product weighted over a proper Lorentz phase space integral which, via the
Optical Theorem, correspond to a specific discontinuity of the effective amplitude.

The dilatation operator is linked to the UV mixing matrix γUV
i→j by the Callan-

Symanzik equation [330–332]:

DFi =
(
γUV
j→i − γIRi δij + β(g2k)

∂

∂g2k
δij

)
Fj , (5.2)

where β(g2k) is the beta-function for the coupling gk and γIRi is the IR contribution to
the anomalous dimension of the amplitude Fi which depends only on its external states.

Combining (5.1) and (5.2), expanding to leading order in the coupling and at linear

1In principle, we could consider γUV
d1→d2

, with d1 ̸= d2, which involves amplitudes which are non-
linear in the effective couplings. In this work we are not considering such contributions, but it is worth
stressing that conceptually their treatment is very much the same.

2This formula has been first presented in [98] for F being a form factor, but it trivially holds for
(effective) amplitudes as well, by setting qµ = 0 in the form factor.
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order in the effective interactions, we find3

γUV
j→i Fj(ph11 . . . phnn ) =

1

π

n∑

l=1
l<m

∑

{l1,l2}

∫
dΩ2

32π2

[
iA4(p

hl1
l1
p
hl2
l2
→ phll p

hm
m )

+
3∑

k=1

g2k Tk,l1 · Tk,l2
cos2 θ sin2 θ

]
· Fi(. . . p

hl1
l1

. . . p
hl2
l2

. . . )

+ Fi(ph11 . . . phnn ) ·
n∑

l=1

γ
(l)
coll

16π2
,

(5.3)

where ∫
dΩ2

4π
=

∫ 2π

0

dϕ

2π

∫ π
2

0
dθ 2 cos θ sin θ (5.4)

is the two-particles Lorentz invariant phase space integral, the sum over {l1, l2} is over
the species and the helicity configurations of the internal particles, γ(l)coll is the IR collinear
anomalous dimension associated to the lth-particle and the term with Tk,l1 · Tk,l2 takes
care of the subtraction of the (divergent) IR cusp anomalous dimension (the label k runs
over the three factors of the gauge group U(1)×SU(2)×SU(3)). In particular, the latter
is non-zero if the in- and out-states of the four-point amplitude are the same and, if this
is the case, it is a proper contraction of the Lie algebra generators (or the product of the
hypercharges in the case of U(1)) associated to the outgoing (or equivalently incoming)
particles. For example, if the four-point amplitude is A4(Q̄l1 Ql2 → Q̄lQm), then

3∑

k=1

g2k Tk,l · Tk,m =

(
−1

6

)
· 1
6
g21 + g22 σ

I im
j σI jil + g23 τ

A am
b τA b

al
. (5.5)

The helicity variables associated to the internal momenta, on the cut configuration, can
be written in terms of the phase space angles θ and ϕ and the external momenta pl and
pm, as first shown in [313]:

(
λl1
λl2

)
=

(
cos θ − sin θ eiϕ

sin θ e−iϕ cos θ

)(
λl
λm

)
, (5.6)

together with the complex conjugate rotation for the spinors λ̃l1 and λ̃l2 .

5.1.1 Infrared collinear anomalous dimensions in the Standard Model

The collinear anomalous dimensions for the particles in the Standard Model can be
obtained by studying the anomalous dimension of UV protected operators, such as the
stress-tensor as emphasised in [98]:

⟨ph11 ph22 |Tµν |0⟩ ·
2∑

l=1

γ
(l)
coll

16π2
= − 1

π

∑

{l1,l2}

∫
dΩ2

32π2

[
iA4(p

hl1
l1
p
hl2
l2
→ ph11 p

h2
2 )

+

3∑

k=1

g2k Tk,l1 · Tk,l2
cos2 θ sin2 θ

]
· ⟨phl1l1 p

hl2
l2
|Tµν |0⟩ ,

(5.7)
3The results in the ancillary files of the paper [104] are given in terms of the matrix γUV

ij ≡ 16π2γUV
j→i,

where we factored out the usual loop factor 1
16π2 .
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We are going to show an example of the computation of the collinear anomalous
dimension for the W bosons in the Standard Model and we will give the result for all
the states of the theory.

We start by giving the stress-tensor form factor [18] following the normalisation
procedure given in [98] for generic complex scalars, fermions and vectors respectively4:

⟨ϕ̄AϕB|Tαα̇ββ̇|0⟩ = 1

3
δBA

(
λα1λ

β
1 λ̃

α̇
1 λ̃

β̇
1 − λα1λβ2 λ̃α̇1 λ̃β̇2 − λα1λβ2 λ̃α̇2 λ̃β̇1 − λα2λβ1 λ̃α̇1 λ̃β̇2

− λα2λβ1 λ̃α̇2 λ̃β̇1 + λα2λ
β
2 λ̃

α̇
2 λ̃

β̇
2

)

⟨ψ̄AψB|Tαα̇ββ̇|0⟩ = 1

2
δBA

(
λα1λ

β
1 λ̃

α̇
2 λ̃

β̇
1 + λα1λ

β
1 λ̃

α̇
1 λ̃

β̇
2 − λα1λβ2 λ̃α̇2 λ̃β̇2 − λα2λβ1 λ̃α̇2 λ̃β̇2

)

⟨vI−vJ+|Tαα̇ββ̇|0⟩ = −2 δI J λα1λβ1 λ̃α̇2 λ̃β̇2 ,

(5.8)

where A, B, I, J are generic colour indices. Once we fix the minimal form factor for the
stress tensor, we can apply the formula (5.7):

⟨W I
−W

J
+|Tµν |0⟩ ·

2∑

l=1

γ
(l)
coll

16π2
= − 1

π

∑

{l1,l2}

∫
dΩ2

32π2

[
iA4(p

hl1
l1
p
hl2
l2
→W I

−W
J
+)

+
3∑

k=1

g2k Tk,l1 · Tk,l2
cos2 θ sin2 θ

]
· ⟨phl1l1 p

hl2
l2
|Tµν |0⟩ ,

(5.9)

where the sum over {l1, l2} runs over the pairs
{
{W−,W+}, {W+,W−}, {Q̄,Q}, {Q, Q̄}, {L̄, L}, {L, L̄}, {H̄,H}, {H, H̄}

}
. (5.10)

Considering that γW−
coll = γ

W+

coll := γWcoll, we can rewrite (5.9) as

γWcoll = −8π
∑

{l1,l2}

∫
dΩ2

32π2

[
iA4(p

hl1
l1
p
hl2
l2
→W I

−W
J
+)

+
3∑

k=1

g2k Tk,l1 · Tk,l2
cos2 θ sin2 θ

]
·
⟨phl1l1 p

hl2
l2
|Tµν |0⟩

⟨W I
−W

J
+|Tµν |0⟩

,

(5.11)

We will list now the different contributions from the W bosons (which need the infrared
divergence subtraction), the quarks, the leptons and the Higgs doublet, respectively:

γWcoll = −g22
(
11

3
× 2− Nf

3
× 3− Nf

3
− 1

6

)
, (5.12)

where the factor of ×2 in the first term is the Casimir of the adjoint representation
of SU(2), while the factor of ×3 in the second term comes from the sum on different
colour of the quarks. This is the usual result for the SU(2) beta function with Nf Weyl
fermions and 1 scalar, both transforming in the fundamental of the gauge group.

4The different overall minus sign with respect to [98] comes from our different convention choice for
λα
−k = iλα

k and λ̃α̇
−k = iλ̃α̇

k , while the authors in [98] chose λα
−k = λα

k and λ̃α̇
−k = −λ̃α̇

k .
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Finally, we give the explicit results for the other states in the Standard Model. We
start from the vector bosons

γBcoll =
2

3
g21
[(
Y 2
Q × 2 + Y 2

u + Y 2
d

)
× 3 +

(
Y 2
L × 2 + Y 2

e

)
+ Y 2

H

]
, (5.13)

γGcoll = −g23
(
11

3
× 3− Nf

3
× 2× 2

)
, (5.14)

where the first ×2 in the second term of γGcoll comes from the sum over SU(2) indices
(or equivalently over d and u) and the second ×2 factor comes from the fact that SU(3)
is not a chiral theory and the quarks behave as a doublet of Dirac fermions. Then we
have the collinear anomalous dimensions for the fermions

(
γQcoll

)
mn

= −3
(
g21 Y

2
Q +

3

4
g22 +

8

6
g23

)
δmn + Y(1)

mp Ȳ(1)
pn + Y(2)

mp Ȳ(2)
pn , (5.15)

(γucoll)mn = −3
(
g21 Y

2
u +

8

6
g23

)
δmn + 2 Ȳ(1)

np Y(1)
pm , (5.16)

(
γdcoll

)
mn

= −3
(
g21 Y

2
d +

8

6
g23

)
δmn + 2 Ȳ(2)

np Y(2)
pm , (5.17)

(
γLcoll

)
mn

= −3
(
g21 Y

2
L +

3

4
g22

)
δmn + Y(3)

mp Ȳ(3)
pn , (5.18)

(γecoll)mn = −3 g21 Y 2
e δmn + 2 Ȳ(3)

np Y(3)
pm , (5.19)

and, finally, the Higgs

γHcoll = −4 g21 Y 2
H − 4 g22 ×

3

4
+2 Tr Y(1) · Ȳ(1)× 3+2 Tr Y(2) · Ȳ(2)× 3+2 Tr Y(3) · Ȳ(3) ,

(5.20)
where 3

4 and 8
6 are the Casimir of the fundamental representation of SU(2) and SU(3),

respectively.

5.2 The Higgs production in association with a W boson

As an illustrative application of the techniques discussed so far, we consider a subset
of dimension-six and dimension-eight operators relevant for the Higgs production in
association with a W boson via proton scattering, i.e. the operators contributing to
the scattering p p → hW as considered in [84], with a technical difference due to the
fact that in the mixing problem considered in this work we look at Nf = 1. In this
section, we will compute the mixing among dimension-six and dimension-eight effective
interactions separately. First, we present the relevant minimal amplitudes found using
the algorithm presented in Section 2.3.1, which are in one-to-one correspondence with
the independent operators considered in [84]. Then, using the techniques just reviewed
we compute the two UV mixing matrices, comparing the mixing matrix for dimension-
six operators with known results in the literature [99, 100, 319–321, 333]. The full
mixing matrix for all the operators in the SMEFT up to dimension 8 can be found in
the ancillary files of [104].

There are thirteen dimension-six operators (five of which are self-hermitian) con-
tributing to the scattering p p→ hW and such counting can be performed using Hilbert
series method. In Table 5.1 and Table 5.2 we show the content of the various operators
and their multiplicities as shown in reference [210] and the corresponding independent
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# Hilbert series Minimal amplitude
1 H̄3H3 Y 1 2 3 ◦ δi4j1δ

i5
j2
δi6j3

2
2D2H̄2H2 Y 1 2 ◦ Y 3 4 ◦ ⟨13⟩[13]δi3j1δ

i4
j2

3 Y 1 2 ◦ ⟨12⟩[12]δi3j1δ
i4
j2

4
2DQ̄QH̄H

⟨13⟩[23]δi2j1δ
i4
j3
δa2b1

5 ⟨13⟩[23]δi2j3δ
i4
j1
δa2b1

6 B−B−H̄H ⟨12⟩2δi4j3
7 B+B+H̄H [12]2δi4j3
8 W−W−H̄H ⟨12⟩2δI1I2δi4j3
9 W+W+H̄H [12]2δI1I2δi4j3
10 G−G−H̄H ⟨12⟩2δA1A2δi4j3
11 G+G+H̄H [12]2δA1A2δi4j3
12 B−W−H̄H ⟨12⟩2σI2i4j3
13 B+W+H̄H [12]2σI2i4j3

Table 5.1: The table shows the thirteen dimension-six operators and their multiplicity
as a result of the Hilbert series method. To each independent operator we associate and
enumerate a set of independent minimal amplitudes.

minimal amplitudes, respectively for the dimension-six and the dimension-eight irrele-
vant operators.

The running of the Wilson coefficients

ċi = 16π2µ
∂

∂µ
ci , (5.21)

of the thirteen dimension-six operators is

ċ
(6)
1 = c

(6)
1

(
6g21Y

2
H +

9g22
2

+ 108λ

)
+ 6c

(6)
1 γHcoll ,

ċ
(6)
2 = c

(6)
5

(
8g21YHYQ − 6g22 + 48Y1Ȳ1 + 24Y2Ȳ2

)
+ c

(6)
2

(
−8g21Y

2
H

3
+ 8g22 + 24λ

)
+

+ c
(6)
3

(
2g21Y

2
H +

17g22
2
− 12λ

)
+ c

(6)
4

(
16g21YHYQ + 24Y1Ȳ1 − 24Y2Ȳ2

)
+ 4c

(6)
2 γHcoll + . . . ,

ċ
(6)
3 = c

(6)
3

(
26g21Y

2
H +

33g22
2

+ 12λ

)
+ c

(6)
4

(
32g21YHYQ + 48Y1Ȳ1 − 48Y2Ȳ2

)

+ c
(6)
5

(
16g21YHYQ + 24Y1Ȳ1 − 24Y2Ȳ2

)
− 40

3
c
(6)
2 g21Y

2
H + 4c

(6)
3 γHcoll + . . . ,

ċ
(6)
4 = c

(6)
4

(
28g21Y

2
H

3
+ 14g21Y

2
Q +

21g22
2

+ 8g23 + 12Y1Ȳ1
)
+ c

(6)
4

(
2γHcoll + 2γQcoll

)

+ c
(6)
5

(
2g21Y

2
H

3
+ 4g21Y

2
Q +

11g22
6
− 4Y1Ȳ1 + 8Y2Ȳ2

)

+ c
(6)
3

(
g21YHYQ −

g22
12

+ 2Y1Ȳ1 − Y2Ȳ2
)
+ c

(6)
2

(
−1

3
g21YHYQ +

g22
12
− Y1Ȳ1

)
+ . . . ,
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# Hilbert series Minimal amplitude # Hilbert series Minimal amplitude
1 H̄4H4 Y 1 2 3 4 ◦ δi4j1δ

i5
j2
δi6j3δ

i8
j4

34
2D2B−W−H̄H

⟨12⟩3[12]σI2i4j3
2 B2

−H̄
2H2 Y 3 4 ◦ ⟨12⟩2δi5j4δ

i6
j3

35 ⟨12⟩2⟨23⟩[23]σI2i4j3
3 B2

+H̄
2H2 Y 3 4 ◦ [12]2δi5j4δ

i6
j3

36
2D2B+W+H̄H

[12]3⟨12⟩σI2i4j3
4 B−W−H̄

2H2 Y 3 4 ◦ Y 5 6 ◦ ⟨12⟩2δi6j4σ
I2i5

j3
37 [12]2⟨23⟩[23]σI2i4j3

5 B+W+H̄
2H2 Y 3 4 ◦ Y 5 6 ◦ [12]2δi6j4σ

I2i5
j3

38 D2B−W+H̄H ⟨13⟩2[23]2σI2i4j3
6

2W 2
−H̄

2H2 Y 3 4 ◦ ⟨12⟩2δI1I2δi5j4δ
i6
j3

39 D2W−B+H̄H ⟨13⟩2[23]2σI1i4j3
7 Y 1 2 ◦ ⟨12⟩2σI2i5i6σI1j3j4 40

2D2W−H̄
2H2 Y 2 3 ◦ Y 4 5 ◦ ⟨12⟩⟨14⟩[24]ϵi4i5σI1j2j3

8
2W 2

+H̄
2H2 Y 3 4 ◦ [12]2δI1I2δi5j4δ

i6
j3

41 Y 2 3 ◦ Y 4 5 ◦ ⟨12⟩⟨13⟩[23]δi5j3σ
I1i4

j2

9 Y 1 2 ◦ [12]2σI2i5i6σI1j3j4 42
2D2W+H̄

2H2 Y 2 3 ◦ Y 4 5 ◦ [12][14]⟨24⟩ϵi4i5σI1j2j3
10 G2

−H̄
2H2 Y 3 4 ◦ ⟨12⟩2δA1A2δi5j4δ

i6
j3

43 Y 2 3 ◦ Y 4 5 ◦ [12][13]⟨23⟩δi5j3σ
I1i4

j2

11 G2
+H̄

2H2 Y 3 4 ◦ [12]2δA1A2δi5j4δ
i6
j3

44
3D4H̄2H2

Y 1 2 ◦ ⟨12⟩2[12]2δi3j1δ
i4
j2

12 B−W
2
−H̄H ⟨12⟩⟨23⟩⟨13⟩ϵI2I3X6σX6i5

j4
45 Y 1 2 ◦ Y 3 4 ◦ ⟨13⟩2[13]2δi3j1δ

i4
j2

13 B+W
2
+H̄H [12][23][13]ϵI2I3X6σX6i5

j4
46 Y 1 2 ◦ Y 3 4 ◦ ⟨12⟩⟨13⟩[12][13]δi3j1δ

i4
j2

14 W 3
−H̄H ⟨12⟩⟨23⟩⟨13⟩ϵI1I2I3δi5j4 47

4DQ̄QH̄2H2

Y 3 4 ◦ Y 5 6 ◦ ⟨13⟩[23]ϵj3j4δi5j1δ
a2
b1

15 W 3
+H̄H [12][23][13]ϵI1I2I3δi5j4 48 Y 3 4 ◦ Y 5 6 ◦ ⟨13⟩[23]δi2j3δ

i5
j1
δi6j4δ

a2
b1

16 G3
−H̄H ⟨12⟩⟨23⟩⟨13⟩fA1A2A3δi5j4 49 Y 3 4 ◦ Y 5 6 ◦ ⟨15⟩[25]δi2j3δ

i5
j4
δi6j1δ

a2
b1

17 G3
+H̄H [12][23][13]fA1A2A3δi5j4 50 Y 3 4 ◦ Y 5 6 ◦ ⟨13⟩[23]δi2j1δ

i5
j4
δi6j3δ

a2
b1

18
2D2H̄3H3 Y 1 2 3 ◦ Y 4 5 6 ◦ ⟨12⟩[12]δi4j1δ

i5
j2
δi6j3 51

6DW−Q̄QH̄H

⟨12⟩2[23]δi5j4δ
a3
b2
σI1i3j2

19 Y 1 2 3 ◦ Y 4 5 6 ◦ ⟨14⟩[14]δi4j1δ
i5
j2
δi6j3 52 ⟨12⟩⟨14⟩[34]δi5j4δ

a3
b2
σI1i3j2

20 D2B−B+H̄H ⟨13⟩2[23]2δi4j3 53 ⟨12⟩2[23]δi3j4δ
a3
b2
σI1i5j2

21
2D2W−W+H̄H

⟨13⟩2[23]2δI1I2δi4j3 54 ⟨12⟩⟨14⟩[34]δi3j4δ
a3
b2
σI1i5j2

22 ⟨13⟩2[23]2ϵI1I2X6σX6i4
j3

55 ⟨12⟩2[23]δi3j2δ
a3
b2
σI1i5j4

23 D2G−G+H̄H ⟨13⟩2[23]2δA1A2δi4j3 56 ⟨12⟩⟨14⟩[34]δi3j2δ
a3
b2
σI1i5j4

24 D2B−H̄
2H2 Y 2 3 ◦ Y 4 5 ◦ ⟨12⟩⟨14⟩[24]δi4j3δ

i5
j2

57

6DW+Q̄QH̄H

[13]2⟨23⟩δi5j4δ
a3
b2
σI1i3j2

25 D2B+H̄
2H2 Y 2 3 ◦ Y 4 5 ◦ [12][14]⟨24⟩δi4j3δ

i5
j2

58 [13][14]⟨24⟩δi5j4δ
a3
b2
σI1i3j2

26 D2B2
−H̄H ⟨12⟩3[12]δi4j3 59 [13]2⟨23⟩δi3j4δ

a3
b2
σI1i5j2

27 D2B2
+H̄H [12]3⟨12⟩δi4j3 60 [13][14]⟨24⟩δi3j4δ

a3
b2
σI1i5j2

28
2D2W 2

−H̄H
⟨12⟩3[12]δI1I2δi4j3 61 [13]2⟨23⟩δi3j2δ

a3
b2
σI1i5j4

29 Y 1 2 ◦ ⟨12⟩2⟨23⟩[23]ϵI1I2X6σX6i4
j3

62 [13][14]⟨24⟩δi3j2δ
a3
b2
σI1i5j4

30
2D2W 2

+H̄H
[12]3⟨12⟩δI1I2δi4j3 63

4D3Q̄QH̄H

⟨13⟩⟨23⟩[23]2δi2j3δ
i4
j1
δa2b1

31 Y 1 2 ◦ [12]2⟨23⟩[23]ϵI1I2X6σX6i4
j3

64 ⟨12⟩⟨13⟩[12][23]δi2j3δ
i4
j1
δa2b1

32 D2G2
−H̄H ⟨12⟩3[12]δA1A2δi4j3 65 ⟨13⟩⟨23⟩[23]2δi2j1δ

i4
j3
δa2b1

33 D2G2
+H̄H [12]3⟨12⟩δA1A2δi4j3 66 ⟨12⟩⟨13⟩[12][23]δi2j1δ

i4
j3
δa2b1

Table 5.2: The table shows all the dimension-eight operators, their multiplicity and a
set of independent minimal amplitudes.

ċ
(6)
5 = c

(6)
5

(
8g21Y

2
H + 6g21Y

2
Q +

41g22
6

+ 8g23 − 4Y1Ȳ1 + 8Y2Ȳ2
)
+ c

(6)
5

(
2γHcoll + 2γQcoll

)

+ c
(6)
2

(
−g

2
2

6
+ Y1Ȳ1 + Y2Ȳ2

)
+ c

(6)
3

(
g22
6
− Y1Ȳ1 − Y2Ȳ2

)

+ c
(6)
4 (12Y2Ȳ2 − 12Y1Ȳ1) + . . . ,

ċ
(6)
6 = c

(6)
6

(
10g21Y

2
H +

3g22
2

+ 12λ

)
+ 6c

(6)
12 g1g2YH + c

(6)
6

(
2γHcoll + 2γBcoll

)
+ . . . ,

ċ
(6)
7 = c

(6)
7

(
10g21Y

2
H +

3g22
2

+ 12λ

)
+ 6c

(6)
13 g1g2YH + c

(6)
7

(
2γHcoll + 2γBcoll

)
+ . . . ,

ċ
(6)
8 = c

(6)
8

(
2g21Y

2
H +

7g22
2

+ 12λ

)
+ 2c

(6)
12 g1g2YH + c

(6)
8

(
2γHcoll + 2γWcoll

)
+ . . . ,

ċ
(6)
9 = c

(6)
9

(
2g21Y

2
H +

7g22
2

+ 12λ

)
+ 2c

(6)
13 g1g2YH + c

(6)
9

(
2γHcoll + 2γWcoll

)
+ . . . ,

ċ
(6)
10 = c

(6)
10

(
2g21Y

2
H +

3g22
2

+ 12λ

)
+ c

(6)
10

(
2γHcoll + 2γGcoll

)
+ . . . ,

ċ
(6)
11 = c

(6)
11

(
2g21Y

2
H +

3g22
2

+ 12λ

)
+ c

(6)
11

(
2γHcoll + 2γGcoll

)
+ . . . ,
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ċ
(6)
12 = c

(6)
12

(
6g21Y

2
H +

g22
2

+ 4λ

)
+ 4c

(6)
6 g1g2YH + 4c

(6)
8 g1g2YH

+ c
(6)
12

(
2γHcoll + γWcoll + γBcoll

)
+ . . . ,

ċ
(6)
13 = c

(6)
13

(
6g21Y

2
H +

g22
2

+ 4λ

)
+ 4c

(6)
7 g1g2YH + 4c

(6)
9 g1g2YH

+ c
(6)
13

(
2γHcoll + γWcoll + γBcoll

)
+ . . . ,

where the dots indicate that the operator mixes with other operators which we are not
considering, i.e. already at leading order in the couplings the sector we are looking at
is not closed. The last term in the RG evolution of each coefficient is needed to isolate
the UV contributions from the diagonal IR anomalous dimension. These results fully
match with previous calculations in the literature, after a proper change of basis, and
we take this as a cross-check for the on-shell methods techniques in this thesis.

Then we present the result for the running of the Wilson coefficients of the dimension-
eight operators associated to the minimal amplitudes. Since most of the operators mix
with operators outside the sector we are investigating, we are going to omit the dots,
as well as the IR subtraction, i.e. we show ċ

′(8)
i = ċ

(8),UV
i − ċ(8),IRi .

ċ
′(8)
1 =

(
6g22 + 8g21Y

2
H + 192λ

)
c
(8)
1 ,

ċ
′(8)
2 =

(
3g22 + 20g21Y

2
H + 48λ

)
c
(8)
2 + 8g1g2YHc

(8)
4 ,

ċ
′(8)
3 =

(
3g22 + 20g21Y

2
H + 48λ

)
c
(8)
3 + 8g1g2YHc

(8)
5 ,

ċ
′(8)
4 = 8g1g2YHc

(8)
2 +

(
13g22 + 12g21Y

2
H + 40λ

)
c
(8)
4 + 8g1g2YHc

(8)
6 + 2g1g2YHc

(8)
7 ,

ċ
′(8)
5 = 8g1g2YHc

(8)
3 +

(
13g22 + 12g21Y

2
H + 40λ

)
c
(8)
5 + 8g1g2YHc

(8)
8 + 2g1g2YHc

(8)
9 ,

ċ
′(8)
6 = 4g1g2YHc

(8)
4 +

(
7g22 + 4g21Y

2
H + 48λ

)
c
(8)
6 +

(
4g22 − 4λ

)
c
(8)
7 ,

ċ
′(8)
7 =

(
31g22 + 4g21Y

2
H + 24λ

)
c
(8)
7 + 8g1g2YHc

(8)
4 ,

ċ
′(8)
8 = 4g1g2YHc

(8)
5 +

(
7g22 + 4g21Y

2
H + 48λ

)
c
(8)
8 +

(
4g22 − 4λ

)
c
(8)
9 ,

ċ
′(8)
9 =

(
31g22 + 4g21Y

2
H + 24λ

)
c
(8)
9 + 8g1g2YHc

(8)
5 ,

ċ
′(8)
10 =

(
3g22 + 4g21Y

2
H + 48λ

)
c
(8)
10 ,

ċ
′(8)
11 =

(
3g22 + 4g21Y

2
H + 48λ

)
c
(8)
11 ,

ċ
′(8)
12 =

(
39g22
2

+ 6g21Y
2
H + 4λ

)
c
(8)
12 + 4g1g2YHc

(8)
14 ,

ċ
′(8)
13 =

(
39g22
2

+ 6g21Y
2
H + 4λ

)
c
(8)
13 + 4g1g2YHc

(8)
15 ,

ċ
′(8)
14 =

(
57g22
2

+ 2g21Y
2
H + 12λ

)
c
(8)
14 + 3g1g2YHc

(8)
12 ,

ċ
′(8)
15 =

(
57g22
2

+ 2g21Y
2
H + 12λ

)
c
(8)
15 + 3g1g2YHc

(8)
13 ,

ċ
′(8)
16 =

(
3g22
2

+ 36g23 + 2g21Y
2
H + 12λ

)
c
(8)
16 ,

ċ
′(8)
17 =

(
3g22
2

+ 36g23 + 2g21Y
2
H + 12λ

)
c
(8)
17 ,
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ċ
′(8)
18 =

(
10g22 +

116g21Y
2
H

3
+ 72λ

)
c
(8)
18 +

(
17g22
6
− 26g21Y

2
H − 4λ

)
c
(8)
19

+
(
−18g22 + 108Y1Ȳ1 + 108Y2Ȳ2

)
c
(8)
47 +

(
18YHYQg

2
1 +

45g22
2
− 108Y1Ȳ1 − 162Y2Ȳ2

)
c
(8)
48

+

(
−18YHYQg21 −

9g22
2

+ 54Y2Ȳ2
)
c
(8)
49 +

(
36YHYQg

2
1 + 54Y1Ȳ1 − 54Y2Ȳ2

)
c
(8)
50 ,

ċ
′(8)
20 = g21c

(8)
44 Y

2
H +

1

3
g21c

(8)
45 Y

2
H −

1

3
g21c

(8)
46 Y

2
H + 3g1g2c

(8)
38 YH + 3g1g2c

(8)
39 YH

+
(
9g22 + 20g21Y

2
H

)
c
(8)
20 − 4g21Y

2
Qc

(8)
63 − 8g21Y

2
Qc

(8)
65 ,

ċ
′(8)
19 =

(
−34g22

3
− 8g21Y

2
H

3
+ 16λ

)
c
(8)
18 +

(
145g22
6

+ 2g21Y
2
H + 52λ

)
c
(8)
19

+
(
−27g22 + 162Y1Ȳ1 + 162Y2Ȳ2

)
c
(8)
47 +

(
−18YHYQg21 +

45g22
2
− 162Y1Ȳ1 − 108Y2Ȳ2

)
c
(8)
48

+

(
18YHYQg

2
1 +

9g22
2
− 54Y2Ȳ2

)
c
(8)
49 +

(
−36YHYQg21 − 54Y1Ȳ1 + 54Y2Ȳ2

)
c
(8)
50 ,

ċ
′(8)
21 =

1

4
c
(8)
44 g

2
2 +

1

12
c
(8)
45 g

2
2 −

1

12
c
(8)
46 g

2
2 − c(8)63 g

2
2 − 2c

(8)
65 g

2
2 + g1YHc

(8)
38 g2 + g1YHc

(8)
39 g2

+

(
77g22
3

+ 12g21Y
2
H

)
c
(8)
21 ,

ċ
′(8)
22 =

(
25g22
3

+ 12g21Y
2
H

)
c
(8)
22 − ig22c

(8)
63 ,

ċ
′(8)
23 = −2

3
c
(8)
63 g

2
3 −

4

3
c
(8)
65 g

2
3 +

(
9g22 + 22g23 + 12g21Y

2
H

)
c
(8)
23 ,

ċ
′(8)
24 =

(
25g22
2

+
38g21Y

2
H

3
+ 12λ

)
c
(8)
24 ,

ċ
′(8)
25 =

(
25g22
2

+
38g21Y

2
H

3
+ 12λ

)
c
(8)
25 ,

ċ
′(8)
26 =

(
3g22
2

+
10g21Y

2
H

3
+ 12λ

)
c
(8)
26 + g1g2YHc

(8)
34 −

1

2
g1g2YHc

(8)
35 ,

ċ
′(8)
27 =

(
3g22
2

+
10g21Y

2
H

3
+ 12λ

)
c
(8)
27 + g1g2YHc

(8)
36 −

1

2
g1g2YHc

(8)
37 ,

ċ
′(8)
28 = −25

6
ic

(8)
29 g

2
2 +

1

3
g1YHc

(8)
34 g2 −

1

6
g1YHc

(8)
35 g2 +

(
11g22
6

+ 2g21Y
2
H + 12λ

)
c
(8)
28 ,

ċ
′(8)
29 = 20ic

(8)
28 g

2
2 − 4ig1YHc

(8)
34 g2 + 2ig1YHc

(8)
35 g2 +

(
22g22
3

+ 8g21Y
2
H

)
c
(8)
29 ,

ċ
′(8)
30 = −25

6
ic

(8)
31 g

2
2 −

1

3
g1YHc

(8)
36 g2 +

1

6
g1YHc

(8)
37 g2 +

(
11g22
6

+ 2g21Y
2
H + 12λ

)
c
(8)
30 ,

ċ
′(8)
31 = 20ic

(8)
30 g

2
2 + 4ig1YHc

(8)
36 g2 − 2ig1YHc

(8)
37 g2 +

(
22g22
3

+ 8g21Y
2
H

)
c
(8)
31 ,

ċ
′(8)
32 =

(
3g22
2

+ 2g21Y
2
H + 12λ

)
c
(8)
32 ,

ċ
′(8)
33 =

(
3g22
2

+ 2g21Y
2
H + 12λ

)
c
(8)
33 ,
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ċ
′(8)
34 =

2

3
g1g2YHc

(8)
26 +

2

3
g1g2YHc

(8)
28 +

5

3
ig1g2YHc

(8)
29 +

(
−g

2
2

3
+

8g21Y
2
H

3
+ 4λ

)
c
(8)
34

+

(
−5g22

12
+

11g21Y
2
H

3
− 2λ

)
c
(8)
35 ,

ċ
′(8)
35 =

(
10g21Y

2
H −

7g22
6

)
c
(8)
35 ,

ċ
′(8)
36 =

2

3
g1g2YHc

(8)
27 +

2

3
g1g2YHc

(8)
30 +

5

3
ig1g2YHc

(8)
31 +

(
−g

2
2

3
+

8g21Y
2
H

3
+ 4λ

)
c
(8)
36

+

(
−5g22

12
+

11g21Y
2
H

3
− 2λ

)
c
(8)
37 ,

ċ
′(8)
37 =

(
10g21Y

2
H −

7g22
6

)
c
(8)
37 ,

ċ
′(8)
38 = 4g1g2YHc

(8)
20 + 4g1g2YHc

(8)
21 +

(
16g21Y

2
H − 2g22

)
c
(8)
38 +

1

3
g1g2YHc

(8)
44 +

1

3
g1g2YHc

(8)
45
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ċ
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ċ
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3

+
8Y2Ȳ2
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− 2Y2Ȳ2 + 4λ

)
c
(8)
59 +

(
17g22
12

+
g21Y

2
H

3
− 2λ

)
c
(8)
60

+

(
−16g22

3
− 4Y1Ȳ1
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)
c
(8)
42 +

(
−2g22 + 4Y1Ȳ1 −
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ċ
′(8)
60 =

(
−g

2
2

6
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3

+ 8Y2Ȳ2
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3

)
c
(8)
44 +

2

3
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)
c
(8)
63 +

(
2g22 −

4Y1Ȳ1
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3
− Y2Ȳ2
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)
c
(8)
63

+

(
−13g22

6
+

2g21Y
2
H

3
+ 4g21Y

2
Q −

4Y1Ȳ1
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Chapter 6

Gravitational EFTs and the Eikonal
Limit

One of the exciting applications of scattering amplitudes focuses on the computation
of classical observables in gauge theory and gravity [140], such as deflection angles
and time delay/advance, or effective Hamiltonians describing the dynamics of binary
systems. Early results in this direction date back to [125], where it was already noted
that loop amplitudes contribute to classical processes. The intimate connection between
loops and classical physics was sharpened in [129], and had already been applied in [128]
to obtain the classical and quantum O(G2) corrections to Newton’s potential, where G
is Newton’s constant. In this approach, gravity is treated as an effective theory [127],
where one can make predictions at low energy despite the non-renormalisability of the
theory.

More recently, a systematic approach employing scattering amplitudes in conjunction
with unitarity was developed to compute classical quantities in gauge theory and gravity.
Classical [131] and quantum [130, 131] corrections to Newton’s potential can be obtained
from a two-to-two scattering amplitude of two massive scalars, in particular narrowing
down to terms that have discontinuities in the channel corresponding to the momentum
transfer q⃗ of the process [129]. An additional simplification stems from the fact that in
the unitarity-based calculation the cuts can be kept in four dimensions, as discrepancies
with d-dimensional results only give rise to analytic terms, at least up to two loops [334]
(but not beyond [335]). Unitarity has also been applied in [132, 134, 135, 141, 336, 337]
to compute the deflection angle for light or for gravitons passing by a heavy mass, a
quantity that has the advantage of being gauge invariant.

In this chapter, we compute the graviton deflection angle and time delay/advance for
the three interactions R3, R4 and FFR, and in addition the photon deflection and time
delay induced by the FFR interaction. The single most important qualitative difference
with the EH theory is that the propagation and speed of the massless particle acquire a
dependence on its polarisation. This generically leads to a time advance at small impact
parameter b in the classical theory. Interestingly, in the case of graviton scattering due
to R4 and FFR, causality violation can be avoided if the coefficients of the interactions
obey certain positivity constraints which, for R4, are in precise agreement with those
of [338, 339]. For the R3 interaction our results are fully consistent with the tree-level
findings of [340], extending them to one loop. Note that while we used a massive scalar,
[340] used a coherent state to set up the background in which the graviton is deflected.
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Similarly, the FFR interaction induces superluminal propagation of photons.

The chapter is organised as follows. In Section 6.1, we present the action of the sys-
tem under consideration, classifying all the independent effective interactions beyond
Hilbert-Einstein. In Section 6.2, we review the basics of the eikonal approximation of
scattering amplitudes and how to compute observables from it. We discuss our kine-
matic set-up and provide explicit expressions for the spinor helicity variables associated
to each massless particle in the eikonal limit. We then discuss some general aspects of
the eikonal approximation, in particular the extraction of the phases δL from the loop
scattering amplitudes. Section 6.3 contains the computations of all tree-level and one-
loop amplitudes relevant for our analysis. As a warm up we consider the EH theory,
where we re-discuss the graviton deflection computation of [141]. We then move on
to present the relevant four-point two-scalar two-graviton amplitudes with and with-
out helicity flip in the case of R3, R4 and FFR, as well as the two-scalar two-photon
amplitudes for the FFR case, all at tree and one-loop level. While at tree level we
present exact expressions, at one loop we work in the eikonal approximation and we
only consider cuts in the q2-channel which produce non-analytic terms arising from the
long-range propagation of two massless particles. Section 6.4 is dedicated to the compu-
tation of the leading and subleading eikonal matrices δ0 and δ1, from which we will then
obtain the O(G) and O(G2) corrections to the deflection angle and time advance/delay
for the four cases considered – scattering of gravitons in the presence of R3, R4 and
FFR terms, and scattering of photons induced by the FFR interaction.

6.1 Gravity with higher-derivative couplings

Much attention has been devoted to the study of effective theories of gravity obtained by
adding higher-derivative interactions to the Einstein-Hilbert (EH) action. In particular,
efforts have been made in [341–343] to confront such modifications with gravitational
wave observations. It was also noted that for these effects to be measurable by exper-
iments such as LIGO the cutoff of the effective theory must not be much larger than
O(km−1). A study of the effects that these higher-derivative terms have on the Hamil-
tonian and deflection angle was initiated in [173]. In this chapter, based on the work
[174], we sharpen this study by rooting it in the eikonal approximation – specifically,
applying it to three types of terms, denoted schematically as R3, R4 and FFR, for
which we compute the corresponding corrections to the deflection angle and time de-
lay/advance. More in detail, the particular action we consider for the graviton, photon
and a massive scalar has the form:

S =

∫
d4x
√−g

[
− 2

κ2
R − 1

4
FµνFµν +

1

2
(Dµϕ)(D

µϕ)− 1

2
m2ϕ2

− 2

κ2

(
α′ 2

48
I1 +

α′ 2

24
G3

)
+

2

κ2
L8 −

αγ
8
FµνF ρσRµνρσ

]
,

(6.1)

where

I1 := RαβµνR
µν
ρσR

ρσ
αβ , G3 := I1 − 2RµναβR

βγ
νσR

σ
µγα , (6.2)

while
L8 = β1 C 2 + β2 C C̃ + β3 C̃ 2 , (6.3)

where
C := Rµνρσ R

µνρσ , C̃ :=
1

2
Rµναβ ϵ

αβ
γδ R

γδµν . (6.4)
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A few comments on the various couplings in (6.1) are in order here. First, there are
two types of R3 terms, denoted as I1 and G3 above. Such terms arise naturally in the
low-energy effective description of bosonic string theory. Their effects on gravitational
scattering of different matter fields have been discussed recently in [173, 344]; specifically
for the scattering of two massive scalars, both independent structures I1 and G3 were
found to contribute. On the other hand, for the helicity-preserving deflection of massless
particles of spin 0, 1 and 2, it was shown in [173] that the G3 interaction has no effect.
Additional interesting features about the I1 and G3 couplings are that I1 is the only
coupling that contributes to pure graviton scattering in d ≤ 6 [298, 345] and is the
two-loop counterterm in pure gravity [346]. G3 is a topological term in six dimensions:
as such, for d ≤ 6, we can always perform a field redefinition at the amplitude level of
the action such that such term is not present (in the case of pure gravity) or re-written
in terms of tidal effects. For example, if we consider a theory of gravity with matter, e.g.
massive scalars (mimicking black holes or neutron stars), the presence of a G3 coupling
alters their dynamics. In particular the four-point amplitude with two gravitons and
two scalars becomes [173, 344]

M(0)
EH+G3

(ϕ1, ϕ2, h
++
3 , h++

4 ) =M(0)
EH(ϕ1, ϕ2, h

++
3 , h++

4 ) + i
α2

32

(κ
2

)2
[34]4 (2m2 + s) .

(6.5)
The non-trivial contribution to the scattering amplitude of two massive scalars and
two gravitons from the G3 interactions modifies the classical potential in the two-
body system, as shown in [173, 344]. It is easy to show that the contact term pro-
portional to [34]4 (2m2 + s) in the amplitude (6.5) is (up to a numerical coefficient) the
amplitude arising from a particular tidal interactions of the form RµνρσRµνρσm

2ϕ2 −
∇αRµνρσ∇αRµνρσϕ2, see for example [347]. But, in the following we will be concerned
with (helicity-preserving and flipping) scattering of massless gravitons in the background
produced by a massive scalar, in which case only the I1 structure contributes, hence we
will refer to it simply as the R3 term, since no confusion can arise.

The second interaction we study is of the type R4. In principle there are 26 indepen-
dent parity-even quartic contractions of the Riemann tensor [348], but only the seven
which do not contain the Ricci scalar or tensor survive on shell in arbitrary dimensions,
as can also be seen using field redefinitions [349, 350]. In four dimensions these reduce to
two independent parity-even structures [341, 351], plus one parity-odd structure [342],
as shown in (6.3). In agreement with [351] we find that these interactions induce the
following four-point graviton amplitudes: those with all-equal helicities, and the ampli-
tude with two positive- and two negative-helicity gravitons (the MHV configuration). If
β2 in (6.3) is non-vanishing, then the all-plus and all-minus graviton amplitudes are in-
dependent. We also note that a particular contraction of four Riemann tensors appears
in type-II superstring theories where it is the first higher-derivative curvature correction
to the EH theory, and can be determined from four-graviton scattering [352].

The third interaction we consider is an FFR term, where F is the electromagnetic
field strength. It is known to arise in string theory as well as from integrating out
massive, charged electrons in the case of electrodynamics coupled to gravity, as discussed
in [353, 354], and considered more recently in [355, 356].

As we have already mentioned, we have also introduced in the action a minimally
coupled massive scalar to represent a black hole1.

1In order to describe charged black holes the real scalar in (6.1) should be replaced by an electrically
charged complex scalar.
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Note that in (6.1) we have excluded terms quadratic in the curvatures since from
an effective field theory/on-shell point of view they have no effect to any order in four
dimensions (for example, see [357] for a recent review).

6.2 Physical observables from the eikonal phase matrix

The physical observables of interest are the classical deflection angle and the time de-
lay/advance [358] experienced by massless gravitons and photons when they scatter off
a (possibly charged) massive scalar. A method ideally suited for obtaining classical ob-
servables directly from amplitudes, without passing through intermediate, unphysical
quantities, is the eikonal [359–364]2. In this approach the relevant amplitudes are evalu-
ated in an approximation where the momentum transfer |q⃗ | is taken to be much smaller
than both the mass m of the heavy scalar and the energy ω of the massless particle, or
more precisely taking m≫ ω ≫ |q⃗ |. Crucial for this is a convenient parameterisation of
spinor helicity variables for the massless particles in the eikonal limit. The amplitudes
thus obtained are then transformed to impact parameter space via a two-dimensional
Fourier transform. In this space the amplitudes are expected to exponentiate into an
eikonal phase, from which one can extract directly the classical deflection angle and time
advance/delay. Recent applications of this method to this type of problem include [367]
for the deflection angle of massless scalars up to 2PM, [134] for photons and fermions
up to 2PM order, and up to 3PM order in [147, 162, 368].

An important point we wish to make is that in our case, because helicity-preserving
as well as helicity-violating processes contribute, the eikonal phase is promoted to an
eikonal phase matrix in the space of helicities of the external massless particles, with
(+−) and (−+) being the diagonal entries associated to no-flip scattering (in a con-
vention where all particles’ momenta are outgoing), while (++) and (−−) are the off-
diagonal entries, with helicity flip. The associated mixing problem has to be resolved
in order to obtain the physical quantities of interest. Whenever the two eigenvalues of
the eikonal phase matrix are distinct, a possible violation of causality at small impact
parameter arises, as noticed already at tree level in [340]. See also [355, 356, 369–374]
for further discussions an resolutions of this issue in UV-complete theories and [353,
354] for related discussions involving helicity flip and no-flip amplitudes.

In this section we first give a precise definition of the eikonal limit providing an
explicit parametrisation for all the momenta and spinor-helicity variables we need. We
then briefly review the connection between amplitudes in the eikonal limit (Fourier-
transformed to impact parameter space) and the eikonal phase matrix, the deflection
angle and the time delay.

6.2.1 Kinematics of the scattering

We begin by describing the kinematics of the scattering processes we consider. We
denote by p1 and p2 the four-momenta of the incoming and outgoing scalars, respectively,
with m being their common mass, while the momenta of the incoming and outgoing
massless particles (gravitons or photons) are p4 and p3. We will work in the centre of
mass frame, with the following parameterisation:

2This eikonal was intensively studied in the context of gravity and string theory in the nineties [363,
364]. For related recent work see also [142, 365, 366] and references therein.
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p1

p2 ph33

ph44

pµ4 = −(E4,−p⃗+ q⃗/2) ,

pµ1 = −(E1, p⃗− q⃗/2) ,
pµ2 = (E2, p⃗+ q⃗/2) ,

pµ3 = (E3,−p⃗− q⃗/2) .

(6.6)

In our conventions we take all momenta to be outgoing, hence the minus signs in the
expressions of p1 and p4 since particles 1 and 4 are incoming. We also have

E1 = E2 =
√
m2 + p⃗ 2 + q⃗ 2/4 ,

E3 = E4 =
√
p⃗ 2 + q⃗ 2/4 := ω ,

(6.7)

where p⃗ · q⃗ = 0 due to momentum conservation. Hence q⃗ lives in a two-dimensional
space orthogonal to p⃗. In this thesis we define the Mandelstam variables as

s := (p1 + p2)
2 = −q⃗ 2, t := (p1 + p4)

2 = (E1 + E4)
2, u := (p1 + p3)

2, (6.8)

with s + t + u = 2m2. In this notation the spacelike momentum transfer squared is
given by s, while t denotes the centre of mass energy squared, and ω is the energy of
the scattered massless particle.

In the above parameterisation, the kinematic limit we are interested is

m≫ ω ≫ |q⃗ | , (6.9)

which implies for the Mandelstam variables

t ≃ m2 + 2mω , ut−m4 ≃ −(2mω)2 , (6.10)

and for the energies of the massless particles

E3 = E4 := ω ≃ |p⃗ |
(
1 +

q⃗ 2

8 p⃗ 2

)
. (6.11)

For definiteness we choose p⃗ = |p⃗ | ẑ with |p⃗ | ≫ |q⃗ |, as implied by (6.9). In this
approximation we can write the four-momentum p3 of the massless particle in spinor
notation as

p3 =




q⃗ 2

8|p⃗ | −
q̄

2

−q
2

2|p⃗ |


 , (6.12)

with q := q1 + iq2 and q̄ := q1 − iq2. One can then find an explicit parameterisation for
the spinors associated to the null momenta pi = λiλ̃i, i = 3, 4, with the result

λ3 =
√
2|p⃗ |



− q̄

4|p⃗ |
1


 , λ̃3 =

√
2|p⃗ |

(
− q

4|p⃗ | 1
)
,

λ4 = i
√

2|p⃗ |
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q̄

4|p⃗ |
1


 , λ̃4 = i

√
2|p⃗ |

(
q

4|p⃗ | 1
)
.

(6.13)

Note the extra factors of i due to the negative energy-component of p4 corresponding
to an incoming particle.
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6.2.2 Eikonal phase, deflection angle and time delay

In this section we briefly review relevant aspects of the eikonal approximation and the
eikonal phase matrix which allows for an efficient extraction of the deflection angle and
time delay/advance from scattering amplitudes.

First, we introduce the amplitude in impact parameter space Ã. This is defined as
a Fourier transform of the amplitude A with respect to the momentum transfer q⃗,

Ã(⃗b ) :=
1

4mω

∫
dd−2q

(2π)d−2
eiq⃗·⃗b A(q⃗ ) , (6.14)

where b⃗ is the impact parameter, and the number of dimensions will eventually be set
to d = 4− 2ϵ.

In the eikonal approximation the gravitational S-matrix is conjectured to be of the
form [363, 367]

Seik = ei(δ0+δ1+··· ) , (6.15)

where δ0 is the leading eikonal phase, which is O(G), δ1 the first subleading correction,
of O(G2), and the dots represent subsubleading contributions. Alternatively, one can
write the S-matrix in impact parameter space as

Seik = 1 + Ã(0)
ω + Ã(1)

ω2 + Ã(1)
ω + Ã(2)

ω3 + Ã(2)
ω2 + Ã(2)

ω + · · · , (6.16)

where the superscript indicates the loop order L and the subscript the power in the
energy ω of the massless particle. That the maximal power of ω at a given loop order
is L + 1 is a well-established fact in (super)gravity and we will see below that the R3

corrections do not alter this expectation. However, we also find that the R4 corrections
lead to higher powers of ω starting at one loop, which is not surprising since higher-
derivative corrections worsen the high-energy behaviour. In the effective field theory
approach we adopt, we are not really interested in high-energy physics (or high-energy
completions of the theory) – we use the eikonal approximation as an efficient and elegant
tool to extract deflection angles and time delay/advances without passing through the
computation of non gauge-invariant intermediate quantities such as effective potentials
or Hamiltonians.

Equating (6.15) with (6.16) one gets

δ0 = −i Ã(0)
ω , (6.17)

δ1 = −i Ã(1)
ω , (6.18)

as well as the condition

−(δ0)
2

2
= Ã(1)

ω2 , (6.19)

which implies the consistency condition

Ã(1)
ω2 =

1

2
(Ã(0)

ω )2 . (6.20)

Thus, the contribution to the one-loop amplitude that is leading in ω, Ã(1)
ω2 , does not

provide any new information about the S-matrix. In general, it is only the term in
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Ã(L) that is linear in ω, Ã(L)
ω , that provides new information entering δL. Also, (6.17)–

(6.20) are conjectured to be valid as matrix equations in the linear space of helicity
configurations of external states.

Note that a priori these statements are known to hold for EH gravity. The results
in this thesis show that (6.20) also holds for the higher-derivative interactions discussed
here at least up to one loop.

Finally, the particle deflection angle can be obtained from the eigenvalues δ(i) of the
eikonal phase matrix δ. Using a saddle-point approximation [134, 137, 363] one finds,
for small θ,

θ(i) =
1

ω

∂

∂b
δ(i) , (6.21)

where i runs over all eigenvalues of δ and b = |⃗b |. For the time delay, we will use instead
[375–377]

t(i) =
∂δ(i)

∂ω
. (6.22)

6.3 The relevant scattering amplitudes

In this section we compute the relevant amplitudes needed to extract the deflection
angle and time delay/advance induced by the various interactions in (6.1). At tree
level we will present exact expressions, while at one loop we only need to compute
the part of the amplitude with a discontinuity in the s-channel3 and we will write the
relevant expressions after expanding them in the eikonal approximation (6.9) – this will
be denoted in the following by the ≃ symbol. A direct extraction of the classical part
of the deflection angle and time delay can be performed using triple cuts, and in an
even more refined way using the holomorphic classical limit [158]. We chose instead to
compute the one-loop amplitudes through two-particle cuts, which also determine the
quantum part of the amplitude. The reason for doing this is twofold: at the practical
level, computing the relevant terms in the amplitude from generalised unitarity does
not improve the computation significantly, and the additional terms, despite not being
used in the present thesis, could become relevant when considering the exponentiation
in the eikonal limit at higher orders (see, for example, the discussion about the eikonal
exponentiation of N = 8 four-point amplitude in [366]).

We will begin our discussion with the simple case of EH gravity, quoting from [141]
the relevant two-scalar two-graviton amplitude without helicity flip. We also compute
the amplitude with helicity flip, and show that it does not contribute in the eikonal
approximation, as correctly assumed in previous treatments. We will then move on
to compute the relevant tree and one-loop amplitudes that are necessary to compute
the corrections induced by the R3, R4 and FFR terms in (6.1). The two-particle cut
diagrams relevant for the R3 and R4 cases are shown in Figure 6.1. The corrections
induced by the FFR interaction need a separate analysis and we show the corresponding
diagrams in Figures 6.2 and 6.3. Indeed, for the R3 and R4 interactions both internal
and external particles are gravitons, while in the case of FFR we either have external
gravitons and internal photons, or viceversa.

3We recall that s = −|q⃗ |2 where q⃗ is the momentum exchange between the classical source and the
graviton.
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Figure 6.1: The two-particle cut diagrams for the Rn (n = 3, 4) interaction in the
s = −q⃗ 2-channel. In our conventions external momenta are all outgoing and internal
loop momenta flow from left to right in the diagram.

A comment is in order here. Focusing on the cuts relevant for Rn depicted in Fig-
ure 6.1, the case h3 = h4 corresponds to the massless particle flipping helicity upon
interacting with the scalar, whereas h3 = −h4 corresponds to the helicity-preserving
process, since in our conventions all external particles are outgoing. A simple way to
take into account particle statistics is to sum over all values of the internal helicities h1
and h2 and divide the result by 2, which correspond to the Bose symmetry factor for
the internal gravitons.

6.3.1 Four-point scalar/graviton scattering in EH gravity

The relevant tree-level amplitudes in the EH case are the two-scalar/two-graviton am-
plitudes in the two helicity configurations for the gravitons4:

A(0)
EH(1

ϕ, 2ϕ, 3−−, 4++) = −
(κ
2

)2 ⟨3|1|4]4
s2

[ i

t−m2
+

i

u−m2

]
,

A(0)
EH(1

ϕ, 2ϕ, 3++, 4++) = −
(κ
2

)2
m4 [34]

2

⟨34⟩2
[ i

t−m2
+

i

u−m2

]
,

(6.23)

The computation of the four-point one-loop amplitude without helicity flip in the eikonal
approximation (6.9) was performed in [141], with the result

A(1)
EH(1

ϕ, 2ϕ, 3−−, 4++) ≃ Nh
(κ
2

)4 [
(2mω)4

(
I4(s, t;m) + I4(s, u;m)

)
− 15(m2ω)2I3(s;m)

+ (4mω)2sI3(s)−
29

2
(mω)2I2(s)

]
,

(6.24)

where

Nh :=

(⟨3|2|4]
2mω

)4

(6.25)

is a pure phase and Nh → 1 in the eikonal approximation. We have also computed the
new amplitude with helicity flip in the same approximation, with the result

A(1)
EH(1

ϕ, 2ϕ, 3++, 4++) ≃
(κ
2

)4 [34]2

⟨34⟩2 (m
2s)2

[
I4(s, t;m) + I4(s, u;m)

]
. (6.26)

4See for instance [173, 378].
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6.3.2 Four-point scalar/graviton scattering in EH +R3

We now consider the amplitudes with addition of theR3 interaction in (6.1): the helicity-
preserving amplitude at tree-level is vanishing

A(0)
R3(1

ϕ, 2ϕ, 3−−, 4++) = 0 , (6.27)

while the helicity-flip amplitude is

A(0)
R3(1

ϕ, 2ϕ, 3++, 4++) = i
(κ
2

)2(α′

4

)2

[34]4
(t−m2) (u−m2)

s
. (6.28)

At one loop, the result of [173] for the no-flip amplitude gives:

A(1)
R3(1

ϕ, 2ϕ, 3−−, 4++) ≃
(κ
2

)4(α′

4

)2

Nh
[
(ms)4

(
I4(s, t;m) + I4(s, u;m)

)
+ (m2s ω)2I3(s;m)

+
3

2
(msω)2I2(s)

]
.

(6.29)

The one-loop amplitude with helicity flip requires a new computation and the result in
the eikonal approximation is

A(1)
R3(1

ϕ, 2ϕ, 3++, 4++) ≃
(κ
2

)4(α′

4

)2

[34]4
[
(2mω)4

(
I4(s, t;m) + I4(s, u;m)

)

− 13(m2ω)2I3(s;m) + 16(mω)2s I3(s) +
153

10
(mω)2I2(s)

]
.

(6.30)

6.3.3 Four-point scalar/graviton scattering in EH +R4

In this section we consider the addition of an R4 interaction to the EH action. Such in-
teraction affects the two-scalar two-graviton amplitude at one loop and thus contributes
to graviton deflection and time delay at order G2. In order to build this amplitude using
the unitarity-based method we first need to find out the expression for the four-graviton
tree-level amplitudes in the R4 theory. We do so here starting from the Lagrangian in
(6.3) in order to make contact with the notation of [341]. We also present an alternative
derivation only relying on the algorithm presented in Chapter 2, which does not require
writing down any Lagrangian.

Deriving the four-graviton amplitudes from (6.3) is straightforward – we simply have
to replace the four Riemann tensors in each term by their linearised form corresponding
to the four on-shell gravitons. For particle i the well-known expression in momentum
space is

R(i)µνρσ =
1

2
F (i)µν F (i)ρσ (6.31)

where
F (i)µν = piµ εiν − piν εiµ . (6.32)

Since we are interested in helicity amplitudes, we choose the field strengths F (i) to be
selfdual (negative helicity) or anti-selfdual (positive helicity), hence in spinor-helicity
formalism their form is

F (i)SDαα̇ββ̇ = −
√
2λiαλiβϵα̇β̇ and F (i)ASDαα̇ββ̇ = −

√
2 λ̃iα̇λ̃iβ̇ϵαβ . (6.33)
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The building blocks in (6.4) are bilinear in Riemann tensors, and take the form

C ≃
(
F (i)(A)SD · F (j)(A)SD

)2
, (6.34)

and

C̃ ≃
(
F (i)(A)SD · F (j)(A)SD

)(
F (i)(A)SD ·

1

i
∗ F (j)(A)SD

)
, (6.35)

where · denotes Lorentz contractions and ∗ denotes the usual Hodge dual which acts on
the (anti-)selfdual field strengths as ∗FSD = FSD and ∗FASD = −FASD. Furthermore,
given the form (6.33) these expressions are only non-vanishing if both particles i and j
have the same helicity. In summary, if both gravitons have negative helicity (SD field
strength) we have

C = i C̃ = 1

2
⟨ij⟩4 , (6.36)

while if both gravitons have positive helicity (ASD field strength) we have

C = −i C̃ = 1

2
[ij]4 . (6.37)

With these results one easily arrives at

A(0)
R4(1

++, 2++, 3++, 4++) = iβ+
(κ
2

)2 (
[12]4[34]4 + [13]4[24]4 + [14]4[23]4

)
,

A(0)
R4(1

−−, 2−−, 3−−, 4−−) = iβ−
(κ
2

)2 (
⟨12⟩4⟨34⟩4 + ⟨13⟩4⟨24⟩4 + ⟨14⟩4⟨23⟩4

)
,

A(0)
R4(1

++, 2++, 3−−, 4−−) = iβ̃
(κ
2

)2
[12]4⟨34⟩4 ,

(6.38)

with

β+ = 4
(
β1 +

i

2
β2 − β3

)
, (6.39)

β− = 4
(
β1 −

i

2
β2 − β3

)
, (6.40)

β̃ = 4
(
β1 + β3

)
. (6.41)

Note that if we do not allow the parity-odd coupling (β2 = 0), then the coefficient of
the all-plus and all-minus amplitudes are the same β+ = β− := β.

The next step is to carry out one-loop amplitude calculations in the eikonal approx-
imation, as done in previous sections. The result for the relevant amplitudes is:

A(1)
R4(1

ϕ, 2ϕ, 3−−, 4++) ≃ −Nh β̃
(κ
2

)4
s2
[
35

4
(mω)4 I3(s;m) +

93

8
(mω2)2 I2(s)

]
,

A(1)
R4(1

ϕ, 2ϕ, 3++, 4++) ≃ −β+
(κ
2

)4
[34]4

[
3

4
(mω)4 I3(s;m) +

55

24
(mω2)2 I2(s)

]
,

A(1)
R4(1

ϕ, 2ϕ, 3−−, 4−−) ≃ −β−
(κ
2

)4
⟨34⟩4

[
3

4
(mω)4 I3(s;m) +

55

24
(mω2)2 I2(s)

]
.

(6.42)
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R4 contact terms from the graph-based method

Here we show an alternative and simpler way to compute four-graviton contact terms
induced byR4-type interactions, based on the algorithm presented in Chapter 2. Despite
begin simpler, such method does not provide a normalisation of the amplitude in terms
of the couplings appearing at the level of the action (6.1).

The first observation is that the terms we are after are polynomial in the spinor vari-
ables for which the degree of homogeneity are either (+2,+2,+2,+2) (and its complex
conjugate) or (+2,+2,−2,−2). Then, we are looking for the structures with the min-
imal mass dimension, i.e. with the minimum number of momentum insertions, which
in this case turn out to be zero. This means that all the planar graphs give a basis
of kinematically independent monomials. The MHV configuration (+2,+2,−2,−2) is
trivial because there is only one monomial: which also respect the correct permutation

A(0)
R4(1

++, 2++, 3−−, 4−−) ∝M ◦ = [12]4⟨34⟩4 ,

4

1 2

3

symmetries.

For the all-plus configuration we have five kinematically independent monomials:

M ◦ = [12]4[34]4 ,

4

1 2

3

M ◦ = [14]4[23]4 ,

4

1 2

3

M ◦ = [12]3[14][23][34]3 ,

4

1 2

3

M ◦ = [12][14]3[23]3[34] ,

4

1 2

3

M ◦ = [12]2[14]2[23]2[34]2 .

4

1 2

3

Upon imposing permutation symmetry to such terms, we find that the first and the
second couple of terms give the same contact terms. Moreover, after symmetrising such
structures, we find that the polynomials are written in terms of non planar monomials.
For example, for the first we find:

1

3
[14]4[23]4 +

1

3
[13]4[24]4 +

1

3
[12]4[34]4 ,

where the first term correspond to
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M−1([14]4[23]4) = .

4

1 2

3

We can recursively untie the crossing of such graphs to write them as a linear combina-
tion of the planar monomials, using recursively the graph identity shown in Figure 2.2.
Once we perform this decomposing we find that the three remaining terms are all pro-
portional to each other. Then there is a unique kinematically independent contact term
for the all-plus configuration

A(0)
R4(1

++, 2++, 3++, 4++) ∝ Y 1 2 3 4 ◦M ◦ = 1
3

(
[14]4[23]4 + [13]4[24]4 + [12]4[34]4

)
.

4

1 2

3

6.3.4 Scattering with the FFR interaction

The last interaction we wish to consider is the FFR term in (6.1). From an on-shell
point of view this is the simplest non-minimal modification of the coupling of photons
to gravity. As we will show below this leads to new corrections to the bending and time
delay/advance of light and graviton propagation in the background of a very massive
scalar particle.

This new interaction modifies the three-point two-photon/one-graviton amplitude:

A(0)
FFR(1

+, 2+, 3++) = i
(κ
2

)(αγ
4

)
[13]2[23]2 , (6.43)

which we will now use to construct the relevant amplitudes at tree level and one loop
to compute deflection angles and time delay in the presence of this interaction. Note
that this amplitude is determined by its helicity structure and dimensional analysis up
to a normalisation which we fixed from the our action (6.1).

Graviton deflection

Using their factorisation properties or Feynman diagrams, we have computed the four-
point amplitudes relevant for graviton deflection from a massive charged source (such as
a charged black hole). The new FFR interaction involves two photons and one graviton,
hence one cannot generate a tree-level correction to the amplitude with two scalars and
two gravitons. The first corrections arise at one loop, from the cut diagrams in Figure
6.2.

For the cut diagram on the left-hand side of the figure, we need the tree-level scalar
QED amplitude with two photons and two massive scalars [130]

A(0)
SQED(1

ϕ, 2ϕ, 3+, 4+) = Q2m2 [34]2

s

(
i

t−m2
+

i

u−m2

)
, (6.44)
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Figure 6.2: The two-particle cut diagrams in the s = −q⃗ 2-channel of the graviton de-
flection angle in the presence of an FFR interaction. The internal lines are photons.
The first diagram is proportional to κ2 e2 and is only non-vanishing for h1 = h2 for the
internal photons. The second diagram is proportional to κ4, it is non-vanishing when
h4 = −h3 and h2 = −h1 thus it contributes solely to the helicity-preserving configu-
ration. Also, it only produces quantum corrections (bubble integrals) with coefficients
that vanish in the case of four-dimensional external kinematics.

along with the modification to the two-graviton/two-photon amplitudes arising from
the FFR coupling for both helicity configurations of the graviton: no flip,

A(0)
FFR(1

+, 2+, 3−−, 4++) = −i
(κ
2

)2 (αγ
4

)
[12]2

⟨3|1|4]4
stu

, (6.45)

or flipped,

A(0)
FFR(1

+, 2+, 3++, 4++) = i
(κ
2

)2 (αγ
4

)( [13]2[34]2[42]2

s13
+

[23]2[34]2[41]2

s23

)
. (6.46)

Both amplitudes can be computed with on-shell techniques. Specifically, (6.45) can be
constructed using BCFW recursion relations [22] by shifting appropriately the graviton
momenta, while it is easy to verify [25] that (6.46) can be derived via an (holomor-
phic) all-line shift. Note that the two-particle cut is non-vanishing only in the singlet
configuration (internal photons with the same helicities). This is because the four-
point amplitude with two photons and two gravitons induced by the FFR interaction
is non-vanishing only for same-helicity photons.

We now move to the cut diagram on the right-hand side of Figure 6.2. The two-
photon/two-graviton EH amplitude only exists in the configuration where the gravitons
and the photons have opposite helicity (see for instance [134]),

A(0)
EH(1

+, 2−, 3++, 4−−) = −i
(κ
2

)2
[13]2⟨24⟩2 ⟨4|1|3]

2

stu
, (6.47)

and thus it contributes only in the helicity-preserving process. Hence, in order to com-
pute the cut we will only need the following two-scalar/two-photon amplitude involving
an FFR interaction:

A(0)
FFR(1

ϕ, 2ϕ, 3−, 4+) = −i
(κ
2

)2 (αγ
4

)
⟨3|1|4]2 . (6.48)

Such amplitude is a contact term and can be only computed consistently with the action
(6.1) using the corresponding Feynman rules.
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Following the above considerations, the one-loop amplitudes in the eikonal limit can
be computed entirely from the LHS of Figure 6.2, and are found to be

A(1)
FFR(1

ϕ, 2ϕ, 3−−, 4++) ≃ −NhQ2
(κ
2

)2 (αγ
4

)
s

[
(ms)2 (I4(s, t;m) + I4(s, u;m))

+ (mω)2I3(s;m) +
3

4

s3

ω2
I3(s) +

3

2
ω2I2(s)

]
,

A(1)
FFR(1

ϕ, 2ϕ, 3++, 4++) = Q2
(κ
2

)2 (αγ
4

)
m2[34]4I3(s;m) ,

(6.49)

where again Nh is the phase defined in (6.25), and Q denotes the charge of the classical
source (the black hole).

Photon deflection

It is interesting to study how this new FFR interaction affects the bending and time de-
lay/advance of light. In order to do so, we now review the known two-scalar/two-photon
amplitudes for minimally coupled photons [134], and present the new corresponding am-
plitudes induced by the FFR interaction, both at tree and one-loop level.

In the following we consider processes where the internal legs are gravitons. In the
EH theory, for the two-photon two-scalar process, only the helicity-preserving amplitude
is non vanishing, both at tree level

A(0)
EH(1

ϕ, 2ϕ, 3−, 4+) = i
(κ
2

)2 ⟨3|1|4]2
s

, (6.50)

and at one loop [134],

A(1)
EH(1

ϕ, 2ϕ, 3−, 4+) ≃ −Nγ
(κ
2

)4
[
(2mω)4 (I4(s, t;m) + I4(s, u;m))− 15(m2ω)2I3(s;m)

+ 3s(2mω)2 I3(s)−
161

30
(mω)2 I2(s)

]
,

(6.51)

where the phase factor Nγ is

Nγ =

(⟨3|1|4]
2mω

)2

≃ −1 . (6.52)

We now discuss the corrections to the two-scalar two-photon amplitudes arising from
one insertion of the FFR interaction. These come from a single graviton exchange
between a minimally coupled scalar and the FFR three-point vertex. At tree level,
only the helicity-flip amplitude

A(0)
FFR(1

ϕ, 2ϕ, 3+, 4+) = −i
(κ
2

)2 (αγ
4

)
[34]2

[(
t−m2

) (
u−m2

)

s
+m2

]
, (6.53)

contributes in the eikonal approximation, while the no-flip amplitude, already quoted in
(6.48), is a contact term that is subleading in the eikonal limit (it does not have a pole
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Figure 6.3: The two-particle cut diagrams in the s = −|q⃗ | 2-channel contributing to
photon deflection to first order in the FFR interaction. We only show the helicity-flip
configuration since the helicity-preserving cuts vanish. The cut diagram on the RHS of
the figure only contributes terms which are subleading in the eikonal limit.

in s = −|q⃗ |2). We also notice that this amplitude can not be completely fixed using
on-shell arguments, in a consistent way with (6.1), then we needed the corresponding
Feynman rules.

Moving to one loop, the relevant two-particle cuts for the (++) configuration are
shown in Figure 6.3. We find that the amplitude with photons in the (++) helicity
configuration in the eikonal approximation is

A(1)
FFR(1

ϕ, 2ϕ, 3+, 4+) ≃ −
(κ
2

)4 (αγ
4

)
[34]2

[
(2mω)4 (I4(s, t;m) + I4(s, u;m))

− 15(m2ω)2I3(s;m) + 3 s (2mω)2 I3(s)

+
3

10
(mω)2 I2(s)

]
,

(6.54)

while the amplitude with photons in the (+−) helicity configuration vanishes:

A(1)
FFR(1

ϕ, 2ϕ, 3−, 4+) = 0 . (6.55)

6.4 Eikonal phase matrix, deflection angle and time delay

In the previous section we have derived the relevant tree and one-loop amplitudes which
we will now use to extract the deflection angle and time delay up to 2PM order (or
O(G2)) generated by the addition of the various couplings in (6.1). The key quantity
is the eikonal phase matrix δ, to be introduced below, of which we will compute the
leading, δ0, and subleading contributions, δ1. As an important consistency check we
will confirm that the leading-energy contribution of the one-loop amplitudes captures
the required exponentiation of the leading-order eikonal phase matrix δ0.

In the following we focus on the classical contribution to δ. We stress that for the
cases we consider, δ will be a 2× 2 matrix: the diagonal entries correspond to the two
amplitudes A(1ϕ, 2ϕ, 3h1 , 4h2) where the helicity of the massless particle is not flipped
(which in our all-outgoing convention corresponds to h1 = −h2), while the off-diagonal
ones correspond to the two helicity-flip processes (with h1 = h2).

As a final comment, we note that the combined effect of the interactions in (6.1) is
simply the sum of the contributions of each interaction treated independently; hence
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we will study them separately, and begin our discussion by reviewing the computation
in EH gravity.

6.4.1 Graviton deflection angle and time delay in Einstein-Hilbert
gravity

Leading eikonal

The relevant tree-level amplitudes in EH gravity are given in (6.23). In the eikonal
approximation (6.9) they become

A(0)
EH(1

ϕ, 2ϕ, 3−−, 4++) ≃ i
(κ
2

)2 (2mω)2
q⃗ 2

,

A(0)
EH(1

ϕ, 2ϕ, 3++, 4++) ≃ i
(κ
2

)2 m2

(2ω)2
q4

q⃗ 2
≃ 0 ,

(6.56)

where the second amplitude is subleading compared to the first.

The amplitudes in impact parameter space are obtained from those in momentum
space using (6.14). To compute them, we will use repeatedly the result

f(p, d) :=

∫
ddq

(2π)d
eiq⃗·⃗b |q⃗ |p =

2pπ−d/2Γ
(
d+p
2

)

Γ
(
−p

2

) 1

b d+p
, (6.57)

where b := |⃗b |. We then have

Ã(0)
EH(1

ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω
= i

(κ
2

)2 mω

4π
d−2
2

Γ

(
d

2
− 2

)
1

b d−4
,

Ã(0)
EH(1

ϕ, 2ϕ, 3++, 4++)
∣∣∣
ω
= 0 ,

(6.58)

therefore the leading eikonal phase matrix is

δ0,EH =
(κ
2

)2
(mω)f(−2, d− 2)1l2 ≃ −

(κ
2

)2 mω
2π

[
1

4− d + log b

]
1l2 + · · · , (6.59)

where we omitted terms of O(d− 4) and finite terms which do not depend on b⃗.

Next we consider the one-loop amplitudes (6.24) and (6.26). In order to check expo-
nentiation (6.20) we only keep terms that are leading in energy in the eikonal approxi-
mation, i.e. O(ω3) in momentum space (or O(ω2) in impact parameter space). These
are

A(1)
EH(1

ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω3

=
(κ
2

)4
(2mω)4

[
I4(s, t;m) + I4(s, u;m)

]
,

A(1)
EH(1

ϕ, 2ϕ, 3++, 4++)
∣∣∣
ω3

= 0 ,

(6.60)

where the sum of the box integrals I4(s, t;m)+I4(s, u;m) was evaluated in d dimensions
in [142] and is given in (D.12). Transforming to impact parameter space, we have

Ã(1)
EH(1

ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω2

= −
(κ
2

)4
(mω)2

2d−7Γ(d− 4)

π
d
2 (d− 4)Γ(3− d/2)

1

b 2d−8
. (6.61)

As expected from (6.20), we find that

Ã(1)
EH(1

ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω2

=
1

2

[
Ã(0)

EH(1
ϕ, 2ϕ, 3−−, 4++)

∣∣∣
ω

]2
+O(d− 4) . (6.62)
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Subleading eikonal

In momentum space, the subleading contribution to the eikonal phase matrix is ex-
tracted from the O(ω2) contribution to the amplitude in (6.24):5

A(1)
EH(1

ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω2

=
(κ
2

)4 (
− 15m4 ω2

)
I3(s;m) , (6.63)

where I3(s;m) is given in (D.11), and as usual s = −|q⃗ |2. In the following we focus
on the first term on the right-hand side of (D.11), since the log term only contributes
quantum corrections. Using

∫
dd−2q

(2π)d−2
eiq⃗·⃗b |q⃗ |−1 =

1

2π

1

b
+O(d− 4) , (6.64)

we obtain the subleading part of the amplitude in impact parameter space:

Ã(1)
EH(1

ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω
= i

(κ
2

)4 15

256π

m2ω

b
, (6.65)

and finally, using (6.18), δ1:

δ1,EH =
(κ
2

)4 15

256π

m2ω

b
1l2 . (6.66)

The eikonal phase matrix up to one loop in EH is then given by

δEH = δ0,EH + δ1,EH + · · · = −
(κ
2

)2 mω
2π

[
1

4− d + log b −
(κ
2

)2 15

256π

m

b

]
1l2 + · · ·

(6.67)

Note that this matrix is proportional to the identity, since the polarisation of the gravi-
tons scattered by the classical source is unchanged. The deflection angle can now be
extracted using (6.21). While the eigenvalues of δ are divergent in d = 4, the corre-
sponding deflection angle is finite:

θEH = − 1

2π

(κ
2

)2 m
b

[
1 +

(κ
2

)2 15

128

m

b

]
= −4Gm

b

(
1 +G

15π

16

m

b

)
. (6.68)

This result agrees with the derivation of [141], and as expected matches the photon
deflection angle [132, 134], first computed by Einstein.6

Another quantity of interest which can be extracted from the eigenvalues of the
eikonal matrix is the time delay. Using (6.22) applied to the leading eikonal phase
(6.59), we get

tEH = −
(κ
2

)2 m
2π

(
1

4− d + log b

)
. (6.69)

As is well known, in order to define the time delay in four dimensions we need to take
the difference of two time delays as measured by an observer at b and one at a much
larger distance b0 ≫ b [340]. Doing so the pole in (6.69) drops out, and neglecting
power-suppressed terms in b0 one gets

tEH =
(κ
2

)2 m
2π

log
b0
b

= 4Gm log
b0
b
, (6.70)

5Note that such a contribution is absent in (6.26).
6Initially up to a factor of two [379].
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in agreement with [380]. Including now also the contribution from δ1, we arrive at the
result

tEH =
(κ
2

)2 m
2π

[
log

b0
b
+
(κ
2

)2 15

128

m

b

]
= 4Gm

[
log

b0
b
+G

15π

16

m

b

]
. (6.71)

In the next sections we compute the corrections ∆θX and ∆tX to the deflection angle
(6.68) and time delay (6.70) in EH due to the inclusion of an interactions X in (6.1).
The complete deflection angle and time delay will then be θEH +∆θX and tEH +∆tX .

6.4.2 Graviton deflection angle and time delay in EH +R3

Leading eikonal

The relevant new amplitudes are obtained by evaluating (6.27) and (6.28) in the eikonal
limit (6.9), with the result

A(0)
R3(1

ϕ, 2ϕ, 3−−, 4++) = 0 ,

A(0)
R3(1

ϕ, 2ϕ, 3++, 4++) ≃ i
(κ
2

)2(α′

4

)2

(2mω)2
q4

q⃗ 2
,

(6.72)

where from (6.12) we have [34]4 = q4. In order to transform to impact parameter space
we rewrite

b⃗ · q⃗ = bq̄ + b̄q , (6.73)

with b := (b1 + ib2)/2, and b̄ := (b1 − ib2)/2 (and we recall our previous definitions
q = q1 + iq2, q̄ = q1 − iq2), from which b b̄ = b2/4. Then in b⃗ -space we have

Ã(0)
R3(1

ϕ, 2ϕ, 3++, 4++)
∣∣∣
ω
= i

(κ
2

)2(α′

4

)2

(mω)

(
∂

∂b̄

)4

f(−2, d− 2)

= i
(κ
2

)2(α′

4

)2 (mω)

b̄4
ξ f(−2, d− 2) ,

(6.74)

where

ξ :=
(d
2
− 2
)(d

2
− 1
)(d

2

)(d
2
+ 1
)
. (6.75)

Hence the leading eikonal phase matrix δ0, including the first contribution from the R3

interaction, has the form
δ0 = δ0,EH + δ0,R3 , (6.76)

where δ0,EH is given in (6.59), and

δ0,R3 =
(κ
2

)2(α′

4

)2

(mω)
[
ξf(−2, d− 2)

]( 0 b̄−4

b−4 0

)
, (6.77)

where we have used (6.17).

Moving on to one loop, from (6.29) and (6.30) we obtain

A(1)
R3(1

ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω3

= 0 ,

A(1)
R3(1

ϕ, 2ϕ, 3++, 4++)
∣∣∣
ω3

=
(κ
2

)4(α′

4

)2
[34]4(2mω)4

[
I4(s, t) + I4(s, u)

]
.

(6.78)
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Transforming to impact parameter space, and using (D.12), we arrive at

Ã(1)
R3(1

ϕ, 2ϕ, 3++, 4++)
∣∣∣
ω2

= −
(κ
2

)4(α′

4

)2 (mω)2

2π

1

d− 4

(
∂

∂b̄

)4

f(d− 6, d− 2)

= −
(κ
2

)4(α′

4

)2 (mω)2

2π b̄4
ξ′

d− 4
f(d− 6, d− 2) ,

(6.79)

where
ξ′ := (d− 4)(d− 3)(d− 2)(d− 1) . (6.80)

The leading one-loop amplitude matrix in the eikonal approximation is then found to
be

Ã(1)
ω2 = −

(κ
2

)4
(mω)2

f(d− 6, d− 2)

2π(d− 4)




1

(
α′

4

)2 ξ′

b̄4(
α′

4

)2 ξ′

b4
1


 . (6.81)

One can then check the matrix relation

A(1)
ω2 = −1

2
(δ0)

2 +O(d− 4) , (6.82)

in agreement with (6.20). In writing (6.82) we have used that,

(δ0)
2 =

(κ
2

)4
(mω)2

[
f(−2, d− 2)

]2



1

(
α′

4

)2 2ξ

b̄4(
α′

4

)2 2ξ

b4
1


 , (6.83)

up to and including O
(
(α′/4)2

)
.

Finally we compute the eigenvalues of the matrix δ0 in (6.76). Using

ξ f(−2, d− 2) =
3

2π
+O(d− 4) , (6.84)

we can rewrite it as

δ0 =
(κ
2

)2 mω
2π




− 1

2ϵ
− log b

(
α′

4

)2 3

b̄4

(
α′

4

)2 3

b4
− 1

2ϵ
− log b




, (6.85)

whose eigenvalues are

δ
(1,2)
0 =

(κ
2

)2 mω
2π

[
− 1

2ϵ
− log b±

(
α′

4

)2 48

b4

]
. (6.86)

Following identical steps to those leading from (6.67) to (6.71), one obtains for the time
delay at O(G)

tEH+R3 = 4Gm
[
log

b0
b
±
(
α′

4

)2 48

b4

]
, (6.87)

where G = κ2/(32π). For sufficiently small b the eigenvalue with the choice of negative
sign may become negative, leading to a time advance.
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Comparison to the work of [340]

The time advance due to R3 terms was first discovered in [340], from which it was
argued that the only way to avoid causality violations is to embed the R3 theory into an
appropriate ultraviolet completion – in other words a consistent ultraviolet completion
of gravitational theories with an R3 interaction requires the addition of an infinite tower
of massive particles with higher spins. Here we wish to briefly compare our results to
theirs.

The authors of [340] considered the interaction of a graviton with the background
produced by a coherent state of massless particles, and computed the eikonal phase in
order to obtain the Shapiro time delay. The coherent state simulates a large number
of successive interactions of the graviton with a single weakly-coupled particle, each
instance being considered as independent and contributing with a small amount to
the total phase shift. It is then observed that the presence of the R3 coupling, which
modifies the three-point graviton amplitude, leads to non-degenerate eigenvalues of the
eikonal phase matrix. This set-up avoids a subtlety which is present when we consider
the graviton scattered off a black hole. Indeed, such causality violation can be observed
only for very small impact parameter. On the other hand, such classical scattering is
meaningful only if the impact parameter is larger then the Schwarzschild radius of the
black hole, b≫ 2Gm. In the shockwave scattering considered in [340] such constrain is
lifted and this is an example of causality violation of the classical theory. On the other
hand, the quantum (effective) theory is well-defined up to a UV scale Λ (b≫ 1

Λ), with
α′ =

cα′
Λ2 and cα′ a order unit coefficient. Indeed, it is easy to check that such causality

violation appear at length scales b ∼ 1
Λ , where the predictivity of the theory breaks

down.

Concretely, it is interesting to compare the eigenvalues (6.86) of the leading eikonal
phase matrix (6.76). Pleasingly, these eigenvalues turn out to be identical7 to the
eigenvalues (3.22) of [340], upon replacing mω → ω2. This is due to the fact that we
consider a different set-up, with massless gravitons moving in the background produced
by massive scalar objects of mass m. In both cases the time advance is induced by the
novel three-graviton coupling generated by the R3 interaction.

Subleading eikonal

We now go back to the one-loop amplitudes (6.29) and (6.30) and extract the triangle
contributions which are the relevant terms contributing to the subleading eikonal matrix:

A(1)
R3(1

ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω2

=
(κ
2

)4(α′

4

)2

|q⃗ |4m4ω2 I3(s;m) ,

A(1)
R3(1

ϕ, 2ϕ, 3++, 4++)
∣∣∣
ω2

= −13
(κ
2

)4(α′

4

)2

q4m4ω2 I3(s;m) .

(6.88)

7Note that in (3.22) of [340] the 1/ϵ pole was not written explicitly. This pole does not affect either
the time delay (6.87) or the particle bending angle. Our 1/ϵ pole corresponds to the logL term in [340],
where L is an infrared cutoff.
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We can now transform to impact parameter space, using
∫

dd−2q

(2π)d−2
eiq⃗·⃗b |q⃗ |3 = 9

2π

1

b5
+O(d− 4) , (6.89)

(
∂

∂b̄

)4 ∫ dd−2q

(2π)d−2
eiq⃗·⃗b |q⃗ |−1 =

105

32π

1

b

1

b̄4
+O(d− 4) . (6.90)

The amplitudes in impact parameter space then become

Ã(1)
R3(1

ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω
= −i

(κ
2

)4(α′

4

)2 9

256π

m2ω

b5
,

Ã(1)
R3(1

ϕ, 2ϕ, 3++, 4++)
∣∣∣
ω
= i

(κ
2

)4(α′

4

)2 1365

4096π

m2ω

b

1

b̄4
.

(6.91)

Using (6.17), we can extract the contribution of the R3 interaction to the subleading
eikonal matrix δ1:

δ1,R3 =
(κ
2

)4(α′

4

)2 1

256π

m2ω

b




− 9

b4
1365

16

1

b̄4

1365

16

1

b4
− 9

b4


 . (6.92)

Then the correction to the graviton deflection angle is

∆θ
(1,2)
R3 = −4Gm

b

(
α′

4

)2 [
±192

b4
+

5π

16
(−9± 1365)

Gm

b5

]
. (6.93)

The deflection involving a graviton whose helicity is preserved in the scattering pro-
cess has already been studied in [173], instead the flipped helicity case is presented here
for the first time.

Finally, for the time delay we arrive at

∆t
(1,2)
R3 = 4Gm

(
α′

4

)2 [
±48 1

b4
+

π

16
(−9± 1365)

Gm

b5

]
. (6.94)

6.4.3 Graviton deflection angle and time delay in EH +R4

In this section we consider the deflection of gravitons induced by eight-derivative cou-
plings in the Lagrangian, which we collectively denote as R4. We will only consider the
parity-even interactions in (6.3) in order to present more compact formulae, therefore
we set β2 = 0, and hence β+ = β− = β in (6.38) and (6.42). Furthermore, since these
interactions do not produce a three-graviton vertex, it is impossible to build any tree-
level two-scalar two-graviton amplitude involving R4. Thus there is no tree-level (1PM)
bending associated to the new term in the Lagrangian, and one has

δ0,R4 = 0 , (6.95)

and the leading contribution arises at 2PM order. Furthermore, since the R4 term only
produces a contact term four-graviton interaction, the resulting one-loop amplitudes
does not contain any box integral. This is consistent with the absence of a tree-level
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contribution in (6.95) which, in the eikonal approximation, is expected to exponentiate,
and would result at one loop in the appearance of box integrals. The same situation
occurs for the graviton deflection due to FFR couplings discussed in Section 6.4.4.

The relevant one-loop amplitudes are given in (6.42), and from the massive triangle
contributions we extract the following results in the eikonal approximation:

A(1)
R4(1

ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω4

= i β̃
(κ
2

)4 35

128
m3 ω4 |q⃗ |3 ,

A(1)
R4(1

ϕ, 2ϕ, 3++, 4++)
∣∣∣
ω4

= i β
(κ
2

)4 3

128
m3 ω4 q

4

|q⃗ | ,
(6.96)

which then translate in impact parameter space into

Ã(1)
R4(1

ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω3

= i β̃
(κ
2

)4 315

512

m2ω3

2πb5
,

Ã(1)
R4(1

ϕ, 2ϕ, 3++, 4++)
∣∣∣
ω3

= i β
(κ
2

)4 315

512

m2ω3

32πb

1

b̄4
.

(6.97)

The subleading eikonal phase matrix resulting from the previous amplitudes is given by

δ1,R4 =
(κ
2

)4 315
512

m2ω3

2π

1

b




β̃
1

b4
β

16

1

b̄4

β

16

1

b4
β̃

1

b4


 . (6.98)

Upon extracting the eigenvalues and using (6.21), we can compute the deflection
angle

∆θ
(1,2)
R4 = −

(
β̃ ± β

)
(Gm)2

1575π

16

ω2

b6
, (6.99)

and the time delay

∆t
(1,2)
R4 =

(
β̃ ± β

)(κ
2

)4 945
512

m2ω2

2π

1

b5
=
(
β̃ ± β

)
(Gm)2

945π

16

ω2

b5
. (6.100)

We can express (6.99) and (6.100) in terms of the couplings introduced in (6.3). In the
parity-even theory (β2 = 0) we get β + β̃ = 8β1, and β̃ − β = 8β3. In order to avoid
a potential time-advance and associated causality violation in the classical theory, we
need to require

β1 > 0 and β3 > 0 . (6.101)

Interestingly this positivity constraint is the same as derived from causality considera-
tions in [338] and general S-matrix analyticity properties in [339]. On the other hand,
the computation of the time delay is not completely well-posed as the eikonal phase
δ ∝ ω3 is expected to break causality and unitarity (as discussed for the signal model
in Appendix D of [340]).

6.4.4 Graviton deflection angle and time delay in EH + FFR

Next we focus our attention on graviton deflection in EH theory with the addition of
an FFR coupling. As discussed in Section 6.3.4, at tree level there is no new two-scalar
two-graviton amplitude generated by this interaction, hence

δ0,FFR = 0 . (6.102)
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In order to compute the subleading eikonal phase matrix, we look at the massive triangle
contribution to the one-loop amplitudes in (6.49),

A(1)
FFR(1

ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω2

= −iQ2
(κ
2

)2 (αγ
4

) mω2

32
|q⃗ | ,

A(1)
FFR(1

ϕ, 2ϕ, 3++, 4++)
∣∣∣
ω2

= 0 .

(6.103)

Using ∫
dd−2q

(2π)d−2
eiq⃗·⃗b |q⃗ | = − 1

2π

1

b3
+O(d− 4) , (6.104)

we obtain

Ã(1)
FFR(1

ϕ, 2ϕ, 3−−, 4++)
∣∣∣
ω

= iQ2
(κ
2

)2 (αγ
4

) ω

256π

1

b3
,

Ã(1)
FFR(1

ϕ, 2ϕ, 3++, 4++)
∣∣∣
ω

= 0 ,

(6.105)

In this case the eikonal phase matrix is diagonal and the subleading contribution δ1,FFR
is immediately seen to be

δ1,FFR = Q2
(κ
2

)2 (αγ
4

) ω

256π

1

b3
1l2 . (6.106)

The new contribution to the graviton deflection angle due to the FFR interaction is

∆θFFR = −Q2
(κ
2

)2 (αγ
4

) 3

256π

1

b4
= −Q2G

(αγ
4

) 3

32

1

b4
. (6.107)

and the time delay is

∆tFFR = Q2
(κ
2

)2 (αγ
4

) 1

256π

1

b3
= Q2G

(αγ
4

) 1

32

1

b3
. (6.108)

The bending in this case is due to the electric charge Q of the black hole, not to its
mass, which does not appear in either (6.107) or (6.108). We conclude that in order
to avoid possible causality violation due to time advance the coefficient of the FFR
interaction must obey the positivity constraint

αγ > 0 . (6.109)

6.4.5 Photon deflection angle and time delay in EH + FFR

In this section we consider the photon deflection angle and the time delay/advance
arising from the FFR interaction. Compared to the case of graviton bending considered
in the previous section, there is a non-vanishing tree-level contribution to the deflection,
thus we consider the leading and subleading eikonal cases separately.

Leading eikonal

The first contribution we consider arises from the EH tree-level amplitude (6.50), which
in the eikonal approximation becomes8

A(0)
EH(1

ϕ, 2ϕ, 3−, 4+) ≃ i
(κ
2

)2 (2mω)2

q⃗ 2
, (6.110)

8We recall from Section 6.3.4 that A(0)
EH(1

ϕ, 2ϕ, 3+, 4+) = A(0)
EH(1

ϕ, 2ϕ, 3−, 4−) = 0.
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or, upon transforming to impact parameter,

Ã(0)
EH(1

ϕ, 2ϕ, 3−, 4+) ≃ i
(κ
2

)2
mω f(−2, d− 2) . (6.111)

Note that (6.110) has the same form as the two-scalar two-graviton amplitude in the
eikonal approximation, first equation in (6.56), as consequence of the equivalence prin-
ciple.

At tree-level the helicity-preserving FFR amplitude (6.48) is purely a contact term,
while the helicity-flip amplitude is given in (6.53). The leading contribution in the
eikonal limit is then

A(0)
FFR(1

ϕ, 2ϕ, 3−, 4+) ≃ 0 ,

A(0)
FFR(1

ϕ, 2ϕ, 3+, 4+) ≃ i
(κ
2

)2 (αγ
4

)
(2mω)2

q2

|q⃗ | 2
,

(6.112)

where we used [34]2 = −q2. Transforming the non-vanishing helicity-flip amplitude to
impact parameter space we obtain

Ã(0)
FFR(1

ϕ, 2ϕ, 3+, 4+) ≃ i
(κ
2

)2 (αγ
4

) mω

b̄2
ξ′′ f(−2, d− 2) , (6.113)

where

ξ′′ =

(
d

2
− 2

)(
d

2
− 1

)
. (6.114)

Defining
δγ0 = δγ0,EH + δγ0,FFR , (6.115)

we can combine (6.111) and (6.113) into a single leading eikonal phase matrix

δγ0,FFR = −
(κ
2

)2 mω

2π




1

4− d + log b −
(αγ

4

) 1

2b̄2

−
(αγ

4

) 1

2b2
1

4− d + log b


 . (6.116)

Next, in order to test the expected exponentiation property of the leading eikonal
phase matrix, we consider the terms of O(ω2) in the one-loop amplitudes. These are
given in impact parameter space by

Ã(1)
EH(1

ϕ, 2ϕ, 3−, 4+)
∣∣∣
ω2

= −
(κ
2

)4
(mω)2

f(d− 6, d− 2)

2π(d− 4)
,

Ã(1)
FFR(1

ϕ, 2ϕ, 3+, 4+)
∣∣∣
ω2

= −
(κ
2

)4 (αγ
4

) (mω)2

b̄2
(d− 3)

f(d− 6, d− 2)

2π
,

(6.117)

which are obtained from (6.51) and (6.54). Expanding around d = 4 we find that Ã(1)
ω2

satisfies the matrix equation

Ã(1)
ω2 = −1

2
(δ0)

2 +O(d− 4) , (6.118)

as expected.
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Subleading eikonal

Next we consider the subleading eikonal phase. The only non-vanishing EH contribution
comes from the one-loop massive triangles in the helicity-preserving amplitude (6.51),
and reads

Ã(1)
EH(1

ϕ, 2ϕ, 3−, 4+)
∣∣∣
ω
= i
(κ
2

)4 15

256π

m2ω

b
. (6.119)

Just as in the case of the leading eikonal phase, the bending angle of photons in pure
EH is the same as the graviton bending (6.66) thanks to the equivalence principle.

The contributions coming from the FFR interaction are obtained from (6.55) and
(6.54), and in impact parameter space are

Ã(1)
FFR(1

ϕ, 2ϕ, 3−, 4+)
∣∣∣
ω

= 0 ,

Ã(1)
FFR(1

ϕ, 2ϕ, 3+, 4+)
∣∣∣
ω

= i
(κ
2

)4 (αγ
4

) 45

1024π

m2ω

b

1

b̄2
.

(6.120)

Combining these results into a subleading eikonal phase matrix we get

δγ1,FFR =
(κ
2

)4 15

256π

m2ω

b




1
(αγ

4

) 3

4 b̄2

(αγ
4

) 3

4 b2
1


 . (6.121)

Deflection angle and time delay

Having computed the eikonal phase matrix at leading and subleading order, we can now
extract the light bending angle and time advance/delay. First we compute the eigenval-
ues of the eikonal phase matrix (6.116), which at leading order match qualitatively the
result of photon deflection in a shockwave background (see [370], and [356] for related
work). We find the light bending angle up to O(G2):

∆θ
γ (1,2)
FFR = −

(κ
2

)2 1

2π

m

b

{
1±

(αγ
4

) 4

b2
+
(κ
2

)2 15

128

m

b

[
1±

(αγ
4

) 9

b2

]}

= −4Gm

b

{
1±

(αγ
4

) 4

b2
+

15π

16

Gm

b

[
1±

(αγ
4

) 9

b2

]}
,

(6.122)

and the time delay up to O(G2):
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(6.123)

We note that the O(Gαγ) part of our result (6.122) is in precise agreement with [354]
while it disagrees with [353]9. Note that (6.123) generically leads to a potential time
advance and causality violation independent of the sign of the coupling αγ . This paral-
lels the situation for the R3 interaction which requires an appropriate UV completion
to restore causality [340].

9The result of [353] for ∆θγFFR was already identified as incorrect in [354] due to an inappropriate
definition of the deflection angle.
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Chapter 7

Conclusions and outlook

In this thesis, we applied modern on-shell techniques to study different aspects of effec-
tive field theories.

In Chapter 2, we introduced a novel method to construct bases of polynomial terms
in any EFT, which are in one-to-one correspondence with operators in the usual La-
grangian formulation of perturbative QFTs. The method works for particles with any
mass and spin in four dimensions and we showed applications to the SMEFT and to the
classification of spin-tidal effects relevant to the study of the binary problem in classical
GR.

Knowing such polynomial terms allows to bootstrap tree-level amplitudes in generic
EFTs. In Chapter 3, we proposed an alternative to BCFW-like recursion relations, to
compute tree-level n-point amplitudes, which extends beyond the regime of applicability
of the latter. Indeed, the method is valid for any EFT with only massless states, even
with irrelevant interactions involving explicit derivatives. A natural future direction
is the extension of this method to theories with massive states and to d-dimensional
amplitudes, which are the necessary building blocks for loop integrands in dimensional
regularisation. We also showed how rational terms in loop amplitudes (which are not
seen using four-dimensional unitarity cuts) determine anomaly cancellation conditions
in the Standard Model for non-abelian groups. There are still questions to be answered
in this context: it is not clear how to extend the method to fully abelian anomaly
cancellation conditions, like (3.65) and (3.66). It would also be interesting to prove
the Adler-Bardeen theorem [381], i.e. the non-renormalisation of anomaly cancellation
conditions beyond one loop, from a purely on-shell point of view.

Tree-level amplitudes are used to determine integrands for loop amplitudes. In Chap-
ter 4, we showed how d-dimensional generalised unitarity is enough to fully determine
loop-level form factors. In particular, we used the power of six-dimensional spinor helic-
ity formalism and dimensional reconstruction techniques to construct the full integrands
for a class of operators relevant to Higgs physics and QCD.

In Chapter 5, we used (5.1) and the tools developed in Chapter 2 and 3 to compute
the one-loop UV mixing of all the operators of mass dimension eight within the SMEFT,
between themselves and at leading order in the couplings. In particular, we showed
explicitly the anomalous dimension of all the operators relevant to the Higgs production
in association with a W boson. The results in [104] can be extended in many different
directions. In the following, we will mention a few (computational and conceptual)
problems that we have encountered.
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1. The first and most trivial problem to take into account is the extension to a
generic number of flavours, or simply Nf = 3. This does not represent either
a computational or a conceptual problem as we only need to code the flavour
structures and a systematic algorithm to take into account their symmetries.

2. Automatising the computation of the anomalous dimension matrix beyond leading
order (i.e. beyond quadratic order in the gauge and Yukawa couplings and linear
order in the Higgs self-coupling) at one loop requires a deeper understanding of
the different contributions in the computation of the Lorentz-invariant phase space
integral. Indeed, as already noticed in [98], beyond leading order the computation
requires tree-level amplitude with more than four points and non-minimal form
factors. When considering separately each combination with the proper configura-
tion of the external states, such contributions give rise to intermediate logarithms
which cancel out at the very end. While in the automatisation this might not be
strictly a problem, we notice that in more complicated theories, like the SMEFT,
the result of this computation is contaminated by terms which are already com-
puted at lower order. For example, consider three operators with the same mass
dimension, two of length L (with different field insertions, for simplicity), labelled
as O1 and O2, and another of length L+1, O3. At leading order, only O1 and
O2 mix, like shown in Chapter 5. In general, at the next to leading order, gluing
for example O1 with the proper five-point amplitudes and integrating over the
Lorentz-invariant phase space give the contribution of the anomalous dimension
of O3 from O1, but the result may be contaminated by the contribution of the
anomalous dimension of O2 from O1 computed through a non-minimal form fac-
tor. The problem of disentangling these contributions is strictly related to the
final cancellation of intermediate logarithms. A possible solution of such prob-
lem may be found using generalised unitarity, trying to disentangle the different
contributions using the proper unitarity cuts.

3. There is an additional direction in which the result of [104] can be extended: we
could consider the contributions to the anomalous dimensions from operators with
different mass dimensions (i.e. beyond linear order). In fact, multiple insertions of
lower-dimensional operators in the (non-minimal) form factor or in the scattering
amplitude could contribute to the anomalous dimension of higher-dimensional
operators. This step is straightforward. On the other hand, if the theory under
consideration has a relevant coupling, like a mass term for example (for example,
in the Standard Model lagrangian we have −µ2H̄H, with µ2 < 0), then higher-
dimensional operators can also contribute to the anomalous dimension of lower-
dimensional one. For example, in [319] it was shown how dimension-six operators
contribute to the anomalous dimension of the marginal couplings. It is not clear
how the central formula (5.1) has to be modified in massive EFTs.

4. It is worth mentioning that extending the formalism and the computations to two
loops, following the work presented in [102, 107], is a valid direction.

In Chapter 6, we studied correction to the bending angle and time delay for a massless
particle scattered off a celestial object. In particular, we focused on the corrections
induced by higher derivative interactions and we used the eikonal representation of the
amplitude to extract such quantities. In the context of studying the classical two-body
problem in GR, it would be interesting to study, using scattering amplitudes techniques,
other observables which might be relevant also to GW experiments in the near future.
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In this direction, one direction might be the direct extraction of waveforms from on-
shell quantities. On the line of previous works in the literature [179, 180, 382–385], it
is interesting to study scattering amplitudes of two massive heavy particles scattering
and emitting a number of gravitons. In particular, the (classical part of the) one-loop
five-point scattering amplitude is not known in the literature and it would interesting
to compute it using the recently developed heavy-mass Effective Field Theory (HEFT)
and its corresponding gauge-invariant double copy [150, 232]. We hope to come back
to some of these questions in the near future.
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Appendix A

Spinor Helicity Formalism

A.1 Four-Dimensional Spinor Helicity Formalism

In this section we briefly review the four-dimensional Spinor Helicity Formalism (SHF)
[18, 214–217, 386], having as a main goal to present our notation and conventions.

Most of the work in this thesis has been done working in (+ − −−) signature,
where usual four-momenta can be converted to bi-spinors using using Pauli matrices
as a realisation of the isomorphism so(1, 3) ∼ sl(2,C): pαα̇ = pµσ

µ
αα̇, pα̇α = pµσ̄

µα̇α,
where the Pauli matrices are σµαα̇ = (1, σ⃗) and σ̄µα̇α = (1,−σ⃗). The undotted and
dotted indices transform in the fundamental and anti-fundamental representation of
the SL(2,C) group. These spinor indices are raised and lowered by the two-dimensional
ϵ-tensors, such that:

ϵαβϵ
βγ = δγα , ϵα̇β̇ϵ

β̇γ̇ = δγ̇α̇ . (A.1)

For massless and massive momenta we have

det piαα̇ = 0 ⇒ piαα̇ ≡ λiαλ̃iα̇ ,
det piαα̇ =M2

i ⇒ piαα̇ ≡ λIiαλ̃iα̇I ,
(A.2)

where I is an index in the fundamental of SU(2) (massive little group)1. Uniformly to
(A.1), SU(2) indices are raised and lower by ϵ-tensor defined such that

ϵIJϵ
JK = δKI . (A.4)

The two spinors are related by complex conjugation:

(λα)
∗ = sign(p0) λ̃α̇ ,

(
λIα
)∗

= sign(p0) λ̃α̇I (A.5)

The Lorentz invariants are defined as

⟨ij⟩ = ⟨i||j⟩ ≡ λαi λjα , [ij] = [i||j] ≡ λ̃iα̇λ̃α̇j , (A.6)

1The massless spinors as well are not completely determined by such definition. Indeed, the rescaling

λiα −→ e−
iϕi
2 λiα , λ̃iα̇ −→ e

iϕi
2 λ̃iα̇ . (A.3)

leaves momentum invariant and correspond to a little group transformation for massless particle. The
little group in four dimensions is the double covering of SO(2) ≃ U(1) and we choose to assign helicity
− 1

2
to λ and + 1

2
to λ̃. Thus it is now manifest how the new variables can carry information about

both the momentum and the helicity of an associated particle.
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where the spinors in this definition can be either massless or massive, in which case we
omitted the spinor indices. Spinors satisfy the Dirac equation

pi|i⟩ = 0 , pi|i] = 0 ,

pi|iI⟩ = mi|iI ] , pi|iI ] = m̃i|iI⟩ ,
(A.7)

where mi = eiαMi and m̃i = −e−iαMi, with α being a constant real number. This
distinction is immaterial and we will set α = 0 at the very end of the calculations, but
it is relevant when we evaluate these structures numerically, as explained in detail in
Appendix A.3. This is guaranteed if we define mi and m̃i as

⟨iIiJ⟩ = −miϵ
IJ , [iIiJ ] = m̃iϵ

IJ . (A.8)

Finally, when flipping the sign of the momentum p we adopt the symmetric convention
on the associated spinors

λ−pα = i λpα , λ̃−p α̇ = i λ̃p α̇ , (A.9)

this convention enters also when performing the crossing of fermions from in to out
state, leading to a factor 1

i for every crossed fermion.

The spinors satisfy some crucial identities. For example, it is simple to convince
oneself that the so called Schouten identity holds:

⟨ij⟩λkα + ⟨jk⟩λiα + ⟨ki⟩λjα = 0 . (A.10)

A similar identity can be written for the λ̃’s as well and for the massive spinors. More-
over, the sigma matrices satisfy the Clifford algebra

{σµ, σ̄ν} = 2ηµν , (A.11)

where σ̄µα̇α := ϵαβϵα̇β̇σµ
ββ̇

. Then we have that

pα̇αi pjαα̇ = 2pi · pj . (A.12)

At this point, to connect the four- and six-dimensional helicity formalism presented
later in the next section and the dimensional reduction procedure, we turn our attention
to the spinor helicity description of massive momenta. One can always write a massive
momentum L as [386]

Lµ = lµ +
L2

2l · ηη
µ , (A.13)

where both l and η are massless momenta and L2 = m2 is the mass associated to this
momentum. The previous expression fixes lµ in terms of the massive momentum Lµ

completely once we have chosen the arbitrary ηµ vector:

lµ = Lµ − L2

2L · ηη
µ . (A.14)

We can write (A.13) in terms of helicity spinors as

piαα̇ = λiαλ̃iα̇ +
m2

⟨λiµi⟩[µ̃iλ̃i]
µiαµ̃iα̇ . (A.15)
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Focusing on the number of degrees of freedom, we expect to have 3 from the spinor
variables, plus an additional one from the mass squared m2. The quantity λαλ̃α̇ already
carries by itself 3 degrees of freedom, but µα and µ̃α̇ apparently carry two additional
degrees, which coincide with their direction. Indeed, the momentum is invariant under
the rescaling

µα −→ a µα , µ̃α̇ −→ b µ̃α̇ , (A.16)

where a, b ∈ C. The redundancy is taken into account by the four-dimensional massive
little group SU(2), which has two additional generators, with respect to the massless
one. Indeed, we can write a massive momentum in terms of the irreducible SU(2)
helicity spinors [18]

λIα =
(
λα

m
⟨λµ⟩µα

)
, (A.17)

and, in this form, it is obvious that any SU(2) transformation

λIα −→ λJαUJ
I (A.18)

leaves the momentum invariant.

A.2 Six-Dimensional Spinor Helicity Formalism

In this section we give a concise overview of the six-dimensional spinor helicity for-
malism. In particular, we will show how it can be dimensional-reduced in terms of
four-dimensional spinors. For a more detailed discussion see [30, 295].

In six-dimensional Minkowski spacetime, the Lorentz group is SO(1, 5). As in the
four-dimensional case, it is useful to exploit the isomorphism between the double-
covering of this group with SL(2,H), where H are the quaternions. For simplicity,
we will denote this group as SU∗(4). Indeed, its representations are in one-to-one cor-
respondence to those of SU(4) (which is the universal covering of group of rotation
in the euclidean six dimensions, SO(6)). The six-dimensional massless little group is
S̃O(4) ≃ SU(2)× SU(2).

Let us denote with □A and □A the objects transforming respectively in the funda-
mental and anti-fundamental representations of the Lorentz group SU∗(4), and a and
ȧ) the indices of the two inequivalent fundamental representations of the little group.

The Clifford algebra is defined by

{γµ, γ̃ν}A B := γµAC γ̃
νCB + γνAC γ̃

µCB = 2ηµνδBA , (A.19)

where µ = 0, . . . , 6, γµAB ≡ γ
µ
[AB] and γ̃µAB ≡ γ̃µ[AB]. These gamma matrices transform

in the pseudo-real representation 6 = 4 ∧ 4 of SU∗(4) and are related by

γ̃µAB =
(
γµAB

)∗
=

1

2
ϵABCDγµAB . (A.20)

Six-dimensional momenta can be written as

pAB := pµγ
µ
AB , (A.21)

and the massless condition becomes

p2 ∼ ϵABCDpABpCD = 0 , (A.22)
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which can be solved by expressing the momentum as the bi-spinor product

pAB = ϵȧḃλ̃ȧAλ̃ḃB = λ̃ȧAλ̃
ȧ
B , (A.23)

where λ̃ȧA is a pseudo-real spinor. Analogously, we can write

pAB = λaAλBa = −ϵabλAa λBb , (A.24)

which satisfies
pAB = (pAB)

∗ = −1

2
ϵABCDpCD . (A.25)

Notice that, given the above definitions, the spinors λaA and λ̃ȧA automatically satisfy
the Dirac equation:

pABλ
B
a = −1

2
ϵABCDλ

B
a λ

bCλDb = −ϵABCDλBa λC1 λD2 = 0 , (A.26)

and similarly for λ̃ȧA. The Dirac equation can be also written equivalently as a relation
between λ and λ̃:

0 = λaAλBa λ̃Bȧ = −λA1 λB2 λ̃Bȧ + λA2 λ
B
1 λ̃Bȧ , (A.27)

which implies
λAa λ̃Aȧ = 0 . (A.28)

SU∗(4) Spinor Identities

In this subsection we present some useful identities for six-dimensional spinors. We focus
on the SU∗(4) structure of the spinors and keep the little group indices implicit. Of
course little-group indices can be restored at any time because they are unambiguously
related to each spinor.

Consider a certain number of spinors λAi (and λ̃iA), with labels i = 1, . . . , n. The
Lorentz invariant objects which can be built out of these spinors are of three types:

• Bi-spinor invariant objects:
λAi λ̃jA := ⟨ij] (A.29)

• Two distinct four-spinors invariant objects:

ϵABCDλ
A
i λ

B
j λ

C
k λ

D
l := ⟨ijkl⟩ , ϵABCDλ̃iAλ̃jBλ̃kC λ̃lD := [ijkl] . (A.30)

The spinors transform in the fundamental representation of SU∗(4), thus A = 1, . . . , 4.
Two identities (and their two complex conjugate) follow immediately from this:

λ
[A
1 λ

B
2 λ

C
3 λ

D
4 λ

E]
5 = 0 , (A.31)

and
λ
[A
1 λ

B
2 λ

C
3 λ

D]
4 =

1

4!
ϵABCD⟨1234⟩ , (A.32)

and analogous relations hold for λ̃iA. These can be combined to give the six-dimensional
generalisation of the Schouten identities:

∑

cyclic

⟨1234⟩λA5 = 0 . (A.33)
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From Six-Dimensional to Four-Dimensional Quantities

It is fundamental to our purposes to write six-dimensional spinors in terms of four-
dimensional ones, to make the dimensional reconstruction unitarity technique more
clean.

The first step is to write six-dimensional null vectors as four-dimensional massive
ones, by defining the two complex mass parameters

m := p4 + ip5 , m̃ := p4 − ip5 , (A.34)

where p4 and p5 are the fifth and the sixth components of the six-dimensional momentum
pµ. Then, the massless condition becomes

p2 = (p(4))2 −mm̃ = 0 . (A.35)

where (p(4))2 = p20− p21− p22− p23 is the four-dimensional massive momentum associated
to pµ. We found it more efficient for our calculation to describe these momenta as a
combination of two massless momenta, as in (A.15). This allows to decompose six-
dimensional helicity spinors in terms of four-dimensional spinors as

λAa =

(− m
⟨λµ⟩µα λα

λ̃α̇ m̃
[µλ] µ̃

α̇

)
, λ̃Aȧ =




m̃
⟨λµ⟩µ

α λα

−λ̃α̇ m
[µλ] µ̃α̇


 , (A.36)

where the little group indices label the columns and the SU∗(4) indices label the rows.
The SU∗(4) index structure can be broken down into two SL(2,C) complex conjugated
indices:

□A =

(
□α

□α̇

)
, □A =

(
□α

□α̇

)
. (A.37)

This embedding is specific of a particular choice of gamma matrices: indeed, we can
choose them such that, for µ = 0, . . . , 3, they reduce to the familiar chiral representation
in four dimensions2.

pAB and pAB are invariant under the little group SU(2)× SU(2) transformations

λ′
A
a = Ua

bλAb , λ̃′Aȧ = Uȧ
ḃλ̃Aḃ, (Ua

b, Uȧ
ḃ) ∈ SU(2)× SU(2) . (A.38)

The six-dimensional momentum in four-dimensional components reads:

pAB =

(
−mϵαβ λαλ̃

β̇ + ρµαµ̃
β̇

−λ̃α̇λβ − ρµ̃α̇µβ m̃ϵα̇β̇

)
, (A.39)

where ρ = mm̃
⟨λµ⟩[µλ] . In our choice of gamma matrices, the off-diagonal components

precisely coincide with the four-dimensional massive momentum:

p
(4)
αα̇ = λαλ̃α̇ + ρµαµ̃α̇ , (p(4))2 = mm̃ . (A.40)

It is easy to see that the two copies of SU(2) of the little group act in an identical
way on p(4) and we recover the usual massive little group: indeed, they depend only on
the combination mm̃ and we can obtain dotted transformations from the undotted by
simply replacing

m −→ −m̃ , m̃ −→ −m . (A.41)
2For the explicit basis of gamma matrices see Appendix A of [30].
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The Lorentz invariant quantities ⟨iajȧ], ⟨iajbkcld⟩, [iȧjḃkċlḋ] can be written in terms of
four-dimensional angle and square brackets, once the helicity indices are fixed (a, b, c, d =
1, 2 and ȧ, ḃ, ċ, ḋ = 1̇, 2̇), by using the decomposition given in (A.37) and decomposing
ϵABCD ∼

∑
ϵαβϵα̇β̇ and δAB = diag(δβα, δα̇β̇ ).

A.3 Momentum Twistors and Rational Kinematics

Rational (or finite field) kinematics in four dimensions has been fundamental in various
steps of the computations presented in the bulk chapters:

1. Numerical checks on analytic expressions obtained throughout this work (for both
tree-level amplitudes and loop integrands) have been checked using rational kine-
matics.

2. To verify that the structures in our basis are kinematically independent and to
probe the independence of structures upon symmetrisation, we evaluate the poly-
nomial structures found using the algorithm presented in Section 2.1 and 2.2 over
rational kinematics.

3. The recursion algorithm for tree-level amplitude in generic EFTs presented in
Section 3.2 relies heavily on the fact that we can fix the coefficient of the ansatz
exactly, evaluating it over different factorisation channels using a on-shell kine-
matic finite over finite fields.

Indeed, the fundamental feature which make the kinematics over rational or finite field
extremely useful is that it allows for numerical evaluations of rational functions without
loss of precision, as discussed in detail in Section A.4.

It is widely known that it is possible to generate rational kinematics satisfying both
on-shell and momentum conservation conditions [239, 255]. Such generation can be
performed, for example, via the analytic continuation to (++−−) signature and gener-
ating the kinematics in terms of the momentum twistors variables, introduced in [238].
This construction was introduced for fully massless four-dimensional kinematics. The
generalisation to the massive case is presented below.

The spinor helicity formalism in split signature is formally different from the one
introduced in the previous section, but practically the same. The little group for mass-
less and massive particles are R and SL(2,R), respectively. Besides mi and m̃i are two
real numbers such that mim̃i = M2

i . The condition (A.5) is lifted and the dotted and
undotted spinors are real and independent from each other.

Introducing spinor helicity variables automatically makes the momenta satisfy on-
shell conditions, but the momentum conservation identity is a quadratic constraint on
our kinematic variables. To make sure that the kinematic stays in the field of rational
numbers, we need to rewrite this constrain in terms of linear equations. This is possible
in four dimensions expressing the kinematic in terms of momentum twistor variables.
Momenta can be rewritten in terms of dual momentum variables xi:

pi = xi − xi+1 , (A.42)

which make momentum conservation between n particles trivial:

xn+1 = x1 . (A.43)
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Then, each massless momentum is associated with two null-separated points and mo-
mentum conservation tells us that the set of dual variables forms a polygon. The on-shell
condition defines a new variable [µi|, through the incidence relation

[µi| = ⟨i|xi = ⟨i|xi+1 . (A.44)

Given a (randomly generated) set of pair of spinors ZAi = (λαi , µi α̇), named momentum
twistor variables, such that Zn+1 = Z1, and using the incidence relation, we can define
the spinors λ̃α̇i through the dual twistor

WiA = (µ̃i α, λ̃
α̇
i ) =

ϵABCDZ
B
i−1Z

C
i Z

D
i+1

⟨(i− 1)i⟩⟨i(i+ 1)⟩ . (A.45)

Planar Mandelstam invariants can be written in terms of twistor variables:

si,i+1,...,j−1 = (xi − xj)2 =
ϵABCDZ

A
i−1Z

B
i Z

C
j−1Z

D
j

⟨(i− 1)i⟩⟨(j − 1)j⟩ . (A.46)

This procedure was introduced to generate a fully massless kinematics over rational
or finite fields. However, it can be generalised to the massive case once we decompose
massive momenta into a couple of massless ones:

piαα̇ = λ1iαλ̃iα̇ 1 + λ2iαλ̃iα̇ 2 ≡ kiαα̇ + qiαα̇ , (A.47)

where kµ and qµ are two massless momenta such that qi αα̇ kα̇αi = M2
i . Then if we are

considering a scattering amplitude for n massless and m massive states, we need to
randomly generate n+ 2m twistor variables

{ZIAi , ZAj } (A.48)

i = 1, . . .m, j = m + 1, . . . n +m and I = 1, 2. By doing so, the masses are randomly
generated as well

M2
i =

ϵABCDZ
2A
i−1Z

1B
i Z2C

i Z1D
i+1

⟨(i− 1)2i1⟩⟨i2j1⟩ , (A.49)

where Z2A
0 = ZAn+m and Z1D

n+1 = ZDn+1. However, we might be interested in cases where
some states have the same mass, like the examples considered in Section 2.3.3 and 2.3.4.
For example, we can consider l particles with the same mass. In such case, we can
generate a bi-twistor associated with one of these particles fully randomly, while for the
others we can leave, for example, the component µ2

i 2̇
undetermined. These are fully

fixed by l− 1 linear equations requiring that the masses obtained from equation (A.49)
must be equal to the one we generated randomly.

A.4 Finite Field Arithmetic

In this section we briefly describe the main features of finite field kinematics and the
application to the recursive algorithm presented in Section 3.2. Our goal is to give just
a taste of the method, motivating its usefulness in our particular context, highlighting
at the same time the caveats which come along the benefits. For a more in depth
mathematical primer we refer to [387] and references therein, whereas for a discussion
of applications to modern theoretical physics problems to [237, 388].
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Consider the integer numbers Z endowed with the standard addition and multipli-
cation and choose a natural number p ∈ N. We define a set of p equivalence classes
through the modulo operation mod: we say that a is equivalent to b or a equals b
modulo p if

a = b mod p ⇐⇒ ∃n ∈ Z s.t. a− b = n · p . (A.50)

The set of natural numbers
Zp ≡ {0, 1, . . . , p− 1} (A.51)

can be chosen as the most intuitive representatives of these equivalence classes, and it is
easy to see that this set endowed with the standard addition (mod p) is a representation
of the cyclic group of order p, hence the use of the symbol Zp. It can be shown that if p
is a prime number then Zp endowed also with the usual multiplication (mod p) is a field,
which is finite by construction and we thus call it finite field. The modulo operation
provides clearly a simple map from Z to Zp, what is less obvious, but still holds true
as long as p is a prime, is that under some restriction there is also a unique and well
defined map from the rationals Q to Zp. This map is based on the possibility of defining
a multiplicative inverse a−1 for every a ∈ Zp such that a a−1 = a−1 a = 1mod p.

Now that we have given an operative definition of finite fields we can focus on why
and how we use them. Performing some sort of analytic computation on a computer
(especially on a laptop) can often prove challenging, in that the computational time
required is too large for a result to be successfully obtained. In similar situations it
might be a good idea to change the perspective on the problem and try to reformulate
it using a numeric approach. In our case this amounts to switching from trying to
directly obtain the amplitude from simplifying (1.23) analytically to building numeric
systems to be solved as in Section 3.2.1. The advantage of numerics is that in principle it
is clearly much faster, since potentially large intermediate expressions are replaced with
numbers. This is certainly true when dealing for example with floating-point arithmetic.
On the other hand, the use of numeric expressions requires carefully keeping track of
possible precision loss and makes arbitrary precision arithmetic at times more appealing,
which is however slower. Here is where finite fields enter the game, since we can map
our problem from Q to Zp, which avoids the precision loss of floating point numbers,
and then perform the numeric computations on Zp. This is extremely fast because we
can choose p to be a machine-size prime and the whole computation will only involve
machine-size natural numbers. The obvious issue is that, once the problem at hand has
been solved on Zp, we need to map the solution back to Q, through a map which cannot
by any means be a bijection.

Despite the fact that the map Q → Zp is not injective, it is possible under certain
circumstances to “invert it”, or rather to make an educated guess of which element n

d ∈ Q
corresponds to a given b ∈ Zp. In particular it can be shown (see for example [389])
that given b there is only one pair of n and d such that n2, d2 < p

2 . In other words, if
the correct values of n and d which we are looking for are small enough compared to the
prime p which we chose as the order of the field Zp, then we can uniquely obtain their
value from b ∈ Zp. The size of p however has an upper bound being the machine-size
primes, since the whole point of using finite fields is to deal with machine-size integers.
Consequently, one cannot simply choose an arbitrarily large prime so to be confident
that the inverted map yields the correct result. Instead, one uses the so called Chinese
remainder theorem3, which allows to combine the outcome X of the same calculation

3See for example [237].
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on multiple fields Zp1 , . . . ,Zpn to obtain the value of XmodP where P =
∏
i pi. In

other words, the Chinese remainder theorem defines a ring isomorphism4

Zp1 × · · · × Zpn → ZP

(Xmod p1, . . . , Xmod pn) 7→ XmodP
(A.52)

which allows us to access the value XmodP on ZP where P is large, through compu-
tations on fields with small values of pi. Applying then the “inverse” mapping to the
value found on ZP will very likely return the correct result. This procedure is iterated
adding more fields Zpn+1 until the inverse of b ∈ ZP converges to a definite n

d ∈ Q.

In our specific case it is usually enough to perform the calculation on a single field
Zp: since we are using finite fields to do numeric evaluations aimed at solving the
system (3.34), once a solution has been found we can simply test it through a single
evaluation of (3.32) on Q. As a final remark, we discuss one caveat of the method.
Since everything relies on the possibility of mapping Q to Zp, one can only apply
the so far presented techniques in the case the problem at hand is entirely described
by rational functions. This is indeed the scenario we are interested in: indeed, the
tree-level scattering amplitudes present an entirely rational dependence on the spinor
invariants and thus on the spinor components. Furthermore, one has to take special care
of elements appearing in the calculations which do belong to more extended number
fields than Q, in particular for us this means square roots and imaginary units. How
these are dealt with is often a matter of the specific problem, where our choices have
been described in Section 3.2.1.

4Since P is not a prime Zp is not a field but a ring.
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Appendix B

SMEFT Conventions and Notations

B.1 The Standard Model gauge group

In Table B.1 we write explicitly the representations under which each particle in the
infrared spectrum of the Standard Model transforms, for the gauge group U(1)×SU(2)×
SU(3).

U(1) SU(2) SU(3)

B± 0 1 1

W± 0 3 1

G± 0 1 8

Q̄ −1
6 2̄ 3̄

ū +2
3 1 3

d̄ −1
3 1 3

L̄ +1
2 2̄ 1

ē −1 1 1

Q +1
6 2 3

u −2
3 1 3̄

d +1
3 1 3̄

L −1
2 2 1

e +1 1 1

H̄ −1
2 2̄ 1

H +1
2 2 1

Table B.1: The spectrum of the Standard Model and the transformation properties of
all the fields.

Our convention on the colour factor are completely specified by the decomposition of
the contraction of two generators for both the SU(N) and SU(2) groups respectively:

τAac τ
B c
b =

1

2N
δAB δab +

i

2
fABC τC ab +

1

2
dABC τC ab , (B.1)

where fABC are the structure constants and dABC is the traceless completely symmetry
d-tensor, and

σI ikσ
J k
j =

1

4
δIJ δij +

i

2
ϵIJK σK i

j . (B.2)
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For the SU(2) group we also need to specify how indices in the fundamental are raised
and lowered by the ϵ-tensor:

xi = ϵij x
j = ϵij ϵ

jk xk . (B.3)

B.2 Three-point amplitudes in the Standard Model

In this section we present the complete set of non-vanishing three-point amplitudes in
the Standard Model. As already mentioned in section 3.1, consistent factorisation of
the four-point amplitudes imposes constraints which not only fix the colour structures
but also relate the couplings of the various three-point amplitudes among each other.
Once these constraints are taken into account a small set of the numerical coefficients
in front of the amplitudes is still arbitrary and up to convention.

A(W I
−,W

J
−,W

K
+ ) = g2 ϵ

IJK ⟨12⟩3
⟨23⟩⟨31⟩ , A(W I

−,W
J
+,W

K
+ ) = −g2 ϵIJK

[23]3

[12][31]
,

A(GA−, GB−, GC+) = g3 f
ABC ⟨12⟩3
⟨23⟩⟨31⟩ , A(GA−, GB+, GC+) = −g3 fABC

[23]3

[12][31]
,

A(B−, ēm, en) = i g1 δnm
⟨12⟩2
⟨23⟩ , A(B+, ēm, en) = i g1 δnm

[13]2

[23]
,

A(B−, L̄
i
m, L

j
n) = −i

g1
2
δmn δ

j
i

⟨12⟩2
⟨23⟩ , A(B+, L̄

i, Lj) = −i g1
2
δmn δ

j
i

[13]2

[23]
,

A(B−, ū
a
m, u

b
n) = −i

2 g1
3

δnm δ
a
b

⟨12⟩2
⟨23⟩ , A(B+, ū

a
m, u

b
n) = −i

2 g1
3

δnm δ
a
b

[13]2

[23]
,

A(B−, d̄
a
m, d

b
n) = i

g1
3
δnm δ

a
b

⟨12⟩2
⟨23⟩ , A(B+, d̄

a
m, d

b
n) = i

g1
3
δnm δ

a
b

[13]2

[23]
,

A(B−, Q̄
a,i
m , Q

b,j
n ) = i

g1
6
δmn δ

j
i δ

b
a

⟨12⟩2
⟨23⟩ , A(B+, Q̄

a,i
m , Q

b,j
n ) = i

g1
6
δmn δ

j
i δ

b
a

[13]2

[23]

A(B−, H̄
i, Hj) = i

g1
2
δji
⟨12⟩⟨31⟩
⟨23⟩ , A(B+, H̄

i, Hj) = −i g1
2
δji
[12][31]

[23]
,

A(W I
−, L̄

i
m, L

j
n) = i g2 δmn σ

I j
i

⟨12⟩2
⟨23⟩ , A(W I

+, L̄
i
m, L

j
n) = i g2 δmn σ

I j
i

[13]2

[23]
,

A(W I
−, Q̄

a,i
m , Q

b,j
n ) = i g2 δmn σ

I j
i δ
b
a

⟨12⟩2
⟨23⟩ , A(W I

+, Q̄
a,i
m , Q

b,j
n ) = i g2 δmn σ

I j
i δ
b
a

[13]2

[23]
,

A(W I
−, H̄

i, Hj) = i g2 σ
I j
i

⟨12⟩⟨31⟩
⟨23⟩ , A(W I

+, H̄
i, Hj) = −i g2 σI ji

[12][31]

[23]
,

A(GA−, ūam, ubn) = −i g3 δnm τAab
⟨12⟩2
⟨23⟩ , A(GA+, ūam, ubn) = −i g3 δnm τAab

[13]2

[23]
,
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A(GA−, d̄am, dbn) = −i g3 δnm τAab
⟨12⟩2
⟨23⟩ , A(GA+, d̄am, dbn) = −i g3 δnm δji τAab

[13]2

[23]
,

A(GA−, Q̄a,im , Qb,jn ) = i g3 δmn τ
Ab
a δ

j
i

⟨12⟩2
⟨23⟩ , A(GA+, Q̄a,im , Qb,jn ) = i g3 δmn δ

j
i τ

Ab
a

[13]2

[23]
,

A(Q̄a,im , ūbn, H̄j) = iY(1)
mn ϵijδ

b
a ⟨12⟩ , A(Qa,im , ubn, Hj) = −i Ȳ(1)

nm ϵ
ijδab [12] ,

A(Qa,im , dbn, H̄j) = iY(2)
nm δ

i
j δ

a
b [12] , A(Q̄a,im , d̄bn, Hj) = i Ȳ(2)

mn δ
j
i δ

b
a ⟨12⟩ ,

A(Lim, en, H̄j) = iY(3)
nm δ

i
j [12] , A(L̄im, ēn, Hj) = i Ȳ(3)

mn δ
j
i ⟨12⟩ .
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Appendix C

Tree-level Amplitudes in 6D

C.1 Six-Dimensional Scattering Amplitudes

Six-dimensional tree-level amplitudes are the basic ingredients of our unitarity-based
recipe. In this section we give the analytic expressions needed for our calculations and
comment on how to recover four-dimensional expressions in a specific limit.

As we already mentioned, in six dimensions the notion of four-dimensional helicity
is encoded in a tensorial structure, which must be reflected by the amplitudes. The
advantage of this tensorial nature of six-dimensional helicity is that a single expression
of the amplitude contains all the possible four-dimensional helicity configurations, when
dimensional reduced. The drawback however is that one looses some of the simplicity
which was peculiar to specific helicity configurations. In particular there is no concept
of MHV amplitudes.

Moreover, taking four-dimensional limit also represents a good consistency check
for six-dimensional results. Indeed, for an appropriate limit these results must return
their four-dimensional counterparts. More specifically, accordingly to our embedding, it
turns out that states characterised by little-group indices (1, 1̇) and (2, 2̇) correspond to
the positive and the negative helicity states in the four-dimensional limit (m, m̃ → 0),
because of representation we chose for the gamma matrices. On the other hand, the
additional (1, 2) and (2, 1) components coincide with two 4D scalars.

The four-gluon amplitude, computed in [30], is

Ag(1aȧ, 2bḃ, 3cċ, 4dḋ) =

1aȧ

4dḋ

2bḃ

3cċ

tree = − i

s12s23
⟨1a 2b 3c 4d⟩[1ȧ, 2ḃ, 3ċ, 4ḋ] .

(C.1)

According to our embedding, we expect Ag(122, 222, 311, 411) to reproduce the MHV
amplitude A(1−, 2−, 3+, 4+) in the limit mi, m̃i → 0 for i = 1, . . . , 4, which is indeed
the case:

Ag(122, 222, 311, 411)
∣∣∣∣
4D

= i
⟨12⟩4

⟨12⟩⟨23⟩⟨34⟩⟨41⟩ .
(C.2)
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While Ag(112, 221, 311, 422) reproduces the four-point amplitude with two scalars and
two opposite-helicity gluons A(1ϕ, 2ϕ̄, 3+, 4−):

Ag(112, 221, 311, 422) = i
⟨14⟩2⟨24⟩2

⟨12⟩⟨23⟩⟨34⟩⟨41⟩ . (C.3)

Another amplitude of which we make frequent use is the six-dimensional four-point
amplitude with two gluons and two scalars [254]

As(1aȧ, 2bḃ, 3, 4) =

1aȧ

4

2bḃ

3

tree = − i

4s12s23
⟨1a 2b 3c 3c⟩[1ȧ, 2ḃ, 4ḋ, 4ḋ]. (C.4)

The massless scalars in six dimensions behave as massive scalars when reduced to four
dimensions. Taking the limitsm1,m2, m̃1, m̃2 → 0 and choosing the helicity components
we found the four-point amplitudes for gluons and massive scalars in four dimensions:

As(122, 211, 3, 4)
∣∣∣∣
4D

= −i⟨1|/p
(4)
3 |2]

s12s23
,

As(111, 211, 3, 4)
∣∣∣∣
4D

= iµ2
[12]2

s12s23
,

(C.5)

where µ2 coincides in this case with the mass of the scalar squared.

Finally, the last amplitude one needs for our unitarity computations is the five-point
tree-level amplitude. The amplitude with five-gluons has first been computed in [30]. In
[60, 295] this result has been extended to the five-point superamplitude in theN = (1, 1)
theory. This superamplitude also contains information about the amplitude with scalar
fields which is needed for the scalar subtraction when doing dimensional reconstruction.
The amplitude with five gluons is

Ag(1aȧ, 2bḃ, 3cċ, 4dḋ, 5eė) =
i

s12s23s34s45s51
(−Maȧbḃcċdḋeė +Daȧbḃcċdḋeė) (C.6)

with
Maȧbḃcċdḋeė = ⟨1a|/p2/p3/p4/p5|1ȧ]⟨2b 3c 4d 5e⟩[2ḃ 3ċ 4ḋ 5ė] + cyclic , (C.7)

and

2Daȧbḃcċdḋeė = ⟨1a Σ̃2ḃ]⟨2b 3c 4d 5e⟩[1ȧ 3ċ 4ḋ 5ė] + ⟨3c Σ̃4ḋ]⟨1a 2b 4d 5e⟩[1ȧ 2ḃ 3ċ 5ė]
+ ⟨4d Σ̃5ė]⟨1a 2b 3c 5e⟩[1ȧ 2ḃ 3ċ 4ḋ]− ⟨3c Σ̃5ė]⟨1a 2b 4d 5e⟩[1ȧ 2ḃ 3ċ 4ḋ]
− [1ȧΣ2b⟩⟨1a 3c 4d 5e⟩[2ḃ 3ċ 4ḋ 5ė]− [3ċΣ4d⟩⟨1a 2b 3c 5e⟩[1ȧ 2ḃ 4ḋ 5ė]
− [4ḋΣ5e⟩⟨1a 2b 3c 4d⟩[1ȧ 2ḃ 3ċ 5ė] + [3ċ Σ̃5e⟩⟨1a 2b 3c 4d⟩[1ȧ 2ḃ 4ḋ 5ė] .

(C.8)

The amplitude with two scalars and three gluons is

Ag(1ϕ, 2ϕ̄, 3cċ, 4dḋ, 5eė) = −
i

s12s23s34s45s51
(Ms

cċdḋeė
+Ds

cċdḋeė
) , (C.9)
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q

1aȧ

2bḃ

3cċ

= q

3̂cċ

1̂aȧ

2bḃ
+ q

1̂aȧ

2bḃ

3̂cċ

A B

Figure C.1: BCFW construction of the tree-level non-minimal TrF 2 form factor in six
dimensions.

with

Ms
cċdḋeė

= ⟨3c|/p1|4d⟩[3ċ|/p2|4ḋ]⟨5e|/p1/p2/p3/p4|5ė] + ⟨4d|/p1|5e⟩[4ḋ|/p2|5ė]⟨3c|/p4/p5/p1/p2|3ċ]
+ ⟨3c|/p1|5e⟩[3ċ|/p2|5ė]⟨4d|/p5/p1/p2/p3|4ḋ] +

1
2⟨3c 4d 5e 1a⟩[3ċ 4ḋ 5ė 2ḃ]⟨1a Σ̃ḃ2] ,

(C.10)
and

2Ds
cċdḋeė

= −⟨4d|/p1|5e⟩[3ċ|/p2|5ė]⟨3c Σ̃4ḋ] + ⟨4d|/p1|5e⟩[3ċ|/p2|4ḋ]⟨3c Σ̃5ė]

−⟨3c|/p1|5e⟩[3ċ|/p2|4ḋ]⟨4d Σ̃5ė] + ⟨3c|/p1|5e⟩[4ḋ|/p2|5ė][3ċΣ4d⟩
−⟨3c|/p1|4d⟩[4ḋ|/p2|5ė][3ċΣ5e⟩+ ⟨3c|/p1|4d⟩[3ċ|/p2|5ė][4ḋΣ5e⟩ .

(C.11)

The Σ and Σ̃ that appear in the previous formulae are defined as

|Σia⟩ =
(
/pi/pi+1/pi+2/pi+3

− /pi/pi+3/pi+2/pi+1

)
|ia⟩

|Σ̃ia] =
(
/pi/pi+1/pi+2/pi+3

− /pi/pi+3/pi+2/pi+1

)
|ia]

(C.12)

where we define /p6 ≡ /p1.

C.1.1 Non-Minimal Form Factors

In this section we will address the computation of six-dimensional tree-level building
blocks using BCFW recursion relations1. In particular we briefly comment on the main
steps of the calculation of TrF 2 in the non-minimal configuration. Diagrammatically
the terms we need to compute are represented in Figure C.1. In this computation one
needs to make use of the three-point on-shell amplitudes in six-dimensions. These are
most conveniently defined in terms of a set of auxiliary SU(2) spinors which we denote
by ua, ũȧ, wa and w̃ȧ, following the conventions of [30]. These objects are not Lorentz
invariants in six dimensions and thus are not allowed to appear in the final expression,
however they enjoy useful properties which simplify the calculation. The on-shell three-
point amplitude cleanly expressed in terms of the above mentioned spinors:

A3(1aȧ, 2bḃ, 3cċ) = iΓabc(1, 2, 3) Γ̃ȧḃċ(1, 2, 3) , (C.13)

1For a more detailed account of six-dimensional BCFW see [30].
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with
Γabc(1, 2, 3) = u1 au2 bw3 c + u1 aw2 bu3 c + w1 au2 bu3 c ,

Γ̃ȧḃċ(1, 2, 3) = ũ1 ȧũ2 ḃw̃3 ċ + ũ1 ȧw̃2 ḃũ3 ċ + w̃1 ȧũ2 ḃũ3 ċ .
(C.14)

Consider now applying six-dimensional BCFW as in Figure C.1. The hatted mo-
menta are shifted by a quantity proportional to the complex parameter z as

p̂1 = p1 + z Xaȧ ε1 aȧ ,
p̂3 = p3 − z Xaȧ ε1 aȧ ,

(C.15)

where Xaȧ is an arbitrary tensor needed to saturate the little group indices. This tensor,
which also multiplies C.19, will be removed at the end of the calculation. The on-shell
condition p̂21,2 = 0 implies detX = 0, which allows to express X as

Xaȧ = xax̃ȧ . (C.16)

Furthermore we can define the quantities

yb = x̃ȧ⟨3b 1ȧ]−1 , ỹḃ = xa⟨1a 3ḃ]−1 , (C.17)

which allow us to rewrite the momentum shift C.15 in terms of the spinor shifts

|1̂a⟩ = |1a⟩+ z xayb |3b⟩ ,
|3̂b⟩ = |3b⟩+ z ybxa |1a⟩ ,
|1̂ȧ] = |1ȧ]− z x̃ȧỹḃ |3ḃ] ,
|3̂ḃ] = |3ḃ]− z ỹḃx̃ȧ |1ȧ] .

(C.18)

Considering now for example term A in Figure C.1 one has

(A) = XaȧA3(1̂aȧ, 2bḃ, k̂dḋ)
−i
s12

F
(0)
O2

(−k̂dḋ, 3̂cċ; q)

=
i

s12
Xaȧ Γabd(1̂, 2, k̂) Γ̃ȧḃḋ(1̂, 2, k̂) ⟨k̂d 3̂ċ]⟨3̂c k̂ḋ] .

(C.19)

Before substituting the definitions (C.18) in (C.19), we make use of the properties
of u, ũ, w, w̃ to simplify this expression. The most useful identities are

ui awi b − ui bwi a = ϵab , ũi ȧw̃i ḃ − ũi ḃw̃i ȧ = ϵȧḃ ,

|ui · i⟩ = |uj · j⟩ , |ũi · i] = |ũj · j] ∀ i, j = 1, 2, k ,

|w1 · 1⟩+ |w2 · 2⟩+ |wk · k⟩ = 0 ,

|w̃1 · 1] + |w̃2 · 2] + |w̃k · k] = 0 ,

(C.20)

where we used the shorthand notation ui a|ia⟩ = |ui · i⟩ and ũi ȧ|iȧ] = |ũi · i]. These
identities allow us to rewrite

Γabd(1̂, 2, k̂) ⟨k̂d| = ⟨1̂a|u2 b + ⟨2b|u1̂ a ,
Γ̃ȧḃḋ(1̂, 2, k̂) |k̂ḋ] = |1̂ȧ] ũ2 ḃ + |2ḃ] ũ1̂ ȧ ,

(C.21)
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which in turn leads to

(A) =
i

s12
Xaȧ

(
⟨1̂a 3̂ċ]⟨3̂c 1̂ȧ]u2 bũ2 ḃ + ⟨1̂a 3̂ċ]⟨3̂c 2ḃ]u2 bũ1 ȧ
+ ⟨2b 3̂ċ]⟨3̂c 1̂ȧ]u1̂ aũ2 ḃ + ⟨2b 3̂ċ]⟨3̂c 2ḃ]u1̂ aũ1̂ ȧ

)
.

(C.22)

To further simplify the result, and to eliminate the residual SU(2) spinors, we make
the following observations:

• pairs of ui, ũj with i ̸= j can be immediately rewritten in terms of six-dimensional
invariants as

u1 aũ2 ḃ = ⟨1a 2ḃ] , u2 bũ1 ȧ = −⟨2b 1ȧ] ,
u2 bũk ċ = ⟨2b kċ] , uk cũ2 ḃ = −⟨kc 2ḃ] .

(C.23)

• pairs of ui, ũj with i = j can be rewritten using the identity [295]

ui aũi ȧ =
(−1)Pij

siP
⟨ia|pjP |iȧ] , (C.24)

where pj is any other momentum belonging to the same three-point amplitude as
pi, and Pij = +1 for clockwise ordering of the states (i, j). Also P is any given
arbitrary momentum.

Repeating a similar reasoning on term (B) one gets

(B) =
i

s23
Xaȧ

(
⟨1̂a 3̂ċ]⟨3̂c 1̂ȧ]u2 bũ2 ḃ + ⟨1̂a 3̂ċ]⟨2b 1̂ȧ]u3 cũ2 ḃ
+ ⟨1̂a 2ḃ]⟨3̂c 1̂ȧ]u2 bũ3̂ ċ + ⟨1̂a 2ḃ]⟨2b 1̂ȧ]u3̂ cũ3̂ ċ

)
.

(C.25)

The on-shell condition for the intermediate propagators in (A) and (B) defines two
different BCFW shift parameters, which we label zA and zB respectively. By computing
zA and zB one can see that they are related by

zB = −s23
s12

zA . (C.26)

Thanks to this relation multiple cancellations happen between terms in (A) and terms
in (B). With some further algebra and removing the Xaȧ tensor, one arrives at (4.40).

The analytic expression of the six-dimensional form factor F (0)
O2

(1aȧ, 2bḃ, 3cċ; q) could
also be computed using Feynman diagrams, see for example [254]. Due to the low
multiplicity of this form factor, there is just a small number of contributing Feynman
diagrams. The diagrammatic approach may thus be considered as equivalently viable as
BCFW in this case, the latter method however leads to a far more compact expression
with all the symmetries manifest.

In a similar way but with much less involved calculation, we can find both the non-
minimal form factors with two scalars and one gluon (4.41) and (4.42). In Figure C.2
and Figure C.3 we show the BCFW factorization channels for these calculations. The
only missing ingredient is the three-point amplitude with two scalars and one gluon in
six dimensions, which turns out to be very simple:

A(1aȧ, 2, 3) = i u1aũ1ȧ . (C.27)
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O2

q

1

2

3cċ

= q

3̂cċ

1̂

2

Figure C.2: BCFW construction of the tree-level non-minimal TrF 2 form factor with
two scalars.
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q

1
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3cċ

= q

1̂

2

3̂cċ

Figure C.3: BCFW construction of the tree-level non-minimal Dϕ2 form factor.



Appendix D

Feynman Integrals

The integrals needed in Chapter 4 and Section 3.3 (the latter are named I2, I3 and I4)
are:

p1

p2
= I2(s12) =

∫
d4−2ϵl

(2π)4−2ϵ

1

l2 (l + p1 + p2)2
=

i cΓ
(4π)2−ϵ

(−s12)−ϵ
ϵ(1− 2ϵ)

,

p1

p2

= I3(s12) =

∫
d4−2ϵl

(2π)4−2ϵ

1

l2 (l + p2)2 (l + p1 + p2)2
= − i cΓ

(4π)2−ϵ
(−s12)−1−ϵ

ϵ2
,

p

q

= − i cΓ
(4π)2−ϵ

1

ϵ2

[
(−q2)−ϵ − (−p2)−ϵ

q2 − p2
]
,

(D.1)
and

p3 p2

p1q

=

∫
d4−2ϵl

(2π)4−2ϵ

1

l2 (l + p1)2 (l + p1 + p2)2 (l + p1 + p2 + p3)2

=
i cΓ

(4π)2−ϵ
1

s12s23

[
2

ϵ2
(
(−s12)−ϵ + (−s23)−ϵ − (−q2)−ϵ

)
+

−2Li2
(
1− s12

q2

)
− 2Li2

(
1− s23

q2

)
− log2

(
s12
s23

)
− π2

3

]
+O (ϵ) ,

(D.2)
where

cΓ =
Γ[1 + ϵ] Γ[1− ϵ]2

Γ[1− 2ϵ]
. (D.3)
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The result with qµ = pµ4 (q2 = 0), needed in Section 3.3, is

I4(s12, s14) =

∫
d4−2ϵl

(2π)4−2ϵ

1

l2 (l − p3)2 (l − p3 − p4)2(l + p2)2

=
i cΓ

(4π)2−ϵ
1

s12s14

[
2

ϵ2
(
(−s12)−ϵ + (−s14)−ϵ

)
− log2

(−s12
−s14

)
− π2

]
+O(ϵ) .
(D.4)

These results are exact to all orders in ϵ, and the expression of the corresponding
integral functions in a different number of dimensions can be obtained by simply re-
placing ϵ to the appropriate value, for instance ϵ 7→ ϵ− 1 and ϵ 7→ ϵ− 2 for d = 6− 2ϵ
and d = 8− 2ϵ, respectively. In particular it turns out that all the integrals which give
the rational terms, i.e. those with a non-trivial numerator written in (4.5), can always
be expressed as integrals in higher dimensions [55]. Indeed consider the general integral
function

Idn[µ
2p] =

∫
d4−2ϵl

(2π)4−2ϵ
(µ2)pfn ({pi}, l) =

∫
d4l(4)

(2π)4

∫
d−2ϵµ

(2π)−2ϵ
(µ2)pfn ({pi}, l) , (D.5)

and the µ-measure can be rewritten as
∫

d−2ϵµ (µ2)p =
1

2

∫
dΩ−1−2ϵ

∫ +∞

0
dµ2 (µ2)−1−ϵ+p

=

∫
Ω−1−2ϵ∫

dΩ2p−1−2ϵ

∫
d2p−2ϵµ .

(D.6)

Then (D.5) can be written as

Idn[µ
2p] =

(2π)2p
∫
dΩ−1−2ϵ∫

dΩ2p−1−2ϵ

∫
d4+2p−2ϵl

(2π)4+2p−2ϵ
fn ({pi}, l)

= −ϵ(1− ϵ)(2− ϵ) · · · (p− 1− ϵ)(4π)pId+2p
n [1] ,

(D.7)

where ∫
dΩx =

2π
x+1
2

Γ[x+1
2 ]

. (D.8)

Then to compute this integrals becomes just simple algebra:

p1

p2
µ2 =

−i
(4π)2

· s12
6

+O(ϵ) ,

p1

p2

µ2 =
i

(4π)2
· 1
2
+O(ϵ) ,

p1

p2

µ4 =
i

(4π)2
· s12
24

+O(ϵ) ,

p3 p2

p1q

µ2 = O(ϵ) ,

p3 p2

p1q

µ4 =
−i

(4π)2
· 1
6
+O(ϵ) ,
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Finally, we give the explicit expression for the integral functions appearing in Chap-
ter 6. These expressions are expanded in ϵ up to the relevant orders, and only terms
with an s-channel discontinuity are kept.

I2(s) ≃
i

16π2

[1
ϵ
− log(−s)

]
, (D.9)

I3(s) ≃
i

16π2 s

[ 1
ϵ2
− log(−s)

ϵ
+

1

2
log2(−s)

]
, (D.10)

I3(s;m) ≃ − i

32

[ 1

m
√−s +

log
(
−s/m2

)

π2m2

]
, (D.11)

I4(s, t;m) + I4(s, u;m) ≃ − 1

8π

1

mω

1

d− 4
(−s) d−6

2

≃ − 1

16π s (mω)

[1
ϵ
− log

(
− s

m2

) ]
.

(D.12)



174 APPENDIX D. FEYNMAN INTEGRALS



Bibliography

[1] L. J. Dixon, Calculating scattering amplitudes efficiently, in Theoretical Ad-
vanced Study Institute in Elementary Particle Physics (TASI 95): QCD and
Beyond (Jan. 1996), pp. 539–584, arXiv:hep-ph/9601359.

[2] L. J. Dixon, A brief introduction to modern amplitude methods, in Theoretical
Advanced Study Institute in Elementary Particle Physics: Particle Physics: The
Higgs Boson and Beyond (2014), pp. 31–67, arXiv:1310.5353 [hep-ph].

[3] H. Elvang and Y.-t. Huang, Scattering Amplitudes, (2013), arXiv:1308.1697 [hep-
th].

[4] J. M. Henn and J. C. Plefka, Scattering Amplitudes in Gauge Theories, Vol. 883
(Springer, Berlin, 2014).

[5] C. Cheung, “TASI Lectures on Scattering Amplitudes”, in Proceedings, Theoret-
ical Advanced Study Institute in Elementary Particle Physics : Anticipating the
Next Discoveries in Particle Physics (TASI 2016): Boulder, CO, USA, June 6-
July 1, 2016 , edited by R. Essig and I. Low (2018), pp. 571–623, arXiv:1708.03872
[hep-ph].

[6] G. Travaglini et al., The SAGEX Review on Scattering Amplitudes, (2022), arXiv:2203.
13011 [hep-th].

[7] A. Brandhuber, J. Plefka, and G. Travaglini, The SAGEX Review on Scattering
Amplitudes, Chapter 1: Modern Fundamentals of Amplitudes, (2022), arXiv:2203.
13012 [hep-th].

[8] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations (Cambridge
University Press, June 2005).

[9] J. A. Wheeler, On the Mathematical Description of Light Nuclei by the Method
of Resonating Group Structure, Phys. Rev. 52, 1107–1122 (1937).

[10] W. Heisenberg, Die “beobachtbaren größen” in der theorie der elementarteilchen,
Zeitschrift für Physik 120, 513–538 (1943).

[11] R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, The analytic
S-matrix (Cambridge Univ. Press, Cambridge, 1966).

[12] A. D. Martin and T. D. Spearman, Elementary particle theory., (1970).

[13] G. Sommer, Present state of rigorous analytic properties of scattering amplitudes,
Fortsch. Phys. 18, 577–688 (1970).

[14] M. D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge
University Press, Mar. 2014).

[15] Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys. B
447, 465–518 (1995), arXiv:hep-ph/9503236.

175

https://arxiv.org/abs/hep-ph/9601359
https://doi.org/10.5170/CERN-2014-008.31
https://doi.org/10.5170/CERN-2014-008.31
https://doi.org/10.5170/CERN-2014-008.31
https://arxiv.org/abs/1310.5353
https://arxiv.org/abs/1308.1697
https://arxiv.org/abs/1308.1697
https://doi.org/10.1142/9789813233348_0008
https://doi.org/10.1142/9789813233348_0008
https://doi.org/10.1142/9789813233348_0008
https://doi.org/10.1142/9789813233348_0008
https://arxiv.org/abs/1708.03872
https://arxiv.org/abs/1708.03872
https://arxiv.org/abs/2203.13011
https://arxiv.org/abs/2203.13011
https://arxiv.org/abs/2203.13012
https://arxiv.org/abs/2203.13012
https://doi.org/10.1103/PhysRev.52.1107
https://doi.org/10.1007/BF01329800
https://doi.org/10.1002/prop.19700181102
https://doi.org/10.1016/0550-3213(95)00226-I
https://doi.org/10.1016/0550-3213(95)00226-I
https://arxiv.org/abs/hep-ph/9503236


176 BIBLIOGRAPHY

[16] P. Benincasa and F. Cachazo, Consistency Conditions on the S-Matrix of Mass-
less Particles, (2007), arXiv:0705.4305 [hep-th].

[17] M. S. Costa, J. Penedones, D. Poland, and S. Rychkov, Spinning Conformal
Correlators, JHEP 11, 071 (2011), arXiv:1107.3554 [hep-th].

[18] N. Arkani-Hamed, T.-C. Huang, and Y.-t. Huang, Scattering amplitudes for all
masses and spins, JHEP 11, 070 (2021), arXiv:1709.04891 [hep-th].

[19] G. Durieux, T. Kitahara, Y. Shadmi, and Y. Weiss, The electroweak effective
field theory from on-shell amplitudes, JHEP 01, 119 (2020), arXiv:1909.10551
[hep-ph].

[20] S. De Angelis, Amplitude bases in generic EFTs, (2022), arXiv:2202.02681 [hep-
th].

[21] R. Britto, F. Cachazo, and B. Feng, Generalized unitarity and one-loop ampli-
tudes in N=4 super-Yang-Mills, Nucl. Phys. B 725, 275–305 (2005), arXiv:hep-
th/0412103.

[22] R. Britto, F. Cachazo, B. Feng, and E. Witten, Direct proof of tree-level recursion
relation in Yang-Mills theory, Phys. Rev. Lett. 94, 181602 (2005), arXiv:hep-
th/0501052.

[23] N. Arkani-Hamed and J. Kaplan, On Tree Amplitudes in Gauge Theory and
Gravity, JHEP 04, 076 (2008), arXiv:0801.2385 [hep-th].

[24] K. Risager, A Direct proof of the CSW rules, JHEP 12, 003 (2005), arXiv:hep-
th/0508206.

[25] T. Cohen, H. Elvang, and M. Kiermaier, On-shell constructibility of tree ampli-
tudes in general field theories, JHEP 04, 053 (2011), arXiv:1010.0257 [hep-th].

[26] K. Kampf, J. Novotny, and J. Trnka, Recursion relations for tree-level ampli-
tudes in the SU(N) nonlinear sigma model, Phys. Rev. D 87, 081701 (2013),
arXiv:1212.5224 [hep-th].

[27] C. Cheung, K. Kampf, J. Novotny, and J. Trnka, Effective Field Theories from
Soft Limits of Scattering Amplitudes, Phys. Rev. Lett. 114, 221602 (2015), arXiv:1412.
4095 [hep-th].

[28] C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, and J. Trnka, On-Shell Recur-
sion Relations for Effective Field Theories, Phys. Rev. Lett. 116, 041601 (2016),
arXiv:1509.03309 [hep-th].

[29] C. Cheung, C.-H. Shen, and J. Trnka, Simple Recursion Relations for General
Field Theories, JHEP 06, 118 (2015), arXiv:1502.05057 [hep-th].

[30] C. Cheung and D. O’Connell, Amplitudes and Spinor-Helicity in Six Dimensions,
JHEP 07, 075 (2009), arXiv:0902.0981 [hep-th].

[31] J. C. Collins, Renormalization: An Introduction to Renormalization, The Renor-
malization Group, and the Operator Product Expansion, Vol. 26, Cambridge
Monographs on Mathematical Physics (Cambridge University Press, Cambridge,
1986).

[32] R. V. Harlander, D. R. T. Jones, P. Kant, L. Mihaila, and M. Steinhauser,
Four-loop beta function and mass anomalous dimension in dimensional reduc-
tion, JHEP 12, 024 (2006), arXiv:hep-ph/0610206.

https://arxiv.org/abs/0705.4305
https://doi.org/10.1007/JHEP11(2011)071
https://arxiv.org/abs/1107.3554
https://doi.org/10.1007/JHEP11(2021)070
https://arxiv.org/abs/1709.04891
https://doi.org/10.1007/JHEP01(2020)119
https://arxiv.org/abs/1909.10551
https://arxiv.org/abs/1909.10551
https://arxiv.org/abs/2202.02681
https://arxiv.org/abs/2202.02681
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://arxiv.org/abs/hep-th/0412103
https://arxiv.org/abs/hep-th/0412103
https://doi.org/10.1103/PhysRevLett.94.181602
https://arxiv.org/abs/hep-th/0501052
https://arxiv.org/abs/hep-th/0501052
https://doi.org/10.1088/1126-6708/2008/04/076
https://arxiv.org/abs/0801.2385
https://doi.org/10.1088/1126-6708/2005/12/003
https://arxiv.org/abs/hep-th/0508206
https://arxiv.org/abs/hep-th/0508206
https://doi.org/10.1007/JHEP04(2011)053
https://arxiv.org/abs/1010.0257
https://doi.org/10.1103/PhysRevD.87.081701
https://arxiv.org/abs/1212.5224
https://doi.org/10.1103/PhysRevLett.114.221602
https://arxiv.org/abs/1412.4095
https://arxiv.org/abs/1412.4095
https://doi.org/10.1103/PhysRevLett.116.041601
https://arxiv.org/abs/1509.03309
https://doi.org/10.1007/JHEP06(2015)118
https://arxiv.org/abs/1502.05057
https://doi.org/10.1088/1126-6708/2009/07/075
https://arxiv.org/abs/0902.0981
https://doi.org/10.1088/1126-6708/2006/12/024
https://arxiv.org/abs/hep-ph/0610206


BIBLIOGRAPHY 177

[33] R. Harlander, P. Kant, L. Mihaila, and M. Steinhauser, Dimensional Reduction
applied to QCD at three loops, JHEP 09, 053 (2006), arXiv:hep-ph/0607240.

[34] L. D. Landau, On analytic properties of vertex parts in quantum field theory,
Nucl. Phys. 13, 181–192 (1959).

[35] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, One loop n point gauge
theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425, 217–260
(1994), arXiv:hep-ph/9403226.

[36] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, Fusing gauge theory tree
amplitudes into loop amplitudes, Nucl. Phys. B 435, 59–101 (1995), arXiv:hep-
ph/9409265.

[37] Z. Bern, L. J. Dixon, and D. A. Kosower, One loop amplitudes for e+ e- to four
partons, Nucl. Phys. B 513, 3–86 (1998), arXiv:hep-ph/9708239.

[38] G. Ossola, C. G. Papadopoulos, and R. Pittau, Reducing full one-loop amplitudes
to scalar integrals at the integrand level, Nucl. Phys. B 763, 147–169 (2007),
arXiv:hep-ph/0609007.

[39] R. Britto, B. Feng, and P. Mastrolia, The Cut-constructible part of QCD ampli-
tudes, Phys. Rev. D 73, 105004 (2006), arXiv:hep-ph/0602178.

[40] P. Mastrolia, On Triple-cut of scattering amplitudes, Phys. Lett. B 644, 272–283
(2007), arXiv:hep-th/0611091.

[41] D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75,
125019 (2007), arXiv:0704.1835 [hep-ph].

[42] P. Mastrolia, G. Ossola, C. G. Papadopoulos, and R. Pittau, Optimizing the
Reduction of One-Loop Amplitudes, JHEP 06, 030 (2008), arXiv:0803.3964 [hep-
ph].

[43] P. Mastrolia, Double-Cut of Scattering Amplitudes and Stokes’ Theorem, Phys.
Lett. B 678, 246–249 (2009), arXiv:0905.2909 [hep-ph].

[44] Z. Bern, L. J. Dixon, and D. A. Kosower, Two-loop g —> gg splitting amplitudes
in QCD, JHEP 08, 012 (2004), arXiv:hep-ph/0404293.

[45] R. Britto, Loop Amplitudes in Gauge Theories: Modern Analytic Approaches, J.
Phys. A 44, 454006 (2011), arXiv:1012.4493 [hep-th].

[46] Z. Bern and Y.-t. Huang, Basics of Generalized Unitarity, J. Phys. A 44, 454003
(2011), arXiv:1103.1869 [hep-th].

[47] J. J. M. Carrasco and H. Johansson, Generic multiloop methods and application
to N=4 super-Yang-Mills, J. Phys. A 44, 454004 (2011), arXiv:1103.3298 [hep-
th].

[48] G. Passarino and M. J. G. Veltman, One Loop Corrections for e+ e- Annihilation
Into mu+ mu- in the Weinberg Model, Nucl. Phys. B 160, 151–207 (1979).

[49] W. L. van Neerven and J. A. M. Vermaseren, Large loop integrals, Phys. Lett. B
137, 241–244 (1984).

[50] Y.-t. Huang and D. McGady, Consistency Conditions for Gauge Theory S Ma-
trices from Requirements of Generalized Unitarity, Phys. Rev. Lett. 112, 241601
(2014), arXiv:1307.4065 [hep-th].

[51] W.-M. Chen, Y.-t. Huang, and D. A. McGady, Anomalies without an action,
(2014), arXiv:1402.7062 [hep-th].

https://doi.org/10.1088/1126-6708/2006/09/053
https://arxiv.org/abs/hep-ph/0607240
https://doi.org/10.1016/B978-0-08-010586-4.50103-6
https://doi.org/10.1016/0550-3213(94)90179-1
https://doi.org/10.1016/0550-3213(94)90179-1
https://arxiv.org/abs/hep-ph/9403226
https://doi.org/10.1016/0550-3213(94)00488-Z
https://arxiv.org/abs/hep-ph/9409265
https://arxiv.org/abs/hep-ph/9409265
https://doi.org/10.1016/S0550-3213(97)00703-7
https://arxiv.org/abs/hep-ph/9708239
https://doi.org/10.1016/j.nuclphysb.2006.11.012
https://arxiv.org/abs/hep-ph/0609007
https://doi.org/10.1103/PhysRevD.73.105004
https://arxiv.org/abs/hep-ph/0602178
https://doi.org/10.1016/j.physletb.2006.11.037
https://doi.org/10.1016/j.physletb.2006.11.037
https://arxiv.org/abs/hep-th/0611091
https://doi.org/10.1103/PhysRevD.75.125019
https://doi.org/10.1103/PhysRevD.75.125019
https://arxiv.org/abs/0704.1835
https://doi.org/10.1088/1126-6708/2008/06/030
https://arxiv.org/abs/0803.3964
https://arxiv.org/abs/0803.3964
https://doi.org/10.1016/j.physletb.2009.06.033
https://doi.org/10.1016/j.physletb.2009.06.033
https://arxiv.org/abs/0905.2909
https://doi.org/10.1088/1126-6708/2004/08/012
https://arxiv.org/abs/hep-ph/0404293
https://doi.org/10.1088/1751-8113/44/45/454006
https://doi.org/10.1088/1751-8113/44/45/454006
https://arxiv.org/abs/1012.4493
https://doi.org/10.1088/1751-8113/44/45/454003
https://doi.org/10.1088/1751-8113/44/45/454003
https://arxiv.org/abs/1103.1869
https://doi.org/10.1088/1751-8113/44/45/454004
https://arxiv.org/abs/1103.3298
https://arxiv.org/abs/1103.3298
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1016/0370-2693(84)90237-5
https://doi.org/10.1016/0370-2693(84)90237-5
https://doi.org/10.1103/PhysRevLett.112.241601
https://doi.org/10.1103/PhysRevLett.112.241601
https://arxiv.org/abs/1307.4065
https://arxiv.org/abs/1402.7062


178 BIBLIOGRAPHY

[52] Z. Bern, L. J. Dixon, and D. A. Kosower, On-shell recurrence relations for one-
loop QCD amplitudes, Phys. Rev. D 71, 105013 (2005), arXiv:hep-th/0501240.

[53] Z. Bern, L. J. Dixon, and D. A. Kosower, The last of the finite loop amplitudes
in QCD, Phys. Rev. D 72, 125003 (2005), arXiv:hep-ph/0505055.

[54] Z. Bern, L. J. Dixon, and D. A. Kosower, Bootstrapping multi-parton loop am-
plitudes in QCD, Phys. Rev. D 73, 065013 (2006), arXiv:hep-ph/0507005.

[55] Z. Bern and A. G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys.
B 467, 479–509 (1996), arXiv:hep-ph/9511336.

[56] A. Brandhuber, S. McNamara, B. J. Spence, and G. Travaglini, Loop amplitudes
in pure Yang-Mills from generalised unitarity, JHEP 10, 011 (2005), arXiv:hep-
th/0506068.

[57] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, and P. Mastrolia, D-dimensional
unitarity cut method, Phys. Lett. B 645, 213–216 (2007), arXiv:hep-ph/0609191.

[58] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, and P. Mastrolia, Unitarity cuts
and Reduction to master integrals in d dimensions for one-loop amplitudes, JHEP
03, 111 (2007), arXiv:hep-ph/0612277.

[59] W. T. Giele, Z. Kunszt, and K. Melnikov, Full one-loop amplitudes from tree
amplitudes, JHEP 04, 049 (2008), arXiv:0801.2237 [hep-ph].

[60] Z. Bern, J. J. Carrasco, T. Dennen, Y.-t. Huang, and H. Ita, Generalized Unitarity
and Six-Dimensional Helicity, Phys. Rev. D 83, 085022 (2011), arXiv:1010.0494
[hep-th].

[61] A. Brandhuber, B. Spence, G. Travaglini, and G. Yang, Form Factors in N=4
Super Yang-Mills and Periodic Wilson Loops, JHEP 01, 134 (2011), arXiv:1011.
1899 [hep-th].

[62] Y. Shadmi and Y. Weiss, Effective Field Theory Amplitudes the On-Shell Way:
Scalar and Vector Couplings to Gluons, JHEP 02, 165 (2019), arXiv:1809.09644
[hep-ph].

[63] F. A. Berends and W. Giele, The Six Gluon Process as an Example of Weyl-Van
Der Waerden Spinor Calculus, Nucl. Phys. B 294, 700–732 (1987).

[64] M. L. Mangano, The Color Structure of Gluon Emission, Nucl. Phys. B 309,
461–475 (1988).

[65] Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, and R. Roiban, The Duality
Between Color and Kinematics and its Applications, (2019), arXiv:1909.01358
[hep-th].

[66] F. Cachazo, P. Svrcek, and E. Witten, MHV vertices and tree amplitudes in gauge
theory, JHEP 09, 006 (2004), arXiv:hep-th/0403047.

[67] A. Brandhuber, B. J. Spence, and G. Travaglini, One-loop gauge theory ampli-
tudes in N=4 super Yang-Mills from MHV vertices, Nucl. Phys. B 706, 150–180
(2005), arXiv:hep-th/0407214.

[68] I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, Phys.
Rept. 793, 1–98 (2019), arXiv:1706.08945 [hep-ph].

[69] G. W. Bennett et al. (Muon g-2), Final Report of the Muon E821 Anoma-
lous Magnetic Moment Measurement at BNL, Phys. Rev. D 73, 072003 (2006),
arXiv:hep-ex/0602035.

https://doi.org/10.1103/PhysRevD.71.105013
https://arxiv.org/abs/hep-th/0501240
https://doi.org/10.1103/PhysRevD.72.125003
https://arxiv.org/abs/hep-ph/0505055
https://doi.org/10.1103/PhysRevD.73.065013
https://arxiv.org/abs/hep-ph/0507005
https://doi.org/10.1016/0550-3213(96)00078-8
https://doi.org/10.1016/0550-3213(96)00078-8
https://arxiv.org/abs/hep-ph/9511336
https://doi.org/10.1088/1126-6708/2005/10/011
https://arxiv.org/abs/hep-th/0506068
https://arxiv.org/abs/hep-th/0506068
https://doi.org/10.1016/j.physletb.2006.12.022
https://arxiv.org/abs/hep-ph/0609191
https://doi.org/10.1088/1126-6708/2007/03/111
https://doi.org/10.1088/1126-6708/2007/03/111
https://arxiv.org/abs/hep-ph/0612277
https://doi.org/10.1088/1126-6708/2008/04/049
https://arxiv.org/abs/0801.2237
https://doi.org/10.1103/PhysRevD.83.085022
https://arxiv.org/abs/1010.0494
https://arxiv.org/abs/1010.0494
https://doi.org/10.1007/JHEP01(2011)134
https://arxiv.org/abs/1011.1899
https://arxiv.org/abs/1011.1899
https://doi.org/10.1007/JHEP02(2019)165
https://arxiv.org/abs/1809.09644
https://arxiv.org/abs/1809.09644
https://doi.org/10.1016/0550-3213(87)90604-3
https://doi.org/10.1016/0550-3213(88)90453-1
https://doi.org/10.1016/0550-3213(88)90453-1
https://arxiv.org/abs/1909.01358
https://arxiv.org/abs/1909.01358
https://doi.org/10.1088/1126-6708/2004/09/006
https://arxiv.org/abs/hep-th/0403047
https://doi.org/10.1016/j.nuclphysb.2004.11.023
https://doi.org/10.1016/j.nuclphysb.2004.11.023
https://arxiv.org/abs/hep-th/0407214
https://doi.org/10.1016/j.physrep.2018.11.002
https://doi.org/10.1016/j.physrep.2018.11.002
https://arxiv.org/abs/1706.08945
https://doi.org/10.1103/PhysRevD.73.072003
https://arxiv.org/abs/hep-ex/0602035


BIBLIOGRAPHY 179

[70] T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard
Model, Phys. Rept. 887, 1–166 (2020), arXiv:2006.04822 [hep-ph].

[71] B. Abi et al. (Muon g-2), Measurement of the Positive Muon Anomalous Magnetic
Moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv:2104.03281
[hep-ex].

[72] S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43,
1566–1570 (1979).

[73] B. Henning, X. Lu, and H. Murayama, How to use the Standard Model effective
field theory, JHEP 01, 023 (2016), arXiv:1412.1837 [hep-ph].

[74] I. Brivio, Y. Jiang, and M. Trott, The SMEFTsim package, theory and tools,
JHEP 12, 070 (2017), arXiv:1709.06492 [hep-ph].

[75] I. Brivio, T. Corbett, and M. Trott, The Higgs width in the SMEFT, JHEP 10,
056 (2019), arXiv:1906.06949 [hep-ph].

[76] S. Dawson, S. Homiller, and S. D. Lane, Putting standard model EFT fits to work,
Phys. Rev. D 102, 055012 (2020), arXiv:2007.01296 [hep-ph].

[77] A. David and G. Passarino, Use and reuse of SMEFT, (2020), arXiv:2009.00127
[hep-ph].

[78] J. Ellis, M. Madigan, K. Mimasu, V. Sanz, and T. You, Top, Higgs, Diboson
and Electroweak Fit to the Standard Model Effective Field Theory, JHEP 04, 279
(2021), arXiv:2012.02779 [hep-ph].

[79] M. Trott, Methodology for theory uncertainties in the standard model effective
field theory, Phys. Rev. D 104, 095023 (2021), arXiv:2106.13794 [hep-ph].

[80] J. Ellis, N. E. Mavromatos, and T. You, Light-by-Light Scattering Constraint
on Born-Infeld Theory, Phys. Rev. Lett. 118, 261802 (2017), arXiv:1703.08450
[hep-ph].

[81] J. Ellis and S.-F. Ge, Constraining Gluonic Quartic Gauge Coupling Operators
with gg→γγ, Phys. Rev. Lett. 121, 041801 (2018), arXiv:1802.02416 [hep-ph].

[82] J. Ellis, H.-J. He, and R.-Q. Xiao, Probing new physics in dimension-8 neutral
gauge couplings at e+e− colliders, Sci. China Phys. Mech. Astron. 64, 221062
(2021), arXiv:2008.04298 [hep-ph].

[83] N. Arkani-Hamed and K. Harigaya, Naturalness and the muon magnetic moment,
JHEP 09, 025 (2021), arXiv:2106.01373 [hep-ph].

[84] C. Hays, A. Martin, V. Sanz, and J. Setford, On the impact of dimension-eight
SMEFT operators on Higgs measurements, JHEP 02, 123 (2019), arXiv:1808.
00442 [hep-ph].

[85] T. Corbett, A. Martin, and M. Trott, Consistent higher order σ (GG → h), Γ (h→ GG)
and Γ(h → γγ) in geoSMEFT, JHEP 12, 147 (2021), arXiv:2107.07470 [hep-ph].

[86] S. Alioli, R. Boughezal, E. Mereghetti, and F. Petriello, Novel angular dependence
in Drell-Yan lepton production via dimension-8 operators, Phys. Lett. B 809,
135703 (2020), arXiv:2003.11615 [hep-ph].

[87] R. Boughezal, E. Mereghetti, and F. Petriello, Dilepton production in the SMEFT
at O(1/Λ4), Phys. Rev. D 104, 095022 (2021), arXiv:2106.05337 [hep-ph].

[88] T. Corbett, A. Helset, A. Martin, and M. Trott, EWPD in the SMEFT to di-
mension eight, JHEP 06, 076 (2021), arXiv:2102.02819 [hep-ph].

https://doi.org/10.1016/j.physrep.2020.07.006
https://arxiv.org/abs/2006.04822
https://doi.org/10.1103/PhysRevLett.126.141801
https://arxiv.org/abs/2104.03281
https://arxiv.org/abs/2104.03281
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1007/JHEP01(2016)023
https://arxiv.org/abs/1412.1837
https://doi.org/10.1007/JHEP12(2017)070
https://arxiv.org/abs/1709.06492
https://doi.org/10.1007/JHEP10(2019)056
https://doi.org/10.1007/JHEP10(2019)056
https://arxiv.org/abs/1906.06949
https://doi.org/10.1103/PhysRevD.102.055012
https://arxiv.org/abs/2007.01296
https://arxiv.org/abs/2009.00127
https://arxiv.org/abs/2009.00127
https://doi.org/10.1007/JHEP04(2021)279
https://doi.org/10.1007/JHEP04(2021)279
https://arxiv.org/abs/2012.02779
https://doi.org/10.1103/PhysRevD.104.095023
https://arxiv.org/abs/2106.13794
https://doi.org/10.1103/PhysRevLett.118.261802
https://arxiv.org/abs/1703.08450
https://arxiv.org/abs/1703.08450
https://doi.org/10.1103/PhysRevLett.121.041801
https://arxiv.org/abs/1802.02416
https://doi.org/10.1007/s11433-020-1617-3
https://doi.org/10.1007/s11433-020-1617-3
https://arxiv.org/abs/2008.04298
https://doi.org/10.1007/JHEP09(2021)025
https://arxiv.org/abs/2106.01373
https://doi.org/10.1007/JHEP02(2019)123
https://arxiv.org/abs/1808.00442
https://arxiv.org/abs/1808.00442
https://doi.org/10.1007/JHEP12(2021)147
https://arxiv.org/abs/2107.07470
https://doi.org/10.1016/j.physletb.2020.135703
https://doi.org/10.1016/j.physletb.2020.135703
https://arxiv.org/abs/2003.11615
https://doi.org/10.1103/PhysRevD.104.095022
https://arxiv.org/abs/2106.05337
https://doi.org/10.1007/JHEP06(2021)076
https://arxiv.org/abs/2102.02819


180 BIBLIOGRAPHY

[89] T. Corbett, The one-loop tadpole in the geoSMEFT, SciPost Phys. 11, 097 (2021),
arXiv:2106.10284 [hep-ph].

[90] A. Martin and M. Trott, The ggh variations, (2021), arXiv:2109.05595 [hep-ph].

[91] A. Azatov, R. Contino, C. S. Machado, and F. Riva, Helicity selection rules and
noninterference for BSM amplitudes, Phys. Rev. D 95, 065014 (2017), arXiv:1607.
05236 [hep-ph].

[92] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis, and R. Rattazzi, Causal-
ity, analyticity and an IR obstruction to UV completion, JHEP 10, 014 (2006),
arXiv:hep-th/0602178.

[93] B. Bellazzini, J. Elias Miró, R. Rattazzi, M. Riembau, and F. Riva, Positive
moments for scattering amplitudes, Phys. Rev. D 104, 036006 (2021), arXiv:2011.
00037 [hep-th].

[94] N. Arkani-Hamed, T.-C. Huang, and Y.-T. Huang, The EFT-Hedron, JHEP 05,
259 (2021), arXiv:2012.15849 [hep-th].

[95] G. N. Remmen and N. L. Rodd, Flavor Constraints from Unitarity and Analytic-
ity, Phys. Rev. Lett. 125, [Erratum: Phys.Rev.Lett. 127, 149901 (2021)], 081601
(2020), arXiv:2004.02885 [hep-ph].

[96] C. Zhang, SMEFTs living on the edge: determining the UV theories from posi-
tivity and extremality, (2021), arXiv:2112.11665 [hep-ph].

[97] L. D. Rose, B. von Harling, and A. Pomarol, Wilson Coefficients and Natural
Zeros from the On-Shell Viewpoint, (2022), arXiv:2201.10572 [hep-ph].

[98] S. Caron-Huot and M. Wilhelm, Renormalization group coefficients and the S-
matrix, JHEP 12, 010 (2016), arXiv:1607.06448 [hep-th].

[99] J. Elias Miró, J. Ingoldby, and M. Riembau, EFT anomalous dimensions from
the S-matrix, JHEP 09, 163 (2020), arXiv:2005.06983 [hep-ph].

[100] P. Baratella, C. Fernandez, and A. Pomarol, Renormalization of Higher-Dimensional
Operators from On-shell Amplitudes, Nucl. Phys. B 959, 115155 (2020), arXiv:2005.
07129 [hep-ph].

[101] M. Jiang, T. Ma, and J. Shu, Renormalization Group Evolution from On-shell
SMEFT, JHEP 01, 101 (2021), arXiv:2005.10261 [hep-ph].

[102] Z. Bern, J. Parra-Martinez, and E. Sawyer, Structure of two-loop SMEFT anoma-
lous dimensions via on-shell methods, JHEP 10, 211 (2020), arXiv:2005.12917
[hep-ph].

[103] P. Baratella, C. Fernandez, B. von Harling, and A. Pomarol, Anomalous Dimen-
sions of Effective Theories from Partial Waves, JHEP 03, 287 (2021), arXiv:2010.
13809 [hep-ph].

[104] M. Accettulli Huber and S. De Angelis, Standard Model EFTs via on-shell meth-
ods, JHEP 11, 221 (2021), arXiv:2108.03669 [hep-th].

[105] P. Baratella, D. Haslehner, M. Ruhdorfer, J. Serra, and A. Weiler, RG of GR
from On-shell Amplitudes, (2021), arXiv:2109.06191 [hep-th].

[106] J. Elias Miro, C. Fernandez, M. A. Gumus, and A. Pomarol, Gearing up for the
next generation of LFV experiments, via on-shell methods, (2021), arXiv:2112.
12131 [hep-ph].

https://arxiv.org/abs/2106.10284
https://arxiv.org/abs/2109.05595
https://doi.org/10.1103/PhysRevD.95.065014
https://arxiv.org/abs/1607.05236
https://arxiv.org/abs/1607.05236
https://doi.org/10.1088/1126-6708/2006/10/014
https://arxiv.org/abs/hep-th/0602178
https://doi.org/10.1103/PhysRevD.104.036006
https://arxiv.org/abs/2011.00037
https://arxiv.org/abs/2011.00037
https://doi.org/10.1007/JHEP05(2021)259
https://doi.org/10.1007/JHEP05(2021)259
https://arxiv.org/abs/2012.15849
https://doi.org/10.1103/PhysRevLett.127.149901
https://doi.org/10.1103/PhysRevLett.127.149901
https://arxiv.org/abs/2004.02885
https://arxiv.org/abs/2112.11665
https://arxiv.org/abs/2201.10572
https://doi.org/10.1007/JHEP12(2016)010
https://arxiv.org/abs/1607.06448
https://doi.org/10.1007/JHEP09(2020)163
https://arxiv.org/abs/2005.06983
https://doi.org/10.1016/j.nuclphysb.2020.115155
https://arxiv.org/abs/2005.07129
https://arxiv.org/abs/2005.07129
https://doi.org/10.1007/JHEP01(2021)101
https://arxiv.org/abs/2005.10261
https://doi.org/10.1007/JHEP10(2020)211
https://arxiv.org/abs/2005.12917
https://arxiv.org/abs/2005.12917
https://doi.org/10.1007/JHEP03(2021)287
https://arxiv.org/abs/2010.13809
https://arxiv.org/abs/2010.13809
https://doi.org/10.1007/JHEP11(2021)221
https://arxiv.org/abs/2108.03669
https://arxiv.org/abs/2109.06191
https://arxiv.org/abs/2112.12131
https://arxiv.org/abs/2112.12131


BIBLIOGRAPHY 181

[107] P. Baratella, Two-Loop Infrared Renormalization with On-shell Methods, (2022),
arXiv:2207.08831 [hep-th].

[108] C. Cheung and C.-H. Shen, Nonrenormalization Theorems without Supersymme-
try, Phys. Rev. Lett. 115, 071601 (2015), arXiv:1505.01844 [hep-ph].

[109] Z. Bern, J. Parra-Martinez, and E. Sawyer, Nonrenormalization and Operator
Mixing via On-Shell Methods, Phys. Rev. Lett. 124, 051601 (2020), arXiv:1910.
05831 [hep-ph].

[110] M. Jiang, J. Shu, M.-L. Xiao, and Y.-H. Zheng, Partial Wave Amplitude Basis
and Selection Rules in Effective Field Theories, Phys. Rev. Lett. 126, 011601
(2021), arXiv:2001.04481 [hep-ph].

[111] T. Ma, J. Shu, and M.-L. Xiao, Standard Model Effective Field Theory from
On-shell Amplitudes, (2019), arXiv:1902.06752 [hep-ph].

[112] R. Aoude and C. S. Machado, The Rise of SMEFT On-shell Amplitudes, JHEP
12, 058 (2019), arXiv:1905.11433 [hep-ph].

[113] A. Falkowski, Bases of massless EFTs via momentum twistors, (2019), arXiv:1912.
07865 [hep-ph].

[114] G. Durieux and C. S. Machado, Enumerating higher-dimensional operators with
on-shell amplitudes, Phys. Rev. D 101, 095021 (2020), arXiv:1912.08827 [hep-
ph].

[115] A. Falkowski, G. Isabella, and C. S. Machado, On-shell effective theory for higher-
spin dark matter, SciPost Phys. 10, 101 (2021), arXiv:2011.05339 [hep-ph].

[116] G. Durieux, T. Kitahara, C. S. Machado, Y. Shadmi, and Y. Weiss, Constructing
massive on-shell contact terms, JHEP 12, 175 (2020), arXiv:2008.09652 [hep-ph].

[117] H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu, and Y.-H. Zheng, Complete set of
dimension-eight operators in the standard model effective field theory, Phys. Rev.
D 104, 015026 (2021), arXiv:2005.00008 [hep-ph].

[118] H.-L. Li, Z. Ren, M.-L. Xiao, J.-H. Yu, and Y.-H. Zheng, Complete set of dimension-
nine operators in the standard model effective field theory, Phys. Rev. D 104,
015025 (2021), arXiv:2007.07899 [hep-ph].

[119] H.-L. Li, Z. Ren, M.-L. Xiao, J.-H. Yu, and Y.-H. Zheng, Operators For Generic
Effective Field Theory at any Dimension: On-shell Amplitude Basis Construc-
tion, (2022), arXiv:2201.04639 [hep-ph].

[120] R. Balkin, G. Durieux, T. Kitahara, Y. Shadmi, and Y. Weiss, On-shell Higgsing
for EFTs, (2021), arXiv:2112.09688 [hep-ph].

[121] Z.-Y. Dong, T. Ma, J. Shu, and Y.-H. Zheng, Constructing Generic Effective
Field Theory for All Masses and Spins, (2022), arXiv:2202.08350 [hep-ph].

[122] H.-L. Li, Y.-H. Ni, M.-L. Xiao, and J.-H. Yu, The Bottom-Up EFT: Complete
UV Resonances of the SMEFT Operators, (2022), arXiv:2204.03660 [hep-ph].

[123] B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves
from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.
03837 [gr-qc].

[124] B. P. Abbott et al. (LIGO Scientific, Virgo), GW170817: Observation of Gravita-
tional Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101
(2017), arXiv:1710.05832 [gr-qc].

https://arxiv.org/abs/2207.08831
https://doi.org/10.1103/PhysRevLett.115.071601
https://arxiv.org/abs/1505.01844
https://doi.org/10.1103/PhysRevLett.124.051601
https://arxiv.org/abs/1910.05831
https://arxiv.org/abs/1910.05831
https://doi.org/10.1103/PhysRevLett.126.011601
https://doi.org/10.1103/PhysRevLett.126.011601
https://arxiv.org/abs/2001.04481
https://arxiv.org/abs/1902.06752
https://doi.org/10.1007/JHEP12(2019)058
https://doi.org/10.1007/JHEP12(2019)058
https://arxiv.org/abs/1905.11433
https://arxiv.org/abs/1912.07865
https://arxiv.org/abs/1912.07865
https://doi.org/10.1103/PhysRevD.101.095021
https://arxiv.org/abs/1912.08827
https://arxiv.org/abs/1912.08827
https://doi.org/10.21468/SciPostPhys.10.5.101
https://arxiv.org/abs/2011.05339
https://doi.org/10.1007/JHEP12(2020)175
https://arxiv.org/abs/2008.09652
https://doi.org/10.1103/PhysRevD.104.015026
https://doi.org/10.1103/PhysRevD.104.015026
https://arxiv.org/abs/2005.00008
https://doi.org/10.1103/PhysRevD.104.015025
https://doi.org/10.1103/PhysRevD.104.015025
https://arxiv.org/abs/2007.07899
https://arxiv.org/abs/2201.04639
https://arxiv.org/abs/2112.09688
https://arxiv.org/abs/2202.08350
https://arxiv.org/abs/2204.03660
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837
https://arxiv.org/abs/1602.03837
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832


182 BIBLIOGRAPHY

[125] Y. Iwasaki, Fourth-order gravitational potential based on quantum field theory,
Lett. Nuovo Cim. 1S2, 783–786 (1971).

[126] Y. Iwasaki, Quantum theory of gravitation vs. classical theory. - fourth-order
potential, Prog. Theor. Phys. 46, 1587–1609 (1971).

[127] J. F. Donoghue, General relativity as an effective field theory: The leading quan-
tum corrections, Phys. Rev. D 50, 3874–3888 (1994), arXiv:gr-qc/9405057.

[128] N. E. J. Bjerrum-Bohr, J. F. Donoghue, and B. R. Holstein, Quantum gravita-
tional corrections to the nonrelativistic scattering potential of two masses, Phys.
Rev. D 67, [Erratum: Phys.Rev.D 71, 069903 (2005)], 084033 (2003), arXiv:hep-
th/0211072.

[129] B. R. Holstein and J. F. Donoghue, Classical physics and quantum loops, Phys.
Rev. Lett. 93, 201602 (2004), arXiv:hep-th/0405239.

[130] N. E. J. Bjerrum-Bohr, J. F. Donoghue, and P. Vanhove, On-shell Techniques and
Universal Results in Quantum Gravity, JHEP 02, 111 (2014), arXiv:1309.0804
[hep-th].

[131] D. Neill and I. Z. Rothstein, Classical Space-Times from the S Matrix, Nucl.
Phys. B 877, 177–189 (2013), arXiv:1304.7263 [hep-th].

[132] N. E. J. Bjerrum-Bohr, J. F. Donoghue, B. R. Holstein, L. Planté, and P. Van-
hove, Bending of Light in Quantum Gravity, Phys. Rev. Lett. 114, 061301 (2015),
arXiv:1410.7590 [hep-th].

[133] I. Z. Rothstein, Progress in effective field theory approach to the binary inspiral
problem, Gen. Rel. Grav. 46, 1726 (2014).

[134] N. E. J. Bjerrum-Bohr, J. F. Donoghue, B. R. Holstein, L. Plante, and P. Van-
hove, Light-like Scattering in Quantum Gravity, JHEP 11, 117 (2016), arXiv:1609.
07477 [hep-th].

[135] D. Bai and Y. Huang, More on the Bending of Light in Quantum Gravity, Phys.
Rev. D 95, 064045 (2017), arXiv:1612.07629 [hep-th].

[136] F. Cachazo and A. Guevara, Leading Singularities and Classical Gravitational
Scattering, JHEP 02, 181 (2020), arXiv:1705.10262 [hep-th].

[137] N. E. J. Bjerrum-Bohr, B. R. Holstein, J. F. Donoghue, L. Planté, and P. Van-
hove, Illuminating Light Bending, PoS CORFU2016, 077 (2017), arXiv:1704.
01624 [gr-qc].

[138] C. Cheung, I. Z. Rothstein, and M. P. Solon, From Scattering Amplitudes to
Classical Potentials in the Post-Minkowskian Expansion, Phys. Rev. Lett. 121,
251101 (2018), arXiv:1808.02489 [hep-th].

[139] N. E. J. Bjerrum-Bohr, P. H. Damgaard, G. Festuccia, L. Planté, and P. Vanhove,
General Relativity from Scattering Amplitudes, Phys. Rev. Lett. 121, 171601
(2018), arXiv:1806.04920 [hep-th].

[140] D. A. Kosower, B. Maybee, and D. O’Connell, Amplitudes, Observables, and
Classical Scattering, JHEP 02, 137 (2019), arXiv:1811.10950 [hep-th].

[141] H.-H. Chi, Graviton Bending in Quantum Gravity from One-Loop Amplitudes,
Phys. Rev. D 99, 126008 (2019), arXiv:1903.07944 [hep-th].

[142] A. Koemans Collado, P. Di Vecchia, and R. Russo, Revisiting the second post-
Minkowskian eikonal and the dynamics of binary black holes, Phys. Rev. D 100,
066028 (2019), arXiv:1904.02667 [hep-th].

https://doi.org/10.1007/BF02770190
https://doi.org/10.1143/PTP.46.1587
https://doi.org/10.1103/PhysRevD.50.3874
https://arxiv.org/abs/gr-qc/9405057
https://doi.org/10.1103/PhysRevD.71.069903
https://doi.org/10.1103/PhysRevD.71.069903
https://arxiv.org/abs/hep-th/0211072
https://arxiv.org/abs/hep-th/0211072
https://doi.org/10.1103/PhysRevLett.93.201602
https://doi.org/10.1103/PhysRevLett.93.201602
https://arxiv.org/abs/hep-th/0405239
https://doi.org/10.1007/JHEP02(2014)111
https://arxiv.org/abs/1309.0804
https://arxiv.org/abs/1309.0804
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://arxiv.org/abs/1304.7263
https://doi.org/10.1103/PhysRevLett.114.061301
https://arxiv.org/abs/1410.7590
https://doi.org/10.1007/s10714-014-1726-y
https://doi.org/10.1007/JHEP11(2016)117
https://arxiv.org/abs/1609.07477
https://arxiv.org/abs/1609.07477
https://doi.org/10.1103/PhysRevD.95.064045
https://doi.org/10.1103/PhysRevD.95.064045
https://arxiv.org/abs/1612.07629
https://doi.org/10.1007/JHEP02(2020)181
https://arxiv.org/abs/1705.10262
https://doi.org/10.22323/1.292.0077
https://arxiv.org/abs/1704.01624
https://arxiv.org/abs/1704.01624
https://doi.org/10.1103/PhysRevLett.121.251101
https://doi.org/10.1103/PhysRevLett.121.251101
https://arxiv.org/abs/1808.02489
https://doi.org/10.1103/PhysRevLett.121.171601
https://doi.org/10.1103/PhysRevLett.121.171601
https://arxiv.org/abs/1806.04920
https://doi.org/10.1007/JHEP02(2019)137
https://arxiv.org/abs/1811.10950
https://doi.org/10.1103/PhysRevD.99.126008
https://arxiv.org/abs/1903.07944
https://doi.org/10.1103/PhysRevD.100.066028
https://doi.org/10.1103/PhysRevD.100.066028
https://arxiv.org/abs/1904.02667


BIBLIOGRAPHY 183

[143] D. A. Kosower, R. Monteiro, and D. O’Connell, The SAGEX Review on Scat-
tering Amplitudes, Chapter 14: Classical Gravity from Scattering Amplitudes,
(2022), arXiv:2203.13025 [hep-th].

[144] T. Damour, High-energy gravitational scattering and the general relativistic two-
body problem, Phys. Rev. D 97, 044038 (2018), arXiv:1710.10599 [gr-qc].

[145] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon, and M. Zeng, Scattering
Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-
Minkowskian Order, Phys. Rev. Lett. 122, 201603 (2019), arXiv:1901.04424 [hep-
th].

[146] C. Cheung and M. P. Solon, Classical gravitational scattering at O(G3) from
Feynman diagrams, JHEP 06, 144 (2020), arXiv:2003.08351 [hep-th].

[147] J. Parra-Martinez, M. S. Ruf, and M. Zeng, Extremal black hole scattering at
O(G3): graviton dominance, eikonal exponentiation, and differential equations,
JHEP 11, 023 (2020), arXiv:2005.04236 [hep-th].

[148] P. Di Vecchia, C. Heissenberg, R. Russo, and G. Veneziano, Universality of ultra-
relativistic gravitational scattering, Phys. Lett. B 811, 135924 (2020), arXiv:2008.
12743 [hep-th].

[149] N. E. J. Bjerrum-Bohr, P. H. Damgaard, L. Planté, and P. Vanhove, The ampli-
tude for classical gravitational scattering at third Post-Minkowskian order, JHEP
08, 172 (2021), arXiv:2105.05218 [hep-th].

[150] A. Brandhuber, G. Chen, G. Travaglini, and C. Wen, Classical gravitational scat-
tering from a gauge-invariant double copy, JHEP 10, 118 (2021), arXiv:2108.
04216 [hep-th].

[151] T. Damour, Radiative contribution to classical gravitational scattering at the third
order in G, Phys. Rev. D 102, 124008 (2020), arXiv:2010.01641 [gr-qc].

[152] E. Herrmann, J. Parra-Martinez, M. S. Ruf, and M. Zeng, Gravitational Bremsstrahlung
from Reverse Unitarity, Phys. Rev. Lett. 126, 201602 (2021), arXiv:2101.07255
[hep-th].

[153] E. Herrmann, J. Parra-Martinez, M. S. Ruf, and M. Zeng, Radiative classical
gravitational observables at O(G3) from scattering amplitudes, JHEP 10, 148
(2021), arXiv:2104.03957 [hep-th].

[154] P. Di Vecchia, C. Heissenberg, R. Russo, and G. Veneziano, The eikonal ap-
proach to gravitational scattering and radiation at O(G3), JHEP 07, 169 (2021),
arXiv:2104.03256 [hep-th].

[155] P. Di Vecchia, C. Heissenberg, R. Russo, and G. Veneziano, Radiation Reaction
from Soft Theorems, Phys. Lett. B 818, 136379 (2021), arXiv:2101.05772 [hep-
th].

[156] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P. Solon, and
M. Zeng, Scattering Amplitudes and Conservative Binary Dynamics at O(G4),
Phys. Rev. Lett. 126, 171601 (2021), arXiv:2101.07254 [hep-th].

[157] Z. Bern, D. Kosmopoulos, and A. Zhiboedov, Gravitational effective field theory
islands, low-spin dominance, and the four-graviton amplitude, J. Phys. A 54,
344002 (2021), arXiv:2103.12728 [hep-th].

[158] A. Guevara, Holomorphic Classical Limit for Spin Effects in Gravitational and
Electromagnetic Scattering, JHEP 04, 033 (2019), arXiv:1706.02314 [hep-th].

https://arxiv.org/abs/2203.13025
https://doi.org/10.1103/PhysRevD.97.044038
https://arxiv.org/abs/1710.10599
https://doi.org/10.1103/PhysRevLett.122.201603
https://arxiv.org/abs/1901.04424
https://arxiv.org/abs/1901.04424
https://doi.org/10.1007/JHEP06(2020)144
https://arxiv.org/abs/2003.08351
https://doi.org/10.1007/JHEP11(2020)023
https://arxiv.org/abs/2005.04236
https://doi.org/10.1016/j.physletb.2020.135924
https://arxiv.org/abs/2008.12743
https://arxiv.org/abs/2008.12743
https://doi.org/10.1007/JHEP08(2021)172
https://doi.org/10.1007/JHEP08(2021)172
https://arxiv.org/abs/2105.05218
https://doi.org/10.1007/JHEP10(2021)118
https://arxiv.org/abs/2108.04216
https://arxiv.org/abs/2108.04216
https://doi.org/10.1103/PhysRevD.102.124008
https://arxiv.org/abs/2010.01641
https://doi.org/10.1103/PhysRevLett.126.201602
https://arxiv.org/abs/2101.07255
https://arxiv.org/abs/2101.07255
https://doi.org/10.1007/JHEP10(2021)148
https://doi.org/10.1007/JHEP10(2021)148
https://arxiv.org/abs/2104.03957
https://doi.org/10.1007/JHEP07(2021)169
https://arxiv.org/abs/2104.03256
https://doi.org/10.1016/j.physletb.2021.136379
https://arxiv.org/abs/2101.05772
https://arxiv.org/abs/2101.05772
https://doi.org/10.1103/PhysRevLett.126.171601
https://arxiv.org/abs/2101.07254
https://doi.org/10.1088/1751-8121/ac0e51
https://doi.org/10.1088/1751-8121/ac0e51
https://arxiv.org/abs/2103.12728
https://doi.org/10.1007/JHEP04(2019)033
https://arxiv.org/abs/1706.02314


184 BIBLIOGRAPHY

[159] M.-Z. Chung, Y.-T. Huang, J.-W. Kim, and S. Lee, The simplest massive S-
matrix: from minimal coupling to Black Holes, JHEP 04, 156 (2019), arXiv:1812.
08752 [hep-th].

[160] B. Maybee, D. O’Connell, and J. Vines, Observables and amplitudes for spinning
particles and black holes, JHEP 12, 156 (2019), arXiv:1906.09260 [hep-th].

[161] M.-Z. Chung, Y.-T. Huang, and J.-W. Kim, Classical potential for general spin-
ning bodies, JHEP 09, 074 (2020), arXiv:1908.08463 [hep-th].

[162] Z. Bern, A. Luna, R. Roiban, C.-H. Shen, and M. Zeng, Spinning black hole
binary dynamics, scattering amplitudes, and effective field theory, Phys. Rev. D
104, 065014 (2021), arXiv:2005.03071 [hep-th].

[163] D. Kosmopoulos and A. Luna, Quadratic-in-spin Hamiltonian at O(G2) from
scattering amplitudes, JHEP 07, 037 (2021), arXiv:2102.10137 [hep-th].

[164] M. Chiodaroli, H. Johansson, and P. Pichini, Compton Black-Hole Scattering for
s ≤ 5/2, (2021), arXiv:2107.14779 [hep-th].

[165] R. Aoude and A. Ochirov, Classical observables from coherent-spin amplitudes,
JHEP 10, 008 (2021), arXiv:2108.01649 [hep-th].

[166] K. Haddad, Exponentiation of the leading eikonal phase with spin, Phys. Rev. D
105, 026004 (2022), arXiv:2109.04427 [hep-th].

[167] Z. Bern, D. Kosmopoulos, A. Luna, R. Roiban, and F. Teng, Binary Dynamics
Through the Fifth Power of Spin at O(G2), (2022), arXiv:2203.06202 [hep-th].

[168] C. Cheung and M. P. Solon, Tidal Effects in the Post-Minkowskian Expansion,
Phys. Rev. Lett. 125, 191601 (2020), arXiv:2006.06665 [hep-th].

[169] K. Haddad and A. Helset, Tidal effects in quantum field theory, JHEP 12, 024
(2020), arXiv:2008.04920 [hep-th].

[170] Z. Bern, J. Parra-Martinez, R. Roiban, E. Sawyer, and C.-H. Shen, Leading Non-
linear Tidal Effects and Scattering Amplitudes, JHEP 05, 188 (2021), arXiv:2010.
08559 [hep-th].

[171] J.-W. Kim and M. Shim, Quantum corrections to tidal Love number for Schwarzschild
black holes, Phys. Rev. D 104, 046022 (2021), arXiv:2011.03337 [hep-th].

[172] R. Aoude, K. Haddad, and A. Helset, Tidal effects for spinning particles, JHEP
03, 097 (2021), arXiv:2012.05256 [hep-th].

[173] A. Brandhuber and G. Travaglini, On higher-derivative effects on the gravita-
tional potential and particle bending, JHEP 01, 010 (2020), arXiv:1905.05657
[hep-th].

[174] M. Accettulli Huber, A. Brandhuber, S. De Angelis, and G. Travaglini, Eikonal
phase matrix, deflection angle and time delay in effective field theories of gravity,
Phys. Rev. D 102, 046014 (2020), arXiv:2006.02375 [hep-th].

[175] W. D. Goldberger and I. Z. Rothstein, An Effective field theory of gravity for
extended objects, Phys. Rev. D 73, 104029 (2006), arXiv:hep-th/0409156.

[176] G. Kälin and R. A. Porto, Post-Minkowskian Effective Field Theory for Conser-
vative Binary Dynamics, JHEP 11, 106 (2020), arXiv:2006.01184 [hep-th].

[177] G. Kälin, Z. Liu, and R. A. Porto, Conservative Dynamics of Binary Systems to
Third Post-Minkowskian Order from the Effective Field Theory Approach, Phys.
Rev. Lett. 125, 261103 (2020), arXiv:2007.04977 [hep-th].

https://doi.org/10.1007/JHEP04(2019)156
https://arxiv.org/abs/1812.08752
https://arxiv.org/abs/1812.08752
https://doi.org/10.1007/JHEP12(2019)156
https://arxiv.org/abs/1906.09260
https://doi.org/10.1007/JHEP09(2020)074
https://arxiv.org/abs/1908.08463
https://doi.org/10.1103/PhysRevD.104.065014
https://doi.org/10.1103/PhysRevD.104.065014
https://arxiv.org/abs/2005.03071
https://doi.org/10.1007/JHEP07(2021)037
https://arxiv.org/abs/2102.10137
https://arxiv.org/abs/2107.14779
https://doi.org/10.1007/JHEP10(2021)008
https://arxiv.org/abs/2108.01649
https://doi.org/10.1103/PhysRevD.105.026004
https://doi.org/10.1103/PhysRevD.105.026004
https://arxiv.org/abs/2109.04427
https://arxiv.org/abs/2203.06202
https://doi.org/10.1103/PhysRevLett.125.191601
https://arxiv.org/abs/2006.06665
https://doi.org/10.1007/JHEP12(2020)024
https://doi.org/10.1007/JHEP12(2020)024
https://arxiv.org/abs/2008.04920
https://doi.org/10.1007/JHEP05(2021)188
https://arxiv.org/abs/2010.08559
https://arxiv.org/abs/2010.08559
https://doi.org/10.1103/PhysRevD.104.046022
https://arxiv.org/abs/2011.03337
https://doi.org/10.1007/JHEP03(2021)097
https://doi.org/10.1007/JHEP03(2021)097
https://arxiv.org/abs/2012.05256
https://doi.org/10.1007/JHEP01(2020)010
https://arxiv.org/abs/1905.05657
https://arxiv.org/abs/1905.05657
https://doi.org/10.1103/PhysRevD.102.046014
https://arxiv.org/abs/2006.02375
https://doi.org/10.1103/PhysRevD.73.104029
https://arxiv.org/abs/hep-th/0409156
https://doi.org/10.1007/JHEP11(2020)106
https://arxiv.org/abs/2006.01184
https://doi.org/10.1103/PhysRevLett.125.261103
https://doi.org/10.1103/PhysRevLett.125.261103
https://arxiv.org/abs/2007.04977


BIBLIOGRAPHY 185

[178] G. Mogull, J. Plefka, and J. Steinhoff, Classical black hole scattering from a
worldline quantum field theory, JHEP 02, 048 (2021), arXiv:2010.02865 [hep-th].

[179] G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff, Classical Gravitational
Bremsstrahlung from a Worldline Quantum Field Theory, Phys. Rev. Lett. 126,
201103 (2021), arXiv:2101.12688 [gr-qc].

[180] S. Mougiakakos, M. M. Riva, and F. Vernizzi, Gravitational Bremsstrahlung in
the post-Minkowskian effective field theory, Phys. Rev. D 104, 024041 (2021),
arXiv:2102.08339 [gr-qc].

[181] C. Dlapa, G. Kälin, Z. Liu, and R. A. Porto, Dynamics of binary systems to
fourth Post-Minkowskian order from the effective field theory approach, Phys.
Lett. B 831, 137203 (2022), arXiv:2106.08276 [hep-th].

[182] G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff, Gravitational Bremsstrahlung
and Hidden Supersymmetry of Spinning Bodies, Phys. Rev. Lett. 128, 011101
(2022), arXiv:2106.10256 [hep-th].

[183] G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff, SUSY in the sky with
gravitons, JHEP 01, 027 (2022), arXiv:2109.04465 [hep-th].

[184] M. M. Riva and F. Vernizzi, Radiated momentum in the post-Minkowskian world-
line approach via reverse unitarity, JHEP 11, 228 (2021), arXiv:2110.10140 [hep-
th].

[185] G. U. Jakobsen and G. Mogull, Conservative and Radiative Dynamics of Spin-
ning Bodies at Third Post-Minkowskian Order Using Worldline Quantum Field
Theory, Phys. Rev. Lett. 128, 141102 (2022), arXiv:2201.07778 [hep-th].

[186] S. Mougiakakos, M. M. Riva, and F. Vernizzi, Gravitational Bremsstrahlung with
tidal effects in the post-Minkowskian expansion, (2022), arXiv:2204.06556 [hep-
th].

[187] M. M. Riva, F. Vernizzi, and L. K. Wong, Gravitational Bremsstrahlung from
Spinning Binaries in the Post-Minkowskian Expansion, (2022), arXiv:2205.15295
[hep-th].

[188] G. U. Jakobsen, G. Mogull, J. Plefka, and B. Sauer, All Things Retarded: Radiation-
Reaction in Worldline Quantum Field Theory, (2022), arXiv:2207.00569 [hep-th].

[189] N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP 10, 030 (2014),
arXiv:1312.2007 [hep-th].

[190] L. Ferro and T. Lukowski, Amplituhedra, and beyond, J. Phys. A 54, 033001
(2021), arXiv:2007.04342 [hep-th].

[191] E. Herrmann and J. Trnka, The SAGEX Review on Scattering Amplitudes, Chap-
ter 7: Positive Geometry of Scattering Amplitudes, (2022), arXiv:2203 . 13018
[hep-th].

[192] Z. Bern, J. J. M. Carrasco, and H. Johansson, New Relations for Gauge-Theory
Amplitudes, Phys. Rev. D 78, 085011 (2008), arXiv:0805.3993 [hep-ph].

[193] Z. Bern, J. J. M. Carrasco, and H. Johansson, Perturbative Quantum Gravity as a
Double Copy of Gauge Theory, Phys. Rev. Lett. 105, 061602 (2010), arXiv:1004.
0476 [hep-th].

[194] Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, and R. Roiban, The SAGEX
Review on Scattering Amplitudes, Chapter 2: An Invitation to Color-Kinematics
Duality and the Double Copy, (2022), arXiv:2203.13013 [hep-th].

https://doi.org/10.1007/JHEP02(2021)048
https://arxiv.org/abs/2010.02865
https://doi.org/10.1103/PhysRevLett.126.201103
https://doi.org/10.1103/PhysRevLett.126.201103
https://arxiv.org/abs/2101.12688
https://doi.org/10.1103/PhysRevD.104.024041
https://arxiv.org/abs/2102.08339
https://doi.org/10.1016/j.physletb.2022.137203
https://doi.org/10.1016/j.physletb.2022.137203
https://arxiv.org/abs/2106.08276
https://doi.org/10.1103/PhysRevLett.128.011101
https://doi.org/10.1103/PhysRevLett.128.011101
https://arxiv.org/abs/2106.10256
https://doi.org/10.1007/JHEP01(2022)027
https://arxiv.org/abs/2109.04465
https://doi.org/10.1007/JHEP11(2021)228
https://arxiv.org/abs/2110.10140
https://arxiv.org/abs/2110.10140
https://doi.org/10.1103/PhysRevLett.128.141102
https://arxiv.org/abs/2201.07778
https://arxiv.org/abs/2204.06556
https://arxiv.org/abs/2204.06556
https://arxiv.org/abs/2205.15295
https://arxiv.org/abs/2205.15295
https://arxiv.org/abs/2207.00569
https://doi.org/10.1007/JHEP10(2014)030
https://arxiv.org/abs/1312.2007
https://doi.org/10.1088/1751-8121/abd21d
https://doi.org/10.1088/1751-8121/abd21d
https://arxiv.org/abs/2007.04342
https://arxiv.org/abs/2203.13018
https://arxiv.org/abs/2203.13018
https://doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
https://doi.org/10.1103/PhysRevLett.105.061602
https://arxiv.org/abs/1004.0476
https://arxiv.org/abs/1004.0476
https://arxiv.org/abs/2203.13013


186 BIBLIOGRAPHY

[195] S. Weinzierl, Feynman Integrals, (2022), arXiv:2201.03593 [hep-th].

[196] S. Abreu, R. Britto, and C. Duhr, The SAGEX Review on Scattering Amplitudes,
Chapter 3: Mathematical structures in Feynman integrals, (2022), arXiv:2203.
13014 [hep-th].

[197] J. Blümlein and C. Schneider, The SAGEX Review on Scattering Amplitudes,
Chapter 4: Multi-loop Feynman Integrals, (2022), arXiv:2203.13015 [hep-th].

[198] N. Arkani-Hamed, D. Baumann, H. Lee, and G. L. Pimentel, The Cosmological
Bootstrap: Inflationary Correlators from Symmetries and Singularities, JHEP
04, 105 (2020), arXiv:1811.00024 [hep-th].

[199] P. Benincasa, Amplitudes meet Cosmology: A (Scalar) Primer, (2022), arXiv:2203.
15330 [hep-th].

[200] Z. Bern, L. J. Dixon, and V. A. Smirnov, Iteration of planar amplitudes in max-
imally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev.
D 72, 085001 (2005), arXiv:hep-th/0505205.

[201] L. J. Dixon, J. M. Drummond, M. von Hippel, and J. Pennington, Hexagon func-
tions and the three-loop remainder function, JHEP 12, 049 (2013), arXiv:1308.
2276 [hep-th].

[202] L. J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three
loops, JHEP 10, 065 (2014), arXiv:1408.1505 [hep-th].

[203] L. J. Dixon, M. von Hippel, and A. J. McLeod, The four-loop six-gluon NMHV
ratio function, JHEP 01, 053 (2016), arXiv:1509.08127 [hep-th].

[204] S. Caron-Huot, L. J. Dixon, A. McLeod, and M. von Hippel, Bootstrapping a
Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett. 117, 241601
(2016), arXiv:1609.00669 [hep-th].

[205] S. Caron-Huot, L. J. Dixon, F. Dulat, M. von Hippel, A. J. McLeod, and G.
Papathanasiou, Six-Gluon amplitudes in planar N = 4 super-Yang-Mills theory
at six and seven loops, JHEP 08, 016 (2019), arXiv:1903.10890 [hep-th].

[206] G. Papathanasiou, The SAGEX Review on Scattering Amplitudes, Chapter 5:
Analytic Bootstraps for Scattering Amplitudes and Beyond, (2022), arXiv:2203.
13016 [hep-th].

[207] M. Accettulli Huber, A. Brandhuber, S. De Angelis, and G. Travaglini, Complete
Form Factors in Yang-Mills from Unitarity and Spinor Helicity in Six Dimen-
sions, Phys. Rev. D 101, 026004 (2020), arXiv:1910.04772 [hep-th].

[208] L. Lehman and A. Martin, Hilbert Series for Constructing Lagrangians: expand-
ing the phenomenologist’s toolbox, Phys. Rev. D 91, 105014 (2015), arXiv:1503.
07537 [hep-ph].

[209] B. Henning, X. Lu, T. Melia, and H. Murayama, Hilbert series and operator bases
with derivatives in effective field theories, Commun. Math. Phys. 347, 363–388
(2016), arXiv:1507.07240 [hep-th].

[210] B. Henning, X. Lu, T. Melia, and H. Murayama, 2, 84, 30, 993, 560, 15456,
11962, 261485, ...: Higher dimension operators in the SM EFT, JHEP 08, [Er-
ratum: JHEP 09, 019 (2019)], 016 (2017), arXiv:1512.03433 [hep-ph].

[211] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, Dimension-Six Terms
in the Standard Model Lagrangian, JHEP 10, 085 (2010), arXiv:1008.4884 [hep-
ph].

https://arxiv.org/abs/2201.03593
https://arxiv.org/abs/2203.13014
https://arxiv.org/abs/2203.13014
https://arxiv.org/abs/2203.13015
https://doi.org/10.1007/JHEP04(2020)105
https://doi.org/10.1007/JHEP04(2020)105
https://arxiv.org/abs/1811.00024
https://arxiv.org/abs/2203.15330
https://arxiv.org/abs/2203.15330
https://doi.org/10.1103/PhysRevD.72.085001
https://doi.org/10.1103/PhysRevD.72.085001
https://arxiv.org/abs/hep-th/0505205
https://doi.org/10.1007/JHEP12(2013)049
https://arxiv.org/abs/1308.2276
https://arxiv.org/abs/1308.2276
https://doi.org/10.1007/JHEP10(2014)065
https://arxiv.org/abs/1408.1505
https://doi.org/10.1007/JHEP01(2016)053
https://arxiv.org/abs/1509.08127
https://doi.org/10.1103/PhysRevLett.117.241601
https://doi.org/10.1103/PhysRevLett.117.241601
https://arxiv.org/abs/1609.00669
https://doi.org/10.1007/JHEP08(2019)016
https://arxiv.org/abs/1903.10890
https://arxiv.org/abs/2203.13016
https://arxiv.org/abs/2203.13016
https://doi.org/10.1103/PhysRevD.101.026004
https://arxiv.org/abs/1910.04772
https://doi.org/10.1103/PhysRevD.91.105014
https://arxiv.org/abs/1503.07537
https://arxiv.org/abs/1503.07537
https://doi.org/10.1007/s00220-015-2518-2
https://doi.org/10.1007/s00220-015-2518-2
https://arxiv.org/abs/1507.07240
https://doi.org/10.1007/JHEP08(2017)016
https://doi.org/10.1007/JHEP08(2017)016
https://arxiv.org/abs/1512.03433
https://doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884
https://arxiv.org/abs/1008.4884


BIBLIOGRAPHY 187

[212] B. Henning, X. Lu, T. Melia, and H. Murayama, Operator bases, S-matrices, and
their partition functions, JHEP 10, 199 (2017), arXiv:1706.08520 [hep-th].

[213] C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, and J. Trnka, A Periodic Table
of Effective Field Theories, JHEP 02, 020 (2017), arXiv:1611.03137 [hep-th].

[214] P. De Causmaecker, R. Gastmans, W. Troost, and T. T. Wu, Multiple Bremsstrahlung
in Gauge Theories at High-Energies. 1. General Formalism for Quantum Elec-
trodynamics, Nucl. Phys. B 206, 53–60 (1982).

[215] F. A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans, W. Troost, and
T. T. Wu, Multiple Bremsstrahlung in Gauge Theories at High-Energies. 2. Single
Bremsstrahlung, Nucl. Phys. B 206, 61–89 (1982).

[216] R. Kleiss and W. J. Stirling, Spinor Techniques for Calculating p anti-p —>
W+- / Z0 + Jets, Nucl. Phys. B 262, 235–262 (1985).

[217] Z. Xu, D.-H. Zhang, and L. Chang, Helicity Amplitudes for Multiple Bremsstrahlung
in Massless Nonabelian Gauge Theories, Nucl. Phys. B 291, 392–428 (1987).

[218] Z.-Y. Dong, T. Ma, and J. Shu, Constructing on-shell operator basis for all masses
and spins, (2021), arXiv:2103.15837 [hep-ph].

[219] R. M. Fonseca, Enumerating the operators of an effective field theory, Phys. Rev.
D 101, 035040 (2020), arXiv:1907.12584 [hep-ph].

[220] S. D. Chowdhury and A. Gadde, Classification of four-point local gluon S-matrices,
JHEP 01, 104 (2021), arXiv:2006.12458 [hep-th].

[221] L. Lehman, Extending the Standard Model Effective Field Theory with the Com-
plete Set of Dimension-7 Operators, Phys. Rev. D 90, 125023 (2014), arXiv:1410.
4193 [hep-ph].

[222] C. W. Murphy, Dimension-8 operators in the Standard Model Eective Field The-
ory, JHEP 10, 174 (2020), arXiv:2005.00059 [hep-ph].

[223] Y. Liao and X.-D. Ma, An explicit construction of the dimension-9 operator basis
in the standard model effective field theory, JHEP 11, 152 (2020), arXiv:2007.
08125 [hep-ph].

[224] P. Dittner, Invariant tensors in su(3), Commun. Math. Phys. 22, 238–252 (1971).

[225] P. Dittner, Invariant tensors in su(3). 2., Commun. Math. Phys. 27, 44–52
(1972).

[226] J. A. de Azcarraga, A. J. Macfarlane, A. J. Mountain, and J. C. Perez Bueno, In-
variant tensors for simple groups, Nucl. Phys. B 510, 657–687 (1998), arXiv:physics/
9706006.

[227] D. Littlewood and A. Richardson, Group characters and algebra, Philos. Trans.
Roy. Soc. London Ser. A 233, 99–141 (1934).

[228] G. de B. Robinson, On the representations of the symmetric group, American
Journal of Mathematics 60, 745–760 (1938).

[229] C.-N. Yang and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge
Invariance, Phys. Rev. 96, edited by J.-P. Hsu and D. Fine, 191–195 (1954).

[230] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory
(Addison-Wesley, Reading, USA, 1995).

[231] D. Liu and Z. Yin, Gauge invariance from on-shell massive amplitudes and tree
unitarity, (2022), arXiv:2204.13119 [hep-th].

https://doi.org/10.1007/JHEP10(2017)199
https://arxiv.org/abs/1706.08520
https://doi.org/10.1007/JHEP02(2017)020
https://arxiv.org/abs/1611.03137
https://doi.org/10.1016/0550-3213(82)90488-6
https://doi.org/10.1016/0550-3213(82)90489-8
https://doi.org/10.1016/0550-3213(85)90285-8
https://doi.org/10.1016/0550-3213(87)90479-2
https://arxiv.org/abs/2103.15837
https://doi.org/10.1103/PhysRevD.101.035040
https://doi.org/10.1103/PhysRevD.101.035040
https://arxiv.org/abs/1907.12584
https://doi.org/10.1007/JHEP01(2021)104
https://arxiv.org/abs/2006.12458
https://doi.org/10.1103/PhysRevD.90.125023
https://arxiv.org/abs/1410.4193
https://arxiv.org/abs/1410.4193
https://doi.org/10.1007/JHEP10(2020)174
https://arxiv.org/abs/2005.00059
https://doi.org/10.1007/JHEP11(2020)152
https://arxiv.org/abs/2007.08125
https://arxiv.org/abs/2007.08125
https://doi.org/10.1007/BF01877709
https://doi.org/10.1007/BF01649658
https://doi.org/10.1007/BF01649658
https://doi.org/10.1016/S0550-3213(97)00609-3
https://arxiv.org/abs/physics/9706006
https://arxiv.org/abs/physics/9706006
https://doi.org/10.1103/PhysRev.96.191
https://arxiv.org/abs/2204.13119


188 BIBLIOGRAPHY

[232] A. Brandhuber, G. Chen, G. Travaglini, and C. Wen, A new gauge-invariant
double copy for heavy-mass effective theory, JHEP 07, 047 (2021), arXiv:2104.
11206 [hep-th].

[233] R. K. Ellis, W. T. Giele, Z. Kunszt, and K. Melnikov, Masses, fermions and gen-
eralized D-dimensional unitarity, Nucl. Phys. B 822, 270–282 (2009), arXiv:0806.
3467 [hep-ph].

[234] S. D. Badger, Direct Extraction Of One Loop Rational Terms, JHEP 01, 049
(2009), arXiv:0806.4600 [hep-ph].

[235] N. Arkani-Hamed, Y. Bai, S. He, and G. Yan, Scattering Forms and the Posi-
tive Geometry of Kinematics, Color and the Worldsheet, JHEP 05, 096 (2018),
arXiv:1711.09102 [hep-th].

[236] A. von Manteuffel and R. M. Schabinger, A novel approach to integration by parts
reduction, Phys. Lett. B 744, 101–104 (2015), arXiv:1406.4513 [hep-ph].

[237] T. Peraro, Scattering amplitudes over finite fields and multivariate functional
reconstruction, JHEP 12, 030 (2016), arXiv:1608.01902 [hep-ph].

[238] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP
05, 135 (2013), arXiv:0905.1473 [hep-th].

[239] S. Badger, Automating QCD amplitudes with on-shell methods, J. Phys. Conf.
Ser. 762, edited by L. Salinas and C. Torres, 012057 (2016), arXiv:1605.02172
[hep-ph].

[240] F. A. Berends and W. T. Giele, Recursive Calculations for Processes with n
Gluons, Nucl. Phys. B 306, 759–808 (1988).

[241] S. Chang and M. A. Luty, The Higgs Trilinear Coupling and the Scale of New
Physics, JHEP 03, 140 (2020), arXiv:1902.05556 [hep-ph].

[242] A. Falkowski and R. Rattazzi, Which EFT, JHEP 10, 255 (2019), arXiv:1902.
05936 [hep-ph].

[243] H. Georgi, An Effective Field Theory for Heavy Quarks at Low-energies, Phys.
Lett. B 240, 447–450 (1990).

[244] M. E. Luke and A. V. Manohar, Reparametrization invariance constraints on
heavy particle effective field theories, Phys. Lett. B 286, 348–354 (1992), arXiv:hep-
ph/9205228.

[245] M. Neubert, Heavy quark symmetry, Phys. Rept. 245, 259–396 (1994), arXiv:hep-
ph/9306320.

[246] A. Brandhuber, G. Chen, H. Johansson, G. Travaglini, and C. Wen, Kinematic
Hopf Algebra for Bern-Carrasco-Johansson Numerators in Heavy-Mass Effec-
tive Field Theory and Yang-Mills Theory, Phys. Rev. Lett. 128, 121601 (2022),
arXiv:2111.15649 [hep-th].

[247] S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140, B516–B524 (1965).

[248] S. L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177, 2426–
2438 (1969).

[249] J. S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ model, Nuovo Cim.
A 60, 47–61 (1969).

[250] D. C. Dunbar and W. B. Perkins, Two-loop five-point all plus helicity Yang-Mills
amplitude, Phys. Rev. D 93, 085029 (2016), arXiv:1603.07514 [hep-th].

https://doi.org/10.1007/JHEP07(2021)047
https://arxiv.org/abs/2104.11206
https://arxiv.org/abs/2104.11206
https://doi.org/10.1016/j.nuclphysb.2009.07.023
https://arxiv.org/abs/0806.3467
https://arxiv.org/abs/0806.3467
https://doi.org/10.1088/1126-6708/2009/01/049
https://doi.org/10.1088/1126-6708/2009/01/049
https://arxiv.org/abs/0806.4600
https://doi.org/10.1007/JHEP05(2018)096
https://arxiv.org/abs/1711.09102
https://doi.org/10.1016/j.physletb.2015.03.029
https://arxiv.org/abs/1406.4513
https://doi.org/10.1007/JHEP12(2016)030
https://arxiv.org/abs/1608.01902
https://doi.org/10.1007/JHEP05(2013)135
https://doi.org/10.1007/JHEP05(2013)135
https://arxiv.org/abs/0905.1473
https://doi.org/10.1088/1742-6596/762/1/012057
https://doi.org/10.1088/1742-6596/762/1/012057
https://arxiv.org/abs/1605.02172
https://arxiv.org/abs/1605.02172
https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.1007/JHEP03(2020)140
https://arxiv.org/abs/1902.05556
https://doi.org/10.1007/JHEP10(2019)255
https://arxiv.org/abs/1902.05936
https://arxiv.org/abs/1902.05936
https://doi.org/10.1016/0370-2693(90)91128-X
https://doi.org/10.1016/0370-2693(90)91128-X
https://doi.org/10.1016/0370-2693(92)91786-9
https://arxiv.org/abs/hep-ph/9205228
https://arxiv.org/abs/hep-ph/9205228
https://doi.org/10.1016/0370-1573(94)90091-4
https://arxiv.org/abs/hep-ph/9306320
https://arxiv.org/abs/hep-ph/9306320
https://doi.org/10.1103/PhysRevLett.128.121601
https://arxiv.org/abs/2111.15649
https://doi.org/10.1103/PhysRev.140.B516
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://doi.org/10.1103/PhysRevD.93.085029
https://arxiv.org/abs/1603.07514


BIBLIOGRAPHY 189

[251] D. C. Dunbar, G. R. Jehu, and W. B. Perkins, Two-loop six gluon all plus helicity
amplitude, Phys. Rev. Lett. 117, 061602 (2016), arXiv:1605.06351 [hep-th].

[252] W. L. van Neerven, Dimensional Regularization of Mass and Infrared Singulari-
ties in Two Loop On-shell Vertex Functions, Nucl. Phys. B 268, 453–488 (1986).

[253] R. Boughezal, K. Melnikov, and F. Petriello, The four-dimensional helicity scheme
and dimensional reconstruction, Phys. Rev. D 84, 034044 (2011), arXiv:1106.5520
[hep-ph].

[254] S. Davies, One-Loop QCD and Higgs to Partons Processes Using Six-Dimensional
Helicity and Generalized Unitarity, Phys. Rev. D 84, 094016 (2011), arXiv:1108.
0398 [hep-ph].

[255] S. Badger, H. Frellesvig, and Y. Zhang, A Two-Loop Five-Gluon Helicity Ampli-
tude in QCD, JHEP 12, 045 (2013), arXiv:1310.1051 [hep-ph].

[256] F. R. Anger and V. Sotnikov, On the Dimensional Regularization of QCD Helicity
Amplitudes With Quarks, (2018), arXiv:1803.11127 [hep-ph].

[257] S. Abreu, F. Febres Cordero, H. Ita, B. Page, and V. Sotnikov, Planar Two-
Loop Five-Parton Amplitudes from Numerical Unitarity, JHEP 11, 116 (2018),
arXiv:1809.09067 [hep-ph].

[258] S. Badger, C. Brønnum-Hansen, H. B. Hartanto, and T. Peraro, Analytic helicity
amplitudes for two-loop five-gluon scattering: the single-minus case, JHEP 01,
186 (2019), arXiv:1811.11699 [hep-ph].

[259] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, and B. Page, Analytic Form of
Planar Two-Loop Five-Gluon Scattering Amplitudes in QCD, Phys. Rev. Lett.
122, 082002 (2019), arXiv:1812.04586 [hep-ph].

[260] D. A. Kosower and S. Pögel, A Unitarity Approach to Two-Loop All-Plus Rational
Terms, (2022), arXiv:2206.14445 [hep-ph].

[261] F. Wilczek, Decays of Heavy Vector Mesons Into Higgs Particles, Phys. Rev.
Lett. 39, 1304 (1977).

[262] M. A. Shifman, A. I. Vainshtein, M. B. Voloshin, and V. I. Zakharov, Low-Energy
Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30, 711–716
(1979).

[263] W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions
and Flavor Conservation, Nucl. Phys. B 268, 621–653 (1986).

[264] S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359,
283–300 (1991).

[265] D. Neill, Two-Loop Matching onto Dimension Eight Operators in the Higgs-Glue
Sector, (2009), arXiv:0908.1573 [hep-ph].

[266] D. Neill, Analytic Virtual Corrections for Higgs Transverse Momentum Spectrum
at O(alpha(s)**2/m(t)**3) via Unitarity Methods, (2009), arXiv:0911.2707 [hep-
ph].

[267] R. V. Harlander and T. Neumann, Probing the nature of the Higgs-gluon coupling,
Phys. Rev. D 88, 074015 (2013), arXiv:1308.2225 [hep-ph].

[268] S. Dawson, I. M. Lewis, and M. Zeng, Effective field theory for Higgs boson plus
jet production, Phys. Rev. D 90, 093007 (2014), arXiv:1409.6299 [hep-ph].

https://doi.org/10.1103/PhysRevLett.117.061602
https://arxiv.org/abs/1605.06351
https://doi.org/10.1016/0550-3213(86)90165-3
https://doi.org/10.1103/PhysRevD.84.034044
https://arxiv.org/abs/1106.5520
https://arxiv.org/abs/1106.5520
https://doi.org/10.1103/PhysRevD.84.094016
https://arxiv.org/abs/1108.0398
https://arxiv.org/abs/1108.0398
https://doi.org/10.1007/JHEP12(2013)045
https://arxiv.org/abs/1310.1051
https://arxiv.org/abs/1803.11127
https://doi.org/10.1007/JHEP11(2018)116
https://arxiv.org/abs/1809.09067
https://doi.org/10.1007/JHEP01(2019)186
https://doi.org/10.1007/JHEP01(2019)186
https://arxiv.org/abs/1811.11699
https://doi.org/10.1103/PhysRevLett.122.082002
https://doi.org/10.1103/PhysRevLett.122.082002
https://arxiv.org/abs/1812.04586
https://arxiv.org/abs/2206.14445
https://doi.org/10.1103/PhysRevLett.39.1304
https://doi.org/10.1103/PhysRevLett.39.1304
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1016/0550-3213(91)90061-2
https://doi.org/10.1016/0550-3213(91)90061-2
https://arxiv.org/abs/0908.1573
https://arxiv.org/abs/0911.2707
https://arxiv.org/abs/0911.2707
https://doi.org/10.1103/PhysRevD.88.074015
https://arxiv.org/abs/1308.2225
https://doi.org/10.1103/PhysRevD.90.093007
https://arxiv.org/abs/1409.6299


190 BIBLIOGRAPHY

[269] L. J. Dixon, E. W. N. Glover, and V. V. Khoze, MHV rules for Higgs plus multi-
gluon amplitudes, JHEP 12, 015 (2004), arXiv:hep-th/0411092.

[270] S. D. Badger, E. W. N. Glover, and V. V. Khoze, MHV rules for Higgs plus
multi-parton amplitudes, JHEP 03, 023 (2005), arXiv:hep-th/0412275.

[271] S. D. Badger, E. W. N. Glover, and K. Risager, One-loop phi-MHV amplitudes
using the unitarity bootstrap, JHEP 07, 066 (2007), arXiv:0704.3914 [hep-ph].

[272] S. Badger, E. W. Nigel Glover, P. Mastrolia, and C. Williams, One-loop Higgs plus
four gluon amplitudes: Full analytic results, JHEP 01, 036 (2010), arXiv:0909.
4475 [hep-ph].

[273] A. Brandhuber, M. Kostacinska, B. Penante, and G. Travaglini, Higgs amplitudes
from N = 4 super Yang-Mills theory, Phys. Rev. Lett. 119, 161601 (2017),
arXiv:1707.09897 [hep-th].

[274] Q. Jin and G. Yang, Analytic Two-Loop Higgs Amplitudes in Effective Field The-
ory and the Maximal Transcendentality Principle, Phys. Rev. Lett. 121, 101603
(2018), arXiv:1804.04653 [hep-th].

[275] A. Brandhuber, M. Kostacinska, B. Penante, and G. Travaglini, Tr(F 3) super-
symmetric form factors and maximal transcendentality Part I: N = 4 super
Yang-Mills, JHEP 12, 076 (2018), arXiv:1804.05703 [hep-th].

[276] A. Brandhuber, M. Kostacinska, B. Penante, and G. Travaglini, Tr(F 3) super-
symmetric form factors and maximal transcendentality Part II: 0 < N < 4 super
Yang-Mills, JHEP 12, 077 (2018), arXiv:1804.05828 [hep-th].

[277] Q. Jin and G. Yang, Hidden Analytic Relations for Two-Loop Higgs Amplitudes
in QCD, Commun. Theor. Phys. 72, 065201 (2020), arXiv:1904.07260 [hep-th].

[278] L. V. Bork, D. I. Kazakov, and G. S. Vartanov, On form factors in N=4 sym,
JHEP 02, 063 (2011), arXiv:1011.2440 [hep-th].

[279] A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini, and G. Yang, Harmony
of Super Form Factors, JHEP 10, 046 (2011), arXiv:1107.5067 [hep-th].

[280] L. V. Bork, D. I. Kazakov, and G. S. Vartanov, On MHV Form Factors in
Superspace for \ = 4 SYM Theory, JHEP 10, 133 (2011), arXiv:1107.5551 [hep-
th].

[281] T. Gehrmann, J. M. Henn, and T. Huber, The three-loop form factor in N=4
super Yang-Mills, JHEP 03, 101 (2012), arXiv:1112.4524 [hep-th].

[282] L. V. Bork, On NMHV form factors in N=4 SYM theory from generalized uni-
tarity, JHEP 01, 049 (2013), arXiv:1203.2596 [hep-th].

[283] R. H. Boels, B. A. Kniehl, O. V. Tarasov, and G. Yang, Color-kinematic Duality
for Form Factors, JHEP 02, 063 (2013), arXiv:1211.7028 [hep-th].

[284] A. Brandhuber, G. Travaglini, and G. Yang, Analytic two-loop form factors in
N=4 SYM, JHEP 05, 082 (2012), arXiv:1201.4170 [hep-th].

[285] B. Penante, B. Spence, G. Travaglini, and C. Wen, On super form factors of half-
BPS operators in N=4 super Yang-Mills, JHEP 04, 083 (2014), arXiv:1402.1300
[hep-th].

[286] A. Brandhuber, B. Penante, G. Travaglini, and C. Wen, The last of the simple
remainders, JHEP 08, 100 (2014), arXiv:1406.1443 [hep-th].

https://doi.org/10.1088/1126-6708/2004/12/015
https://arxiv.org/abs/hep-th/0411092
https://doi.org/10.1088/1126-6708/2005/03/023
https://arxiv.org/abs/hep-th/0412275
https://doi.org/10.1088/1126-6708/2007/07/066
https://arxiv.org/abs/0704.3914
https://doi.org/10.1007/JHEP01(2010)036
https://arxiv.org/abs/0909.4475
https://arxiv.org/abs/0909.4475
https://doi.org/10.1103/PhysRevLett.119.161601
https://arxiv.org/abs/1707.09897
https://doi.org/10.1103/PhysRevLett.121.101603
https://doi.org/10.1103/PhysRevLett.121.101603
https://arxiv.org/abs/1804.04653
https://doi.org/10.1007/JHEP12(2018)076
https://arxiv.org/abs/1804.05703
https://doi.org/10.1007/JHEP12(2018)077
https://arxiv.org/abs/1804.05828
https://doi.org/10.1088/1572-9494/ab7ed8
https://arxiv.org/abs/1904.07260
https://doi.org/10.1007/JHEP02(2011)063
https://arxiv.org/abs/1011.2440
https://doi.org/10.1007/JHEP10(2011)046
https://arxiv.org/abs/1107.5067
https://doi.org/10.1007/JHEP10(2011)133
https://arxiv.org/abs/1107.5551
https://arxiv.org/abs/1107.5551
https://doi.org/10.1007/JHEP03(2012)101
https://arxiv.org/abs/1112.4524
https://doi.org/10.1007/JHEP01(2013)049
https://arxiv.org/abs/1203.2596
https://doi.org/10.1007/JHEP02(2013)063
https://arxiv.org/abs/1211.7028
https://doi.org/10.1007/JHEP05(2012)082
https://arxiv.org/abs/1201.4170
https://doi.org/10.1007/JHEP04(2014)083
https://arxiv.org/abs/1402.1300
https://arxiv.org/abs/1402.1300
https://doi.org/10.1007/JHEP08(2014)100
https://arxiv.org/abs/1406.1443


BIBLIOGRAPHY 191

[287] D. Nandan, C. Sieg, M. Wilhelm, and G. Yang, Cutting through form factors and
cross sections of non-protected operators in N = 4 SYM, JHEP 06, 156 (2015),
arXiv:1410.8485 [hep-th].

[288] F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm, and G. Yang, On-Shell Methods
for the Two-Loop Dilatation Operator and Finite Remainders, JHEP 10, 012
(2015), arXiv:1504.06323 [hep-th].

[289] A. Brandhuber, M. Kostacinska, B. Penante, G. Travaglini, and D. Young, The
SU(2|3) dynamic two-loop form factors, JHEP 08, 134 (2016), arXiv:1606.08682
[hep-th].

[290] F. Loebbert, C. Sieg, M. Wilhelm, and G. Yang, Two-Loop SL(2) Form Factors
and Maximal Transcendentality, JHEP 12, 090 (2016), arXiv:1610.06567 [hep-
th].

[291] W. Siegel, Supersymmetric Dimensional Regularization via Dimensional Reduc-
tion, Phys. Lett. B 84, 193–196 (1979).

[292] Z. Bern, A. De Freitas, L. J. Dixon, and H. L. Wong, Supersymmetric regular-
ization, two loop QCD amplitudes and coupling shifts, Phys. Rev. D 66, 085002
(2002), arXiv:hep-ph/0202271.

[293] Z. Bern and D. A. Kosower, The Computation of loop amplitudes in gauge theo-
ries, Nucl. Phys. B 379, 451–561 (1992).

[294] G. ’t Hooft and M. J. G. Veltman, Regularization and Renormalization of Gauge
Fields, Nucl. Phys. B 44, 189–213 (1972).

[295] T. Dennen, Y.-t. Huang, and W. Siegel, Supertwistor space for 6D maximal super
Yang-Mills, JHEP 04, 127 (2010), arXiv:0910.2688 [hep-th].

[296] S. Dawson, I. M. Lewis, and M. Zeng, Usefulness of effective field theory for
boosted Higgs production, Phys. Rev. D 91, 074012 (2015), arXiv:1501 . 04103
[hep-ph].

[297] L. J. Dixon and Y. Shadmi, Testing gluon selfinteractions in three jet events at
hadron colliders, Nucl. Phys. B 423, [Erratum: Nucl.Phys.B 452, 724–724 (1995)],
3–32 (1994), arXiv:hep-ph/9312363.

[298] J. Broedel and L. J. Dixon, Color-kinematics duality and double-copy construc-
tion for amplitudes from higher-dimension operators, JHEP 10, 091 (2012), arXiv:1208.
0876 [hep-th].

[299] A. Y. Morozov, MATRIX OF MIXING OF SCALAR AND VECTOR MESONS
OF DIMENSION D <= 8 IN QCD. (IN RUSSIAN), Sov. J. Nucl. Phys. 40, 505
(1984).

[300] J. A. Gracey, Classification and one loop renormalization of dimension-six and
dimension-eight operators in quantum gluodynamics, Nucl. Phys. B 634, [Erra-
tum: Nucl.Phys.B 696, 295–297 (2004)], 192–208 (2002), arXiv:hep-ph/0204266.

[301] M. B. Green and J. H. Schwarz, Supersymmetrical Dual String Theory. 2. Vertices
and Trees, Nucl. Phys. B 198, 252–268 (1982).

[302] J. H. Schwarz, Superstring Theory, Phys. Rept. 89, 223–322 (1982).

[303] A. A. Tseytlin, Vector Field Effective Action in the Open Superstring Theory,
Nucl. Phys. B 276, [Erratum: Nucl.Phys.B 291, 876 (1987)], 391 (1986).

https://doi.org/10.1007/JHEP06(2015)156
https://arxiv.org/abs/1410.8485
https://doi.org/10.1007/JHEP10(2015)012
https://doi.org/10.1007/JHEP10(2015)012
https://arxiv.org/abs/1504.06323
https://doi.org/10.1007/JHEP08(2016)134
https://arxiv.org/abs/1606.08682
https://arxiv.org/abs/1606.08682
https://doi.org/10.1007/JHEP12(2016)090
https://arxiv.org/abs/1610.06567
https://arxiv.org/abs/1610.06567
https://doi.org/10.1016/0370-2693(79)90282-X
https://doi.org/10.1103/PhysRevD.66.085002
https://doi.org/10.1103/PhysRevD.66.085002
https://arxiv.org/abs/hep-ph/0202271
https://doi.org/10.1016/0550-3213(92)90134-W
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1007/JHEP04(2010)127
https://arxiv.org/abs/0910.2688
https://doi.org/10.1103/PhysRevD.91.074012
https://arxiv.org/abs/1501.04103
https://arxiv.org/abs/1501.04103
https://doi.org/10.1016/0550-3213(94)90563-0
https://doi.org/10.1016/0550-3213(94)90563-0
https://arxiv.org/abs/hep-ph/9312363
https://doi.org/10.1007/JHEP10(2012)091
https://arxiv.org/abs/1208.0876
https://arxiv.org/abs/1208.0876
https://doi.org/10.1016/j.nuclphysb.2004.06.053
https://doi.org/10.1016/j.nuclphysb.2004.06.053
https://arxiv.org/abs/hep-ph/0204266
https://doi.org/10.1016/0550-3213(82)90556-9
https://doi.org/10.1016/0370-1573(82)90087-4
https://doi.org/10.1016/0550-3213(86)90303-2


192 BIBLIOGRAPHY

[304] C. R. Schmidt, H —> g g g (g q anti-q) at two loops in the large M(t) limit,
Phys. Lett. B 413, 391–395 (1997), arXiv:hep-ph/9707448.

[305] R. Mertig, M. Bohm, and A. Denner, FEYN CALC: Computer algebraic calcu-
lation of Feynman amplitudes, Comput. Phys. Commun. 64, 345–359 (1991).

[306] V. Shtabovenko, R. Mertig, and F. Orellana, New Developments in FeynCalc 9.0,
Comput. Phys. Commun. 207, 432–444 (2016), arXiv:1601.01167 [hep-ph].

[307] E. D’Hoker and D. Z. Freedman, Supersymmetric gauge theories and the AdS
/ CFT correspondence, in Theoretical Advanced Study Institute in Elementary
Particle Physics (TASI 2001): Strings, Branes and EXTRA Dimensions (Jan.
2002), pp. 3–158, arXiv:hep-th/0201253.

[308] J. A. Minahan and K. Zarembo, The Bethe ansatz for N=4 superYang-Mills,
JHEP 03, 013 (2003), arXiv:hep-th/0212208.

[309] N. Beisert, The complete one loop dilatation operator of N=4 superYang-Mills
theory, Nucl. Phys. B 676, 3–42 (2004), arXiv:hep-th/0307015.

[310] N. Beisert and M. Staudacher, The N=4 SYM integrable super spin chain, Nucl.
Phys. B 670, 439–463 (2003), arXiv:hep-th/0307042.

[311] G. Ferretti, R. Heise, and K. Zarembo, New integrable structures in large-N QCD,
Phys. Rev. D 70, 074024 (2004), arXiv:hep-th/0404187.

[312] N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math.
Phys. 99, 3–32 (2012), arXiv:1012.3982 [hep-th].

[313] B. I. Zwiebel, From Scattering Amplitudes to the Dilatation Generator in N=4
SYM, J. Phys. A 45, 115401 (2012), arXiv:1111.0083 [hep-th].

[314] M. Wilhelm, Amplitudes, Form Factors and the Dilatation Operator in N = 4
SYM Theory, JHEP 02, 149 (2015), arXiv:1410.6309 [hep-th].

[315] A. Brandhuber, B. Penante, G. Travaglini, and D. Young, Integrability and MHV
diagrams in N=4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 114, 071602
(2015), arXiv:1412.1019 [hep-th].

[316] A. Brandhuber, B. Penante, G. Travaglini, and D. Young, Integrability and uni-
tarity, JHEP 05, 005 (2015), arXiv:1502.06627 [hep-th].

[317] R. Frassek, D. Meidinger, D. Nandan, and M. Wilhelm, On-shell diagrams, Graß-
mannians and integrability for form factors, JHEP 01, 182 (2016), arXiv:1506.
08192 [hep-th].

[318] A. Brandhuber, P. Heslop, G. Travaglini, and D. Young, Yangian Symmetry of
Scattering Amplitudes and the Dilatation Operator in N = 4 Supersymmetric
Yang-Mills Theory, Phys. Rev. Lett. 115, 141602 (2015), arXiv:1507.01504 [hep-
th].

[319] E. E. Jenkins, A. V. Manohar, and M. Trott, Renormalization Group Evolu-
tion of the Standard Model Dimension Six Operators I: Formalism and lambda
Dependence, JHEP 10, 087 (2013), arXiv:1308.2627 [hep-ph].

[320] E. E. Jenkins, A. V. Manohar, and M. Trott, Renormalization Group Evolution
of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP
01, 035 (2014), arXiv:1310.4838 [hep-ph].

https://doi.org/10.1016/S0370-2693(97)01102-7
https://arxiv.org/abs/hep-ph/9707448
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/j.cpc.2016.06.008
https://arxiv.org/abs/1601.01167
https://arxiv.org/abs/hep-th/0201253
https://doi.org/10.1088/1126-6708/2003/03/013
https://arxiv.org/abs/hep-th/0212208
https://doi.org/10.1016/j.nuclphysb.2003.10.019
https://arxiv.org/abs/hep-th/0307015
https://doi.org/10.1016/j.nuclphysb.2003.08.015
https://doi.org/10.1016/j.nuclphysb.2003.08.015
https://arxiv.org/abs/hep-th/0307042
https://doi.org/10.1103/PhysRevD.70.074024
https://arxiv.org/abs/hep-th/0404187
https://doi.org/10.1007/s11005-011-0529-2
https://doi.org/10.1007/s11005-011-0529-2
https://arxiv.org/abs/1012.3982
https://doi.org/10.1088/1751-8113/45/11/115401
https://arxiv.org/abs/1111.0083
https://doi.org/10.1007/JHEP02(2015)149
https://arxiv.org/abs/1410.6309
https://doi.org/10.1103/PhysRevLett.114.071602
https://doi.org/10.1103/PhysRevLett.114.071602
https://arxiv.org/abs/1412.1019
https://doi.org/10.1007/JHEP05(2015)005
https://arxiv.org/abs/1502.06627
https://doi.org/10.1007/JHEP01(2016)182
https://arxiv.org/abs/1506.08192
https://arxiv.org/abs/1506.08192
https://doi.org/10.1103/PhysRevLett.115.141602
https://arxiv.org/abs/1507.01504
https://arxiv.org/abs/1507.01504
https://doi.org/10.1007/JHEP10(2013)087
https://arxiv.org/abs/1308.2627
https://doi.org/10.1007/JHEP01(2014)035
https://doi.org/10.1007/JHEP01(2014)035
https://arxiv.org/abs/1310.4838


BIBLIOGRAPHY 193

[321] R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott, Renormalization Group
Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling
Dependence and Phenomenology, JHEP 04, 159 (2014), arXiv:1312.2014 [hep-
ph].

[322] S. Antusch, M. Drees, J. Kersten, M. Lindner, and M. Ratz, Neutrino mass
operator renormalization revisited, Phys. Lett. B 519, 238–242 (2001), arXiv:hep-
ph/0108005.

[323] R. Alonso, H.-M. Chang, E. E. Jenkins, A. V. Manohar, and B. Shotwell, Renor-
malization group evolution of dimension-six baryon number violating operators,
Phys. Lett. B 734, 302–307 (2014), arXiv:1405.0486 [hep-ph].

[324] Y. Liao and X.-D. Ma, Renormalization Group Evolution of Dimension-seven
Baryon- and Lepton-number-violating Operators, JHEP 11, 043 (2016), arXiv:1607.
07309 [hep-ph].

[325] S. Davidson, M. Gorbahn, and M. Leak, Majorana neutrino masses in the renor-
malization group equations for lepton flavor violation, Phys. Rev. D 98, 095014
(2018), arXiv:1807.04283 [hep-ph].

[326] Y. Liao and X.-D. Ma, Renormalization Group Evolution of Dimension-seven
Operators in Standard Model Effective Field Theory and Relevant Phenomenol-
ogy, JHEP 03, 179 (2019), arXiv:1901.10302 [hep-ph].

[327] M. Chala and A. Titov, Neutrino masses in the Standard Model effective field
theory, Phys. Rev. D 104, 035002 (2021), arXiv:2104.08248 [hep-ph].

[328] M. Chala, G. Guedes, M. Ramos, and J. Santiago, Towards the renormalisation of
the Standard Model effective field theory to dimension eight: Bosonic interactions
I, SciPost Phys. 11, 065 (2021), arXiv:2106.05291 [hep-ph].

[329] S. Das Bakshi, M. Chala, Á. Díaz-Carmona, and G. Guedes, Towards the renor-
malisation of the Standard Model effective field theory to dimension eight: Bosonic
interactions II, (2022), arXiv:2205.03301 [hep-ph].

[330] C. G. Callan Jr., S. R. Coleman, J. Wess, and B. Zumino, Structure of phe-
nomenological Lagrangians. 2., Phys. Rev. 177, 2247–2250 (1969).

[331] K. Symanzik, Small distance behavior in field theory and power counting, Com-
mun. Math. Phys. 18, 227–246 (1970).

[332] K. Symanzik, Small distance behavior analysis and Wilson expansion, Commun.
Math. Phys. 23, 49–86 (1971).

[333] J. Elias-Miro, J. R. Espinosa, E. Masso, and A. Pomarol, Higgs windows to new
physics through d=6 operators: constraints and one-loop anomalous dimensions,
JHEP 11, 066 (2013), arXiv:1308.1879 [hep-ph].

[334] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon, and M. Zeng, Black
Hole Binary Dynamics from the Double Copy and Effective Theory, JHEP 10,
206 (2019), arXiv:1908.01493 [hep-th].

[335] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P. Solon,
and M. Zeng, Scattering Amplitudes, the Tail Effect, and Conservative Binary
Dynamics at O(G4), (2021), arXiv:2112.10750 [hep-th].

[336] W.-M. Chen, M.-Z. Chung, Y.-t. Huang, and J.-W. Kim, Lense-Thirring effects
from on-shell amplitudes, (2022), arXiv:2205.07305 [hep-th].

https://doi.org/10.1007/JHEP04(2014)159
https://arxiv.org/abs/1312.2014
https://arxiv.org/abs/1312.2014
https://doi.org/10.1016/S0370-2693(01)01127-3
https://arxiv.org/abs/hep-ph/0108005
https://arxiv.org/abs/hep-ph/0108005
https://doi.org/10.1016/j.physletb.2014.05.065
https://arxiv.org/abs/1405.0486
https://doi.org/10.1007/JHEP11(2016)043
https://arxiv.org/abs/1607.07309
https://arxiv.org/abs/1607.07309
https://doi.org/10.1103/PhysRevD.98.095014
https://doi.org/10.1103/PhysRevD.98.095014
https://arxiv.org/abs/1807.04283
https://doi.org/10.1007/JHEP03(2019)179
https://arxiv.org/abs/1901.10302
https://doi.org/10.1103/PhysRevD.104.035002
https://arxiv.org/abs/2104.08248
https://doi.org/10.21468/SciPostPhys.11.3.065
https://arxiv.org/abs/2106.05291
https://arxiv.org/abs/2205.03301
https://doi.org/10.1103/PhysRev.177.2247
https://doi.org/10.1007/BF01649434
https://doi.org/10.1007/BF01649434
https://doi.org/10.1007/BF01877596
https://doi.org/10.1007/BF01877596
https://doi.org/10.1007/JHEP11(2013)066
https://arxiv.org/abs/1308.1879
https://doi.org/10.1007/JHEP10(2019)206
https://doi.org/10.1007/JHEP10(2019)206
https://arxiv.org/abs/1908.01493
https://arxiv.org/abs/2112.10750
https://arxiv.org/abs/2205.07305


194 BIBLIOGRAPHY

[337] J.-W. Kim, Quantum corrections to frame-dragging in scattering amplitudes,
(2022), arXiv:2207.04970 [hep-th].

[338] A. Gruzinov and M. Kleban, Causality Constrains Higher Curvature Corrections
to Gravity, Class. Quant. Grav. 24, 3521–3524 (2007), arXiv:hep-th/0612015.

[339] B. Bellazzini, C. Cheung, and G. N. Remmen, Quantum Gravity Constraints from
Unitarity and Analyticity, Phys. Rev. D 93, 064076 (2016), arXiv:1509.00851
[hep-th].

[340] X. O. Camanho, J. D. Edelstein, J. Maldacena, and A. Zhiboedov, Causality
Constraints on Corrections to the Graviton Three-Point Coupling, JHEP 02, 020
(2016), arXiv:1407.5597 [hep-th].

[341] S. Endlich, V. Gorbenko, J. Huang, and L. Senatore, An effective formalism for
testing extensions to General Relativity with gravitational waves, JHEP 09, 122
(2017), arXiv:1704.01590 [gr-qc].

[342] N. Sennett, R. Brito, A. Buonanno, V. Gorbenko, and L. Senatore, Gravitational-
Wave Constraints on an Effective Field-Theory Extension of General Relativity,
Phys. Rev. D 102, 044056 (2020), arXiv:1912.09917 [gr-qc].

[343] H. O. Silva, A. Ghosh, and A. Buonanno, Black-hole ringdown as a probe of
higher-curvature gravity theories, (2022), arXiv:2205.05132 [gr-qc].

[344] W. T. Emond and N. Moynihan, Scattering Amplitudes, Black Holes and Leading
Singularities in Cubic Theories of Gravity, JHEP 12, 019 (2019), arXiv:1905.
08213 [hep-th].

[345] P. van Nieuwenhuizen and C. C. Wu, On Integral Relations for Invariants Con-
structed from Three Riemann Tensors and their Applications in Quantum Grav-
ity, J. Math. Phys. 18, 182 (1977).

[346] M. H. Goroff and A. Sagnotti, QUANTUM GRAVITY AT TWO LOOPS, Phys.
Lett. B 160, 81–86 (1985).

[347] M. Accettulli Huber, A. Brandhuber, S. De Angelis, and G. Travaglini, From
amplitudes to gravitational radiation with cubic interactions and tidal effects,
Phys. Rev. D 103, 045015 (2021), arXiv:2012.06548 [hep-th].

[348] S. A. Fulling, R. C. King, B. G. Wybourne, and C. J. Cummins, Normal forms
for tensor polynomials. 1: The Riemann tensor, Class. Quant. Grav. 9, 1151–
1197 (1992).

[349] A. A. Tseytlin, Ambiguity in the Effective Action in String Theories, Phys. Lett.
B 176, 92–98 (1986).

[350] R. R. Metsaev and A. A. Tseytlin, Order alpha-prime (Two Loop) Equivalence of
the String Equations of Motion and the Sigma Model Weyl Invariance Conditions:
Dependence on the Dilaton and the Antisymmetric Tensor, Nucl. Phys. B 293,
385–419 (1987).

[351] D. C. Dunbar, J. H. Godwin, G. R. Jehu, and W. B. Perkins, Loop Amplitudes in
an Extended Gravity Theory, Phys. Lett. B 780, 41–47 (2018), arXiv:1711.05526
[hep-th].

[352] D. J. Gross and E. Witten, Superstring Modifications of Einstein’s Equations,
Nucl. Phys. B 277, 1 (1986).

[353] F. A. Berends and R. Gastmans, Quantum Electrodynamical Corrections to Graviton-
Matter Vertices, Annals Phys. 98, 225 (1976).

https://arxiv.org/abs/2207.04970
https://doi.org/10.1088/0264-9381/24/13/N02
https://arxiv.org/abs/hep-th/0612015
https://doi.org/10.1103/PhysRevD.93.064076
https://arxiv.org/abs/1509.00851
https://arxiv.org/abs/1509.00851
https://doi.org/10.1007/JHEP02(2016)020
https://doi.org/10.1007/JHEP02(2016)020
https://arxiv.org/abs/1407.5597
https://doi.org/10.1007/JHEP09(2017)122
https://doi.org/10.1007/JHEP09(2017)122
https://arxiv.org/abs/1704.01590
https://doi.org/10.1103/PhysRevD.102.044056
https://arxiv.org/abs/1912.09917
https://arxiv.org/abs/2205.05132
https://doi.org/10.1007/JHEP12(2019)019
https://arxiv.org/abs/1905.08213
https://arxiv.org/abs/1905.08213
https://doi.org/10.1063/1.523128
https://doi.org/10.1016/0370-2693(85)91470-4
https://doi.org/10.1016/0370-2693(85)91470-4
https://doi.org/10.1103/PhysRevD.103.045015
https://arxiv.org/abs/2012.06548
https://doi.org/10.1088/0264-9381/9/5/003
https://doi.org/10.1088/0264-9381/9/5/003
https://doi.org/10.1016/0370-2693(86)90930-5
https://doi.org/10.1016/0370-2693(86)90930-5
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1016/j.physletb.2018.02.046
https://arxiv.org/abs/1711.05526
https://arxiv.org/abs/1711.05526
https://doi.org/10.1016/0550-3213(86)90429-3
https://doi.org/10.1016/0003-4916(76)90245-1


BIBLIOGRAPHY 195

[354] I. T. Drummond and S. J. Hathrell, QED Vacuum Polarization in a Background
Gravitational Field and Its Effect on the Velocity of Photons, Phys. Rev. D 22,
343 (1980).

[355] T. J. Hollowood and G. M. Shore, The Refractive index of curved spacetime: The
Fate of causality in QED, Nucl. Phys. B 795, 138–171 (2008), arXiv:0707.2303
[hep-th].

[356] G. Goon and K. Hinterbichler, Superluminality, black holes and EFT, JHEP 02,
134 (2017), arXiv:1609.00723 [hep-th].

[357] M. Accettulli Huber, A. Brandhuber, S. De Angelis, and G. Travaglini, Note on
the absence of R2 corrections to Newton’s potential, Phys. Rev. D 101, 046011
(2020), arXiv:1911.10108 [hep-th].

[358] I. I. Shapiro, Fourth Test of General Relativity, Phys. Rev. Lett. 13, 789–791
(1964).

[359] H. Cheng and T. T. Wu, High-energy elastic scattering in quantum electrodynam-
ics, Phys. Rev. Lett. 22, 666 (1969).

[360] M. Levy and J. Sucher, Eikonal approximation in quantum field theory, Phys.
Rev. 186, 1656–1670 (1969).

[361] H. D. I. Abarbanel and C. Itzykson, Relativistic eikonal expansion, Phys. Rev.
Lett. 23, 53 (1969).

[362] D. Amati, M. Ciafaloni, and G. Veneziano, Superstring Collisions at Planckian
Energies, Phys. Lett. B 197, 81 (1987).

[363] D. Amati, M. Ciafaloni, and G. Veneziano, Higher Order Gravitational Deflection
and Soft Bremsstrahlung in Planckian Energy Superstring Collisions, Nucl. Phys.
B 347, 550–580 (1990).

[364] D. N. Kabat and M. Ortiz, Eikonal quantum gravity and Planckian scattering,
Nucl. Phys. B 388, 570–592 (1992), arXiv:hep-th/9203082.

[365] P. Di Vecchia, A. Luna, S. G. Naculich, R. Russo, G. Veneziano, and C. D. White,
A tale of two exponentiations in N = 8 supergravity, Phys. Lett. B 798, 134927
(2019), arXiv:1908.05603 [hep-th].

[366] P. Di Vecchia, S. G. Naculich, R. Russo, G. Veneziano, and C. D. White, A tale
of two exponentiations in N = 8 supergravity at subleading level, JHEP 03, 173
(2020), arXiv:1911.11716 [hep-th].

[367] R. Akhoury, R. Saotome, and G. Sterman, High Energy Scattering in Perturbative
Quantum Gravity at Next to Leading Power, Phys. Rev. D 103, 064036 (2021),
arXiv:1308.5204 [hep-th].

[368] Z. Bern, H. Ita, J. Parra-Martinez, and M. S. Ruf, Universality in the classical
limit of massless gravitational scattering, Phys. Rev. Lett. 125, 031601 (2020),
arXiv:2002.02459 [hep-th].

[369] T. J. Hollowood and G. M. Shore, Causality and Micro-Causality in Curved
Spacetime, Phys. Lett. B 655, 67–74 (2007), arXiv:0707.2302 [hep-th].

[370] T. J. Hollowood and G. M. Shore, Causality Violation, Gravitational Shockwaves
and UV Completion, JHEP 03, 129 (2016), arXiv:1512.04952 [hep-th].

[371] K. Benakli, S. Chapman, L. Darmé, and Y. Oz, Superluminal graviton propaga-
tion, Phys. Rev. D 94, 084026 (2016), arXiv:1512.07245 [hep-th].

https://doi.org/10.1103/PhysRevD.22.343
https://doi.org/10.1103/PhysRevD.22.343
https://doi.org/10.1016/j.nuclphysb.2007.11.034
https://arxiv.org/abs/0707.2303
https://arxiv.org/abs/0707.2303
https://doi.org/10.1007/JHEP02(2017)134
https://doi.org/10.1007/JHEP02(2017)134
https://arxiv.org/abs/1609.00723
https://doi.org/10.1103/PhysRevD.101.046011
https://doi.org/10.1103/PhysRevD.101.046011
https://arxiv.org/abs/1911.10108
https://doi.org/10.1103/PhysRevLett.13.789
https://doi.org/10.1103/PhysRevLett.13.789
https://doi.org/10.1103/PhysRevLett.22.666
https://doi.org/10.1103/PhysRev.186.1656
https://doi.org/10.1103/PhysRev.186.1656
https://doi.org/10.1103/PhysRevLett.23.53
https://doi.org/10.1103/PhysRevLett.23.53
https://doi.org/10.1016/0370-2693(87)90346-7
https://doi.org/10.1016/0550-3213(90)90375-N
https://doi.org/10.1016/0550-3213(90)90375-N
https://doi.org/10.1016/0550-3213(92)90627-N
https://arxiv.org/abs/hep-th/9203082
https://doi.org/10.1016/j.physletb.2019.134927
https://doi.org/10.1016/j.physletb.2019.134927
https://arxiv.org/abs/1908.05603
https://doi.org/10.1007/JHEP03(2020)173
https://doi.org/10.1007/JHEP03(2020)173
https://arxiv.org/abs/1911.11716
https://doi.org/10.1103/PhysRevD.103.064036
https://arxiv.org/abs/1308.5204
https://doi.org/10.1103/PhysRevLett.125.031601
https://arxiv.org/abs/2002.02459
https://doi.org/10.1016/j.physletb.2007.08.073
https://arxiv.org/abs/0707.2302
https://doi.org/10.1007/JHEP03(2016)129
https://arxiv.org/abs/1512.04952
https://doi.org/10.1103/PhysRevD.94.084026
https://arxiv.org/abs/1512.07245


196 BIBLIOGRAPHY

[372] T. J. Hollowood and G. M. Shore, Causality, Renormalizability and Ultra-High
Energy Gravitational Scattering, J. Phys. A 49, 215401 (2016), arXiv:1601.06989
[hep-th].

[373] C. de Rham and A. J. Tolley, Speed of gravity, Phys. Rev. D 101, 063518 (2020),
arXiv:1909.00881 [hep-th].

[374] C. de Rham, J. Francfort, and J. Zhang, Black Hole Gravitational Waves in the
Effective Field Theory of Gravity, Phys. Rev. D 102, 024079 (2020), arXiv:2005.
13923 [hep-th].

[375] L. Eisenbud, “The formal properties of nuclear collisions”, PhD thesis (Princeton
U., 1948).

[376] D. Bohm, Quantum theory, Dover books in science and mathematics (Dover
Publications, 1989).

[377] E. P. Wigner, Lower Limit for the Energy Derivative of the Scattering Phase
Shift, Phys. Rev. 98, 145–147 (1955).

[378] D. Nandan, J. Plefka, and G. Travaglini, All rational one-loop Einstein-Yang-
Mills amplitudes at four points, JHEP 09, 011 (2018), arXiv:1803.08497 [hep-th].

[379] A. Einstein, On The influence of gravitation on the propagation of light, Annalen
Phys. 35, 898–908 (1911).

[380] M. Ciafaloni and D. Colferai, Rescattering corrections and self-consistent metric
in Planckian scattering, JHEP 10, 085 (2014), arXiv:1406.6540 [hep-th].

[381] S. L. Adler and W. A. Bardeen, Absence of higher order corrections in the anoma-
lous axial vector divergence equation, Phys. Rev. 182, 1517–1536 (1969).

[382] A. Laddha and A. Sen, Gravity Waves from Soft Theorem in General Dimensions,
JHEP 09, 105 (2018), arXiv:1801.07719 [hep-th].

[383] A. Cristofoli, R. Gonzo, D. A. Kosower, and D. O’Connell, Waveforms from
Amplitudes, (2021), arXiv:2107.10193 [hep-th].

[384] R. Britto, R. Gonzo, and G. R. Jehu, Graviton particle statistics and coherent
states from classical scattering amplitudes, JHEP 03, 214 (2022), arXiv:2112 .
07036 [hep-th].

[385] A. Cristofoli, R. Gonzo, N. Moynihan, D. O’Connell, A. Ross, M. Sergola, and
C. D. White, The Uncertainty Principle and Classical Amplitudes, (2021), arXiv:2112.
07556 [hep-th].

[386] D. A. Kosower, Next-to-maximal helicity violating amplitudes in gauge theory,
Phys. Rev. D 71, 045007 (2005), arXiv:hep-th/0406175.

[387] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications,
2nd ed. (Cambridge University Press, 1994).

[388] T. Peraro, FiniteFlow: multivariate functional reconstruction using finite fields
and dataflow graphs, JHEP 07, 031 (2019), arXiv:1905.08019 [hep-ph].

[389] P. S. Wang, A p-adic algorithm for univariate partial fractions, in Proceedings
of the fourth acm symposium on symbolic and algebraic computation, SYMSAC
’81 (1981), pp. 212–217.

https://doi.org/10.1088/1751-8113/49/21/215401
https://arxiv.org/abs/1601.06989
https://arxiv.org/abs/1601.06989
https://doi.org/10.1103/PhysRevD.101.063518
https://arxiv.org/abs/1909.00881
https://doi.org/10.1103/PhysRevD.102.024079
https://arxiv.org/abs/2005.13923
https://arxiv.org/abs/2005.13923
https://doi.org/10.1103/PhysRev.98.145
https://doi.org/10.1007/JHEP09(2018)011
https://arxiv.org/abs/1803.08497
https://doi.org/10.1002/andp.200590033
https://doi.org/10.1002/andp.200590033
https://doi.org/10.1007/JHEP10(2014)085
https://arxiv.org/abs/1406.6540
https://doi.org/10.1103/PhysRev.182.1517
https://doi.org/10.1007/JHEP09(2018)105
https://arxiv.org/abs/1801.07719
https://arxiv.org/abs/2107.10193
https://doi.org/10.1007/JHEP03(2022)214
https://arxiv.org/abs/2112.07036
https://arxiv.org/abs/2112.07036
https://arxiv.org/abs/2112.07556
https://arxiv.org/abs/2112.07556
https://doi.org/10.1103/PhysRevD.71.045007
https://arxiv.org/abs/hep-th/0406175
https://doi.org/10.1007/JHEP07(2019)031
https://arxiv.org/abs/1905.08019
https://doi.org/10.1145/800206.806398
https://doi.org/10.1145/800206.806398

	Introduction to Scattering Amplitudes
	A definition for the S-matrix
	Unitarity and locality of the S-matrix
	Tree-level amplitudes from BCFW-like recursion relations
	Loop-level amplitudes from generalised unitarity

	Form factors and low energy expansion
	Applications of BCFW-like recursion relations
	Modern applications
	Summary of the thesis

	Minimal Amplitudes Bases for EFTs
	The massless basis
	Kinematic structures from graphs
	Schouten identities
	Momentum conservation
	A summary of the algorithm
	Checking the algorithm

	The massive basis
	The Massive Little Group
	Equations of Motion
	Momentum Conservation
	A summary of the algorithm

	Applications
	The on-shell classification of SMEFT operators
	D2nF4 interactions in gauge theories
	Five-point interactions between W, Z and gamma
	Spin-tidal interactions in gravitational EFTs


	Bootstrapping Tree-Level Amplitudes
	The Standard Model from on-shell techniques
	Lie Algebras from Tree-Level Unitarity 

	Bootstrapping the tree-level amplitudes
	Higher-point Amplitudes without Recursion Relations
	Generalisations and application to the heavy-mass EFT

	Anomalies from Amplitudes <- Locality and Unitarity

	Form Factors from Unitarity in 6D
	The Dimensional Reconstruction Technique
	One-Loop Dimensional Reconstruction
	An L-loop Generalisation

	Tree-Level Amplitudes and Form Factors
	TrF2 Form Factors
	TrF3 Form Factors
	TrF4 and Higher Dimensional Form Factors

	One-Loop Form Factors
	The Minimal TrF2 Form Factors
	The Non-Minimal TrF2 Form Factor
	The Minimal TrF3 Form Factors
	The Non-Minimal TrF3 Form Factor
	The Minimal TrF4 Form Factors


	One-Loop Anomalous Dimensions in the SMEFT
	The UV anomalous mass dimension matrix at leading order
	Infrared collinear anomalous dimensions in the Standard Model

	The Higgs production in association with a W boson

	Gravitational EFTs and the Eikonal Limit
	Gravity with higher-derivative couplings
	Physical observables from the eikonal phase matrix
	Kinematics of the scattering
	Eikonal phase, deflection angle and time delay

	The relevant scattering amplitudes
	Four-point scalar/graviton scattering in EH gravity
	Four-point scalar/graviton scattering in EH+R3
	Four-point scalar/graviton scattering in R4
	Scattering with the FFR interaction

	Eikonal phase matrix, deflection angle and time delay
	Graviton deflection angle and time delay in Einstein-Hilbert gravity
	Graviton deflection angle and time delay in EH + R3
	Graviton deflection angle and time delay in EH + R4
	Graviton deflection angle and time delay in EH + FFR
	Photon deflection angle and time delay in EH + FFR


	Conclusions and outlook
	Spinor Helicity Formalism
	Four-Dimensional Spinor Helicity Formalism
	Six-Dimensional Spinor Helicity Formalism
	Momentum Twistors and Rational Kinematics
	Finite Field Arithmetic

	SMEFT Conventions and Notations
	The Standard Model gauge group
	Three-point amplitudes in the Standard Model

	Tree-level Amplitudes in 6D
	Six-Dimensional Scattering Amplitudes
	Non-Minimal Form Factors


	Feynman Integrals

