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Abstract

Quantum field theories (QFTs) are geometric and analytic in nature. With enough

symmetry, some QFTs may admit partial or fully algebraic descriptions. Topological

and conformal field theories are prime examples of such QFTs. In this thesis, the alge-

braic structure of 2+1D Topological Quantum Field Theories (TQFTs) and associated

Conformal Field Theories (CFTs) is studied. The line operators of 2 + 1D TQFTs

and their correlation functions are captured by an algebraic structure called a Modular

Tensor Category (MTC). A basic property of line operators is their operator product

expansion. This is captured by the fusion rules of the MTC. We study the existence

and consequences of special fusion rules where two line operators fuse to give a unique

outcome.

There is a natural action of a Galois group on MTCs which allows us to jump

between points in the space of TQFTs. We study how the physical properties of a

TQFT like its symmetries and gapped boundaries transform under Galois action. We

also study how Galois action interacts with other algebraic operations on the space of

TQFTs like gauging and anyon condensation. Moreover, we show that TQFTs which

are invariant under Galois action are very special. Such Galois invariant TQFTs can

be constructed from gauging symmetries of certain simple abelian TQFTs.

TQFTs also admit gapless boundaries. In particular, 1+1D Rational CFTs (RCFTs)

and 2+ 1D TQFTs are closely related. Given a chiral algebra, the consistent partition

functions of an RCFT are classified by surface operators in the bulk 2 + 1D TQFT.

On the other hand, Narain RCFTs can be constructed from quantum error-correcting

codes (QECCs). We give a general map from Narain RCFTs to QECCs. We explore

the role of topological line operators of the RCFT in this construction and use this map

to give a quantum code theoretic interpretation of orbifolding.
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Chapter 1

Introduction

Quantum field theory (QFT) is used in describing a vast variety of physical phenom-

ena. From fundamental particles and their interactions, condensed matter physics to

applications to mathematics, QFTs play a crucial role. To understand the landscape

of QFTs, it is interesting to study the relationships between different QFTs. How-

ever, since we lack a mathematical definition of a QFT, it is hard to make progress

in general. Moreover, a Lagrangian-based approach to QFTs is riddled with dualities.

While dualities reveal beautiful connections between different descriptions of physical

phenomena, they show that our description of nature has huge redundancies.

A Lagrangian-independent approach to QFT is more universal, and it can some-

times make relations between different descriptions of a QFT more apparent. The idea

is to extract the operator content and correlation functions of a QFT and encode them

in natural mathematical structures. Vertex operator algebras (and their representa-

tions) are one such structure for 1 + 1D CFTs, while, for 1 + 1D TQFTs, Frobenius

algebras play a similarly important role. For TQFTs in general spacetime dimensions,

n-categories play a central role [6]. In the case of 1+1D CFTs and TQFTs, symmetries

play a crucial role in enabling a non-perturbative description.

Symmetries provide a non-perturbative way to constrain the dynamics of a quantum

field theory (QFT). Depending on the spacetime dimension and the symmetry under

consideration, one may be able to, in principle, solve many or all consistent QFTs with

that symmetry. A well-known example uses infinite conformal symmetry to bootstrap

certain 1 + 1D conformal field theories (CFTs) [7–11]. While conformal symmetry

tightly constrains the space of CFTs, solving the conformal bootstrap equations is,

in general, highly non-trivial. The subspace of Rational Conformal Field Theories

(RCFTs) is easier to tackle. While a full classification is still hard, there are several

general results that can be proven. In particular, given a chiral algebra, a classification

of consistent partition functions is known.
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CHAPTER 1. INTRODUCTION

If we enlarge the symmetry from conformal to full metric independence1, we get

Topological Quantum Field Theories (TQFTs). TQFTs are constrained so much so that

the corresponding bootstrap equations can be solved in lower dimensions. For example,

in 1+0D, TQFTs are fully determined by a finite-dimensional Hilbert space. In 1+1D,

the TQFT bootstrap equations can be solved to show that they are determined by

Frobenius algebras. [6, 13–15]. Topological quantum field theories (TQFTs) lie at the

heart of important physical [16], mathematical [12], and computational [17] systems

and constructions. From a high-energy physics perspective, TQFTs may seem like

trivial QFTs. However, they play a crucial role in the description of symmetries and

anomalies of general quantum field theories.

TQFTs by definition have topological operators. These are operators whose corre-

lation functions are independent of the metric. In recent years, it has been understood

that topological operators play a crucial role in describing symmetries of a QFT [18].

Given a QFT with its spectrum of local and extended operators, the symmetries of

the QFT are given by the subset of topological local and extended operators. Topolog-

ical operators of codimension-1 implement ordinary (0-form) symmetries while those

of higher codimension implement higher-form symmetries. Moreover, since topolog-

ical operators may not always obey a group law under fusion, it naturally leads to

the concept of non-invertible symmetries [19–23]. These new notions of symmetries

have been used to constrain the dynamics of QFTs [24] [25] [22]. Moreover, through

anomaly inflow, d-dimensional invertible TQFTs capture the anomalies of a (d − 1)-

dimensional QFT [26]. More generally, the symmetries of a d-dimensional QFT as

well as their anomalies are captured by a generically non-invertible (d+1)-dimensional

TQFT [27] [28]. Therefore, studying topological operators and their algebraic struc-

ture is a study of general symmetry structures of QFTs. TQFTs provide the simplest

setting to explore this structure.

In this thesis, we will mainly focus on 2 + 1D TQFTs and 1 + 1D RCFTs.2 The

algebraic structure describing a 2 + 1D TQFT is called a Modular Tensor Category

(MTC) [29] [30]. MTCs encode essential physical data of a TQFT without additional

redundancies like the choice of a gauge group in a Lagrangian description.3 Indeed, the

fact that the same MTC can be realized by Lagrangians based on different gauge groups

makes it clear that gauge groups are, as is well known, not generally duality invariant.

Topological symmetry is powerful enough to give us a set of constraints known as the

Pentagon and Hexagon equations whose solutions give us all possible consistent MTCs.

1Note that even if the classical Lagrangian is metric independent, the correlation functions of the
quantized theory may not be strictly a topological invariant. For example, in Chern-Simons theory the
correlation functions have a framing dependence [12].

2Throughout, we will study non-spin TQFTs and RCFTs (i.e., TQFTs and RCFTs that do not
depend on a choice of spin structure).

3Although MTCs also have redundancies related to points where particle worldlines fuse.
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CHAPTER 1. INTRODUCTION

W

La =

W

e2πiθaO O
= R(g)

Σg

(a) (b)

Figure 1.1: (a) In 2 + 1D, a 0-form symmetry G is implemented by a topological
surface operator Σg acting on a local operator O, for some g ∈ G. (b) In 2+1D, a 1-form
symmetry A is implemented by a topological line operator La acting on a line operator
W , for some a ∈ A.

Upon making a further discrete choice, one obtains a corresponding 2+1D TQFT with a

fully-specified set of line operators [31]. Therefore, finding a consistent 2+1D TQFT in

this sense essentially follows from finding the zeros of some multivariable polynomials.

The Pentagon and Hexagon equations are the bootstrap equations for 2 + 1D TQFTs.

However, they are hard to solve in general.

The basic data that goes into defining a 2 + 1D TQFT is a choice of line operators

and their operator product expansion (OPE). The OPE is captured abstractly by the

fusion rules of the MTC. While a full description of the TQFT requires us to solve

the Pentagon and Hexagon equations, the fusion rules themselves contain crucial infor-

mation about the TQFT. Abelian/invertible line operators are those which fuse with

other line operators to give a unique outcome, while non-abelian/non-invertible line

operators fuse with other operators, in general, to give multiple outcomes. In particu-

lar, given a non-abelian line a, we can consider the line a with the opposite orientation

and their fusion, denoted a⊗a, results in multiple outcomes. However, sometimes, two

non-invertible lines can fuse to give a unique outcome. In other words, some TQFTs

admit non-invertible lines which can be written as a fusion of two other non-invertible

lines. In this thesis, we explore the existence and physical consequences of such fusion

rules.

Almost always, the physics of a system is described by differential equations. In

contrast, TQFTs are determined by Pentagon and Hexagon equations, which are mul-

tivariable polynomial equations. This allows us to study TQFTs through the lens of

Galois theory. Using the data that defines a TQFT, we can construct a field extension

whose Galois group acts on the TQFT to give us another TQFT [32] [33]. Therefore,

Galois actions allow us to jump between different points in the space of TQFTs. While

the origin of this map between TQFTs may seem abstract, it relates TQFTs with vari-

ous common properties. In this thesis, we study the Galois orbits of various well-known

10



CHAPTER 1. INTRODUCTION

TQFTs. We study how various physical properties of a TQFT, like its symmetries and

gapped boundaries, change under Galois action. We show how Galois actions interact

with other operations on a TQFT like gauging and anyon condensation. To gain fur-

ther physical insight into Galois action, we study how Galois actions act on a notion

of entanglement entropy defined for links in TQFTs.

2 + 1D TQFTs can also have gapless boundaries. In particular, there is a close

relationship between 1 + 1D RCFTs and 2 + 1D TQFTs [12]. Given a 1 + 1D RCFT

with chiral algebra V , the representations of V form a modular tensor category [34] [35],

which is precisely the data defining a TQFT. Conversely, given a TQFT with MTC C,

there are an infinite number of RCFTs with a chiral algebra whose representations form

C. However, once we fix a chiral algebra, then the possible choices of consistent partition

functions are in one-to-one correspondence with surface operators in the TQFT [36] [37].

There is another construction of 1 + 1D CFTs which starts from a quantum error-

correcting code (QECC) [38]. In this framework, a Narain lattice is constructed from

the QECC. The Siegel-Theta function of the Narain lattice gives the partition function

of the CFT. The final part of this thesis is aimed at relating these two methods of

constructing 1 + 1D CFTs. We define a general map from RCFTs whose primaries

form an abelian group under fusion to quantum stabilizer codes. We also study the

role played by topological operators implementing 0-form symmetries of the CFT in

this map. This allows us to study various operations on a CFT, like orbifolding, at the

level of the stabilizer code.

The structure of this thesis is as follows. In Chapter 2, we review several aspects

of TQFTs which are important for the rest of the thesis. In particular, we emphasize

on an algebraic approach and explain how a Modular Tensor Category captures the

observables in a TQFT and their correlation functions. In Chapter 3 we study fusion

of non-invertible line operators to give a unique non-invertible line operator in 2 + 1D

TQFTs. In Chapter 4 we introduce Galois actions on TQFTs and study its various

properties. In Chapter 5 we further study how Galois action acts on entanglement

entropy of links in TQFTs. Finally, in Chapter 6, we introduce an explicit map from

RCFTs to quantum stabilizer codes and study how properties of the bulk TQFT and

orbifolding are captured by the stabilizer code.

This thesis also includes three appendices. Appendix A contains several examples

complementing the discussion in Chapter 3. It also contains the GAP codes used for

various explicit calculations mentioned in Chapter 3. Appendix B contains calculations

of the entanglement entropy of some hyperbolic and satellite links. It also contains proof

of a lemma crucial for the results in Chapter 5. Finally, Appendix C discusses various

properties of orbifolded RCFTs. It also contains a discussion on Verlinde subgroups

introduced in Chapter 6.
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Chapter 2

Topological Quantum Field

Theory

Topological quantum field theories are characterized by the fact that the correlation

functions of all operators in a TQFT are independent of the metric on the manifold. A

well-known class of TQFTs is Chern-Simons theories [12]. For a choice of 3-manifold

M and simple Lie group G, Chern-Simons theory is defined by the action

S =
k

4π

∫
M

tr(A ∧ dA+A ∧A ∧A) , (2.1)

where A is the gauge field valued in the Lie algebra of G. k is the level of the theory.

Note that the action is an integral of a 3-form over a 3-manifold and is defined without

reference to a metric. The classical equation of motion is

F = dA = 0 . (2.2)

Therefore, A is a flat connection. Since all gauge-invariant local operators are con-

structed from F , the equation of motion implies that we do not have any gauge-invariant

local operators. However, we can use the gauge field to construct Wilson line operators

given by

WR(γ) = TrRPei
∮
γ A , (2.3)

where the trace is taken in the representation R of the gauge group G, γ is a closed

curve and P denotes the path-ordering of the exponential.

This description of TQFTs in terms of actions and gauge fields has huge redundan-

cies. These manifest themselves as non-trivial dualities between Chern-Simons theories

based on different gauge groups. For example, the Spin(16)1 Chern-Simons theory is

dual to a discrete gauge theory with gauge group Z2. In 3 + 1D, one can construct

TQFTs based on various higher-form gauge fields, but all of them are equivalent to

12



CHAPTER 2. TOPOLOGICAL QUANTUM FIELD THEORY

discrete gauge theories. Dual theories have the same spectrum of line operators and

correlation functions. Therefore, it is desirable to capture this information in a math-

ematical structure which makes these dualities manifest. In the rest of this thesis, we

will focus on 2+1D TQFTs. In the following section, we will introduce Modular Tensor

Categories (MTCs), which capture data contained in the line operators in the TQFT

and their correlation functions.

2.1 Modular Tensor Categories: The Algebra of Line Op-

erators

In this thesis, we will only consider TQFTs with no local operators. In such a 2 + 1D

TQFT we have line and surface operators. From a general theorem in [6], the absence

of local operators implies that the surface operators in 2+1D TQFT can be constructed

from its line operators.4 Therefore, if we want to capture the minimal data required

to define a 2 + 1D TQFT, we only need to keep track of the line operators and their

correlation functions. In the following, we will assume that the TQFT has a finite

number of line operators. The line operators of such a TQFT and their correlation

functions are captured by an algebraic object called a Modular Tensor Category (MTC).

2.1.1 Fusion

An MTC consists of a finite set of labels, {a, b, · · · }. They satisfy the fusion rules

a⊗ b =
∑
c

N c
abc , N c

ab ∈ Z≥0 . (2.4)

The labels denote the different line operators in the TQFT and their fusion rules capture

the position-independent operator product expansion (OPE) of these operators. These

line operators are simple, in the sense that they cannot be written as a sum of other

line operators. Among the labels, there is a distinguished label, 1, which denotes the

trivial line operator (sometimes, in an additive notation for abelian theories, the trivial

line is labelled 0). Since MTCs describe topological phases of matter, we can also

interpret the labels as charges of the quasiparticles in the topological phase. In this

language, the label 1 denotes the vacuum. The fusion rules describe the ways in which

these particles combine to form new ones. The morphisms in this category denote the

topological local operators sitting at junctions of line operators. There are no local

operators between any two distinct simple line operators.

4In the modern physics language, all topological surface operators are obtained by higher gauging
1-form symmetries on surfaces. [39]
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CHAPTER 2. TOPOLOGICAL QUANTUM FIELD THEORY

The non-negative integers, N c
ab, count the different ways in which a and b combine

to form c. Note that the fusion a ⊗ b = c is allowed if and only if N c
ab > 0. In fact,

the N c
ab fusion coefficient is the dimension of the V c

ab fusion Hilbert space. This is

the Hilbert space of all local operators at a trivalent junction of lines a, b, c5. More

generally, the fusion space corresponding to the anyons a1, · · · , an fusing to give anyon

b is written as V b
a1a2···an .

Given the fusion rules, we can define the Frobenius-Perron dimension of an anyon

a, denoted FPdim(a), as the maximal non-negative eigenvalue of the matrix Na, where

(Na)b,c := N c
ab. The Frobenius-Perron dimension of the MTC C is defined as

FPdim(C) :=
∑
a

FPdim(a)2 . (2.5)

An MTC is called integral if FPdim(a) ∈ Z ∀a. An MTC is called weakly integral if

FPdim(C) ∈ Z.
Fusion of three anyons is associative. This implies that the fusion space V d

abc =∑
f V

f
ab ⊗ V d

fc can also be decomposed as V d
abc =

∑
e V

e
bc ⊗ V d

ea. The F matrix is the

linear map associated with the isomorphism
∑

f V
f
ab ⊗ V d

fc
∼=
∑

e V
e
bc ⊗ V d

ea (see Fig.

2.1).

a a b cb c

d d

f =
∑

e

(
F dabc

)e
f

e

Figure 2.1: Pictorial definition of the F-matrix

From this discussion, we see that

F dabc :
∑
f

V f
ab ⊗ V d

fc →
∑
e

V e
bc ⊗ V d

ea , Rcab : V
c
ab → V c

ba . (2.6)

Next, from the action of F on V e
abcd, the “Pentagon” consistency equation follows

(
F ea,b,k

)l
i

(
F ei,c,d

)k
j
=
∑
m

(
F lb,c,d

)k
m

(
F ea,m,d

)l
j

(
F ja,b,c

)m
i
. (2.7)

5Note that even though there are no local operators between two simple lines a and b, there are
local operators at a trivalent junction of lines.
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a b c d

e

a b c

e

d a b c

e

d

a b c

e

d

a b c d

e

i

i k

k

l

l

m

m

j

j

F

F F

F

F

Figure 2.2: Pentagon equations

2.1.2 Braiding

The fusion of two anyons is commutative. This implies the existence of an isomorphism,

V c
ab

∼= V c
ba, and the associated linear map corresponding to this isomorphism is called

the R matrix (see Fig. 2.3).

a a bb

c c

= Rcab

Figure 2.3: Pictorial definition of the R-matrix

Moreover, the braiding of anyons captured by the R matrix should be consistent

with the associativity of the fusion rules. In other words, the action of the R and

F matrices on V d
abc should be consistent. This requirement leads to two “Hexagon”

equations. The first takes the form

Rka,c
(
F da,c,b

)k
j
Rjb,c =

∑
i

(
F dc,a,b

)i
k
Rdi,c

(
F da,b,c

)j
i
, (2.8)

and the second is
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R
R

R

F

F
F

a

a a

a

aa

b

b b

b

bb

c

c c

c

c c

d

d d

d

d d

k

k
j

j

i
i

Figure 2.4: Hexagon Equations 1

(
Rkc,a

)−1(
F da,c,b

)k
j

(
Rjc,b

)−1
=
∑
i

(
F dc,a,b

)i
k

(
Rdc,i

)−1(
F da,b,c

)j
i
, (2.9)

Suppressing all indices, we will refer to solutions of (2.7), (2.8), and (2.9) simply as

F and R. Even though one can start with any set of labels and fusion rules, a consistent

MTC exists only if (2.7), (2.8), and (2.9) are satisfied [29,30,40,41].

If we wish to calculate F and R explicitly, we have to choose a basis for the fusion

spaces, V c
ab. The solutions to the Hexagon and Pentagon equations obtained by choosing

different sets of basis vectors should be considered equivalent. This equivalence is known

as the “gauge freedom” in defining F and R. The Pentagon and Hexagon equations

have at most a finite number of inequivalent solutions [42, 43]. To summarize, we

have captured the line operators and their OPEs via the labels and fusion rules. The

commutativity and associativity of the fusion rules lead to the Pentagon and Hexagon

equations. At this level of structure, we have defined a braided fusion category.

To add more structure, note that for every anyon a, there is a dual anyon, ā, such

that a⊗ā involves the vacuum. In other words, ā is the anti-particle of a, and a = a. To

capture this fact in our algebraic construction, we need to define a ribbon structure on

the braided fusion category by defining isomorphisms from a to a. These isomorphisms
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R−1
R−1

R−1

F

F
F

a

a a

a

aa

b

b b

b

bb

c

c c

c

c c

d

d d

d

d d

k

k
j

j

i
i

Figure 2.5: Hexagon Equations 2

are captured by phases, ϵa, for each label a, satisfying the constraint

ϵ−1
a ϵ−1

b ϵc = (F 1
a,b,c̄)

ā
c (F

1
b,c̄,a)

ā
a(F

1
c̄,a,b)

b̄
b . (2.10)

We also require there to be a gauge in which ϵa ∈ {±1} ∀a. In general, if there is

a solution to these constraints, it need not be unique, though the number of distinct

solutions is always finite and has been classified [44]. Using these, we can define the

quantum dimension of an anyon a as follows

da := (ϵa(F
a
aāa)

1
1)

−1 . (2.11)

This expression is valid only in a particular basis as chosen in Lemma 3.4 of [33]. da

is the S3 link invariant of an unknot labelled by a. Note that da depends on several

choices and it is not, in general, equal to the Frobenius-Perron dimension of an anyon.

In fact, FPdim(a) is always positive, while da can be negative for certain choices of

solutions ϵa to (2.10). In a unitary TQFT, the quantum dimensions are required to

be positive, and in this case, there is a unique unitary6 ribbon structure such that

6The phases ϵa along with the R matrices can be used to define the topological twist θa (described
in the next subsection). A ribbon structure is called unitary if θa is unitary.
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da =FPdim(a) ∀a [44]. The total quantum dimension of the TQFT is defined as

D :=

√∑
a

d2a , (2.12)

where we picked a particular sign that is necessary for the TQFT to be unitary.

2.1.3 Modular Data

At this level of structure, we have defined a ribbon fusion category. We want an

MTC to describe systems with no transparent anyons. That is, all non-trivial anyons

should braid non-trivially with at least one anyon. This condition is captured by the

invertibility of the matrix

Sab =
1

D
∑
c

dcTr(R
c
abR

c
ba) =

1

D
S̃ab . (2.13)

Here, S̃ab is the invariant of the Hopf link, which captures the creation of two anyon-

anti-anyon pairs, their braiding and their annihilation. The T matrix is defined as

Taa = d−1
a

∑
c

dcR
c
aa = θa , (2.14)

a b

(a)

Sab = 1
D Taa =

(b)

1
da

a

Figure 2.6: (a) The S matrix is the invariant of the Hopf link up to a normalization
factor. (b) The T matrix is the invariant of the unknot with a twist.

Recall the description of SL(2,Z) in terms of the generators

s =

(
0 −1

1 0

)
, t =

(
0 1

1 1

)
(2.15)

satisfying relations (st)3 = s2, s4 = 1. S and T defined above gives rise to a unitary

(projective) representation of the modular group, SL(2,Z), where the generators s and

t are represented by S and T , respectively7. Indeed, these quantities obey the following

7The unitarity of this representation does not imply unitarity of the TQFT.
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equations

(ST )3 = ΘC , S2 = C , C2 = I , (2.16)

where Θ = 1√∑
c d

2
c

∑
a d

2
aTaa, and C is the charge conjugation matrix. Note that we

can rescale the T matrix to get a true representation of SL(2,Z).
The fusion coefficients, N c

ab, are determined by the S matrix elements via the Ver-

linde formula

N c
ab =

∑
e

SaeSbeSec∗

S0e
. (2.17)

The central charge of a TQFT, c, is given in terms of Θ through the relation

e
2πic
8 = Θ . (2.18)

The solutions to (2.7) and (2.8) admit a cohomological interpretation, where the

relevant coboundaries capture the gauge freedom. For example, in the case of abelian

MTCs, (F,R) are valued in abelian group cohomology. Given a collection of labels

and fusion rules, a 2 + 1D TQFT with non-trivial labels/anyons is a cohomologically

non-trivial solution to these polynomial equations.8 We will refer to the collection,

(N c
ab, R, F ), as the “MTC data”, and to the (S, T ) pair (or, depending on the context,

the (S̃, T ) pair) as the “modular” data.

Finally, note that we can take the total quantum dimension to be

D(−) = −
√∑

a

d2a (2.19)

In this case, the expression for the normalized S matrix changes by a sign. In fact, given

the modular data (S, T ) of an MTC, there also exists an MTC realizing the modular

data (−S, T ). Unless otherwise stated, we will use the definition of the total quantum

dimension with a positive sign.

8In particular, the space of consistent 2 + 1D TQFTs satisfying the MTC axioms is discrete [43].
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Chapter 3

Irreducible Fusion of Simple

Lines

3.1 Introduction

In Chapter 2, we saw that TQFTs can be fully characterized by solving a set of polyno-

mial consistency conditions [40, 41, 45], However, proceeding in this way is often quite

difficult as a practical matter (however, see [46, 47] for examples of some results; see

also [48] for a potentially very different approach). More generally, it is interesting to

understand aspects of the global structure of a TQFT and its symmetries without the

need to fully solve the theory (e.g., see [49]).

Proceeding in this way, we will study anyonic fusions a × b that have a unique

product anyon, c

a× b = c , a, b, c ∈ T , (3.1)

in a general 2 + 1 dimensional TQFT, T .9 Our main questions is: 1. When do fusion

of simple line operators result in a simple line operator? 2. What do such fusions (see

(3.1)) tell us about the global structure of T and its symmetries?

For invertible a and b (i.e., a and b are abelian anyons), fusion rules of the form

(3.1) describe the abelian 1-form symmetry group of the theory [18] (the closely related

modular S matrix characterizes its ’t Hooft anomalies [50]). In the case in which, say, a

is abelian and b is non-abelian,10 the equation (3.1) gives the fixed points of the fusion

of anyons in the theory with the one-form generator, a. Such equations have important

consequences for anyon condensation / one-form symmetry gauging in TQFT [50,51] as

well as for orbifolding and coset constructions in closely related 2D rational conformal

9Throughout what follows, we only consider non-spin TQFTs. These are theories that do not require
a spin structure in order to be well-defined.

10In this case, b is non-invertible, and the fusion b × b̄ = 1 + · · · , where b̄ is the anyon conjugate to
b, necessarily contains at least one more anyon in the ellipses.
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field theories (RCFTs) (e.g., see [52,53]).

Although these cases will play a role below, we will be more interested in the

situation in which both a and b are non-abelian

a× b = c , da , db > 1 . (3.2)

Here da,b denote the quantum dimensions of a and b (given they are larger than one,

neither a nor b are invertible). Since both a and b are non-abelian, one typically finds

that the right-hand side of (3.2) has multiple fusion products. For example, fusions as

in (3.2) do not occur in SU(2)k Chern-Simons (CS) theory for any value of k ∈ N.11

Moreover, for discrete gauge theories based on non-abelian simple groups, such fusions

are highly constrained. As we will see, when fusions of non-abelian a and b do have a

unique outcome, there are consequences for the global structure of T .

The most trivial case in which a fusion of the type (3.2) occurs is when T factorizes

(not necessarily uniquely) as

T = T1 ⊠ T2 , (3.3)

with T1 and T2 two separate TQFTs that have trivial mutual braiding, a ∈ T1, and
b ∈ T2.12 Here “⊠” denotes a categorical generalization of the direct product called a

“Deligne product” that respects some of the additional structure present in TQFT.

As we will discuss in section 3.5, precisely such a situation arises in the modular

tensor categories (MTCs) related to unitary A-type Virasoro minimal models with

c > 1/2.13 MTCs are mathematical descriptions of TQFTs, and, for the theories in

question, they encapsulate the topological properties of the Virasoro primary fields.

One may think of the, say, left-movers in these RCFTs as arising at a 1+1 dimensional

interface between 2+1 dimensional CS theories with gauge groups SU(2)1 × SU(2)k

and SU(2)k+1. In the minimal models, we have

φ(r,1) × φ(1,s) = φ(r,s) , (3.4)

where 2 ≤ r < p − 2 and 2 ≤ s < p − 1 are Kac labels that give Virasoro primaries

with non-abelian fusion rules (here we have (r, s) ∼ (p− 1− r, p− s), and p > 4 is an

integer labeling the unitary minimal model).14 Thinking in terms of cosets, we will see

that (3.4) arises because the Virasoro MTC factorizes as in (3.3).15

11In section 3.5, we will discuss the situation for more general Gk CS theories.
12Note that T1,2 may factorize further. Moreover, a may contain an abelian component in T2, and b

may contain an abelian component in T1.
13Note that in the case of the Ising model (c = 1/2), at least one of the anyons in the fusion a×b = c is

abelian (and the corresponding MTC does not factorize). We thank I. Runkel for drawing our attention
to the a× b = c fusion rules for non-abelian fields in Virasoro minimal models.

14The abelian field φ(p−2,1) ∼ φ(1,p−1) satisfies the fusion rule φ(1,p−1) × φ(1,p−1) = φ(1,1) = 1.
15Note that this factorization does not extend to one of the RCFT.
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a

a

b

b

1

a b

a b

c

Figure 3.1: The fusions a× b and ā× b̄ have unique outcomes c and c̄ respectively. In
the left diagram, we connect the corresponding fusion vertices. To get to the diagram
on the right, we perform an F āabb̄ transformation. Just as the left diagram has a unique
internal line, so too does the diagram on the right (in this latter case, the internal line
must be the identity).

To gain further insight into more general situations in which (3.2) occurs, it is useful

to imagine connecting a fusion vertex involving the a, b, c anyons with a fusion vertex

involving the ā, b̄, and c̄ anyons via a c internal line as in the left diagram of figure

3.1. Using associativity of fusion (via the F āab
b̄

symbol) we arrive at the right diagram

of figure 3.1. The relation between these two diagrams can be thought of as a change

of basis on the space of internal states. Since, by construction, the left diagram in

figure 3.1 can only involve a c internal line, the right diagram in figure 3.1 can also

only involve a single internal line. On general grounds, this line must be the identity.16

This result can also be derived by looking at decomposition of fusion spaces. Consider

the fusion space V b
baa. It can be decomposed in the following different ways

V b
baa ≃

∑
c

V c
ba ⊗ V b

ca ≃
∑
x

V b
bx ⊗ V x

aa ≃
∑
x

V x
bb
⊗ V x

aa, (3.5)

where, in the last equality above, we have used the fusion space isomorphism, V b
bx ≃ V x

bb
.

If we have the fusion rule a× b = c, then (3.5) simplifies to

V b
baa ≃ V c

ba ⊗ V b
ca ≃

∑
x

V x
bb
⊗ V x

aa (3.6)

Moreover, we know that V c
ba and V b

ca are 1-dimensional. Hence, the dimension of direct

sum of fusion spaces
∑

x V
x
bb
⊗ V x

aa should be 1-dimensional. It follows that the sum

should be over a single element and that the fusion spaces V x
aa and V x

bb
should be 1-

dimensional. Since the trivial anyon 1 is always an element in the fusions a × a and

b× b, we have

V b
baa ≃ V c

ba ⊗ V b
ca ≃ V 1

bb
⊗ V 1

aa (3.7)

16By rotating the ā, b̄, and c̄ vertex, we see that a × b = c is equivalent to requiring a × b̄ = d and
ā × b = d̄ (see figure 3.2). This logic also explains why, for non-abelian a, it is impossible to have
a× a = c even if a ̸= ā.
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Therefore, we learn that a fusion rule of the form (3.2) is equivalent to the following

a× ā = 1 +
∑
ai ̸=1

Nai
aā ai , b× b̄ = 1 +

∑
bj ̸=1

N
bj
bb̄
bj ,

bj ∈ b× b̄ ⇒ bj ̸∈ a× ā , ai ∈ a× ā ⇒ ai ̸∈ b× b̄ ∀ i, j . (3.8)

In other words, the fusion of a× b has a unique outcome if and only if the only fusion

product that a× ā and b× b̄ have in common is the identity.

a

b

b

a

d

a b

b a

c

Figure 3.2: By rotating the bottom vertex in the left diagram of figure 3.1, we arrive
at the above diagram on the left. Again, we have a single internal line labeled by c. We
get to the diagram on the right by performing an F b̄abā transformation. Just as the left
diagram has a unique internal line, so too does the diagram on the right.

Reformulating the problem as in (3.8) immediately suggests scenarios in which

fusions of the form (3.2) occur beyond cases in which T factorizes into prime TQFTs.

For example, if a ∈ C1 ⊂ T and b ∈ C2 ⊂ T lie in non-modular fusion subcategories

of T , C1,2, with trivial intersection (i.e., C1 ∩ C2 = 1 only contains the trivial anyon),

then we have (3.2) and T need not factorize.17 More generally, when a ∈ C ⊂ T is a

member of a non-modular subcategory that does not include b (i.e., b ̸∈ C), we expect

it to be more likely to find fusions of the form (3.8) and (3.2) since a × ā ∈ C, but
b × b̄ will generally include elements outside C. In fact, we will see that we can often

say more when the fusion of a non-abelian Wilson line carrying charge in an unfaithful

representation of a discrete gauge group is involved.

Another scenario in which we can imagine (3.8)—and therefore (3.2)—arising is one

in which zero-form symmetries act non-trivially on a (i.e., g(a) ̸= a for some zero-form

generator g ∈ G, where G is the zero-form group) and the ai ̸= 1 but not on b.18 In

this case, combinations of ai that do not form full orbits under G are forbidden from

17In other words, fusion of anyons in Ci is closed. Moreover, the Ci inherit associativity and braiding
from T , but the Hopf link evaluated on anyons in these subcategories is degenerate (as a matrix). By
modularity, the Ci will have non-trivial braiding with some anyons xA ̸∈ C1,2 (where A is an index
running over such anyons). On the other hand, if the Hopf links for the Ci are non-degenerate, Müger’s
theorem [49] guarantees that they will in fact be separate TQFTs and so we are back in the situation
of (3.3).

18By definition, the symmetry also acts non-trivially on ā so that g(a) = g(ā) ̸= ā. On the other
hand, note that one-form symmetry will act trivially on the product a× ā.
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appearing in b× b̄. Given a particular G, this argument may suffice to show that, for all

i, ai ̸∈ b× b̄. More generally, symmetries constrain what can appear as fusion products

of a× ā and b× b̄. The more powerful these symmetries, the more likely to find fusion

rules of the type (3.8).

Interestingly, there is a close connection between the existence of symmetries and

the existence of subcategories in TQFT. For example, as we will discuss further in sec-

tion 3.4.2, for TQFTs corresponding to discrete gauge theories [54, 55], certain “quan-

tum symmetries” or electric-magnetic self-dualities arise when we have particular non-

modular subcategories Ci ⊂ T (see [56] for a general theory of such symmetries and [57]

for the case of S3 discrete gauge theory).

We will also find various other, more subtle, connections between symmetries and

fusion rules of the form (3.8) and (3.2). Moreover, we will see that symmetry is ubiqui-

tous: in all the theories with fusion rules of the form (3.8) and (3.2) we analyze, either

there is a zero-form symmetry present or else there is, at the very least, a symmetry

of the modular data that exchanges anyons (in cases where this action does not lift to

the full TQFT, we call these symmetries “quasi zero-form symmetries”).

We will study fusions of the above type in two typically very different classes of 2+1D

TQFTs:19 discrete gauge theories and cosets built out of CS theories with continuous

gauge groups (we will refer to these latter theories simply as “cosets”). Discrete gauge

theories are always non-chiral, whereas Chern-Simons theories and their associated

cosets are typically chiral.20

In the context of discrete gauge theories, whenever we have a (full) zero-form sym-

metry present, we will see that fusion rules of the type (3.8) and (3.2) have simple

interpretations in certain parent theories gotten by gauging the zero-form symmetry,

G0. We go from the parent theories back to the original theories by gauging a “dual”

one-form symmetry, G1, that is isomorphic (as a group) to G0 (see [58] for a more

general review of this procedure). In this reverse process, we produce the a × b = c

fusion rules of the corresponding discrete gauge theories via certain fusion fixed points

of the one-form symmetry generators in the parent theories.

Similarly, in the context of our coset theories, we will see that fusion rules of the

form a× b = c arise due to certain fixed points in the coset construction (though these

fixed points do not generally involve a, b, and c). Cosets corresponding to the Virasoro

minimal models lack such fixed points and so, as discussed above, they factorize. On

the other hand, more complicated cosets do sometimes have such fixed points, and we

will construct an explicit example of such a prime TQFT that has fusion rules of the

form (3.8) and (3.2).

To summarize, this discussion leads us to the following questions we will answer in

19Note that there are sometimes dualities between theories in these two classes.
20By a chiral TQFT, we mean one in which the topological central charge satisfies ctop ̸= 0 (mod 8).
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subsequent sections:

1. When do fusions of the type (3.2) occur in TQFTs?

2. Does (3.2) imply a factorization of TQFTs

T = T1 ⊠ T2 , (3.9)

with a ∈ T1 and b ∈ T2? As has been hinted at above, we will see in sections 3.3,

3.4 and 3.5 that the answer is generally no.

3. Does (3.2) imply that a belongs to one fusion subcategory and b to another and

that the intersection of these subcategories is trivial? In other words, do we have

a ∈ C1 ⊂ T , b ∈ C2 ⊂ T , C1 ∩ C2 = 1 ? (3.10)

As we will see in section 3.4, the answer is generally no, even if we relax the

requirement of trivial intersection. However, we will explicitly construct such

examples (with non-modular C1,2 ⊂ T , where T is prime) in the case of discrete

gauge theories.

4. Does (3.2) imply that a is in some subcategory C ⊂ T that b is not a member of?

In other words, do we have

a ∈ C ⊂ T , b /∈ C ? (3.11)

As we will see in section 3.4, the answer is generally no. However, we will argue

that such constructions are quite easy to engineer in the context of discrete gauge

theories, and we will explain when they arise. We will see that these constructions

often have interesting interactions with symmetries.

5. Given a and b as in (3.2), do they have trivial mutual braiding? In other words,

do we have
Sab
S0b

= da , (3.12)

where S is the modular S-matrix? This is true in the context of discrete gauge

theories with a simple gauge group [2]. However, non-trivial braiding does arise

naturally in the context of the fusion of non-abelian electrically charged lines with

non-abelian magnetically charged lines.

6. Given a and b as in (3.2), does T have a non-trivial zero-form symmetry acting

on either a or b? Does the TQFT have a zero-form symmetry that acts more

generally? We will see in section 3.4 the answer to both these questions is no.
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However, in cases in which this is true, it seems to always be related to the exis-

tence of a certain fusion fixed point of one-form symmetry generators in a parent

TQFT. Of the infinitely many examples of untwisted discrete gauge theories we

study, only gauge theories based on the Mathieu groupsM23 andM24 fail to have

zero-form symmetries.

7. Given a and b as in (3.2), does T have a non-trivial symmetry of the modular

data? As we will see in sections 3.4 and 3.5, the answer seems to be yes. Clearly,

it would be interesting to see if it is possible to define parents of such theories that

generalize the relationship in (6). Note that the Mathieu gauge theories discussed

in the previous point do have symmetries of their modular data (however, these

symmetries do not lift to symmetries of the full TQFTs).

As we will see, many of these questions have simpler answers when studying discrete

gauge theories. The reason is that powerful statements in these TQFTs can often be

deduced from simple reasoning in the underlying theory of discrete groups. On the other

hand, intuition one gains from taking products of representations in various continuous

groups, like SU(N), turns out to be somewhat misleading for our questions above.

The plan of this chapter is as follows. In section 3.2, we will introduce discrete gauge

theories. Using the general structure of discrete gauge theories, in section 3.3 we will

discuss the existence of fusions of the form (3.2) in discrete gauge theories with non-

abelian simple gauge groups. We will explain how this problem is closely related to the

Arad-Herzog conjecture in finite group theory. In section 3.4, we will discuss discrete

gauge theories with general gauge groups and explain how intuition in the theory of

finite groups leads us to various answers to the questions listed above. Along the way,

we prove various theorems about discrete gauge theories and fusion rules of the form

(3.2) and (3.8). Moreover, we discuss the role that subcategories and symmetries of

discrete gauge theories play in such fusion rules. In the final part of the chapter (section

3.5), we go to continuous groups and discuss coset theories. We tie the existence of

fusion rules of type (3.2) and (3.8) to certain fixed points in the coset construction. We

then finish with some conclusions and summary of results.

3.2 Discrete Gauge Theories

One modern perspective on how to go from a group, G, to a 2+1-dimensional discrete

gauge theory is to start from a G-symmetry-protected topological phase (G-SPT) and

gauge G [58]. At the same time, it may be useful to keep in mind that many of the

results we will need in this section predate this perspective and follow from the classic

work [54].

The starting point is a set of surface defects in one-to-one correspondence with the
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elements g ∈ G. For simplicity, we label these defects by group elements as well. Fusion

of these defects obeys the usual group multiplication law of G, so g×h = gh. One may

also consider deforming the associativity of defect fusion via a 3-cocycle

ω(g, h, k) ∈ H3(G,U(1)) . (3.13)

The H3(G,U(1)) cohomology group then labels the distinct 2+1-dimensional G-SPTs.

Gauging G corresponds to constructing conjugacy classes, [gi], for a set of repre-

sentative gi ∈ G and pairing this data with an irreducible representation, πωgi , of the

centralizer of each gi, Ngi . These are, respectively, the magnetic and electric charges of

the discrete gauge theory. The 3-cocycle in (3.13) is the Dijkgraaf-Witten twist (when

ω = 0 in cohomology we have an untwisted gauge theory).

In this way, lines bounding the G-SPT surface operators are liberated and become

anyons in the—depending on ω—twisted or untwisted G discrete gauge theory. These

latter objects are given by the pair ([g], πωg ), where the square brackets around g are

there to emphasize that we are dealing with a conjugacy class (for any representative

in [g], the corresponding centralizers are isomorphic). A discrete gauge theory specified

by the data G,ω ∈ H3(G,U(1)) will de denoted as Z(VecωG).
21

The question of whether the electric charge, πωg , is projective is determined by the

reduction of ω to Ng

ηg(h, k) :=
ω(g, h, k)ω(h, k, g)

ω(h, g, k)
∈ H2(Ng, U(1)) , (3.14)

where h, k ∈ Ng. Indeed, this is the phase that appears in

πωg (h)π
ω
g (k) = ηg(h, k)π

ω
g (hk) . (3.15)

If ηg is trivial in H2(Ng, U(1)) the representation is linear 22. For example, the group

PSL(2, 4) has Z3 as the centralizer of elements in its length twenty conjugacy class.

Since H2(Z3, U(1)) = Z1, the corresponding ηg is trivial regardless of the choice of

ω ∈ H3(PSL(2, 4), U(1)) ≃ Z6 × Z10. More generally, if ω is cohomologically non-

trivial, then πωg is typically projective.

In light of the discussion in the introduction, the most important thing for us to

understand is the fusion of two anyons, ([g], πωg ) and ([h], πωh ). Intuitively, we have to

21This notation originates from the Drinfeld centre construction of discrete gauge theories.
22If ηg(h, k) is a non-trivial 2-coboundary, the projective representations obtained will be in one-

to-one correspondence with linear representations. These projective factors can be removed using a
symmetry gauge transformation as detailed in [58]. On the other hand, if ηg(h, k) is non-trivial in
cohomology, then the corresponding representations of Ng must be higher dimensional. To see this
statement, suppose this were not the case. Then, solving (3.15) for ηg(h, k) implies that ηg is a 2-
coboundary.
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fuse both the conjugacy classes as well as the representations that the anyons depend on.

This involves identifying the conjugacy classes of the elements obtained by multiplying

the elements in [g] and [h]. The product of elements in the conjugacy classes [g] and

[h] can be written as

{lgl−1mhm−1|l ∈ G/Ng,m ∈ G/Nh} (3.16)

We have to decompose this set of elements into conjugacy classes. Suppose l′ = pl and

m′ = pm, then we have

l′gl′−1m′hm′−1 = p(lgl−1mhm−1)p−1 (3.17)

Therefore, the decomposition of the elements in the product of conjugacy classes [g]

and [h] into conjugacy classes can be found by acting on the representatives g and h

with the coset of diagonal left multiplication on G/Ng × G/Nh. This is precisely the

double coset Ng\G/Nh. Also, we have to consistently decompose the product πωg ⊗ πωh
into irreducible representations of centralizers of G. The precise way to carry out these

steps is given by [54,58]

N
([k],πωk )

([g],πωg ),([h],π
ω
h )

=
∑

(t,s)∈Ng\G/Nh

m(πωk |Ntg∩Nsh∩Nk ,
tπωg |Ntg∩Nsh∩Nk

⊗sπωh |Ntg∩Nsh∩Nk ⊗ πω(tg,sh,k)) , (3.18)

where tπωg |Ntg∩Nsh∩Nk ⊗
sπωh |Ntg∩Nsh∩Nk ⊗ πω(tg,sh,k) and π

ω
k |Ntg∩Nsh∩Nk are (in general

reducible) representations ofNtg∩Nsh∩Nk (
tπωg ,

sπωh , and π
ω
k are representations ofNtg,

Nsh, and Nk which are then restricted to the intersection subgroup). Here we define
tg := t−1gt. The projectivity of the tπωg ,

sπωh , and πωk representations is determined

by the corresponding cohomology as in (3.14). The representation πω(tg,sh,k) is one

dimensional (it is a representation of the action of symmetries on the one-dimensional

V k
tgsh fusion space in the G-SPT) and satisfies

πω(tg,sh,k)(ℓ)π
ω
(tg,sh,k)(m) =

ηk(ℓ,m)

ηtg(ℓ,m)ηsh(ℓ,m)
· πω(tg,sh,k)(ℓm) . (3.19)

These projective factors guarantee that the two arguments of the m(·, ·) function can

be meaningfully compared. Roughly speaking, this m(·, ·) function computes the inner

products of the representations appearing as arguments (see [58] for further details).

Finally, let us note that the sum in (3.18) is over the double coset, Ng\G/Nh.

Another closely related quantity of interest is the modular data of a (twisted or

untwisted) discrete gauge theory. It is given by [59]
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S([g],πωg ),([h],πωh ) =
1

|G|
∑

k∈[g], ℓ∈[h],
kℓ=ℓk

χkπωg (ℓ)
∗χℓπωh

(k)∗ ,

θ([g],πωg ) =
χπωg (g)

χπωg (e)
, (3.20)

where χhπωg (ℓ) is defined through the relation

χxgx
−1

πωg
(xhx−1) :=

ηg(x
−1, xhx−1)

ηg(h, x−1)
χπωg (h) . (3.21)

Here, θ is the topological spin, and S is the modular S matrix. From these definitions,

one can check that the quantum dimensions of the anyons are

d([g],πωg ) =
S([g],πωg )([1],1)

S([1],1)([1],1)
= |[g]| · deg πωg , (3.22)

where |[g]| is the size of [g], and deg πωg is the dimension of πωg . Non-abelian anyons

have d([g],πω) > 1 and necessarily satisfy

([g], πωg )× ([g−1], πωg ) = ([1], 1) + · · · , (3.23)

where the ellipses necessarily contain additional terms, 1 is the trivial representation

of G, and (([g−1], πωg ) is the charge conjugate of ([g], πωg ). Here, the representation

πωg (k) :=
ω(g,g−1,k)ω(k,k−1gk,k−1g−1k)

ω(g,k,k−1g−1k)
(πωg (k))

∗.

Anyons ([g], πωg ) and ([h], πωh ) that fuse to give a unique outcome satisfy the following

condition with respect to the S matrix

|S([g]πωg ),([h],πωh )| =
1

|G|
d([g],πωg )d([h],πωh ) . (3.24)

Let us explore the consequences of this relation. To that end, using (3.22), we have

d([g],πωg )d([h],πωh ) = |[g]||[h]| · deg πωg · deg πωh . Substituting in (3.24) and using (3.20), we
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have

1
|G| |[g]||[h]| · deg πωg · deg πωh

=

∣∣∣∣ 1

|G|
∑

k∈[g], ℓ∈[h],
kℓ=ℓk

χkπωg (ℓ)
∗χℓπωh

(k)∗
∣∣∣∣

≤ 1

|G|
∑

k∈[g], ℓ∈[h],
kℓ=ℓk

|χkπωg (ℓ)||χ
ℓ
πωh

(k)|

≤ |[g]||[h]|
|G|

· deg πωg · deg πωh (3.25)

In the last inequality above, we have used (3.21) as well as the fact that projective

characters satisfy |χπωg | ≤ deg πωg
23. It is clear that (3.24) is satisfied if and only if

the conjugacy classes [g] and [h] commute element-wise and the projective characters

satisfy

|χπωg (l)| = deg πωg and |χπωh (k)| = deg πωh (3.26)

∀ l ∈ [h], k ∈ [g]. This result is a generalization of lemma 3.4 of [60] and will be crucial

in our discussions in the following section.

Let us introduce the following notation for non-abelian Wilson lines, flux lines, and

dyons.

Wπ1 ↔ ([1], π1) , |π1| > 1 ,

µ[g] ↔ ([g], 1ϵg) , |[g]| > 1 ,

L([h],πωh )
↔ ([h], πωh ) , |[h]| · |πωh | > 1 . (3.27)

We have dropped the ω superscript from π1 in order to emphasize that the Wilson lines

always transform under linear representations of G. We attach the ϵ superscript on the

trivial representation of the flux line because these objects only exist when the relevant

ηg in (3.14) is trivial in cohomology, and hence of the form ηg(h, k) =
ϵg(h)ϵg(k)
ϵg(h·k) . Finally,

1ϵg is the irreducible projective representation of Ng whose character is proportional to

the trivial representation of Ng.

As a final comment, we note that, from the above modular data, it is easy to show

that

θWπ = 1 ,
SWπWπ′

SW1Wπ′
= 1 , (3.28)

where W1 = ([1], 1) is the trivial Wilson line. In other words, the Wilson lines are all

23This statement is guaranteed as long as the projection factors defining the representations are roots
of unity, which is satisfied in our case. Indeed, the 3-cocycle ω ∈ H3(G,U(1)) can be chosen to be
valued in roots of unity without loss of generality.
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bosons and have trivial mutual braiding with each other (they have non-trivial braiding

with other lines in the theory).

3.3 Z(VecωG) with non-abelian simple G

In this section, we will study non-abelian simple lines fusing to give simple lines in

discrete gauge theories with a non-abelian simple gauge group. Such a discrete gauge

theory is a prime TQFT [60]. In other words, it does not decompose into other discrete

gauge theories. Therefore, a fusion of the form

L([g],πωg )
⊗ L([h],πωh )

= L([k],πωk )
(3.29)

for non-abelian lines does not obviously exist. In fact, we will show below that fusion of

the type (3.29) are very special in discrete gauge theories with non-abelian simple gauge

group. The existence of such fusions are closely related to the Arad-Herzog Conjecture.

Conjecture (Arad-Herzog): Consider a non-abelian finite simple group, G, and

non-trivial elements g, h ∈ G. Then,

[g] · [h] ̸= [gh] , (3.30)

where [g], [h], and [gh] are conjugacy classes of g, h, and gh respectively [61].

More pithily, Arad and Herzog (AH) conjectured that in non-abelian finite simple

groups, the product of non-trivial conjugacy classes cannot be a single conjugacy class.

As we will argue in section 3.3.1, this conjecture has the following implication (which

we then prove in section 3.3.2):

Theorem 3.3.1 : In a (twisted or untwisted) 2 + 1-dimensional discrete gauge

theory with a non-abelian finite simple gauge group, the fusion of any two lines

carrying non-trivial magnetic flux (as in Figure 3.3) cannot have a unique fusion

outcome.

In other words, theorem 3.3.1 asserts we cannot have

L([g],πωg )
× L([h],πωh )

= L([k],πωk )
, g, h ̸= 1 , (3.31)

where, generically, all lines (denoted by L) are non-abelian dyons 24. We will think of

this theorem as a first cousin of the AH conjecture.

24Of course, we may allow for pure fluxes to appear in (3.31).
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L([g],πωg ) L([h],πωh )

L([k],πωk )

Figure 3.3: Fusion of dyons

So far, we have avoided discussing the fusion of Wilson lines. However, in light of

(3.31), it is interesting to ask if we can fuse non-abelian Wilson lines Wπ and Wπ′ (as

in Figure 3.4) to obtain a unique outcome

Wπ ×Wπ′ = Wπ′′ . (3.32)

Wπ

Wπ′′

Wπ′

Figure 3.4: Fusion of Wilson lines

As we will briefly explain in section 3.3.1, (3.32) is equivalent to demanding that,

at the level of group theory

χπ · χπ′ = χπ′′ , (3.33)

where χπ, χπ′ , and χπ′′ are, respectively, the characters of irreducible linear represen-

tations, π, π′, and π′′, of G with dimension greater than 1. Although it might seem

strange that (3.33) is possible (especially if one thinks of taking products of irreducible

representations in SU(N)), it turns out that products of irreducible representations of

finite simple groups can be irreducible [62].

The corresponding (twisted or untwisted) discrete gauge theory then has a product

of Wilson lines as in (3.32). One simple example of this phenomenon in theories with a

non-abelian simple gauge group involves the fusion of a Wilson line carrying charge in

the 8-dimensional representation of A9 with a Wilson line carrying charge in either of

the 21-dimensional representations. Intriguingly, the discrete gauge theories based on

finite simple groups are prime [60], so they do not consist of separate TQFTs with trivial

mutual braiding. Therefore, (3.32) corresponds to some other structural properties of

the A9 discrete gauge theory. We will discuss these properties more generally in section

3.4.

Therefore, we learn that a version of the AH conjecture for characters alone cannot
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hold. However, our physical discussion above suggests studying one more type of fusion

with a unique outcome (Figure 3.5)

Wπ × L([g],πωg )
= L([h],πωh )

, g ̸= 1 , (3.34)

where Wπ is a non-abelian Wilson line, and the remaining anyons are non-abelian

dyons. As a slightly simpler fusion, we may study the following fusion with a unique

outcome

Wπ × µ[g] = L([h],πωh )
, g ̸= 1 , (3.35)

where we have replaced the dyon on the left-hand side of (3.34) with a non-abelian

flux line. Here we have implicitly assumed that the flux line also exists in the theory

(depending on the twist, this assumption may or may not hold).

Wπ µ[g]

L([h],πωh )

Figure 3.5: Fusion of a Wilson line with a magnetic flux line

This observation brings us to our second cousin of the AH conjecture:

Theorem 3.3.2 : In any (twisted or untwisted) discrete gauge theory based on

a non-abelian finite simple group, G, fusion of the types in (3.34) and (3.35) is

forbidden.

Intuition: One heuristic intuition behind this theorem is the following. As a conse-

quence of theorem 3.3.1, theorem 3.3.2 implies that in discrete gauge theories based

on non-abelian simple groups, the only allowed fusions with unique outcomes involv-

ing non-abelian anyons are those in (3.32). Wilson lines have trivial braiding amongst

themselves 25. Therefore, even though the fusion in (3.32) does not arise from a fac-

torization of the TQFT into separate theories with trivial mutual braiding, the Wilson

lines themselves have trivial mutual braiding.

Just as theorem 3.3.1 follows from the AH conjecture, so too theorem 3.3.2 follows

from a more basic theorem on finite simple groups which we refer to as the third cousin

of the AH conjecture:

25Physically, this last statement is clear from the fact that Wilson lines do not carry magnetic flux.
In the language of category theory, this statement follows from the well-known fact that Wilson lines
form a symmetric fusion subcategory. In fact, it is a Lagrangian subcategory isomorphic to the category
of finite dimensional representations of G over C, Rep(G).
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Theorem 3.3.3 : Consider any non-abelian finite simple group, G, any irre-

ducible linear representation, π, of G having dimension greater than one, and the

centralizer, Ng, of any g ̸= 1. The restricted representation, π|Ng , is reducible.

We refer to theorems 3.3.1, 3.3.2 and 3.3.3 as “cousins” of the AH conjecture since they

are all related by TQFT.

Note that the above discussion is not relevant for abelian simple groups since these

groups do not have conjugacy classes of length larger than one or representations of

dimension larger than one. In other words, their fusion rules are those of a discrete

finite group. As a result, we focus on non-abelian finite simple groups.

Duality: It is also interesting to understand how our above picture is compatible with

a type of electric/magnetic duality that often features in discrete gauge theories. For

example, the S3 discrete gauge theory has a duality that exchanges the Wilson line

charged under the 2-dimensional representation with the line having flux in the 3-cycle

conjugacy class [56, 57]. More general examples have been discussed in [56, 63, 64].

Clearly, theorems 3.3.1, 3.3.2, and 3.3.3 can only be compatible with such dualities

if the Wilson lines participating in (3.32) are not exchanged with lines carrying non-

abelian flux. In fact, no such dualities exist in theories based on non-abelian finite

simple gauge groups (Proof: apply theorem 5.8 of [63] noting that non-abelian simple

groups have no non-trivial abelian normal subgroups). This fact is a non-trivial check

of the above picture and is a check of the AH conjecture (this latter claim holds since,

if theorem 3.3.1 were not true, then the AH conjecture would be false) 26.

3.3.1 From fusion to theorem 3.3.1 and a relation between theorems

3.3.2 and 3.3.3

Given the construction in section 3.3, we will first explain why the AH conjecture implies

that, in (twisted and untwisted) discrete gauge theories based on simple groups, the

fusion of any two lines carrying magnetic flux must have more than one fusion outcome

(i.e., theorem 3.3.1). After explaining this fact, we will explain the relation between

theorems 3.3.2 and 3.3.3.

To understand the connection between (twisted and untwisted) discrete gauge the-

ories and the AH conjecture, recall the fusion formula in (3.18). Since the arguments

of the m(·, ·) function are representations of Ntg ∩Nsh ∩Nk, we can decompose them

in terms of irreducible representations, πω(i), of this group

tπωg |Ntg∩Nsh∩Nk ⊗
sπωh |Ntg∩Nsh∩Nk ⊗ πω(tg,sh,k) =

∑
i

αiπ
ω(i) ,

26This discussion does not preclude a duality between a twisted discrete gauge theory with a finite
simple gauge group and some other type of TQFT (although presumably the dualities should live inside
the class of theories considered in [65]).
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πωk |Ntg∩Nsh∩Nk =
∑
i

α
′
iπ
ω(i) , (3.36)

for some non-negative integers αi, α
′
i. Then the definition of m(·, ·) in [58] implies

m(πωk |Ntg∩Nsh∩Nk ,
tπωg |Ntg∩Nsh∩Nk ⊗

sπωh |Ntg∩Nsh∩Nk ⊗ πω(tg,sh,k)) =
∑
i

αiα
′
i .(3.37)

We know that πωk is an irreducible representation of Nk. Also, Ntg ∩ Nsh ∩ Nk is a

subgroup of Nk. According to the Frobenius reciprocity theorem for projective rep-

resentations of finite groups [66] 27, we know that, given any irreducible representa-

tion, πω(i), of Ntg ∩ Nsh ∩ Nk, there is always an irreducible representation, πωk , of

Nk such that the decomposition of πωk |Ntg∩Nsh∩Nk into irreducible representations of

Ntg ∩ Nsh ∩ Nk contains πω(i). This reasoning shows that, given tπωg |Ntg∩Nsh∩Nk ⊗
sπωh |Ntg∩Nsh∩Nk ⊗ πω(tg,sh,k), there is always some irreducible representation, πωk , such

that m(πωk |Ntg∩Nsh∩Nk ,
tπωg |Ntg∩Nsh∩Nk ⊗

sπωh |Ntg∩Nsh∩Nk ⊗π
ω
(tg,sh,k)) is non-zero. It fol-

lows that once we choose some conjugacy class, [k], such that [k] ∈ [g] · [h], there is

always some πωk such that N
([k],πωk )

([g],πωg )([h],π
ω
h )

̸= 0. Here, [g] · [h] are the conjugacy classes

obtained from taking a product of anyons with magnetic charges in [g] and [h].

Hence, in order to have a fusion rule of the type

([g], πωg )× ([h], πωh ) = ([k], πωk ) , g, h ̸= 1 , (3.38)

where all magnetic fluxes on the LHS are non-trivial, we need the fusion of the orbits

[g] · [h] to contain only a single orbit [k] (note that |[k]| need not be equal to |[g]||[h]| 28).
Moreover, commutativity of the fusion rules requires [k] = [h] · [g]. Hence, the double

coset Ng\G/Nh should have only a single element. (Since the double coset is trivial,

we will remove the t, s dependence in the expressions below). We also require that

the decomposition of representations πωk |Ng∩Nh∩Nk and πωg |Ng∩Nh∩Nk ⊗ πωh |Ng∩Nh∩Nk ⊗
πω(g,h,k) into irreps of Ng ∩Nh ∩Nk to have only a single irrep (of multiplicity one) in

common. That is, if

πωg |Ng∩Nh∩Nk ⊗ πωh |Ng∩Nh∩Nk ⊗ πω(g,h,k) =
∑
i

αiπ
ω(i)

πωk |Ng∩Nh∩Nk =
∑
i

α
′
iπ
ω(i) , (3.39)

then there should be only one i = i0 for which αi0 = α
′
i0
̸= 0. Furthermore, we require

that αi0 = 1.

27We use this theorem in the twisted case; in the untwisted case we use the usual theorem for linear
representations.

28In the case of the fusion of pure fluxes, we do require |[k]| = |[g]||[h]|.
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So, in order to have a fusion of the type (3.38), we have two constraints:

1. [g] · [h] = [k] = [h] · [g]

2. ∃! πωk such that m(πωk |Ng∩Nh∩Nk , πωg |Ng∩Nh∩Nk ⊗ πωh |Ng∩Nh∩Nk ⊗ πω(g,h,k)) = 1

The first constraint is on the conjugacy classes involved, and the second one is on the

representations. The AH conjecture immediately implies that (1) is impossible for finite

simple groups. Therefore, we see that

AH conjecture ⇒ no fusions as in (3.38) for simple G .

In particular, as claimed in the introduction, we see that

L([g],πωg )
× L([h],πωh )

̸= L([k],πωk )
, (3.40)

where L([g],πωg )
= ([g], πωg ), L([h],πωh )

= ([h], πωh ), and L([k],πωk )
= ([k], πωk ). So, in that

language

AH conjecture ⇒ Theorem 3.3.1 .

Of course, this does not prove theorem 3.3.1 since the AH conjecture has not been

proven. However, it is a non-trivial consistency check of the AH conjecture. We will

prove theorem 3.3.1 in the next section.

Next, let us show how theorem 3.3.3 implies theorem 3.3.2. To understand this

point, let us specialize the general fusion in (3.18) to the product of a non-abelian

Wilson line, Wπ1 = ([1], π1), with a non-abelian flux line, µ[h] = ([h], 1ϵh). In order

to have such a flux line in our theory we should, as discussed in section 3.2, either

consider an untwisted discrete gauge theory or else a theory in which ω is such that

ηh ∈ H2(Nh, U(1)) is cohomologically trivial.

To that end, we find

N
([h],πωh )

([1],π1),([h],1ϵh)
=

∑
(t,s)∈G\G/Nh

m(πωh ,
tπ1|Nh ⊗

s1ϵh ⊗ πω(1,h,h)|Nh) . (3.41)

In this case, the double coset G\G/Nh is trivial. Hence, we have

N
([h],πωh )

([1],π1),([h],1ϵh)
= m(πh, π1|Nh ⊗ 1ϵh ⊗ πω(1,h,h)|Nh) . (3.42)

In fact, the representation πω(1,h,h) is trivial (this follows from the fixed nature of the V h
1h

fusion space in theG-SPT [58]). So the product of representations π1|Nh⊗1ϵh⊗πω(1,h,h)|Nh
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is isomorphic to π1|Nh ⊗ 1ϵh. Therefore, the expression above simplifies to

N
([h],πωh )

([1],π1),([h],1ϵh)
= m(πωh , π1|Nh ⊗ 1ϵh) . (3.43)

Note that π1 is an irreducible representation of G. Its restriction to Nh is in general

reducible. So m(πh, π1|Nh ⊗ 1ϵh) gives the multiplicity of the irreducible representation,

πh, in the decomposition of the representation, π1|Nh ⊗ 1ϵh, into irreducible representa-

tions of Nh. If π1|Nh is irreducible, m(πh, π1|Nh ⊗ 1ϵh) = δπh,π1|Nh⊗1ϵh
. Hence, we have

the following fusion rules

([1], π1)⊗ ([h], 1h) = ([h], π1|Nh ⊗ 1ϵh) , (3.44)

if and only if π1|Nh is an irreducible representation of Nh.

As a result, theorem 3.3.3 implies that we have more than one channel in the fusion

Wπ1 × µ[h] = L([h],πωh )
+ · · · . (3.45)

In fact, we may take the flux, ([h], 1ϵh), and replace it with a dyon, ([h], πωh ). Note that,

in some theories, such a dyon may exist while the flux line does not. We then find

that the right-hand side of (3.43) becomes m(π̃ωh , π1|Nh ⊗ πωh ). Clearly, if the fusion in

(3.45) requires more terms on the right-hand side, so too will the fusion with the dyon

replacing the flux. This is the content of theorem 3.3.2.

Similarly, by the logic of this section, if we satisfy theorem 3.3.2 for the untwisted

discrete G gauge theory, we then have that, for any irreducible linear representation,

π1, of G having dimension greater than one, π1|Nh is reducible. This is the content of

theorem 3.3.3. In conclusion, we have

Theorem 3.3.3 ⇔ Theorem 3.3.2 .

Let us also note that we have chosen π1 to be an irreducible representation of G with

dimension > 1 so that ([1], π1) is non-abelian. Hence, for the above fusion rule to be

consistent, π1|Nh should be an irreducible representation of Nh of the same dimension.

What remains is to prove at least one of theorems 3.3.2 or 3.3.3. In the next section

we give independent proofs of theorems 3.3.2 and 3.3.3. Proceeding through theorem

3.3.2 first gives us a more TQFT-flavored proof. Proceeding through theorem 3.3.3

first gives us a more group theory-flavored proof. We then conclude the next section

by proving theorem 3.3.1 as well.
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3.3.2 Proofs of the cousin theorems

From the discussion in the previous section, to prove theorems 3.3.2 and 3.3.3 we need

only prove one of them. However, each route has its own merits, so we give independent

proofs of each. We follow by proving theorem 3.3.1 (which is logically independent of

the others).

Let us first prove theorem 3.3.2. To that end, suppose we have a fusion of the form

given in (3.35), which we reproduce below for ease of reference

Wπ × µ[g] = L([h],πωh )
, g ̸= 1 . (3.46)

In section 3.3.1, we argued that, if such a fusion exists, the electric charge of the dyon

on the right-hand side is given by a reduction of an irreducible representation of the

gauge group G (i.e., πωh = π|Ng ⊗ 1ϵh) and h = g. Next, we note that the S-matrix

satisfies [41]

SWπµ̄[g−1]
=

1

|G|
θL([g],πωg )

θWπθµ[g]
dL([g],πg)

=
1

|G|
θL([g],πωg )

θWπθµ[g]
dWπdµ[g] , (3.47)

where µ̄[g−1] is the conjugate of µ[g]. Therefore,

|SWπµ[g] | =
1

|G|
dWπdµ[g] . (3.48)

Using (3.26), we know that (3.48) implies |χπ(g)| = deg χπ, where χπ is the character

corresponding to the Wilson line’s charge, and deg χπ = |π| > 1 is the dimension of π.

A standard argument in representation theory then implies that π(g) = c · 1|π|,
where 1|π| is the |π| × |π| unit matrix, and c is an nth root of unity (the twist of the

dyon). Next, choose some k ∈ [G, g] :=
〈
ℓgℓ−1g−1|ℓ ∈ G

〉
. Clearly,

π(k) = π(ℓgℓ−1g−1) = π(ℓ) · c · 1|π| · π(ℓ)−1 · c−1 · 1|π|
= 1|π| . (3.49)

Since G is a simple group, we can choose k ̸= 1. As a result, π is an unfaithful

representation of G. Therefore, the kernel, ker(π), is a non trivial normal subgroup.

Since G is simple, we must have ker(π) = G. But then, π cannot be an irreducible

representation. Note that we may repeat this proof verbatim by taking L([g],πωg )
instead

of the flux line. Therefore fusion of the form in (3.34) is also forbidden. □

By the discussion in section 3.3.1, we have also proved theorem 3.3.3. Although

this proof is mathematical, it also has a distinctly TQFT-flavor: notice the prominent

role of the modular S matrix (and also, to a lesser extent, the twists).

Alternatively, we may also give a direct group theoretical proof of theorem 3.3.3
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(and therefore of theorem 3.3.2 via section 3.3.1) as follows:

Since G is a non-abelian simple group, its irreducible representations of dimension

larger than one must be faithful (otherwise their kernels would be non-trivial normal

subgroups). Now, consider some faithful non-abelian representation, π. Furthermore,

take some g ∈ G such that g ̸= 1 and consider the centralizer, Ng.

Suppose the restriction π|Ng is irreducible. Clearly g is central in Ng. As a result,

by Schur’s lemma

π|Ng(g) = c · 1|π| , (3.50)

where c is an nth root of unity. Since this is a restriction of a representation of G, we

must also have in the parent group that

π(g) = c · 1|π| , (3.51)

and so it follows that

π(hgh−1g−1) = 1|π| . (3.52)

Since the group is simple, g ̸= 1 cannot be in the (trivial) center of G. As a result,

there exists h such that hgh−1g−1 ̸= 1. The result in (3.52) contradicts the fact that π

is faithful. □

Let us now prove theorem 3.3.1. We reproduce the forbidden (3.31) for ease of

reference

L([g],πωg )
× L([h],πωh )

= L([k],πωk )
, g, h ̸= 1 , (3.53)

where, according to the discussion in the previous section, [k] = [gh]. Similarly to the

case of theorem 3.3.2, we have that

SL([g],πωg )L([h−1],(πω
h
)∗)

=
1

|G|

θL([gh],πω
gh

)

θL([g],πωg )
θL([h],πω

h
)

dL([gh],πω
gh

)

=
1

|G|

θL([gh],πω
gh

)

θL([g],πωg )
θL([h],πω

h
)

·

·dL([g],πωg )
dL([h],πω

h
)
, (3.54)

where L([h−1],(πωh )
∗) is the conjugate of L([h],πωh )

. Therefore,

|SL([g],πωg )L([h],πω
h
)
| = 1

|G|
dL([g],πωg )

dL([h],πω
h
)
. (3.55)

This last result allows us, as in the case of theorem 3.3.2, to use (3.26). We then

conclude that for any ℓ ∈ [g] and m ∈ [h], ℓm = mℓ (i.e., that the two conjugacy classes

[h] and [g] commute element-by-element).
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Now, consider the product of conjugacy classes

[g] · [g] =
∑
[a]

N
[a]
[g][g][a] , N

[a]
[g][g] ∈ Z≥0 . (3.56)

Clearly, we have that all elements on the left hand side commute with all elements

of [h]. Therefore, the same is true of all elements in the conjugacy classes [a]. Now,

consider taking pairwise products of all the [a]’s with themselves and with [g] and so

on. Eventually, we will come to a set of conjugacy classes closed under multiplication.

This defines a normal subgroup K ⊴ G in which each element commutes with [h]. Since

G is simple, we must have that K = G. However, this means that [h] commutes with

all elements of the group and so we have a non-trivial center. This is a contradiction.

□

3.4 Z(VecωG) with general G

We would like to recast the problem of constructing discrete gauge theories with fu-

sion rules (3.2) and (3.8) in terms of the closely related problem of finding irreducible

products of irreducible finite group representations. To make this connection as direct

as possible, it is useful to focus on Wilson lines of the discrete gauge theories we are

studying. Indeed, by specializing (3.18) to Wilson lines, we find

N
(1,π′′)
(1,π),(1,π′) = m(π′′, π ⊗ π′) =

1

|G|
∑
g∈G

χπ′′(g)χ∗
π(g)χ

∗
π′(g) = ⟨χπ′′ , χπχπ′⟩ ,(3.57)

where ⟨·, ·⟩ is the standard inner product on characters. Therefore, the Wilson lines

form a closed fusion subcategory of the discrete gauge theory, CW . Moreover, the

fusion rules of the Wilson lines are those of the representation semiring of the gauge

group.29 Note that CW is, in some sense, the “least anyonic” part of the theory: it is

easy to check from (3.20) that the Wilson lines are bosonic, so θWi = 1, and that the

braiding of Wilson lines amongst themselves is trivial,30 so SW1W2 = dW1dW2/D (here

D =
√∑N

i=1 d
2
i , and the sum is over all the anyons).31 To summarize, we see that if

we can find representations of some group, G, satisfying

χπ · χπ′ = χπ′′ , |π|, |π′|, |π′′| > 1 , (3.58)

29In fact, we have CW ≃ Rep(G), where Rep(G) is the category of finite dimensional representations
of G over C.

30The Wilson lines braid non-trivially with other anyons in the theory (more formally: the Wilson
line subcategory is Lagrangian and so the Müger center of CW is CW itself).

31In fact, [67] guarantees that any such subcategory is equivalent to Rep(H) for some group H.
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where π, π′, and π′′ are irreducible, then, in the corresponding G discrete gauge theory,

we will have non-abelian Wilson lines satisfying

Wπ ×Wπ′ = Wπ′′ . (3.59)

Since, by Cayley’s theorem, every finite group is isomorphic to a subgroup of the

symmetric group, SN , (for some N) it is natural to start our discussion with SN . In

particular, to check whether π′′ is irreducible, we want to perform the group theory

analog of the F transformation discussed in the introduction (see figure 3.1)

⟨χπ · χπ′ , χπ · χπ′⟩ = ⟨χ2
π, χ

2
π′⟩ , (3.60)

where we have used the fact that SN is ambivalent (g and g−1 are in the same conjugacy

class for all g ∈ SN ) so that the characters are real. A theorem of Zisser [62] shows

that χ[N−2,2] ∈ χ2
α, where [N − 2, 2] is a partition of N labeling the corresponding

representation of SN , and α is any irreducible representation of dimension larger than

one, |α| > 1. Moreover, since SN is ambivalent, this means that χ[N ] ∈ χ2
α, where χ[N ]

is the trivial representation of SN . As a result, we see that the analog of (3.8) yields

χπ ·χπ = χ[N ]+χ[N−2,2]+· · · , χπ′ ·χπ′ = χ[N ]+χ[N−2,2]+· · · ⇒ ⟨χπ ·χπ′ , χπ ·χπ′⟩ > 1 ,

(3.61)

and so products of non-abelian representations of SN are never irreducible. Therefore,

we cannot have (3.59) in SN discrete gauge theory.

Discrete gauge theories of finite simple groups

Since we have AN ◁ SN (i.e., the alternating group, AN , is a normal subgroup of SN ),

it is natural to consider AN discrete gauge theories as the next possibility for realizing

(3.58) [62] and hence (3.59). Moreover, since AN is simple, only pure Wilson lines

can be involved in fusions of the form (3.2) [2], and the AN discrete gauge theories

are guaranteed to be prime [60] (we will return to the question of primality in greater

generality in section 3.4.1). Therefore, finding an example of (3.59) inAN discrete gauge

theories is sufficient to answer question (1) from the introduction in the negative.

To understand if going to AN is a fruitful direction, we note that there are two

types of characters that arise in going from SN to AN :

(A) Characters that are restrictions of SN characters satisfying χλ ̸= χ[1N ] ·χλ, where
χ[1N ] corresponds to the sign representation of SN . Let us call these “type A”

characters: χ̃λ := χλ|AN .

(B) Characters that descend from SN characters satisfying χρ = χ[1N ] · χρ. As repre-
sentations of AN , they split into two representations of the same dimension, λ±.
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Let us call these “type B” characters: χ
(B)
ρ = χρ+ + χρ− = χρ|AN .

In going from SN to AN , we perform a group-theoretical version of gauging the

“one-form symmetry” generated by χ[1N ]: we identify characters related by multipli-

cation with χ[1N ], and we split characters that are invariant under multiplication with

χ[1N ]. Clearly, products of type A characters cannot be irreducible since they will al-

ways contain χ
(A)
[N ] and χ

(A)
[N−2,2] after performing the F-transformation and computing

(3.61).32

A little more work in [62] shows that we can obtain (3.58) for AN if and only if

N = k2 ≥ 9 by taking the product of the following type A and type B representations

χ̃[N−1,1] · χ[kk]± = χ̃[kk−1,k−1,1] . (3.62)

Moreover, the Z2 outer automorphism of AN acts on the type B characters as

g
(
χ[kk]±

)
= χ[kk]∓ , 1 ̸= g ∈ Out(AN ) ≃ Z2 . (3.63)

Therefore, at the level of the non-abelian Wilson lines in the corresponding AN discrete

gauge theory, we learn that

W[N−1,1] ×W[kk]± = W[kk−1,k−1,1] . (3.64)

Finally, Out(AN ) lifts to a full zero-form symmetry of the discrete gauge theory [56],

since, according to corollary 7.8 of [56]

Autbr(Z(VecAN )) ≃ H2(AN , U(1))⋊Out(AN ) ≃ Z2 × Z2 , (3.65)

where the group on the left hand side is the group of braided tensor auto-equivalences

of the MTC underlying the discrete gauge theory, Z(VecAN ). As a result, we learn that

the symmetries of the discrete gauge theory exchange the W[kk]± lines

g
(
W[kk]±

)
= W[kk]∓ , 1 ̸= g ∈ Out(AN ) ◁Aut

br(Z(VecAN ) . (3.66)

In other words, we have found that, in an infinite number of prime theories, fusion

rules of the type (3.2) are generated in pairs related by symmetries of the discrete

gauge theory. This discussion shows that TQFTs with fusions of the form (3.2) need

not factorize and so the answer to question (2) in the introduction is “no.”

Let us now drive home the importance of symmetries in arriving at (3.64) and, at

the same time, gain insight that will be useful later. To that end, let us consider gauging

32In this discussion, we have implicitly assumed that N ̸= 4 (although, for N = 3, we should take

[N − 2, 2] → [2, 1] to conform to usual conventions). For N = 4, we have χ
(A)

[N−2,2] → χ
(B)

[N−2,2] =
χ[N−2,2],+ + χ[N−2,2],−.
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the Z2 outer automorphism symmetry of the AN discrete gauge theory. Note that this

gauging is allowed since the “defectification” obstruction described physically in [58]

is trivial here: H4(Z2, U(1)) = Z1. Moreover, since AN is simple, the discrete gauge

theory has no non-trivial abelian anyons (i.e., A = W[N ]) and so H3(Z2,A) = Z1.

Therefore, (3.65) is a genuine zero-form symmetry group (as opposed to being a 2-

group).

More abstractly, let us consider a generalization of the fusion rules in (3.18) to the

case of gauging a zero form group, H, of a more general G-crossed braided theory, TG×

(as worked out in [58])

N
([c],πc)
([a],πa),([b],πb)

=
∑

(t,s)∈Na\H/Nb

m(πc|Nta∩Nsb∩Nc ,
tπa|Nta∩Nsb∩Nc ⊗

sπb|Nta∩Nsb∩Nc ⊗ πω(ta,sb,c)) , (3.67)

where a, b, c ∈ TG× , [a] := {h(a), ∀h ∈ H}, Na := {h ∈ H|h(a) = a}, and πa is a

representation of Na.

In our case at hand, TG× = Z(VecAN )H× is the AN discrete gauge theory extended

by surface defects implementing the H = Z2 global symmetry. Moreover, a = W[N−1,1],

b = W[kk]± , Na = Z2, and Nb = Z1. As a result, t = s = 1, the summation in (3.67)

is trivial, the various representations are all restricted to the trivial subgroup, and

πωa,b,c = 1 (this latter statement follows from the fact that the action of H on the V c
ab

fusion space via U1(a, b, c) is trivial). In particular, we have

N
([W

[kk−1,k−1,1]
],±)

([W[N−1,1]],±),([W
[kk]±

],+) = m(±|Z1 ,±|Z1 ⊗+|Z1) = m(1, 1) = 1 , (3.68)

where ± denote the two representations of Z2. Therefore, we learn that when we gauge

the outer automorphism group of AN , we have

([W[N−1,1]],±)× ([W[kk]± ],+) = ([W[kk−1,k−1,1]],+) + ([W[kk−1,k−1,1]],−) , (3.69)

which is the TQFT version of the lift of (3.62) to SN . This is what we expect, since

we can always fix our choice of parameters so that gauging Z2 yields [68]

Z(VecAN )Z×
2

gauge−→ Z(VecAN⋊Z2) = Z(VecSN ) , (3.70)

where we have used the fact that SN ≃ AN ⋊ Z2.

Finally, from the general rules above, it is not hard to check that the trivial Wilson

line in the AN theory lifts to a Z2 one-form symmetry in the SN gauge theory. The

resulting non-trivial one-form symmetry generator acts as

([W[N ]],−)× ([W[N−1,1]],±) = ([W[N−1,1]],∓) ,

([W[N ]],−)× ([W[kk]± ],+) = ([W[kk]± ],+) ,
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([W[N ]],−)× ([W[kk−1,k−1,1]],±) = ([W[kk−1,k−1,1]],∓) , (3.71)

where ([W[N ]],−) = W[1N ].

To summarize, we learn that, in order to generate the fusion rule (3.64), we can

gauge a Z2 one-form symmetry in the SN (with N = k2 ≥ 9) discrete gauge theory

with fusion rules (3.69) and (3.71). Crucially, we need a fixed point of the one-form

symmetry (as in the second line in (3.71)) in order to generate the fusion rule of the

form (3.64) in the AN discrete gauge theory. We will return to the existence of fixed

points of various kinds repeatedly throughout this chapter.

One may wonder if zero-form gaugings always resolve fusion rules of the form a×b =
c into fusion rules with multiple outcomes. Taking G = O(5, 3), one can see the answer

is no.33 Indeed, in this theory, one can check that we have the following analogs of

(3.64)

W5i ×W6 = W30i , i = 1, 2 , (3.72)

where 5i are the two five-dimensional representations of O(5, 3), 6 is the unique six-

dimensional representation, and 30i are the two complex thirty-dimensional representa-

tions (there is also a third, real, thirty-dimensional representation that does not appear

in (3.72)). As in the previous case, Out(O(5, 3)) = Z2 and it acts non-trivially on the

Wilson lines involved in the fusion above. In particular, we have

W51 ↔ W52 and W301 ↔ W302 (3.73)

under the action of the non-trivial element in Out(O(5, 3)). This symmetry lifts to a

symmetry of the discrete gauge theory that we can gauge. Doing so, we can choose

parameters such that

Z(VecO(5,3))Z×
2

gauge−→ Z(VecO(5,3)⋊Z2
) . (3.74)

We may again apply (3.67) to find

N
([W30i

],+)

([W5i
],+),(W6,±) = m(+|Z1 ,+|Z1 ⊗±|Z1) = m(1, 1) = 1 , (3.75)

and conclude

([W5i ],+)× (W6,±) = ([W30i ],+) . (3.76)

Such a situation arises whenever Nc = Z1 = Na ∩ Nb. This equality is special since,

more generally, we have Na ∩Nb ⊆ Nc.

Before moving on to discuss other phenomena, let us note that the above discrete

33This is the group O(5) over the field F3. It has order 25920 and is the smallest simple group whose
discrete gauge theory has a fusion of non-abelian Wilson lines with a unique outcome.
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gauge theories based on simple groups also provide answers to questions (3) and (4)

from the introduction. Indeed, as we will see in greater detail in section 3.4.1, a discrete

gauge theory with a simple gauge group has no non-trivial proper fusion subcategories

except the subcategory of Wilson lines. Therefore, our above examples are enough to

answer questions (3) and (4) generally in the negative (although we will see interesting

examples of some of these ideas below).

Non-simple groups and unfaithful higher-dimensional representations

Let us now consider discrete gauge theories with unfaithful higher-dimensional (i.e.,

non-abelian) representations. The corresponding gauge groups are necessarily non-

simple because the kernel of a non-trivial unfaithful representation is a non-trivial

proper normal subgroup. As we will explain at a more pedestrian level below (and

in a somewhat more sophisticated way in section 3.4.1), these examples illustrate the

appearance of non-trivial fusion subcategories in the Wilson line sector. As a result,

they demonstrate some of the ideas—described in the introduction—behind constraints

from subcategory structure leading to fusion rules of the type (3.2). In particular, these

theories provide examples where ideas in questions (3) and (4) of the introduction are

realized.

To that end, let us consider some unfaithful higher-dimensional irreducible repre-

sentation of the gauge group, π ∈ Irrep(G). Since π is unfaithful, it has a non-trivial

kernel, Ker(π)◁G. Let us also define the set of characters whose kernel includes Ker(π)

as follows

Kπ =
{
χρ : χρ|Ker(π) = degχρ

}
, (3.77)

where degχρ = |ρ| is the degree of the character. Now, consider χλ, χλ′ ∈ Kπ. We

claim χλ · χλ′ ∈ Kπ. To see this, let us study

χλ|Ker(π) · χλ′ |Ker(π) = degχλ · degχλ′ =
∑
λ′′

χλ′′ |Ker(π) ≤
∑
λ′′

∣∣χλ′′ |Ker(π)

∣∣ . (3.78)

Evaluating this expression on the identity element shows that degχλ·degχλ′ =
∑

λ′′ degχλ′′ .

Therefore, we have χλ′′ |Ker(π) = degχλ′′ , and λ
′′ ∈ Kπ. In particular, we see that

χλ · χλ′ =
∑

λ′′∈Kπ

χλ′′ . (3.79)
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As a result, the Wilson lines with charges in Kπ form a closed fusion subcategory34

Wλ ×Wλ′ =
∑

λ′′∈Kπ

Wλ′′ ∈ CKπ ≃ Rep(G/Ker(π)) . (3.80)

If we now consider the fusion ofWπ ∈ CKπ with a non-abelian Wilson lineWγ ̸∈ CKπ ,
we see that the subcategory structure makes it more likely to find a unique outcome.

Indeed, Wπ ×Wπ̄ ∈ CKπ whereas Wγ ×Wγ̄ will typically include lines not in CKπ .
In fact, we can go further if we take γ|Ker(π) to be an irreducible representation

of Ker(π). Since we are assuming that γ is a higher-dimensional representation, irre-

ducibility of γ|Ker(π) implies that Ker(π) is a non-abelian group. Invoking Gallagher’s

theorem (e.g., see corollary 6.17 of [70]), we see that, for γ, π ∈ Irrep(G), γ ⊗ π is an

irreducible representation of G if the restriction γ|Ker(π) is irreducible. Then, we are

guaranteed to have the following fusion rule of non-abelian Wilson lines

Wπ ×Wγ = Wπγ . (3.81)

To understand this statement, let us first prove that γ ̸∈ Kπ. Suppose this were

not the case: then we arrive at a contradiction since |γ| > 1 would imply that γ|Ker(π)

is reducible. As a result, Wγ ̸∈ CKπ . Let us now consider the product

χγ · χγ = χ1 +
∑
i

χαi , (3.82)

where αi are irreps of G. Then we have

(χγ · χγ)|Ker(π) = χ1|Ker(π) +
∑
i

χαi |Ker(π) . (3.83)

Here, χ1|ker(π) corresponds to the trivial irreducible representation of Ker(π), χαi |Ker(π)

corresponds to an, in general, reducible representation of Ker(π). Suppose that αi|Ker(π)

contains the trivial irreducible representation of Ker(π) for some i, then we will have

at least two copies of the trivial character of Ker(π) on the right hand side of (3.83).

However, we know that (γ ⊗ γ)|Ker(π) = γ|Ker(π) ⊗ γ|Ker(π). Therefore, we cannot have

more than one copy of the trivial character in the decomposition (3.83). Hence, αi|Ker(π)

cannot contain the trivial representation for any i. It follows that αi|Ker(π)(h) is non-

trivial for at least some h ∈ Ker(π). Therefore, it is clear that Ker(π) cannot be in the

34Such Wilson lines recently played an interesting role in [69]. Indeed, when one adds non-topological
matter charged under these representations, the corresponding Wilson lines can end on a point. Mag-
netic flux lines or dyons with flux supported in Ker(π) remain topological while lines carrying other
fluxes do not.
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kernel of the representations αi for any i. This shows that

Wαi ∈ Wγ ×Wγ̄ ⇒ Wαi ̸∈ CKπ . (3.84)

As a result, the subcategory structure guarantees (3.81).

To better understand the above general discussion (as well as the continuing role

of symmetries), let us consider some examples. Note that these results give explicit

realizations of the idea in question (4) in the introduction. The simplest discrete gauge

theories realizing the above discussion are based on gauge groups of order forty-eight.

Interestingly, the existence of subcategory structure in the Wilson line sector, CW ≃
Rep(G), explains the large ratio of orders, ∆gap, between these groups and the smallest

simple group, O(5, 3), with unique non-abelian fusion outcomes

∆gap =
25920

48
= 540 ≫ 1 . (3.85)

In this section, we will discuss the examples of the binary octahedral group (BOG)

and the very closely related general linear group of 2× 2 matrices with elements in the

finite field F3, GL(2, 3). In appendix A.1 we will consider the remaining cases at order

forty-eight.

Let us begin with BOG. In this case, we have that 21 is an unfaithful (real) two-

dimensional representation and that the restrictions of the other (real and faithful)

two-dimensional irreducible representations to Ker(21) = Q8 ◁ BOG, 22,3|Ker(21), are

irreducible. As expected from the general discussion above we have the following Wilson

line fusions

W21 ×W22 = W21 ×W23 = W4 . (3.86)

Similarly to the simple discrete gauge theories discussed in the previous subsection,

BOG’s Z2 outer automorphism again lifts to a non-trivial symmetry of the TQFT, and

the non-trivial element g ̸= 1 acts as follows: g(W22) = W23 .

Let us note that in this case, the role of symmetries is even more pronounced.

Indeed, one can check that

W21 ×W21 = W1 +W12 +W2 ∈ CK21
≃ Rep(BOG/Q8) ≃ Rep(S3) ,

W22 ×W22 = W23 ×W23 = W1 +W32 , (3.87)

where 12 is a non-trivial one-dimensional irreducible representation, and 32 is a real

three-dimensional irreducible representation.35 This latter representation satisfies χ12 ·
χ32 = χ31 (and similarly χ12 · χ31 = χ32). Therefore, we see that W12 generates a

35Note that since 22,3 are faithful representations, a result of Burnside [71] generalized to Wilson
lines shows that there exist n1,2 ∈ N such that W×n1

22,3
⊃ W12 and W×n2

22,3
⊃ W21 . Our discussion implies

n1,2 > 2.
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non-trivial one-form symmetry in the BOG discrete gauge theory and that W31,2 and

W22,3 form doublets under fusion with this generator while W21 is fixed

W12 ×W32 = W31 , W12 ×W22 = W23 , W12 ×W21 = W21 . (3.88)

This non-trivial orbit structure then implies that W32 ̸∈ W21 × W21 on symmetry

grounds alone. Hence, in this example, both the subcategory structure and the sym-

metries guarantee the fusion rules (3.86).

Before finishing this example, we should check that Z(VecBOG) is indeed prime.

After we discuss more formal aspects of subcategory structure in section 3.4.1, we will

have more tools to use when answering this type of question. For now, let us prove

that the Wilson lines must all lie in the same TQFT factor.36 To that end, write down

the Wilson lines of the BOG discrete gauge theory

W1 , W12 , W21 , W22 , W23 = W22 ×W12 , W31 , W32 = W31 ×W12 ,

W4 = W21 ×W22 = W21 ×W23 . (3.89)

We can consider two cases: (1) W31 is in the same TQFT factor as W12 (call this factor

T0) or (2) W31 is not in the same TQFT factor as W12 .

Let us consider case (1) first. From the fusion equation involving W32 , we immedi-

ately see that W32 is also in T0. Note that W21 cannot be written as the fusion product

of two other Wilson lines. Since there is no Wilson line of quantum dimension six, we

also have W21 ∈ T0. Now, we must clearly have that either W22,3 ∈ T0 or W22,3 ̸∈ T0.
However, in the latter case we will again have a Wilson line of quantum dimension six.

Therefore, we have that W22,3 ∈ T0. Therefore, by the W4 fusion rule in (3.89), all

Wilson lines are in the same TQFT factor.

Let us now consider case (2). LetW31 ∈ T0 andW12 ∈ T1 with Z(VecBOG) = T0⊠T1.
As in case (1), W21 cannot be written as the fusion product of two other Wilson lines,

and, since there is no Wilson line of quantum dimension six, we haveW2 ∈ T0. However,
this leads to a contradiction because then W2 × W ′

1 ̸= W2. As a result, we conclude

that all Wilson lines must lie in the same factor of Z(VecBOG).

Let us conclude with a brief discussion of the GL(2, 3) discrete gauge theory. This

gauge group is quite similar to BOG. For the purposes of the above discussion, the only

difference is that 22,3 become complex conjugate two-dimensional irreducible represen-

tations (otherwise, the remaining representations and remaining parts of the character

tables are the same). Therefore, (3.86) and (3.88) apply to Z(VecGL(2,3)) as well (by

identifying these Wilson lines with their relatives in Z(VecGL(2,3))). The only change

is that in the second line of (3.87), we should take W22,3 × W22,3 → W22 × W23 . In

36The same pedestrian arguments used below can be extended to the full set of lines in the theory
to prove that Z(VecBOG) is prime.
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particular, the roles of subcategory structure (again Rep(S3) ⊂ Rep(GL(2, 3))) as well

as outer automorphisms and one-form symmetries is the same in both the BOG and

the GL(2, 3) discrete gauge theories.

Note that Gallagher’s theorem does not exhaust all cases where representations

with non-trivial kernel have irreducible products. Another interesting case is given by

Gajendragadkar’s theorem [72,73]. If we have a group G which is both π-separable as

well as Σ-separable, for two disjoint set of primes π and Σ, then this theorem guarantees

that the product of a π-special character with a Σ-special character is irreducible. A

character χ is known as π-special if χ(1) is a product of powers of primes in π (a π

number) and if, for every subnormal subgroup N of G, any irreducible constituent θ of

χ|N is such that o(θ)37 is a π-number. Hence, the fusion of Wilson lines corresponding

to such characters have a unique outcome. Note that, in this case, one of the characters

involved in the fusion is not required to be irreducible in the kernel of the other (unlike

in Gallagher’s theorem).

Some general lessons and theorems

Let us conclude this section with a recapitulation of some of the main points above as

well as some general theorems that amplify our discussion:

• In all of the infinitely many examples we studied so far, symmetries played an

important role. For example, zero-form symmetries had a non-trivial action on

Wilson lines involved in the fusion rules of interest in the AN (with N = k2 ≥
9) and O(5, 3) discrete gauge theories (see (3.66) and (3.73)), and similarly in

theories based on BOG, GL(2, 3), and the other order forty-eight groups (e.g.,

see below (3.86) and in appendix A.1). We will revisit some of these discussions

after introducing further technical tools for symmetries in section 3.4.2.

• We also saw that we could use Z2 one-form symmetry gauging in the SN (with

N = k2 ≥ 9) gauge theory to generate fusion rules involving non-abelian Wilson

lines with unique outcomes in the AN discrete gauge theories. We can constrain

when such a situation arises with the following theorem:

Theorem 3.4.1 (one-form fixed points): Consider a TQFT, T , with no

fusion rules of the form (3.2). Suppose we can gauge a non-trivial one-form

symmetry of this TQFT, H. After performing this gauging, we have fusion

rules of the form (3.2) only if there are a ∈ T such that fusion with at least

one of the one-form generators, α ∈ H, yields α× a = a.

37o(θ) is the order of the determinental character det(χ) in the group of linear characters.
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Proof: Let T /H be the TQFT obtained from gauging a 1-form symmetry H of T
and suppose we have a fusion a×b = c for some anyons a, b, c ∈ T /H. To go from

T /H to T we can gauge a dual 0-form symmetry Ĥ of T /H. Suppose the 1-form

symmetry H of T does not have any fixed points under fusion with the anyons.

Then, all anyons in T are organized into full length orbits under fusion with the

one-form symmetry generators. This implies that the 0-form symmetry Ĥ acts

trivially on the anyons a, b, c in T /H. On gauging Ĥ we get anyons (a,+), (b,+)

where + denotes the trivial representation of Ĥ. Using (3.67), we find the fusion

(a,+)× (b,+) =
∑
πc

m(πc|Ĥ ,+|Ĥ ⊗+|Ĥ ⊗ π(a,b,c)) (c, πc) (3.90)

where the sum is over irreducible representations of Ĥ, π(a,b,c) is a representation

of H acting on the fusion space V c
ab. Note that since V

c
ab is 1-dimensional (because

a×b = c), π(a,b,c) is a 1-dimensional representation. Therefore, it is clear that the

only non-zero term in the sum above is (c, π(a,b,c)). This contradicts the assump-

tion that T has no fusion of the form (3.2). Therefore, the 1-form symmetry H

of T has fixed points. □

As we will see, this theorem will have echoes in the coset theories we describe in

the second half of this chapter.

• In the case of O(5, 3) discrete gauge theories, we saw that we could gauge the

outer automorphisms and have fusion rules of form (3.2) in this gauged theory as

well. This discussion inspires the following theorem:

Theorem 3.4.2 (zero-form fixed points): Consider a TQFT, T , and

suppose we can gauge a non-trivial zero-form symmetry of this TQFT, H.

After performing this gauging, we have fusion rules of the form (3.2) only if

there are non-trivial ai ∈ T such that at least one of the non-trivial elements

of the zero-form group fixes ai.

Proof: Suppose that all non-trivial elements of the discrete gauge theory leave all

the non-trivial anyons unfixed. Now consider anyons a, b, c ∈ T such that c ∈ a×b.
From the general discussion around (3.67), we see that Nta ∩Nsb ∩Nc = Z1 and

Na\H/Nb = H. Moreover, since the stabilizers are trivial, πa = πb = πc = 1 are

the trivial representations. We then have

N
([c],1)
([a],1),([b],1) = |H| ·m(1, 1) = |H| > 1 . (3.91)

Therefore, we cannot produce fusion rules of the desired type. □

Our discussion of the O(5, 3) theory also suggests the following theorem
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Theorem 3.4.3 Consider a TQFT, T , with a fusion rule of the form a×b =
c and a zero-form symmetry, H. If at least one of {a, b, c} is unfixed by H,

then the only way for a× b = c to map to a fusion rule with unique outcome

in the gauged theory is for c to be unfixed by H.

Proof: If c is unfixed by H, then Nc = Na∩Nb = Z1. If either a or b are unfixed

then Na ∩ Nb = Z1 as well (although we need not have Nc = Z1). In any case,

(3.67) becomes

N
([c],πc)
([a],πa),([b],πb)

=
∑

(t,s)∈Na\H/Nb

m(πc|Z1 ,
tπa|Z1 ⊗ sπb|Z1 ⊗ πω(ta,sb,c)) . (3.92)

We have two cases: (1) Na\H/Nb ̸= Z1 or (2) Na\H/Nb = Z1. Consider case (1)

first. In this case, all resulting fusion rules will have multiplicity |Na\H/Nb| > 1.

Next, consider case (2). If c is fixed by some element of H, then we have at least

two possible πc (one is the trivial representation). This results in a fusion rules

with non-unique outcomes. □

• In the case of the BOG and GL(2, 3) discrete gauge theories we saw that both

one-form symmetries and subcategory structure offered an explanation of the

existence of the fusion rules (3.86). The following theorem further explains and

generalizes this connection between symmetries and subcategories of the Wilson

line sector:

Theorem 3.4.4 (subcategories and symmetries): Consider a finite

group, G, with an unfaithful higher-dimensional irreducible representation,

π. Moreover, suppose there are one-dimensional representations, πi, with

Ker(πi) ⊵ Ker(π). Then, in the corresponding (twisted or untwisted) dis-

crete gauge theory, Wilson lines charged under representations, γ, that have

γ|Ker(π) irreducible transform non-trivially under fusion with the abelian Wil-

son lines, Wπi.

Proof: We have that Wπi ∈ CKπ , where CKπ was defined around (3.80) as the

subcategory of Wilson lines charged under representations whose kernels contain

Ker(π) (see (3.77)). Therefore, we see that the abelian Wilson lines Wπi ∈ CKπ .

By the discussion around (3.84), we also see that all non-identity lines Wαi ∈
Wγ ×Wγ̄ are not elements of CKπ . As a result, Wπi ̸∈ Wγ ×Wγ̄ . On the other

hand, the trivial line is clearly in Wγ ×Wγ̄ . This logic implies

Wπi ×Wγ ×Wγ̄ ̸= Wγ ×Wγ̄ , (3.93)
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from which the claim in the theorem trivially follows. □

This result tells us that the Wγ must transform under fusion with the one-form

symmetry generators while Wπ need not. In the case of the BOG and GL(2, 3)

discrete gauge theories, precisely this mechanism gave a symmetry explanation

for the Wπ ×Wγ = Wπγ fusion rule in (3.86). Here we see it is somewhat more

general.

• Note that the results of this section answer questions (2)-(4) of the introduction

negatively in general. Still, we saw that in the BOG and GL(2, 3) discrete gauge

theories, the ideas in (4) and (3.11) do apply in some cases. We will return to

a proposal for constructing a theory satisfying (3.10) in question (3) in section

3.4.1.

3.4.1 Subgroups, subcategories, and primality

In sections 3.4, we saw the important role subcategories play in generating fusion rules

involving non-abelian Wilson lines with unique outcomes (e.g., they explained the hi-

erarchy in (3.85)). Moreover, understanding the subcategory structure is crucial to

resolving the question of whether a particular discrete gauge theory is prime or not. In

the case of theories with simple gauge groups (see section 3.4), we used results from [60].

In the case of the examples of discrete gauge theories with non-simple groups we stud-

ied, we used an argument that does not easily generalize. Therefore, in this section,

we review some of the more general results of [60] on subcategories of discrete gauge

theories. We then apply these results to generate some useful theorems that will serve

us in subsequent sections.

The main power of the results in [60] is that they rephrase questions about subcat-

egories in discrete gauge theories in terms of data of the underlying gauge group. In

particular, we have:

Theorem 3.4.5 [60]: Fusion subcategories of discrete gauge theories with finite

group G are in bijective correspondence with triples, (K,H,B). Here K,H ⊴ G

are normal subgroups that centralize each other (i.e., they commute element-by-

element), and B : K × H → C× is a G-invariant bicharacter. If we have a

non-trivial twist, ω, then the same conditions hold except that we demand that B

is a G-invariant ω-bicharacter.

Proof: See proofs of Theorems 1.1 and 1.2 (though they are phrased using different,

but equivalent, terminology) of [60]. □

Since B is a bicharacter, we have

B(k1k2, h) = B(k1, h) ·B(k2, h) , B(k, h1h2) = B(k, h1) ·B(k, h2) . (3.94)
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Here G invariance means that B(g−1kg, g−1hg) = B(k, h) for all k ∈ K, h ∈ H, and

g ∈ G. In fact, [60] also give a way to construct the subcategory, S(K,H,B), in

question given the above data:

S(K,H,B) := gen ((a, χ)| {a ∈ K ∩R , χ ∈ Irr(Na) s.t. χ(h) = B(a, h) degχ , ∀h ∈ H}) ,
(3.95)

where R is a set of representatives of conjugacy classes, Irr(Na) is the set of characters

of irreducible representations of the centralizer Na, and “gen(· · · )” means that the

category is generated by the simple objects inside the parenthesis. A normal subgroup

is a union of conjugacy classes. Hence, K specifies all the conjugacy classes labelling

the anyons in the subcategory S(K,H,B). Also, all the Wilson lines in S(K,H,B) are

such that the corresponding representations have kernels which contain H.

If we have non-trivial twist, then (3.94) and G-invariance become [60]

B(k1k2, h) = ηh(k1, k2) ·B(k1, h) ·B(k2, h) , (3.96)

B(k, h1h2) = η−1
k (h1, h2) ·B(k, h1) ·B(k, h2) ,

B(g−1kg, h) =
ηk(g, h)ηk(gh, g

−1)

ηk(g, g−1)
B(k, ghg−1) , (3.97)

where

ηg(h, k) :=
ω(g, h, k) · ω(h, k, k−1h−1ghk)

ω(h, h−1gh, k)
, (3.98)

is a generalization of (3.14). For non-trivial twist, we also have that (3.95) becomes

S(K,H,B) := gen ((a, χ)| {a ∈ K ∩R ,χ ∈ Irrω(Na) s.t. χ(h) = B(a, h) degχ , ∀h ∈ H}) ,
(3.99)

where the ω in Irrω(Na) is a reminder that we should consider characters with projec-

tivity phase given by (3.14) or (3.98).

We can now immediately see how the subcategories we studied in previous sections

arose: S(G,Z1, 1) ≃ Z(VecωG) is the full discrete gauge theory, S(Z1, G, 1) is the trivial

subcategory, and S(Z1,Z1, 1) ≃ Rep(G) ≃ CW is the full subcategory of Wilson lines. In

the case of simple discrete gauge theories, we see that, as claimed in section 3.4, these

are the only subcategories. However, in the case of the Z(VecωBOG), Z(VecωGL(2,3)),

and other gauge theories based on gauge groups with unfaithful irreducible represen-

tations, π, we find additional subcategories: S(Z1,Ker(π), 1) ≃ Rep(G/Ker(π)) and

S(Ker(π),Z1, 1). Using Lemma 3.11 of [60], we have that S(Ker(π),Z1, 1) is the Müger

center of S(Z1,Ker(π), 1).

Since we will study flux lines and dyons below, it is interesting to ask what the above

theorems imply for such operators. One immediate consequence is that magnetic flux

lines behave very differently from Wilson lines. For example:
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Theorem 3.4.6 : The set of magnetic flux lines, M, of a discrete gauge theory

(both untwisted and twisted) with non-abelian gauge group, G, do not form a fusion

subcategory. In particular, M ̸≃ Rep(G).

Proof: Suppose the full set of flux lines form a subcategory. Then, we need K to

include at least one element of each conjugacy class in order to include all of M in

S. However, since K is a normal subgroup, it must consist of full conjugacy classes.

Therefore, K = G. Using Theorem 3.4.5, we can label this putative subcategory as

S(G,H,B). Since H has to commute with all elements in G, it has to be a subgroup of

the center of the group Z(G). Suppose the group has trivial center. This forces B = 1,

and S(G,Z1, 1) is the full discrete gauge theory, which means we also include objects

with charge. This is a contradiction.

Suppose H is a non-trivial subgroup of Z(G). We know that the function B, being

a bicharacter, satisfies B(e, h) = 1 ∀h ∈ H. So the Wilson line ([e], π) ∈ S(G,H,B)

if π has H in its kernel. Recall that the irreducible representations of G/H are in

one-to-one correspondence with irreducible representations of G with H in its kernel.

Since G is non-abelian, Z(G) ̸= G. Hence, G/H is a non-trivial group. It follows that

there is at least one non-trivial irreducible representation π′ of G such that H is in its

kernel. Hence, the Wilson line ([e], π′) belongs to the subcategory S(G,H,B) for any

B. A contradiction. □

The fact that M ̸≃ Rep(G) has consequences in section 3.4.2. In particular, it explains

why electric-magnetic self-dualities are non-trivial to engineer in theories with non-

abelian gauge groups and trivial centers.38 If such a duality exists and involves magnetic

flux lines, then they will necessarily be in a Rep(G)-like subcategory with objects

carrying electric charge (e.g., see the S3 discrete gauge theory self-duality [57], where

the dimension-two flux line is in a Rep(S3) subcategory with both dimension one Wilson

lines).

Now, we turn to the question of primality. Here the following theorem of [60] is

useful

Theorem 3.4.7 [60]: A discrete gauge theory with gauge group, G, is a prime

TQFT if and only if there is no triple (K,H,B) with K,H ◁ G normal subgroups

centralizing each other, HK = G, (G,Z1) ̸= (K,H) ̸= (Z1, G), and B is a G-

invariant bicharacter on K × H such that BBop|(K∩H)×(K∩H) is non-degenerate.

In the case of non-trivial twisting, ω, the previous conditions still hold, but B is

also a G-invariant ω-bicharacter.

38In any untwisted abelian gauge theory, this is not an issue as M ≃ Rep(G) and there is a canonical
electric/magnetic duality.
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Proof: See proof of theorem 1.3 (though it is phrased using different, but equivalent,

terminology) in [60]. □

Note that in the statement of theorem 3.4.7, Bop(h, k) := B(k, h) for all k ∈ K and

h ∈ H.

Given this theorem, we may prove the following result that will be useful to us in

section 3.4.4:

Theorem 3.4.8 : If G is a non-direct product group with trivial center, then the

corresponding (twisted or untwisted) gauge theory is a prime TQFT.

Proof: We have a non-direct product group G with trivial center. Let us assume

that Z(VecωG) has a modular subcategory. Then, there exists two normal subgroups, K

and H, commuting with each other and satisfying KH = G. So, every element of G is a

product of an element of K with an element of H. Hence, any element in K ∩H has to

commute with all elements of G. Since the center of G is trivial by choice, K∩H = Z1.

It follows that G has to be a direct product of K and H. A contradiction. Hence, for

non-direct product groups G with trivial center, Z(VecωG) is prime. □

A simple set of examples subject to this theorem include the SN discrete gauge

theories analyzed above and the Z15⋊Z4 discrete gauge theory we will analyze further

in section 3.4.4.

Finally, we conclude with a proposal for engineering an example of a theory of the

type envisioned in question (2) in the introduction. In particular, consider a G × G

discrete gauge theory, Z(VecωG×G). Clearly, for trivial twisting this is a non-prime

theory since Z(VecG×G) = Z(VecG) ⊠ Z(VecG). Indeed, by theorem 3.4.7, we can

take K = G × Z1, H = Z1 × G, and B = 1. However, if we turn on a twist, ω ∈
H3(G × G,U(1)), we might be able to generate a prime theory. In particular, if we

can find G such that ω is non-trivial and does not factorize, then we would have an

example of a prime theory with Wilson lines in Rep(G × G) = Rep(G) ⊠ Rep(G).

Choosing one Wilson line in each Rep(G) factor and fusing would give a unique fusion

outcome.39 It would be interesting to see if this proposal can be realized. For example,

we would like to see if there is an obstruction at the level of the existence of a G-

invariant ω-bicharacter (all other requirements of theorem 3.4.7 can be satisfied). A

concrete example of a theory of the type discussed in question (2) is studied in section

3.4.4.

3.4.2 Zero-form symmetries

In sections 3.4 and 3.4 we saw that zero-form symmetries played an important role

in generating fusions rules of the form (3.2). In this section we review some relevant

39We thank D. Aasen for suggesting the basis for this idea.
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results of [56] and prove a theorem that will be useful to us in section 3.4.4.

In three spacetime dimensions, zero-form symmetries are implemented by dimen-

sion two topological defects (recall that one-form symmetries are generated by abelian

lines). These defects act on lines that pierce them as in figure 3.6. We will say the

Σg

a g(a)

Figure 3.6: The symmetry defect Σg, labelled by a zero-form symmetry group element
g, acts on an anyon a.

corresponding symmetry group, H, is non-trivial iff it has a generator, h ∈ H, such

that there is an anyon a ∈ T satisfying h(a) ̸= a.

Note that the automorphisms of the gauge group G, Aut(G), are a natural source

of symmetries. Indeed, in the context of the G-SPT that we gauge to generate the

discrete gauge theory, these automorphisms permute the symmetry defects. Therefore,

we expect they will play a role in the discrete gauge theory. To be more precise, recall

that we can distinguish between the inner automorphisms Inn(G) ⊴ Aut(G), generated

by conjugations of the form gxg−1 for x, g ∈ G, and outer automorphisms, Out(G) :=

Aut(G)/Inn(G). Since the discrete gauge theory involves magnetic charges labeled

by conjugacy classes and electric charges labeled by representations of centralizers,

it is clear that inner automorphisms will act trivially on the discrete gauge theory

(conjugacy classes are invariant under Inn(G) and the normalizers of different elements

in a conjugacy class are isomorphic). Therefore, we can at best expect Out(G) to lift

to a symmetry of the TQFT. Indeed, this is precisely what happens.

More formally, we have that, in a discrete gauge theory Out(G) lifts to a part of

the group of braided autoequivalences of the discrete gauge theory, Autbr(Z(VecG)):

Theorem 3.4.9 [56]: The subgroup of braided autoequivalences that fix the Wil-

son lines Stab(Rep(G)) ≤ Autbr(Z(VecG)) takes the form

Stab(Rep(G)) ≃ H2(G,U(1))⋊Out(G) . (3.100)
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Proof: See the proof of Corollary 6.9 (though it is phrased using different, but

equivalent, terminology) in [56]. □

Note that Out(G) generally acts non-trivially on the conjugacy classes. Therefore, it

will also generally act non-trivially on the Wilson lines. However, in certain more exotic

cases, all of Out(G) preserves conjugacy classes.40 In such cases, the Wilson lines are

fixed. Note that elements ζ ∈ H2(G,U(1)) always leave the Wilson lines invariant since

they act as follows [56]

ζ(([g], πg)) = ([g], πgρg) , ρg(x) :=
ζ(x, g)

ζ(g, x)
. (3.101)

In particular, g = 1 for Wilson lines. Note that ρg(x) depends only on the cohomology

class of ζ (it is invariant under shifts by a 2-coboundary).

A second set of symmetries involves the exchange of electric and magnetic degrees

of freedom. These are electric/magnetic self-dualities and are inherently quantum me-

chanical in nature. These symmetries are closely related to the existence of Lagrangian

subcategories. As we briefly mentioned at the beginning of section 3.4, a Lagrangian

subcategory, L, is a collection of bosons with trivial mutual braiding that is equal to its

Müger center (e.g., like the subcategory of Wilson lines, CW ≃ Rep(G)) . This latter

condition simply means that the only objects that braid trivially with every element of

L are elements of that subcategory.

To find the set of these symmetries, it turns out to be useful to construct the

categorical Lagrangian Grassmannian, L(G). This is the collection of all Lagrangian

subcategories. Each such subcategory, L(N,µ) ≃ Rep(G(N,µ)) with |G(N,µ)| = |G|, is
labeled by a normal abelian subgroup, N ◁G, and a G-invariant µ ∈ H2(N,U(1)) (the

Wilson line subcategory is L1,1). For the purposes of understanding these symmetries,

the important subcategory is [56]

L ⊇ L0 := {L ∈ L(G)|L ≃ Rep(G)} . (3.102)

In particular, we have

Theorem 3.4.10 [56]: The action of Autbr(Z(VecG)) on L0(G) is transitive.

Moreover,

|Autbr(Z(VecG))| = |H2(G,U(1))| · |Out(G)| · |L0(G)| . (3.103)

Proof: See proposition 7.6 and corollary 7.7 of [56]. □

Examples of such dualities appear in the S3 discrete gauge theory [57] and beyond [64].

40The smallest group that has this feature has order 27 [74]. See [75] for an application of groups
that have at least some class-preserving outer automorphisms to quantum doubles.
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Let us now apply this theorem to prove a result that will be useful for us below

Theorem 3.4.11 : If G ≃ N ⋊K, where N is an abelian group, then the corre-

sponding untwisted discrete gauge theory has an electric-magnetic self-duality.

Proof: By theorem 3.4.10, in order to find a self-duality, we need to find a normal

abelian subgroup N ◁ G and a G-invariant 2-cocycle, µ ∈ H2(N,U(1)). Moreover, we

need to find a corresponding G(N,µ) ≃ G. In particular, from remark 7.3 of [56], when

µ is trivial, we have that G(N,1) ≃ N̂ ⋊G/N , where N̂ is the character group of N . For

an abelian group, N̂ ≃ N . Therefore, we have that G(Ñ,1) ≃ N ⋊K = G as desired. □

This theorem will be useful in our symmetry searches in section 3.4.4. Note that one

immediate consequence of the above discussion is that none of the examples discussed

above have self-dualities. Indeed, theories with simple gauge groups have no non-

trivial normal abelian subgroups. On the other hand, theories like BOG and GL(2, 3)

have H2(BOG,U(1)) ≃ H2(GL(2, 3), U(1)) ≃ Z1 (and similarly for all normal abelian

subgroups). Since these groups are not semi-direct products, we conclude they lack

self-dualities.

3.4.3 Quasi-zero-form symmetries

In the previous subsections, we have seen that zero-form symmetries play an important

role in generating fusion rules for non-abelian anyons with unique outcomes. However,

since our interest is simply in the existence of such fusion rules, it is natural that

we should generalize our notion of symmetry to include symmetries of the modular

data (and hence, by Verlinde’s formula, automorphisms of the fusion rules) that don’t

necessarily lift to symmetries of the TQFT.41 The basic reason such “quasi zero-form

symmetries” as we will call them exist is that the modular data does not define a TQFT

(see [76] for a consequence of this fact). In particular, the underlying F and R symbols

may not be invariant (up to an allowed gauge transformation) under a quasi zero-form

symmetry even if S and T are.

In fact, such “quasi-zero-form symmetries” are common, with charge conjugation

being a particular example [77]. Indeed, even in the AN (with N = k2 ≥ 9) theories

we discussed in section 3.4, such quasi-charge conjugation symmetries exist. These

symmetries are in addition to the genuine zero-form symmetries we described when

analyzing these examples. In appendix A.2, we study the particular case of A9 discrete

gauge theory in more detail and explicitly disentangle the quasi-symmetries from the

genuine symmetries.

41In fact, most generally, we might expect automorphisms of the fusion rules that are not even
symmetries of the modular data (e.g., as studied recently in [1]).
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More generally, there are theories that have no genuine symmetries. One set of

examples include discrete gauge theories based on the Mathieu groups. These are

simple groups with trivial Out(G) and H2(G,U(1)). Moreover, since these groups have

no non-trivial normal abelian subgroups, L(G) = L0(G) ≃ Rep(G), and so there are

no non-trivial self-dualities.

The largest Mathieu groups,M23 andM24 are of particular interest to us since their

discrete gauge theories have non-abelian Wilson lines that fuse together to produce a

unique outcome.42 Moreover, of the theories with fusions of type (3.2), these are the

only untwisted discrete gauge theories that have no modular symmetries that lift to

symmetries of the full TQFTs.

For M23 it is not hard to check that

W22 ×W451 = W9901 , W22 ×W452 = W9902 , (3.104)

where 22 is the real twenty-two dimensional representation, 451,2 are two forty five

dimensional complex representations, and 9901,2 are two nine hundred and ninety di-

mensional representations. Under charge conjugation

W451 ↔ W452 , W9901 ↔ W9902 . (3.105)

For M24, we have a particularly rich set of fusions43

W23 ×W451 = W10352 , W23 ×W452 = W10353 , W23 ×W2311 = W5313

W23 ×W2312 = W5313 , W451 ×W2311 = W10395 , W452 ×W2311 = W10395 ,

W451 ×W2312 = W10395 , W452 ×W2312 = W10395 . (3.106)

where 23 is a real twenty-three dimensional representation, 451,2 are complex forty-

five dimensional representations, 2311,2 are two-hundred and thirty-one dimensional

complex representations, and 10352,3 are complex one-thousand and thirty-five dimen-

sional representations, 5313 is a real five-thousand three-hundred and thirteen dimen-

sional representation, and 10395 is a real ten-thousand three-hundred and ninety-five

dimensional representation. Under charge conjugation, we have

W451 ↔ W452 , W2311 ↔ W2312 , W10352 ↔ W10353 . (3.107)

While we have seen similar actions in previous sections, but here the novelty is that

charge conjugation is a quasi-symmetry.

42By the results of [2], these theories cannot have such fusions involving lines that carry magnetic
flux.

43It would be interesting to know if our results here have any connection with moonshine phenomena
observed involving M24 as in [78–80].
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More generally, as we will discuss in greater detail below, all other examples of

TQFTs that we have found with fusion rules involving non-abelian anyons with unique

outcome have at least quasi zero-form symmetries.

Finally, let us conclude this section by discussing how twisting affects the quasi-

zero-form symmetries. When the quasi-symmetry is charge conjugation and the group

has complex representations, the quasi-symmetry lifts to an action on Wilson lines (see

appendix A.2 for a discussion in a concrete example). In this case, the quasi-symmetry

persists regardless of the twisting.

As a more complicated example, let us consider the case of BOG first discussed in

section 3.4. This theory only has real conjugacy classes and representations. However,

there is still a non-trivial charge conjugation acting on certain dyons since elements

in BOG have centralizer groups Z4, Z6, and Z8. These latter groups admit complex

representations. However, unlike the spectrum of Wilson lines, the spectrum of dyons

generally changes as we change the twist. Therefore, we might imagine that the charge

conjugation quasi symmetry can be twisted away.

In fact, this is not the case. The main point is that any twisting ω ∈ H3(BOG,U(1)) ≃
Z48 of the BOG discrete gauge theory is “cohomologically trivial” in the following sense:

the ηg(h, k) ∈ H2(Ng, U(1)) phases defined in (3.14) are all trivial. Indeed, this state-

ment follows from the fact that H2(Ng, U(1)) = Z1 for all g ∈ BOG. Therefore, none

of the anyons are lifted by the twisting, and the characters of BOG change as follows

χπωg (h) → ϵg(h) · χπωg (h) (3.108)

where ϵg is a 1-cochain that gives the 2-coboundary, ηg. It is not too hard to check

that all choices of the twisting leave us with complex characters. Therefore, the charge

conjugation quasi-symmetry persists (here it would be more accurate to term it a

“modular symmetry” since it is a priori possible—though we have not checked—that

charge conjugation becomes a symmetry of the theory for certain choices of ω).44

3.4.4 Beyond Wilson lines

So far, we have only constructed fusion rules of the form (3.2) using Wilson lines. In the

case of gauge theories with simple groups, this is all we can do [2]. However, when we

44One may also wonder about the fate of the genuine Out(BOG) ≃ Z2 zero-form symmetry under
twisting. First, consider ω corresponding to the order 2 element in Z48. Since Out(BOG) acts on
H3(BOG,U(1)) through Aut(H3(BOG,U(1))), ω should be fixed under it. Hence, it seems plausible
that the twisted discrete gauge theory corresponding to this choice of ω has Out(BOG) as a subgroup
of its symmetries (while theorem 3.4.9 has nothing to say on this point since it assumes untwisted
theories, we view the existence of a symmetry in this case as a plausible assumption). In fact, more
generally, if the action of Out(G) leaves ω ∈ H3(G,U(1)) invariant up to a 3-coboundary, then it can
be shown that this is a symmetry of the modular data of the twisted theory. It would be interesting to
understand what happens for other twists as well.
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have non-simple gauge groups, the existence of self-dualities discussed in section 3.4.2

as well as the possibility of electric-magnetic dualities between theories with different

gauge groups and Dijkgraaf-Witten twists [63,64] suggests that we should also be able

to involve non-abelian anyons carrying flux. Indeed, we will see this is the case.

To that end, let us study a fusion of the form

L([g],πωg )
× L([h],πωh )

= L([k],πωk )
, g, h ̸= 1 , (3.109)

From our general analysis in Section 3.3.1, we know that this fusion rule is satisfied if

and only if the following constraints are satisfied.

1. [g] · [h] = [k] = [h] · [g]

2. ∃! πωk such that m(πωk |Ng∩Nh∩Nk , πωg |Ng∩Nh∩Nk ⊗ πωh |Ng∩Nh∩Nk ⊗ πω(g,h,k)) = 1

We will apply these constraints in what follows.

For an untwisted discrete gauge theory based on a group G with a non-trivial center

Z(G), the constraints above implies that if we have a fusion of Wilson lines giving a

unique outcome

Wπ ×Wγ = Wπγ , (3.110)

then we have a fusion of dyons of the form

L([g],π) × L([h],γ) = L([gh],πγ) , (3.111)

where for any g, h ∈ Z(G). Hence, we can dress the Wilson lines with fluxes from the

center of the group to obtain fusion rules involving dyons with unique outcomes. For

example, we have already seen that the discrete gauge theories corresponding to BOG

and GL(2, 3) have Wilson lines fusing to give a unique outcome. Since these two groups

have a non-trivial center (isomorphic to Z2), the above discussion immediately implies

the existence of dyonic fusions where the dyons are labelled by the non-trivial element

of the centre. In fact, these two types of fusions exhaust all a × b = c type fusions in

both Z(VecBOG) and Z(VecGL(2,3)).

In the case of the fusion of non-abelian Wilson lines with a unique outcome, we

saw that we were not guaranteed to find fusion subcategories beyond the three uni-

versal subcategories present in any discrete gauge theory (the theory itself, the trivial

TQFT, and the Wilson line sector, CW ≃ Rep(G)). On the other hand, when we have

fusions of non-abelian anyons carrying flux with a unique outcome, we are guaranteed

to have fusion subcategories. When the gauge group has a non-trivial center, Z(G),

this statement is trivial.45 The following theorems guarantee this fact more generally:

45The discussion in section 3.4.1 guarantees that S(Z(G),Z1, 1) and S(Z1, Z(G), 1) are non-trivial
subcategories.
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Theorem 3.4.12 : Let G be a non-simple finite non-abelian group. If we have a

fusion rule involving two dyons or fluxes giving a unique outcome in the (twisted

or untwisted) G gauge theory, then S(Mg,Z1, 1) and S(Mh,Z1, 1) (along with

S(Z1,Mg, 1) and S(Z1,Mh, 1)) are proper fusion subcategories of the theory. Here,

g and h are elements labelling the non-trivial conjugacy classes (of length > 1)

involved in the fusion. Mg is the normal subgroup generated by the elements in [g].

Proof: We have an a × b = c type fusion rule involving the non-trivial conjugacy

classes [g] and [h]. Let Mg be the normal subgroup generated by [g]. In fact, it has

to be a proper normal subgroup. To see this, suppose Mg = G. From Lemma 3.4

of [60], we know that [g] and [h] commute element-wise. Hence, [h] commutes with all

elements in Mg = G. It follows that [h] should be a subset of the elements in Z(G).

However, elements of Z(G) form single element conjugacy classes. A contradiction.

Hence, Mg has to be a proper normal subgroup of G. Since g ̸= e, it is clear that Mg

is not the trivial subgroup either. We can use the same argument to show that Mh is

also a proper non-trivial normal subgroup of G. Therefore, by theorem 3.4.5, we have

fusion subcategories corresponding to the choices S(Mg,Z1, 1) and S(Mh,Z1, 1) (and

similarly S(Z1,Mg, 1) and S(Z1,Mh, 1)). □

Note that we have, L([g],πωg )
∈ S(Mg,Z1, 1) and L([h],πωh )

∈ S(Mh,Z1, 1). Generically,

we also expect L([g],πωg )
̸∈ S(Mh,Z1, 1) and L([h],πωh )

̸∈ S(Mg,Z1, 1). In such situations

we have, in the spirit of section 3.4, an “explanation” for the fusion rule.

In fact, the reasoning in the proof to theorem (3.4.12) immediately implies that if

[h] has at least one element h′ ∈ [h] such that [h′, h] ̸= 1, then L([g],πωg )
and L([h],πωh )

lie

in different subcategories

Corollary 3.4.12.1 : Given the conditions in theorem 3.4.12, if there exists

h′ ∈ [h] such that [h′, h] ̸= 1, µ[g] ∈ S(Mg,Z1, 1), L([g],πωg )
̸∈ S(Mh,Z1, 1), and

similarly for h↔ g.

For a ∈ Mg the fusion subcategory S(Mg,Z1, 1) contains anyons ([a], πa) where πa

is any irrep of the centralizer Na. In an untwisted discrete gauge theory, for a fusion

of fluxes labelled by conjugacy classes [g] and [h], we can define fusion subcategories

S(Mg,Mh, 1) and S(MhMg, 1) which have a more restricted set of elements. For a ∈
Mg, the anyon ([a], πa) is an element of S(Mg,Mh, 1) if and only if Mh ⊆ Ker(πa).

Clearly, ([g], 1g) ∈ S(Mg,Mh, 1) and ([h], 1h) ∈ S(Mh,Mg, 1). However, in general, we

don’t expect ([g], 1g) ̸∈ S(Mh,Mg, 1) and ([h], 1h) ̸∈ S(Mg,Mh, 1). We will discuss an

example of this below.

If one of the operators involved in the fusion of non-abelian anyons with a unique

outcome is a Wilson line, then we also have the following theorem:
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Theorem 3.4.13 : Let G be a non-simple group. If we have a fusion of a Wilson

line and a dyon giving a unique outcome, then S(Ker(χπ),Z1, 1) and S(Z1,Ker(χπ), 1)

are proper fusion subcategories of the (twisted or untwisted) discrete gauge theory.

Here, π is an irrep of G labelling the Wilson line.

Proof: Suppose [b] is the non-trivial conjugacy labelling the flux line. Let χπ be

the character of an irreducible representation, π, of G labelling the Wilson line. From

note 3.5 of [60] we know that χ should be trivial on a subset of elements given by

[G, b]. Since b is not in the center, [G, b] is guaranteed to have a non-trivial element.

Hence, χπ is not a faithful representation. Ker(χπ) is a non-trivial normal subgroup

of G. Since χπ is not the trivial representation, Ker(χπ) ̸= G is a non-trivial proper

normal subgroup. Hence, by theorem 3.4.5, we have a fusion subcategory given by

S(Ker(χπ),Z1, 1) and S(Z1,Ker(χπ), 1). □

Note that in this case the Wilson line is an element of S(Z1,Ker(χπ), 1) while the

magnetic flux is not. In this sense, such fusions are “natural.” To illustrate the ideas

above, let us consider the following examples.

Z(VecZ3⋊Q16)

Let us consider the Z3 ⋊Q16 discrete gauge theory. Even though this group has many

non-trivial proper normal subgroups, we have Z3 ⋊Q16 ̸= HK for any proper normal

subgroups H,K. Hence, using theorem 3.4.7, we have that Z(VecZ3⋊Q16) is a prime

theory.

This group has a length 2 conjugacy class [f3] (here we are using the notation of

GAP [81], where this group is entry (48, 18) in GAP’s small group library) and a 2-

dimensional representation 23 (the third 2-dimensional representation in the character

table of Z3 ⋊ Q16 on GAP). We have the following fusion of a Wilson line and a flux

line giving a unique outcome.

W23 × µ[f3] = L([f3],23|Nf3 )
, (3.112)

where the restricted representation 23|Nf3 is irreducible.

Since we have a prime theory, the existence of this fusion rule is not due to a Deligne

product. However, it can be explained using the subcategory structure of Z(VecZ3⋊Q16).

To that end, consider the fusion subcategory S(Z1,Ker(23)), 1). This fusion subcate-

gory contains only Wilson lines. A Wilson line Wπ belongs to this subcategory only if

Ker(23) is in Ker(π). From the character table of Z3 ⋊ Q16, we find three representa-

tions satisfying this constraint: 1, 13 and 23. Here 1 is the trivial representation and

13 is the third 1-dimensional representation in the character table. Hence, the anyons
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contained in the fusion subcategory S(Z1,Ker(23), 1) are the Wilson lines W1, W13 as

well as W23 . Moreover, we can check the following

13 × 13 = 1; 13 × 23 = 23; 23 × 23 = 1 + 13 + 23. (3.113)

Now let us consider a fusion subcategory corresponding to the triple S(Mf3 ,Ker(12), 1)

whereMf3 is the normal subgroup generated by the elements of the conjugacy class [f3]

and 12 is the second 1 dimensional representation in the character table of Z3⋊Q16. We

have Mf3 = {e, f3, f4, f3 ·f4}. A Wilson line Wπ belongs to the set of generators of this

subcategory only if Ker(12) is in Ker(π). Using the character table we can check that

there are only two representations which satisfy this constraint: 1 and 12. Moreover,

we have 12 × 12 = 1. Hence, the Wilson lines in S(Mf3 ,Ker(12), 1) are W1 and W12 .

Note that the flux line µ[f3] belongs to this subcategory.

Hence, we have two fusion subcategories S(Z1,Ker(23)), 1) and (Mf3 ,Ker(12), 1)

with the following structure

W23 ∈ S(Z1,Ker(23)), 1); µ[f3] ∈ (Mf3 ,Ker(12), 1);

S(Z1,Ker(23)), 1) ∩ S(Mf3 ,Ker(12), 1) = {W1} (3.114)

Therefore, the fusions W23 × W23 and µ[f3] × µ[f3] have only W1 in common. This

trivial intersection explains the fusion (3.112) and gives an example of the idea behind

question (3) in the introduction.

Z(VecZ15⋊Z4)

Let us consider the Z15⋊Z4 discrete gauge theory. Since the center of the gauge group

is trivial and the group involves a semi-direct product, we know from theorem 3.4.8

that this gauge theory is prime.

This group has a length 5 conjugacy class labelled by the element f2 and a length

2 conjugacy class labelled by the element f3 (here we are using the notation of GAP,

where this group is entry (60, 7) in GAP’s small group library). We also have a length

10 conjugacy class labeled by f2f3. It is therefore clear that we have a fusion of flux

lines giving a unique outcome corresponding to these conjugacy classes

µ[f2] × µ[f3] = µ[f2f3] . (3.115)

Based on our discussion above, let us consider the groups Mf2 and Mf3 generated

by the elements in the corresponding conjugacy class. It is not too hard to show that

Mf2 = [e] ∪ [f2] (3.116)

Mf3 = [e] ∪ [f3] ∪ [f4] (3.117)
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Hence, the fusion subcategories S(Mf2 ,Mf3 , 1) and S(Mf3 ,Mf2 , 1) can only have Wil-

son lines as common elements. The trivial Wilson line W1 is of course a common

element. As we saw in section 3.4.1, a Wilson line, Wπ, is a member of the fusion

subcategory, S(Mf2 ,Mf3 , 1), only if the condition

χπ(h) := B(e, h) deg χπ = deg χπ , ∀ h ∈Mf3 , (3.118)

is satisfied. Hence, Mf3 should be in the kernel of χπ. Similarly, a Wilson line Wπ′ , is

a member of (Mf3 ,Mf2 , 1) only if Mf2 is in the kernel of χπ′ . Therefore, the common

elements of the two fusion subcategories are given by the Wilson lines Wπ̃ for which

Mf2 and Mf3 are in the kernel of χπ̃. Using the character table of Z15 ⋊ Z2, we find

that there is only one representation π12 , which satisfies this constraint.

Consider the fusions

µ[f2] × µ[f−1
2 ] = W1 + · · · , (3.119)

µ[f3] × µ[f3−1] = W1 + · · · . (3.120)

We know µ[f2] and µ[f3] belong to the fusion subcategories (Mf2 ,Mf3 , 1) and (Mf3 ,Mf2 , 1).

Therefore, the only anyons common to both fusions above are W1 and W12 . We would

like to know whether the Wilson line, W12 , appears on the right hand side of these

fusions. To that end, consider the fusion

W12 × µ[f3] = L([f3],12|Nf3 )
. (3.121)

It turns out that 12|Nf3 is the trivial representation of Nf3 . Hence, µ[f3] is fixed under

fusion with the one-form symmetry generator, W12 . So it is clear that W12 should

appear in the fusion µ[f3] × µ[f3−1]. Similarly, consider the fusion

W12 × µ[f2] = L([f2],12|Nf2 )
. (3.122)

It is easy to check that 12|Nf2 is a non-trivial representation of Nf2 . Hence, µ[f2] is not

fixed under the fusion with W12 . Since W12 is an order two anyon, it cannot appear in

the fusion µ[f2] × µ[f2−1] (because if W12 ⊂ µ[f2] × µ[f2−1], then multiplying both sides

on the left with W12 implies that L([f2],12) is the inverse of µ[f2] which is clearly false).

We have that the fusions µ[f2] ×µ[f−1
2 ] and µ[f3] ×µ[f−1

3 ] only have the trivial anyon

in common. Hence, the combination of subcategory structure and one-form symmetry

explains the fusion rule

µ[f2] × µ[f3] = µ[f2f3] . (3.123)

It is interesting to note that this discussion parallels the one for Wilson lines in section

3.4.
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This example is additionally illuminating because this theory also has a fusion

involving a Wilson and a flux line with unique outcome. Indeed, we have two 2-

dimensional representations 21 and 22 of Z15 ⋊ Z4 whose restriction to the centralizer

Nf2 = Z3 ⋊ Z4 are irreducible. Hence, we have the fusion rules

W21 × µ[f2] = L([f2],21|Nf2 )
, W22 × µ[f2] = L([f2],22|Nf2 )

. (3.124)

Do we have trivial braiding between the anyons involved in this fusion? This question

is equivalent to whether the dyons are bosons are not. For L([f2],2i|Nf2 )
to be a boson,

we want f2 to be in the kernel of 2i|f2 , which is equivalent to the condition that f2 be

in the kernel of 2i. Using this condition, we can easily check to see that the anyons

W21 and µ[f2] braid non-trivially with each other, while W22 and µ[f2] braid trivially

with each other.

Moreover, this theory has several fusions involving dyons which give a unique out-

put. For example, consider the dyons L([f2],1̃f2 )
and L([f3],1̃f3 )

, where 1̃f2 and 1̃f3
are the unique non-trivial real 1-dimensional representations of Nf2 = Z3 ⋊ Z4 and

Nf3 = Z3 ×D10, respectively. We have the fusion

L([f2],1̃f2 )
× L([f3],1̃f3 )

= L([f2f3],1̃f2f3 )
(3.125)

where 1̃f2f3 is the unique non-trivial 1-dimensional representation of Nf2f3 = Z6.

Let us also explore the zero-form symmetry of this theory. We have Out(Z15⋊Z4) =

Z2 and H2(Z15 ⋊ Z4) = Z1. From theorem 3.4.11, we know that this theory features

non-trivial self-duality. In fact, the group Z15⋊Z4 has three non-trivial normal abelian

subgroups Z3,Z5,Z15 all of which have trivial 2nd cohomology group. So we have the

Lagrangian subcategories

{L(Z1,1),L(Z3,1),L(Z5,1),L(Z15,1)} (3.126)

Using remark 7.3 in [56], we have

L(N,1) ≃ Rep((Z15 ⋊ Z4)(N,1)) ≃ N̂ ⋊ (Z15 ⋊ Z4)/N̂ (3.127)

where N̂ is the group of representations of N and N = Z3,Z5,Z15. Also, we have the

isomorphisms

Z15 ⋊ Z4 ≃ Z3 ⋊ (Z5 ⋊ Z4) ≃ Z5 ⋊ (Z3 ⋊ Z4) (3.128)

Hence, all Lagrangian subcategories above are isomorphic to Rep(Z15 ⋊ Z4). Hence,

|L0(Z15 ⋊ Z4)| = 4. From theorem 3.4.10, we know that Autbr(Z(VecZ15⋊Z4)) should

act transitively on |L(Z15 ⋊ Z4)|. In fact, we can use proposition 7.11 of [56] to show

that H2(Z15 ⋊ Z4, U(1))⋊Out(Z15 ⋊ Z4) ≃ Z2 acts trivially on |L0(Z15 ⋊ Z4)|. Using
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theorem 3.4.10, we have |Autbr(Z(VecZ15⋊Z4))| = 8.

Finally, since Z15⋊Z4 has complex characters, Z(VecωZ15⋊Z4
) has a non-trivial quasi-

zero-form symmetry given by charge conjugation.

3.4.5 Symmetry and quasi-symmetry searches

We have used the software GAP to search for groups for which the corresponding

untwisted discrete gauge theories have fusions rules with unique outcomes. We present

our results below. The relevant GAP code is given in Appendix A.3.

Fusion of Wilson lines

Irreducible representations of a direct product of groups are the product of represen-

tations of the individual groups. Hence, it is natural that the first example with two

Wilson lines fusing to give a unique Wilson line is the quantum double of S3 × S3

(however, this fusion arises because the discrete gauge theory factorizes; this follows

from theorem 3.4.7). More interesting (non-direct-product) groups with this property

only appear at order 48 (see Appendix A.1). For groups of order less than or equal to

639 (except orders 384, 512, 576)46 we have verified that whenever the corresponding

untwisted discrete gauge theory has a fusion Wilson lines giving a unique outcome,

AutbrZ(VecG) is non-trivial. In this set of groups, there are two which have a trivial

automorphism group. They are S3× (Z5⋊Z4) and (((Z3×Z3)⋊Q8)⋊Z3)⋊Z2. How-

ever, H2(S3 × (Z5 ⋊ Z4), U(1)) = Z2 leading to non-trivial Autbr(Z(VecS3×(Z5⋊Z4))).

The group (((Z3 × Z3) ⋊ Q8) ⋊ Z3) ⋊ Z2 has trivial H2(G,U(1)). So the theory

Z(Vec(((Z3×Z3)⋊Q8)⋊Z3)⋊Z2
) doesn’t have classical symmetries. (((Z3 × Z3) ⋊ Q8) ⋊

Z3) ⋊ Z2 has only one abelian normal subgroup N = Z3 × Z3. Moreover, we have

(((Z3 ×Z3)⋊Q8)⋊Z3)⋊Z2 ≃ N ⋊K where K = GL(2, 3). Therefore, using theorem

3.4.11, we know that this theory has non-trivial electric-magnetic duality. The groups

S3 × (Z5 ⋊ Z4) and (((Z3 × Z3) ⋊Q8) ⋊ Z3) ⋊ Z2 have complex characters, hence the

corresponding discrete gauge theories have quasi-zero-form symmetries.

Fusion of flux lines

The simplest example of an untwisted discrete gauge theory with a fusion of two flux

lines giving a single outcome is Z(VecS3×S3). The conjugacy classes of a direct product

is a product of conjugacy classes of the individual groups. Hence, it follows that quan-

tum doubles of direct products naturally have such fusions. As mentioned above, it

follows from theorem 3.4.7 that discrete gauge theories based on direct product groups

46We have not checked order 384, 512, 576 due to the huge number of groups (up to isomorphism)
with these orders.
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are non-prime. Therefore, the fusion rules with unique outcome in this case are a con-

sequence of the Deligne product. Since Out(S3×S3) = Z2, Z(VecS3×S3) has non-trivial

zero-form symmetry.

After S3 × S3, we have several groups of order 48 with flux fusions giving unique

outcome. The examples discussed in Appendix A.1 (except BOG andGL(2, 3)) exhaust

all such groups of order 48. All of these groups have non-trivial automorphism group,

and hence the corresponding discrete gauge theory has non-trivial symmetries. In fact,

for groups of order less than or equal to 639 (except orders 384, 512, 576) we have

verified that whenever the corresponding untwisted discrete gauge theory has a fusion

of flux lines with a unique outcome, Autbr(Z(VecG)) is non-trivial. In fact, the only

group with a trivial automorphism group in this set is S3 × (Z5 ⋊ Z4). We already

discussed above that this theory has non-trivial zero-form symmetries as well as non-

trivial quasi-zero-form symmetries.

Fusion of a Wilson line with a flux line

The simplest example with a fusion of a Wilson line and a flux line giving a single

outcome is Z(VecS3×S3). Then we have more examples in order 48. The examples

discussed in Appendix A.1 (except BOG and GL(2, 3)) exhausts all such groups of

order 48. For groups of order less than or equal to 639 (except orders 384, 512, 576) we

have verified that whenever the corresponding untwisted discrete gauge theory has a

fusion of a Wilson line with a flux line giving a unique outcome, AutbrZ(VecG) is non-

trivial. In this set of groups, there are three which have a trivial automorphism group.

They are S3 × (Z5 ⋊Z4), (Z3 ×Z3)⋊QD16 (where QD16 is the semi-dihedral group of

order 16) and (((Z3 × Z3) ⋊Q8) ⋊ Z3) ⋊ Z2. We discussed the groups S3 × (Z5 ⋊ Z4)

and (((Z3 × Z3) ⋊ Q8) ⋊ Z3) ⋊ Z2 above. The group (Z3 × Z3) ⋊ QD16 has trivial

H2(G,U(1)). So the theory Z(Vec(Z3×Z3)⋊QD16
) doesn’t have classical symmetries.

However, (Z3 ×Z3)⋊QD16 has one abelian normal subgroup N = Z3 ×Z3. Moreover,

we have (Z3 × Z3) ⋊ QD16 ≃ N ⋊ K where K = QD16. Therefore, using theorem

3.4.11, we know that the corresponding untwisted discrete gauge theory has non-trivial

electric-magnetic self-duality.

The group (Z3 × Z3) ⋊ QD16 has complex characters, hence the corresponding

discrete gauge theory has quasi-zero-form symmetries.

Fusion of general dyons

Being a Deligne product, Z(VecS3×S3) also has fusions involving dyons, and this

is the smallest rank theory with such fusions. The next example is in order 48. The

examples discussed in Appendix A.1 exhausts all such groups of order 48. For groups

of order less than or equal to 100 we have verified that whenever the corresponding
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untwisted discrete gauge theory has a fusion of two dyons giving a unique outcome,

AutbrZ(VecG) is non-trivial. In fact, every group in this set has non-trivial automor-

phism group. Hence, they all have non-trivial classical 0-form symmetries.

3.5 Chern-Simons Theories and Cosets

In this section, we turn our attention to a (generally) very different set of theories:

TQFTs based on Gk Chern-Simons (CS) theories and cosets thereof (here G is a com-

pact simple Lie group). Unlike the theories discussed in section 3.4, the theories we

discuss here are typically chiral (i.e., ctop ̸= 0 (mod 8)).

In order to gain a sense of what such theories allow us to do in constructing TQFTs

with fusion rules of the form (3.2) and (3.8), it is useful to recall the basic representation

theory of SU(2). Somewhat surprisingly, this intuition will be quite useful for more

general SU(N)k CS theories. To that end, consider the textbook matter of the fusion

of SU(2) spin j1 and j2 representations

j1 ⊗ j2 =

j1+j2∑
j=|j1−j2|

j . (3.129)

As in the case of the finite groups in the previous section, we would like to understand

if we can have j1 ⊗ j2 = j3 for j1, j2 > 0 and fixed j3 spin. Clearly this is impossible,

since we would have j1 + j2 > |j1 − j2| and the sum (3.129) will have at least two

contributions.

While this result is rather trivial, it is useful to recast it using the group theory

analog of the F -transformation described in the introduction (as well as in section 3.4

for the case of discrete groups). To that end, we wish to consider

j1 ⊗ j1 =

2j1∑
j=0

j , j2 ⊗ j2 =

2j2∑
k=0

k , |j1,2| > 1 , (3.130)

where |j1,2| are the dimensions of the representations. In particular, we see that (since

j1,2 > 0) both products in (3.130) must always contain the trivial representation and

the adjoint representation. This observation also implies that j1 ⊗ j2 ̸= j3 for fixed j3

spin.

The discussion around (3.130) easily generalizes to arbitrary compact simple Lie

group, G. In particular, let us consider

α⊗ ᾱ = 1 +
∑
γ ̸=1

Nγ
αᾱ γ , β ⊗ β̄ = 1 +

∑
δ

N δ
ββ̄ δ , |α|, |β| > 1 , (3.131)

69



CHAPTER 3. IRREDUCIBLE FUSION OF SIMPLE LINES

where α, β and ᾱ, β̄ are conjugate higher-dimensional irreducible representations of G,

Irr(G). The number of times the adjoint appears in the product α⊗ ᾱ is [82]:

Nadj
αᾱ =

∣∣∣{λ(α)j ̸= 0
}∣∣∣ ≥ 1 , (3.132)

where λ
(α)
j are the Dynkin labels of α. Therefore, we learn that for all higher-dimensional

representations of G

α⊗ β ̸= γ , ∀ |α|, |β| > 1 , α, β, γ ∈ Irr(G) , (3.133)

Of course, our interest is in the fusion algebra of Gk. From this perspective, the

above discussion is in the limit k → ∞. As we will prove in the next section, taking

Gk = SU(N)k and imposing finite level does not lead to fusions of the form (3.2) or

(3.8).

3.5.1 Gk CS theory

Let us now consider the finite-level deformation of the fusion rules discussed in the

previous section. These are the fusion rules of Wilson lines in Gk CS theory. We first

consider SU(2)k as it is rather illustrative. We will then generalize to SU(N)k and

comment on more general Gk.

In the case of SU(2)k, (3.129) becomes [83,84]

j1 ⊗ j2 =

min(j1+j2,k−j1−j2)∑
j=|j1−j2|

j . (3.134)

In addition to truncating the spectrum to the spins {0, 1/2, 1, · · · , k/2}, the above

deformation abelianizes the spin k/2 representation (since k/2 ⊗ k/2 = 0). However,

these changes do not alter the conclusion from the previous section: we cannot write

j1 ⊗ j2 = j3 for j3 non-abelian irreducible j1,2,3. Indeed, consider

j1 ⊗ j1 =

min(2j1,k−2j1)∑
j=0

j , j2 ⊗ j2 =

min(2j2,k−2j2)∑
j=0

j , j1,2 ̸= 0,
k

2
. (3.135)

The conditions j1,2 ̸= 0, k
2 are to ensure that the representation is non-abelian. In

particular, we again see that the adjoint representation appears in (3.135).

While the fusion rules discussed in [83, 84] apply to more general groups, they are

rather difficult to implement. Instead, using proposals suggested in [85,86] and finally

proven in [87], the authors of [88] show that for α an irreducible representation of Gk
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(with G a compact simple Lie group), we have

(k)Nadj
αᾱ =

∣∣∣{λ̂(α)j ̸= 0
}∣∣∣− 1 , (3.136)

where λ̂αj are the associated affine Dynkin labels.

In particular, for SU(N)k, if |α| > 1, then (k)Nadj
αᾱ ≥ 1.47 Indeed, the abelian

representations, γi, satisfy a ZN fusion algebra and are characterized by λ̂
(γi)
j = kδij ,

where i ∈ {0, 1, ..., N − 1}. On the other hand, all non-abelian representations have at

least two non-zero Dynkin labels. As a result, we learn that

α⊗ β ̸= γ , ∀α, β, γ ∈ Irr(SU(N)k) , |α|, |β| > 1 . (3.137)

Therefore, we see that we have the following fusions for non-abelian Wilson lines in

SU(N)k CS TQFT

Wα ×Wβ = Wγ + · · · , |α|, |β| > 1 , (3.138)

where the ellipses necessarily include additional Wilson lines. This statement is more

generally true in any Gk CS theory (with G a compact and simple Lie group) for which

the lines in question correspond to affine representations with at least two non-zero

Dynkin labels.

Note that for certainGk, non-abelian representations can have a single non-vanishing

Dynkin label. For example, consider the (E7)2 CS theory.48 It has Wilson lines Wτ

and Wσ with quantum dimensions 1+
√
5

2 and
√
2, respectively, and they fuse to give a

unique outcome. The existence of this fusion rule follows from the fact that (E7)2 is

not a prime TQFT. In fact, it resolves into the product of prime theories Fib⊠ Ising′,

where Fib is the Fibonacci anyon theory and Ising′ is a TQFT with the same fusion

rules as the the Ising model.

We can apply the above arguments to learn about global properties of Gk CS theory.

For example, we can ask if Gk CS theory is prime or not. The answer is no in general.

Indeed, consider the case G = SU(2). For k ∈ Neven, SU(2)k is prime. However, for

k ∈ Nodd, the abelian anyon generating the Z2 one-form symmetry forms a modular

subcategory. By Müger’s theorem [49] (see also [52] for a discussion at the level of

RCFT), it then decouples and the theory resolves into a product of two prime theories

SU(2)k ≃

SU(2)1 ⊠ SU(2)intk , if k = 1 (mod4)

SU(2)1 ⊠ SU(2)intk , if k = 3 (mod4) .
(3.139)

where SU(2)intk is a TQFT built out of the integer spin SU(2)k representations. Here

47Here we define |α| to be the quantum dimension.
48We thank a referee for pointing out this example.
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SU(2)1 is the TQFT conjugate to SU(2)1 (these TQFTs are sometimes called the

anti-semion and semion theories in the condensed matter literature).

While Gk CS theory is not prime in general, our arguments above readily prove the

following:

Claim 3.5.1 Non-abelian Wilson lines in SU(N)k CS theory must all lie in the

same prime TQFT factor. For more general Gk CS theory (with G compact and

simple), all Wilson lines corresponding to affine representations with at least two

non-zero Dynkin labels must be part of the same prime TQFT factor.

Proof: Suppose this were not the case. Then, we would find fusion rules of the form

(3.138) with no Wilson lines in the ellipses. □

Clearly, to produce fusion rules of the form (3.2) for non-abelian Wilson lines in the

same prime TQFT, we will need to go beyond SU(N)k CS theory. One way to proceed

is to consider coset theories and use some intuition from section 3.4. Indeed, since

cosets can have fixed points (which we will describe below), it is natural to think they

can lead to fusion rules of the form (3.2).

3.5.2 Virasoro minimal models and some cosets without fixed points

We begin with a discussion of the Virasoro minimal models, as these are simple examples

of theories that are related to cosets. While these cosets do not have fixed points, they

turn out to produce factorized TQFTs that are nonetheless illustrative. In the next

section, we will focus on cosets that have fixed points, and we will see how to engineer

fusion rules of the form (3.2).

One way to construct the Virasoro minimal models is to take a three-dimensional

spacetime R × Σ and place SU(2)k−1 × SU(2)1 CS theory on I × Σ, where I is an

interval in R. We can place SU(2)k CS theory outside this region. At the two 1 + 1

dimensional interfaces between the CS theories (which form two copies of Σ, call them

Σ1,2), we obtain the left and right movers of the RCFT. Here the chiral (anti-chiral)

primaries lie where endpoints of Wilson lines from the SU(2)k and SU(2)k−1×SU(2)1

theories meet on Σ1 (Σ2).

Another way to think about the Wilson lines related to the Virasoro minimal models

is to start with SU(2)k−1×SU(2)1 CS theory and change variables to make an SU(2)k

subsector manifest [89]. Integrating this sector out leaves an effective coset TQFT.
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The end result is that the TQFT we are interested in is49

Tp =
SU(2)p−2 ⊠ SU(2)1

SU(2)p−1
, p ≥ 3 . (3.141)

Here, the natural number p ≥ 3 labels the corresponding Virasoro minimal model (so,

for example, p = 3 for the Ising model).50 We may construct the MTC data underlying

the RCFT and the coset TQFT by taking products (e.g., see [91])

FTp = FSU(2)p−2
·FSU(2)1 · F̄SU(2)p−1

, RTp = RSU(2)p−2
·RSU(2)1 · R̄SU(2)p−1

. (3.142)

In order to make (3.142) precise, we need to explain how the states in Tp are related

to those in the individual SU(2)k theories that make up the coset. Let us denote the

SU(2)p−2, SU(2)1, and SU(2)p−1 weights as λ, µ, and ν. Then, to build the coset we

should identify Wilson lines as follows

W{λ,µ,ν} := Wλ ×Wµ ×Wν ≃ (Wp−2 ×Wλ)× (W1 ×Wµ)× (Wp−1 ×Wν) , (3.143)

where Wp−2, W1, and Wp−1 are abelian Wilson lines transforming in the weight p− 2

(spin (p− 2)/2), weight 1 (spin 1/2), and weight p− 1 (spin (p− 1)/2) representations

of the different TQFT factors.51 Moreover, in order to be a valid Wilson line in Tp, we
should demand that our Wilson lines satisfy

W{λ,µ,ν} ∈ Tp ⇔ λ+ µ− ν ∈ Q ⇔ λ+ µ+ ν = 0 (mod 2) , (3.145)

where Q is the SU(2) root lattice. This relation guarantees that all lines that remain

have trivial braiding with W{p−2,1,p−1} (which is a boson that is in turn identified

with the vacuum). It is in terms of these degrees of freedom that (3.142) should be

understood.

Before proceeding, let us stop and note that the fusion in (3.143) has no fixed points.

Indeed, this statement readily follows from the fact that SU(2)1 is an abelian TQFT,

and abelian theories cannot have fixed points since their fusion rules are those of a

49This is the TQFT analog of the classic result [90] for the corresponding affine algebras:

Virp ≃ ŝu(2)p−2 × ŝu(2)1
ŝu(2)p−1

. (3.140)

50In writing (3.141), we have used the Deligne product to emphasize the fact that the SU(2)p−2 ×
SU(2)1 CS theory is a product TQFT.

51At the level of the corresponding affine algebras, this is the statement that [84]{
λ̂, µ̂, ν̂

}
≃

{
aλ̂, aµ̂, aν̂

}
, (3.144)

where the hat denotes affine weights, and a is the generator of the (diagonal) O(ŝu(2)) outer automor-
phism.
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finite abelian group (in this case Z2).

Given this groundwork, we claim that Tp factorizes as follows

Tp ≃

(SU(2)p−2 ⊠ SU(2)1)
int ⊠ SU(2)intp−1 , if p = 0 (mod 2)

SU(2)intp−2 ⊠ SU(2)conjp−1 , if p = 1 (mod 2) .
(3.146)

The various TQFTs appearing in (3.146) are

(SU(2)p−2 ⊠ SU(2)1)
int := gen

({
W{λ,µ} ∈ SU(2)p−2 ⊠ SU(2)1| λ+ µ = 0 (mod 2)

})
,

SU(2)intp−1 := gen ({Wν ∈ SU(2)p−1| ν = 0 (mod 2)}) ,
SU(2)conjp−1 := gen

({
W{λ,µ,ν}| λ+ µ+ ν = 0 (mod 2) , Wλ,Wµ abelian

})
,

SU(2)intp−2 := gen ({Wλ ∈ SU(2)p−2| λ = 0 (mod 2)}) , (3.147)

where “gen(· · · )” means that the TQFT is generated by the Wilson lines enclosed.

Notice that in the case that p is even, p − 1 is odd and SU(2)intp−1 is precisely the

decoupled TQFT factor required by Müger’s theorem in (3.139) containing integer

spins (even Dynkin labels). Similar logic applies to SU(2)intp−2 in the case that p is

odd. The TQFT SU(2)conjp−1 has the same fusion rules as SU(2)p−1, but it is a different

TQFT. Finally, for the case that p = 3 (i.e., the Ising model), we see that T3 does not

factorize.52

Our strategy to prove the factorization in (3.146) is to construct the various factors

and then argue that they are well-defined TQFTs by Müger’s theorem [49]. Although

we will not pursue it, this same approach leads to interesting generalizations for cosets

built out of groups other than SU(2).

To that end, let us first take the case of p ≥ 3 odd. Using the result in (3.142), we

have that the modular S matrix also takes a product form

S{λ,µ,ν}{λ′,µ′,ν′} = S
(p−2)
λλ′ ·S(1)

µµ′ ·S
(p−1)
νν′ , θ{λ,µ,ν}{λ′,µ′,ν′} = θ

(p−2)
λλ′ ·θ(1)µµ′ · θ̄

(p−1)
νν′ , (3.148)

where the superscripts on the righthand sides of the above equations refer to the cor-

responding factors in the coset (3.141). From the S matrix, Verlinde’s formula yields

(see also the discussion in [84])

N
{λ′′,µ′′,ν′′}
{λ,µ,ν}{λ′,µ′,ν′} = N

(p−2)λ′′

λλ′ ·N (1)µ′′

µµ′ ·N (p−1)ν′′

νν′ , (3.149)

where, again, the superscripts on the righthand side denote the different coset factors

in (3.141). The factor SU(2)intp−2 in the second line of (3.146) is clearly closed under

fusion. So too is SU(2)conjp−1. To have factorization of the TQFT, we need only show that

52Note also that Ising shares the same fusion rules as SU(2)2, though they are not the same TQFTs.
For example, the σ fields have different twists.
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all Wilson lines can be written in this way and, by Müger’s theorem, that one of these

factors is modular. The second part is trivial: we have already seen that SU(2)intp−2

is modular in the discussion surrounding (3.139). We can confirm this statement by

looking at the modular S-matrix for SU(2)p−2

S
(p−2)
λλ′ =

√
2

p
sin

(
(λ+ 1)(λ′ + 1)π

p

)
. (3.150)

and taking the submatrix involving the integer spins (even weights).

Therefore, we need only check that all states in the coset (3.141) can be expressed

in this way. To that end, we can see that

|SU(2)intp−2| =
p− 1

2
, |SU(2)conjp−1| = p , (3.151)

where the norm denotes the number of simple elements within. Therefore, we see

that we have |Tp| = p(p − 1)/2, which is precisely the number of states in the coset

(3.141) (note that in these computations we have used (3.143) and (3.145)) and the

corresponding A-type Virasoro minimal model.

To make contact with the fusion rules in (3.4), we need to explain precisely how

coset lines map onto the Virasoro primaries. The results above allow us to realize

the, say, Virasoro left-movers as states on the boundary of the bulk TQFT, Tp ≃
SU(2)intp−2 ⊠ SU(2)conjp−1 with p odd. Now, we need to see how we can map boundary

endpoints of lines in this theory to Virasoro primaries, φ(r,s). To that end, by comparing

the S-matrix for Tp ≃ SU(2)intp−2 ⊠ SU(2)conjp−1 with the corresponding expressions for

those of the Virasoro minimal models, we have that the labels of the Virasoro primary,

φ(r,s) map as follows (see also [84])

r = λ+ 1 , s = ν + 1 . (3.152)

In particular, we see that the φ(r,1) primaries are endpoints of lines in SU(2)intp−2 while

the φ(1,s) are endpoints of lines in SU(2)conjp−1. This reasoning explains the fact that

non-abelian Virasoro primaries of these types have unique fusion outcomes53

φ(r,1) × φ(1,s) = φ(r,s) , (3.153)

discussed in the introduction (at least for p odd). As an example, we have T3 ≃ Ising

(i.e., the TQFT is the Ising MTC), which does not factorize. On the other hand, for

p = 5, we have

T5 = (G2)1 ⊠ SU(2)conj4 , (3.154)

53Though, again, we stress that this factorization is not a factorization of RCFT correlators.
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where (G2)1 is the so-called “Fibnonacci” TQFT, and SU(2)conj4 is a TQFT with the

same fusion rules and S-matrix as SU(2)4.

Let us now consider p ≥ 4 even. The modular data and fusion rules still take a

product form as in (3.148) and (3.149). Now, however, we should examine the first line

in (3.146). Using (3.149), it is again easy to see that both SU(2)intp−1 and (SU(2)p−2 ⊠

SU(2)1)
int are separately closed under fusion. Moreover, just as before, we can use the

discussion around (3.139) and Müger’s theorem to conclude that SU(2)intp−1 is indeed a

decoupled TQFT as claimed in (3.146).

We should again check that all states in (3.141) can be reproduced. To that end,

we have

|SU(2)intp−1| =
p

2
, |(SU(2)p−2 ⊠ SU(2)1)

int| = p− 1 . (3.155)

As a result, we have |Tp| = p(p − 1)/2, which is the correct number of states in the

coset (3.141) and the corresponding A-type Virasoro minimal model.

Our mapping is again as in (3.152), but now φ(r,1) primaries are endpoints of lines

in (SU(2)p−2 ⊠ SU(2)1)
int, and φ1,s are endpoints of lines in SU(2)intp−1. This again

explains the fusion outcomes in (3.153) for the case of p even as well. As an example,

note that

T4 = Ising′ ⊠ (F4)1 , (3.156)

where the first factor is a rank three TQFT with the same fusion rules as Ising (and

SU(2)2), and the second factor is the time reversal of the Fibonacci theory in (3.154).

As a result, we conclude that, although the TQFTs discussed in this section do

have non-abelian anyons fusing to give a unique outcome, this is due to the fact that

the corresponding TQFTs factorize.

3.5.3 Beyond Virasoro: cosets with fixed points

In section 3.4 we saw that fixed points of various kinds gave rise to fusion rules of the

form (3.8) (in particular, see theorem 3.4.1 of section 3.4). In the context of cosets, we

can also naturally engineer fixed points under the action of fusion with abelian anyons

generating identifications of fields. In the case of Virasoro, this didn’t happen (see

(3.143)). Indeed, this statement followed from the fact that we had an abelian factor

in the coset (3.141).

The simplest way to get around this obstacle and generate fixed points is to consider

instead

T̂p =
SU(2)p−2 ⊠ SU(2)2

SU(2)p
, (3.157)

where p ≥ 3 (we should take p ≥ 4 to avoid the problem of abelian factors). By

further identifying some of these coset fields, we get theories related to the N = 1

super-Virasoro minimal models [90,92]. Note that the case of p = 3 corresponds to the
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T4 case discussed previously (i.e., to the TQFT related to the tri-critical Ising model).

For the theories in (3.157), we find the following generalization of the identification

condition in (3.143)54

W{λ,µ,ν} := Wλ ×Wµ ×Wν ≃ (Wp−2 ×Wλ)× (W2 ×Wµ)× (Wp ×Wν)

= Wp−2−λ ×W2−µ ×Wp−ν , (3.158)

In particular, if λ = (p − 2)/2, µ = 1, and ν = p/2, we can have a fixed point55. Of

course, if p is odd, we don’t have a fixed point. In this case, we can again run logic

similar to that used in the Virasoro case to argue that the TQFT factorizes.

However, if p is even, then we need to properly define the coset. In particular, we

should resolve the fixed point Wilson line as follows (see [53, 93] for the dual RCFT

discussion)

W{(p−2)/2,1,p/2} → W(1)
{(p−2)/2,1,p/2} +W(2)

{(p−2)/2,1,p/2} . (3.159)

Let us consider what turns out to be the simplest interesting case, p = 6

T̂6 =
SU(2)4 ⊠ SU(2)2

SU(2)6
. (3.160)

The fixed point resolution in (3.159) becomes W{2,1,3} → W(1)
{2,1,3} +W(2)

{2,1,3}. As in the

cases of one-form gauging with fixed points discussed in section 3.4, it is natural that

there should be a zero-form symmetry exchanging W(1)
{2,1,3} ↔ W(2)

{2,1,3}.

As a first step to better understand the theory after resolving the fixed point, note

that T̂6 has the following number of lines

|T̂6| = 28 . (3.161)

Of these fields, twenty-six come from identifying full length-two orbits in (3.158) while

two come from resolving the fixed point. In what follows, {λ, µ, ν} will denote fields in

full orbits, while labels of the form {2, 1, 3}(i) (with i = 1, 2) will denote the fixed point

lines.

To understand the fusion rules and the question of primality after fixed point res-

olution, we can compute the S matrix using the algorithm discussed in [93] (let us

denote the result by S̃). It takes the form

S̃{λ,µ,ν}{λ′,µ′,ν′} = 2S{λ,µ,ν}{λ′,µ′,ν′} , S̃{2,1,3}(i){λ′,µ′,ν′} = S{2,1,3}{λ′,µ′,ν′} ,

54We also require that λ+µ+ν = 0 (mod 2) so that the lines in the coset theory have trivial braiding
with the bosonic line W{p−2,2,p}. This line is in turn identified with the vacuum.

55Note that the fixed points discussed in section 3.4 are fixed points under 1-form and 0-form sym-
metry action. In the coset examples studied here, fixed points refer to field identification fixed points.
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Wilson lines Quantum dimensions

W{0,0,0},W{4,0,0},W{0,2,0},W{0,0,6} 1

W{0,0,2},W{0,0,4},W{4,0,2},W{4,0,4} cot
(
π
8

)
W{1,0,1},W{1,0,5},W{3,0,1},W{3,0,5}

√
3
2 csc

(
π
8

)
W{0,1,3},W{2,1,3}(1) ,W{2,1,3}(2)

√
2 csc

(
π
8

)
W{1,0,3},W{3,0,3}

√
3 csc

(
π
8

)
W{2,0,0},W{2,0,6} 2

W{0,1,1},W{0,1,5} csc
(
π
8

)
W{1,1,0},W{1,1,6}

√
6

W{2,0,2},W{2,0,4} 2 cot
(
π
8

)
W{1,1,2},W{1,1,4}

√
6 cot

(
π
8

)
W{2,1,1} 2 csc

(
π
8

)
Table 3.1: The twenty-eight Wilson lines and associated quantum dimensions in the T̂6

TQFT.

S̃{2,1,3}(i){2,1,3}(j) =
1

2

(
1 −1

−1 1

)
, (3.162)

where

S{λ,µ,ν}{λ′,µ′,ν′} = S
(p−2)
λλ′ · S(2)

µµ′ · S
(p)
νν′ , (3.163)

is the naive generalization of (3.148) to the cosets at hand. Note that the fusion rules

we obtain from S̃ for fields not involving {2, 1, 3}(i) are the naive ones we get from S

via the restrictions and identifications described above.

The above discussion is sufficient to prove that T̂6 is prime. Indeed, we see from

(3.162) that the fields that come from identifying length-two orbits have the quan-

tum dimensions they inherit from S. The fixed point resolution fields, on the other

hand, have half the quantum dimension of the fixed point field. We therefore have the

following four abelian anyons generating a Z2 × Z2 fusion algebra

W{0,0,0} ≃ W{4,2,6} , W{4,0,0} ≃ W{0,2,6} , W{0,2,0} ≃ W{4,0,6} , W{0,0,6} ≃ W{4,2,0} .

(3.164)

By (3.162), we see that the braiding amongst abelian anyons is not affected by taking

S → S̃. As a result, we see that the four abelian anyons all braid trivially. Therefore,

they cannot form a decoupled TQFT.

Given this discussion, what could a putative factorized theory look like? Since T̂6
has order 28 = 7 · 22, we see that the only way to have a non-trivial factorization is

to have a factorization of the form T̃14 ⊠ T̃2 into prime TQFTs with rank fourteen and

rank two, or T̃7 ⊠ T̃4 with prime TQFTs of rank seven and four, or T̃7 ⊠ T̃2 ⊠ T̃ ′
2 with

prime TQFTs of rank seven, two, and two.
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Let us consider the first factorization first. Since the abelian anyons (and any subset

thereof) cannot form a separate TQFT factor (this factor would be non-modular), the

classification in [46] implies that we have either T̃2 ≃ (G2)1 or T̃2 ≃ (F4)1. In any

case, the non-trivial anyon in T̃2 has quantum dimension dτ = (1 +
√
5)/2. It is

easy to check that no such quantum dimension can be produced from products of

quantum dimensions in the different coset factors (and so restrictions cannot produce

them either). Moreover, one can check that the resolved fixed point fields cannot have

this quantum dimension either. This same logic applies to the T̃7⊠ T̃2⊠ T̃ ′
2 factorization

as well.

Therefore, it only remains to consider T̃7 ⊠ T̃4. The other factor, T̃4, has four

anyons. By [46], this theory is either (G2)2 or its time reversal. In either case, we

cannot produce the requisite dα = 2 cos(π/9) quantum dimension from our coset.

Therefore, we conclude that T̂6 is indeed a prime TQFT.

Moreover, we find the following fusion rules of non-abelian Wilson lines with unique

outcome

W{2,0,0} ×W{0,0,2} = W{2,0,2} , W{2,0,0} ×W{0,0,4} = W{2,0,4} ,

W{1,1,0} ×W{0,0,2} = W{1,1,2} , W{1,1,0} ×W{0,0,4} = W{1,1,4} ,

W{0,1,1} ×W{2,0,0} = W{2,1,1} . (3.165)

We can obtain additional such fusion rules by taking a product with some of the abelian

lines in (3.164).

Just as in the case of discrete gauge theories with fusion rules of the above type,

our theory also has a non-trivial symmetry of the modular data. Indeed, from (3.162),

it is clear that the S̃-matrix has a Z2 symmetry under the interchange

g
(
W{2,1,3}(1)

)
= W{2,1,3}(2) , 1 ̸= g ∈ Z2 . (3.166)

Note that this symmetry is not charge conjugation since S̃ is manifestly real. Moreover,

since we don’t change the twists, this action lifts to a symmetry of the modular data

(additionally, it should lift to a symmetry of the full TQFT).

If we wish to make contact with the N = 1 minimal model, then we should note

that the fermionic W{0,2,0} line corresponds to the supercurrent of the SCFT. We can

then organize the Neveu-Schwarz (NS) sector into supermultiplets under fusion with

this operator. Doing so (and paying careful attention to the fields in the resolution of

the fixed point), we find nine NS sector fields and nine Ramond sector fields as required.

There are many ways to generalize the example we have given here. Indeed, when

there are fixed points in the coset construction we expect to often be able to generate

fusion rules of the form (3.2). A deeper understanding of these theories and some more
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general methods to characterize whether the cosets are prime (along the lines of the

general criteria we have in the case of discrete gauge theories) would be useful. In any

case, we see that, as in the case of discrete gauge theories, symmetry fixed points and

zero-form (quasi) symmetries are deeply connected with fusion rules of the form (3.2).

3.6 Conclusion

In this chapter, we have seen that the existence of fusions of non-abelian anyons having

a unique outcome is intimately connected with the global structure of the corresponding

TQFT.

Let us summarize our results for continuous gauge groups (and continuous groups

more generally):

• Building on the well-known fact that SU(2) spin addition / fusion of two non-

abelian representations (i.e., higher-dimensional / spin non-singlet representa-

tions) is reducible (i.e., has multiple outcomes with different total spin), we argued

that a similar result holds in all compact simple Lie groups.

• We argued that the result in the previous bullet point on classical groups can be

extended to a theorem constraining SU(N)k CS theory: fusions of non-abelian

Wilson lines in these theories do not have unique outcomes. More generally, Wil-

son lines corresponding to affine representations with at least two non-vanishing

Dynkin labels in any Gk CS theory (for G a compact simple Lie group) do not

have unique outcomes. These results have implications for the global structure

of these theories (claim 3.5.1): the Wilson lines discussed here must all lie in the

same prime factor (although Gk CS theories are not prime in general).

• We showed that one way to produce a×b = c fusions involving non-abelian a and

b is to consider cosets. In the case of TQFTs underlying Virasoro minimal models

we argued that (as in the (E7)2 case) such rules arise from factorizations of the

TQFTs into multiple prime factors. On the other hand, if we include cosets with

fixed points, we can obtain prime theories with such fusion rules.

Next, let us summarize our results for discrete gauge groups (and discrete groups

more generally):

• We have argued that 2+1-dimensional discrete gauge theory is useful for putting

conjectures and ideas involving finite simple groups into a broader context and

unifying various relevant objects. Using this approach, we proved three theorems

that TQFT relates to the AH conjecture.

In fact, we may also generalize the discussion in section 3.3 and show that the

AH conjecture implies that, for any twisted or untwisted discrete gauge theory
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based on a non-abelian finite simple group, fusions of the form

L([g],πωg )
× L([h],πωh )

=
∑
πωgh

L([gh],πωgh)
, g, h ̸= 1 , (3.167)

are not allowed.

• We argued that Zisser’s construction of irreducible products of higher-dimensional

irreducible AN representations [62] can be lifted to fusions of non-abelian Wilson

lines with unique outcomes in AN discrete gauge theory. From the perspective

of the closely related SN group and corresponding discrete gauge theory, the AN

result requires certain 1-form symmetry fixed points (where we define “one-form

symmetry” in the SN group to correspond to the Z2 ⊂ Rep(SN) generated by the

sign representation). We then derived theorem 3.4.1 that generalizes this relation

between the AN and SN discrete gauge theories to other TQFTs.

• Going to the SN discrete gauge theory by gauging the Z2 0-form outer automor-

phism symmetry of the AN discrete gauge theory resolves the a×b = c non-abelian

fusion rule into fusion rules not of this type. However, we saw that in the case of

O(5, 3) discrete gauge theory such resolutions do not always occur via automor-

phism gauging. On the other hand, a symmetry fixed point again plays a role:

in the resulting O(5, 3) ⋊ Z2 discrete gauge theory, there is a 0-form symmetry

fixed point. We then proved theorem 3.4.2, which explains why this phenomenon

occurs in more general theories. In fact, the O(5, 3) ⋊ Z2 discrete gauge theory

relative of the a× b = c fusion equations in the O(5, 3) TQFT described in (3.76)

also has a 1-form symmetry fixed point for the anyon appearing on the right hand

side. In the original O(5, 3) TQFT this latter anyon becomes a set of two anyons

related by the 0-form symmetry. Our theorem 3.4.3 generalizes this observation

to other TQFTs.

• We showed that one can lift Gallagher’s theorem to a statement on the fusion

of non-abelian Wilson lines involving unfaithful representations with a unique

outcome in TQFT. Moreover, we elucidated the roles that subcategory structure

and symmetries play in this result for various specific TQFTs. We then proved

theorem 3.4.4 that generalizes these observations to a broader set of theories. We

also argued that this subcategory structure helps explain the large ratio of group

orders in (3.85).

• To gain a sense of how magnetic fluxes behave in general discrete gauge theories,

we proved theorem 3.4.6. In particular, we showed that in discrete gauge theories

with a non-abelian gauge group, G, the magnetic fluxes do not form a fusion
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subcategory. This result immediately places constraints on electric-magnetic self-

dualities / quantum symmetries that constrain our symmetry searches later in

section 2.

• At a more constructive level, we also proved theorem 3.4.11. This result gives

infinitely many generalizations of the well-known electric-magnetic self-duality of

the S3 discrete gauge theory.

• In order to better understand which discrete gauge theories are prime, we proved

theorem 3.4.8. This result allowed us to more easily analyze which prime discrete

gauge theories have fusions of non-abelian anyons with unique outcomes.

• In order to get a handle on the structure of discrete gauge theories with fusion

rules of our desired type involving anyons carrying non-trivial flux, we proved the-

orem 3.4.12 and corollary 3.4.12.1. These results give the subcategory structure

that arises when such fusions occur. In turn, this structure gives an explanation

of these fusion rules. Theorem 3.4.13 then partially extends these results to the

case in which one of the non-abelian anyons involved is a Wilson line.

• The software GAP was used to analyze the fusion rules of hundreds of untwisted

discrete gauge theories. In all the cases we checked, we find that discrete gauge

theories with a × b = c type fusion rules have quasi-zero-form symmetries. This

suggests that symmetries of the modular data are a characteristic feature of such

fusion rules.
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Chapter 4

Galois Conjugation of TQFTs

4.1 Introduction

In Chapter 2, we explored how 2+1D TQFTs are determined by Pentagon and Hexagon

equations. Though these constraints are often too complicated to be solved exactly, a

general mathematical result (the Ocneanu rigidity theorem) states that there are only

a finite number of inequivalent solutions to the Pentagon and Hexagon equations for

a given set of fusion rules [42]. This fact allows us to define a Galois group which

permutes the solutions to these polynomials. In other words, Galois conjugation is a

systematic way to move around the space of TQFTs. Moreover, Galois conjugation

is useful in practice: it has played a role in the classification of low-rank TQFTs [46],

proving the rank finiteness theorem [94], finding modular isotopes [76], studying low-

dimensional lattice models [95–97], in connections between TQFT and other types of

QFTs [48,98–102], and in the study of gapped boundaries [103].

Galois conjugate TQFTs share many important properties. In particular, they have

the same fusion rules. However, other observables, like the expectation values of Wilson

loop operators, can change under Galois action. Therefore, Galois conjugate TQFTs

are typically not dual theories. Still, one can define quantities like multi-boundary

entanglement entropy, which are invariant under Galois conjugation in abelian TQFTs,

T1 T2

q

p

Figure 4.1: Galois conjugation of TQFT T1 by elements p, q in the Galois group. T1

is invariant under Galois action by p, but it transforms non-trivially to T2 under Galois
action by q.
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and in an infinite set of links in non-abelian TQFTs [1].

In this chapter, we will show that Galois conjugate TQFTs share a lot more struc-

ture. More precisely, we will argue that Galois conjugate TQFTs have isomorphic

0-form, 1-form, and 2-group symmetry structure (up to a mild assumption, this result

also holds for anti-unitary symmetries). Moreover, there is a well-defined map between

the gapped boundaries of Galois conjugate TQFTs. These results show that, compared

to other procedures relating distinct TQFTs like gauging, condensation, etc., there is

a sense in which Galois conjugation is a particularly mild change to the TQFT.

On the other hand, unlike gauging, Galois actions can map a unitary TQFT to

a non-unitary one. While non-unitary TQFTs (and more general non-unitary QFTs)

are interesting in their own right, one of the motivations for our work is to better

understand when unitary TQFTs are related by a Galois action. In other words, we

would like to ask: Given a unitary TQFT, when is a Galois conjugation guaranteed to

land on another unitary TQFT? One common way in which this can happen is if we

consider a unitary theory without a time-reversal symmetry. In this case, applying time

reversal takes us to a different theory that should also be unitary (examples of such

phenomena include SU(2)1 ↔ (E7)1 and SU(3)1 ↔ (E6)1 in Chern-Simons theory).

This procedure gives a simple example of a Galois action that preserves unitarity, but

we will see that the story is more complex and interesting.

Another motivation for our work comes from the observation that several important

low-rank unitary TQFTs like the Toric Code, Double Semion, and the 3-Fermion Model

are Galois invariant.56 These examples illustrate that, while most TQFTs transform

under a Galois action, a potentially important subset are Galois invariant. This dis-

cussion begs the question of what this more general set of unitary “Galois fixed point

TQFTs” looks like. As we will see, this set is substantially simpler than its non-unitary

counterpart.57 It also leads to questions of whether this Galois invariance is preserved

under other operations like gauging and anyon condensation. We will see that, while

Galois invariance is generally preserved under anyon condensation (which includes 1-

form symmetry gauging as a special case), it can be violated when 0-form symmetries

are gauged. We will prove some general statements about when such anomalous viola-

tion is allowed.

The plan of this chapter is as follows. In the next section, we define Galois conju-

gation of a TQFT and study unitary Galois orbits. We continue with an analysis of

Galois actions on various classes of unitary theories: abelian TQFTs, discrete gauge

theories, and certain weakly integral MTCs. In section 4.3 we study theories with

56Note that by Galois invariant, we do not mean that all the data of the TQFT is invariant. For
example, in the Double Semion, the anyon, s, has its twist θs = i Galois conjugated to g(θs) = −i.
However, the anyon, s̃, has its twist θs̃ = −i Galois conjugated to g(θs̃) = i. Therefore, this Galois
action can be compensated by the time reversal symmetry that exchanges s↔ s̃.

57Perhaps this relative simplicity hints at even deeper simplifications in the space of unitary TQFTs.
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gapped boundaries and explain how Galois conjugation relates gapped boundaries of

Galois conjugate TQFTs. In section 4.4 we discuss the relationship between symmetries

of Galois conjugate TQFTs. Following this, we look at how Galois conjugation inter-

acts with gauging 0-form symmetries and anyon condensation. We use these results to

characterize Galois invariant TQFTs. Section 4.5 contains several additional examples

of Galois conjugation of TQFTs which concretely illustrate our ideas and compliment

our discussion. Finally, we conclude with some comments.

4.2 Galois Conjugation of TQFTs

Let us consider a 2 + 1D TQFT, T , corresponding to an MTC, C. We will think of

C as being determined through the action of the F symbols, R symbols, and pivotal

coefficients, ϵa ∈ {±1} 58, on the trivalent fusion vertices of the simple objects / anyons

[17]. An important subtlety to keep in mind is that this data only determines the total

quantum dimension, D := ±
√∑

a d
2
a, and hence the normalized S in (2.13) up to an

overall sign. On the other hand, D is an important quantity in T . For example, D > 0

is a necessary condition for a unitary TQFT (as follows from positivity of the TQFT

inner product [31]). In particular, for a given C, there are two TQFTs, T±, that differ
by D → −D, S → −S, and c → c + 4 (mod 8) (at least one of these TQFTs must be

non-unitary). When the distinction between the two TQFTs is clear from the context

or does not matter, we will simply write T .

From this discussion, we can describe the number fields that enter our analysis and

set the stage for the appearance of Galois groups. To that end, first construct a field

extension, K ′
C = Q(F,R), from the adjunction of the elements of F and R to the field

of rational numbers [33] [104]. Using the gauge freedom alluded to above, the authors

of [33] showed that there is a gauge in which K ′
C is particularly simple: it is a finite

field extension.

To understand how this finite field arises, let us consider the case of a system of

multivariable polynomial equations over the rational numbers, p1(x1, · · · , xn) = · · · =
pk(x1, · · · , xn) = 0, with a finite number of solutions. Any solution of this system

belongs to a finite extension of Q.59 On the other hand, the Pentagon and Hexagon

equations are multivariable polynomials over Q with an infinite number of solutions

(because of the gauge freedom). Therefore, in this case, we have an algebraic variety,

V , in which some points do not belong to a finite field extension of Q. However,

58For unitary MTCs, the pivotal coefficients are fixed. Therefore, in this case the F and R symbols
completely determine the unitary MTC.

59One way to show this statement involves proving that the ideal, I, generated by p1, · · · , pk in the
polynomial ring Q[x1, · · · , xn] is zero dimensional. Given a solution a1, · · · , an to the set of polynomial
equations p1 = 0, · · · , pk = 0, one then shows that there exists some polynomial ri(xi) ∈ Q[xi], 1 ≤
i ≤ n, such that ri(ai) = 0. For more details, see [105].
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algebraic points of a complex affine algebraic variety defined over Q are dense in the

Zariski topology [106] (Q̄ is the algebraic closure of Q).60 The upshot is that, given a set

of multivariable polynomials with coefficients in Q̄, we can always find solutions that are

algebraic. Therefore, there are solutions to the Pentagon and Hexagon equations that

are algebraic. To show that all MTCs allow a gauge in which F and R are algebraic,

the authors of [33] showed that the gauge freedom acts on V as an algebraic group and

that each orbit of this action has an algebraic point.

Next let us discuss how Galois groups enter our story. Recall that, given a number

field, we can study its automorphisms. As a simple example, consider the polynomial

equation x2 = 2. This is a polynomial over Q, but its solutions are ±
√
2 ̸∈ Q. To

describe these solutions, we can construct the field extension Q(
√
2), which consists

of elements of the form a + b
√
2 where a, b ∈ Q. Note that the field Q(

√
2) has an

automorphism given by
√
2 → −

√
2. In particular, any algebraic equation involving

the elements of Q(
√
2) does not change under the exchange

√
2 → −

√
2. Note that this

action permutes the two roots of the polynomial x2 = 2 we started with. In this simple

case, this is the only non-trivial permutation of the roots. However, in more general

cases, the automorphisms of the number field obtained from the roots of a polynomial

may not exhaust all possible permutations of the roots.

Throughout this chapter, we will work in a gauge in which F and R belong to a

number field. Now, any finite field extension over Q is separable. However, it need

not be normal. Since normal closures have useful algebraic properties, let us consider

the normal closure of K ′
C , and call it KC . Because KC is normal and separable, it is

a Galois field, and we will refer to it as the defining number field of C. Note that KC

need not contain the total quantum dimension, D, and therefore need not contain the

normalization of the S matrix in (2.13) (it does contain D2 and S̃).61

The authors of [33] conjectured that there is a gauge in which the defining number

field of an MTC is cyclotomic (in other words, the number field can be obtained by

appending a primitive nth root of unity to Q).62 Note that this claim does not hold for

general fusion categories. For example, the fusion category obtained from the principal

even part of the Haagerup subfactor does not admit a gauge in which the defining

number field is cyclotomic [107].

Given the above construction, we can act on KC with some element, q, of the

Galois group, Gal(KC). Since F and R are elements of KC , they get acted on by q;

we denote the result as q(F ) and q(R) respectively. Recall that the automorphisms

of the field, KC , preserve all algebraic equations involving the elements of KC . The

60This result will play an important role in our analysis.
61For example, in abelian TQFTs with Z3 fusion rules (see Table (4.1) for the explicit MTC data), F

and R can be chosen to belong to the cyclotomic field Q(ξ3), while D =
√
3 ̸∈ Q(ξ3) is only an element

of Q(ξ12). Here, ξn is a primitive nth root of unity.
62To the best of our knowledge, there are no known counterexamples to this conjecture.
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Pentagon and Hexagon equations are algebraic equations satisfied by some elements of

KC . Therefore, they are preserved under a Galois action. That is, if F and R satisfies

the Pentagon and Hexagon equations, so do q(F ) and q(R)! Therefore, q(F ) and q(R)

defines an MTC, which we denote as q(C).

Definition: We define the Galois action on TQFTs through the Galois action on

the defining MTC data, F and R. In particular, we choose not to act to reverse

the sign of the total quantum dimension, D, or, equivalently, the sign of the nor-

malization of S (this choice amounts to working with the (S̃, T ) modular pair in

(2.13), (2.14)). We lose no generality since, after performing such a Galois action,

we can, in principle, consider TQFTs with either sign of D and normalization of

S.

Various authors have established that the modular data of a TQFT is always con-

tained in a cyclotomic field extension [32,108–111]. In the language of these references,

the modular data is given by the pair, (S, φ · T ), where φ := exp(−πic/24) (here c can
essentially be thought of as the central charge of the associated 2D RCFT63). Let this

cyclotomic extension be Q(ξN ′), where ξN ′ is a primitive N ′th root of unity. Since our

MTC is insensitive to the sign of D, and since we do not consider Galois actions that

take (D, S) → (−D,−S), it is more natural to work with the modular data field Q(ξN )

(with N ≤ N ′) for (S̃, T ) in (2.13), (2.14).64

Let us now connect this discussion with the defining number field. To that end,

note that Q(ξN ) ⊂ KC is a subfield. Now, every element of q ∈ Z×
N = Gal(Q(ξN )) acts

on the modular data to give potentially new modular data, q(S̃), q(T ). Then, for every

q ∈ Z×
N acting on the modular data, we have some σ ∈ Gal(KC) such that σ|Q(ξN ) = q.

This statement holds because KC is normal.65

As we have seen from the above discussion, Galois conjugation permutes the solu-

tions of the pentagon and hexagon equations. Hence, it relates distinct TQFTs with

the same fusion rules. However, as the following example illustrates, there may not be

a Galois conjugation relating any two solutions of the Pentagon and Hexagon equations

for particular fixed fusion rules:

Example: Consider the Toric Code (a.k.a. Z2 discrete gauge theory), the 3-

Fermion Model (a.k.a. Spin(8)1 Chern-Simons theory), and Double Semion (a.k.a.

SU(2)1 ⊠ (E6)1 Chern-Simons theory or twisted Z2 discrete gauge theory). All

these theories have Z2 × Z2 fusion rules. For abelian theories (i.e., theories whose

63Although, see [111] for a more RCFT-independent discussion.
64We have D2 ∈ Q(ξN ) since the quantum dimensions are in S̃ but, in general, D, φ ̸∈ Q(ξN ) (this

last fact follows from the observation in [110,111] that the elements of φ · T determine the cyclotomic
extension of the modular data).

65This discussion explains why it is better to work with the normal field KC instead of K′
C itself.

87



CHAPTER 4. GALOIS CONJUGATION OF TQFTS

fusion rules are abelian groups), it turns out that all the defining data discussed

above—the F and R symbols—can be determined in terms of the twists of the

anyons, θi. Moreover, for abelian theories, we can choose a gauge in which KC

is the number field determined by the twists.a For Toric Code, we have anyons

1, e,m, ϵ (where ϵ = e×m) with twists

θ1 = θe = θm = 1 , θϵ = −1 , (4.1)

while the 3-Fermion Model has anyons 1, f1, f2, f3 (where f3 = f1× f2) with twists

θ1 = 1 , θf1 = θf2 = θf3 = −1 , (4.2)

and Double Semion has anyons 1, s, s̃, d (where d = s× s̃) with twists

θ1 = θd = 1 , θs = i , θs̃ = −i . (4.3)

In the first two cases, KC = Q, and the corresponding Galois group is trivial.

Therefore Toric Code and the 3-Fermion Model are Galois invariant and are not

related to each other by a Galois action. In the Double Semion case (4.3), we see

that KC = Q(i) and so Gal(KC) = Z2 has a non-trivial element implementing

complex conjugation. However, complex conjugation exchanges the twists θs ↔ θs̃

while leaving the rest of the data invariant. Therefore, the Double Semion theory

is mapped to itself. In summary, all three of these theories share the same fusion

rules, but they are unrelated by a Galois action.

aThis statement follows from (2.17) and (2.18) of [112] along with the fact that the twists are
valued in a cyclotomic (and hence Galois) field.

Sometimes, even if a Galois action is non-trivial, it may act as a gauge transformation

on the F and R symbols, leaving the theory invariant.

Example: In the previous example, we saw that Galois action acts trivially on

the Toric code. Consider a gauge in which the F and R symbols of the Toric code

takes the values

R1
ϵ,ϵ = Rϵm,e = Rem,ϵ = Rmϵ,e = −1 , Rϵe,m = R1

e,e = R1
m,m = 1 ,

F 1
ϵ,m,e = F 1

ϵ,e,m = −F 1
m,e,ϵ = −F 1

e,m,ϵ = i , (4.4)

with all other F = 1. Clearly, the Galois group is Z2 and acts via complex con-

jugation. However, this action is trivial in abelian group cohomology. Indeed, by

rotating the basis vector ψ ∈ V 1
ϵ,ϵ as ψ → −iψ, we find that all F,R = ±1. There-

fore, in this gauge, the Galois group is trivial and so the original Z2 Galois group
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leaves the theory invariant.

More generally, we will have theories that transform non-trivially under Galois actions.

Example: ZN TQFT (N odd). Let us consider abelian TQFTs with ZN fusion

rules and N odd. One set of solutions to the hexagon and pentagon equations is

Fj1,j2,j3 = 1 , Rj1,j2 = exp

(
2πij1j2
N

)
, (4.5)

where ji ∈ ZN . From these quantities, we can build the modular data

Tj1,j2 = δj1,j2 exp

(
2πij1j2
N

)
, Sj1,j2 =

1√
N
Rj1,j2Rj2,j1 =

1√
N

exp

(
4πij1j2
N

)
.

(4.6)

Clearly, for any N , the Galois action is non-trivial (i.e., the above solution always

lies in a non-trivial Galois orbit).

As a particularly simple example, consider N = 3. In this case, the F and R

matrices are all 3rd roots of unity. Therefore, they lie in the number field Q(e
2πi
3 )

with Galois group Z×
3 ≃ Z2. The solution (4.5), (4.6), with N = 3 plugged in,

corresponds to SU(3)1 Chern-Simons theory. The Galois element 2 ∈ Z×
3 imple-

ments time reversal and produces (E6)1.
a Note that SU(3)1 and (E6)1 are unitary

theories and correspond to abelian CS theories.

aNote that our definition of the defining number field does not involve the normalization of
the S-matrix. Also, Galois action on the TQFT does not involve an action on the normalization
of the S matrix. If we include the normalization of the S-matrix in our discussion, then noting
that

√
3 = exp (2πi/12) + exp (−2πi/12) makes it clear that the Galois group is Z×

12 ≃ Z2 × Z2.
Acting with 11 ∈ Z×

12 takes (S, T ) → (S∗, T ∗), while the remaining elements (5, 7 ∈ Z×
12) also flip

the sign of the normalization of the S matrix.

Example: Fibonacci TQFT ≃ (G2)1 Chern-Simons. Here we consider a non-

abelian example. Let us suppose that there are two simple elements, {1, τ}, and
that the only non-trivial fusion rule is

τ ⊗ τ = 1 + τ . (4.7)

The Fibonacci MTC, which gives rise to (G2)1 Chern-Simons theory, solves the

pentagon and hexagon equations with these fusion rules. The corresponding non-

trivial MTC dataa is

F ττττ =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
, R1

ττ = ξ2 ,

Rτττ = ξ−
3
2 , φ =

1

2
(1 +

√
5) = ξ−1 + 1 + ξ , ξ = exp

(
2πi

5

)
. (4.8)
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From these quantities, one can construct the modular data

S =
1√

2 + φ

(
1 φ

φ −1

)
, T = diag

(
1, exp

(
4πi

5

))
. (4.9)

Since all MTCs with Fibonacci type fusion rules are determined by its modular

data, without losing generality, we can look at the number field containing the

modular data and find its Galois conjugates. The entries in the S and T matrices

lie in the number field Q(e
2πi
5 ) with Galois group Z×

5 ≃ Z4. Acting with 4 ∈ Z×
5

takes ξ → ξ4 = ξ̄ while leaving S invariant and corresponds to time reversal. This

transformation takes us to (F4)1. On the other hand, acting with 3, 2 ∈ Z×
5 gives

the Lee-Yang and conjugate Lee-Yang MTCs respectively.b

aAll MTC data not explicitly mentioned is equal to 1.
bIf we include the normalization of the S-matrix in the defining number field, we get the

following Galois orbits. Writing
√
2 + φ = exp (2πi/20) − exp (2πi9/20), we see that Z×

20 Galois
group acts on the modular data. The elements of Z×

20 are

Z
×
20 ≃ Z4 ×Z2 = {1, 11} × {1, 3, 7, 9} (4.10)

Acting with 19 ∈ Z×
20 takes ξ → ξ19 = ξ̄ while leaving S invariant and corresponds to time reversal.

This transformation takes us to (F4)1. On the other hand, acting with 13, 7 ∈ Z4 ×Z2 gives the
Lee-Yang and conjugate Lee-Yang MTCs respectively (the remaining transformations give other
theories related to the ones mentioned here by S → −S).

In fact, it is possible that Galois actions supplemented by some other procedure

act transitively on the solutions of the Pentagon and Hexagon equations. For example,

Galois conjugations along with a particular change of F symbols act transitively on all

MTCs with the same fusion rules as SU(N)k Chern-Simons theory [33].

Given our discussion of Galois conjugation, we would like to study how these op-

erations interact with global properties of TQFT. In particular, our immediate goal

is to understand how Galois conjugation affects the subcategory structure of C (and

therefore T ).

To that end, note that a proper subset of anyons in C may close under fusion and

therefore form a braided fusion subcategory whose F and R symbols are given by the

restriction of the F and R symbols of C onto that subcategory. Since Galois conjuga-

tion preserves fusion rules, it is clear that it preserves the braided fusion subcategory

structure of a modular tensor category. This observation will play a crucial role in our

analysis of discrete gauge theories.

The braiding in a subcategory may or may not be degenerate (i.e., the corresponding

modular S̃ matrix may or may not be degenerate). If it is non-degenerate, then a

general result of Müger [49] guarantees that the subcategory factorizes from the rest

of the theory (i.e., anyons in the subcategory braid trivially with anyons outside the
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subcategory). In this case, our TQFT has a product structure

T = ⊠iTi , (4.11)

where each Ti has a corresponding MTC Ci.
66 The decomposition in (4.11) is called a

“prime decomposition” into prime factors Ti (each factor braiding trivially with other

factors).

A basic question is then to understand the Galois action on the prime factors:

Theorem 4.2.1 The space of prime TQFTs is closed under Galois action.

Proof: Consider a non-prime TQFT, T . The associated MTC, C, has a modular

subcategory,K. The set of anyons inK label a modular sub-matrix, S̃K , of the S̃ matrix

of C. Suppose Q(ξN ) is the cyclotomic field containing the elements of the S̃ matrix,

where ξN := exp(2πi/N). The cyclotomic field Q(ξN ) has a cyclotomic subfield Q(ξNK )

which contains the elements of the matrix S̃K . Any element of Gal(Q(ξN )) restricts

to a Galois action on Q(ξNK ). Hence, under a Galois conjugation of the S̃ matrix, the

modular sub-matrix S̃K gets transformed into another modular matrix. Therefore, the

set of anyons in K forms a modular subcategory of the Galois-conjugated theory. As a

result, Galois conjugation of a non-prime TQFT results in a non-prime TQFT. From

invertibility of the Galois action it is clear that the space of prime TQFTs is closed

under Galois conjugation.67 □

As a result, the Galois action on T in (4.11) can be obtained from the Galois

action on the prime theories, Ti. The notion of primeness is independent of whether

the TQFT is unitary or not. Note that the prime factorization of TQFTs into Deligne

products described above is not always unique. Even the number of prime TQFTs

in a prime factorization is not always unique. For example, Toric Code ⊠ Semion =

Semion⊠ Semion⊠ Semion.

If a TQFT, T , transforms non-trivially under Galois action, then it is clear that at

least one of its prime factors should transform non-trivially under it. However, non-

trivial Galois transformation of the prime factors of a TQFT may act trivially on the

full TQFT. Indeed, this is the case in the Double Semion example discussed previously

since it turns out that

Double Semion = Semion⊠ Semion . (4.12)

As we saw above, both the Semion and Semion models transform non-trivially under

Galois action (the twists θs = i from the Semion model and θs̃ = −i from Semion are

66The symbol “⊠” denotes the so-called “Deligne” product and is an appropriate categorical gener-
alization of a direct product.

67This result can also be seen from the fact that Galois conjugations preserve invertibility of a matrix.
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complex conjugated). However, since these two factors transform into each other under

Galois action, the Double Semion model is invariant under all Galois conjugations. As

we will see in Section 4.3, the Galois invariance of Double Semion model can also be

explained using the Galois invariance of its gapped boundary.

4.2.1 Unitary Galois Orbits

The preceding discussion was very general and applies to all types of Galois trans-

formations, including those that transform unitary theories into non-unitary ones (and

vice-versa). However, on physical grounds, it is important to understand the conditions

under which Galois transformations preserve unitarity. To that end, in this section we

will obtain a sufficient condition for unitarity preservation.

Let us begin by building up to the extra constraints that a unitary MTC should

satisfy. We will call a fusion category unitary if there exists a gauge in which the F

symbols are unitary.68 A braided fusion category is unitary if there exists a gauge in

which both the F and R symbols are unitary. The condition on R is not an extra

constraint, since any set of consistent R symbols obtained from unitary F symbols is

unitary [44]. Therefore, every braided fusion category defined over a unitary fusion

category is unitary. Note that to define quantum dimensions, we need to add a ribbon

structure to a braided fusion category. In general, there is more than one inequivalent

choice for the ribbon structure. However, there is a unique choice which guarantees

that all the quantum dimensions are positive [44]. A ribbon fusion category is called

unitary if there exists a gauge in which the F and R symbols are unitary and if all

quantum dimensions are positive.

Given this discussion, we see that a sufficient and necessary condition for an MTC,

C, to be unitary is that it has a gauge in which the F and R symbols are unitary and

the quantum dimensions satisfy da > 0, ∀a ∈ C (here a is an anyon of the TQFT or a

simple object of C) [115].69

From a unitary MTC, we can always construct a unitary TQFT by choosing the

total quantum dimension to be positive (i.e., D > 0). Indeed, the corresponding TQFT

inner product is then positive definite [31]. On the other hand, starting from a non-

unitary MTC, we cannot construct a unitary TQFT.

Since making unitarity manifest requires choosing a particular gauge, it is useful to

68There is a gauge-independent definition of unitarity of a fusion category. But we will use the
definition in terms of the F matrices since both are equivalent [113]. Given a set of labels and its
fusion rules, a necessary condition for a unitary fusion category with these fusion rules to exist is given
in [114].

69In an MTC without unitarity, the F and R symbols are defined only up to gauge transformations.
In a unitary MTC, the unitary F and R matrices are defined only up to unitary gauge transformations.
Moreover, if the F and R matrices can be made unitary in two different gauges, then they are unitarily
gauge equivalent [116]. Therefore, the unitary structure on an MTC is unique. Since all anyons have
a dual, da > 0 =⇒ da ≥ 1
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check that this choice does not clash with the gauge choice required for the MTC data

to belong to a finite field extension, KC . In fact, the authors of [115] showed that there

is a gauge in which both can be achieved simultaneously.

Now, given a finite field extension, KC , in which the F symbols of C are unitary,

determining whether a Galois conjugation of a unitary MTC results in a unitary MTC

depends on how the F symbols and quantum dimensions get transformed under the

Galois action. We will call a Galois action which takes a unitary MTC to a unitary MTC

a unitarity-preserving Galois action. This construction also maps a unitary TQFT to a

unitary TQFT since we can always supplement our MTC action with a choice of D > 0.

Before looking at the F symbols, let us study the action of a unitarity-preserving Galois

action on the quantum dimensions.

Lemma 4.2.2 A unitarity-preserving Galois action acts trivially on the quantum

dimensions.

Proof: Consider a unitary TQFT, T , with associated unitary MTC, C, having

defining number field KC . Let q(C) be a unitary MTC (with corresponding unitary

TQFT, q(T )), where q(C) is the Galois conjugate of C with respect to some q ∈
Gal(KC). Since C is unitary, the quantum dimension, da, of an anyon a ∈ C is equal to

the corresponding Frobenius-Perron dimension and is positive. We denote q(da) as the

quantum dimension of the corresponding anyon in q(C). Since q(C) is unitary, q(da)

are also positive. By proposition 3.3.4 of [43],

|q(da)| ≤ da . (4.13)

Suppose q(da) < da for some anyon a. Using the inverse Galois action, we have q̄(da) >

da. This contradicts (4.13). Therefore, we must have

q(da) = da ∀a . (4.14)

□

As a result of the above lemma, invariance of the quantum dimensions under Galois

action is necessary for preserving unitarity. However, this is not sufficient. To see

this, let us study how Galois conjugation changes the F symbols. In general, Galois

conjugation does not preserve unitarity of a matrix. To understand this statement,

suppose we have some unitary matrix, U , such that the elements of the matrix belong

to an algebraic number field, K. U satisfies U †U = I. Galois conjugating this relation

which respect to some q ∈ Gal(K) gives

q(U †U = I) =⇒ q(U †)q(U) = I . (4.15)
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If complex conjugation commutes with q, then the above equation simplifies to

q(U)†q(U) = I . (4.16)

Therefore, the Galois conjugated matrix is still unitary. However, it often happens that

complex conjugation does not commute with the Galois action. In this case, q(U) is

non-unitary.

All MTCs conjecturally have a gauge in which the defining number field is cyclo-

tomic [33], and in this case any Galois conjugation commutes with complex conjugation.

However, a unitary TQFT in such a gauge may not have unitary F symbols. The sim-

plest example of this is Galois conjugation of the Fibonacci model to get the Yang-Lee

model. In the Fibonacci model, there is a basis in which F and R are unitary. How-

ever, in this basis, F and R symbols belong to a field extension which has a non-abelian

Galois group. On the other hand, if we choose a gauge in the F and R symbols are in

a cyclotomic field, F symbols become non-unitary. This example is studied in detail

in [104,115].

It is clear from this discussion that if there is a gauge in which the unitary F and R

symbols of a unitary TQFT are real, then any Galois conjugation will result in unitary

F and R matrices. In this case, the defining number field, KC , is called “totally real.”

A more general statement holds if the defining number field is a CM field (note: all

cyclotomic fields are CM fields, although the converse is not true). A CM field is a

quadratic extension of a totally real field. In other words, a CM field, K, is of the

form H(α), where H is a totally real field such that K is complex (i.e., it cannot be

embedded as a subfield of R). A simple example is the cyclotomic field (appearing in

the Double Semion discussed above), Q(i), which contains numbers of the form a+ ib

where a, b ∈ Q. A CM field has the property that complex conjugation is in the center

of the Galois group. In fact, any number field with complex conjugation in the center of

the Galois group should either be a totally real field (in which case complex conjugation

acts trivially) or a CM field [117]. This discussion leads to the following result:

Theorem 4.2.3 Let C be a unitary MTC, and let KC be its defining number

field. Let KF be the Galois field obtained from the normal closure of the F symbols

added to the rationals. If there is a gauge in which the F symbols are unitary and

KF is a totally real field or a CM field, then any Galois conjugation which acts

trivially on the quantum dimensions results in a unitary TQFT.

Proof: If KF is a totally real field, then complex conjugation acts trivially on the F

symbols. Any Galois conjugation q ∈ Gal(KC) takes unitary F symbols to unitary F

symbols. Therefore, the Galois conjugate TQFT has unitary F symbols. From [44], the

R matrices of the Galois conjugate TQFT should be unitary. Now suppose the Galois
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conjugation acts trivially on the quantum dimensions, then the Galois conjugate TQFT

has positive quantum dimensions. It follows that the resulting TQFT is unitary.

If KF is a CM field, then complex conjugation is in the center of the Galois group

Gal(KF ). Therefore, the unitarity of the F symbols is preserved under Galois action

with respect to any q ∈ Gal(KC). If the quantum dimensions are invariant under Galois

action, then the Galois conjugate TQFT has positive quantum dimensions. It follows

that the resulting MTC is unitary, and we can therefore also take the corresponding

TQFT to be unitary (we must choose positive total quantum dimension). □

For TQFTs described by integral MTCs, the quantum dimensions are integers and

hence Galois invariant. Therefore, any Galois action which preserves the unitarity of

the F symbols gives us a unitary Galois conjugate MTC and hence (by a choice of D)

a unitary TQFT. For example, in abelian TQFTs, there exists a gauge in which the

F symbols belong to {±1} [112]. Therefore, in this case KF = Q is a totally real field

and any such Galois action preserves unitarity.

In [17], Wang conjectures that a ribbon fusion category (and hence an MTC) with

positive quantum dimensions is unitary. If this conjecture is true, then our lemma 4.2.2

alone is enough to characterize unitary Galois orbits. That is, any Galois action of the

type we consider which acts trivially on the quantum dimensions of a unitary TQFT

results in a unitary TQFT.

In the next subsection, we will study Galois actions on abelian TQFTs. These

provide the simplest example of unitary Galois orbits.

4.2.2 Abelian TQFTs and Unitary Galois Orbits

In this section we study abelian TQFTs (i.e., theories whose fusion rules are those

of a finite abelian group) and the corresponding Galois orbits. As is well-known, a

TQFT is abelian if and only if the quantum dimensions of all anyons are equal to

1. Since Galois conjugation preserves integers, abelian TQFTs are closed under this

action. Moreover, since the F and R matrices of an abelian theory are phases [112], any

abelian MTC is unitary and has a cyclotomic defining number field (by choosing D > 0

as described above, we restrict our attention to unitary abelian TQFTs). Therefore,

Galois conjugation of such an abelian TQFT always preserves unitarity, and so we will

leave the unitary nature of these theories implicit in what follows.

Our strategy below consists of noting that general abelian TQFTs can be written as

Deligne products of prime abelian TQFTs. Galois conjugation of an abelian TQFT can

thus be reduced to describing the Galois conjugation of prime TQFTs. Moreover, by

the discussion in footnote a and the surrounding text, for abelian theories the defining

number field can be taken to be the cyclotomic field of the twists.

Table 4.1 gives the classification of prime abelian TQFTs [118] in one particular
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description of the underlying defining twist data. As we will see when we study Galois

actions on these theories, there can be dual descriptions as well.

Theory Fusion rules Twists

Apr Zpr θa = e
2πi2a2

pr

Bpr Zpr θa = e
2πia2

pr

A2r Z2r θa = e
2πia2

2r+1

B2r Z2r θa = e
−2πia2

2r+1

C2r Z2r θa = e
2πi5a2

2r+1

D2r Z2r θa = e
−2πi5a2

2r+1

E2r Z2r × Z2r θ(m,n) = e
2πimn

2r

F2r Z2r × Z2r θ(m,n) = e
2πi(m2+n2+mn)

2r

Table 4.1: Classification of prime abelian TQFTs.

Since we know that the space of abelian TQFTs and the space of prime TQFTs

is closed under Galois action (theorem 4.2.1), a prime abelian TQFT should either be

invariant or get transformed into another prime abelian TQFT under a Galois conju-

gation. Consider the Apr prime abelian TQFT. Since the twists are pr-roots of unity,

the cyclotomic field containing the data of this theory is Q(ξpr) with Galois group Z×
pr

(the multiplicative group of integers mod pr).

Under a Galois action corresponding to some q ∈ Z×
pr there are two possibilities, Apr

remains invariant or Apr → Bpr . We can consider two cases. Suppose q mod pr = α2

for some α. Then,

θa = e
2πi2a2

pr → e
2πi2α2a2

pr = e
2πi2(αa)2

pr = θαa mod pr . (4.17)

Hence, the Galois conjugation in this case can be interpreted as a permutation of

anyons in the theory given by αa mod pr. Moreover, this permutation preserves the

fusion rules. Therefore, this is a dual description of the same theory. Now suppose q is

not a quadratic residue mod pr, then it is clear that 4q is also not a quadratic residue

mod pr. As a result, we have

θa = e
2πi2a2

pr → e
2πi2qa2

pr , (4.18)

where the resulting twists are those of the Bpr theory (since any integer which is not

a quadratic residue mod pr defines the same theory). So we can summarize the Galois
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action on Apr as follows

α2 = q mod pr : Apr → Apr , α2 ̸= q mod pr : Apr → Bpr , (4.19)

for some integer α.

Example: For the A5 theory, we have Galois conjugations corresponding to q =

1, 2, 3, 4 (the Galois group is Z4). q = 4 is a duality, while for q = 2, 3 we have

A5 → B5.

Now let us consider Galois conjugation of the A2r theory. Since the roots are 2r+1-

roots of unity, the cyclotomic field containing all the data of the theory is Q(ξ2r+1) with

Galois group Z×
2r+1 = {all odd integers < 2r+1}. Before discussing the general pattern

of Galois action on A2r theory, let us discuss an example.

Example: Consider the A4 theory. We have Galois conjugations corresponding to

q = 1, 3, 5, 7 constituting the Klein four-group. We have the following transforma-

tions forming the edges of a tetrahedron:

A4

3

B4

C4

D4

7

5

5 3

7

The Galois action on a general A2r theory by some q ∈ Z×
2r+1 depends on the nature

of q mod 2r+1. Suppose α2 = q mod 2r+1. Using Hensel’s lemma, this has a solution if

and only if q = 1 mod 8. Since q is odd, α has to be odd, and gcd(α, 2r) = 1. Therefore,

if α2 = q mod 2r+1, then this Galois action acts as an automorphism of the fusion rules

Z2r given by a → αa mod 2r, a ∈ Z2r . Similarly, if −1α2 = q mod 2r+1, then the

Galois action transforms the twists of A2r to B2r family of prime abelian theories up

to an automorphism of the fusion rules given by α.

Most generally, Galois conjugations permute the prime theories A2r , B2r , C2r , and
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D2r as follows:

α2 = q mod 2r+1 : A2r → A2r , B2r → B2r , C2r → C2r , D2r → D2r , (4.20)

−1α2 = q mod 2r+1 : A2r → B2r , B2r → A2r , C2r → D2r , D2r → C2r , (4.21)

5α2 = q mod 2r+1 : A2r → C2r , B2r → D2r , C2r → A2r , D2r → B2r , (4.22)

−5α2 = q mod 2r+1 : A2r → D2r , B2r → C2r , C2r → B2r , D2r → A2r . (4.23)

Now let us consider Galois action on E2r theories. From the twists, it is clear that

the defining number field is Q(ξ2r) with Galois group Z×
2r = {all odd integers < 2r}.

Under a Galois action corresponding to q, we have

θ(m,n) = e
2πimn

2r → e
2πiqmn

2r = e
2πi(qm)n

2r = θ(qm mod 2r,n) . (4.24)

So Galois conjugation with respect to any q can be interpreted as a permutation of

the anyons given by (m,n) → (qm mod 2r, n). In fact, this is an automorphism of the

fusion rules, Z2r ×Z2r . Therefore, we see that the Galois conjugate of E2r corresponds

to a dual description of the same theory.

The Galois invariance of E2r can also be deduced from the existence of a Lagrangian

subcategory. To understand this statement, first note that, given an abelian group

G, we can construct an abelian TQFT with fusion rules G × Ĝ. Here the anyons are

labelled by (g, χ) where g ∈ G, and χ ∈ Ĝ is a character of an irreducible representation

belonging to the character group Ĝ of G. The twist of the anyon (g, χ) is θ(g,χ) = χ(g).

In fact, this construction gives the untwisted discrete gauge theory based on the abelian

group G. Indeed, the E2r family of prime abelian TQFTs are untwisted Z2r discrete

gauge theories.

Now, the Lagrangian subcategory arises as follows: we have the anyons (0, g) for

any g ∈ Z2r which are all bosons. These form a subcategory of E2r equivalent to

the symmetric tensor category Rep(Z2r) (a symmetric subcategory is characterized

by completely trivial braiding). Moreover, note that dim(Rep(Z2r))
2=dim(E2r) (a

subcategory of bosons satisfying this constraint is called a Lagrangian subcategory). A

Galois conjugation of E2r must result in a prime TQFT with a Rep(Z2r) Lagrangian

subcategory. However, the E2r TQFTs are the only prime abelian TQFTs with a

Rep(Z2r) Lagrangian subcategory. Hence, E2r TQFTs are mapped to themselves under

Galois conjugation (i.e., they are unitary Galois fixed point TQFTs).

It is clear that F2r theories are also unitary Galois fixed point TQFTs. This in-

variance follows from the fact that the only possibility for F2r to transform to another

prime theory is for it to get transformed into E2r theory. However, E2r and F2r have

different numbers of bosons. Indeed, an anyon, (m,n), of F2r theory is a boson if and
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only if it satisfies

θ(m,n) = 1 =⇒ m2 + n2 +mn = 0 mod 2r . (4.25)

It is clear that if m2 = 0 mod 2r, then (0,m) and (m, 0) are bosons. In fact, (m,n) is a

boson in F2r if and only if m2 = 0 mod 2r and n2 = 0 mod 2r. Note that for (m,n) to

be a boson, both m and n should be even. Let m = 2m1 and n = 2n2 for some integers

m1, n1. If (m,n) is boson, then

m2 + n2 +mn = 0 mod 2r =⇒ m2
1 + n21 +m1n1 = 0 mod 2r−2 . (4.26)

This constraint is satisfied only if m1 and n1 are even. Therefore, we can choose

m1 = 2m2 and n1 = 2n2 for some integers m2, n2. Iterating this process, we find that

both m2 and n2 should be multiples of 2r. Given a boson (m,n) of F2r TQFT, note

that it is also a boson of E2r theory, since mn = mod 2r. However, there are clearly

more bosons in E2r than in F2r . For example, (0,m) for any m is a boson in E2r TQFT

while this is true for F2r only if m2 = 0 mod 2r. Since Galois conjugations preserve the

number of bosons, F2r cannot transform into an E2r theory. Note that a boson (m,n)

in F2r theory has order (under fusion) strictly less than 2r. Hence, F2r does not have

a Rep(Z2r) Lagrangian subcategory.

q

E2r

q

F2r

Figure 4.2: The E2r and F2r families of prime abelian TQFTs are invariant under
Galois conjugation.

Therefore, we find that E2r and F2r are the only prime abelian TQFTs which are in-

variant under Galois conjugation. We found that the Galois invariance of these theories

can be explained using their bosonic substructure. Discrete gauge theories, generalizing

the abelian E2r cases, are another class of TQFTs largely determined by their bosonic

substructure. In the next section, we will explore Galois actions on these theories. We

will find that, similarly to the E2r and F2r prime abelian TQFTs, the transformation of

discrete gauge theories under Galois conjugation is heavily constrained by the presence

of certain bosons.
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4.2.3 Discrete Gauge Theories

Since Galois conjugation fixes rational numbers, it is clear that the space of integral

MTCs (i.e., theories whose anyons all have integer quantum dimensions) is closed under

it. An important class of integral MTCs are (twisted) discrete gauge theories (see [2,3]

for a recent discussion of these theories, their subcategory structure, and their fusion

rules). Since there are integral MTCs that are not (twisted) discrete gauge theories

[119], we might naively imagine that these theories mix with discrete gauge theories

under Galois conjugation. We will argue below that this is not the case and that the

space of discrete gauge theories is therefore closed under Galois conjugation.

Before discussing discrete gauge theories, let us recall some notions which will be

useful for our discussion. Two anyons a and b are said to centralize each other if

Sab =
1
Ddadb. This is the statement that the braiding between a and b is trivial (the

Hopf link can be replaced by two disjoint circles labelled by a and b). This notion can

be used to define the centralizer for a fusion subcategory D as the fusion subcategory,

D
′
, where any b ∈ D′ centralizes any a ∈ D. It is clear that the fusion subcategory

D is symmetric (i.e., has completely trivial braiding) if and only if D ⊆ D′. A fusion

subcategory is called isotropic if all its anyons are bosons. An isotropic subcategory

D ⊂ C is called Lagrangian if D
′
= D, or equivalently dim(D)2=dim(C).

A twisted discrete gauge theory, Z(VecωG), with Dijkgraaf-Witten twist, ω ∈ H3(G,U(1)),

has Rep(G) as a fusion subcategory. Rep(G) has the irreducible representations of G as

its simple objects, the representation semi-ring of G as the fusion rules, and F symbols

given by the 6j symbols. Rep(G) is a symmetric fusion subcategory where we have

RcabR
c
ba = 1; Sab =

1

D
dadb; θa = 1 ∀ a, b, c ∈ Rep(G) . (4.27)

In fact, if a fusion subcategory only has bosons in it, it is a symmetric fusion category

and is gauge equivalent to Rep(H) for some group H [67]. An important property

of Rep(G) that will be crucial for our discussion is that it is Lagrangian. We have

dim(Rep(G))2 = |G|2 = dim(Z(VecωG)). It is clear that under Galois conjugation of

Z(VecωG), Rep(G) will transform into a symmetric fusion category. Given anyons a and

b in a modular tensor category C that centralize each other, the corresponding anyons

in the Galois conjugate theory also centralize each other. Therefore, Galois conjugation

of a discrete gauge theory results in a modular tensor category that has a Lagrangian

subcategory. Hence, we have the following result:

Lemma 4.2.4 The space of twisted discrete gauge theories is closed under Galois

conjugation.

This result holds because an MTC corresponds to a discrete gauge theory if and
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only if it has a Lagrangian subcategory [43]. The invertibility of Galois conjugation

then implies that the Galois conjugation of a non-discrete gauge theory (for example,

those originating from quantum groups) should result in a non-discrete gauge theory.70

To determine how Galois conjugation affects the gauge group and twist of a discrete

gauge theory, we have to study the behavior of Rep(G) under Galois action.

Galois Conjugation of Rep(G)

The discussion in the previous subsection shows that the Galois action on Rep(G)

results in a symmetric tensor category, Rep(H), for some finite group H. We will find

that G ∼= H follows from the algebraic nature of the Tannaka-Krein reconstruction

theorem.

In Tannaka-Krein reconstruction, the group is reconstructed from a subgroup of the

group of endomorphisms of the vector spaces on which the representations act. More

precisely, consider a fiber functor (i.e., a monoidal functor to Vec)

F : Rep(G) → Vec , (4.28)

π → Vπ′ , (4.29)

where π is a representation of G (in general, reducible). This map can be thought of

as forgetting all information about the category Rep(G) except for the vector spaces

on which the irreducible representations act. F is a monoidal functor. That is, there

exists a natural transformation

µπ,π′ : F (π)⊗ F (π′) → F (π ⊗ π′) ∀ π, π′ ∈ Rep(G) , (4.30)

which is consistent with associativity of Rep(G). µπ,π′ are simply the basis transforma-

tion matrices between the isomorphic vector spaces Vπ⊗Vπ′ and Vπ⊗π′ . The former has

a natural tensor product basis, and the latter has a basis given by the decomposition

of π ⊗ π′ into irreducible representations. In other words, µπ,π′ are determined by the

3j symbols.

Recall that two functors can be related by a natural transformation. A natural

automorphism is a natural isomorphism between the same functor; it can be seen as a

symmetry of the functor. Automorphisms of the functor, F , defined above are given

by a collection of invertible matrices, {Uπ}, that act on the vector spaces, Vπ. These

actions should commute with any intertwiners between Vπ and Vπ′ . This requirement

implies that Uπ is completely specified by its action on the vector spaces of the irreps

70There are some discrete gauge theories that have a dual description in terms of a Chern-Simons
theory with a continuous Lie gauge group. For example, the Toric code, which is a Z2 discrete gauge
theory, can also be described as Spin(16)1 Chern-Simons theory. By a non-discrete gauge theory, we
mean a TQFT which is not equivalent to a (twisted) discrete gauge theory.
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of G. Therefore, the symmetry group of the monoidal functor F is

Aut(F ) =
∏
i

GL(Vπi) , (4.31)

where Vπi are the vector spaces corresponding to the πi irreps of G.

The finite group G can be reconstructed from Rep(G) by picking a particular sub-

group of Aut(F ). This subgroup is specified by the following extra condition on the

{Uπ}

F (π ⊗ π′) F (π ⊗ π′)

F (π)⊗ F (π′) F (π)⊗ F (π′)

Uπ⊗π′

µπ,π′ µπ,π′

Uπ⊗Uπ′

,

which is same as the constraint

⊕
i F (πi)

⊕
i F (πi)

F (π)⊗ F (π′) F (π)⊗ F (π′)

⊕
i Uπi

µπ,π′ µπ,π′

Uπ⊗Uπ′

, (4.32)

where πi are the irreducible representations into which the representation π⊗π′ decom-

poses. The matrices {Uπ} which satisfy this constraint are called, “tensor-preserving

automorphisms.” We can also define a conjugation operation on Uπ given by

Uπ(x) := Uπ(x) , (4.33)

where π is the conjugate representation of π, x ∈ Vπ and x̄ ∈ Vπ. Let Aut⊗(F ) ⊂
Aut(F ) be the set of self-conjugate (Uπ = Uπ) tensor-preserving automorphisms. It is

clear that, given some element g ∈ G, there is a canonical map

L : G→ Aut⊗(F ) , (4.34)

g → U (g) , (4.35)

where U (g) acts on the vector space Vπ through π(g). The non-trivial result of Tannaka-

Krein is that the canonical map L defined above is in fact an isomorphism [120]. There-

fore, the automorphisms of the fiber functor F , along with the tensor-preserving and

self-conjugation constraints, give us all the representations of the group. We can then

reconstruct the group.

Consider Rep(G) defined over some finite field extension KRep(G).
71 In other words,

the 3j, 6j symbols, and the R-matrices belong to KRep(G). In particular, the matrices

71In fact, from Brauer’s Theorem [121], we can choose KRep(G) to be cyclotomic, but the exact nature
of the field won’t be important for our argument.
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µπ,π′ belong to KRep(G). Therefore, (4.32) gives a set of polynomial constraints on the

elements of the Uπ matrices. The coefficients of the polynomial belong to the field

KRep(G). Therefore, these polynomials are defined over Q̄, and hence there exists a

solution belonging to a number field (up to gauge choices). Therefore, every Galois

action with respect to some element of Gal(KRep(G)) induces a Galois action on Uπ. If

U (g)
π U (h)

π = U (k)
π , (4.36)

for some g, h, k, then this relation does not change under a Galois action on U
(g)
π . As a

result, the group Aut⊗(F ) is invariant under Galois action. Hence, the representation

category of a group is invariant under Galois conjugation.

In a discrete gauge theory Z(VecωG), Rep(G) is a Lagrangian subcategory. Moreover,

since there is a gauge in which the data of Z(VecωG) is in a finite field extension, the

data of the subcategory Rep(G) is in the same finite field extension. Therefore, our

discussion above applies, and we find that the gauge group of a discrete gauge theory

is invariant under Galois conjugation.

All that is left to study is how the Galois group acts on the Dijkgraaf-Witten

twist. The cyclotomic field containing the elements of the S and T matrices of the

discrete gauge theory, Z(VecωG), is Q(ξne(G)), where n is the order of the 3-cocycle

ω ∈ H3(G,U(1)), e(G) is the exponent of the group G [122], and ξne(G) is a primitive

ne(G)th root of unity. In particular, the 3-cocycle ω is contained in this cyclotomic

field. Suppose KC is the defining number field containing the full data of Z(VecωG) in

some gauge. Q(ξn) is a cyclotomic subfield of KC . If q ∈ Gal(KC) acts on Z(VecωG),

then it acts on the 3-cocycle ω as q|Q(ξn)(ω). Moreover, since KC and Q(ξn) are Galois

extensions, for every Galois action q′ ∈ Gal(Q(ξn)) there exists a q ∈ Gal(KC) such

that q|Q(ξn) = q′. Therefore, any Galois conjugation of the MTC Z(VecωG) acts as a

Galois conjugation on the 3-cocycle ω. We get the following results:

Theorem 4.2.5 Let KC be the number field containing the MTC data of Z(VecωG).

Galois conjugation with respect to q ∈ Gal(KC) results in the discrete gauge theory

Z(Vec
q|Q(ξn)(ω)

G ).

Corollary 4.2.5.1 The untwisted discrete gauge theory Z(VecG) is invariant un-

der Galois conjugation.

Corollary 4.2.5.2 Every Galois conjugation of Z(VecωG) acts as a Galois conju-

gation on the gapped boundary described by VecωG.

Suppose we have the fusion category VecωG. The cyclotomic field containing the

MTC data of this category isQ(ξn), where n is the order of ω ∈ H3(G,U(1)). Therefore,
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after a Galois conjugation, we get Vecω
q

G for some q co-prime to n. Taking the Drinfeld

center before and after the Galois conjugation gives us the discrete gauge theories,

Z(VecωG) and Z(Vecω
q

G ), respectively. Since these discrete gauge theories are related by

a Galois conjugation, we see that Galois conjugation commutes with taking the Drinfeld

center of VecωG. In Section 4.3, we will generalize this result to Drinfeld centers of general

spherical fusion categories.

Note that a TQFT can have multiple Lagrangian subcategories. In particular, if a

TQFT has Lagrangian subcategories Rep(G) and Rep(H), where G is not isomorphic

to H, then it can be seen as a discrete gauge theory based on the gauge group G or

the gauge group H. That is, the gauge group is not duality invariant.72

Therefore, Galois invariance of the gauge group of the discrete gauge theory is more

precisely stated as follows: Given a discrete gauge theory Z(VecωG), all of its Galois

conjugates are G gauge theories up to dualities. In fact, the dualities of a discrete

gauge theory are determined by the Lagrangian subcategories in the theory and they

have been classified in [63, 123]. Since the number of Lagrangian subcategories does

not change under Galois conjugation, the duality structure of Galois conjugate discrete

gauge theories is the same.

While Galois conjugation of a discrete gauge theory Z(VecωG) may act non-trivially

on the 3-cocycle ω, the resulting discrete gauge theory is not guaranteed to be distinct.

This is because for a given group G, distinct 3-cocycles in H3(G,U(1)) can give the

same TQFT. In the next subsection, we will explore how this happens for discrete gauge

theories with abelian gauge groups.

Discrete gauge theories with abelian gauge group

In this subsection we will study (twisted) discrete gauge theories with abelian gauge

groups more carefully (we already encountered many of these theories when we dis-

cussed abelian TQFTs previously). This discussion will help us to understand Galois

action on the 3-cocycle ω implied by theorem 4.2.5 more explicitly.

Note that discrete gauge theories based on abelian gauge groups need not be abelian.

Indeed, the quantum dimension of an anyon ([g], πωg ) in a general discrete gauge theory

with gauge group G and 3-cocycle ω is

d([g],πωg ) = |[g]|dim(πωg ) , (4.37)

where [g] is a conjugacy class in G, and πωg is a projective representation of the cen-

72This is different from 3 + 1D discrete gauge theories whose gauge group is invariant under such
dualities. This is because in 3 + 1D all line operators braid trivially with each other, and they are
described by Rep(G), where G is the gauge group of the 3 + 1D discrete gauge theory. If there were
a dual description based on a gauge group H, then the line operators would be described by Rep(H).
However, Rep(G) ∼= Rep(H) if and only if G ∼= H from Tannaka-Krein reconstruction.
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tralizer of g, say Ng, determined by the 2-cocycle

γg(h, k) =
ω(g, h, k)ω(h, k, g)

ω(h, g, k)
. (4.38)

In an abelian discrete gauge theory, all anyons have quantum dimension 1. Therefore,

all conjugacy classes should have only a single element. Hence, the gauge group G

should be abelian. Therefore, the centralizer of each element is G itself. Moreover, we

also require the representation πωg to be 1-dimensional. Since projective representations

are necessarily higher dimensional, for an abelian discrete gauge theory, the 3-cocycle

ω should be such that γg(h, k) ∈ H2(G,U(1)) is trivial for all g ∈ G. Therefore, a

discrete gauge theory is abelian if and only if the gauge group is abelian with CT (co-

homologically trivial) twisting [122]. This is a stronger constraint than having abelian

gauge groups.

For an abelian group G, a general 3-cocycle ω ∈ H3(G,U(1)) is generated by the

following 3-cocycles [124]

ω(i)(g⃗, h⃗, k⃗) = e
2πip(i)

n2
i

(gi(hi+ki−(hi+ki) mod ni))
, 1 ≤ i ≤ n , (4.39)

ω(i,j)(g⃗, h⃗, k⃗) = e
2πip(i,j)

ninj
(gi(hj+kj−(hj+kj) mod nj))

, 1 ≤ i < j ≤ n , (4.40)

ω(i,j,l)(g⃗, h⃗, k⃗) = e
2πip(i,j,l)

gcd(ni,nj,nl)
(gihjkl)

, 1 ≤ i < j < l ≤ n , (4.41)

where G ∼= Zn1 ⊗ · · · ⊗ ZnN , g⃗, h⃗, k⃗ ∈ G. Here p(i) is an integer defined modulo ni,

p(i,j) is an integer defined modulo gcd(ni, nj), and p
(i,j,l) is an integer defined modulo

gcd(ni, nj , nl). We will refer to these as Type I,II, and III generators respectively.

Consider the action of α ∈ Aut(G) on the group G. This induces an action on

ω(g⃗, h⃗, k⃗) as ω(g⃗, h⃗, k⃗) → ω(α(g⃗), α(⃗h), α(k⃗)). Suppose α acts on the group elements

through an N ×N matrix M . We have (M · g⃗)i :=
∑

aMiaga mod ni. Since this is a

group automorphism, we have

M · (g⃗ + h⃗) =M · g⃗ +M · h⃗ . (4.42)

Using the explicit expressions for the 3-cocycle generators above, we get

ω(i)(α(g⃗), α(⃗h), α(k⃗)) = e
2πip(i)

n2
i

(
∑
a,bMiaMibga(hb+kb−(hb+kb) mod ni))

=
∏
a,b

(ω(a,b)(g⃗, h⃗, k⃗))MiaMib .

(4.43)

Note that we have taken the matrix Mib out of the brackets using (4.42). Similarly, we
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get

ω(i,j)(α(g⃗), α(⃗h), α(k⃗)) =
∏
a,b

(ω(a,b)(g⃗, h⃗, k⃗))MiaMjb , (4.44)

ω(i,j,l)(α(g⃗), α(⃗h), α(k⃗)) =
∏
a,b,c

(ω(a,b,c)(g⃗, h⃗, k⃗))MiaMjbMlc . (4.45)

Note that the discrete gauge theory Z(VecωG) is uniquely specifed by the fusion category

VecωG [125]. Since VecωG and Vec
α(ω)
G are equivalent as fusion categories when α ∈

Aut(G), the discrete gauge theories Z(VecωG) and Z(Vec
α(ω)
G ) are also equivalent.

The modular data of a discrete gauge theory lies in the cyclotomic field Q(ξne) where

n is the order of ω and e is the exponent of G. Consider a Galois action corresponding

to some q ∈ Z×
ne. Then the 3-cocycle generators transform as

ω(i)(g⃗, h⃗, k⃗) → (ω(i)(g⃗, h⃗, k⃗))q ,

ω(i,j)(g⃗, h⃗, k⃗) → (ω(i,j)(g⃗, h⃗, k⃗))q , (4.46)

ω(i,j,l)(g⃗, h⃗, k⃗) → (ω(i,j,l)(g⃗, h⃗, k⃗))q .

Consider a general 3-cocycle ω

ω =

NI∏
a=1

ω(ia)
NII∏
b=1

ω(jb,lb)
NIII∏
c=1

ω(mc,rc,oc) , (4.47)

with NI type I generators, NII type II generators, and NIII type III generators. Here

ia, jb, lb,mc, rc, oc are all integers valued in {1, ..., N}. Without loss of generality we

can assume that ia is distinct for each a in the product (and similarly for (jb, lb) and

(mc, rc, oc)).

This Galois action coincides with the transformation of the 3-cocycle under an

automorphism of G if the following conditions are satisfied

Miax = 0 for ia ̸= x and M2
iaia = q mod nia ∀a , (4.48)

MjbxMlby = 0 for jb ̸= x or lb ̸= y and MjbjbMlblb = q mod njbnlb ∀b , (4.49)

MmcxMrcyMocz = 0 for mc ̸= x or rc ̸= y or oc ̸= z and (4.50)

MmcmcMrcrcMococ = q mod gcd(nmc , nrc , noc) . (4.51)

If these conditions are satisfied, the Galois action is an automorphism of the gauge

group G, and the discrete gauge theory is Galois invariant. However, all Galois actions

(4.46) need not correspond to automorphisms of the gauge group.

106



CHAPTER 4. GALOIS CONJUGATION OF TQFTS

Example: Consider the ZN discrete gauge theory with some twist ω ∈ H3(ZN , U(1)).

In this case, ω has the explicit expression

ω(g, h, k) = e
2πip

N2 (g(h+k−h+k mod N)) . (4.52)

Since H2(ZN , U(1)) is trivial, ZN discrete gauge theory for any twist ω is abelian.

Consider the action of α ∈ Aut(ZN ) ∼= Z×
N given by g → αg mod N , g ∈ ZN . Then

ω transforms as

ωp(g, h, k) → ωp(αg, αh, αk) = ωp(g, h, k)
α2

= ωα2p(g, h, k) . (4.53)

A Galois conjugation with respect to some q coprime to N transforms the 3-cocycle

as

ωp(g, h, k) → ωp(g, h, k)
q = ωqp(g, h, k) . (4.54)

Therefore, a Galois conjugation w.r.t. q is an automorphism of the gauge group G

only if α2 = q mod N .

As a particularly concrete example, consider N = 5 and the 3-cocycle with p =

1. Then 2 mod 5 ̸= α2 for any α ∈ Aut(Z5) ∼= Z×
5 = {1, 2, 3, 4}. Therefore,

Galois conjugation w.r.t. to 2 takes us from the discrete gauge theory Z(Vecω1
Z5
) to

Z(Vecω2
Z5
). In fact, Z(Vecω1

Z5
) is the prime abelian theory B25 and Z(Vecω2

Z5
) is the

prime abelian theory A25. From our discussion in section 4.2.2, we know that there

are non-trivial Galois conjugations which take us between these theories, and we

know that our discussion in this section is consistent.

Note that while automorphisms of the group naturally lead to equivalence of discrete

gauge theories based on different twists, this is not the only way in which equivalences

arise. Even after taking the automorphisms of the gauge group G and its action on the

3-cocycle into account, labelling discrete gauge theories by the gauge group and the

orbits of the automorphism group action on H3(G,U(1)) is not faithful. For example,

consider the group Z2 ×D8. There exists two 3-cocycles for this group, not related by

group automorphisms, which give the same discrete gauge theory [126].73

4.2.4 Weakly Integral Modular Categories

Until now, we studied theories that only have integer quantum dimensions. We saw that

in these theories any Galois action on a unitary TQFT results in a unitary TQFT. Now

we look at TQFTs described by weakly integral MTCs. These theories have quantum

dimensions of the form da =
√
na, for some integer na. As a result such MTCs have

73In [127], the authors conjecture that equivalence classes of 3+ 1D discrete gauge theories based on
gauge group G are classified by H4(G,U(1)) up to group automorphisms. We note that the 2 + 1D
version of this conjecture is not true because of this counter-example.
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Galois conjugations that take a unitary TQFT to a non-unitary one. Before looking

at the general case, let us consider the specific case of the Ising model and its Galois

conjugates.

The Ising(ν) Model

The Ising(ν) family of theories is specified by the following data. There are three anyons

{I, σ, ψ} satisfying the fusion rules

ψ ⊗ ψ = I, σ ⊗ σ = I + ψ , (4.55)

where I is an boson, ψ is a fermion, and σ is an anyon with twist e
2πiν
16 . They have

quantum dimensions dI = 1, dψ = 1, dσ =
√
2. Here ν is an odd integer modulo 16.

The Ising model corresponds to ν = 1. Note that the ν parameter here only classifies

the unitary MTCs with the same fusion rules as the Ising model.

The full MTC data belongs to the cyclotomic field Q(ξ16). Therefore, we have the

Galois group Z×
16 = {1, 3, 5, 7, 9, 11, 13, 15} ∼= Z4×Z2. If we start with any of the above

family of Ising(ν) models, a unitarity preserving Galois action should not change the

quantum dimension of σ to −
√
2. Therefore, the unitarity preserving Galois actions

correspond to q = 1, 7, 9, 15. These form the Klein four-group. Under these Galois

actions, the Ising(ν) family of models transform as

Ising(ν) → Ising(qν mod 16) . (4.56)

Metaplectic Modular Categories

Let us now discuss unitary Galois orbits in the more general family of metaplectic

modular categories (of which Ising(ν) are examples). These are categories for which the

fusion rules are the same as those of the Spin(N)2 theories. In general, metaplectic

categories have strictly weakly integral anyons. However, certain metaplectic categories

are integral (e.g., Spin(8)2). As shown in [128], integral metaplectic categories are group

theoretical; hence, they belong to the class of theories discussed in the previous section.

Therefore, we can focus on strictly weakly integral metaplectic categories. Even

though it is an extremely hard problem to solve the Pentagon and Hexagon equations

for large rank theories, amazingly, for metaplectic categories, the MTC data can be

found. Moreover, they play an important role (along with discrete gauge theories) in

the classification of weakly integral categories.

By examining the explicit expressions for the F and R matrices for Spin(N)2 meta-

plectic modular categories for odd N in [129], we find the following cyclotomic field
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extensions

KS̃,T = Q(ξlcm(2N,8)) , (4.57)

KR = Q(ξlcm(2N,16)) , (4.58)

KF,R = Q(ξlcm(2N,16)) . (4.59)

Since the metaplectic modular categories are multiplicity free, the R matrices are all

phases. Some are 2N th roots of unity while others are 16th roots of unity. The F-

matrices consists of 2N th roots of unity,
√
2, and

√
N . Note that

√
N belongs to the

cyclotomic field Q(ξlcm(N,4)) ⊂ Q(ξlcm(2N,16)). Therefore, the F and R symbols belong

to the cyclotomic field Q(ξlcm(2N,16)).

The F matrices given in [129] are real and unitary. As a result, Galois conjugation

is guaranteed to result in unitary F matrices. Also, since the R matrices are phases,

they remain unitary under Galois conjugation. However, the quantum dimensions

need not remain positive. Therefore, the resulting theory need not be unitary. This is

a generalization of what happens in Ising(ν) models that we discussed above. However,

we know from [44] that braided fusion categories with unitary F and R symbols have

a unique spherical structure which makes it a unitary MTC. Therefore, even though

Galois conjugation of a metaplectic theory need not land us on a unitary TQFT, we can

always choose a spherical structure to make the theory unitary (we must also choose

D > 0). This statement is in fact true for any weakly group theoretical modular tensor

category from the following result

Theorem 4.2.6 [130]: Every weakly group theoretical fusion category is unitary.

Therefore, any Galois conjugate of a given unitary weakly group-theoretical modular

tensor category can be made unitary by the choice of a unique spherical structure. All

known weakly integral categories are weakly group theoretical. If all weakly integral

categories can be shown to be weakly group theoretical, then any Galois conjugate of

a unitary weakly integral modular tensor category can be made unitary by the choice

of a unique spherical structure.

Let us discuss another example of a metaplectic modular category that we will

come back to in our further discussions. The Spin(5)2 Chern-Simons theory has 6

anyons labelled by {1, ϵ, ϕ1, ϕ2, ψ+, ψ−} with quantum dimensions {1, 1, 2, 2,
√
5,
√
5},

respectively. The fusion rules are given by

ϵ⊗ ϵ = 1 , ϵ⊗ ϕi = ϕi , ϵ⊗ ψ± = ψ∓ , ϕi ⊗ ϕi = 1⊕ ϵ⊕ ϕmin(2i,5−2i) ,

ϕ1 ⊗ ϕ2 = ϕ1 ⊕ ϕ2 , ϕi ⊗ ψ± = ψ± ⊕ ψ∓ , ψ± ⊗ ψ± = 1⊕ ϕ1 ⊕ ϕ2 , (4.60)

ψ± ⊗ ψ∓ = ϵ+ ϕ1 ⊕ ϕ2 ,
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where i = 1, 2. The twists of the anyons are

θϵ = 1, θϕ1 = e
4πi
5 , θϕ2 = e−

4πi
5 , θψ± = ±i . (4.61)

Therefore, the twists belong to the cyclotomic field Q(ξ20). All MTCs with the same

fusion rules as Spin(5)2 Chern-Simons theory can be distinguished using the T matrix

alone [129]. Therefore, we only need to consider the Galois action on the twists to

study the Galois action on the whole theory. The Galois group acting on the twists

is Z×
20 = {1, 3, 7, 9, 11, 13, 17, 19}. For unitary Galois orbits, we should consider Galois

actions which leave dψ± =
√
5 invariant. These are {1, 9, 11, 19}. Under the action of 9

we get the twists

θϵ = 1 , θϕ1 = e−
4πi
5 , θϕ2 = e

4πi
5 , θψ± = ±i . (4.62)

This theory is the same as Spin(5)2 under the permutation of the anyons ϕ1 ↔ ϕ2.

Under the action of 19 we get the twists

θϵ = 1 , θϕ1 = e−
4πi
5 , θϕ2 = e

4πi
5 , θψ± = ∓i . (4.63)

Therefore, acting with 19 complex conjugates the theory. This Galois action can be

inverted using the permutation of the anyons ϕ1 ↔ ϕ2 and ψ+ ↔ ψ−. This is because

Spin(5)2 Chern-Simons theory is time-reversal invariant. Under the action of 11 we get

the twists

θϵ = 1 , θϕ1 = e
4πi
5 , θϕ2 = e−

4πi
5 , θψ± = ∓i . (4.64)

It is clear that this theory is same as Spin(5)2 because of the time-reversal symmetry

and the symmetry of the fusion rules under ϕ1 ↔ ϕ2.

Therefore, we find that the Spin(5)2 Chern-Simons theory is invariant under all

unitarity preserving Galois actions (recall we fix D > 0).

4.3 Gapped Boundaries and Galois Conjugation

In section 4.2.3, we found that Galois conjugation of the gapped boundary of a dis-

crete gauge theory induces a Galois action on the bulk TQFT and vice-versa. In this

section, we will explore this connection further. First, we will revisit discrete gauge

theories using the classification of bosonic gapped boundaries. Then we will look at

bosonic gapped boundaries of more general TQFTs by studying the properties of their

Lagrangian algebras. Finally, we will discuss how Galois conjugation and taking the

Drinfeld center of a spherical fusion category interact with each other. This will give

us a general result relating the Galois action of the bosonic gapped boundary and the

bulk TQFT.
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4.3.1 Gapped boundaries of discrete gauge theories

An abelian TQFT is described by a so-called “pointed” MTC. As a fusion cate-

gory, a pointed MTC is equivalent to VecωG for some abelian group G and some

ω ∈ H3(G,U(1)). The bosonic gapped boundaries of this theory correspond to La-

grangian subgroups of G [131, 132]. A Lagrangian subgroup of L ⊂ G is a subgroup

such that the fusion subcategory Vec
ω|L
L is Lagrangian. This discussion immediately

implies that in order for an abelian theory to have bosonic gapped boundaries, it should

necessarily originate from a discrete gauge theory. Since we argued that the number of

Lagrangian subcategories is invariant under Galois conjugation, it is clear that Galois

conjugate abelian theories have the same number of bosonic gapped boundaries.74

Now let us study a non-abelian discrete gauge theory, Z(VecωG). The gapped bound-

aries of this theory are classified by the pair (L, η), where L is a subgroup up to conju-

gation of G such that ω|L is trivial in cohomology, and η ∈ H2(L,U(1)) [134]. From our

previous discussion, we know that the Galois conjugate of Z(VecωG) is Z(Vec
q|Q(ξn)(ω)

G )

for some q ∈ Gal(KC). Moreover, if ω|L is cohomologically trivial, so is (q|Q(ξn)(ω))|L.
Therefore, the number of gapped boundaries of Galois conjugate twisted discrete gauge

theories is the same.

4.3.2 Gapped boundaries of general TQFTs

In a general TQFT described by a modular tensor category C, a gapped boundary

corresponds to the condensation of a subset of anyons in C which admits the structure

of a Lagrangian algebra [132]. Therefore, in order to study the nature of bosonic gapped

boundaries of Galois conjugate TQFTs, we have to study the behavior of a Lagrangian

algebra under Galois conjugation. To that end, consider the following two theorems

that characterize a Lagrangian algebra.

Theorem 4.3.1 [132]: A is a commutative algebra in a modular tensor category

C if and only if the object A decomposes as A = ⊕niai into simple objects ai ∈ C

and θai = 1 for all i such that ni ̸= 0.

Theorem 4.3.2 [132]: A commutative connected algebra A = ⊕niai in a unitary

modular tensor category C with dim(A)2 = dim(C) is Lagrangian if and only if

ninj ≤ Nk
iknk , (4.65)

74Bosonic TQFTs can have gapped boundaries sensitive to the spin structure; such boundaries are
obtained from fermion condensation [133]. We only discuss gapped boundaries obtained from conden-
sation of bosons.
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for all i, j, k.

It is clear that if a set of anyons satisfies the constraints in theorem 4.3.1 and 4.3.2 in an

MTC, then the same holds after a unitarity-preserving Galois conjugation. Hence, if a

set of anyons form a Lagrangian algebra, then the same set of anyons form a Lagrangian

algebra in the Galois conjugate unitary theory. Therefore, a set of condensable anyons

remains condensable under unitarity preserving Galois conjugation.

Suppose we have a bulk excitation a. Under condensation, this anyon “splits” into

several anyons to give excitations on the boundary.

a =
∑
x

Waxx , (4.66)

where Wax is an integer matrix. Note that even though this is called “splitting” in

the literature (for example see [135]), it may be that the anyon a gets identified with

other anyons to produce some boundary excitation. The matrix W determines the

relationship between bulk and boundary excitations. The W matrix plays a crucial

rule in determining the fusion rules of boundary excitations. From [135], we have

nzxy =
∑
w

VxwVywV
−1
wz

S0w
, (4.67)

where Vxw :=
∑

a SaxWaw and Sax is the bulk S-matrix (note that in this formula, the

normalization of S does not matter). If we substitute for the Vxw matrix in (4.67), it

becomes an equation in nzxy, W , and the bulk S-matrix S. If the W matrix is invariant

under Galois conjugation, then it is clear that the integer nzxy being a combination of

S and W is also invariant under Galois conjugation. Note that even though the S

matrix can change non-trivially under Galois conjugation, nzxy is an integer given by a

combination of S matrix elements, and hence it is preserved under Galois conjugation.75

For the above picture to hold, we have to show that the integer matrixW is invariant

under Galois conjugation. Given a Lagrangian algebra A in an MTC C, the relation-

ship between bulk and boundary excitations is found by constructing the pre-quotient

category Q̃ = C/A. The simple objects of the canonical idempotent completion, Q, of

C/A are the boundary excitations. The details of the construction of these categories

are not relevant to our discussion. The crucial point is that the construction of the

simple elements of Q and their relationship to bulk anyons depend only on the fusions

rules of the bulk theory and the choice of the anyons forming the Lagrangian algebra

A [132,136]. Hence, it follows that theW matrix is invariant under Galois conjugation.

As a result, we have the following theorem:

75Moreover, since the S-matrix belongs to a cyclotomic field, any Galois conjugation acting on the
S-matrix commutes with complex conjugation.
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Theorem 4.3.3 The fusion rules of the boundary excitations are invariant under

a unitarity-preserving Galois conjugation of the bulk TQFT.

The full data of the gapped boundary is encoded in a spherical fusion category.

The above theorem guarantees that the fusion rules of this spherical fusion category

are invariant under Galois conjugation. However, the F matrices of the boundary

theory can change.

Suppose we have a discrete gauge theory Z(VecωG). This theory always allows

for a gapped boundary described by VecωG whose fusion rules are simply the group

multiplication inG. The invariance of the fusion rules of the boundary excitations under

Galois conjugation implies that, under a Galois conjugation, the gapped boundary

described by VecωG changes at most by a difference in the twist ω. That is, Galois

conjugation of the bulk theory, Z(VecωG), results in a new theory with gapped boundary

described by Vecω
′

G for some ω′ which may not be equal to ω. After Galois conjugation,

the bulk theory is given by Z(Vecω
′

G ). This statement agrees with our discussion of

Galois conjugation of discrete gauge theories.

C
Z(C)

Figure 4.3: The bulk TQFT is the Drinfeld center of the spherical fusion category
describing the boundary excitations.

4.3.3 Galois Conjugation and the Drinfeld Center

In this section we will explore how the Galois action on a spherical fusion category

affects its Drinfeld center. To that end, suppose we have a spherical fusion category

C. Using the F symbols of C, we can construct an algebraic field extension, Q(F ), by

adjoining the elements of the F symbols to the rationals. Let KC be the Galois closure

of Q(F ). This is the defining number field of C that we will work with. The Galois

group, Gal(KC), acting on C gives us other spherical fusion categories.

Now consider the Drinfeld center, Z(C), of C, which, on general grounds, is an

MTC [137]. Let KZ(C) be the Galois closure of the number field obtained by adjoining

the F and R symbols of Z(C) to the rationals. We can then act on Z(C) with the

elements of Gal(KZ(C)) to get other MTCs.

If x is an object in C, the objects of Z(C) are of the form (x, ex) where ex(y) ∈
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Hom(xy, yx) is a half-braiding which satisfies the constraint [138]

α−1(y, z, x) ◦ (1⊗ ex(z)) ◦ αy,x,z ◦ (ex(y)⊗ 1) ◦ α−1
x,y,z = ex(yz) , (4.68)

where ex(1) is normalized to be the identity map, and αx,y,z is the associativity map of

the spherical fusion category. The Hom spaces, tensor product of objects, and braiding

of the resulting modular tensor category are given by [137]

Hom((x, ex), (y, ey)) = {f ∈ Hom(x, y)|1⊗ f ◦ ex(z) = ey(z) ◦ f ⊗ 1 ∀ z ∈ C} ,(4.69)

(x, ex)⊗ (y, ey) = (x⊗ y, exy), where exy = (ex ⊗ idy) ◦ (idx ⊗ ey) , (4.70)

c((x, ex), (y, ey)) = ex(y) . (4.71)

Therefore, we see that the braidings in the bulk are determined by the half-braidings.

Note that given a simple object, (x, ex) ∈ Z(C), x ∈ C need not be simple. Indeed, we

have to use (4.69) to identify the simple objects in the bulk using the fact that

Hom((x, ex), (x, ex)) ≃ C , (4.72)

if and only if (x, ex) is simple.

Note that the MTC data of Z(C) is determined by the data of C along with the

half-braidings. We can choose a basis for the fusion spaces and solve for the half-

braidings by solving some multi-variable polynomials with coefficients in the field Q(F )

obtained by adding the F symbols of C to the rationals (the constraints are given

explicitly in equation (48) of [139]). Also, determining the full data of C describing the

boundary of the bulk TQFT corresponding to Z(C) involves a series of steps. First we

have to determine the multiplication of the Lagrangian algebra in Z(C) corresponding

to the gapped boundary. Representations of this algebra form the fusion category

C. Therefore, to determine the boundary F symbols, we have to find the 6j symbols

for these representations [125, 133]. Though tedious, the constraints to be solved are

algebraic in the data defining the bulk and boundary theory.

Given a Galois action on C by some element of q ∈ Gal(KC), we have some corre-

sponding Galois action q′ ∈ Gal(KZ(C)) obtained as follows.76 Let g1, · · · , gn be a basis

of KC as a vector space, where n is the finite degree of the field extension. The Galois

action by some element q ∈ Gal(KC) on KC is completely specified by its action on the

gi. Similarly, let h1, · · · , hn′ be a basis of KZ(C) as a vector space, where n′ is the finite

degree of the field extension KZ(C). Then we can choose some q′ ∈ Gal(KZ(C)) such

that the action of q and q′ on {g1, · · · , gn} ∩ {h1, · · · , hn′} agree.77 If KC and KZ(C)

76Since the F symbols of C belong to a number field KC , the equations which define the data of
Z(C) are polynomials over KC . Therefore, we can always find a solution to these polynomials which
belongs to a number field (up to gauge choices).

77These can be thought of as Galois actions on the composite extension obtained from KC and
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are distinct, this choice is not unique. Galois action by q′ on the F and R symbols of

Z(C) results in the MTC which is the Drinfeld center of the spherical fusion category

obtained by Galois conjugating C with respect to q. This leads to the following result:

Theorem 4.3.4 Corresponding to every Galois action, q(C), on a spherical fu-

sion category, C, where q ∈ KC , there exists a Galois action q′ ∈ KZ(C) such

that

Z(q(C)) = q′(Z(C)) , (4.73)

and vice-versa.

C
Z(C) q′(Z(C))

q(C)

Figure 4.4: Galois conjugation on the bulk induces a Galois action on the boundary
and vice-versa.

Note that it is possible for KC to be a non-abelian field extension and KZ(C) to be

abelian. For example, the data of the fusion category, H, obtained from the principal

even part of the Haagerup subfactor, cannot be contained in a cyclotomic field [107].

Therefore, by the Kronecker-Weber theorem, KH for this category is necessarily a non-

abelian extension. It is also known that the MTC data of the Drinfeld center Z(H)

belongs to a cyclotomic number field. Therefore, we can choose KZ(H) to be an abelian

extension.

We immediately get an application of (4.73) as follows. Recall that the Drinfeld

center of a spherical fusion category is unique. Moreover, Morita equivalent spherical

fusion categories have the same Drinfeld center. Therefore, (4.73) implies:

Corollary 4.3.4.1 The number of distinct Galois conjugates of Z(C) is a lower

bound on the number of non-Morita equivalent Galois conjugates of C.

Corollary 4.3.4.2 The number of distinct Galois conjugates of C is an upper

bound on the number of distinct Galois conjugates of Z(C).

As a result, if C is Galois invariant, so is Z(C). That is, the Galois invariance of

the 1+1D boundary implies that the bulk TQFT is Galois invariant. Similarly, if Z(C)

is Galois invariant, all Galois conjugates of C should be Morita equivalent to C.

KZ(C).
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It follows that given a bulk TQFT Z(C) with boundary described by the spherical

fusion category C, the Galois conjugate q′(Z(C)) admits the boundary condition q(C).

This agrees with our result above that Galois action on a Lagrangian algebra results in

a Lagrangian algebra. Using Galois actions arising from the cyclotomic field containing

the modular data, this was argued recently in [103].

4.4 Symmetries, Gauging and Galois Fixed Point TQFTs

Symmetries are, of course, a duality-invariant feature of quantum field theories. How-

ever, there is a priori, no guarantee that they are also Galois invariant. We therefore

wish to study the question of how symmetries transform under Galois actions.

To that end, recall that the main observables in 2 + 1D TQFTs are line operators.

These naturally lead to 1-form symmetries. One can also define surface operators

which act on these line operators and permute them. These are 0-form symmetries.

Sometimes the 0-form symmetry and 1-form symmetry can form a 2-group. Therefore,

2 + 1D TQFTs have a rich symmetry structure.78 In this section, we will study the

relationship between the symmetries of Galois conjugate TQFTs. The case of abelian

TQFTs is the simplest to analyse. After that we will study symmetries of non-abelian

Galois conjugate TQFTs. Following this, we will look at gauging the 0-form symmetry

and how Galois conjugation of the TQFT affects the gauging procedure.

4.4.1 Symmetries of a TQFT

Given the set of anyons, {a, b, · · · }, of a TQFT, the subset of abelian anyons corresponds

to some abelian group. This is the 1-form symmetry group, A, of a TQFT. Moreover, we

can define an automorphism group of the set of anyons, G, which preserves the MTC

data (up to conjugation for anti-unitary symmetries). This is the 0-form symmetry

group of the TQFT. These symmetries can lead to a natural 2-Group structure. For

a given MTC, there are certain permutations of the anyons that leave all the gauge-

invariant data unchanged. These form the intrinsic symmetry of the TQFT. The gauge-

invariant data is left unchanged up to a conjugation for anti-unitary symmetries.

Given an MTC, the 2-group structure is define by the quadruple (G,A, ρ, [β]). Here,
ρ is the action of the 0-form symmetry group on the 1-form charges, ρ : G → Aut(A),

and [β] ∈ H3
ρ (G,A). To understand how this 2-group structure arises, let us define

how the 0-form symmetry acts on the MTC. Let g ∈ G. As alluded to before, G acts

on the anyons through a permutation. Hence, g(a) = a
′
. For it to be symmetry, the

78If we allow for topological point operators, then we can also have 2-form symmetries.
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gauge-invariant quantities should be invariant under it. For example:

g(N c
ab) = N

g(c)
g(a)g(b) = N c

ab , (4.74)

g(θa) = KgθaK
g , (4.75)

g(Sab) = KgSg(a)g(b)K
g , (4.76)

where Kg is an operator which complex conjugates the quantity in between if g is an

anti-unitary symmetry. The gauge-dependent quantities should change only up to a

gauge transformation. Since G acts on all anyons, its restriction to the abelian anyons,

A, specifies the map, ρ : G→ Aut(A).

The action of g on the fusion space is

g(|a, b, c;µ⟩) =
∣∣∣a′
, b

′
, c

′
;µ
〉
. (4.77)

For our convenience, we would like to define a map which leaves even the gauge-

dependent quantities invariant. For this, we will redefine the action of the above map

on the fusion space as

g(|a, b, c;µ⟩) =
∑
µ′

Ug(a
′
, b

′
, c

′
)µ,µ′K

g
∣∣∣a′
, b

′
, c

′
;µ

′
〉
, (4.78)

where Ug(a
′
, b

′
; c

′
)µ,µ′ is a unitary matrix, and Kg is an operator introduced above so

that the quantities sandwiched between two Kg’s are complex conjugated if g is an

anti-unitary symmetry. This changes the F and R-matrices as follows

Ug(g(b), g(a), g(c))R
g(c)
g(a)g(b)Ug(g(a), g(b), g(c))

−1 (4.79)

Ug(g(a), g(b), g(e))Ug(g(e), g(c), g(d))(F
g(d)
g(a)g(b)g(c))

g(f)
g(e)

×Ug(g(b), g(c), g(f))−1Ug(g(a), g(f), g(d))
−1 , (4.80)

where a⊗ b = e, b⊗ c = f , and we have supressed the indices labelling the basis vectors

of the fusion spaces. For g ∈ G to be a symmetry, we require

g(Rcab) = Ug(g(b), g(a), g(c))R
g(c)
g(a)g(b)Ug(g(a), g(b), g(c))

−1 = KgRcabK
g ,

(4.81)

g((F dabc)
f
e ) = Ug(g(a), g(b), g(e))Ug(g(e), g(c), g(d))(F

g(d)
g(a)g(b)g(c))

g(f)
g(e)

×Ug(g(b), g(c), g(f))−1Ug(g(a), g(f), g(d))
−1 = Kg(F dabc)

f
eK

g ,

(4.82)

where a⊗b = e, and b⊗c = f . This definition of g ensures the invariance of even gauge
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dependent quantities under its action. Hence, the action of g on a category can be seen

as a permutation of the anyons along with a gauge transformation. Among such maps,

there are those that act on the labels and fusion spaces as follows

Υ(a) = a; Υ(|a, b, c;µ⟩) = γaγb
γc

|a, b, c;µ⟩ , (4.83)

for some phases, γa. By definition, such maps don’t permute the anyons, and they

leave all the data invariant. The Υ are called natural isomorphisms. Note that these

are gauge transformations, where the unitary gauge transformation matrix acting on

the fusion space is γaγb
γc
δµµ′ . The 0-form symmetry group of the theory, G, is the set

of maps, g, modulo natural isomorphisms. Hence, the group elements are equivalence

classes, [g]. For [g], [h], [k] ∈ G the group multiplication is given by

[g] · [h] = [k] ⇐⇒ Υ1 · g ·Υ2 · h = Υ3 · k =⇒ k = κg,h · g · h , (4.84)

where κg,h = Υ−1
3 · Υ1 · g · Υ2 · g−1. Here κg,h is a natural isomorphism which can be

written in terms of phases as

κg,h(a, b, c)µν =
γa(g, h)γb(g, h)

γc(g, h)
δµ,ν . (4.85)

The phases in γa(g, h) look arbitrary, but they obey some consistency conditions. In

fact, they can be extracted from the TQFT data. In the language of symmetry defects,

Ug(a, b, c) represents the action of a symmetry defect on a fusion vertex, and the γa(g, h)

phases represent the difference in the action of g and then h on an anyon compared to

the action of g · h (see Fig. 4.5 and Fig. 4.6).

= Uk(a, b, c)

ag agbh bh

kcgh

xk
xk

kb

kcgh

Figure 4.5: Diagrammatic definition of Uk(a, b, c)

To respect the freedom to add or remove identity lines, we should impose

γ1(g, h) = γa(e, h) = γa(g, e) = 1 , (4.86)

Ue(a, b, c) = Ug(1, b, c) = Ug(a, 1, c) = 1 , (4.87)
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= γx(g, h)

ag agbh bh

cgh

xk xkkb

cgh

hgx

hgx
gx

Figure 4.6: Diagrammatic definition of γk(g, h)

where 1 represents the vacuum, and e is the identity in G. Using κg,hg · h = k and the

action of the symmetries in the fusion spaces, we get the following expression for κg,h.

κg,h =
γa(g, h)γb(g, h)

γc(g, h)
= Ug(a, b, c)

−1(KgU−1
h (g−1(a), g−1(b), g−1(c))Kg)Ugh(a, b, c) .

(4.88)

Let us look at the 0-form symmetry group element g · h · k

g · h · k = κg,hk · g · (h · k) (4.89)

= κg,hk · g · κh,k · h · k (4.90)

= κg,hk · g · κh,k · g−1 · g · h · k . (4.91)

We also have

g · h · k = κgh,k · (g · h) · k (4.92)

= κgh,k · κg,h · g · h · k . (4.93)

Hence, we find the following consistency condition

κg,hk · g · κh,k · g−1 = κgh,k · κg,h . (4.94)

Action of κg,hk on the fusion spaces gives

Kg
γg−1(a)(h, k)γg−1(b)(h, k)

γg−1(c)(h, k)
Kg γa(g, hk)γb(g, hk)

γc(g, hk)
=
γa(gh, k)γb(gh, k)

γc(gh, k)

γa(g, h)γb(g, h)

γc(g, h)
.

(4.95)

Sometimes the 0-form and 1-form symmetries form a non-trivial 2-group. This is

determined by a 3-cocycle, [β], sometimes called the “Postnikov class,” and it belongs

to the cohomology group H3
[ρ](G,A), where ρ : G→ Aut(A) specifies the action of the

0-form symmetry group G on the 1-form symmetry group A. To determine this class,
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let us define the phase

Ωa(g, h, k) :=
Kgγg−1(a)(h, k)K

gγa(g, hk)

γa(gh, k)γa(g, h)
. (4.96)

From this definition, it follows that

KgΩg−1(a)(h, k, l)K
gΩa(g, hk, l)Ωa(g, h, k)

Ωa(gh, k, l)Ωa(g, h, kl)
= 1 . (4.97)

This result can be shown by brute-force substitution and simplification. Using (4.95),

we can show that

Ωa(g, h, k)Ωb(g, h, k) = Ωc(g, h, k) , (4.98)

whenever N c
ab ̸= 0. Then,

daΩa(g, h, k)dbΩb(g, h, k) =
∑
c

N c
abdcΩc(g, h, k) . (4.99)

Hence, daΩa(g, h, k) forms a 1-dimensional representation of the fusion rules and should

be equal to Sae
S1e

for some charge e. As a result, we have

Ωa(g, h, k) =
SaeS11
S1eS1a

=M∗
ae . (4.100)

Since, for a given e, Ωa(g, h, k) is a phase for all a, the label e is abelian in the sense

that its quantum dimension satisfies de = 1. This fact can be shown using the following

argument.

d2e =
∑
b

∣∣∣∣dedbD

∣∣∣∣2 =∑
b

∣∣∣∣dedbD
Mbe

∣∣∣∣2 =∑
b

∣∣∣∣dedbD

SbeS00
S0eS0b

∣∣∣∣2 =∑
b

|Sbe|2 = 1 . (4.101)

Hence, e = β(g, h, k) is a map β(g, h, k) : G×G×G→ A. It is a 3-cochain β(g, h, k) ∈
C3(G,A). Let us use (4.100) to simplify (4.97).

1 =
Ωg−1(a)(h, k, l)Ωa(g, hk, l)Ωa(g, h, k)

Ωa(gh, k, l)Ωa(g, h, kl)

1 = M∗
g−1(a)β(h,k,l)M

∗
aβ(g,hk,l)M

∗
aβ(g,h,k)Maβ(gh,k,l)Maβ(g,h,kl)

= M∗
ag(β(h,k,l))M

∗
aβ(g,hk,l)M

∗
aβ(g,h,k)M

∗
aβ(gh,k,l)

M∗
aβ(g,h,kl)

= M∗
ag(β(h,k,l))·β(g,hk,l)·β(g,h,k)·β(gh,k,φ4)·β(g,h,kl)

. (4.102)

Since this logic holds for all a, we have

g(β(h, k, l)) · β(g, hk, l) · β(g, h, k) · β(gh, k, φ4) · β(g, h, kl) = 0 . (4.103)
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This shows that β is a 3-cocycle. In particular, β ∈ Z3
[ρ](G,A), where the subscript, ρ,

indicates a twisted cohomology group due to the non-trivial action of G on A.

In fact, we can say more. Indeed, there is some freedom in decomposing natural

isomorphisms in terms of phases (in (4.85)). More specifically, we have the freedom to

choose

γa(g, h) or va(g, h)γa(g, h) , (4.104)

where va are phases that satisfy vavb = vc whenever N
c
ab ̸= 0. It is easy to see that either

choice leads to the same κg,h in (4.85). However, the latter will change β ∈ Z3
[ρ](G,A)

by an exact cocycle. Hence, what defines a 2-group are actually equivalence classes

[β] ∈ H3
[ρ](G,A).

Example: Recall the Spin(5)2 Chern-Simons theory that we discussed previously.

This theory has a time reversal symmetry given by the permutation ϕ1 ↔ ϕ2 and

ψ+ ↔ ψ−. Hence, it has a Z2 = {e, z} 0-form symmetry. The modular data can be

used to fix the possible values for the Postnikov class. For a non-unitary symmetry,

we have

Ωa(g, h, k) =
Kgγg−1(a)(h, k)K

gγa(g, hk)

γa(gh, k)γa(g, h)
, (4.105)

where Kg is an operator which complex conjugates the element in between if g is

a non-unitary symmetry. The only non-trivial Ωa(g, h, k) in our case is

Ωa(z, z, z) =
γ∗z(a)(z, z)

γa(z, z)
. (4.106)

From, (4.100) we know that the only non-trivial β(· · · ) is given by β(z, z, z). Since

the relevant cohomology group is H3(Z2,Z2) = Z2, β(z, z, z) should be an order

2 abelian anyon. The only options are β(z, z, z) = 1, ϵ. The relation (4.100) is

trivially satisfied for β(z, z, z) = 1. For, β(z, z, z) = ϵ we have

γ∗z(a)(z, z)

γa(z, z)
=
Saϵ
Sa1

. (4.107)

Using this equation, we can derive some relations among the γa(z, z) phases. In

particular

γe(z, z) = γ∗e (z, z) , γϕ1(z, z) = γ∗ϕ2(z, z) , γψ+(z, z) = −γ∗ψ−(z, z) . (4.108)

If these relations are satisfied, then β(z, z, z) = ϵ is a valid choice. Note that since ϵ

is not a quadratic residue, this choice corresponds to a non-trivial Postnikov class.
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On the other hand, for β(z, z, z) = 1, the quantities in (4.108) satisfy

γe(z, z) = γ∗e (z, z) , γϕ1(z, z) = γ∗ϕ2(z, z) , γψ+(z, z) = γ∗ψ−(z, z) . (4.109)

Now, the values for the F and R matrices for Spin(5)2 can be used to constrain

Uz(a, b, c), which, in turn, will put several constraints on γa(z, z). Using (4.88) we

have the equation

γa(z, z)γa∗(z, z)

γ1(z, z)
= Uz(a, a

∗, 1)−1Uz(z(a), z(a
∗), 1) . (4.110)

It follows that

γa∗(z, z) = γ∗a(z, z) , (4.111)

for anyon, a, satisfying z(a) = a. Also, since all anyons in this theory are self

conjugate, (4.111) implies that γa(z, z) with z(a) = a are real. This discussion

restricts the quantities in (4.111) to be ±1.

Now let us make the choice a = ψ+, b = ψ−, c = ϵ in (4.88)

γψ+(z, z)γψ−(z, z)

γϵ(z, z)
= Uz(ψ+, ψ−, ϵ)

−1Uz(ψ−, ψ+, ϵ) . (4.112)

We would like to substitute for γϵ(z, z) to write γψ+(z, z)γψ−(z, z) purely in terms

of Uz(a, b, c) phases. Let us choose a = ϵ, b = ϕ1, c = ϕ1 in (4.88)

γϵ(z, z)γϕ1(z, z)

γϕ1(z, z)
= Uz(ϵ, ϕ1, ϕ1)

−1Uz(ϵ, ϕ2, ϕ2) (4.113)

=⇒ γϵ(z, z) = Uz(ϵ, ϕ1, ϕ1)
−1Uz(ϵ, ϕ2, ϕ2) . (4.114)

Then we get,

γψ+(z, z)γψ−(z, z) = Uz(ψ+, ψ−, ϵ)
−1Uz(ψ−, ψ+, ϵ)Uz(ϵ, ϕ1, ϕ1)

−1Uz(ϵ, ϕ2, ϕ2) .

(4.115)

The R-matrix, Rϵψ+ψ−
, transforms under the symmetry in the following way

z(Rϵψ+ψ−) = Uz(ψ−, ψ+, ϵ)R
ϵ
ψ−ψ+

Uz(ψ+, ψ−, ϵ)
−1 = (Rϵψ+ψ−)

∗ . (4.116)

From the MTC data of Spin(5)2 (see [129] for the full MTC data), we have Rϵψ+ψ−
=

Rϵψ−ψ+
= 1. It follows that

Uz(ψ−, ψ+, ϵ)Uz(ψ+, ψ−, ϵ)
−1 = 1 . (4.117)
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Also, the F-matrix (F ϕ1ϵϕ2ϕ1)
ϕ1
ϕ2

transforms under the symmetry action as

Uz(ϵ, ϕ1, ϕ1)Uz(ϕ1, ϕ2, ϕ2)(F
ϕ2
ϵϕ1ϕ2

)ϕ2ϕ1Uz(ϕ1, ϕ2, ϕ2)
−1Uz(ϵ, ϕ2, ϕ2)

−1 = ((F ϕ1ϵϕ2ϕ1)
ϕ1
ϕ2
)∗ .

(4.118)

Using, (F ϕ1ϵϕ2ϕ1)
ϕ1
ϕ2

= −1 and (F ϕ2ϵϕ1ϕ2)
ϕ2
ϕ1

= 1, we have

Uz(ϵ, ϕ1, ϕ1)Uz(ϵ, ϕ2, ϕ2)
−1 = −1 . (4.119)

From these relations, we have

γψ+(z, z)γψ−(z, z) = −1 . (4.120)

This agrees with the constraints on γa(z, z) set by β(z, z, z) = ϵ. Hence, Spin(5)2

MTC has a non-trivial Postnikov class.a

aThis theory and its non-trivial Postnikov class are discussed in [140] with the equivalent name
USp(4)2 Chern-Simons theory.

4.4.2 Symmetries of Abelian TQFTs and Galois Conjugation

In abelian TQFTs, all anyons are abelian and hence the 1-form symmetry group coin-

cides with the fusion rules. We know that Galois conjugation relates different solutions

of the Pentagon and Hexagon equations. Hence, it preserves the fusion rules. Thus, the

1-form symmetry group is invariant under Galois conjugation. We would like to find

the relationship between 0-form symmetries of Galois conjugate abelian theories. To

that end, let A be the set of anyons of the theory. As alluded to previously, an abelian

TQFT is determined completely by this set and the topological spin function

θ : A → U(1) . (4.121)

The automorphism group of A, denoted Aut(A), is a subset of the permutation group

acting on A. For it to be a symmetry, G, of the TQFT, it has to preserve the topological

spins. That is, if g ∈ G we require

θg(a) = θa (up to conjugation for anti-unitary symmetries) . (4.122)

The symmetry group, G, is a subgroup of Aut(A). The topological spins are of the

form θa = e2πiha , where ha is a rational number. Hence, the topological spins are roots

of unity, and we can write ha = f(a)
N for some integer N. The condition for g to be a
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symmetry can be written as

hg(a) = ± ha mod 1 (minus sign for anti-unitary symmetries) (4.123)

=⇒ f(g(a)) = ±f(a) mod N . (4.124)

Under Galois conjugation by some q coprime to N,

ha → qha . (4.125)

We can see that the condition (4.123) becomes

qf(g(a)) = ±qf(a) mod N =⇒ f(g(a)) = ±f(a) mod N . (4.126)

Since the set of labels A do not change under Galois conjugation, neither does the

automorphism group. We have seen above that the condition (4.123) which restricts

the symmetry group G to a subgroup of Aut(A) also doesn’t change under Galois

conjugation. Hence, the 0-form symmetry group is Galois invariant.

In summary, we have found that Galois conjugate symmetries have the same 0-form

and 1-form symmetries. What about the 2-group structure? It is widely believed that

all abelian TQFTs have trivial 2-group. This is in agreement with all known cases. A

proof for unitary symmetries was given in [141]. Assuming this result extends to all

0-form symmetries, it is trivially true that the 2-group symmetry is invariant under

Galois conjugation. However, let us give an alternate proof which does not rely on this

conjecture.

For an abelian TQFT, the F and R symbols are phases. Moreover, the Ug(a, b)

can be taken to belong to a cyclotomic field. This statement follows from the fact that

for abelian TQFTs, we can choose a gauge in which all the F symbols are valued in

±1 [112] . For abelian TQFTs, the symmetry transformation of the F symbols (4.82)

can be written as

Ug(g(a), g(b))Ug(g(a) + g(b), g(c))Ug(g(b), g(c))
−1Ug(g(a), g(b) + g(c))−1F (g(a), g(b), g(c))

= KgF (a, b, c)Kg . (4.127)

If we are in a gauge in which the F symbols are valued in ±1, we get

Ug(g(a), g(b))
2Ug(g(a) + g(b), g(c))2Ug(g(b), g(c))

−2Ug(g(a), g(b) + g(c))−2 = 1 .

(4.128)

This result shows that the phases Ug(g(a), g(b))
2 should form a 2-cocycle. Moreover,

since Ug(g(a), g(b))
2 is defined only up to symmetry gauge transformations, Ug(g(a), g(b))

2

should be an element of H2(G,U(1)). These quantities can always be chosen to be |G|th
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roots of unity. Therefore, the phases Ug(g(a), g(b)) are at most 2|G|th roots of unity.

Therefore, a Galois conjugation of F and R induces a Galois conjugation on Ug(a, b)

which acts on these phases as

F (a, b, c) → F (a, b, c)q , R(a, b) → R(a, b)q , U(a, b) → U(a, b)q , (4.129)

for some integer q coprime to the order of the cyclotomic field. As a result, in the

Galois conjugate theory, the symmetry acts on the fusion spaces as Ug(a, b)
q. The

phases satisfying (4.88) are γa(g, h)
q. Therefore, in the Galois conjugate theory, using

(4.96) and (4.100), we get

Ωa(g, h, k)
q =

(Saβ(g,h,k))
q

(Sa1)q
, (4.130)

where Sqab is an element of the S-matrix of the Galois conjugate theory. Hence, the

Galois conjugate theory has the same Postnikov class.

4.4.3 Symmetries of non-abelian TQFTs and Galois conjugation

As a more gentle starting point, we first consider the case of multiplicity free non-

abelian TQFTs (i.e., theories with non-invertible anyons where each fusion product

appears at most once in a given fusion) with a cyclotomic defining number field. We

then proceed to the general non-abelian case.

N c
ab = 0, 1 and cyclotomic defining number field

Let us consider a multiplicity-free MTC, C, with MTC data denoted by Rcab, F
d
abc. Let

KC be the defining number field of C. Before considering the possibility of a more

general defining number field, it is useful to consider the case when KC is a cyclotomic

field.

In this case, the Galois action on the MTC data, as well as its effect on the Ug(a, b, c)

and γa(g, h) phases, can be described explicitly. Therefore, let KC = Q(ξN ), where N is

some integer. Let us consider the MTC, q(C), which is obtained by Galois conjugating

this data with respect to some q ∈ Gal(Q(ξN )). All quantities in q(C) will have a hat

on top, and so the MTC data of the Galois conjugated theory is R̂cab, F̂
d
abc. C has a

1-form symmetry group A and 0-form symmetry group G. G acts on the anyons in the

theory as g(a) and permutes them.

The gauge-invariant quantities of the theory should be invariant under the symmetry

action. For example, we have Sab = Sg(a)g(b). This relation hold holds even after Galois

conjugation. Therefore Ŝab = Ŝg(a)g(b). As a result, the zero-form symmetry group, G,

of the initial TQFT, T1 is isomorphic to the symmetry group of the gauge-invariant

data of the Galois-conjugated TQFT, T2.
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The symmetry acts on the fusion spaces of C through the unitary matrix, Ug.

Because we have a multiplicity free theory, the Ug’s are just phases. By definition, we

have the following equalities

Ug(g(b), g(a), g(c))R
g(c)
g(a)g(b)Ug(g(a), g(b), g(c))

−1 = KgRcabK
g , (4.131)

Ug(g(a), g(b), g(e))Ug(g(e), g(c), g(d))(F
g(d)
g(a)g(b)g(c))

g(f)
g(e)

×Ug(g(b), g(c), g(f))−1Ug(g(a), g(f), g(d))
−1 = Kg(F dabc)

f
eK

g .

(4.132)

From these equations we have

Ug(g(b), g(a), g(c))Ug(g(a), g(b), g(c))
−1 = KgRcabK

g(R
g(c)
g(a)g(b))

−1 , (4.133)

Ug(g(a), g(b), g(e))Ug(g(e), g(c), g(d))Ug(g(b), g(c), g(f))
−1Ug(g(a), g(f), g(d))

−1

= Kg(F dabc)
f
eK

g((F
g(d)
g(a)g(b)g(c))

g(f)
g(e) )

−1 .(4.134)

SinceR
g(c)
g(a)g(b) and (F

g(d)
g(a)g(b)g(c))

g(f)
g(e) belong toQ(ξN ), Ug(g(b), g(a), g(c))Ug(g(a), g(b), g(c))

−1

and Ug(g(a), g(b), g(e))Ug(g(e), g(c), g(d))Ug(g(b), g(c), g(f))
−1Ug(g(a), g(f), g(d))

−1 are

both phases in Q(ξN ). Note that even though the above combinations of the Ug phases

are guaranteed to be in the cyclotomic field of the MTC data, we do not assume that

the individual phases themselves belong to a cyclotomic field. Galois conjugating both

sides of the above equations by q ∈ Gal(Q(ξN )), we get

q(Ug(g(b), g(a), g(c))Ug(g(a), g(b), g(c))
−1) = q(KgRcabK

g(R
g(c)
g(a)g(b))

−1)(4.135)

= Kg(Rcab)
qKg(R

g(c)
g(a)g(b))

−q)(4.136)

= KgR̂cabK
g(R̂

g(c)
g(a)g(b))

−1) . (4.137)

In writing down the equations above, we used the fact that the Rcab are phases for a

multiplicity-free theory and that R̂cab = (Rcab)
q. Also, since Ug(g(b), g(a), g(c))Ug(g(a), g(b), g(c))

−1

is a phase in Q(ξN ), Galois conjugating it by q amounts to taking its qth power. Note

that we can commute the complex conjugation and Galois conjugation operation on

the RHS of the above equation since we have chosen a gauge in which the MTC data

is in a cyclotomic field (the Galois group in this case is abelian). If we had chosen an-

other basis in which the MTC data belongs to a field extension with non-abelian Galois

group, complex conjugation might not commute with a general Galois conjugation. We

have

(Ug(g(b), g(a), g(c))Ug(g(a), g(b), g(c))
−1)qR̂

g(c)
g(a)g(b) = KgR̂cabK

g . (4.138)

Following the same arguments, from the action of the symmetry on the F dabc, we
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obtain

(Ug(g(a), g(b), g(e))Ug(g(e), g(c), g(d))Ug(g(b), g(c), g(f))
−1Ug(g(a), g(f), g(d))

−1)q

×(F̂
g(d)
g(a)g(b)g(c))

g(f)
g(e) = Kg(F̂ dabc)

f
eK

g . (4.139)

Note that since the F matrix elements need not be phases, their Galois conjugation

does not usually correspond to taking a qth power. However, we have only used F̂ dabc =

q(F dabc) in writing down the above equations.

Let us define phases Ûg(g(a), g(b), g(c)) as follows

Ûg(g(a), g(b), g(c)) := Ug(g(a), g(b), g(c))
q . (4.140)

Then, we have

Ûg(g(b), g(a), g(c))Ûg(g(a), g(b), g(c))
−1R̂

g(c)
g(a)g(b) = KgR̂cabK

g , (4.141)

and

Ûg(g(a), g(b), g(e))Ûg(g(e), g(c), g(d))Ûg(g(b), g(c), g(f))
−1Ûg(g(a), g(f), g(d))

−1

×(F̂
g(d)
g(a)g(b)g(c))

g(f)
g(e) = Kg(F̂ dabc)

f
eK

g . (4.142)

This argument shows that q(C), with MTC data R̂cab, F̂
d
abc, has an isomorphic symmetry

group, G, which acts on its anyons as g(a), but now with an action on the fusion spaces

given by Ûg(a, b, c). This discussion implies that Galois conjugation preserves the 0-

form symmetry of the theory.79

To understand what happens to the Postnikov class, let us also define the phases

γ̂a(g, h)

γ̂a(g, h) := (γa(g, h))
q , (4.143)

where γa(g, h) are phases satisfying (4.88). It is clear that we have,

γ̂a(g, h)γ̂b(g, h)

γ̂c(g, h)
= Ûg(a, b, c)

−1(KgÛ−1
h (g−1(a), g−1(b), g−1(c))Kg)Ûgh(a, b, c) ,

(4.144)

If β(g, h, k) is the Postnikov class of C, it satisfies (from (4.100))

Ωa(g, h, k) =
Saβ(g,h,k)

Sa1
. (4.145)

Here
Saβ(g,h,k)

Sa1
is a phase for an abelian anyon, β(g, h, k). Hence, Galois conjugation by

79More precisely, what we have shown is that the 0-form symmetry of C maps to a subgroup of that
of q(C). But, using the invertibility of the Galois action, we can run the above argument starting from
q(C) proving that their 0-form symmetry groups are indeed isomorphic.
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q corresponds to taking its qth power. So we have,

Ŝaβ(g,h,k)

Ŝa1
= q

(
Saβ(g,h,k)

Sa1

)
=

(
Saβ(g,h,k)

Sa1

)q
. (4.146)

Also, from the relation between γ̂a(g, h) and γa(g, h), we have

Ω̂a(g, h, k) = (Ωa(g, h, k))
q , (4.147)

where Ω̂a(g, h, k) is defined similarly to (4.96), but now with γ̂a(g, h).

Using (4.145) we have,

Ω̂a(g, h, k) =
Ŝaβ(g,h,k)

Ŝa1
. (4.148)

Hence, the Postnikov class, β̂(g, h, k), of q(C) is the same as that of C. This dis-

cussion shows that Galois conjugation preserves the complete 2-group symmetry of a

multiplicity-free TQFT.

In the next subsection, we will extend the argument in this section to TQFTs with

multiplicity in its fusion rules.

General TQFTs

Let us consider a general MTC, C, with defining number field, KC (i.e., we do not

impose a restriction on multiplicity or take KC to necessarily be cyclotomic). In this

case, the transformation laws for the F and R matrices under the symmetry action are

more complicated.∑
µ′ν′

[Ug(g(b), g(a), g(c))]µµ′ (R
g(c)
g(a)g(b))µ′ν′ [Ug(g(a), g(b), g(c))

−1]ν′ν = Kg(Rcab)µνK
g , (4.149)

∑
α′β′ ,µ′ ,nu′

[Ug(g(a), g(b), g(e))]αα′ [Ug(g(e), g(c), g(d))]ββ′ (F
g(d)
g(a)g(b)g(c))

(g(f),µ
′
,ν

′
)

(g(e),α′ ,β′ )

×[Ug(g(b), g(c), g(f))
−1]µ′µ[Ug(g(a), g(f), g(d))

−1]ν′ν = Kg(F dabc)
(f,µ,ν)
(e,α,β)K

g .

(4.150)

Note that the above equations form a set of polynomial equations for Ug(a, b, c) with

coefficients belonging to KC . Hence, if the Ug(a, b, c)’s belong to a finite field exten-

sion, then it has to be an extension over KC . The following Lemma shows that the

Ug(a, b, c)’s belong to a finite field extension:

Lemma 4.4.1 [106]: Algebraic points of a complex affine algebraic variety de-

fined over Q are dense in the Zariski topology.
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We know that there is a gauge in which F and R matrices are given in an algebraic

number field. Any algebraic number field is a subfield of Q. Hence, Ug(a, b, c) are

solutions of polynomials with coefficients in Q. Using the Lemma above, it is clear that

there is a gauge in which Ug(a, b, c) belongs to an algebraic field, say K ′
U . Let KU be

the normal closure of K ′
U . This procedure defines a Galois field, and KU is, in general,

a field extension of KC .

We expect the equations (4.82) and (4.81) to give a unique solution up to symmetry

gauge transformations.80 Hence, any element p ∈ Gal(KU/KC) acts on Ug(a, b, c) to

relate it to another set of solutions which is gauge equivalent to the one we started

with.

The existence of the Galois field KU shows that we have an action of Gal(KU ) on F ,

R, and Ug. Therefore, we have a map from MTC data with symmetry g and symmetry

action Ug on the fusion spaces to another such system. Consider the Galois action on

the F and R matrices corresponding to some q ∈ Gal(KC). We know that there exists

some σ ∈ Gal(KU ) such that the restriction of the action of σ to KC is equal to q.

Hence, σ(Ug(a, b, c)) is a solution for the equations (4.150) and (4.149) where the F

and R matrices are replaced by σ(F ) = q(F ) and σ(R) = q(R).

Note that the equations (4.150) and (4.149) are not algebraic. For anti-unitary

symmetries, we have a complex conjugation action on the F and R symbols which may

not commute with the Galois action. If F and R belongs to a CM field, then we know

that any Galois conjugation commutes with complex conjugation. Therefore, we get

the following result:

Theorem 4.4.2 A TQFT and its Galois conjugates have isomorphic unitary and

anti-unitary 0-form symmetries if there is a gauge in which the F and R symbols

of the TQFT belong to a CM field.

For unitary symmetries, the equations (4.150) and (4.149) are algebraic. Therefore,

we get the corollary

Corollary 4.4.2.1 A TQFT and its Galois conjugates have isomorphic 0-form

unitary symmetries.

In order to check whether the whole 2-group is invariant under Galois conjugation,

we have to show that the Postnikov class remains invariant under it. In order to find

the Postnikov class, we have to solve the constraint

γa(g, h)γb(g, h)

γc(g, h)
δµν =

∑
α,β

[Ug(a, b; c)
−1]µαK

q(g)[Uh[g(a), g(b), g(c)]αβK
q(g)[Ugh(a, b, c)]βν .

(4.151)

80This statement has been proven in the case with no multiplicity [141], but it is an open problem
in the general case.
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Using the same arguments as we used in analyzing the Galois action on the Ug(a, b, c),

we can define a Galois field, Kγ , containing γa(g, h), that is, in general, a field ex-

tension of KU . Corresponding to every element q ∈ Gal(KC), where KC is the Ga-

lois field containing the F and R symbols, we have some σ ∈ Gal(Kγ) such that

σ|KC = q. The phases σ(γa(g, h)) satisfy the constraint (4.151) with Ug(a, b, c) re-

placed by σ(Ug(a, b, c)) if Galois action on the Ug matrices commutes with complex

conjugation.

Therefore, we find that if g is a unitary symmetry of an MTC, C, with symmetry

action phases Ug(a, b, c) and γa(g, h) satisfying (4.151), then the Galois conjugate theory

q(C) for some q ∈ Gal(KC) has symmetry g with symmetry action phases σ(Ug(a, b, c))

and σ(γa(g, h)) where σ ∈ Gal(Kγ) and σ|KC = q. If q is anti-unitary, then the same

is true if KC and KU are CM fields.

If KU is a cyclotomic field extension, we can show that the γa(g, h) also belong to

a cyclotomic field. Indeed, suppose we have KU = Q(ξM ) for some integer M to which

Ug belongs to. Since the RHS of (4.151) is a phase, it should have an order which

divides M . Hence, we have(
γa(g, h)γb(g, h)

γc(g, h)

)M
=
γa(g, h)

Mγb(g, h)
M

γc(g, h)M
= 1 , (4.152)

whenever N c
ab ̸= 0. Therefore, we can perform the ν-gauge transformation

γa(g, h)
M → γa(g, h)

Mνa(g, h) , (4.153)

where νa(g, h) = γa(g, h)
−M to set γa(g, h)

M = 1 for all anyons a and g, h ∈ G. This

shows that there exists a ν-gauge in which the phases γa(g, h) all belong to Q(ξM ).

Hence, given Ug matrices, the solutions to (4.151) belong to Q(ξM ).

To complete our discussion, note that we have the relation

Ωa(g, h, k) =
Saβ(g,h,k)

Sa1
, (4.154)

where Ωa(g, h, k) is defined in (4.96). Under the action of any σ ∈ Gal(Kγ), we have

σ(Ωa(g, h, k)) = σ

(
Saβ(g,h,k)

Sa1

)
. (4.155)

Since Ω̂a(g, h, k) = σ(Ωa(g, h, k)) and Ŝab = σ(Sab) are the respective quantities in the

Galois conjugate theory, we have

Ω̂a(g, h, k) =
Ŝaβ(g,h,k)

Ŝa1
. (4.156)
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The actions of such σ’s exhaust all possible Galois conjugations of F and R.

In summary, we have the following result:

Theorem 4.4.3 A TQFT and its Galois conjugates have isomorphic 2-group

symmetry if there is a gauge in which the F and R symbols as well as the Ug(a, b, c)

belong to a CM field.

For unitary symmetries, all the constraints involved are algebraic. Therefore, we

get the corollary

Corollary 4.4.3.1 A TQFT and its Galois conjugates have the same unitary

2-group symmetry.

By a unitary 2-group symmetry, we mean a 2-group symmetry in which the 0-form

symmetry is a group of unitary symmetries. Note that the set of TQFTs with the same

fusion rules shares the same 1-form symmetry group. However, they may not share the

same 0-form, and consequently the same 2-group symmetry. For example, the Toric

code has Z2 0-form symmetry while the 3-fermion model has an S3 0-form symmetry

group. However, our results above show that Galois orbits should contain TQFTs with

the same 0-form and 2-group symmetries (up to a mild assumption for anti-unitary

symmetries).

4.4.4 Gauging and Galois Conjugation

In previous sections, we studied how Galois conjugation acts on the space of TQFTs

and how it acts on specific families of TQFTs within it. Gauging is another way to

move through the space of TQFTs.

If a TQFT T has a 0-form symmetry given by some finite group G, it can be gauged

to obtain a new TQFT, T /G. We will somewhat unconventionally refer to T and T /G
as the magnetic and electric theories, respectively.81 The T /G TQFT does not have

the 0-form symmetry G. Instead, it has a Rep(G) fusion subcategory. We can go from

T /G to T by condensing Rep(G) [58]. When G is abelian, this condensation is the

same as gauging the 1-form symmetry, Rep(G) [50]. Therefore, Rep(G) condensation

is the inverse of G gauging.

We would like to understand how gauging a 0-form symmetry interacts with Galois

conjugation. Our discussion of the Galois action on Rep(G) reveals the following result:

81Let CG be the MTC corresponding to the TQFT T /G, where C is the MTC corresponding to T .
We will use the notation CG and T /G more or less interchangeably to denote the electric theory.
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T T /G

G gauging

Rep(G) condensation

Figure 4.7: Gauging and condensation are inverses.

Theorem 4.4.4 If a TQFT, T , is obtained from gauging a symmetry G of an-

other TQFT, so are all of its Galois conjugates.

Proof: Since T is obtained from another TQFT by gauging G, it contains a fusion

subcategory, Rep(G). Under a Galois conjugation of T , the resulting theory, T ′, also

has a fusion subcategory Rep(G). This statement holds because Rep(G) is invariant

under Galois conjugation. Now, we can condense Rep(G) ⊂ T ′ to obtain another TQFT

with 0-form symmetry G. Therefore, T ′ is also obtained from gauging a symmetry G

of some TQFT. □

In fact, Galois conjugation of a TQFT, CG, with a Rep(G) subcategory can be

related to Galois conjugation of the TQFT, C, obtained by condensing the Rep(G)

subcategory. To obtain C from CG through condensation of Rep(G), we don’t have to

keep track of all the anyons in CG. In fact, the anyons in C correspond to the anyons

in the subcategory, L ⊂ CG, which braid trivially with all condensing anyons. That is,

L is the centralizer of Rep(G) in CG

L = {c ∈ CG|Sca =
1

D
dcda ∀a ∈ Rep(G)} . (4.157)

The twists of the anyons in C are completely determined by the twists of the anyons

in L. Moreover, the quantum dimensions of the anyons in C are the same as those in

L, up to some integer factors. Therefore, the cyclotomic field containing the (S̃, T )

modular data of L ⊂ CG, Q(ξM ), is the same as the cyclotomic field containing the

corresponding modular data of the anyons in C, KM .82 Also, from theorem 4.3.4, we

know that the fusion rules of the boundary excitations are invariant under Galois action

of the bulk TQFT. Condensation of anyons is a more general procedure, where we have

a domain wall between two phases instead of a gapped boundary. In fact, the TQFT

obtained after condensation is described by a modular subcategory of the category of

82This statement follows from re-writing the un-normalized S matrix as [41]

S̃ab =
∑
c

Nc
ab̄

θc
θaθb

dc . (4.158)
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representations of the connected commutative separable algebra describing the bound-

ary excitations [125]. Therefore, the fusion rules of C obtained after condensation are

invariant under Galois conjugation of CG. Since the (un-normalized) S matrix of C is

determined by the twists and quantum dimensions of L along with the fusion rules of

CG, we have the following result:

Theorem 4.4.5 Galois conjugation of CG with respect to q ∈ Gal(KCG), where

KCG is the defining Galois field of CG, induces a Galois action on the modular

data of C by q|KM , where KM is the subfield containing the (S̃, T ) modular data

of C.

Proof: Let KCG be the algebraic field extension containing the data of the MTC

CG. Consider the Galois conjugation of CG by some q ∈ Gal(KCG). The cyclotomic

field KM is a subfield of KCG , which is a normal extension of Q. Therefore, the

restriction q|KM , where q ∈ Gal(KCG) acts on KM as Galois action on the field and

this restriction is surjective. Since the modular data of C is determined by twists and

quantum dimensions of L, as well as the fusion rules of CG, q ∈ Gal(KCG) action on

CG induces a q|KM action on the modular data of C. □

In fact, the results above can be generalized due to the algebraic nature of 0-form

symmetry gauging. To understand this statement, consider a fusion category, C, with

a G-action. Gauging G amounts to constructing the category of G-equivariant objects.

A G-equivariant object is a pair, (x, ug), for all g ∈ G and x an object in C. Here, ug

are isomorphisms, ug : g(x) → x, such that the following constraint is satisfied for all

g, h ∈ G

ugh ◦ γa(g, h) = ug ◦ g(uh) , (4.159)

where γa(g, h) is the isomorphism g(h(a)) → gh(a). This discussion is analogous to

how we go from a global symmetry acting on a Hilbert space, which acts non-trivially

on the states, to a gauged theory where the physical states are invariant under the

gauge group. In the G-equivariant object (x, ug), ug is the isomorphism which tells us

that g(x) is the same as x. Since C is a tensor category, we also have isomorphisms,

ψg(a, b) : g(a)⊗ g(b) → g(a⊗ b). The morphisms between G-equivariant objects are

Hom((x, ug), (y, vg)) = {f ∈ Hom(x, y)|vg ◦ g(f) = f ◦ ug ∀g ∈ G} . (4.160)

The tensor product of objects is

(x, ug)⊗ (y, vg) = (x⊗ y, wg) , (4.161)

where wg = ugvg ◦ψ−1
g (a, b). The G-equivariant objects form a fusion category CG (for

a detailed discussion of this construction see [142,143]).
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Given a TQFT with a 0-form symmetry G, we have a corresponding MTC, C, with

a G action. Provided that certain obstructions vanish, we can construct a G-crossed

braided category, CG, from C with a G-crossed braiding [144]

cx,y : x⊗ y → g(y)⊗ x where x ∈ Cg, g ∈ G, y ∈ C . (4.162)

This amounts to adding the data of the symmetry defects. In a somewhat more field

theoretical language, this step can be thought of as coupling the theory to background

gauge fields prior to gauging [141]. Gauging the symmetry, G, then amounts to con-

structing the category of G-equivariant objects of CG. The G-crossed braiding in CG

can be used to endow CG with a braiding as follows [142]

b(x,ug),(y,vg) = (vg ⊗ idxg) ◦ cxg ,y , (4.163)

where x = ⊕g xg. Note that the braided fusion category, CG, is modular if and only if

C is modular, and the grading in CG is faithful (recall that since C is modular, it has

a spherical structure, so CG is also spherical) [145].

Since the data of CG and CG are related algebraically, every Galois action on CG

leads to a Galois conjugated CG and vice-versa. We can also use our discussion on

Galois action and Drinfeld center to obtain this result. Indeed, suppose we have some

MTC, C, with 0-form symmetry, G. Let us also suppose that the obstructions to

gauging vanishes and we have a G-crossed braided category, CG. Let C
G be the TQFT

obtained after gauging the symmetry G. These theories are related in the following

way [68]

C ⊠ C̄G = Z(CG) . (4.164)

Here, C̄G is a modular tensor category with braiding given by cx,y = c−1
y,x, where cx,y is

the braiding of CG.

To understand this relation, it is useful to examine two special cases. When C

is the trivial TQFT, then CG is equivalent to VecωG, and the above relation becomes

C̄G = Z(VecωG), which is the familiar result that taking the Drinfeld center of VecωG
is the same as gauging a natural isomorphism of the trivial TQFT (up to inverted

braiding). When the group G is trivial, this relation becomes C ⊠ C = Z(C), which

shows that the Drinfeld center of an MTC is a Deligne product of that MTC with itself

up to inverted braiding. Equation (4.164) implies that the MTC data of the various

TQFTs appearing in (4.164) are related via

FC ⊗ FC̄G = FZ(CG), RC ⊗RC̄G = RZ(CG) . (4.165)

Therefore, the MTC data of CG can be determined in terms of the data of C and

Z(CG).

134



CHAPTER 4. GALOIS CONJUGATION OF TQFTS

Suppose we Galois conjugate CG w.r.t. some q ∈ Gal(KCG). C is a modular

subcategory of CG. Therefore, q acts on C. From (4.73) we have some q′ ∈ Gal(KZ(CG))

such that

Z(q(CG)) = q′(Z(CG)) . (4.166)

Hence, we get

Z(q(CG)) = q′(Z(CG)) = q′(C ⊠ C̄G) = q(C)⊠ q′′(CG) , (4.167)

where q′′ ∈ Gal(KCG), and in the last equality above we have used the fact that any

Galois action on a Deligne product can be written as a Galois action on the individual

TQFTs. We have also used the fact that q acts on C when q acts on CG. Therefore,

we find that Galois action on the G-crossed braided theory induces a Galois action on

the gauged theory.

As a consequence, similarly to theorem 4.3.4, we obtain the following:

Theorem 4.4.6 Corresponding to every q ∈ Gal(KCG), there exists a q
′ ∈ Gal(KCG)

such that

(q(CG))
G = q′(CG) , (4.168)

where (q(CG))
G denotes gauging the G symmetry after Galois action on CG.

a

aSee [146] for a similar result in the context of gauging symmetries of certain VOAs.

T T /G
G gauging

q(T ) q′(T /G)
G gauging

q q′

Figure 4.8: Galois conjugation of T induces a Galois action on T /G and vice-versa.

Given an MTC, C, with symmetry, G, there is a cohomological classification of

unitary G-crossed braided categories that can be constructed from C [58,144]. We can

use this classification to describe the Galois action on CG more explicitly. To gauge a

symmetry G of C, we should have trivial Postnikov class. This is because a non-trivial

Postnikov class leads to a coupling between gauge transformations of the 1-form and

0-form symmetry background gauge fields [141]. Therefore, the 0-form symmetry alone

cannot be gauged, though if the 0-form and 1-form ’t Hooft anomaly vanishes, the full

2-group can be gauged. If the Postnikov class vanishes, then the classification follows

from a choice of the fractionalization class, η, which forms a torsor over H2
[ρ](G,A),
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where [ρ] indicates that we have a twisted cohomology group due to the G group action

on the abelian anyons, A, in C. Given a fractionalization class, it determines element

of the group H4(G,U(1)) which is the ’t Hooft anomaly of the symmetry G (which is

also sometimes called the defectification obstruction). If the ’t Hooft anomaly vanishes,

we can gauge the symmetry G.

However, before gauging the symmetry, we have the freedom to stack an SPT. That

is, given the G-crossed braided theory CG, we can form the Deligne product

CG ⊠G VecωG , (4.169)

where ω ∈ H3(G,U(1)). The subscript G on the Deligne product indicates that we

should take a product of the Cg sector of CG with the g anyon in VecωG. We will denote a

G-crossed braided theory obtained from these choices as CG(η, α). The phase ηa(g, h),

which is the fractionalization class when a is a genuine anyon, enters into the Heptagon

equations; these equations need to be solved in order to construct CG. Therefore, a

Galois action on CG by some q ∈ Gal(KCG) should act on η as83

ηa(g, h) → q(ηa(g, h)) . (4.170)

Similarly, since ω ∈ H3(G,U(1)) enters into the gauging procedure through stacking

by an SPT, under Galois conjugation we get84

ω(g, h, k) → q(ω(g, h, k)) . (4.171)

Therefore, Galois conjugations which take a unitary G-crossed braided MTC to a uni-

tary G-crossed braided MTC are completely specified by their action on C, ηa(g, h),

and ω(g, h, k). In particular, if C, ηa(g, h), and ω(g, h, k) are invariant under Galois

action, then there are no unitarity preserving non-trivial Galois actions on CG. There-

fore, the corresponding gauged theory, CG, is not related through Galois conjugations

to other unitary theories.

Example: Spin(k)2 Chern-Simons Theory

We have already seen that the Spin(5)2 theory has a non-trivial Postnikov class.

This theory can be obtained from the A5 abelian TQFT by gauging the charge-

conjugation symmetry. The A5 theory also has a time-reversal symmetry given

83If ηa(g, h) is a root of unity, then the Galois action will act on it by raising it to a power co-prime
to the order of ηa(g, h).

84Since ω(g, h, k) can always be chosen to be a root of unity, the Galois action on it can also be
written as ω(g, h, k) → ω(g, h, k)p where p is an integer co-prime to the order of ω(g, h, k) specified by
the restriction of q ∈ Gal(KC) to the cyclotomic field containing ω.
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by

T : j → 2j , (4.172)

where T 2 = C, and C is the charge-conjugation symmetry. We can generalize this

procedure to generate an infinite family of theories with non-trivial Postnikov class

and then explicitly analyze the Galois action.

Let us consider a general abelian TQFT with fusion rules forming the group Zk.

For Zk fusion rules, there are several gauge-inequivalent solutions to the Pentagon

and Hexagon equations labelled by p = 0, · · · , k − 1. The twists of the anyons in

the Zk MTC, corresponding to a choice of p, are

θa = e
2πipa2

k . (4.173)

We have the set of anyons 0, 1, · · · , k − 1. Irrespective of k, we always have the

charge conjugation symmetry

C : j → −j mod k . (4.174)

However, the TQFT has a time-reversal symmetry if and only if k satisfies 1+ l2 =

0 mod k for some integer l [147]. We will assume that k is odd. The time-reversal

symmetry is given by

T : j → lj mod k . (4.175)

It is clear that T 2 = C. Hence, we have a Z4 = {e, z, c, cz} time-reversal symmetry

and a Z2 = {e, c} charge conjugation symmetry. The idea is to gauge this charge

conjugation symmetry. To that end, we have to first construct the Z2-crossed

braided category (Zk)Z2
. We have

(Zk)Z2
= Ce ⊕ Cc , (4.176)

where Ce contains the anyons 0, ..., k−1. For odd k, the vacuum is the only element

invariant under charge conjugation. Hence, Cc contains only a single defect ψ.

Along with the fusion rules of the anyons in Zk, the Z2-crossed braided theory has

the fusion rules

ψ ⊗ j = ψ , ψ ⊗ ψ = 0⊕ ...⊕ k − 1 , (4.177)

which implies that dψ =
√
k.

It is easy to verify that the H2
[ρ](Z2,Z2) group is trivial. Therefore, there is a

unique fractionalization class. Moreover, H4(Z2, U(1)) ∼= Z1, and the Z2 charge

conjugation symmetry does not have a ’t Hooft anomaly. As a result, this symmetry

can be gauged. To obtain the anyons in the gauged theory, we need the Z2 orbits
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and their stabilizers. We have the following orbits: [0], [1], · · · , [k−1
2 ], [ψ]. The

[1], · · · , [k−1
2 ] orbits have trivial stabilizers, while [0] and [ψ] have a Z2 stabilizer

group. The representations of Z2 can be labelled by [+], [−], where [+] is the trivial

representation. We have the following anyons in the gauged theory

([0], [+]) , ([0], [−]) , ([1],1) , · · · ,
([

k − 1

2

]
,1

)
, ([ψ], [+]) , ([ψ], [−]) . (4.178)

We will denote the first two anyons as 1, ϵ, the last two as ψ+, ψ−, and the rest by

ϕj . For different p, the fusion rules of the gauged theory remain the same, however

the MTC data of the gauged theory changes. For p = k−1
2 , it was shown in [58]

that the resulting gauged theory has the fusion rules and MTC data of Spin(k)2

Chern-Simons theory. For other values of p, we get theories with the same fusion

rules, but different MTC data. In the discussion below, we will choose the value of

p to be k−1
2 .

The topological twists of the anyons area

θ1 = θϵ = 1 , θϕj = e
2πi(k−1)j2

2k , θψ± = ±θψ = ±e
2πi(k−1)

16 . (4.179)

Note that the topological twist of the symmetry defect is not invariant under gauge-

transformations of the symmetry action. However, the twist of ψ± is given by

θψ± = θψχ(π±) , (4.180)

where χ(πa) is the projective character of πa. In the gauge ηa(g, h) = 1 ∀g, h we

have χ(π±) = ±1. A symmetry action gauge transformation changes θψ and χ(πa)

by opposite phases, resulting in gauge-invariant twists θψ± .

If k is such that θψ± are complex conjugates of each other (so k = 5 mod 8),

then we can define a time-reversal symmetry for this theory which acts on the

anyons as follows

T : ϕj → ϕqj , T : ψ+ → ψ− . (4.181)

Since Spin(k)2 MTC is self-dual, it is clear that this time-reversal symmetry is

a Z2 symmetry. Similar to our analysis of the Spin(5)2 theory, we can use the

explicit MTC data of Spin(k)2 in [129] to show that this time-reversal symmetry,

along with the Z2 1-form symmetry generated by the anyon ϵ forms a non-trivial

2-group.

The authors of [141] describe a much simpler way to show there is a non-trivial

2-group using the sufficient conditions in [140]. Following this procedure, let us

assume that the theory has a trivial Postnikov class and show that this leads to
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a contradiction. If the theory has a trivial Postnikov class, it is realizable at the

boundary of a 4D SPT phase. The RP4 partition function of this 4D SPT phase

is given by [140]

Z(RP4) =
∑

a,a=T (a)

S1aθaηa , (4.182)

where ηa is the fractionalization class corresponding to the time-reversal symmetry

of the Spin(k)2 theory and T (a) denotes the time-reversal symmetry action on the

anyon a. For Spin(k)2, where k satisfies 1 + l2 = 0 mod k for some integer l and

k = 5 mod 8, we can calculate this as

Z(RP4) = S11θ1η1 + S1ϵθϵηϵ = D(1 + ηϵ) ̸= ±1 . (4.183)

However, it is known that the partition function of a time-reversal invariant 4D

SPT on RP4 is valued in ±1. This shows that the Spin(k)2 theory (k = 5 mod 8)

cannot be realized at the surface of a 4D SPT. Hence, the Postnikov class of the

theory is non-trivial. Note that if k is such that θψ± is real, then ψ± are also

invariant under the symmetry. Hence, they will contribute to the above partition

function. In fact, for these theories the partition function is valued in ±1. Indeed,

in this case the Postnikov class is trivial.b

Now that we have explored the 2-group structure of Spin(k)2 Chern-Simons

theory, let us show that the Postnikov class is invariant under Galois actions on this

theory. Recall that the Spin(5)2 TQFT was invariant under all unitarity-preserving

Galois actions. We showed this explicitly by studying the Galois action on the T

matrix. Alternatively, this can also be seen from the fact that Spin(5)2 TQFT is

obtained from gauging a Z2 symmetry of the A5 abelian TQFT. Indeed, we know

that the fractionalization class is trivial, and the SPT stacking is determined by

ω ∈ H3(Z2, U(1)) (which is valued in ±1). Therefore, unitarity-preserving Galois

actions on (A5)Z2 cannot change the G-crossed braided structure. We also know

that the A5 TQFT has four Galois actions corresponding to Z×
5 = {1, 2, 3, 4}. The

only non-trivial Galois action which preserves the unitarity of (A5)Z2 (i.e, which

doesn’t flip the sign of dψ =
√
5) is 4. We also know that A5 is invariant under

Galois action by 4. Therefore, we find that (A5)Z2 is invariant under all unitarity-

preserving Galois actions. Therefore, using theorem 4.4.6, we find that the electric

theory Spin(5)2 is invariant under all unitarity-preserving Galois actions.

aWe can stack a non-trivial Z2 SPT before gauging. θψ± of the resulting gauged theory is same
as the twists obtained without SPT stacking up to a factor of −1.

bNote that Z(RP4) being valued in ±1 does not guarantee that the Postnikov class is trivial. It
is only a necessary condition. But it can be checked that whenever ψ± is fixed under the symmetry
action, then (4.100) forces the Postnikov class to be trivial.

More generally, the unitarity-preserving Galois actions on (Zk)Z2 are those Galois
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actions of Zk which preserve the quantum dimensions of all anyons and defects in

(Zk)Z2 . Using theorem 4.4.6, these Galois actions correspond to unitarity-preserving

Galois action on Spin(k)2 TQFT. Indeed, a unitarity-preserving Galois action on (Zk)Z2

with respect to some q co-prime to k can be see as changing our choice of p = k−1
2 to

p = q(k−1)
2 . The twists of the resulting gauged theory then becomes

θ1 = θϵ = 1 , θϕj = e
2πiq(k−1)j2

2k , θψ± = ±θψ = ±e
2πiq(k−1)

16 . (4.184)

If θψ+ and θψ− are complex conjugates before Galois action, the same is true after Galois

action. Therefore, at the level of the T matrix, Spin(5)2 and its Galois conjugates have

the same time-reversal symmetry structure. This is in agreement with our theorem

4.4.2. Moreover, if the Z(RP4) is not valued in ±1 before Galois action, the same is

true after Galois action. Therefore, the Postnikov class is non-trivial before and after

Galois action. Similarly, if the symmetry acts trivially on ψ± before Galois action, then

we know that the Postnikov class is trivial. This result is also true after Galois action.

These observations agree with our theorem 4.4.3.

4.4.5 Galois Invariance and Gauging

Suppose C is a Galois-invariant theory with symmetry G. It is then natural to ask if

this invariance is preserved under gauging 0-form symmetries, 1-form symmetries, and

more general anyon condensation. We expect any lack of invariance in the gauged /

condensed theory to be due to a kind of generalized mixed ’t Hooft anomaly between

the Galois action and the symmetry / condensation in question. On the other hand,

there may be subtler effects due to such an anomaly that we do not study here, and so

the preservation of Galois invariance alone may not be sufficient to conclude that there

is no generalized ’t Hooft anomaly.85 Therefore, all we can say is that that there is a

non-trivial Galois action-0-form mixed ’t Hooft anomaly if gauging the symmetry G

results in a Galois non-invariant theory. Similarly, suppose we have an MTC, C, with a

1-form symmetry, A. We can say that there is a non-trivial Galois action-1-form mixed

anomaly if gauging the symmetry A results in a Galois non-invariant theory. More

generally, we can say there is a Galois action-anyon condensation anomaly by replacing

A with a general connected commutative separable algebra and finding a non-invariant

condensed theory.

85Indeed, in the more standard case of mixed ’t Hooft anomalies between 0-form symmetries, gauging
part of the 0-form symmetry group can sometimes lead to non-trivial 2-groups and other phenomena
[148]. As a result, one may wonder if there is a generalization of this story involving Galois actions
as well. As another possibility, recall that a mixed 0-form / 1-form ’t Hooft anomaly can result in
a non-trivial group extension for the 0-form symmetry after 1-form symmetry gauging [148, 149]. It
would be interesting to study whether there is a generalization of this story to Galois group extensions
under 1-form symmetry gauging / anyon condensation.
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Let us study the behavior of Galois invariance under gauging more carefully. To

that end, suppose C is Galois invariant. Using theorem 4.4.6, we find that CG is Galois

invariant if and only if CG is Galois invariant. This follows from the one-to-one relation

between G-crossed braided categories and modular tensor categories with a Rep(G)

subcategory [43]. We therefore get the following result:

Lemma 4.4.7 Starting from a Galois invariant MTC, C, with 0-form symmetry,

G, we obtain a Galois invariant theory, CG, after gauging if and only if CG is

Galois invariant.

In more field theoretical language, the above lemma amounts to the statement that the

Galois invariance of the gauged TQFT can be determined by turning on background

fields for G and studying the Galois invariance of the TQFT prior to gauging. In the

examples section, we will study particular TQFTs where 0-form gauging preserves the

Galois invariance as well as cases where 0-form gauging violates the Galois invariance.

Next let us discuss how Galois invariance interacts with anyon condensation. To

that end, suppose CG is Galois invariant, then it follows from (4.73) that C is Galois

invariant if and only if CG is Galois invariant. Suppose CG is not Galois invariant.

Then there exists some q ∈ Gal(KCG) such that q(CG) is inequivalent to CG. We have

some q′ ∈ Gal(KCG) such that (q(CG))
G = q′(CG). Since q(CG) is inequivalent to CG,

q′(CG) has to be different from CG. This contradicts the assumption that CG is Galois

invariant. Therefore, CG should be Galois invariant. We get the result:

Lemma 4.4.8 If we start from a Galois-invariant theory, then the theory after

anyon condensation is also Galois invariant.

More generally, lemma 4.4.8 implies that, for every element of the Galois group that

leaves the electric theory invariant, there is a (not necessarily unique) Galois action

on the magnetic theory that leaves it invariant.86 For example, consider a TQFT

invariant under complex conjugation. If the TQFT has real MTC data this is of course

trivially true. But if the MTC data is complex, then there exists a combination of gauge

transformations and a map between the anyons of the TQFT and its complex conjugate

preserving the fusion rules. Sometimes, such a map along with a gauge transformation

arises from the time-reversal symmetry of the TQFT. However, there may not be a

unqiue way to lift the complex conjugation Galois action to a time-reversal symmetry.

For example, consider the A5 TQFT. The complex conjugation Galois action can

be reversed using a permutation of the anyons T (a) = 2a mod 5, which is a time-

reversal symmetry. However, T 3 is also a time-reversal symmetry. Therefore, the

86In particular, this statement is true even if there are other elements of the Galois group that do
not leave the electric theory invariant.
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complex conjugation Galois action can be reversed using T or T 3. Note that complex

conjugation Galois action is always order two, while time-reversal symmetry may not

be order two (it is order four in the A5 example). This discrepancy is due to the fact

that Galois conjugation acts directly on the MTC data, and an order two permutation

of the anyons reversing this Galois action may not preserve the fusion rules of the MTC.

We know that the Spin(5)2 Chern-Simons theory can be obtained by gauging the Z2

charge-conjugation symmetry of A5 TQFT. In this case both the electric and magnetic

theories are invariant under the complex conjugation Galois action. In the electric

theory, the Galois invariance can be lifted to an order-two time-reversal symmetry, while

on the magnetic side, it can be lifted only to an order-four time-reversal symmetry. The

origin of this order-four time-reversal symmetry is due to the non-trivial mixed ’t Hooft

anomaly between the order-two time-reversal symmetry and the Z2 1-form symmetry in

the electric theory. The magnetic theory then has a Z4 time-reversal symmetry which

arises from a group extension of the Z2 time-reversal symmetry of the electric theory

by the Z2 charge conjugation symmetry of the magnetic theory [148].

4.4.6 Galois Fixed Point TQFTs

In this section, our goal is to better elucidate generalizations of the basic unitary

Galois fixed point TQFTs we encountered earlier (i.e., the 3-Fermion Model, Toric

Code, Double Semion, and various other more complicated (twisted) discrete gauge

theories). Of course, most TQFTs transform non-trivially under Galois conjugation.

For example, consider a theory which is not integral. Such a TQFT should have at least

one anyon, say a, with a real irrational quantum dimension, da ̸∈ Q. Then there exists

a Galois conjugation which acts non-trivially on da and results in a different TQFT.

More generally, we have the following theorem:

Lemma 4.4.9 All unitary Galois-invariant TQFTs have only integer quantum

dimensions.

Proof: Consider a unitary MTC, C. Recall from lemma 4.2.2 that a unitarity-

preserving Galois conjugation by an element, g, must satisfy

g(da) = da , (4.185)

for all da. As a result, da ∈ Q ∀a ∈ C. Since quantum dimensions are algebraic integers,

the rational root theorem guarantees that all da ∈ Z. □

Note that this result does not hold for non-unitary Galois fixed point theories. Indeed,

consider the following TQFT

T =⊠q∈Gal(KC0
)q(T0) , (4.186)
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where T0 is a TQFT with at least one irrational quantum dimension, and C0 is the

associated MTC. In (4.186), we take a product over the full Galois orbit of T0 (thereby

rendering T Galois-invariant). Since there is an irrational quantum dimension, the

product TQFT, T , will contain at least one non-unitary factor and hence will be non-

unitary. As an example, we can take T0 to be the Fibonacci theory (then there will be

anyons with quantum dimension (1 ±
√
5)/2 in T ). Finally, note that not all integral

theories are Galois invariant. For example, consider the Semion TQFT. Therefore,

unitary Galois invariant TQFTs should lie in the subspace of integral TQFTs.87

Interestingly, all known examples of integral TQFTs are also weakly group theoreti-

cal (the converse does not hold). These latter TQFTs are under good control since they

all have a Tannakian subcategory that comes from gauging a symmetry of a weakly

anisotropic abelian TQFT [150]. Weakly anisotropic pointed categories are classified

in [145]. The upshot is that any weakly anisotropic abelian TQFT is of the form D⊠A,

where D is the discrete gauge theory, Z(VecG), where G is an abelian group consist-

ing of a direct sum of cyclic groups of prime orders, and A is an anisotropic abelian

TQFT.88 These latter theories are:

1. Ap TQFT

2. Bp TQFT

3. Ap ⊠Ap = Bp ⊠Bp TQFT

4. Semion and Semion.

5. Semion ⊠ Semion and Semion⊠ Semion

6. 3-Fermion Model

7. Z4 TQFT and Galois conjugates.

8. Z4 ⊠ Semion TQFT, Z4 ⊠ Semion TQFT and Galois conjugates.

Therefore, all weakly group theoretical integral MTCs should come from gauging a

symmetry of D ⊠ A where A is one among the TQFTs listed above. Note that the

discrete gauge theory, D, is invariant under Galois conjugation. A is invariant under

Galois conjugation only if A is the 3-Fermion Model or Ap ⊠Ap. This discussion leads

to the following theorem:

87This discussion shows that classifying the set of Galois-invariant unitary TQFTs should be sub-
stantially easier than classifying the set of Galois-invariant non-unitary TQFTs. Indeed, classifying this
latter class is naively as hard as classifying the full set of non-unitary TQFTs and finding their Galois
orbits! On the other hand, for unitary Galois-invariant theories, integrality is already an enormous
simplification. We will soon see that there are various potential additional constraints on the unitary
Galois fixed point TQFTs.

88Anisotropic abelian TQFTs are abelian TQFTs without any subcategories containing only bosons.
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Theorem 4.4.10 Let CG be a Galois-invariant weakly group theoretical TQFT,

then CG can be obtained from gauging a symmetry of D, D ⊠ 3-fermion model, or

D ⊠Ap ⊠Ap.

Proof: Let CG be a Galois invariant weakly group theoretical TQFT. Then it has to

be integral. From lemma 4.4.8, we know that if CG is Galois invariant, then the G-

crossed braided theory CG should be Galois invariant. In particular, the MTC, C (the

Ce component of CG), should be Galois invariant. Weakly group theoretical integral

TQFT CG comes from gauging a symmetry of D⊠A where A is an anisotropic TQFT.

Therefore, C = D⊠A. D is an unwisted discrete gauge theory which is invariant under

Galois action. Hence, Galois invariance of C implies that A can be either the trivial

MTC, the 3-fermion model, or Ap ⊠Ap. □

As a simple check of this discussion, note that gauging a Z2×Z2 natural isomorphism

of the 3-Fermion Model gives the F8 prime abelian theory (see Section 4.5.2). Both are

Galois invariant.

Lemma 4.4.7 shows that the Galois invariance of C does not guarantee the Galois

invariance of CG. For example, gauging an intrinsic Z3 symmetry of the 3-fermion

models and stacking a particular non-trivial SPT gives the SU(3)3 Chern-Simons theory

which has a non-trivial Galois conjugate (see Section 4.5.3). However, gauging the non-

trivial Z3 symmetry of SU(3)3 with trivial SPT stacking gives a Galois-invariant theory.

This example can be generalized to the following theorem:

Theorem 4.4.11 Let the magnetic theory, C, be Galois invariant with an integer

total quantum dimension (i.e., D :=
√∑

a d
2
a ∈ Z). Suppose the symmetry G acts

non-trivially on all non-trivial anyons and satisfies H2
[ρ](G,A)

∼= Z1, where A is the

group of abelian anyons in C. Assuming that the obstructions to gauging vanish,

and choosing the trivial SPT stacking, the electric theory obtained from gauging is

Galois invariant.

Proof: Since the symmetry, G, acts non-trivially on all non-trivial anyons, each defect

sector, Cg, in the G-crossed braided extension CG has a single defect field (i.e., a single

non-genuine line operator bounding the corresponding g surface operator). The total

quantum dimension of Cg is same as that of C for all g. Therefore, it is clear that the

quantum dimensions of all the defects are the same as the total quantum dimension of

C. The quantum dimensions of the defect are integers, and using theorem 4.2.6, we see

that CG is a unitary spherical fusion category.

Therefore, the possible G-crossed braided extensions, CG(η, α) are classified by the

fractionalization class η and possible SPT stackings determined by the 3-cocycle α.

Since H2
[ρ](G,A) is trivial, there is a unique fractionalization class. Let us gauge the
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symmetry G of CG(η, [1]), where [1] denotes the trivial SPT. Since there is a unique

fractionalization class, and since the trival SPT is Galois invariant, CG(η, [1]) is Galois

invariant. Therefore, the theory obtained from gauging G symmetry of CG(η, [1]) is

also Galois invariant. □

For example, consider the charge conjugation symmetry acting on Ap⊠Ap. All non-

trivial anyons transform non-trivially under this symmetry. By explicitly computing

the twisted cohomology groups, H3
[ρ](Z2,Zp ⊗ Zp) and H2

[ρ](Z2,Zp ⊗ Zp), we can check

that they are trivial. Therefore, the Postnikov class vanishes and the fractionalization

class is unique. The defectification obstruction vanishes because H4(Z2, U(1)) ∼= Z1.

Therefore, gauging the charge conjugation symmetry of the Ap ⊠ Ap TQFT produces

Galois invariant TQFTs (irrespective of the SPT stacking).

In theorem 4.4.11, we considered a symmetry which acts non-trivially on all non-

trivial anyons. This is to ensure that the defects have integer quantum dimensions.

However, this is not a necessary constraint to get a Galois invariant TQFT by gaug-

ing non-trivial symmetries. For example, consider a Z2 permutation symmetry which

exchanges the anyons in the two prime factors of the C ⊠ C TQFT. This symmetry

is known to have trivial Postnikov class [58], and the defectification obstruction / ’t

Hooft anomaly vanishes since H4(Z2, U(1)) ∼= Z1. Also, it is known that there is a

unique fractionalization class.89 There are |C| number of defects in each defect sector

since all the anyons of the form (a, a) are invariant under the permutation action. The

quantum dimensions of the xa defects are given by [58]

dxa = |C|da . (4.187)

If we assume that C ⊠ C is Galois invariant, then it is integral. Therefore, all the

defects in the Z2 crossed braided theory have integer quantum dimensions. Gauging

the permutation symmetry results in a Galois-invariant TQFT (irrespective of the SPT

being stacked before gauging).

If every fusion category with integer Frobenius-Perron dimension is weakly-group

theoretical, then any Galois invariant unitary TQFT can be obtained from gauging a

symmetry of D, D ⊠ 3-Fermion Model, or D ⊠ Ap ⊠ Ap.
90 As shown in [152], any

fusion category with Frobenius-Perron dimension, a natural number less than 1800 or

an odd natural number less than 33075 is weakly-group theoretical. Moreover, if the

Frobenius-Perron dimensions of all anyons in a TQFT are prime powers, then it is

89The vanishing of the Postnikov class and defectification obstruction is true even for Sn action on
C⊠n. However, for n > 2 the fractionalization class is not unique [151].

90Some evidence in favor of this possibility follows from the fact that for integral theories, c ∈ Z (i.e.,
the topological central charge is an integer) [111]. Since topological central charge is preserved under
gauging, it is easy to check that gauging the full list of weakly anisotropic abelian TQFTs above gives
all possible integral central charges modulo eight.
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weakly-group theoretical [153].

4.5 Examples

Let us consider several examples to explicitly see how the Galois action interacts with

taking the Drinfeld center and gauging. We will use the G-crossed braided MTC data

computed in [58].

4.5.1 Trivial magnetic theory

Let us first consider the simplest case of a trivial magnetic theory, Vec. In this case,

gauging a natural isomorphism symmetry of G is same as taking the Drinfeld center

of VecωG. The G-crossed braided theory is in fact VecωG itself. We have the Galois field

Q(ω) associated with this category. A Galois action by q ∈ Gal(Q(ω)) changes the

theory as

VecωG → Vecω
q

G . (4.188)

Therefore, under the action of the Galois group, the Drinfeld center (which in this case

is a discrete gauge theory) changes only by ω → ωq.

G = Z2

In this case, we have two possible choices for ω. Since ω is valued in ±1, Galois action

on VecωZ2
does not change the Z2-crossed braided theory. Therefore, the Drinfeld center

also shouldn’t change under Galois action. This is indeed the case. For trivial twist,

the Drinfeld center is the Toric Code which is invariant under the Galois action. For

non-trivial twist, the Drinfeld center is the Double Semion model which has a complex

conjugation Galois action. However, this action can be compensated by a time-reversal

symmetry, and hence Double Semion is invariant under Galois action.

The example with non-trivial ω illustrates that the defining number field of the

electric theory can be bigger than the G-crossed braided magnetic theory. Indeed, the

G-crossed braided theory in this case is VecωZ2
, whose F symbols are given by ω, and the

R symbols can all be set to 1. Even though the defects in VecωZ2
have trivial twist, the

twists of the electric theory have 4th roots of unity in them since the gauging procedure

involves representations of Z2 with characters valued in the 4th roots of unity.

G = ZN

In this case, the ZN -crossed braided theory is VecωZN where

ω(g, h, k) = e
2πipg

N2 (h+k−(h+k mod N)) , (4.189)
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and p ∈ ZN parametrizes the different twists. Since H2(Z2, U(1)) is trivial, for all

values of ω the Drinfeld center is an abelian theory. The anyons of the Drinfeld center

are labelled by (a,m), where a,m ∈ {0, ..N − 1}. The fusion rules and twists of the

Drinfeld center are

(a,m)⊗(b, n) =

(
a+b mod N, [m+n− 2p

N
(a+b−(a+b mod N))] mod N

)
, (4.190)

and

θ(a,m) = e
2πi
N
ame−

2πi
N2 pa

2

. (4.191)

The fusion rules form the group Zgcd(2p,N) × Z N2

gcd(2p,N)

.

The Galois field of VecωZN is the cyclotomic field Q(ξN ) of N th roots of unity. A

Galois action on the ZN -crossed braided theory corresponds to changing the parameter

p as follows

p→ qp , (4.192)

where gcd(q,N) = 1. After this Galois action, the Drinfeld center has fusion rules and

twists

(a,m)⊗(b, n) =

(
a+b mod N, [m+n− 2pq

N
(a+b−(a+b mod N))] mod N

)
, (4.193)

and

θ(a,m) = e
2πi
N
ame−

2πi
N2 pqa

2

. (4.194)

It is clear that we have the same fusion rules since gcd(2p,N)=gcd(2qp,N) when

gcd(q,N) = 1. It will be evident that the fusion rules are the same if we change

the variable m to qm mod N . Then we get

(a, qm mod N)⊗(b, qn mod N) =

(
a+b mod N, [q(m+n−2p

N
(a+b−(a+b mod N)))] mod N

)
.

(4.195)

The twists become

θ(a,qm mod N) = e
2πi
N
qame−

2πi
N2 pqa

2

. (4.196)

Therefore, the twist of the anyon (a, qm mod N) in Z(Vecω
q

ZN ) is the Galois conjugate

of the twist of the anyon (a,m) in Z(VecωZN ).

4.5.2 Non-trivial magnetic theory with trivial symmetry

Let us consider some cases of a non-trivial magnetic theory with natural isomorphism

symmetry.
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Ising MTC with Z2 symmetry

From section 4.2.4, we know that the unitarity preserving Galois actions on the Ising(ν)

family correspond to q = 1, 7, 9, 15. Under these Galois actions, the Ising(ν) family of

models transform as

Ising(ν) → Ising(qν mod16) . (4.197)

The Ising model (ν = 1) does not have any non-trivial intrinsic symmetries. There-

fore, the Z2 group has to act as a natural isomorphism. We know that the Post-

nikov class vanishes. The fractionalization class is specified by an element in η ∈
H2(Z2,Z2) ∼= Z2. Since H4(Z2, U(1)) is trivial, defectification obstruction vanishes.

The choice of stacking a Z2-SPT before gauging is parametrized by an element in

α ∈ H3(Z2, U(1)) ∼= Z2. We get the following theories under gauging [58]

η, α trivial → Ising⊠ Toric Code , (4.198)

η trivial α non-trivial → Ising⊠ Double-Semion , (4.199)

η non-trivial α trivial → Ising(15) ⊠A4 , (4.200)

η non-trivial α non-trivial → Ising(3) ⊠B4 . (4.201)

Since both η and α are valued in ±1, a Galois action on the Z2-crossed braided

structure can only affect the modular subcategory Ising. That is, let Ising(ν, α) denote

the Z2-crossed braided theory specified by η and ω. A unitarity preserving Galois

action on this gives Ising(q)(η, α), where q is specified by the Galois action. Therefore,

the electric theories obtained above should also transform in this way.

Since the Toric code and Double-Semion model are invariant under Galois action,

we find that the Galois action on (4.198) and (4.199) acts precisely as the Z2-crossed

braided magnetic theory transforms.

Now let us focus on the electric theory, Ising(15)⊠A4. The data of this theory belongs

to the cyclotomic field Q(ξ16). The unitarity preserving Galois actions correspond to

q = 1, 7, 9, 15. Under these Galois action we get

q = 7 : Ising(15) ⊠A4 → Ising(9) ⊠B4 , (4.202)

q = 9 : Ising(15) ⊠A4 → Ising(7) ⊠A4 , (4.203)

q = 15 : Ising(15) ⊠A4 → Ising(1) ⊠B4 . (4.204)

Recall that Ising(15) ⊠ A4 is obtained from gauging Ising(1)(η = −1, α = +1). The

three Galois conjugates above are obtained from the Z2-crossed braided categories

Ising(7)(η = −1, α = +1), Ising(9)(η = −1, α = +1) and Ising(15)(η = −1, α = +1),

respectively. These are all Galois conjugates of Ising(1)(η = −1, α = +1), as expected.

Similarly, we can check that the Galois conjugates of the electric theory Ising(3)⊠B4
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corresponds to Galois conjugates of the Z2-crossed braided theory Ising(1)(η = −1, α =

−1).

3-fermion model with Z2 × Z2 symmetry

Consider the prime abelian theory F8. The 64 anyons are labelled by (m,n) where

m,n ∈ Z8. The bosons (0, 0), (0, 4), (4, 0), (4, 4) form a Rep(Z2 × Z2) subcategory

which can be condensed. The magnetic theory can be obtained by identifying the

anyons which braid trivially with all anyons in Rep(Z2 × Z2). These fall into the

following 4 equivalence classes of anyons under fusion with the anyons in Rep(Z2×Z2)

(0, 0) , (0, 2) , (2, 0) , (2, 2) . (4.205)

The twists of these anyons are 1,−1,−1,−1, respectively. Therefore, the magnetic

theory is the 3-fermion model. Hence, the F8 prime abelian anyons model can be

obtained from F2 by gauging a Z2 × Z2 natural isomorphism symmetry. Both the

magnetic and electric theory are invariant under Galois conjugation.

For the F2 abelian model with Z2 ×Z2 symmetry, the Postnikov class vanishes and

the fractionalization class belongs to the group H2(Z2 × Z2,Z2 × Z2) ∼= Z6
2. Group

cohomology allows for a defectification obstruction since H4(Z2 ×Z2, U(1)) ∼= Z2 ×Z2.

For a given choice of the fractionalization class, if this obstruction vanishes, then the

freedom to stack a Z2×Z2-SPT before gauging is parametrized by H3(Z2×Z2, U(1)) ∼=
Z3
2. Therefore, we have several possible electric theories in this case based on the choice

of fractionalization class and SPT stacking.

4.5.3 Non-trivial magnetic theory with non-trivial symmetry

Toric code with Z2 electric-magnetic symmetry

Let us consider the Toric code with a non-trivial Z2 symmetry which permutes the

two bosons. It is known that the Postnikov class vanishes for this symmetry. We have

H2
[ρ](Z2,Z2 ×Z2) ∼= Z1, H

4(Z2, U(1)) ∼= Z1 and H3(Z2, U(1)) = Z2. Therefore, there is

a unique fractionalization class for which group cohomology guarantees that the defec-

tification obstruction vanishes. We have the freedom to stack a Z2-SPT corresponding

to α ∈ H3(Z2, U(1)) ∼= Z2 before gauging. We get the following theories under gauging

α trivial → Ising(1) ⊠ Ising(15) , (4.206)

α non-trivial → Ising(3) ⊠ Ising(13) . (4.207)

Since the Toric code is Galois invariant, and since the Z2 crossed braided theory

is completely rigid except for the choice of α (which is valued in ±1), the Z2-crossed

149



CHAPTER 4. GALOIS CONJUGATION OF TQFTS

braided theory is invariant under all unitarity-preserving Galois actions. Therefore, the

electric theories obtained above should also be invariant under all such Galois actions.

Indeed, the MTCs Ising(1)⊠ Ising(15) and Ising(3)⊠ Ising(13) are both invariant under

all unitarity preserving Galois actions.

3-fermion model with Z2 symmetry

Let us consider the 3-fermion model with a non-trivial Z2 symmetry which permutes

any two of the three fermions in the theory. It is known that the Postnikov class

vanishes for this symmetry. We have H2
[ρ](Z2,Z2 × Z2) ∼= Z1, H

4(Z2, U(1)) ∼= Z1

and H3(Z2, U(1)) = Z2. Therefore, there is a unique fractionalization class for which

group cohomology guarantees that the defectification obstruction vanishes. We have

the freedom to stack a Z2-SPT corresponding to α ∈ H3(Z2, U(1)) ∼= Z2 before gauging.

We get the following theories under gauging

α trivial → Ising(1) ⊠ Ising(7) , (4.208)

α non-trivial → Ising(3) ⊠ Ising(5) . (4.209)

Since the magnetic theory is Galois invariant, and since the Z2 crossed braided the-

ory is completely rigid except for the choice of α (which is valued in ±1), the Z2-crossed

braided theory is invariant under all unitarity preserving Galois actions. Therefore, the

electric theories obtained above should also be invariant under all such Galois actions.

Indeed, the MTCs Ising(1)⊠ Ising(7) and Ising(3)⊠ Ising(5) are both invariant under all

unitarity preserving Galois actions (Galois action leads to permutations of the three

anyons with
√
2 quantum dimensions).

3-fermion model with Z3 symmetry

Let us consider the 3-fermion model with a non-trivial Z3 symmetry which cyclically

permutes the three fermions in the theory. It is known that the Postnikov class van-

ishes for this symmetry. We have H2
[ρ](Z3,Z2 × Z2) ∼= Z1, H

4(Z3, U(1)) ∼= Z1 and

H3(Z3, U(1)) = Z3. Therefore, there is a unique fractionalization class for which group

cohomology guarantees that the defectification obstruction vanishes. We have the free-

dom to stack a Z3-SPT corresponding to α ∈ H3(Z3, U(1)) ∼= Z3 before gauging. It is

known that for non-trivial α and its inverse we get the MTC SU(3)3 and its complex

conjugate under gauging [58].

SU(3)3 has only one non-trivial Galois conjugate [154], which is the complex con-

jugate of SU(3)3. Therefore, Galois conjugation of the electric theory corresponds to

changing the Z3-SPT being stacked before gauging (α→ ᾱ).

For trivial α the resulting TQFT is integral and has different fusion rules than that
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of SU(3)3 (The explicit fusion rules are given in [58]). Since the magnetic theory is

Galois invariant and since the Z3-crossed braided theory with α trivial is invariant under

Galois action, the electric theory is invariant under unitarity preserving Galois actions.

Moreover, since the electric theory is integral and unitary, all Galois actions preserve

unitarity (using Theorem 2.7). Therefore, the electric theory obtained for trivial α is

in fact completely Galois invariant. Indeed, one can check that the modular data for

this theory given in [154] is invariant under Galois conjugation (up to permutation of

the anyons). This is an example of a Galois invariant non-abelian TQFT which is not

a discrete gauge theory.

4.6 Conclusion

We explored several aspects of Galois actions on TQFTs and gave a sufficient condition

for producing unitary Galois orbits. We also discussed how Galois conjugation of a

bulk TQFT changes its gapped boundary. Using the fact that certain TQFTs are

uniquely determined by their gapped boundaries, we studied how the Galois action on

gapped boundaries affects the bulk TQFTs. By determining the relationship between

Galois action on theories related by gauging, we showed that (assuming a conjecture in

the literature) arbitrary Galois-invariant TQFTs are closely related to simple abelian

Galois-invariant TQFTs.

These results show that, while Galois conjugation usually results in distinct TQFTs,

the TQFTs in a Galois orbit are closely related to each other. They have the same

symmetry structure (modulo mild assumptions in the defining number field of the

G-crossed braided theory), and their gapped boundaries are related to each other.

This situation is unlike other operations, such as gauging or condensation, which can

drastically change the anyon content and symmetry structure of the theory.

Finally, we constructed the defining number field KC of an MTC using the F and

R symbols, and Galois conjugation of the TQFT acted directly on the F and R data.

In general, the total quantum dimension, D, is not an element of KC . Moreover, we

defined Galois action on the TQFT such that it doesn’t change the sign of D (we can

consider taking D → −D as a second step, supplementing our Galois conjugation, when

exploring particular orbits).91 Explicitly including a D → −D transformation leads to

certain simple extensions of our results.

91Recall that the sign of D is important for TQFT unitarity.

151



Chapter 5

Galois Conjugation and

Entanglement Entropy

5.1 Introduction

In Chapter 4, we explored several properties of Galois conjugation of TQFTs. We saw

that Galois actions preserve symmetries of the TQFT. Moreover, we showed that the

space of Galois invariant unitary TQFTs is very special. The purpose of this chap-

ter is to gain additional physical insight into Galois transformations that goes beyond

symmetry and fusion. In particular, we will study the effects of Galois transforma-

tions on a type of “multiboundary” topological entanglement entropy (MEE) defined

in [155–157]. MEE is quite different from the more familiar entanglement entropy

studied in [158,159]. Indeed, it involves first placing TQFTs on link complements, par-

ticular compact 3-manifolds that have multiple disjoint boundaries, and then tracing

out Hilbert spaces associated with proper subsets of these boundaries. MEE is there-

fore highly non-local. Moreover, as we will see, MEE has interesting connections with

knot theory, and we will phrase properties of Galois transformations in terms of the

topology of knots and links.92

Our main claim is that, for a TQFT defined on ML, the MEE we obtain by tracing

out Hilbert subspaces associated with proper subsets of the disjoint boundaries is often

invariant under the TQFT Galois action. In particular, we argue that the MEEs asso-

ciated with any Abelian TQFT on any link complement in S3 are invariant under the

TQFT Galois action. In the case of non-abelian theories, the situation is more subtle.

Building on our Abelian proof and taking into account recent results on classifications

of MTCs [76, 161, 162], we argue that a natural place to look for Galois invariance of

MEE in non-Abelian theories is on 3-manifolds corresponding to complements of torus

links. Indeed, we then identify infinite sets of torus link complements that give rise to

92See [160] for an early study of Galois transformations and link invariants.
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invariant MEE along Galois orbits.93 As we will see, there is an interesting interplay

between the topology of these link complements and basic modular data of the non-

Abelian TQFTs living on these spaces (we highlight a simple application of this result

in the conclusions).

Recall the discussion of Galois conjugation of TQFTs in Section 4.2. Since the

F and R matrices are gauge-dependent, the Galois group of the full TQFT is gauge-

dependent. However, we can arrive at a more gauge-invariant notion of a Galois group

as follows. Recall that a TQFT computes knot and link invariants. Given a link, L, its
link invariant, C(L), is written in terms of the MTC data. If C(L) does not have self

intersections, then it is independent of the choices of fusion space bases and hence is

gauge invariant (see Fig. 5.1). Since we only consider observables built from such links

in this chapter, all our data will be gauge invariant. This fact implies that the link data

we will study is defined over some gauge-invariant subfield, K ⊆ K. The corresponding

Galois group, Gal(K), is then gauge independent.

a b a b c

µ

ν

(a) (b)

Figure 5.1: (a) The S matrix, and all the links we consider in this chapter, are gauge
invariant. (b) The punctured S-matrix (c ̸= 0) has self-intersections and is therefore
gauge dependent.

As we will see, torus links will play a particularly important role in our story.

These links can be constructed from words built out of the modular S and T matri-

ces in (2.13), (2.14). For these matrices, the relevant field extension is a cyclotomic

field, K = Q(ξN ), given by extending the rationals by powers of a primitive root of

unity, ξN = exp (2πi/N) [32, 108–111]. As a result, the Galois group for the modu-

lar data is Gal(Q(ξN )) = Z×
N—the multiplicative group modulo N consisting of all

n ∈ {0, 1, 2, · · · , N − 1} that are co-prime to N (i.e., gcd(n,N) = 1).94 In this case, we

93In the case of non-Abelian theories, the Galois action will, in general, take unitary theories to
non-unitary ones. This fact leads to subtleties when defining what we mean by MEE in these latter
theories. However, it turns out that there is in fact a natural definition of MEE even in the case of
non-unitary theories.

94Unfortunately, the S and T matrices, along with the topological central charge, are not enough to
specify an MTC [76]. As a result, we cannot take the Galois group of the S and T matrices to define a
Galois group of the MTC in general. On the other hand, there may be other gauge-invariant ways to
classify MTCs (e.g., see [161,162] for preliminary results in this direction). Such a classification scheme
might then allow one to assign a gauge-invariant Galois group for the full MTC.
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have a trivial Galois action on Q and a non-trivial action on ξ

q(ξ) = ξq , ∀q ∈ Z×
N . (5.1)

If the S and T matrices contain any elements not in Q, the Galois group will take the

TQFT with modular data (S, T ) to a new TQFT with modular data (q(S), q(T )).95

In fact, given this discussion, one can work out the Galois action on the modular

data for a given q ∈ Z×
N [32]96

q(Taa) = (Taa)
q , q(Sab) = ϵq(a)Sσq(a)b = ϵq(b)Saσq(b) , (5.2)

where σ(a) is a permutation of the labels and ϵq(a) ∈ {±}. Hence, Galois conjugation

of the S matrix is a signed permutation.

We can say a bit more about how the Galois group acts on the modular data by

making further contact with related results in the 2D RCFT literature [110]. In the

context of RCFT, the natural normalization for the T matrix is

T → φ · T , φ = exp(πic/12) , (5.3)

where c is the central charge, and φ3 = Θ (recall Θ was introduced in (2.16)). In this

normalization, Bantay showed that the Galois group is given as follows [110]

Gal(φ · T, S) = Gal(Q(ξN )) ≃ Z×
N , (φ · T )N = 1 , (5.4)

where N is the “conductor”—for our purposes, the smallest N > 0 such that (φ ·T )N is

the identity matrix. By definition, Bantay’s Galois group must have a (not necessarily

faithful) action on φ·T00 = φ. Therefore, going back to the natural MTC normalization

for T , we may conclude that

Gal(T, S) = Z×
N , (5.5)

acts (not necessarily faithfully) on the modular data of the MTC and therefore consti-

tutes a Galois group for the modular data. This statement does not preclude subgroups,

H ⊂ Z×
N , from acting faithfully on the modular data of the MTC.97

In our discussion of entanglement entropy in non-abelian theories, we will see that

95If S or T are not real, we can always take (S, T ) → (S∗, T ∗) (and similarly (F,R) → (F ∗, R∗)) and
get a consistent TQFT related to the original one by time reversal.

96The Galois action on T follows from the fact that Tij = θiδij is a diagonal matrix of phases. The
Galois action on S follows from a careful analysis of the consequences of Verlinde’s formula and the
fact that the fusion rules are preserved by the Galois action.

97For example, in the context of the modular data of the Lee-Yang RCFT, the natural Galois group is
Z×

60 ≃ Z2
2×Z4. This group acts unfaithfully on the modular data of the corresponding MTC. However,

a Z×
20 ≃ Z2 ×Z4 ⊂ Z×

60 subgroup does act faithfully on this data. Note that the Z×
20 subgroup is twice

as large as the Z×
5 ≃ Z4 Galois group defined by the twists and quantum dimensions alone.
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a slightly different notion of the conductor arises. There it is more natural to discuss

an “MTC conductor” defined as the smallest N0 > 0 such that

TN0 = 1 . (5.6)

This quantity is closely related to Bantay’s conductor since it turns out that N = fN0,

where f ∈ {1, 2, 3, 4, 6, 12} [110].

While the above discussion, following [110], is tied to the existence of RCFTs realiz-

ing a particular MTC, it turns out that one may rephrase the above discussion without

explicit reference to an underlying RCFT [111]. This latter approach is somewhat more

mathematical, and we will not summarize it here. However, the upshot is that we will

be able to make certain statements below about MTCs that need not be related to

RCFTs.

The plan of this chapter is as follows. In the next section, we will review the

definition of link states and MEE. With these concepts under our belt, in Sec. 5.3 we

prove universal results on MEE in Abelian TQFTs. The following section is dedicated

to generalizing this discussion to non-Abelian TQFTs living on torus link complements.

Finally, we conclude with some comments on open problems and applications suggested

by our work.

5.2 Multiboundary entanglement entropy in TQFT

In the previous section, we saw that solutions of the Pentagon and Hexagon equations

can be partitioned into Galois orbits. This fact allows us to take the data of one TQFT

and Galois conjugate it to get the data of another theory. The correlation functions /

link invariants of the theory also get transformed under Galois conjugation.

To make this abstract discussion somewhat more physical, we will study how the

Galois action affects a particular type of entanglement entropy defined in [156,157] (see

also [155]). As we will see, studying this question will lead to an interesting interplay

between MTC data and the topology of 3-manifolds.

To proceed, let us imagine a unitary TQFT defined on a compact 3-manifold, ML,

that is a link complement of some closed 3-manifold, M. Note that we will mostly

focus on the case M = S3 in what follows (we briefly discuss certain generalizations

to other lens spaces in Sec. 5.4.5). We can construct such an ML by first drawing

a non-self-intersecting n-component link, Ln = ⊔ni=1Li, on S3 and then removing a

tubular neighborhood of the link, N (Ln), from S3. In other words

ML ≡ S3 −N (Ln) . (5.7)

Then, it is clear that ∂ML = ⊔ni=1T
2
i . In other words, the boundary of our 3-manifold
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consists of a disjoint union of T 2’s.

To any T 2, we can associate a Hilbert space (we will discuss subtleties related

to the case of non-unitary MTCs below), H(T 2), whose basis states, {|ja⟩}, can be

constructed by first filling in the T 2 to obtain a solid torus, U , with ∂U = T 2. The

partition function of the theory on U with line ja wrapping the non-contractible cycle

of U , ZU (ja), then defines a corresponding state, |ja⟩, on the boundary T 2. We can

compute the inner product of this state with a set of dual states by first thinking of

U as U = D2 × S1, where D2 is the 2-disk. The dual state, ⟨jb|, comes from studying

the partition function on U ′ = D2 × S1, where ∂U ′ = −∂U ,98 with a line, jb, inserted

along the non-contractible cycle. The corresponding inner product, ⟨jb|ja⟩, can also

be obtained by instead inserting the conjugate line, j∗b , (in addition to ja) along the

non-contractible cycle of U . The partition function for U ∪U ′ = S2×S1 takes the form

⟨jb|ja⟩ ≡ ZS2×S1(j∗b , ja) = δab , (5.8)

which follows from conservation of topological charge.

Now we can consider the boundary state, |Ln⟩, which belongs to the tensor product

of Hilbert spaces H1 ⊗ · · · ⊗ Hn corresponding to the n T 2 boundaries. This state is

defined by considering the partition function of the theory on ML

|Ln⟩ ≡ ZML . (5.9)

We may expand this state in terms of the T 2 states as follows

|Ln⟩ =
∑

j1,...,jn

CLn(j1, ..., jn) |j1⟩ ⊗ · · · ⊗ |jn⟩ . (5.10)

Using (5.8), we can compute the CLn(j1, · · · , jn) by considering the inner product with

⟨jn|⊗· · ·⊗⟨j1|. As discussed above, this operation corresponds to filling in the boundary

T 2’s and inserting conjugate representations, j∗i , along the non-contractible cycles. For

concreteness, let us consider a Chern-Simons theory and its Euclidean path integral

on ML. In this case, we have that the CLn(j1, · · · , jn) coefficients are just the various

link invariants on S3 computed from correlators of the Wilson lines in the conjugate

representations

CLn(j1, · · · , jn) = ⟨W ∗
j1 · · ·W

∗
jn⟩ . (5.11)

Given the link state, we can define the density matrix ρ = |Ln⟩ ⟨Ln|, where the

coefficients of ⟨Ln| are ⟨Wj1 · · ·Wjn⟩. We can further define reduced density matrices

of the form

ρred1,...,m = trm+1,...,n(ρ) , (5.12)

98In other words, U and U ′ share the same boundary with orientation reversed.
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where we trace over the Hilbert subspace Hm+1 ⊗ · · · ⊗ Hn to get a matrix defined on

H1 ⊗ · · · ⊗ Hm. Then, one can define the MEE to be the usual von Neumann entropy

of this reduced density matrix

SvN (ρred) = −tr(ρred lnρred) . (5.13)

This entanglement entropy is a coarse-grained form of the information contained in

the link invariants CLn(j1, ..., jn).
99 Many interesting properties of this entanglement

entropy were studied in [155–157] (see also [163]). In the following section, we will

compute the explicit form of the link state, |Ln⟩, in general abelian theories and study

the behavior of its entanglement entropy (after tracing out sub-links) under Galois

conjugation. Note that since the entanglement entropy is invariant under local unitaries

acting on the individual Hilbert spaces, we can ignore phases that come up in the

calculation of CLn(j1, ..., jn) which depend purely on any one of the labels. Building on

the results of the abelian discussion, we will then move on to discuss the more subtle

case of non-Abelian TQFTs.

Before we continue, let us precisely define our procedure for comparing MEE under

Galois transformations:

Definition (comparing MEE under Galois conjugation): By comparing the

MEE under Galois transformations, what we mean is the following. We start with

some unitary TQFT, T , and we compute the MEE. Then, we perform a Galois

transformation to produce another TQFT, T ′. We then compute the MEE in T ′

and compare with the MEE in T . This comparison can be done directly by producing

ρred(T ′) from ρred(T ) via the Galois action. We then proceed iteratively along a

Galois orbit, comparing MEEs for each element of the orbit. In particular, we do

not apply a Galois transformation to (5.13) directly (this quantity is typically a

transcendental number and does not lie in the field extension of the MTC).

5.2.1 Subtleties for non-unitary theories

In the next section, we will discuss abelian TQFTs. These theories are all described

by (unitary) Abelian CS theories.100 In the language of axiomatic TQFT (e.g., see

[164–166]), they assign Hilbert spaces to boundaries of 3-manifolds, ∂M. In other

words, to each boundary component of ML, we have a complex vector space with a

positive-definite norm.

99Indeed, at a more operational level, one may simply view the MEE as a convenient and natural
means to encapsulate information about the link invariants on S3. This information can, in principle,
be reconstructed without ever introducing boundaries and associated Hilbert spaces.
100This statement ignores potential S → −S Galois transformations. However, we will see that our

results apply to these theories as well.
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On the other hand, when we discuss non-abelian TQFTs, the Galois action often

takes unitary theories to non-unitary ones. Note that these non-unitary theories still

have a finite number of simple objects. However, unlike unitary theories, non-unitary

TQFTs have negative S3 expectation values for some of the loops built out of the simple

objects. As a result, under the standard MTC Hermitian inner product, such theories

have negative norm states.

Still, even for non-unitary theories, in the case of a 3-manifold with boundary 2-

tori, T 2
i , the theory assigns vector spaces, V (T 2

i ), with a set of vectors obeying (5.8).

Indeed, the existence of this pairing follows from topological charge conservation and

is independent of unitarity. Moreover, the non-unitary theories we consider lie on the

same Galois orbit as at least one unitary theory, so the link invariant coefficients in

(5.11) and their orientation-reversed conjugates have a natural extension to the non-

unitary case under the Galois action. As a result, even for the non-unitary theories we

study, we may formally construct a positive semi-definite reduced density matrix as in

the discussion below (5.10) for the state defined by the path integral over ML.

Readers who find this discussion disturbing are encouraged to take the definition in

the previous subsection as an operational definition for comparing MEE in our theories

of interest. Note that for more general states it is not immediately clear to us if one

can construct a reduced density matrix in the same way. However, in the context

of related non-unitary 2D CFTs, like the Lee-Yang theory, it is known that one can

construct standard density matrices for other closely related measures of entanglement

and define a Hilbert space with respect to a modified norm [167].101 We suspect that

assigning such a Hilbert space to the subset of non-unitary MTCs we discuss here is

also possible, but we do not prove it.102

5.3 Abelian TQFTs

In this section we will study how the multiboundary entanglement entropy described in

the previous section transforms as we perform Galois conjugation on abelian TQFTs.

As discussed in Sec.4.2.2, abelian TQFTs have labels and fusion rules given by an

abelian group, A. Since the fusion rules are invariant under the Galois action, we see

that the space of abelian TQFTs—and, more specifically, the space of theories with

fusion rules given by A—is closed under Galois conjugation.

As we will discuss in more detail shortly, abelian TQFTs can always be written as

abelian CS theories [112, 169–171].103 Since the main topological property encoded by

101These ideas have also played a role in a non-unitary proof of Zamolodchikov’s c-theorem [168].
102This statement may be related to the fact that the primaries in 2D CFTs like Lee-Yang have

positive norm, while negative norms only enter at the level of the descendants. We thank A. Konechny
for discussions on this point.
103Here we ignore the possibility of flipping the sign of the S matrix (as discussed below (2.16)).
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such theories is linking number, it is intuitively reasonable to imagine that the Galois

action will lead to abelian theories with the same entanglement entropy.104 We will

indeed see this expectation is correct and that the linear transformation properties of

S under the Galois action (5.2) play an important role.

To proceed, let us first discuss abelian TQFTs in more detail. Since the fusion

rules are those of an abelian group, the fusion coefficients satisfy N c
ab = δa·b,c where

a, b, c ∈ A, and a · b is the group multiplication. Moreover, N c
ab ∈ {0, 1}, and so all

fusion spaces are one dimensional. Hence, the F and R matrices are just phases, and

we will denote them as F (a, b, c) and R(a, b).105

In this case, the pentagon equation simplifies to

F (a, b, c · d)F (a · b, c, d) = F (b, c, d)F (a, b · c, d)F (a, b, c) . (5.14)

A function F : A ⊗ A ⊗ A → U(1) satisfying (5.14) is called a 3-cocyle in group

cohomology. Similarly, the Hexagon equations reduce to

R(a, c)F (b, a, c)R(a, b) = F (b, c, a)R(a, b · c)F (a, b, c) ,

R(c, a)F (b, a, c)−1R(b, a) = F (b, c, a)−1R(b · c, a)F (a, b, c)−1 . (5.15)

The gauge-inequivalent solutions, (F,R), belong to the third abelian cohomology group,

H3
ab(A, U(1)). The gauge freedom in F and R is captured by this cohomology structure

[42,43].

As reviewed in Chapter 2, to find the MTC data of a general TQFT given a set of

labels and fusion rules, one finds F matrices solving the Pentagon equations and then

one solves the Hexagon equations given these F matrices. However, in abelian TQFTs,

the situation is much simpler, and the MTC data is fixed by the choice of a quadratic

function, θ(a) : A → U(1), that gives the topological spins (i.e., the T matrix).106

Although much of what we said above does not depend on the existence of La-

grangians, it will be useful for us to keep them in mind in our subsequent discussion

of abelian theories. Moreover, as mentioned at the beginning of this section, it turns

out that we do not lose any generality in studying abelian Chern-Simons theories with

gauge group U(1)N [112, 169–171] (they span the space of TQFTs with S matrices as

However, our results apply even to any MTCs of this latter type.
104In this case, the simpler entanglement entropy of [158,159] is trivially invariant since it is given by

the square-root of the rank of the fusion group,
√

|A|.
105Note that since all fusion spaces are one dimensional, specifying a, b, c in F da,b,c automatically

specifies d, and so we loose no generality in taking the F symbols to depend on three group elements.
Similar reasoning shows that we loose no generality in taking the R matrices to depend on two group
elements.
106For further details, see the recent discussion in [112].
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in (2.13)). These theories have Lagrangians of the general form

S =
iKij

2π

∫
M
AidAj . (5.16)

Here Ai are U(1) gauge fields, M is a 3-manifold, and K is a symmetric even integral

matrix of levels.107 The fusion rules of the theory are given by the abelian group,

ZN/KZN , and anyons are labelled by a set of basis vectors for this lattice. The fact

that K is an integer matrix means it has a Smith normal form, KS , which we denote

by

KS =


n1 0 . . . 0

0 n2
...

. . .

0 . . . 0 nN

 . (5.17)

There exists integer matrices U and W which are invertible over the integers such that

KS = UKW . Two vectors a⃗, b⃗ in ZN/KZN are equivalent if they satisfy

a⃗ = b⃗+Kα⃗ = b⃗+ U−1KSW
−1α⃗ (5.18)

for some integer vector α⃗. Let us define a new integer vector α⃗′ =W−1α⃗. We have

a⃗ = b⃗+ U−1KSα⃗
′

(5.19)

After a change of basis using U , we have

a⃗′ = b⃗′ +KSα⃗
′

(5.20)

where a⃗′ = Ua⃗, b⃗′ = Ub⃗. From this discussion, it is clear that the abelian group

ZN/KZN is isomorphic to Zn1⊗· · ·⊗ZnN . Clearly we can reproduce any finite abelian

fusion group using such theories. As discussed above, the MTC data is specified by the

topological spin. For abelian theories, it can be expressed in terms of K as follows

θ(⃗a) = exp
(
πi⃗aK−1a⃗

)
, (5.21)

where a⃗ ∈ ZN/KZN .
Next let us explicitly fix the remainder of the modular data (recall that T is given

in terms of θ). To that end, we first define the braiding

B(⃗a.⃗b) =
θ(⃗a+ b⃗)

θ(⃗a)θ(⃗b)
= exp

(
2πi⃗aK−1⃗b

)
. (5.22)

107In other words, we will assume that the diagonal entries in K are even integers (the remaining
entries may be even or odd). Otherwise, the theory would be a spin-TQFT.
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The R matrices and the braiding phase are related by [112]

B(⃗a, b⃗) = R(⃗a, b⃗)R(⃗b, a⃗) . (5.23)

The representation of the modular group generators S and T realized by this theory is

then

S
a⃗,⃗b

=
1√
|A|

B(⃗a, b⃗) , Ta⃗,⃗a = θ(⃗a) , (5.24)

where |A| is the order of the abelian group, A.

In the next section, we will use the above data to find the link invariant for a general

n-component link. Given this expression, we will then compute the entanglement en-

tropy for general abelian theories and show the invariance claimed above under Galois

transformations.

5.3.1 Link invariants in abelian TQFTs

Let us consider an n-component link in which the constituent knots are labelled by

j1, · · · , jn. Since the F and R matrices of abelian TQFTs are U(1) valued, simplifying

the individual structure of a knot, ji, to give the unknot will give us phases which act

on the Hilbert space, Hi. Since these phases can be removed using a local unitary

operation, the entanglement entropy is independent of these phases. Hence, as far

as calculating the entanglement entropy is concerned, we are only interested in the

braiding between the constituent knots. We will consider the case of a 2-component

link in the next section which can then be easily generalized to give the link invariant

for an n-component link.

Link invariant for a 2-link

Since abelian theories primarily capture linking number, it is reasonable to imagine that

any link invariant can be written (up to unimportant local unitary transformations that

will not affect our quantities of interest) in terms of the S matrix. We will see this

statement is indeed true.

a

a

b

b

a

a

b

b

a

a

b

b

a

a

b

b

(i) (ii) (iii) (iv)

Figure 5.2: Possible braidings for oriented links.
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To that end, consider a 2-component link in which the two knots are labelled a and

b. There must be an even number of braids between them. As a result, the braids can

be grouped into pairs. In an oriented link, four types of pairs are possible (see Fig.

5.2). Let us find the algebraic expression obtained from unbraiding diagram (i) in Fig.

5.2.

a

a

b

b

a b

b

a b a b
a b

a a b

R(a, b) R(a, b)R(b, a)

a b

R(a, b)R(b, a)

a

a a

b

b b
a · b

a · b

a · b =====

Figure 5.3: Link invariant of a braid pair. Diagrams 1-6 from left.

To understand this unbraiding, consider Fig. 5.3. In going from diagram 2 to 3

(from left) of Fig. 5.3, we have used the decomposition of the identity, which has a

unique channel in an abelian TQFT. In diagrams 4 and 5, we remove the braiding by

adding appropriate R matrix factors. Finally we again use the decomposition of the

identity to go from diagram 5 to 6. As a result, we find that the braid pair can be

replaced by the identity acting on the two anyons if we include the factor R(a, b)R(b, a).

j⃗1 j⃗2B(⃗j1, j⃗2) = j⃗1 j⃗2= = B
(⃗
j∗1 , j⃗2

)−1

Figure 5.4: The relation in (5.26) follows from the equality of the above TQFT dia-
grams.

In the K matrix formalism, the knots are labelled by anyonic vectors j⃗1, j⃗2 ∈
ZN/KZN , and we think of the anyons as elements of the corresponding additive

group. In this notation, the algebraic expression corresponding to the diagram (i) is

R(j⃗1, j⃗2)R(j⃗2, j⃗1). From (5.24), we know that this is just the braiding phase B(j⃗1, j⃗2).

Repeating the above calculation for diagrams (ii), (iii) and (iv) we get B(j⃗1, j⃗∗2),

B(j⃗∗1 , j⃗2), and B(j⃗∗1 , j⃗
∗
2), respectively. If there are n1 braid pairs of type (i), n2 of
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type (ii), n3 of type (iii), and n4 of type (iv), the total link invariant is given by

(B(j⃗1, j⃗2))
n1(B(j⃗1, j⃗∗2))

n2(B(j⃗∗1 , j⃗2))
n3(B(j⃗∗1 , j⃗

∗
2))

n4 . (5.25)

Moreover, (5.22) implies the following relations hold

B(j⃗1, j⃗∗2) = (B(j⃗1, j⃗2))
−1 , B(j⃗∗1 , j⃗2) = (B(j⃗1, j⃗2))

−1 , (5.26)

since j⃗∗i ∼ −j⃗i, where “∼” means, “up to vectors of the form K · ω⃗i” (i.e., up to a

K-trivial vector). In fact, (5.26) holds without the need to appeal to a K matrix, since

the TQFT diagrams in Fig. 5.4 are equal.

Hence, the link invariant simplifies to

B(j⃗1, j⃗2)
l12 ∼ S(j⃗1, j⃗2)

l12 , (5.27)

where l12 = n1 + n4 − n2 − n3 is the linking number, and “∼” means, “up to an

overall normalization.” This simple calculation shows that the MTC data of abelian

TQFTs can be used to compute the linking number of a link and that the result can be

expressed through the S matrix alone. Next, we generalize this argument to an n-link.

Link invariant for an n-link

For a link made up of n knots, we should repeat the calculation in Sec. 5.3.1 for each

pair of knots, (ji, jk), where 1 ≤ i < k ≤ n, and ji,k are the labels of the corresponding

knots. Proceeding in this way, we find

(B(⃗ji, j⃗k))
ℓik , (5.28)

where ℓik is the linking number between the knots labelled ji and jk in the link. The

total link invariant will be the product of these factors. As a result, the link invariant

for an n-link in an abelian TQFT is∏
i<k

(B(⃗ji, j⃗k))
ℓik . (5.29)

5.3.2 Galois conjugation of entanglement entropy

Using the link invariants computed in the previous subsection, we can now find the

associated entanglement entropy defined in Sec. 5.2 and study its behavior under the

Galois action.

Let us again specialize to a 2-link before discussing the general n > 2 case. To that
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end, using (5.27), we have the normalized link state

∣∣L2
〉
=

1

|A|
∑
j⃗1,j⃗2

(B(j⃗1, j⃗2))
l12 |j1, j2⟩ =

∑
j⃗1,j⃗2

|A|
l12
2

−1
(
Sj⃗1,j⃗2

)l12
|j1, j2⟩ . (5.30)

Tracing out the Hilbert space of the second link yields the following reduced density

matrix

ρred =
∑
j⃗1,h⃗1

∑
m⃗

|A|l12−2
(
Sj⃗1m⃗

)l12(
S
h⃗1m⃗

)−l12 ∣∣∣j⃗1〉〈h⃗1∣∣∣ . (5.31)

Next we may use (5.2) to perform a Galois transformation and read off the reduced

density matrix in the conjugated theory

ρred = |A|l12−2
∑
j⃗1,h⃗1

∑
m⃗

(
ϵp(m)Sj⃗1σp(m⃗)

)l12(
ϵp(m)S

h⃗1σp(m⃗)

)−l12 ∣∣∣j⃗1〉〈h⃗1∣∣∣
= |A|l12−2

∑
j⃗1,h⃗1

∑
m⃗

(
Sj⃗1σp(m⃗)

)l12(
S
h⃗1σp(m⃗)

)−l12 ∣∣∣j⃗1〉〈h⃗1∣∣∣ . (5.32)

Since m⃗ is summed over, the reduced density matrix is invariant under Galois conjuga-

tion. As a result, the entanglement entropy for a 2-link computed in an abelian TQFT

and the Galois conjugated theory are equal.

The generalization to an n-link is straightforward. Indeed, using (5.29), the link

state is given (up to a normalization factor) by

|Ln⟩ =
∑

j⃗1,...,j⃗n

∏
i≤k

(
Sj⃗i,j⃗k

)ℓik
|j1, ..., jn⟩ . (5.33)

The density matrix for this state is then

ρ =
∑

j⃗1,...,j⃗n

∑
h⃗1,...,h⃗n

(∏
i<k

(
Sj⃗ij⃗k

)ℓik)( ∏
z<w

(
S
h⃗z h⃗w

)−ℓzw) ∣∣∣j⃗1, ..., j⃗n〉〈h⃗1, ..., h⃗n∣∣∣ . (5.34)
Without loss of generality, we can trace over the last n−q links to get a reduced density

matrix over the first q links. Up to overall constant factors and phases which can be

removed by applying unitaries on the first q copies of the Hilbert space (which again

don’t affect the entanglement entropy), the components of the reduced density matrix

can be written as

ρredj⃗1...j⃗q ,h⃗1,...,h⃗q =
n∏

k=q+1

∑
m⃗

q∏
i=1

(
Sj⃗i,m⃗

)ℓik(
S
h⃗i,m⃗

)−ℓik
. (5.35)
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Galois conjugation of this reduced density matrix will only result in a permutation of

the vectors m⃗. Since there is a sum over m⃗, the reduced density matrix is invariant

under Galois conjugation. Note that this invariance includes any Galois transformation

taking S → −S.108

This discussion once again implies that the entanglement entropy is also invariant

under Galois conjugation. Thus, even though the link invariants calculated in two

abelian TQFTs related by Galois conjugation are generally different, the entanglement

entropy is the same in both theories. Note that the linear behavior of the S matrix

under Galois conjugation plays a crucial role in this result.

Before briefly exploring implications of these results for non-Abelian theories, let

us note that we may explicitly compute the MEE following from (5.35). For simplicity,

focussing on the 2-link case, we obtain (see App. B.1 for details)

SvN(L2) = ln

(
det(K)

gcd(ℓ12, n1)gcd(ℓ12, n2) · · · gcd(ℓ12, nN )

)
, (5.36)

where the ni are the diagonal elements of the Smith normal form, Ks, and are therefore

the ranks of the individual factors that make up the Abelian fusion group, A.109 Note

that (5.36) shows a manifest symmetry under ℓ12 → ℓ12 +m det(K) for any integer m

since

gcd(ℓ12 +m det(K), ni) = gcd(ℓ12, ni) , ∀ni . (5.37)

Actually, this same periodicity is already visible in (5.33). Indeed, from (5.24) and

(5.22), we have (up to an unimportant normalization)

Sj⃗i ,⃗j2 ∼ exp
(
2πi⃗j1K

−1j⃗2

)
=

(
2πi

j⃗1K̃j⃗2
det(K)

)
, (5.38)

where K̃ is the integer-valued adjugate matrix. Therefore, taking ℓik → ℓik+m det(K)

in (5.33) leaves |Ln⟩ and the MEE invariant. It is also straightforward to use (5.24)

and (5.22) to establish that (5.33) and the MEE are invariant under arbitrary integer

shifts of the linking numbers by the MTC conductor, ℓik → ℓik +mN0.

The upshot of the above discussion is that Galois transformations of abelian the-

ories preserve the multiboundary entanglement entropy. However, this result hinges

on the fact that, for any link complement, only the S matrix enters the computation.

Moreover, the S matrix has linear transformation properties under the Galois action.

For more general TQFTs we therefore expect a more subtle situation. For example, we

108In fact, we could have constructed a link state directly for such theories using diagramatic reductions
analogous to those above, and we would have found the same reduced density matrix. Therefore, such
theories have invariant ρred even if they are not Galois conjugates of abelian CS theories.
109As a consistency check, note that for a product TQFT, where K itself is a diagonal matrix, the

entanglement entropy becomes the sum of the entanglement entropies of the individual theories.
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expect the T matrix to play a more prominent role (i.e., that it will not just appear

through S), and we have seen that both it and the entanglement entropy are sensitive

to the conductor.110

5.4 Non-Abelian TQFTs

In this section, we generalize the abelian TQFT discussion to non-abelian theories.

Before proceeding, it is worth considering what such a generalization should look like.

To that end, let us make a few comments:

• In the abelian case, the density matrix can be written exclusively in terms of the

S-matrix. This simplification is due to the fact that abelian theories are only

sensitive to linking number. On the other hand, non-abelian theories compute

more complicated invariants: the Jones polynomial, the HOMFLY polynomials,

and infinitely many generalizations. Therefore, a non-abelian generalization of our

discussion should depend on finer details of the topology of ML. In the broadest

terms, a result of Thurston [172], guarantees that ML can be either a torus link

complement, a hyperbolic link complement, or a satellite link complement.111

Torus links are naturally in correspondence with words that can be built out

of S and T (the generators of the mapping class group of T 2). Therefore, this

reasoning points to studying a generalization of the abelian result to torus links.

• Another reason to study torus links when searching for a non-abelian generaliza-

tion of Sec. 5.3 comes from the results in [76]. There the authors showed that

there are Dijkgraaf-Witten theories with gauge group Zq ⋊n Zp such that the

Galois group acts non-trivially on the corresponding MTCs but leaves the S and

T matrices invariant. As a result, torus knot complements are natural places to

look to find invariance of the entanglement entropy along Galois orbits. Moreover,

recent work in [161, 162] suggests that hyperbolic link invariants can potentially

be used to distinguish MTCs in a gauge-invariant manner. Indeed, it is easy to

check that the entanglement entropy of one of the simplest non-abelian TQFTs,

su(2)k Chern-Simons theory, is generically non-invariant along the corresponding

Galois orbits when tracing out one of the links of the hyperbolic Whitehead link

complement (see App. B.2 for details). Since Whitehead is one of the simplest

hyperbolic links (it has linking number zero and is built from two unknots), this

110In the theories described above, the period of the link state and the MEE can be finer than the
conductor (although these quantities are also periodic modulo the conductor). For example, in Z2

TQFT, we have N0 = 4, but det(K) = 2. The reason for this difference is that the link state and MEE
depend on T only through the (unnormalized) S matrix.
111Torus links are links that can be drawn on the surface of a T 2 without self-intersection. Hyperbolic

links are links whose complements admit complete hyperbolic metrics. By Thurston’s results, satellite
links are what remain (we will briefly encounter these links in App. B.2).
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result suggests that changes in the entanglement entropy along Galois orbits of

theories on hyperbolic link complements is more ubiquitous. Similar comments

apply to satellite link complements (see App. B.2 for details).112

• On the other hand, we do not expect all torus link complements to give rise to

invariant entanglement entropy along Galois orbits. Indeed, we generally expect

the non-Abelian density matrix to depend explicitly on T and not just on S. As

a result, we expect the topology of the torus link complement to be sensitive to

the conductor of the MTC.

To better understand how to proceed, we review torus links in the next subsection.

We then revisit the linear transformation properties of S that hold in Abelian and

non-Abelian TQFTs alike and use them to identify a canonical class of torus links that

give rise to invariant entanglement entropy along Galois orbits of general MTCs.

5.4.1 Torus links and canonical words

Let us recall some useful aspects of torus links. As discussed in previous sections, these

links can be drawn on the surface of a T 2 without self intersection. They are classified

by two integers, (m,n), corresponding to the basis of 1-cycles wrapped by the links. In

particular, m corresponds to the number of times the link wraps the longitude of the

torus and n corresponds to the number of times the link wraps the meridian.113

The links may be characterized by the components that make it up. In particular,

we have

ν(m,n) = gcd(m,n) , ℓ(m,n) =
mn

gcd(m,n)2
, (5.39)

where ν(n,m) is the number of components that make up the link (note that for

gcd(n,m) = 1, the link is a knot), and ℓ(m,n) is the linking number between any two

component knots in the link (this is an invariant for any pairs of knots in the link). The

knots that make up the link are of type (m/ν(m,n), n/ν(m,n)). For example, (2, 2) is

the Hopf link, with nL = 2 and ℓ = 1. This link is made up of two (1, 1) unknots.

One crucial aspect of our discussion below is that the entanglement entropy arising

in torus links does not depend on the number of knots we trace out [157]. More precisely,

if our link consists of ν(m,n) ≥ 2 knots, the entanglement entropy is independent of

the number of links, 1 ≤ r ≤ ν(m,n)− 1, we trace out.

In order to understand which torus link complements give rise to invariant entangle-

ment entropy under Galois conjugation, it is useful to revisit the Galois transformation

112Although we suspect that there could be interesting generalizations of our work below to some
subclasses of these links as well. For example, a natural set of satellite links to examine are connected
sums of torus links.
113An invariant definition of these cycles can be given by imagining filling in the torus to obtain a

solid torus. In the solid torus, the meridian becomes contractible while the longitude does not.
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properties of the S matrix in (5.2). For each element, Q, of the Galois group of the

modular data, these signed permutations can be generated by114

GσQ = φ2Q+PS−1TQSTPSTQ , Q · P = 1 (mod N) , (5.40)

whereN is the (generalization of the) conductor described around (5.4). In other words,

the Galois transformation of the S-matrix is

Q(S) = G−1
σQ
S = SGσQ . (5.41)

From the perspective of the Galois group, the string of S and T matrices in (5.40) form

a set of “canonical” words: the GσQ are invariant under the Galois group, since all

matrix elements are in the set {−1, 0, 1} ⊂ Q.
Given each GσQ , it is natural that there should be an infinite number of associated

torus link complements that give rise to Galois invariant entanglement entropy for non-

abelian TQFTs defined on these spaces.115 In the next subsection, we will argue that

the complements of torus links of type (M,MQ), with M ∈ Z and gcd(Q,N0) = 1,

are precisely such a set of 3-manifolds (recall that N0 is the MTC conductor defined in

(5.6)). In what follows, we will refer to these spaces as ML(M,MQ) .

5.4.2 Galois invariance of the entanglement entropy on ML(M,MQ)

We begin by deriving an explicit expression for the link invariant of an (M,MQ) torus

link from the MTC data. From (5.39), we see that this is an M component link in

which the number of braidings between any two knots is 2Q (which follows from the

mutual linking number, Q). Let us look at the braids between the knots labelled by

ji and jk. The 2Q braids between these two knots are represented by the operators

(Rji,jkRjk,ji)
Q (see Fig. 5.5).

The total invariant can then be found by computing the following quantum trace:

T̃r
( ∏
ji,jk

(Rji,jkRjk,ji)
Q
)
. (5.42)

The operator within the trace acts on the fusion space V j1,··· ,jM
j1,··· ,jM . In order to compute the

quantum trace, we need to specify the operator’s action on the fusion space, V c
j1,··· ,jM .

Since we have

V c
j1,··· ,jM =

∑
a1,··· ,am−2

V a1
j1,j2

⊗ V a2
a1,j3

⊗ · · · ⊗ V c
am−2,jM

, (5.43)

114These matrices were constructed for cases with C = 1 in [109] and more generally in [110,111].
115The reason we expect an infinite number of torus link complements for each GσQ is that, for each

torus knot, we can construct links with arbitrary numbers of these knots.
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2Q braidings

ji ji

jiji jk

jk jk

jk

(Rji,jkRjk,ji)
Q

Figure 5.5: The action of (Rji,jkRjk,ji)
Q on strands of the knots labeled by ji and jk.

we can write the operators
∏
ji,jk

(Rji,jkRjk,ji)
Q acting on V c

j1,...,jM
as∑

a1,··· ,aM−2

(Ra1j1,j2R
a1
j2,j1

)Q(Ra2a1,j3R
a2
j3,a1

)Q · · · (RcaM−2,jm
RcjM ,aM−2

)Q . (5.44)

We can now evaluate (5.42) to obtain

T̃r
( ∏
ji,jk

(Rji,jkRjk,ji)
Q
)
=
∑
c

dc
∑

a1,··· ,aM−2

(Ra1j1,j2R
a1
j2,j1

)Q(Ra2a1,j3R
a2
j3,a1

)Q . . .

. . . (RcaM−2,jM
RcjM ,aM−2

)Q

=
∑
c

dc
∑

a1,··· ,aM−2

Tr

((
θ(a1)

θ(j1)θ(j2)

)Q
idV a1j1,j2

⊗
(

θ(a2)

θ(a1)θ(j3)

)Q
idV a2a1,j3

⊗ · · ·

· · · ⊗
(

θ(c)

θ(aM−2)θ(jM )

)Q
idV caM−2,jM

)
=

∑
c

dc
∑

a1,··· ,aM−2

(
θ(c)

θ(j1)θ(j2) · · · θ(jM )

)Q
Tr
(
idV a1j1,j2

⊗ idV a2a1,j3
⊗ · · · ⊗ idV caM−2,jM

)
=

∑
c

dc
∑

a1,··· ,aM−2

(
θ(c)

θ(j1)θ(j2) · · · θ(jM )

)Q
Na1
j1,j2

Na2
a1,j3

· · ·N c
aM−2,jM

. (5.45)

Since the framing factors, θ(ji), can be removed using local unitaries acting on the

respective Hilbert spaces, we can ignore them. Using the Verlinde formula (2.17), we

can simplify the above expression to get (up to framing factors we drop)

T̃r
( ∏
ji,jk

(Rji,jkRjk,ji)
Q
)
=
∑
bM−1

(STQS)0bM−1

S00

SbM−1j1SbM−1j2 · · ·SbM−1jM

SM−1
0bM−1

. (5.46)
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Hence, the link state for an (M,MQ) link is given by

∣∣∣L(M,MQ)
〉

=
∑

j1,··· ,jM

∑
bM−1

(STQS)0bM−1

S00

SbM−1j1SbM−1j2 · · ·SbM−1jM

SM−1
0bM−1

|j1, · · · , jM ⟩

=
∑
bM−1

(STQS)0bM−1

S00S
M−1
0bM−1

|bM−1, · · · , bM−1⟩ . (5.47)

From this data we can compute the eigenvalues of the unnormalized reduced density

matrix. They are independent of the number of Hilbert spaces we trace over and are

given by

Λℓ =

∣∣∣∣∣(STQS)0lS00S
M−1
0l

∣∣∣∣∣
2

. (5.48)

Let us now suppose that Q ∈ Z×
N is a Galois group element for the modular data of

the MTC (i.e., we have gcd(Q,N) = 1). The resulting entanglement entropy turns out

to be constant along Galois orbits due to the Galois invariance of GσP in (5.40) with

P · Q = 1 (mod N). To understand this statement, let us consider the action of GσP
on S

SGσP = φ2P+QTPSTQSTP , Q · P = 1 (mod N) , (5.49)

which implies that

STQS = φ−(2P+Q)T−PSGσP T
−P . (5.50)

Taking λℓ = S2
00Λℓ, we then have

λℓ =

∣∣∣∣∣(STQS)0lSM−1
0l

∣∣∣∣∣
2

=
(STQS)0ℓ

SM−1
0ℓ

(S∗T ∗QS∗)0ℓ

S∗
0ℓ
M−1

=
(T−PSGσP T

−P )0ℓ

SM−1
0ℓ

(T ∗−PS∗G∗
σP
T ∗−P )0ℓ

S∗
0ℓ
M−1

=
∑
i

S0i(GσP )iℓT
−P
ℓℓ

SM−1
0ℓ

∑
j

S∗
0j(G

∗
σP

)jℓT
∗−P
ℓℓ

S∗M−1
0ℓ

=
∑
i

S0i(GσP )iℓ

SM−1
0ℓ

∑
j

S∗
0j(GσP )jℓ

S∗M−1
0ℓ

. (5.51)

In going between the first and second lines we use (5.50), and we use T00 = 1 in going

between the second and third lines. Recalling that GσP induces a signed permutation,

we have

λℓ =
S0σP (ℓ)

SM−1
0ℓ

S∗
0σP (ℓ)

S∗M−1
0ℓ

. (5.52)
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Clearly, this quantity transforms as a permutation under Galois conjugation by the

element r ∈ Z×
N

λℓ
r∈Z×

N−−−−→
S0σr(σP (ℓ))

SM−1
0σr(ℓ)

S∗
0σr(σP (ℓ))

S∗M−1
0σr(ℓ)

=
S0σP (σr(ℓ))

SM−1
0σr(ℓ)

S∗
0σP (σr(ℓ))

S∗M−1
0σr(ℓ)

= λσr(ℓ) , (5.53)

where, in the first equality, we used the fact that the Galois group is Abelian.

As a result, we see that the eigenvalues of the normalized reduced density matrix

λ̂ℓ =
λℓ∑
i λi

, (5.54)

are permuted under the Galois action. Therefore, after tracing out any (proper) subset

of links on the 3-manifold ML(M,MQ) with gcd(Q,N) = 1, the von Neumann and Rényi

entanglement entropies do not change under Galois conjugation of a TQFT defined on

this space.

In fact, we can prove a stronger statement. Indeed, we have proven a result in terms

of the conductor, N = fN0 (where f is a positive integer dividing twelve). The natural

conductor in TQFT is N0. In particular, let us consider Q such that gcd(Q,N0) = 1. If

gcd(Q, f) = 1, then we have gcd(Q,N) = 1, and we are back to the discussion above.

On the other hand, suppose gcd(Q, f) ̸= 1. In this case, we can always take positive

integers, f1,2, such that f = f1f2, where gcd(Q, f2) = gcd(f1, f2) = 1, and all prime

factors of f1 divide Q (of course, it may be that f2 = 1). By construction, we must

have gcd(N0, f1) = 1. Now, consider the integer

Q′ = Q+N0 · f2 . (5.55)

Clearly, we have that gcd(Q′, N0) = gcd(Q′, f2) = gcd(Q′, f1) = 1. As a result,

gcd(Q′, f) = gcd(Q′, fN0) = gcd(Q′, N) = 1. Now, consider the signed permutation

matrix

GσP ′ = φ2P ′+Q′
S−1TP

′
STQ

′
STP

′
, Q′ · P ′ = 1 (mod N) . (5.56)

From the definition of the MTC conductor (5.6), we see that TQ
′
= TQ and so

GσP ′ = φ2P ′+Q′
S−1TP

′
STQSTP

′
. (5.57)

Following the logic beginning in (5.51), we find the following result:

Theorem 5.4.1 The TQFT MEE (and also the associated Rényi entropies) ob-

tained by tracing out the Hilbert subspaces associated with any (proper) subset of

linking boundary tori on the 3-manifold, ML(M,MQ), with Q co-prime to the MTC

conductor, N0, are invariant under the action of the TQFT Galois group. Im-
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plicit in this discussion is the assumption that the non-unitary theories that arise

lie on the Galois orbit of at least one unitary theory.a Note that, by a modular

transformation, the same results apply to ML(MQ,M).

aIn particular, the Hilbert space in the statement of the theorem refers to the Hilbert space of
a unitary member of this orbit.

In the next section we will introduce knot operators. As we will see, properties of

these operators combined with the results of this section lead to a vast generalization of

Theorem 1 in the case of non-Abelian Chern-Simons theories and their Galois partners.

5.4.3 Galois transformations, entanglement entropy, and more gen-

eral Torus links

To find a more general class of link complements giving rise to invariant entanglement

entropy along TQFT Galois orbits, it is useful to introduce the concept of knot op-

erators. Using these operators, it is a relatively simple matter to find link invariants

for general torus links [173–175]. The basic idea is to decompose a 3-manifold, M ,

containing Wilson lines by gluing two solid tori, U1 and U2, at their T 2 boundaries

such that no Wilson line is cut (in this sense we consider “local” Wilson lines). The set

of manifolds which can be obtained from gluing two solid tori with a boundary home-

omorphism given by an element of SL(2,Z) are called lens spaces. For 1 ∈ SL(2,Z),

we get the manifold S2 × S1 and for the S matrix we get S3.

The expectation value of the Wilson lines in M can be recast as an inner product

of states in a Hilbert space, where the states are found by performing a path integral

over the two solid tori. In this formalism, the knot invariant of an (M,N) torus knot

is given by the expectation value

⟨W (M,N)
j ⟩S3 =

⟨0|SW (M,N)
j |0⟩

⟨0|S |0⟩
. (5.58)

The vector |0⟩ represents the empty solid torus, U1. The action ofW
(M,N)
j on this state

creates the (M,N) torus knot in representation j on its T 2 boundary. Applying an S

transformation at the torus boundary and gluing in the other solid torus, U2, gives the

expectation value of the knot in S3.116

For Chern-Simons theory with an arbitrary simple gauge group G at level k, the

action of the torus knot operator, W
(M,N)
j , on a state is given by [176]

W
(M,N)
j |p⟩ =

∑
ℓ∈Λj

exp

(
2πi

MN

ψ2(2yk + g∨)
ℓ2 + 4πi

N

ψ2(2yk + g∨)
(p · ℓ)

)
|p+Mℓ⟩ .

(5.59)

116The denominator, ⟨0|S |0⟩, is a normalization factor.
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Here Λj is the set of weights of the irreducible representation Vj , y is the Dynkin index

of the fundamental representation, ψ2 is the length squared of the longest simple root,

k is the level, g∨ is the dual Coxeter number, and p ∈ ΛW is a vector in the weight

lattice. For example, the W (1,0) torus knot operator acts as

W
(1,0)
j |p⟩ =

∑
ℓ∈Λj

|p+ ℓ⟩ . (5.60)

In terms of fusion matrices, we have

W
(1,0)
j |p⟩ =

∑
ℓ

N ℓ
jp |ℓ⟩ . (5.61)

For finite k, the set of states, |p+Mℓ⟩, that arise in (5.59) are subject to relations

such that they lie within the class of integrable representations at level k. For example,

in the case of su(2)k Chern-Simons theory on T 2 ×R (where space is a T 2), the states

of the Hilbert space are given in terms of combinations of theta functions. These

states are subject to the identifications |−ℓ⟩ = − |ℓ⟩ and |ℓ⟩ = |ℓ− 2(k + 2)⟩. The

first identification follows form a Weyl reflection, and the second identification follows

from a periodicity property of the theta functions involving shifts by the simple root.

Using these identifications, we can always reduce the sum in (5.59) to a sum over

states corresponding to the integrable representations. Similar comments apply to

more general gauge groups (again, only signs appear in the identification of states).117

In what follows, it will be useful for us to understand more carefully how the T

matrix can enter general link invariants. The key is to first phrase the Rosso-Jones

formula [177] in terms of torus knot operators in the large k limit [175]118

⟨0|W (M,N)
j |0⟩ =

∑
ℓ

C(M)ℓjT
N
M
ℓ,ℓ ⟨0|ℓ⟩ , (5.62)

where the sum is over some integrable representations, the C(M)kj ∈ Z are independent

of N , and T
N
M
ℓ,ℓ is the fractional twist. For convenience, we have labeled the vacuum

as |0⟩.119 Furthermore, for large k, the C(M)ℓj are specified by the so-called Adams

operation,120 and ⟨0|ℓ⟩ = δ0,ℓ [175]. Therefore, at large k, ⟨0|W
(M,N)
j |0⟩ = C(M)0j .

For general k (not necessarily large compared to the quantum numbers of the knot

117Here we will get a larger number of Weyl reflections and more complicated periodicity structure
for the relevant theta functions (again these shifts are in one-to-one correspondence with the simple
roots).
118We mean that k is large compared to the quantum numbers of the W

(M,N)
j knot operator.

119However, when substituting (5.59) into (5.62), one should take |0⟩ → |ρ⟩, where ρ =
∑
i λ

(i) is the
sum over the fundamental weights (similar comments apply to all other appearances of |0⟩ below).
120For example, in the case of su(n), the Adams operation is defined as follows. Consider the su(n)

Schur polynomials, χj(z1, · · · , zn−1), where i is an irreducible representation of su(n), and raise the
su(n) fugacities to the M th power. Writing the result in terms of the Schur polynomials without
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operator), the story is more complicated, since some of the |ℓ⟩ appearing in (5.62)

should be identified with the vacuum representation. For example, as discussed above

in su(2)k CS theory, −|2k + 2⟩ = |0⟩. In any case, (5.62) allows us to control the

non-linearities arising in the Galois action on T .

Another crucial property of the knot operators is that they satisfy fusion rules

W
(M,N)
i W

(M,N)
j =

∑
i

Nk
ijW

(M,N)
k . (5.64)

Hence, they are generalized Verlinde operators. Using this property, we can write

the torus link operator for a Q-component torus link (QM,QN) in terms of the knot

operators as

W
(QM,QN)
j1,··· ,jQ = N ℓ

j1,··· ,jQW
(M,N)
ℓ . (5.65)

Moreover, any torus knot operator can be obtained from the unknot by the action of

an SL(2,Z) element

W
(M,N)
j = F (M,N)−1

W
(1,0)
j F (M,N) , (5.66)

where F (M,N) ∈ SL(2,Z). This statement is natural since a torus knot can be put on

the surface of a torus without self intersections, and we can obtain such a knot from

the unknot by a sequence of Dehn twists and S tranformations.

A straightforward generalization of the argument in [157] shows that the eigenvalues

of the reduced density matrix of the (QM,QN) torus link are given by

Λℓ =
1

S2Q−2
0ℓ

∣∣∣∣∣∑
i

Sℓi⟨W
(M,N)
i ⟩S3

∣∣∣∣∣
2

. (5.67)

We can massage this expression into a more useful form as follows:

Lemma 5.4.2 The eigenvalues of the reduced density matrix of the (QM,QP )

torus link are given by

Λℓ =
1

(S0ℓ)2Q−2S2
00

∑
i

Sℓi⟨W
(M,P )
i ⟩S2×S1

∑
j

Sℓj⟨W
(−P,M)
j ⟩S2×S1 . (5.68)

Proof: See App. B.3.

In this lemma, ⟨W (M,P )
i ⟩S2×S1 = ⟨0|W (M,P )

i |0⟩ is the knot invariant of the (M,P )

knot in S2 × S1. As a result, we can write the entanglement entropy of links in S3 as

transforming the fugacities, we obtain the C(M)ℓj

χj(z
M
1 , · · · , zMn−1) =

∑
l

C(M)ℓj · χℓ(z1, · · · , zn−1) . (5.63)
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a product of linear combinations of knot invariants in S2 × S1 with S matrix elements

as coefficients.

We may now make use of the above lemma to gain a better understanding of Galois

transformation properties of torus links in Chern-Simons theory. To that end, first

consider the special case of eigenvalues of the reduced density matrix for (MQ,Q)

torus links described in Sec. 5.4.2. Using (5.68), we have

Λℓ =
1

(S0ℓ)2Q−2S2
00

∑
i

Sℓi⟨W
(M,1)
i ⟩S2×S1

∑
j

Sℓj⟨W
(−1,M)
j ⟩S2×S1 . (5.69)

We may simplify the second summation in (5.69), since

⟨W (−1,M)
j ⟩S2×S1 = ⟨W (−1,0)

j ⟩S2×S1 = δ0,j . (5.70)

The second equality follows from (5.61) and charge conjugation, while the first equality

follows from the fact that T acts trivially on the vacuum and so

⟨W (P,M+AP )
j ⟩S2×S1 = ⟨TAW (P,M)

j T−A⟩S2×S1 . (5.71)

As a result, the eigenvalues of the reduced density matrix in (5.69) simplify to

Λℓ =
1

(S0ℓ)2Q−3S2
00

∑
i

Sℓi⟨W
(M,1)
i ⟩S2×S1 . (5.72)

Now, suppose that M is co-prime to the MTC conductor. From Sec. 5.4.2, we

know that the normalized eigenvalues of the reduced density matrices for such links are

permuted under Galois transformations. Hence, Galois conjugating (5.72) gives

GP
(
ΛℓS

2
00

)
=

1

(S0σ(ℓ))2Q−3

∑
i

Sσ(ℓ)iGP

(
⟨W (M,1)

i ⟩S2×S1

)
, (5.73)

where GP (· · · ) denotes the action of the Galois group element corresponding to P ∈
Z×
N0

. From the invertibility of the S matrix, it follows that

GP

(
⟨W (M,1)

i ⟩S2×S1

)
= ⟨W (M,1)

i ⟩S2×S1 ∈ Q , (5.74)

and, from (5.62), we also have

GP

(
⟨W (M,1)

i ⟩S2×S1

)
= ⟨W (M,P )

i ⟩S2×S1 ∈ Q , (5.75)

where we have used the fact that the only source of non-rational numbers in (5.62) is

from the fractional twists, and we must further assume that gcd(P,M) = 1 in order to

have a well-defined Galois action on the fractional twists. Therefore, ⟨W (M,P )
i ⟩S2×S1 is
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k
Q 2 3 4 5 6 7 8

2
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Figure 5.6: Sparseness of Galois non-invariance for the MEE of (2, 2Q) torus link
complements after tracing out one of the boundaries in su(2)k theories. The y-axis
corresponds to Q and the x-axis corresponds to k. Blue squares correspond to theories
and topologies with Galois invariant MEE, while the red square does not.

invariant under Galois conjugation.

Following the arguments above, we can also show that ⟨W (−P,M)
i ⟩S2×S1 ∈ Q is in-

variant under Galois conjugation. Hence, it follows from lemma 5.4.2 that the normal-

ized eigenvalues of (QM,QP ) link forM,P coprime to the conductor and to themselves

are permuted under Galois conjugation. Therefore, we have the following theorem:

Theorem 5.4.3 The Chern-Simons MEE (and associated Rényi entropies) ob-

tained by tracing out the Hilbert subspaces associated with any (proper) subset of

linking boundary tori on the 3-manifold, ML(QM,QP ), with M,P co-prime to the

Chern-Simons conductor, N0, and to each other are invariant under the action of

the TQFT Galois group.

For Chern-Simons theories and their Galois conjugates, this result generalizes the-

orem 5.4.1 in Sec. 5.4.2. However, the proof in Sec. 5.4.2 was obtained directly using

the MTC data without referring to a specific realization of the TQFT, while the above

proof depends on the realization of the TQFT as a Chern-Simons theory and (5.59),

which was constructed for simple gauge groups. The authors of [30, 178] conjectured

that every 3D TQFT is a Chern-Simons theory with some gauge group. If this conjec-

ture is true, the results in this section might extend to all 3D unitary TQFTs and their

Galois conjugates.

5.4.4 Example: su(2)k

As a concrete example to illustrate the above discussion, consider su(2)k CS theory.

The modular data for this theory is

Sab =

√
2

k + 2
sin

(
π(a+ 1)(b+ 1)

k + 2

)
, Tab = δab exp

(
2πia(a+ 2)

4(k + 2)

)
= δabθ(a) ,

(5.76)
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where a ∈ {0, 1, · · · , k}. In particular, the MTC conductor is generically N0 = 4(k+2).

In Fig. 5.6, we present a set of results for the entanglement entropy after tracing one

of the knots in (2, 2Q) torus links for levels 2 ≤ k ≤ 8 and 2 ≤ Q ≤ 6. The results

are completely consistent with the above theorems. In fact, we see various “accidental”

invariances not guaranteed by our theorems.

The simplest Galois non-invariant entanglement entropy occurs in the (2, 10) link

of the su(2)8 CS theory. Note that the MTC conductor in this case is N0 = 40, and

M = 1, P = 5. Clearly, (P,N0) = 5 ̸= 1, and so this lack of invariance is consistent

with theorem 5.4.3.

5.4.5 Torus links in lens spaces

Let us briefly comment on the generalization of theorem 5.4.3 to more general lens

spaces. The expectation value of knot operators in a lens space, MF , is given by

⟨W (m,n)
j ⟩F =

⟨0|FW (m,n)
j |0⟩

⟨0|F |0⟩
, (5.77)

where F ∈ SL(2,Z) is the homeomorphism between the two tori which produces the

corresponding lens space. Following the procedure in Sec. 5.4.3, the eigenvalues for

torus links in a lens space specified by F ∈ SL(2,Z) is given by

Λl =
1

(S0l)2Q−2F 2
00

∑
i

Sli⟨W
(m,n)
i ⟩S2×S1

∑
j

Slj⟨FW
(m,n)
j F−1⟩S2×S1 . (5.78)

Therefore, the eigenvalues of torus links in a general lens space can be written as a

linear combination of knot invariants in S2×S1 with S matrix elements as coefficients.

A sufficient condition for the Galois invariance of entanglement entropy of a torus

link (QM,QN) in MF is the Galois invariance of knot invariants ⟨W (M,N)
i ⟩S2×S1 and

⟨FW (M,N)
j F−1⟩S2×S1 .

5.5 Conclusion

We have argued that, in addition to preserving fusion rules (and 1-form symmetries)

of TQFTs, Galois conjugation also preserves MEE in broad classes of theories. In

particular, we showed that putting any Abelian TQFT on any link complement in S3

and tracing out Hilbert spaces on any subset of the links leads to an invariant MEE

along Galois orbits. We then argued that this theorem generalizes to non-Abelian

TQFTs living on infinite classes of torus link complements.

The fact that the invariants of the Galois action include both fusion and, on certain

torus link complements, MEE is suggestive of a deeper relation between entanglement,

177



CHAPTER 5. GALOIS CONJUGATION AND ENTANGLEMENT ENTROPY

fusion, and modular data. In fact, recent work [179,180] suggests that the entanglement

entropy of [158,159] can be used to reconstruct the fusion rules and modular data of a

TQFT. It would clearly be interesting to understand how MEE fits more precisely into

this story.

Finally, let us conclude with an interesting potential application of our results.

Our non-Abelian results involve number theory, and it would be interesting to find

applications to this field. Here we begin by recalling that, in 300 BC, Euclid found an

algorithm for computing the greatest common divisor of two natural numbers (see [181]

for a modern discussion). In a similar spirit, we can potentially use our theorem 5.4.1 to

give a TQFT-based algorithm to check co-primeness of two natural numbers. Indeed, we

have seen that, for any TQFT, invariance of the MEE on the (M,MQ) link complement

is guaranteed if Q is co-prime to the MTC conductor, i.e. gcd(Q,N0) = 1. On the

other hand, when Q is not co-prime to the MTC conductor, this invariance is not

guaranteed.121 It would be interesting to try to find an infinite family of TQFTs with

infinitely many different conductors that have invariant MEE if and only if Q is co-

prime to the conductor. In this case, if we wish to check (a, b) = 1, we set Q = a,

N0 = b, and check the Galois invariance of the MEE on the (M,MQ) link complement.

121Note that in many theories, such as su(2)k CS theory, there is still “accidental” invariance—see
Fig. 5.6.
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Chapter 6

From RCFTs to Quantum Error

Correcting Codes

6.1 Introduction

Quantum error correcting codes (QECCs) are integral to quantum computation. They

also appear in high energy and condensed matter physics in various guises. As one

important example, QECCs capture aspects of bulk reconstruction in AdS-CFT [182].

Another notable case of a QECC in physics is the Toric code, a well-known model with

topological order [183]. QECCs have also unravelled the existence and properties of

fractons [184]. More recently, QECCs were used to construct closed, simply connected

manifolds [185].

In this chapter, we explore the relationship between conformal field theories (CFTs)

in two spacetime dimensions, associated 3d Chern-Simons (CS) theories, and QECCs.

The relationship between classical codes, their associated lattices, and holomorphic

CFTs was originally noted by Dolan, Goddard, and Montague [186]. Recently, a quan-

tum version of this relationship was discovered, where quantum stabilizer codes were

associated with certain Narain rational CFTs (RCFTs) [38, 187]. This construction

does not exhaust all Narain RCFTs and leads to several natural questions: (1) When

do general Narain RCFTs admit a quantum code description? (2) How does one iden-

tify the n-qubit Hilbert space, the code subspace and its complement, within the CFT

Hilbert space? (3) What is the physical meaning of this relation?

In this chapter we answer these questions using the general structure of Narain

RCFTs.122 Our main results are:

• Any abelian CS theory with an even-order fusion group is related to a Narain

122In principle, our results apply to any RCFT with abelian fusion rules (what we call an “abelian
RCFT”) whether it admits a Narain description or not. In what follows, we will not attempt to
distinguish between Narain RCFTs and hypothetically more general abelian RCFTs.
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RCFT that admits a stabilizer code description. Orbifolding this RCFT by a

chiral algebra-preserving Q ≃ Zk2 0-form gauge group results in a Narain RCFT

that continues to admit a stabilizer code description whenever the corresponding

3d bulk 1-form symmetry of the CS theory has vanishing ’t Hooft anomaly.

• All Narain RCFTs have abelian 0-form symmetries implemented by topological

defects. In the class of theories described in the previous bullet, topological

defect endpoint operators can naturally be mapped to the full Pauli group. The

stabilizer subgroup corresponds to genuine local CFT operators, which can be

thought of as living at the end of the trivial defect.

• Under this map, the RCFT Hilbert space corresponds to the code subspace and

certain defect Hilbert spaces correspond to the complement of the code subspace

inside the n-qubit Hilbert space.

This chapter is organized as follows. In Section 6.2, we start with a brief review

of stabilizer codes and Narain CFTs. We then show that Narain RCFTs with left and

right movers paired via charge conjugation can be naturally associated with quantum

stabilizer codes. We end Section 6.2 by extending this map to orbifold theories and

deriving a relationship between vanishing ’t Hooft anomalies and stabilizer codes; along

the way, we consider various illustrative examples. In Section 6.3, we study symmetries

of Narain CFTs implemented by Verlinde lines and show that operators living at the

end of Verlinde lines give rise to the full Pauli group. We introduce the notion of a

Verlinde subgroup and discuss its role in determining the error detection capability of

CFT symmetry currents. In Section 6.4, we propose a map between the n-qubit Hilbert

space and states in the CFT. We conclude with a discussion.

6.2 The Stabilizer Code / abelian RCFT Map

Let us briefly review the basics of stabilizer codes and RCFTs with abelian fusion rules.

We then propose a natural map relating them.

A stabilizer code on n qubits is defined by an abelian subgroup, Sn, of the general-

ized Pauli group on n qubits, Pn. Elements of Pn are defined by α⃗, β⃗ ∈ Zn2 via

G(α⃗, β⃗) := ϵ Xα1 ⊗ · · · ⊗Xαn ◦ Zβ1 ⊗ · · · ⊗ Zβn = X α⃗ ◦ Z β⃗ ∈ Pn , (6.1)

where the ith X and Z are the Pauli matrices acting on the ith qubit and ϵ is valued

in {±1,±i}. In the following discussion, when we have X ◦ Z or Z ◦ X acting on a

qubit, following standard notation, we replace this with a Y Pauli matrix action (where

the signs and factors of i are kept in track using ϵ). This group has order 4n and is
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non-abelian

G(α⃗1, β⃗1)G(α⃗2, β⃗2) = (−1)ϵ G(α⃗2, β⃗2)G(α⃗1, β⃗1) , (6.2)

where ϵ(α⃗1, β⃗1, α⃗2, β⃗2) := β⃗1 · α⃗2 − α⃗1 · β⃗2. The hallmark of a stabilizer subgroup is that

any two elements commute with each other123. Clearly, if G(α⃗1, β⃗1), G(α⃗2, β⃗2) ∈ Sn,
then G(α⃗1 + α⃗2, β⃗1 + β⃗2) ∈ Sn. In this sense, stabilizer codes are additive. Moreover,

all elements satisfy G(α⃗i, β⃗i)
2 = 1. The states in the n-qubit Hilbert space which are

left invariant by all G ∈ Sn (i.e., Gψ = ψ) are special: they form the “code subspace.”

The refined enumerator polynomial (REP) of an n qubit stabilizer code is defined

as

W (x1, x2, x3, x4) :=
∑
G∈Sn

xωI1 xωX2 xωY3 xωZ4 , (6.3)

where ωI/X/Y/Z(G) count the number of I/X/Y/Z Pauli matrices in the stabilizer

group element G.

For our general construction below, it is useful to keep in mind that the description

above contains redundancies. In particular, two stabilizer codes are physically equiv-

alent if they are related by an action of the Clifford group – an outer automorphism

of the Pauli group [188]. This group includes all 3! permutations of Pauli generators

acting on each qubit.

The stabilizer codes that play a role in [38] are self-dual: in other words |Sn| = 2n,

and so there is a one-dimensional code subspace. These codes are also real (in the sense

that all elements of Sn in the representation (6.1) are real-valued), but we will relax

this latter condition in our general construction. In the conventions of this chapter, the

map between the CFTs and stabilizer codes introduced in [38] is related to our map by

an X ↔ Y code equivalence.

The mapping between stabilizer codes and CFTs associates classes of CFT opera-

tors with elements of Sn. Since the code is additive, we consider CFTs with additive

(abelian) fusion rules (i.e., those corresponding to a lattice)

ϕP⃗L,P⃗R × ϕK⃗L,K⃗R = ϕP⃗L+K⃗L,P⃗R+K⃗R , (6.4)

where the pair of vector indexes label left-moving and right-moving momenta valued

in a Narain lattice, Λ. We will use the terms “Narain theories” and “abelian CFTs”

interchangeably. Since there are infinitely many CFT operators and finitely many

elements of Sn, we must organize the CFT operators into finitely many equivalence

123Note that, in general group actions on vector spaces the stabilizer group of a subspace need not
be abelian. However, in our case, we are choosing a subspace of the Hilbert space which is the +1
eigenspace of some elements of the Pauli group. In the Pauli group, any two elements commute or
anti-commute. Therefore, the subgroup of the Pauli group defining this subspace is necessarily abelian.
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classes. In the context of abelian RCFT, this naturally happens since each ϕP⃗L,P⃗R in

(6.4) satisfies

ϕP⃗L,P⃗R ∈ (NL, NR) , NL ∈ Rep(VL) , NR ∈ Rep(VR) , (6.5)

where NL (NR) are one of finitely many representations of the left (right) moving chiral

algebra, VL (VR). For simplicity, we will only consider CFTs with VL = VR = V .

Specializing to VL = VR = V and satisfying some additional mild assumptions

detailed in [189], it turns out that any RCFT is a (generalized) orbifold of the “Cardy

case” RCFT for V . This latter RCFT, T , consists of operators built by pairing left

and right movers transforming in Rep(V ) that are related by charge conjugation.124 In

the case of an abelian RCFT, the orbifold is a standard group orbifold of T [190]. The

T RCFT is sometimes referred to as the “charge conjugation modular invariant,” and

it has torus partition function125

ZT (q) =
∑
p⃗

χp⃗(q)χ̄p⃗(q̄) , p⃗+ p⃗ = 0⃗ , Np⃗, Np⃗, N0⃗ ∈ Rep(VT ) . (6.6)

Here p⃗ is a vector labeling elements of Rep(V ) (not an element of Λ ),126 we sum over

characters describing the operator content of the theory, and p⃗ labels the representation

conjugate to p⃗.127

Mathematically, Rep(V ) corresponds to a modular tensor category (MTC). Phys-

ically, Rep(V ) labels Wilson lines in the 3d Chern-Simons (CS) theory related to the

2d RCFT in question (see Fig. 6.1). The full set of MTCs/CS theories related to our

abelian RCFTs have been classified in [169] (see also [118]). The result is that any such

CS theory is a direct product of arbitrary combinations of the following factors

A2r ∼ Z2r , Aqr ∼ Zpr , B2r ∼ Z2r ,

Bqr ∼ Zqr , C2r ∼ Z2r , D2r ∼ Z2r ,

E2r ∼ Z2r × Z2r , F2r ∼ Z2r × Z2r , (6.7)

where the labels on the lefthand sides of (6.7) denote CS theories as in [118] with

fusion rules for Wilson lines given by the abelian groups on the righthand sides, and q

is an odd prime number.128 The upshot is that we should think of p⃗ as valued in the

124Given V , it turns out that the charge-conjugation modular invariant CFT exists on very general
grounds [77].
125Note that the construction in [190] takes as input left and right moving chiral algebras and produces

an RCFT valid on any genus surface.
126We use capital P⃗ to denote lattice momentum and lower case p⃗ to denote elements of Rep(V).
127This latter statement means that we have fusion of the form Np⃗ ×Np⃗ = N0⃗.
128Strictly speaking, since a given label on the lefthand side of (6.7) only specifies the statistics of

a set of line operators, it can correspond to different CS theories. Moreover, a CS theory that does
not factorize in the geometry with boundaries depicted in Fig. 6.1 with M trivial can correspond to a
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Wp⃗ Wq⃗

M

Σ Σ′

I

Figure 6.1: The pairing of 2d CFT left and right movers on Σ and Σ′ can be specified
by an abelian CS theory on X ≃ Σ× I with a surface operator, M , inserted in between
[36,191]. A local operator, O(p⃗,q⃗), is specified by the Wilson lines Wp⃗ and Wq⃗. Different
M lead to different partition functions. Topological defects in the 2d CFT correspond to
Wilson lines parallel to Σ,Σ′.

M

Σ Σ′

I

Lp⃗

Figure 6.2: The endpoint of Lp⃗ on Σ gives a defect endpoint operator corresponding
to a state in the defect Hilbert space, HDefect

Lp⃗
. We can think of Lp⃗ as generating a 3d

1-form symmetry or a 2d 0-form symmetry (when Lp⃗ is pushed to lie completely on Σ).

following product group / lattice quotient

p⃗ ∈
∏
r

(
Z
nA2r

2r × Z
nB2r

2r × Z
nC2r

2r × Z
nD2r

2r ×
[
Z2r × Z2r

]nE2r

×
[
Z2r × Z2r

]nF2r ×
∏
q

[
Z
nAqr
qr × Z

nBqr
qr

])
:= K , (6.8)

where nX is the number of independent factors of the CS theory X corresponding to

the CFT in (6.6) (see Footnote 128).129 Physically, K is the 1-form symmetry group

of the CS theory and the 0-form symmetry subgroup of the RCFT that commutes with

the full left and right chiral algebras (see Fig. 6.2).

Now we will map the pair (α⃗, β⃗), which specifies a stabilizer generator from Sn to

product of labels (e.g., U(1)6 CS theory, which corresponds to B2×B3). For simplicity in what follows,
we will avoid this latter possibility.
129Here we are thinking of ZN as an additive subgroup of Z modulo N .
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a pair (p⃗, p⃗) representing a family of operators contributing to χp⃗χ̄p⃗ in (6.6). First we

specify the dimension of p⃗: the most obvious choice is that α⃗, β⃗, and p⃗ are n-dimensional.

Moreover, in our map α⃗ and β⃗ are linearly related to p⃗.

To begin with, let us neglect possible E2r and F2r CS theory factors. Then, T is

a CFT with n decoupled factors having fusion rules given by the n factors in (6.8).130

Indeed, by construction, each of the n CFT factors is closed under fusion.131 It is

therefore natural to associate such a theory with an n-fold product of one-qubit codes.

Up to code equivalence, all such codes are generated by Z acting on individual qubits.

Therefore, we set α⃗ = 0, and choose

β⃗ = p⃗ , (6.9)

where (6.9) is the simplest natural choice.

However, note that for a CFT factor described by Aqr or Bqr , the simplest choice

is to make the resulting code factor trivial. The reason is that the corresponding

component of p⃗, pi, has order q
s for 1 ≤ s ≤ r. In this case, multiple stabilizers would

correspond to the same (p⃗, ¯⃗p). We therefore ignore factors described by Aqr and Bqr

from now on and map corresponding CFT degrees of freedom to 0-qubit codes.

In summary, we learn that linearity and code redefinitions point to the relation{
Op⃗,p⃗

}
↔ Z p⃗ , (6.10)

where we understand this map as meaning that the Z p⃗ stabilizer corresponds to the

collection of operators in the (p⃗, p⃗) representation of the left and right moving chiral

algebras (i.e., the primary and its descendants). Including factors of E2r and F2r and

following logic similar to the above leads to the map{
Op⃗,p⃗

}
↔ ZAp⃗ , (6.11)

where A is block diagonal, with the following diagonal components corresponding to

different CFT factors

AA2r
= AB2r

= AC2r
= AD2r

= 1 , (6.12)

and, up to code equivalence,

AE2r
= AF2r

=

(
0 1

1 0

)
. (6.13)

130More explicitly, we have that

n =
∑
r

(
nA2r

+ nB2r
+ nC2r

+ nD2r
+

∑
q

(
nAqr

+ nBqr

))
.

131If we relax the condition in Footnote 128 and allow for CS theories like U(1)6, then we can also
consider charge conjugation modular invariants that do not decompose into n such CFT factors.

184



CHAPTER 6. FROM RCFTS TO QUANTUM ERROR CORRECTING CODES

Note that in writing (6.11), we allow for multiple families of operators to appear on the

lefthand side (see Section 6.2.1 for some examples). Indeed, the exponent of Z on the

RHS is only sensitive to Ap⃗ modulo two. Thus in the simple case of charge conjugation

modular invariant, we have the CFT to stabilizer code map

µ : T −→ ST := gen
{
ZAe⃗i | eij = δij

}
, (6.14)

where “gen {· · · }” means that the code is generated by the enclosed Pauli operators.

Note that this code is self-dual by construction. Moreover, µ is non-invertible. For

example, the SU(2) and E7 WZW models at level one are distinct but map to the

same code.132

Given the set of theories of the form (6.6), we can construct all other Narain RCFTs

by orbifolding them by some non-anomalous 0-form symmetry subgroup Q�K.133 Here

non-anomalous means that the associator of Verlinde lines implementing Q is trivial in

H3(Q,U(1)). 134 Therefore, if Q is non-anomalous, F is a 3-coboundary satisfying

F (⃗h1, h⃗2, h⃗3) =
τ (⃗h2, h⃗3)τ (⃗h1, h⃗2 + h⃗3)

τ (⃗h1 + h⃗2, h⃗3)τ (⃗h1, h⃗2)
∀h⃗1, h⃗2, h⃗3 ∈ Q , (6.16)

where τ is a 2-cochain. Then, the Q-orbifold torus partition function is

ZT /Q,[σ] =
∑
g⃗∈Q

∑
p⃗∈Bg⃗

χp⃗(q)χ̄p⃗+g⃗(q̄) , (6.17)

where [σ] is an equivalence class in H2(Q,U(1)) defining the discrete torsion (in the

condensed matter perspective, the 2d SPT we stack when gauging Q, or the B-field

in [38]), and

Bg⃗ :=
{
p⃗
∣∣∣ Sh⃗,p⃗ Ξ(⃗h, g⃗) = 1 , ∀h⃗ ∈ Q

}
, (6.18)

132The reason is that in both cases, p⃗ = p1 takes values in the same group.
133As we will see, the theories in [38] are all orbifolds of particular theories with partition functions

of the form (6.6). Note that we will only consider orbifolds with respect to symmetries which commute
with the full left and right chiral algebras. Orbifolds of this type take us from a Narain CFT to another
Narain CFT, while more general orbifolds may result in non-Narain CFTs.
134For the CFT with charge conjugation modular invariant, F can be written in terms of holomorphic

scaling dimensions as

F (g⃗, h⃗, k⃗) =
∏
i

{
1 if hi + ki < ni
θ(ei)

gini if hi + ki ≥ ni
(6.15)

where ei is a basis for the cyclic factors in (6.8), and g⃗ =
∑
i giei. Here ni is the order of the ith

cyclic factor, and θp⃗ := exp(2πihp⃗), where hp⃗ is the holomorphic scaling dimension of an operator in

representation p⃗. The group Q is non-anomalous if and only if θ
O

h⃗

h⃗
= 1 ∀h⃗ ∈ Q, where Oh⃗ is the order

of h⃗ in Q [190].
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where we define135

S
h⃗,p⃗

:=
θ
h⃗+p⃗

θ
h⃗
θp⃗

, Ξ(g⃗, h⃗) := R(⃗h, g⃗)
τ (⃗h, g⃗)σ(⃗h, g⃗)

τ(g⃗, h⃗)σ(g⃗, h⃗)
. (6.19)

In (6.19), θp⃗ := exp(2πihp⃗), and hp⃗ is the holomorphic scaling dimension of an operator

in representation p⃗.136

In this chapter we focus on the case

Q ≃ Zk2 . (6.20)

Such subgroups are the most universal in the sense that they are contained in any other

subgroups of K.137 More general cases can be treated in a similar fashion.

How should we include the data of states corresponding to g⃗ ̸= 0⃗ in the code?

Clearly, the fields in the g⃗ = 0⃗ sector should still be captured by (6.11). Therefore,

g⃗ must appear in a linear relation with α⃗, β⃗ such that setting g⃗ = 0⃗ recovers terms

of the form (6.11). Note that nontrivial components of any g⃗ ∈ Q have the form

gi = 2ri−1 ∈ Z2ri (since g⃗ + g⃗ = 0⃗). Therefore, in order to contribute to the stabilizer,

g⃗ must appear through Mg⃗ (M is diagonal, and Mii := 21−ri).

At this point, we should ask what principle requires g⃗ to contribute to the stabilizers

at all. The answer is that orbifolding is an invertible procedure: when we gauge a

discrete 0-form symmetry, Q, of a CFT, T ,138 there is an isomorphic dual Q′ ≃ Q

symmetry we can gauge in T /Q to return back to the original theory.139 We would like

this invertibility to extend to the map between codes.

If Mg⃗ only appears through a factor ZMg⃗, then our map between codes will not

generally be invertible. The simplest and most natural possibility is the following.140

CFT to stabilizer operator map:{
Op⃗,g⃗+p⃗

}
↔ XMg⃗ ◦ ZAp⃗ := G(Mg⃗,Ap⃗) . (6.21)

135Note that our S matrix differs from the unitary S matrix by an overall normalization (ours is
√
N

times bigger, where N is the number of Wilson lines in the CS theory associated with our RCFT).
136R(⃗h, g⃗) can be written in terms of θg⃗ as R(⃗h, g⃗) =

∏
i(θei)

higi
∏
i<j(Sei,ej )

higj , where ei is a basis

for the cyclic factors in (6.8), and g⃗ =
∑
i giei. Note that both R(⃗h, g⃗) and τ(g⃗, h⃗) depend on a choice

of basis in Rep(V ), but Ξ(g⃗, h⃗) is basis independent.
137Recall that we are ignoring CFT factors involving primaries labeled by Aqr and Bqr .
138Note that to unambiguously refer to the orbifolded theory, we should also generally specify the

discrete torsion, [σ]. However, we will often be slightly imprecise and leave the discrete torsion implicit
in our discussions.
139See [84,192] as well as the more recent discussion in [193].
140We can also include an Mg⃗ contribution in Z. Then we have XMg⃗ ◦ ZAp⃗+Mg⃗ = YMg⃗ ◦ ZAp⃗ which

is equivalent to the code XMg⃗ ◦ ZAp⃗. Similarly, XMg⃗+Ap⃗ ◦ ZAp⃗ is code equivalent to XMg⃗ ◦ ZAp⃗.
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In the language of (6.14), we have

µ : T /Q −→ ST /Q := gen
{
XMg⃗iZAp⃗J

}
, (6.22)

where g⃗i and p⃗J generate Q and K respectively.

Since Z is order two, the quantum code constructed above is only sensitive to Ap⃗J

mod 2. Therefore, in general we will have multiple families of operators mapping to

the same element of the stabilizer group.

Recall that the stabilizer code associated with the charge conjugation modular

invariant is self-dual. Since orbifolding is invertible, the above map assigns a self-dual

code to T /K (see Appendix C.2 for an alternate argument).

Intriguingly, given the map in (6.21), the commutation relations of elements of ST /Q

are controlled by the S matrix of the RCFT. Indeed, it is a simple exercise to check

that

G(g⃗1, p⃗1)G(g⃗2, p⃗2) = eπi[Mg⃗2·Ap⃗1−Mg⃗1·Ap⃗2] G(g⃗2, p⃗2)G(g⃗1, p⃗1)

= Sg⃗2,p⃗1Sg⃗1,p⃗2 G(g⃗2, p⃗2)G(g⃗1, p⃗1)

= Ξ(g⃗2, g⃗1)Ξ(g⃗1, g⃗2) G(g⃗2, p⃗2)G(g⃗1, p⃗1)

= Sg⃗1,g⃗2 G(g⃗2, p⃗2)G(g⃗1, p⃗1) , (6.23)

where, in the third equality, we have used (6.18). We have also used the expression

for the S matrix Sp⃗,q⃗ = e
2πi
2
p⃗TMAq⃗ which follows from (6.8) [118]. Therefore, ST /Q is a

stabilizer code if and only if Sg⃗1,g⃗2 = 1. This latter statement can be reinterpreted as

the vanishing of the 1-form anomaly for the Q 1-form symmetry in the bulk CS theory

related to the T RCFT.

6.2.1 Examples

R = 1, 2 compact boson

The code CFTs in [38] are all orbifolds of charge conjugation modular invariants with

Rep(V ) = A
nA4
4 , for some integer nA4 > 0. That is, the fusion rules for the charge

conjugation modular invariants are given by the abelian group, K = (Z4)
nA4 (all other

nX in (6.8) vanish). The theories discussed in [38] with non-trivial B-field correspond

in our language to orbifolds of the charge conjugation theories with discrete torsion

turned on (or, equivalently, a non-trivial 2D SPT in the Zk2 � ZnA4
4 gauging process).

As such, the CFTs in [38] are a small subset of theories discussed here.

The simplest code CFT among these is the R = 1 compact boson, corresponding to

the choice nA4 = 1. Let X be a 2πR-periodic field describing the compact boson. We

have the 2π-periodic field θ and its conjugate momentum ϕ given in terms of the left
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and right moving fields

θ =
XL +XR

R
; ϕ =

XL −XR

R
. (6.24)

θ and ϕ have a U(1) × U(1) shift symmetry. When R2 is rational, this system has

an enhanced chiral algebra (see for example [84]). We will focus on the case R = 1, 2

below. The extended chiral algebra has the trivial, fundamental, spinor, and conjugate

spinor representations which we will denote by N0, N2, N1, N3, respectively. These form

the K = Z4 group under fusion. The scaling dimensions of chiral primaries in these

representations are

h0 = 0 , h2 =
1

2
, h1 = h3 =

1

8
. (6.25)

The Narain lattice for this theory is given by

PL := n+
m

2
, PR := n− m

2
, (6.26)

where m,n ∈ Z. In general, the vertex operators are given by

V(n,m) =: eip⃗LX⃗Leip⃗RX⃗R : , (6.27)

where X⃗L, X⃗R are the left and right moving components of the field X describing the

compact boson. The partition function is

ZT = χ0χ̄0 + χ2χ̄2 + χ1χ̄3 + χ3χ̄1 , (6.28)

which is the charge conjugation modular invariant. The scaling dimensions of the

primaries are twice those in (6.25). Here χi is the character of Ni given by [84]

χp(q) =
1

η(q)

∑
n∈Z

q2(n+
p
4
)2 , (6.29)

where p = 0, 1, 2, 3 and η is the Dedekind eta function. Note that the partition function

can also be written in terms of the Narain lattice vectors as

ZT (τ, τ̄) =
1

|η(τ)|2
∑

(PL,PR)

q
P2
L
2 q̄

P2
R
2 , q = e2πiτ , q̄ = e−2πiτ̄ (6.30)

The lattice vectors corresponding to a primary operator Op,p̄ can be found by requiring

P 2
L + P 2

R

2
= 2hp⃗ (6.31)

where the R.H.S. is the scaling dimension of Op,p̄. In particular, the primary operators
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O1,3,O3,1 correspond to the lattice vectors

(PL, PR) =

(
1

2
,−1

2

)
,

(
− 1

2
,
1

2

)
, (6.32)

while O2,2 corresponds to141

(PL, PR) = (1, 1)⊕ (1,−1)⊕ (−1, 1)⊕ (−1,−1) , (6.33)

and O0,0 = 1 to (0,0). We can assign each (PL, PR) lattice point to be in a particular

{Op,p̄} family by considering fusions of the above operators and imposing that fusions

correspond to momentum vector addition. Using (6.11), these operators map to the

1-qubit stabilizer code generated by the Z Pauli matrix via

I ↔ {O0,0}, {O2,2} , Z ↔ {O1,3}, {O3,1} , (6.34)

where the map includes all descendants.

A topological line operator, denoted L2, labelled by p⃗ = 2 generates a Z2 0-form

symmetry. This symmetry acts by a shift ϕ → ϕ− π, where ϕ := XL−XR
2 . The action

on the vertex operators is

V(n,m) → (−1)mV(n,m) (6.35)

In particular, the collections of operators {O1,3}, {O3,1} change sign under this sym-

metry while {O0,0}, {O2,2} remain invariant. This symmetry is non-anomalous because

h2 = 1
2 [190] (see also the related discussion in [194] and Footnote 12). Taking the

Z2-orbifold,
142 we get a dual CFT with partition function (using (6.17), (6.18))

ZT /Z2
= χ0χ̄0 + χ2χ̄2 + χ1χ̄1 + χ3χ̄3 . (6.36)

This is the partition function of the R = 2 compact boson, which is T-dual to the

R = 1 compact boson. Using (6.21), the stabilizer code corresponding to this CFT is

the 1-qubit code generated by Y via the map

I ↔ {O0,0}, {O2,2}; Y ↔ {O1,1}, {O3,3} . (6.37)

T-duality between these theories is captured by the fact that the 1-qubit code generated

by Y is equivalent to the code generated by Z [38] (recall that our conventions here

differ from those in [38] by an X ↔ Y code equivalence).

Using (6.3), we can compute the refined enumerator polynomials (REPs) for the

141The four states in (6.33) correspond to the fact that O2,2 transforms as a left-moving so(2) vector
times a right moving so(2) vector.
142H2(Z2, U(1)) ∼= Z1. Therefore, there is no discrete torsion.
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codes above, generated by Z and Y to get

Wgen(Z)(x1, x2, x3, x4) = x1 + x4 ,

Wgen(Y )(x1, x2, x3, x4) = x1 + x3 . (6.38)

Therefore, corresponding CFT torus partition functions can be written in terms of the

REPs by choosing

x1 = χ0χ̄0 + χ2χ̄2 , x4 = χ1χ̄3 + χ3χ̄1 , x3 = χ1χ̄1 + χ3χ̄3 . (6.39)

As a final note, let us comment that we obtain the same quantum codes using any

RCFT with Rep(V ) = A
nA4
4 . For any nA4 there are always infinitely many such RCFTs.

For example, we can take the product of the R = 1 compact boson with arbitrarily

many E8 WZW models at level one and trivial Rep(V ) (this latter theory is associated

with a 0-qubit code). In this case, to get the partition function from the REP we have

to input the characters χpχ̄p⃗χ
′
0χ̄

′
0 into (6.38), where χ′

0 is the vacuum character of the

E8 WZW model at level 1 factors.

R =
√
2 compact boson ∼ SU(2) level one WZW

The compact boson at the self-dual radius, or, equivalently, the SU(2) at level one

WZW model has Rep(V ) = A2. That is, the representations of the chiral algebra are

the trivial and fundamental representations, which we denote by N0, N1, respectively.

They form a K = Z2 group under fusion. We have chiral primaries with scaling

dimensions

h0 = 0 , h1 =
1

4
. (6.40)

The Narain lattice for this theory is given by

PL :=
1√
2
(n+m) , PR :=

1√
2
(n−m) , (6.41)

where, n,m ∈ Z. The vertex operators are given by (6.27) with (6.41) inserted, and

the torus partition function is

ZT = χ0χ̄0 + χ1χ̄1 , (6.42)

where the characters are given by [84]

χp(q) =
1

η(q)

∑
n∈Z

q
(p+2n)2

4 , (6.43)

with i = 0, 1.
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The non-trivial primary, O1,1, corresponds to the lattice vectors

(PL, PR) = ±
(

1√
2
,
1√
2

)
⊕±

(
1√
2
,− 1√

2

)
, (6.44)

where the number of states follows from the fact that the primary transforms in the

fundamental representation of the left and right moving SU(2). We can assign any

Narain lattice vector to be a member in a {Op,p̄} family by considering fusions of the

above primaries and imposing that they correspond to lattice vector addition. Now,

using (6.11), this CFT corresponds to the 1-qubit stabilizer code generated by Z via

the map

I ↔ {O0,0} , Z ↔ {O1,1} . (6.45)

Note that this is the same quantum code as in the case of the R = 1 compact boson.

This fact illustrates that, the map (6.21) can give the same quantum code for distinct

CFTs.

The REP for this code is given by (6.38), and the torus partition function can be

written in terms of W by choosing

x1 = χ0χ̄0 , x4 = χ1χ̄1 . (6.46)

This CFT has a Z2 0-form symmetry generated by the topological line L2. However,

this Z2 is anomalous [190], and hence cannot be gauged (in a purely 2d system).

Again, from our construction, we can consider arbitrary products of this theory

and, when we have at least two factors, orbifolds with and without discrete torsion.

Compact boson at R =
√

2k
ℓ

Let us generalize the discussion above to compact boson at R =
√

2k
ℓ , where k, ℓ are

co-prime integers. This RCFT has fusion rules given by the group K = Z2kℓ. The

corresponding bulk CS theory is U(1)2kℓ. Therefore, in this case Rep(V ) labels the

Wilson lines in the U(1)2kℓ CS theory. Rep(V ) decomposes as follows

Rep(V ) ≃ X2s ×
∏
i

(Yi)qrii
,K = Z2s ×

∏
i

Zqrii . (6.47)

where the qi’s are distinct odd primes, X ∈ {A,B,C,D}, and Yi ∈ {A,B}. Here the la-
bels must be chosen so that the topological central charge is equal to 1 modulo 8. Note

that this does not imply that the U(1)2kℓ CS theory or the associated CFT itself fac-

torizes. The decomposition (6.47) is an algebraic property of the set of representations

of the chiral algebra Rep(V ).

As discussed above, the odd factors contribute trivially to the code. For simplicity,
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we will therefore consider ℓ = 2s−1 and k = 1 for some integer s > 0. In this case

U(1)2s CS ≃ A2s , K = Z2s . (6.48)

The representations of the chiral algebra are denoted by integers p ∈ Z2s . The scaling

dimensions for these chiral primaries are given by hp =
p2

2s+1 if p ≤ 2s−1 and hp =
p̄2

2s+1

if p > 2s−1.

The Narain lattice for this theory is given by

PL :=
n

R
+
mR

2
, PR :=

n

R
− mR

2
, R = 2

2−s
2 , (6.49)

where m,n ∈ Z. The vertex operators are given by (6.27). The torus partition function

is

ZT =
∑
p∈Z2s

χpχ̄p̄ , (6.50)

which is the charge conjugation modular invariant. The characters, χp(q), are given

by [84]

χp(q) =
1

η(g)

∑
n∈Z

q2
s−1
(
n+

hp
2s

)2
. (6.51)

Non-trivial primaries, Op,p̄, with p < 2s−1 correspond to lattice vectors satisfying

1

2
(P 2

L + P 2
R) = 2hp , PL > PR , (6.52)

while the charge conjugate corresponds to lattice vectors of the above type with PR >

PL. Finally, the non-trivial primary O2s−1,2s−1 corresponds to the lattice vectors satis-

fying
1

2
(P 2

L + P 2
R) = 2s−2 . (6.53)

The quantum code corresponding to this CFT is the 1-qubit quantum code generated

by Z, where the operators are mapped to the code as

I ↔ {Op,p̄} , p = 0 mod 2 ,

Z ↔ {Op,p̄} , p = 1 mod 2 . (6.54)

A topological line operator, denoted L2s−1 , labelled by p⃗ = 2s−1 generates a Z2

0-form symmetry. This symmetry acts by a shift ϕ → ϕ − π, where ϕ := R(XL−XR)
2 .

The action on the vertex operators is

V(n,m) → (−1)mV(n,m) . (6.55)

This symmetry is non-anomalous and can be gauged. Taking the Z2-orbifold we get
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the the orbifold CFT with the partition function

ZT /Z2
=

∑
p=0 mod 2,p∈Z2s

χpχ̄p̄ + χpχ̄2s−1+p
, (6.56)

Using (6.21), the operators in this CFT can be mapped to the stabilizer code generated

by X as

I ↔ {Op,p̄}, X ↔ {O
p,2s−1+p

} (6.57)

Note that the quantum code corresponding to the Z2 orbifold of the R = 1 compact

boson CFT is gen(Y ) while that for the Z2 orbifold of the R = 2
2−s
2 compact boson

CFT for s > 1 is gen(X). This difference is because, for s > 1, the chiral primary

p = 2s−1 is bosonic while, for s = 1, it is fermionic.

The REPs for the codes obtained above are

Wgen(Z)(x1, x2, x3, x4) = x1 + x4 ,

Wgen(X)(x1, x2, x3, x4) = x1 + x2 . (6.58)

Therefore, the partition functions considered above can be written in terms of the REPs

by choosing

x1 =
∑

p=0 mod 2

χpχ̄p̄ ,

x4 =
∑

p=1 mod 2

χpχ̄p̄ ,

x3 =
∑

p=0 mod 2

χpχ̄2s−1+p
. (6.59)

̂Spin(16)1 CFT

The Spin(16)1 CFT has Rep(V ) = E2 (the “toric code” MTC). We denote the represen-

tations of the chiral algebra by N(0,0), N(0,1), N(1,0), N(1,1), and they form a K = Z2×Z2

group under fusion. We have chiral primaries with scaling dimensions

h(0,0) = 0 , h(0,1) = h(1,0) = 1 , h(1,1) =
1

2
. (6.60)

The Narain lattice is

{(P⃗L, P⃗R) ∈ ΛW × ΛW , P⃗L − P⃗R ∈ ΛR} (6.61)

where ΛW = {
∑

i niλi, ni ∈ Z} is the weight lattice, λi are the fundamental weights

λi = (1, · · · , 1, 0, · · · , 0), 1 ≤ r ≤ 6 (1 repeated i times)
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λ7 = (1, 1, 1, 1, 1, 1, 1, 1), λ8 = (1, 1, 1, 1, 1, 1, 1,−1) ,

and ΛR = {
∑

i niαi, ni ∈ Z} where αi are the simple roots

αi = ei − ei+1 1 ≤ i ≤ 7, α8 = e8 + e7 . (6.62)

Here ei is the vector with components (ei)j = δi,j . It is easy to check that ΛR is the

set of 8-component vectors such that the sum of its components is even.

The partition function is

ZT = χ(0,0)χ̄(0,0) + χ(0,1)χ̄(0,1) + χ(1,0)χ̄(1,0) + χ(1,1)χ̄(1,1) , (6.63)

where the characters are given by [84]

χ(0,0) =
(θ83 + θ84)

2η8
, χ(0,1) = χ(1,0) =

θ82
2η8

, χ(1,1) =
(θ83 − θ84)

2η8
. (6.64)

Here θ2, θ3, θ4 are Jacobi-Theta functions. The Dynkin labels for the representations

N(0,0), N(0,1), N(1,0) andN(1,1) are (0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1, 0, 0)

and (1, 0, 0, 0, 0, 0, 0, 0), respectively. Therefore, the primary operatorsO(0,0),(0,0), O(0,1),(0,1),

O(1,0),(1,0) and O(1,1),(1,1), in turn, correspond to the lattice vectors

(λ8, λ8) , (λ7, λ7) , (λ6, λ6) , (λ1, λ1) . (6.65)

Using (6.11), this CFT corresponds to the two-qubit stabilizer code generated by I ⊗
Z,Z ⊗ I via the map

I ⊗ Z ↔ {O(1,0),(1,0)}, Z ⊗ I ↔ {O(0,1),(0,1)} . (6.66)

This CFT has three non-anomalous Z2 0-form symmetries, Q1, Q2, Q3, correspond-

ing to the topological lines L(0,1),L(1,0), and L(1,1). These symmetries act on the pri-

mary operators (and the corresponding Narain lattice vectors) as

L(0,1) : O(1,0) → −O(1,0), O(1,1) → −O(1,1) ,

L(1,0) : O(0,1) → −O(0,1), O(1,1) → −O(1,1) ,

L(1,1) : O(0,1) → −O(0,1), O(1,0) → −O(1,0) . (6.67)

Actions of the symmetries on primaries not mentioned above are trivial. Orbifolding

by Q1, Q2, Q3, we get CFTs with partition functions (using (6.17), (6.18))

ZT /Q1
= χ(0,0)χ̄(0,0) + χ(0,0)χ̄(0,1) + χ(0,1)χ̄(0,0) + χ(0,1)χ̄(0,1) ,

ZT /Q2
= χ(0,0)χ̄(0,0) + χ(0,0)χ̄(1,0) + χ(1,0)χ̄(0,0) + χ(1,0)χ̄(1,0) ,
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ZT /Q3
= χ(0,0)χ̄(0,0) + χ(1,1)χ̄(1,1) + χ(0,1)χ̄(1,0) + χ(1,0)χ̄(0,1) , (6.68)

respectively. Using (6.21), these CFTs can be mapped, in turn, to the stabilizer codes

specified by gen(Z ⊗ I, I ⊗X), gen(I ⊗ Z,X ⊗ I), and gen(Z ⊗ Z, Y ⊗X).

We can also orbifold by the full Q1 × Q2 symmetry of the CFT. We get partition

functions (using (6.17), (6.18))

ZT /Q1×Q2,[1] = χ(0,0)χ̄(0,0) + χ(0,1)χ̄(0,0) + χ(0,0)χ̄(1,0) + χ(0,1)χ̄(1,0) ,

ZT /Q1×Q2,[σ] = χ(0,0)χ̄(0,0) + χ(0,0)χ̄(0,1) + χ(1,0)χ̄(0,0) + χ(1,0)χ̄(0,1) , (6.69)

where [1] and [σ] are the trivial and non-trivial elements of H2(Z2 ×Z2, U(1)), respec-

tively. Using (6.21), these CFTs can be mapped, in turn, to subgroups of the Pauli

group specified by gen(Z ⊗X,X ⊗ I) and gen(X ⊗ Z, I ⊗X).

The subgroup of the Pauli group generated by these elements is clearly not a sta-

bilizer code since it is non-abelian. For example, Z ⊗X and X ⊗ I anti-commute with

each other. This is expected from out general arguments above since Q1 and Q2 are

related to 1-form symmetries of the bulk Spin(16)1 Chern-Simons theory which have a

mixed ’t Hooft anomaly.

6.3 Errors and the Full Pauli Group from Defects

In the context of quantum codes, the elements of the Pauli group, Pn, that are not in

the stabilizer subgroup, Sn, are either called “logical operators” or “errors,” depending,

respectively, on whether they preserve the code subspace or map states from the code

subspace to its complement. Since our codes are self-dual, we have no (non-trivial)

logical operators,143 and all elements of Pn that are not in Sn correspond to errors.

How can we see these errors in the CFT? An intuitive picture is provided by the

toric code [195]. There one finds that error operations correspond to string operators

(defects) that create anyonic pairs.144 When the anyons annihilate, the system returns

to the code subspace, implementing a logical operation. While the gapped toric code

system is very different from the CFTs considered in this chapter, as we will see below,

this geometric picture of errors is still informative.

A more direct way to understand errors is to look at the fields in T /Q that contribute

the terms with g⃗ ̸= 0 in (6.17). In the orbifolding procedure, we gauge Q in the charge-

conjugation modular invariant theory, T . The g⃗ ̸= 0⃗ bulk fields of T /Q then come

from certain fields living at the end of Q topological defects of T . Therefore, the X-

dependent Pauli stabilizers of the T /Q theory appearing in (6.21) correspond to error

operations in the T theory. This discussion suggests error operations of the code related

143Note that the elements in Sn, are sometimes called “trivial” logical operators.
144For a pedagogical discussion, see section 11.3 of [196].
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to T are given by defect endpoint operators of the Q symmetries of T . In the language

of quantum codes, such orbifolding exchanges certain errors with stabilizers in an n-

qubit self-dual code to produce a new n-qubit self-dual code, see e.g. the examples in

section 6.3.2.

With the motivation above, we are now ready to identify the full set of error oper-

ations, i.e., to reconstruct the full Pauli group, from the defect fields. Since Q consists

of order-two defects which commute with the vacuum module, this suggests that we

associate error operations with fields living at the ends of such defects. Through a

slight abuse of terminology, we will refer to these and any other defects that preserve

the maximal chiral algebra of a theory as “Verlinde lines” (for further discussion of

such lines, see for example [25,197–200]).

To understand the spectrum of defect endpoint fields in the most general case, we

eventually want to consider CFTs in which the pairing of characters is given by

ZTM =
∑
p⃗,q⃗

Mp⃗q⃗χp⃗(q)χ̄q⃗(q̄) , (6.70)

where M is a matrix commuting with S and T .145 As a technically simpler starting

point, let us first consider the case when Mp⃗q⃗ is a permutation on the set of vectors.

Such modular invariants are called “permutation modular invariants,” and charge con-

jugation corresponds to the case Mp⃗,q⃗ = δp⃗,¯⃗q. To avoid confusion below, we call theories

of this type “maximal” permutation modular invariants (MPMIs).146 As we will see,

we can reconstruct the Pauli group from Verlinde lines alone in any MPMI admitting

a code description.

In MPMIs, we define Verlinde lines via147

L(p⃗,p⃗M) =
∑
ℓ⃗

S̄
p⃗ℓ⃗

S̄
0⃗ℓ⃗

|ℓ⃗, ℓ⃗M⟩⟨ℓ⃗, ℓ⃗M| , (6.71)

where each |ℓ⃗, ℓ⃗M⟩⟨ℓ⃗, ℓ⃗M| is a projector on the primary state labeled by (ℓ⃗, ℓ⃗M) together

with its descendants. Since this operator is a multiple of the identity within each

representation of the left and right chiral algebras, it commutes with the chiral algebras

and is topological (by construction, it commutes with the Virasoro sub-algebras). For

convenience, we denote L(p⃗,p⃗M) simply as Lp⃗ since the right-moving label is determined

by p⃗. Using the Verlinde formula, it is easy to check that these lines satisfy the fusion

rules of the RCFT

Lp⃗ × Lq⃗ = Lp⃗+q⃗ . (6.72)

145Here, we have Tp⃗,q⃗ := e−πi(c/12)θp⃗δp⃗q⃗.
146More general permutation modular invariants will play a role below.
147In (6.71) and bellow, ℓ⃗M = k⃗ is the unique vector such that Mℓ⃗k⃗ ̸= 0.
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When p⃗ is order two, we have

p⃗+ p⃗ = 0⃗ ⇒ S
p⃗ℓ⃗
/S

0⃗ℓ⃗
∈ {±1} . (6.73)

To proceed, we insert Lg⃗ in the torus partition function (i.e., we wrap it on the

spatial cycle of the torus) and perform a modular transformation so that it wraps time

ZTM(L
ℓ⃗
) =

∑
p⃗,q⃗

S̄
ℓ⃗p⃗

S̄
0⃗ℓ⃗

Mp⃗q⃗χp⃗(q)χ̄q⃗(q̄)

→
∑
p⃗,q⃗,r⃗,s⃗

S̄
ℓ⃗p⃗

S̄
0⃗ℓ⃗

Mp⃗q⃗Sp⃗r⃗S̄q⃗s⃗χr⃗(q)χ̄s⃗(q̄)

=
∑
q⃗,r⃗,s⃗

N ℓ⃗
r⃗ ¯⃗q
Mq⃗s⃗χr⃗(q)χ̄s⃗(q̄) := Z ℓ⃗TM(q, q̄) , (6.74)

where, in the last line, we have arrived at a definition for the partition function of

fields living at the end of the defect labeled by ℓ⃗. In the second to last equality, we

use the Verlinde formula. In light of (6.72), we can simplify the fusion coefficients as

N ℓ⃗
r⃗ ¯⃗q

= δℓ⃗r⃗−q⃗. Therefore, we have

Z ℓ⃗TM(q, q̄) =
∑
r⃗,s⃗

M
r⃗−ℓ⃗ s⃗χr⃗(q)χ̄s⃗(q̄) =

∑
p⃗,q⃗

Mp⃗q⃗χp⃗+ℓ⃗(q)χ̄q⃗(q̄) . (6.75)

Specializing to the case of the charge conjugation modular invariant, we obtain

Z ℓ⃗T (q, q̄) =
∑
p⃗

χ
p⃗+ℓ⃗

(q)χ̄ ¯⃗p(q̄) . (6.76)

When ℓ⃗ ∈ Q ≃ Zk2, we get, using 2ℓ⃗ = 0⃗,

Z ℓ⃗T (q, q̄) =
∑
p⃗

χ
p⃗+ℓ⃗

(q)χ̄
ℓ⃗+p⃗+ℓ⃗

(q̄) . (6.77)

As expected, these are equivalent to the contributions in (6.21), only here they corre-

spond to defect operators in T rather than bulk operators in T /Q. Therefore, consis-

tency with the map in (6.21) demands{
Oℓ⃗
p⃗+ℓ⃗,p⃗

}
↔ XMℓ⃗ ◦ ZA(p⃗+ℓ⃗) , (6.78)

where
{
Oℓ⃗
p⃗+ℓ⃗,p⃗

}
should be understood as an ℓ⃗-defect primary operator and its associated

descendants. IfQ ≃ Zn2 , then (6.78) gives rise to the full Pauli group. More generally, we

can consider cases in which Q ̸≃ Zn2 and some of the order-two Verlinde lines correspond

to ℓ⃗ ̸∈ Q (e.g., see the SU(2) at level one WZW model example in section 6.3.2). In
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this case we also obtain the full Pauli group: ℓ⃗ in (6.78) is any order-two element,

and p⃗ is any representation in the Narain theory. Therefore, the charge-conjugation

modular invariant knows about the full set of operations acting on the quantum code:

the genuine local operators correspond to stabilizers and the defect endpoint operators

correspond to the errors.

It is straightforward to extend this picture to the most general MPMIs when these

CFTs admit a quantum code description. Clearly, to be an MPMI, we need every

possible p⃗ and g⃗ + p⃗ to appear exactly once in (6.17). Therefore, as we sum over g⃗ and

take all p⃗ ∈ Bg⃗, we produce all possible p⃗ ∈ K. As a result, in the code we generate

via (6.21), we get all possible powers of Z. The powers of X are restricted since g⃗ ∈ Q,

and Q is a proper subgroup of K.

However, the fields living at the end of the order-two Verlinde defects precisely make

up the difference since (6.75) now becomes

Z ℓ⃗TM(q, q̄) =
∑
g⃗∈H

∑
p⃗∈Bg⃗

χ
p⃗+ℓ⃗

(q)χ̄p⃗+g⃗(q) =
∑
g⃗∈H

∑
p⃗∈Bg⃗

χ
p⃗+ℓ⃗

(q)χ̄
g⃗+ℓ⃗+p⃗+ℓ⃗

(q̄) . (6.79)

As a result, our CFT-code map in (6.21) becomes

{
Oℓ⃗
p⃗+ℓ⃗,g⃗+p⃗

}
↔ XM(ℓ⃗+g⃗) ◦ ZA(p⃗+ℓ⃗) . (6.80)

Since the fusion rules in (6.72) do not depend on the nature of M, we see that the

number of order-two Verlinde defects is the same as in the charge-conjugation case.

Therefore, upon including all order-two Verlinde lines, we get all possible Pauli group

elements, and the corresponding errors that affect our stabilizer code.

Let us now consider the most general case (6.17), which we can always write as in

(6.70) with TM = T /Q (and discrete torsion [σ]). Note that in (6.70), Mp⃗,q⃗ is a matrix

with entries consisting of 0’s and 1’s (see Appendix C.2), and it will not generally be a

permutation (i.e., the CFT will not be an MPMI).

As we will see in the next subsection, we have a smaller number of Verlinde lines

when T /Q is not an MPMI. However, we can still define enough order-two symmetries

to recover the Pauli group from the corresponding defect fields (note that invertibility

of the orbifolding procedure guarantees that, for each symmetry we gauge, there is a

dual symmetry in the orbifolded theory).

To construct these extra symmetries, it suffices to associate signs with the pri-

maries compatible with fusion (then all local correlation functions are invariant). In

the Verlinde line case, we did this via (6.71) and (6.73).

Since we have orbifolded in a way that respects T ’s chiral algebra, T /Q respects

the fusion rules of T . More precisely, if we have operators in the orbifolded theory

transforming in representations (p⃗1, g⃗1 + p⃗1) and (p⃗2, g⃗2 + p⃗2), then we also have an
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operator transforming as (p⃗1+p⃗2, g⃗1 + g⃗2 + p⃗1 + p⃗2). Technically, this statement follows

from

S
h⃗,p⃗1+p⃗2

Ξ(⃗h, g⃗1 + g⃗2) = S
h⃗,p⃗1

Ξ(⃗h, g⃗1) Sh⃗,p⃗2 Ξ(⃗h, g⃗2) = 1 , ∀h⃗ ∈ Zk2 , (6.81)

where we have used the bicharacter property of both S and Ξ (see Appendix C.1).

Therefore, (p⃗, g⃗ + p⃗) forms an abelian group under fusion (as it should since T /Q is a

Narain theory). Let us denote this group as F .

Now, after acting with some order-two symmetry, π (i.e., inserting the correspond-

ing topological defect, Dπ, along a spatial cycle and computing the torus partition

function), some of the 1 entries in M get flipped to −1 such that fusion is respected.

Let us denote the matrix so obtained as Mπ.

As in (6.74), to calculate the defect partition function, we have to perform an S

transformation to get STMπS̄. All the characters that we get from the defect partition

functions for all possible order-two π correspond to the non-zero entries of the matrix

∑
π

STMπS̄ = ST
(∑

π

Mπ

)
S̄ := STMΣS̄ , (6.82)

where the sum is over all such symmetries, π.

Assigning signs to the primaries such that the fusion is respected is the same as

choosing an irreducible representation of F valued in ±1. The trivial representation

acts trivially on the primaries. Therefore, for each π, we associate an irrep, sign π. In

order to find the non-zero entries of
∑

πMπ we have to understand when

σ(x) :=
∑
sign π

χsign π(x) , (6.83)

is non-zero. Here, the sum is over the irreducible representations, sign π, of F valued

in ±1, and χsign π(x) is the character of sign π (not to be confused with the RCFT

characters appearing in the partition function!) evaluated on a given element x ∈ F

(note that each element in F represents a character combination χp⃗χ̄g⃗+p⃗ ∈ ZT /Q,[σ]; we

will denote this combination (p⃗, g⃗ + p⃗)).

To that end, suppose F has a decomposition in terms of cyclic groups given by

F ∼= Zn1 ⊗ ...⊗ Znl . (6.84)

Since we are treating CFT factors related to Aqr and Bqr as spectators, the ni are even.

We know that

F̂ = Ẑn1 ⊗ ...⊗ Ẑnl , (6.85)

where F̂ is the group of irreducible representations of F . In particular, the sign rep-
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resentations of F are given by products of Zni sign representations. Choose a basis

{e1, · · · , el} for the cyclic groups; then, an element of F is of the form (em1
1 , ..., emll ) for

some integers 0 ≤ mi ≤ ni − 1. Consider σ(x) for some x = (em1
1 , ..., emll ) ∈ F . We

know that sign π = sign π1 ⊗ · · · ⊗ sign πl, where sign πi is a representation of Zni
valued in ±1. Therefore

σ(x) =
∑

sign π1,··· , sign πl

χπ1(e
m1
1 ) . . . χπl(e

ml
1 ) =

∏
i

 ∑
sign πi

(χsign πi(ei))
m1

 . (6.86)

Since the ni are all even and sign πi is valued in ±1, we have χsign πi(ei) = ±1∀i.
Therefore, we find

σ(x) =
∏
i

(1mi + (−1)mi) =

2l , iff mi ∈ 2Z ∀i

0 , otherwise .
(6.87)

Now, suppose x = (em1
1 , ..., emll ) is an element of the group F such that all mi are even.

Then there exists some other element y ∈ F such that y2 = x. Recall that an element

of F represents a character combination in the partition function denoted by (p⃗, g⃗ + p⃗).

Adding this element to itself gives (2p⃗, 2p⃗) (since g⃗ is order two). Therefore, if x ∈ F

has only even mi, x = (2p⃗, 2p⃗).

As a result, the matrix MΣ defined in (6.82) is a matrix with entries valued in

{0, 2l}, where the only non-zero entries correspond to (2p⃗, 2p⃗). In other words∑
π

ZT /Q,[σ](Dπ) =
∑
π

Mπ;p⃗,q⃗χp⃗(q)χ̄q⃗(¯⃗q) = 2l
∑
2⃗p

χ2p⃗(q)χ̄2p⃗(q̄) . (6.88)

Note that the case π = 1 gives the partition function without a defect. As a result,

χ2p⃗χ̄2p⃗ is a term in this partition function, and we know that 2p⃗ has to satisfy (6.18)

for g⃗ = 0. That is, the CS Wilson line corresponding to 2p⃗ should braid trivially with

all h⃗ ∈ Zk2.
We want to show that the sum of defect partition functions

∑
π Z

π
T /Q,[σ] (coming

from applying a modular transformation to (6.88)) contains all possible characters of

the form χp⃗χ̄g⃗+p⃗, where g⃗ is order two, so that we get the full Pauli group from it. To

that end, consider∑
π

ZπT /Q,[σ] = 2l
∑
2p⃗

∑
i⃗,⃗j

S2p⃗,⃗iS̄2¯⃗p,⃗jχ⃗iχ̄j⃗
= 2l

∑
2p⃗

∑
i⃗,⃗j

S2p⃗,(⃗i−j⃗)χ⃗iχ̄j⃗

= 2l
∑
2p⃗

∑
i⃗,⃗j

Sp⃗,2(⃗i−j⃗)χ⃗iχ̄j⃗
. (6.89)

It is clear that if (⃗i − j⃗) is order two, then Sp⃗,2(⃗i−j⃗) = 1 ∀p⃗. Therefore, the character
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χ⃗iχ̄¯⃗j contributes non-trivially to the sum for any i⃗, j⃗ satisfying the constraint that i⃗− j⃗
is order two. These characters correspond to

XM (⃗i−j⃗) ◦ ZA⃗i . (6.90)

Since i⃗− j⃗ is any order-two element, and i⃗ is arbitrary (though choosing i⃗ fixes j⃗ mod

2), we find that these defect fields give the full Pauli group. This ends our proof and

shows that all code CFTs contain all possible errors via order-two defects.

6.3.1 Verlinde Subgroup of the Pauli Group

In this section, we define a “Verlinde subgroup” of Pn. This subgroup can be con-

structed from any code RCFT. It is defined as follows.

Definition: The Verlinde subgroup, VT /Q, is the subgroup of PT /Q coming from all

stabilizers that are related to (1) CFT local fields and (2) fields living at the end of

order-two Verlinde lines.

Note that, by construction ST /Q ⊆ VT /Q ⊆ PT /Q. Physically, the ratio

rT /Q := 2−n
|PT /Q|
|VT /Q|

, 2−n ≤ r ≤ 1 , (6.91)

measures how well the continuous symmetries of the Narain CFT corresponding to

an n-qubit code are able to detect an error. For example, in the charge conjugation

modular invariant or any of the MPMIs, rT /Q = 2−n, which is the smallest value

possible. This is because the Verlinde subgroup corresponds to the full Pauli group.

Any Verlinde line, L
ℓ⃗
, commutes with the chiral algebra, since S̄

ℓ⃗⃗0
/S̄0⃗0⃗ = 1 in (6.71),

and so the corresponding continuous symmetry currents are acted upon trivially by the

Verlinde lines. In this sense, the continuous symmetry currents cannot detect errors

associated with these defects.

What about more general theories? These theories are not MPMIs. However, it

turns out that, if we enlarge the chiral algebras as much as possible, any orbifold

theory we can construct using our methods above is a permutation modular invariant

with respect to this larger algebra (see Appendix C.4). We can then define a Verlinde

subgroup for any of our orbifold theories. Moreover, as we show in Appendix C.4, if

we enlarge the chiral algebra, then, rT /Q > 2−n, and the error detection ability of the

continuous symmetry currents improves. In the most extreme cases, we get CFTs that

are products of left moving meromorphic and right moving anti-meromorphic CFTs.

These types of theories have rT /Q = 1, and their continuous symmetries are able to

fully detect errors.
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6.3.2 Examples

Pauli group from R = 1 compact boson

The R = 1 compact boson has a charge conjugation partition function which is an

MPMI. Therefore, our general discussion on Pauli groups from MPMIs can be readily

applied to this case. To that end, consider

ZT = χ0χ̄0 + χ2χ̄2 + χ1χ̄3 + χ3χ̄1 . (6.92)

Recall that the bulk operators are mapped to the 1-qubit stabilizer code, gen(Z). This

CFT has a Z2 symmetry generated by the Verlinde line, L2. Inserting this line in the

partition function, we can calculate the defect partition function using (6.77)

Z ℓ⃗=2
T = χ0χ̄2 + χ2χ̄0 + χ1χ̄1 + χ3χ̄3 . (6.93)

Using (6.78), the defect operators are mapped to Pauli group elements as follows

X ↔ {Oℓ⃗=2
(0,2)}, {O

ℓ⃗=2
(2,0)} , Y ↔ {Oℓ⃗=2

(1,1)}, {O
ℓ⃗=2
(3,3)} . (6.94)

Therefore, the bulk operators along with the defect operators give us the full Pauli

group, PT . Since the X and Y Pauli matrices correspond to defect operators living

at the end of an order-two Verlinde line, the Verlinde subgroup, VT , is the full Pauli

group.

Pauli group from R =
√

2
2s−1 compact boson

Recall that theR =
√

2
2s−1 compact boson has the charge conjugation partition function

ZT =
∑
p∈Z2s

χpχ̄p̄ , (6.95)

We know that the CFT local operators are mapped to the qubit stabilier code generated

by Z. This CFT has a Z2 symmetry generated by the Verlinde line, L2s−1 . Inserting

this line in the partition function, we can calculate the defect partition function using

(6.77)

Z ℓ⃗=2s−1

T =
∑
p∈Z2s

χp+2s−1χ̄p̄ , (6.96)

Using (6.78), the defect operators are mapped to Pauli group elements as follows

X ↔ {Oℓ⃗=2s−1

p+2s−1,p̄} , p = 0 mod 2 ,

Y ↔ {Oℓ⃗=2s−1

p+2s−1,p̄} , p = 1 mod 2 . (6.97)
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Therefore, the local operators along with the defect operators at the end of the order-

two Verlinde line L2s gives us the full Pauli group.

Now let us consider the CFT with partition function

ZT /Z2
=

∑
p=0 mod 2,p∈Z2s

χpχ̄p̄ + χpχ̄2s+p , (6.98)

obtained from the R = 2
2−s
2 CFT by orbifolding the Z2 symmetry generated by L2s−1 .

Recall that the genuine local operators in this CFT are mapped to the stabilizer code

generated by X (for s > 2).

This CFT has a Z2 symmetry generated by a line defect, say Dπ, which acts on the

primary operators as follows

{Ov,v̄} → {Ov,v̄}, {Ov,2s−1+v
} → −{O

v,2s−1+v
} (6.99)

Using a modular S transformation, we can find the defect partition function

ZT /Z2
(Dπ) =

∑
p=1 mod 2,p∈Z2s

χpχ̄p̄ + χpχ̄2s−1+p
, (6.100)

Using (6.78), the defect operators are mapped to Pauli group elements as follows

Z ↔ {ODπ
p,p̄ }, Y ↔ {ODπ

p+2s−1,p̄
} , (6.101)

where p = 1 mod 2. Therefore, we find that the local operators of the CFT along with

the defect operators give us the full Pauli group.

Note that the partition function (6.98) is clearly not an MPMI. In this case we get

the non-trivial group E = {0, 2s−1} defined in section 6.3.1. Therefore, using (C.27),

we can enlarge the chiral algebra as follows.

χ̃0 = χ0 + χ2s−1 , χ̃ρ = χρ + χρ+2s−1 (6.102)

where ρ is a a representative of the orbit {v, v + 2s−1}, v = 0 mod 2, v ∈ Z2s . With

respect to this enlarged chiral algebra, we have the partition function

ZT /Z2
=
∑
ρ

χ̃ρ ¯̃χρ̄ . (6.103)

Therefore, we have Verlinde lines labelled by the primaries ρ. However, we don’t have

any non-trivial order-two Verlinde lines. Therefore, the Verlinde subgroup is same as

the stabilizer group.

203



CHAPTER 6. FROM RCFTS TO QUANTUM ERROR CORRECTING CODES

Pauli group from ̂Spin(16)1 CFT

Recall that the ̂Spin(16)1 CFT has the charge-conjugation partition function

ZT = χ(0,0)χ̄(0,0) + χ(0,1)χ̄(0,1) + χ(1,0)χ̄(1,0) + χ(1,1)χ̄(1,1) , (6.104)

and the bulk operators are mapped to the 2-qubit stabilizer code gen(I ⊗ Z,Z ⊗ I).

This CFT has Z2 × Z2 0-form symmetry generated by the Verlinde lines L(0,1) and

L(1,0). Inserting these lines in the partition function, we obtain the following defect

partition functions via (6.77)

Z
(0,1)
T = χ(0,1)χ̄(0,0) + χ(0,0)χ̄(0,1) + χ(1,1)χ̄(1,0) + χ(1,0)χ̄(1,1) ,

Z
(1,0)
T = χ(1,0)χ̄(0,0) + χ(1,1)χ̄(0,1) + χ(0,0)χ̄(1,0) + χ(0,1)χ̄(1,1) ,

Z
(1,1)
T = χ(1,1)χ̄(0,0) + χ(1,0)χ̄(0,1) + χ(0,1)χ̄(1,0) + χ(0,0)χ̄(1,1) . (6.105)

Using (6.78), the defect operators are, in turn, mapped to Pauli group elements

Z ⊗X, I ⊗X,Z ⊗ Y, I ⊗ Y , (6.106)

X ⊗ Z, Y ⊗ Z,X ⊗ I, Y ⊗ I , (6.107)

Y ⊗ Y,X ⊗ Y, Y ⊗X,X ⊗X . (6.108)

Therefore, the bulk operators along with the defect operators give us the full Pauli

group PT . Since all defect operators live at the end of order-two Verlinde lines, the

Verlinde subgroup, VT , is the full Pauli group.

Now let us consider the CFT with partition function

ZT /Q1
= χ(0,0)χ̄(0,0) + χ(0,0)χ̄(0,1) + χ(0,1)χ̄(0,0) + χ(0,1)χ̄(0,1) , (6.109)

obtained from the ̂Spin(16)1 CFT by orbifolding the Q1 symmetry generated by L(0,1).

Recall that the bulk operators are mapped to the 2-qubit stabilizer code gen(Z⊗ I, I⊗
X). This CFT has order-two symmetries generated by Dπ1 and Dπ2 . Dπ1 acts on the

primaries as

{O(0,0),(0,1)} → −{O(0,0),(0,1)} ,
{O(0,1),(0,0)} → −{O(0,1),(0,0)} , (6.110)

and trivially on {O(0,0),(0,0)} and {O(0,1),(0,1)}. Dπ2 acts on the primaries as

{O(0,1),(0,0)} → −{O(0,1),(0,0)} and

{O(0,1),(0,1)} → −{O(0,1),(0,1)} , (6.111)
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and trivially on {O(0,0),(0,0)} and {O(0,0),(0,1)}.
Using a modular S transformation, we can find the defect partition functions

ZT /Q1
(Dπ1) = χ(1,0)χ̄(1,0) + χ(1,1)χ̄(1,1) + χ(1,1)χ̄(1,0) + χ(1,0)χ̄(1,1) ,

ZT /Q2
(Dπ2) = χ(1,0)χ̄(0,0) + χ(1,0)χ̄(0,1) + χ(1,1)χ̄(0,0) + χ(1,1)χ̄(0,1) ,

ZT /Q3
(Dπ1π2) = χ(0,0)χ̄(1,0) + χ(0,0)χ̄(1,1) + χ(0,1)χ̄(1,0) + χ(0,1)χ̄(1,1) . (6.112)

Using (6.90), the defect operators are, in turn, mapped to Pauli group elements

I ⊗ Z,Z ⊗ Z,X ⊗ Y, I ⊗ Y , (6.113)

X ⊗ Z,X ⊗ Y, Y ⊗ Y, Y ⊗ Z , (6.114)

X ⊗ I,X ⊗X,Y ⊗X,Y ⊗ I . (6.115)

Therefore, the bulk fields along with the defect fields give us the full 2-qubit Pauli

group.

The Verlinde subgroup in this case is the same as the stabilizer group. To under-

stand this statement, note that the partition function (6.109) is clearly not an MPMI.

In this case we get the non-trivial group E = {(0, 0), (0, 1)} defined in section 6.3.1.

Therefore, using (C.27), we can enlarge the chiral algebra as follows.

χ̃0⃗ = χ(0,0) + χ(0,1) . (6.116)

With respect to this enlarged chiral algebra, we have

ZT /Q1
= χ̃0⃗

¯̃χ0⃗ . (6.117)

We get a meromorphic RCFT times an anti-meromorphic RCFT. In this case we don’t

have any non-trivial Verlinde lines, and VT /Q1
= S2.

6.4 The qubit Hilbert space / CFT Hilbert space map

We have constructed a map that relates the stabilizers and error operations acting on

n qubits to an infinite number of genuine local and defect endpoint operators in very

general Narain RCFTs. How then should we map the n-qubit Hilbert space, Hn, to

the infinite-dimensional CFT Hilbert space?

Let us first consider the code subspace, Cn ⊂ Hn. It is defined as the space invariant

under the action of the stabilizer group. In our case it is one dimensional. To find the

corresponding CFT states, we look for the space which is closed under action of genuine

local CFT operators, since these operators correspond to stabilizers under the map µ
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|OLocal⟩ ∈ HCFT

Lg⃗

|OLocal⟩ ∈ HCFT|ODefect⟩ ∈ HDefect
h⃗

t

(i) (ii) (iii)

L
h⃗

Figure 6.3: The CFT on S1 × R: (i) The code subspace maps to the CFT states
corresponding to genuine local operators (ii) A CFT logical operation: wrapping the
spatial slice with a symmetry defect, Lg⃗, implements the symmetry on HCFT

Bulk (at the level
of the code, the logical operation is trivial). (iii) The complement of the code subspace

in the n-qubit Hilbert space: a state in the Lh⃗-defect Hilbert space (here 2h⃗ = 0⃗).

(6.22). By the state-operator correspondence, this is nothing but the CFT Hilbert

space

µ(HCFT) = Cn . (6.118)

Note that, at the level of the CFT Hilbert space, logical operations are non-trivial, but

they become trivial after the action of µ (6.118).

Next, what are the 2n− 1 states in the complement of Cn inside the n-qubit Hilbert

space on the CFT side? The natural choice is that these correspond to the 2n − 1

different defect Hilbert spaces, HDefect
i , associated with the defect endpoint fields we

interpreted as errors in section 6.3,

µ(HDefect
i ) = Ccn := Hn\ Cn . (6.119)

The basic property of Ccn is that error operations acting on Cn produce states in the

complement. This property is respected by µ: inserting a defect endpoint operator

takes us from the bulk CFT Hilbert space to the corresponding defect Hilbert space.

We illustrate our proposal (6.118) and (6.119) in Figs. 6.3 (i)-(iii).

6.5 Conclusion

We have proposed a map from very general rational Narain CFTs (including defects),

and their associated CS theories, to stabilizer codes. This construction includes the

theories discussed in [38,187] as a special case, and provides a CFT picture of the code

space states and errors reminiscent of the toric code construction [183].

Our CFT to stabilizer map works as follows. First, we pick a Narain theory with a

particular chiral algebra and construct the charge conjugation modular invariant. We
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then consider all orbifolds by Q = Zk2 subgroups of the 0-form flavor symmetry that

come from 3d CS 1-form symmetries with vanishing ’t Hooft anomalies (this condition

ensures the stabilizer group is abelian (6.23)) and relate genuine local operators to

stabilizer generators (6.21). Under this map, operators sitting at the ends of line

defects are mapped to Pauli operators acting on physical qubits. Accordingly, the

whole bulk CFT Hilbert space is mapped to the code subspace (6.118), while defect

Hilbert spaces are mapped to the complement of the code subspace in the n-qubit

Hilbert space (6.119).

Note that, while the map is unambiguous, it can lead to the same CFT having

different codes associated with it because certain CFTs can be considered rational with

respect to multiple chiral algebras. For example, the ̂Spin(16)1/Z2 orbifolds discussed

in section 6.2.1 can be interpreted as corresponding to two different chiral algebras.

If we run our map with the smaller chiral algebra Vmin = V ̂Spin(16)1
, we produce the

sequence of RCFT / code relations discussed in the text. On the other hand, if we

use maximal chiral algebra, Vmax, described around (6.116), then the ̂Spin(16)1/Z2

orbifolds correspond to trivial 0-qubit codes, as follows from triviality of Rep(Vmax),

see the discussion below (6.116).

Within our construction, it is natural to ask if we can construct a CFT starting from

a given stabilizer code. Since there might be different CFTs related to that code, it is

clear that we need extra data. Starting from the stabilizers, we can choose a group Q,

and a 2-cocycle, σ ∈ H2(Q,U(1)), compatible with the code. To reconstruct the CFT

requires choosing a chiral algebra such that the charge conjugation modular invariant

with that chiral algebra admits a non-anomalous 0-form symmetry isomorphic to Q.

Taking the Q-orbifold of this CFT with discrete torsion, σ, gives a CFT corresponding

to the quantum code in question. An alternative approach is to define a Narain lattice

starting from a quantum code. One particular recipe is given by the “new Construction

A” of [38], which can be used to construct orbifolds of the charge conjugation modular

invariant with Rep(V ) = A
nA4
4 for arbitrary integer nA4 . There are, of course, other

constructions leading to other CFTs for the same or other codes. For example, the

Narain lattice (6.41) for the SU(2) WZW model at level one can be generalized to

yield CFTs with Rep(V ) = A
nA2
2 for arbitrary integer nA2 > 0.
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Conclusion

In this thesis, we focused on the algebraic structure of 2 + 1D TQFTs and 1 + 1D

RCFTs. The symmetries of these QFTs allow for a Lagrangian-independent descrip-

tion which is very useful for studying global aspects of these theories and in producing

explicit results. More generally, identifying the algebraic structures in a QFT is often

useful for explicit computations and classifications. TQFTs in general dimensions have

a purely algebraic description in terms of higher fusion categories [6]. It is conceivable

that general QFTs with their defects/operators of various dimensions admit a higher

categorical description, though the exact structures that need to be added to the cat-

egory are unclear [201]. Also, we saw that even though conformal field theories are

complex-analytic in nature, obtaining consistent partition functions of an RCFT with

a given chiral algebra is a purely algebraic problem [202].

While TQFTs are a rich and mathematically precise arena to explore QFTs, as

mentioned in the introduction, it has been recognized that topological operators play

a crucial role in describing symmetries of general QFTs. Studying the structure of

topological operators of QFTs has led to very interesting generalizations of the notion

of symmetry [18–23]. Extending the various algebraic properties of TQFTs studied in

this thesis to topological operators of general QFTs is a very interesting problem.

More specifically, in this thesis, we first looked at fusion rules in 2 + 1D TQFTs

and showed that non-abelian anyons can fuse to give a unique outcome. We saw that

such fusions are very special in discrete gauge theories with non-abelian simple gauge

groups. One natural question that remains is to better understand to what extent ideas

involving non-abelian anyons can be used to prove the AH conjecture (see [203–205]

and references therein for interesting recent progress on the AH conjecture). Since

discrete gauge theories feature in various physical systems, perhaps we can hope for

a physics proof of this conjecture. Theorem (3.3.3) is an example of the irreducible

restriction problem for simple groups, in the special case of restriction of irreducible

representations to centralizers. It will be interesting to explore its relationship with the
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Aschbacher-Scott program [206,207].

For more general discrete gauge theories and Chern-Simons theories, such fusion

can occur more frequently and lead to interesting consequences for the global structure

of the theory. In this context, various natural questions arise:

• In the discussion around (3.85) we explained the large hierarchy between the size

of simple and non-simple groups whose corresponding discrete gauge theories have

non-abelian Wilson lines satisfying (3.2) by using symmetries and subcategory

structure. It would be interesting to explore whether other related hierarchies

can be explained in a similar way.

• We saw that in almost all the prime untwisted discrete gauge theories we studied,

if there was a fusion rule of the form (3.2), then the theory had non-trivial zero-

form symmetries. The only exceptions were discrete gauge theories based on the

M23 andM24 Mathieu groups discussed in section 3.4.3. Here we argued that there

were zero-form symmetries of the modular data that did not lift to symmetries

of the full theory. It would be interesting to understand if gauge theories based

on certain finite simple sporadic groups are the only prime theories with fusion

rules of the form (3.2) that exhibit this phenomenon.

• In section 3.5.1, we proved that the non-abelian lines of SU(N)k CS theory don’t

have fusion rules of the form (3.2). While (E7)2 CS theory does have such fusion

rules, we do not know of an example of such a fusion in a prime Gk CS theory

with G a compact and simple Lie group. It would be interesting to either find an

example of such a fusion or prove a more general theorem forbidding one. Given

such fusions are common for discrete gauge theories, it would be interesting to

understand how these two statements interact with each other.

• As we saw in section 3.5.3, it would be useful to develop new tools to understand

primality in theories built on cosets. One promising direction is to study the role

of Galois actions in such theories.

We also looked at how Galois action related TQFTs with various common proper-

ties. We showed that the 0-form, 1-form as well as the 2-group symmetries of a TQFT

remain invariant under Galois action. We found that Galois invariant TQFTs are very

special in that they can be constructed by gauging 0-form symmetries of very special

abelian TQFTs. We showed that other algebraic operations on a TQFT, like gauging

and anyon condensation have a natural interplay with Galois action. We also showed

that the entanglement entropy of lines in abelian TQFTs is invariant under Galois

actions. Various natural questions arise:

• Galois conjugation has played a major role in finding counter examples to the

conjecture that the modular data determine a topological phase of matter [76]. A

209



CHAPTER 7. CONCLUSION

general strategy to use Galois conjugation to find modular isotopes is as follows.

LetKM be the cyclotomic field containing the components of the S and T matrices

of an MTC C. Let L be another link invariant and let KL be the Galois field

containing the component of L. If KL is not the same field extension as KM ,

then there exists some element q ∈ Gal(KL) such that the action of q on S and

T is trivial, while q(L) ̸= L. If q(L) and L are not related by a permutation of

the anyon labels, then the MTCs C and q(C) are modular isotopes. It would be

interesting to explore this direction further.

• Another interesting operation which takes us between TQFTs is Zesting [154].

Like Galois conjugation, zesting can be used to find modular isotopes [208]. The

SU(3)3 Chern-Simons theory and its time reversal are related by a Galois conju-

gation. These two theories are also related by zesting. It would be interesting to

explore the relationship between Galois action and zesting, and understand when

zesting produces Galois conjugate TQFTs.

• Galois invariant TQFTs are very special, and Theorem 4.12 relates them to dis-

crete gauge theories, the 3-fermion model and Ap ⊠ Ap. However, gauging an

arbitrary symmetry of these theories can give us a Galois non-invariant TQFT

due to a kind of Galois conjugation-0-form symmetry mixed anomaly. It would

be interesting to fully define the Galois conjugation-0-form symmetry anomaly

(and the Galois conjugation-anyon condensation anomaly) and give sufficient and

necessary criteria for its vanishing.

• We saw that in order to argue that certain symmetries were preserved under

Galois conjugation, we needed to make some mild assumptions on the underlying

number fields. It would be interesting to understand if these assumptions are

ever violated. If so, it would be intriguing to understand if one can think of these

situations as representing certain number-theoretical anomalies.

• In 2+1D, discrete gauge theories and quantum groups form two important classes

of TQFTs. In contrast, 3 + 1D TQFTs are mostly governed by discrete gauge

theories. For example, 3 + 1D TQFTs with bosonic line operators are known to

be classified by 3+1D discrete gauge theories [209]. These are Drinfeld centres of

fusion 2-categories [127], and they have many parallels with 2+1D discrete gauge

theories. This begs the question of how our results generalize to these higher

dimensional TQFTs.

• Along with entanglement entropy, complexity and magic are important quantities

which characterize link states [210–212]. It will be interesting to analyze the

behaviour of these quantities under Galois action.
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• Recall that the Witt group of TQFTs [213] may play an important role in the

classification of MTCs and related structures. In this construction, two MTCs, C1
and C2, are Witt equivalent if they satisfy C1⊠Z(A1) ≃ C2⊠Z(A2) (where Z(· · · )
is the Drinfeld center of the enclosed fusion category). It would be interesting to

define and explore a notion of “Galois equivalence” of MTCs C1,2. Here we could

define C1 and C2 to be Galois equivalent if C1⊠C′
1 = C2⊠C′

2 where C′
1,2 are Galois

invariant.

Finally, we constructed an explicit map from 1 + 1D CFTs and studied how this

map interplays with the properties of the corresponding bulk TQFT. We showed that

the local operators of the RCFT correspond to the elements of the stabilizer group.

The point operators which live at the end of line operators correspond to elements

of the Pauli group. This allowed us to give a quantum code theoretic description of

orbifolding. Our work opens a number of new directions to explore:

• We have emphasized that different CFTs can be associated with the same code.

It is natural to ask if the space of CFTs related to a particular code admits

additional structure. One possible idea is to relate these theories by RG flow,

or perhaps, some other form of coarse-graining. More broadly, these theories

may comprise deformation classes reminiscent of topological modular forms in 2d

N = (0, 1) theories, see e.g. [214–216].

An alternative idea comes from the example discussed below (6.14), where differ-

ent CFTs mapping to the same code correspond to CS theories that are related

by Galois conjugation [4,99]. A natural question to ask is if more general Galois

transformations always relate theories corresponding to the same code.

Finally, when a d-dimensional QFT is invariant under gauging a (d − 2)/2-form

symmetry, one finds a non-invertible “duality” defect [22,23]. In 2d, these defects

arise when a theory is invariant under gauging a zero-form symmetry, as in the

case of the R = 1 compact boson (see also [21]). In this theory, we saw that the

codes before and after gauging the Q = Z2 symmetry are equivalent. The codes

before and after gauging are also equivalent for R =
√

2
k (for k > 2) even though

the theories are not. This result begs the question of whether code equivalences

correspond, in the absence of an equivalence under gauging, to the existence of

more general defects.

• The construction of Chapter 6 can be extended in many possible ways. In the

discussion below (6.9), the factors of Aqr and Bqr in (6.8) are mapped into trivial

(zero qubit) codes. Quite naturally, these factors can be associated with qudit

codes with d = q, where d = 2 is the qubit case [217]. Another possible gener-

alization comes from the choice of orbifold group, Q, in (6.20) and, implicitly, a
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choice of stabilizer in (6.21) for RCFTs corresponding to CS theories with E2r and

F2r factors. Yet another natural generalization would be to include theories with

non-abelian fusion rules. In this way, one may hope to extend our construction

to all RCFTs. Going in a different direction, general CFT relations to codes are

likely to extend beyond RCFTs to include non-rational “finite” theories [218].

The broad program we are advocating here is to identify a generalization of codes

which can be associated with general 2d CFTs.

• Relations to codes provide a powerful way to write CFT torus partition functions

in terms of code enumerator polynomials. This relation applies to all CFTs

discussed in Chapter 6 and can be extended to higher-genus partition functions

[219]. In this way, modular bootstrap constraints can be reformulated in terms of

much simpler algebraic properties of enumerator polynomials, leading to a new

approach to the modular bootstrap [187]. Our work emphasized the importance

of defects in the context of codes. We therefore surmise that codes will prove

useful as a new tool for the program of bootstrapping CFTs with defects (e.g.,

see [21]). Since defects are also closely related to boundaries, we expect codes

to have direct implications for bootstrapping in the presence of boundaries [220].

Intriguingly, conformal boundaries are also related to gapped boundaries of the

bulk TQFT [221]. Therefore, it will be interesting to explore the role of quantum

codes in describing and classifying gapped boundaries as in [103].

• The physical meaning of quantum codes outlined in Chapter 6, namely that the

code subspace is related to the Hilbert space of CFT local operators, while errors

correspond to defect endpoint operators, has a natural holographic interpretation.

Our theories are dual to 3d CS, where the code subspace and errors have a clear

geometric meaning. We raise the question of making an explicit connection with

the quantum codes, which define the space of low-energy bulk states in the context

of holographic quantum gravity [182].

• Finally, it will be interesting to extend our CFT to quantum stabilizer code map

to fermionic CFTs. Since fermionic CFTs are related to bosonic CFTs through

gauging [222] [223], this should lead to some interesting relationships between

quantum codes corresponding to fermionic CFTs and quantum codes discussed

in this thesis.
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Appendix A

Examples of a× b = c fusion and

GAP codes

A.1 Wilson line a × b = c in gauge theories with order

forty-eight discrete gauge group

Let us study groups of order 48 for which the corresponding discrete gauge theories

have Wilson line a× b = c type fusions148.

(48, 15) ((Z3 ×D8)⋊ Z2);

W22 ×W24 = W4 , W22 ×W25 = W4 , W23 ×W24 = W4 , W23 ×W25 = W4

W24 ×W26 = W4 , W24 ×W27 = W4 , W25 ×W26 = W4 , W25 ×W27 = W4 .(A.1)

We have Out((Z3×D8)⋊Z2) = Z2×Z2. Let r1 and r2 be the generators of this group.

They act on the Wilson lines involved in the fusion above as follows

r1 : W22 ↔ W22 ; W23 ↔ W23 ; W24 ↔ W24 ; W25 ↔ W25 ; W26 ↔ W27 ; (A.2)

r1 : W22 ↔ W22 ; W23 ↔ W23 ; W24 ↔ W25 ; W26 ↔ W26 ; W27 ↔ W27 ; (A.3)

Since this group has complex characters we also have a non-trivial quasi-zero-form

symmetry given by complex conjugation. Z(Vec(Z3×D8)⋊Z2
) also has all other a× b = c

type fusions (involving fluxes and dyons) discussed in this appendix.

(48, 16) ((Z3 : Q8) ⋊ Z2); This has fusions identical to (A.1). The only difference is

that now W24 and W25 are conjugates. The outer automorphism group and symmetry

148We won’t discuss the direct product groups S3 × S3, D8 × S3 and Q8 × S3 which also have such
fusions (the corresponding discrete gauge theories factorize). Since we have already discussed the case
of BOG and GL(2, 3), we won’t be discussing them here
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action is identical to Z(Vec(Z3×D8)⋊Z2
). Since this group has complex characters we

also have a non-trivial quasi-zero-form symmetry given by complex conjugation. We

additionally have all other a× b = c type fusions (involving fluxes and dyons) discussed

in this appendix.

(48, 17) ((Z3 ×Q8)⋊Z2); This has identical character table to (48, 16), so same fusion

rules. The properties are identical to the two cases above.

(48, 18) (Z3 ⋊Q16); Identical characters to (48, 15), so shares (A.1). The discussion is

identical to the case above.

(48, 39) ((Z4 × S3)⋊ Z2);

W21 ×W25 = W4 , W21 ×W26 = W4 , W22 ×W25 = W4 , W22 ×W26 = W4

W23 ×W25 = W4 , W23 ×W26 = W4 , W24 ×W25 = W4 , W24 ×W26 = W4 .(A.4)

We have Out((Z4×S3)⋊Z2) = Z2×Z2. Let r1 and r2 be the generators of this group.

They act on the Wilson lines involved in the fusion above as follows

r1 : W21 ↔ W21 ; W22 ↔ W22 ; W23 ↔ W23 ; W24 ↔ W24 ; W25 ↔ W26 ; (A.5)

r1 : W21 ↔ W22 ; W23 ↔ W23 ; W24 ↔ W24 ; W25 ↔ W25 ; W26 ↔ W26 ; (A.6)

Since this group has complex characters we also have a non-trivial quasi-zero-form

symmetry given by complex conjugation. Z(Vec(Z4×S3)⋊Z2
) also have all other a×b = c

type fusions (involving fluxes and dyons) discussed in this appendix.

(48, 41); ((Z4 × S3)⋊ Z2)

Fusion of Wilson lines giving unique output is same as (A.4). We have Out((Z4 ×
S3)⋊ Z2) = D12.

Since this group has complex characters we also have a non-trivial quasi-zero-form

symmetry given by complex conjugation. Z(Vec(Z4×S3)⋊Z2
) also have all other a×b = c

type fusions (involving fluxes and dyons) discussed in this appendix.

A.2 Genuine zero-form symmetries and quasi-zero-form

symmetries in A9 discrete gauge theory

Recall from section 3.4 that A9 is the simplest example of an AN (with N = k2 ≥ 9)

discrete gauge theory with fusion rules involving non-abelian Wilson lines having unique
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outcome. Here our goal is to disentangle the genuine zero form symmetries

Autbr(Z(VecA9)) ≃ H2(A9, U(1))⋊Out(A9) ≃ Z2 × Z2 , (A.7)

from a charge conjugation quasi zero-form symmetry [77].

Let us first discuss the outer automorphisms. To that end, recall that A9 has an

outer automorphism corresponding to conjugation by odd elements of S9 ▷ A9. Acting

with the outer automorphism generated by (89) ∈ S9, we see that the following lines

are exchanged

L([(123456789)],πp) ↔ L([(123456798)],πp) , L([(12345)(678)],πn) ↔ L([(12345)(679)],πn) , (A.8)

where the relevant conjugacy classes are listed in table A.1, and 0 ≤ p ≤ 8, 0 ≤ n ≤ 14

label representations of the corresponding Z9 and Z14 centralizers (they are also listed

in table A.1).

In fact, as described in the main text, the symmetry in (A.8) generates an action

on some of the Wilson lines involved in (3.64)

W[33]+ ↔ W[33]− . (A.9)

This action can be read off from the character table of A9 or, equivalently, from the

braiding

SW[33]+
L([(12345)(678)],πn)

SW1L([(12345)(678)],πn)

= χ[33]+([(12345)(678)])
∗ = −1

2
(1− i

√
15) ,

SW[33]−
L([(12345)(678)],πn)

SW1L([(12345)(678)],πn)

= χ[33]−([(12345)(678)])
∗ = −1

2
(1 + i

√
15) ,

SW[33]+
L([(12345)(679)],πn)

SW1L([(12345)(679)],πn)

= χ[33]+([(12345)(679)])
∗ = −1

2
(1 + i

√
15) ,

SW[33]−
L([(12345)(679)],πn)

SW1L([(12345)(679)],πn)

= χ[33]−([(12345)(679)])
∗ = −1

2
(1− i

√
15) . (A.10)

Note that, since the [(12345)(678)] and [12345)(679)] conjugacy classes are com-

plex, we also have a non-trivial Z2 charge conjugation that acts on the modular data

and swaps W[33]+ ↔ W[33]− and L([(123456789)],πp) ↔ L([(123456798)],πp). Recall from the

discussion in (3.101) that elements of H2(A9, U(1)) ≃ Z2 act trivially on the Wilson

lines. Hence, we learn that charge conjugation cannot be a genuine symmetry of the

TQFT (this statement is also confirmed by the analysis in [77]).

However, this is not a contradiction with what we have written, because Out(A9)

also interchanges the real conjugacy classes [(123456789)] and [(123456798)] along with

the corresponding lines in (A.8). Since charge conjugation leaves these degrees of
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Conjugacy class Length Centralizer

1 1 A9

[(12)(34)] 378 SmallGroup(480, 951)

[(12)(34)(56)(78)] 945 SmallGroup(192, 1493)

[(123)] 168 SmallGroup(1080, 487)

[(123)(45)(67)] 7560 SmallGroup(24, 10) , (D8 × Z3)

[(123)(456)] 3360 SmallGroup(54, 13)

[(123)(456)(789)] 2240 SmallGroup(81, 7) , ((Z3 × Z3 × Z3)⋊ Z3)

[(1234)(56)] 7560 SmallGroup(24, 5) , (S3 × Z4)

[(1234)(567)(89)] 15120 SmallGroup(12, 2) , (Z12)

[(1234)(5678)] 11340 SmallGroup(16, 13) , (central product D8, Z4)

[(12345)] 3024 SmallGroup(60, 9)

[(12345)(67)(89)] 9072 SmallGroup(20, 5) , (Z10 × Z2)

[(12345)(678)] 12096 SmallGroup(15, 1) , (Z15)

[(12345)(679)] 12096 SmallGroup(15, 1) , (Z15)

[(123456)(78)] 30240 SmallGroup(6, 2) , (Z6)

[(1234567)] 25920 SmallGroup(7, 1) , (Z7)

[(123456789)] 20160 SmallGroup(9, 1) , (Z9)

[(123456798)] 20160 SmallGroup(9, 1) , (Z9)

Table A.1: The eighteen conjugacy classes of A9, their order, and their centralizers
(recall that the centralizers of elements in the same conjugacy class are isomorphic). The
centralizer is labeled by its GAP ID (for sufficiently small groups) as “SmallGroup(a, b)”
along with a more common name in certain cases.

freedom untouched, it is a distinct operation.

Note that in the A9 discrete gauge theory we can also turn on a large variety of

twists

ω ∈ H3(A9, U(1)) ≃ Z2 × Z2
3 × Z4 ≃ Z6 × Z12 . (A.11)

Since the charge conjugation quasi-symmetry is a property of the Wilson line fusion

rules, it remains regardless of the twist.

A.3 GAP code

The following GAP code defines the function checkdyon() which takes in a group as an

argument. It checks for a× b = c type fusions for non-abelian anyons a, b, c ∈ Z(VecG)

and ouputs all such fusions. Moreover, if such fusions exist, it outputs Out(G) as well

as H2(G,U(1)). Note that it requires the package HAP to function.

In order to define checkdyon() we need to first define the functions comconj() and
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conjprof().

> conjcom:=function(a,b)

> local com,i,j;

> com:=[];

> for i in [1..Size(AsList(a))] do

> for j in [i..Size(AsList(b))] do

> Append(com, [AsList(a)[i]*AsList(b)[j]*Inverse(AsList(b)[j]*AsList(a)[i])]);

> od; od;

> return DuplicateFreeList(com)=[AsList(a)[1]*Inverse(AsList(a)[1])]; end;

This function takes two conjugacy classes of a group G as inputs and outputs true

if they commute element-wise and false otherwise. Now, let us define the function

conjprod()

> conjprod:=function(a,b,c)

> local prod,i,j,k;

> prod:=[];

> for i in [1..Size(AsList(a))] do

> for j in [i..Size(AsList(b))] do

> for k in [1..Size(c)] do

> if AsList(a)[i]*AsList(b)[j] in AsList(c[k]) then

> Append(prod, [k]); break; fi; od; od; od;

> if Size(DuplicateFreeList(prod))=1 then

> return DuplicateFreeList(prod)[1]; else return 0; fi; end;

This function takes three arguments. The first two arguments a, b are two conjugacy

classes of a group G and the third argument c is the set of all conjugacy classes of G.

The function outputs an integer k > 1 if the product of two input conjugacy is a single

conjugacy class (which is at position k in the list of conjugacy classes c). The function

outputs 0 otherwise.
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Using these two functions, we finally define the checkdyon() function.

checkdyon:=function(G)

> local cn,i,j,k,a,l,cen1,cen2,cen3,cenint,irrcenint,irrcen1,irrcen2,irrcen3,

cen1res,cen2res,cen3res,x,y,z,w,a1,a2,A,I,F,R;

> cn:=ConjugacyClasses(G);

> a:=0;

> for i in [1..Size(cn)] do

> for j in [i..Size(cn)] do

> if conjcom(cn[i],cn[j]) then

> k:=conjprod(cn[i],cn[j],cn);

> if k<>0 then

> cen1:=Centralizer(G,AsList(cn[i])[1]);

> cen2:=Centralizer(G,AsList(cn[j])[1]);

> cen3:=Centralizer(G,AsList(cn[k])[1]);

> cenint:=Intersection(cen1,cen2,cen3);

> irrcen1:=Irr(cen1);

> irrcen2:=Irr(cen2);

> irrcen3:=Irr(cen3);

> cen1res:=RestrictedClassFunctions(irrcen1,cenint);

> cen2res:=RestrictedClassFunctions(irrcen2,cenint);

> cen3res:=RestrictedClassFunctions(irrcen3,cenint);

> irrcenint:=Irr(cenint);

> for x in [1..Size(cen1res)] do

> for y in [1..Size(cen2res)] do

> if Size(AsList(cn[i]))*DegreeOfCharacter(cen1res[x])>1 and

Size(AsList(cn[j]))*DegreeOfCharacter(cen2res[y])>1 then

> for z in [1..Size(cen3res)] do

> a1:=[ ]; a2:=[ ];

> for w in [1..Size(irrcenint)] do

> Append(a1,[ScalarProduct(irrcenint[w],cen1res[x]*cen2res[y])]);

> Append(a2,[ScalarProduct(irrcenint[w],cen3res[z])]);

> od;
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> if a1*a2=1 and

Size(AsList(cn[i]))*DegreeOfCharacter(cen1res[x])*

Size(AsList(cn[j]))*DegreeOfCharacter(cen2res[y])=

Size(AsList(cn[k]))*DegreeOfCharacter(cen3res[z]) then

> a:=1;

> Print(IdSmallGroup(G), “ ”, StructureDescription(G), “\n”);

> Print(“Anyon a: ”, cn[i], “ , ”, irrcen1[x], “\n”);

> Print(“Anyon b: ”, cn[j], “ , ”, irrcen2[y], “\n”);

> Print(“Anyon c: ”, cn[k], “ , ”, irrcen3[z], “\n”,”\n”);

> fi; od; fi; od;od; fi; fi; od; od;

> if a=1 then

> A:=AutomorphismGroup(G);

> I:=InnerAutomorphismsAutomorphismGroup(A);

> F:=FactorGroup(A,I);

> Print(“Out(G): ”,StructureDescription(F), “\n”);

> R:=ResolutionFiniteGroup(G,3);

> Print(“H2(G,U(1)): ”,Homology(TensorWithIntegers(R),2),“\n”);

> Print(“\n”,“\n”); fi;

> end;
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Entanglement entropy of

hyperbolic links and proofs

B.1 Entanglement entropy of 2-links in abelian TQFTs

In the main text, we derived the link state for a 2-link in a general abelian CS theory

using the K-matrix formalism. Here we will obtain an explicit expression for the

entanglement entropy of this state as in (5.36). For the purposes of this computation,

it will be useful to choose a particular basis for the lattice, ZN/KZN .

Claim B.1.1 The set of vectors (a1, · · · , aN ) where ai ∈ Zni , 1 ≤ i ≤ N , is a basis

set for the lattice ZN/UKUTZN . As a result, these vectors label the anyons (we

will call this basis the “Smith basis”). Here U and W are matrices which satisfy

KS = UKW , where KS is the Smith normal form of K.

Proof: Except for the zero vector, every vector of the type a⃗ = (a1, · · · , aN ) where
ai ∈ Zni , 1 ≤ i ≤ N, satisfies

a⃗ ̸= KSn⃗ , (B.1)

for any n⃗ ∈ ZN/KZN . Let U and W be invertible matrices over the integers such that

KS = UKW . (B.2)

Then,

a⃗ ̸= UKWn⃗ ,

a⃗ ̸= UKUT (UT )−1Wn⃗ , (B.3)

a⃗ ̸= UKUT n⃗
′
,

where n⃗
′
= (UT )−1Wn⃗. Given that U and W are invertible over the integers, for any
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n⃗ ∈ ZN we have a unique n⃗
′ ∈ ZN . Thus,

a⃗ ̸= UKUT n⃗
′
, (B.4)

for any n⃗
′
. □

This result means that the above choice of vectors are not linear combinations of

columns of UKUT . Since this statement is also true for differences of vectors of the

above type, they are all independent and form a basis for the anyons as long as we take

the level matrix to be UKUT . Note that the TQFT corresponding to UKUT is the

same as that corresponding to K, because it corresponds to a change of gauge fields

A⃗→ UT A⃗ where A⃗ is the vector of gauge fields, Ai, contained in the action.

The upshot of the above argument is that the Smith basis can be used to label the

anyons as long as we take UKUT as the level matrix of the theory. Next we will see

the implication for the entanglement entropy of the theory.

To that end, the reduced density matrix of a 2-link is given by

ρred =
1

|A|2
∑
j⃗1,h⃗1

∑
m⃗

(
B(⃗j1, m⃗)

)l12(
B(⃗h1, m⃗)

)−l12 ∣∣∣j⃗1〉〈h⃗1∣∣∣ . (B.5)

Using (5.22), we can write the components of the reduced density matrix ρredj⃗1,h⃗1 as

ρredj⃗1,h⃗1 =
1

|A|2
∑
m⃗

e2πil12(j⃗1−h⃗1)K
−1m⃗

=
1

|A|2
∑
m⃗

e2πil12(j⃗1−h⃗1)K
−1m⃗ · 1

=
1

|A|2
∑
m⃗

e2πil12(j⃗1−h⃗1)K
−1m⃗ · e−2πil12m⃗K−1Kβ⃗ (B.6)

=
1

|A|
δ
l12(j⃗1−h⃗1),Kβ⃗ ,

for some vector β⃗ ∈ Zn.
Let us now calculate the mth Rényi entropy

Sm(L2) =
1

1−m
ln tr(ρm)

=
1

1−m
ln

( ∑
a⃗1,a⃗2,···a⃗m

ρa⃗1,a⃗2ρa⃗2,a⃗3 · · · ρa⃗m,a⃗1
)

(B.7)

=
1

1−m
ln

(
1

|A|m
∑

a⃗1,a⃗2,···a⃗m

δ
l12(a⃗1−a⃗2),Kβ⃗δl12(a⃗2−a⃗3),Kβ⃗ · · · δl12(a⃗m−a⃗1),Kβ⃗

)
.

In order to simplify the above expression, we have to calculate the number of vectors in
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the basis which satisfy l12(a⃗1 − a⃗2) = Kβ⃗ for some β⃗. For simplicity, let us choose the

basis to be the Smith basis for which we have to take the level matrix to be UKUT .

Let us find the number of solutions of l12a⃗ = UKUT β⃗, where a⃗ belongs to the Smith

basis and β⃗ is an arbitrary vector. This equation is the same as l12a⃗ = Ksβ⃗
′
, where

β⃗
′
= W−1UT β⃗. The matrices U and W are uni-modular and satisfy KS = UKW , Ks

being the Smith normal form of K. This reasoning gives us a set of equations

l12a1 = n1β
′
1; l12a2 = n2β

′
2; · · · ; l12aN = nNβ

′
N , (B.8)

where ai and βi are components of a⃗ and β⃗, respectively, and ni are the diagonal

elements of Ks. These quantities can also be written as

a1 = 0 mod
n1

gcd(l12, n1)
, a2 = 0 mod

n2
gcd(l12, n2)

, · · · , aN = 0 mod
nN

gcd(l12, nN )
.

(B.9)

Since ai ∈ {0, 1, · · · , ni − 1}, the solutions of the above equations can be parametrized

as

a1 =
r1n1

gcd(l12, n1)
, a2 =

r2n2
gcd(l12, n2)

, · · · , aN =
rNnN

gcd(l12, nN )
, (B.10)

where ri ∈ {0, 1, · · · , gcd(l12, ni)}. Hence, the number of a⃗ which satisfy l12a⃗ = Ksβ⃗
′

is given by
∏N
i=1 gcd(l12, ni). Similarly, for a given vector, a⃗2, in the Smith basis, the

number of a⃗1 which satisfy l12(a⃗1 − a⃗2) = Kβ⃗ for some β⃗ is
∏N
i=1 gcd(l12, ni). Using

this result, the nth Rényi entropy can be written as

Sm(L2) =
1

1−m
ln

(
1

|A|m
∑
a⃗1

δa⃗1,a⃗1(gcd(l12, n1)gcd(l12, n2) · · · gcd(l12, nN ))
m−1

)

=
1

1−m
ln

(
1

|A|m−1
(gcd(l12, n1)gcd(l12, n2) · · · gcd(l12, nN ))m−1

)
(B.11)

= ln

(
det(K)

gcd(l12, n1)gcd(l12, n2) · · · gcd(l12, nN )

)
.

As a result, the entanglement entropy of a 2-link in a general abelian theory with level

matrix K is given by

SvN(L2) = ln

(
det(K)

gcd(l12, n1)gcd(l12, n2) · · · gcd(l12, nN )

)
. (B.12)

B.2 Results for hyperbolic and satellite link complements

Knots and links are classified into three types: torus, hyperbolic, and satellite. In

abelian theories, all three kinds of links have invariant entanglement entropy under the

action of the Galois group. Motivated by the special role that the modular generator
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j1

j2

Figure B.1: Whitehead Link

S plays in this result, we looked at torus links in non-abelian TQFTs and analyzed

the behavior of their entanglement entropy under Galois conjugation. Given that an

infinite subset of these links have Galois invariant entanglement entropy, it is natural

to ask whether similar results hold in the case of hyperbolic and satellite links.

It turns out that, in general, the entanglement entropy of hyperbolic links are

different in two TQFTs related by Galois conjugation. For example, the Whitehead

link is one of the simplest hyperbolic links in the sense of having just two components

and minimal hyperbolic volume (for a two cusped hyperbolic manifold). Even for

this link the entanglement entropy changes under Galois conjugation. We verify this

statement in su(2)k CS theory for small k.

The link state for the Whitehead link in su(2)k Chern-Simons theory can be found

using its link invariant [224,225]

C(j1, j2)521 =

min(2j1,2j2)∑
i=0

q−
i(i+3)

4 (q
1
2 − q−

1
2 )3i

[2j1 + i+ 1]![2j2 + i+ 1]![i]!

[2j1 − i]![2j2 − i]![2i+ 1]!
, (B.13)

where [x] = q
x
2 −q

−x
2

q
1
2−q−

1
2
, [x]! = [x][x − 1] · · · [1] and q = e

2πi
k+2 . In su(2)3 Chern-Simons

theory the entanglement entropy and its Galois conjugations are given by

521su(2)3 =


0.762866 0.237134 0 0

0.925325 0.0746746 0 0

0.925325 0.0746746 0 0

0.762866 0.237134 0 0

 . (B.14)

The columns are labelled by the integrable representations, 0, 1, 2, 3,149 and the rows

are labelled by the Galois conjugations corresponding to 1, 2, 3, 4 ∈ Z×
5 .

Let us now consider satellite links. Examples of such links include connected sums

149We label representations by the Dynkin label (i.e., twice the spin).
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of links. If a link L is a connected sum of L1 and L2, then their invariants satisfy [12]

CL · CO(i) = CL1 · CL2 , (B.15)

where the links L, L1, and L2 are to be labelled in a consistent manner. CO(i) is the

knot invariant of the unknot labelled by i in S3 and i is the label of the knot which is

cut to obtain L1 and L2 from L. This implies that the entanglement entropy of most

satellite links will change non-trivially under Galois conjugation. For example, let us

consider the link which is obtained from a connected sum of the Trefoil knot and the

Whitehead link.

j1

j2

Figure B.2: Connected sum of Trefoil and Whitehead Link

The knot invariant for the Trefoil knot in su(2)k Chern-Simons theory is given

by [224] [225]

C31(j1) =

2j1∑
i

(−1)iq−i(i+3)(q − q−1)2i
[2j1 + i+ 1]!

[2j1 − i]!
, (B.16)

where the definitions of q and [x] are the same as above. Using (B.15), the link state

and its entanglement entropy can be calculated for the connected sum of Trefoil and

Whitehead link. In su(2)3, the eigenvalues of the reduced density matrix for this link

and its behaviour under Galois conjugation is given by

821su(2)3 =


0.988779 0.0112213 0 0

0.972184 0.0278156 0 0

0.972184 0.0278156 0 0

0.988779 0.0112213 0 0

 , (B.17)

where the columns are labelled by the integrable representations 0, 1, 2, 3, and the rows

are labelled by the Galois conjugations corresponding to 1, 2, 3, 4 ∈ Z×
5 .

For a few additional levels, we have checked the Galois conjugation properties of
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k 2 3 4 5 6 7 8

521
821

Figure B.3: The MEEs for the 521 and 821 links are Galois non-invariant in most of the
theories we checked. As in Fig. 5.6, blue squares correspond to Galois invariant MEE
while red squares correspond to Galois non-invariant MEE. In contrast to Fig. 5.6, there
are a lot more red squares.

the MEE in Fig. B.3. Note that there are many more non-invariant theories in this

case than in the torus link case checked in Fig. 5.6.

B.3 Proof of Lemma 5.4.2

In this appendix, we prove the following Lemma:

Lemma: 5.4.2 The eigenvalues of the reduced density matrix of the (QM,QP )

torus link are given by

Λℓ =
1

(S0ℓ)2Q−2S2
00

∑
i

Sℓi⟨W
(M,P )
i ⟩S2×S1

∑
j

Sℓj⟨W
(−P,M)
j ⟩S2×S1 (B.18)

Proof: Using (5.67) and (5.58), we have

Λℓ =
1

S2Q−2
0ℓ

∣∣∣∣∣∑
i

Sℓi
⟨0|SW (M,P )

i |0⟩
⟨0|S |0⟩

∣∣∣∣∣
2

=
1

S2Q−2
0ℓ

∣∣∣∣∣∑
i

Sℓi
⟨0|SF (M,P )−1

W
(1,0)
i F (M,P ) |0⟩

⟨0|S |0⟩

∣∣∣∣∣
2

(from (5.66)) (B.19)

=
1

S2Q−2
0ℓ

∣∣∣∣∣⟨0|SF (M,P )−1∑
i SℓiNiF

(M,P ) |0⟩
⟨0|S |0⟩

∣∣∣∣∣
2

(from (5.61)) .

Using (2.17), we can simplify this expression to obtain

Λℓ =
1

(S0ℓ)2QS
2
00

∣∣∣(S(F (M,P ))−1S−1)0ℓ∗(SF
(M,P ))ℓ∗0

∣∣∣2 (B.20)

Since S and F (M,P ) are unitary, we have

Λℓ =
1

(S0ℓ)2QS
2
00

(S(F (M,P ))−1S−1)0ℓ∗(SF
(M,P )S−1)ℓ∗0(SF

(M,P ))ℓ∗0((F
(M,P ))−1S−1)0ℓ∗ .

(B.21)
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To further simplify the above expression, note that, from (2.17)∑
i

Sℓi ⟨0|W
(M,P )
i |0⟩ =

∑
i

Sℓi((F
(M,P ))−1W

(1,0)
i F (M,P ))00

=
((F (M,P ))−1S−1)0ℓ∗(SF

(M,P ))ℓ∗0
S0ℓ

, (B.22)

and ∑
j

Sℓj ⟨0|W
(−P,M)
j |0⟩ =

∑
j

Sℓj ⟨0|SW
(M,P )
j S−1 |0⟩

=
∑
j

Sℓj(S(F
(M,P ))−1W

(1,0)
j F (M,P )S−1)00 (B.23)

=
(S(F (M,P ))−1S−1)0ℓ∗(SF

(M,P )S−1)ℓ∗0
S0ℓ

.

Using these equations, we can write the expression for the eigenvalues in (B.21) as

Λℓ =
1

(S0ℓ)2Q−2S2
00

∑
i

Sℓi⟨W
(M,P )
i ⟩S2×S1

∑
j

Sℓj⟨W
(−P,M)
j ⟩S2×S1 . (B.24)

□
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Partition function of orbifold

CFTs and Verlinde subgroup

C.1 S and Ξ are bicharacters

In this appendix, we will show that both S and Ξ are bicharacters. To prove this, we

need the following equations satisfied by F (p⃗, q⃗, r⃗) and R(p⃗, q⃗).

F (q⃗, p⃗, r⃗)

F (p⃗, q⃗, r⃗)F (q⃗, r⃗, p⃗)
=

R(p⃗, q⃗ + r⃗)

R(p⃗, q⃗)R(p⃗, r⃗)
,

F (p⃗, q⃗, r⃗)F (r⃗, p⃗, q⃗)

F (p⃗, r⃗, q⃗)
=

R(p⃗+ q⃗, r⃗)

R(p⃗, r⃗)R(q⃗, r⃗)
. (C.1)

These are known as the Hexagon equations [45]. The modular S matrix can be written

in terms of R as

Sp⃗,q⃗ = R(p⃗, q⃗)R(q⃗, p⃗) . (C.2)

We have

Sp⃗,q⃗Sp⃗,r⃗ = R(p⃗, q⃗)R(q⃗, p⃗)R(p⃗, r⃗)R(r⃗, p⃗) = R(p⃗, q⃗ + r⃗)R(q⃗ + r⃗, p⃗) = Sp⃗,q⃗+r⃗ , (C.3)

where in the second equality we used (C.1). A similar argument can be used to show

that Sp⃗,r⃗Sq⃗,r⃗ = Sp⃗+q⃗,r⃗. This shows that the modular S matrix is a bicharacter.

Consider the expression for Ξ in terms of R, the 2-cochain τ and the 2-cocycle σ.

Ξ(g⃗, h⃗) = R(g⃗, h⃗)
τ(g⃗, h⃗)σ(g⃗, h⃗)

τ (⃗h, g⃗)σ(⃗h, g⃗)
. (C.4)

Recall that Ξ is defined on a subgroup Q of K on which F is trivial in cohomology. In

fact, we can choose a gauge in which F (g⃗, h⃗, k⃗) = 1 ∀g⃗, h⃗, k⃗ ∈ Q. Then τ(g⃗, h⃗) can be
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set to 1 for all g⃗, h⃗ ∈ Q. Therefore, we have

Ξ(g⃗, h⃗)Ξ(g⃗, k⃗) = R(g⃗, h⃗)R(g⃗, k⃗)
σ(g⃗, h⃗)

σ(⃗h, g⃗)

σ(g⃗, k⃗)

σ(k⃗, g⃗)
= R(g⃗, h⃗+ k⃗)

σ(g⃗, h⃗+ k⃗)

σ(⃗h+ k⃗, g⃗)
= Ξ(g⃗, h⃗+ k⃗) ,(C.5)

where in the second equality above we used the property that for any 2-cocycle σ,
σ(g⃗,⃗h)

σ(⃗h,g⃗)
is a bicharacter. A similar argument can be used to show that Ξ(g⃗, k⃗)Ξ(⃗h, k⃗) =

Ξ(g⃗ + h⃗, k⃗). This shows that Ξ is a bicharacter.

C.2 Properties of ZT /Q,[σ]

Let us discuss some properties of ZT /Q,[σ] which will be useful for our arguments. To

that end, consider the general expression for ZT /Q,[σ].

ZT /Q,[σ] =
∑
g⃗∈Q

∑
p⃗∈Bg⃗

χp⃗(q)χ̄p⃗+g⃗(q) , (C.6)

where

Bg⃗ :=
{
p⃗
∣∣∣ Sh⃗,p⃗ Ξ(⃗h, g⃗) = 1 , ∀h⃗ ∈ Q

}
. (C.7)

A basic observation is that these partition functions are of the form

ZT /Q,[σ] =
∑
p⃗,q⃗

Mp⃗q⃗χp⃗(q)χ̄q⃗(q̄) , (C.8)

where Mp⃗q⃗ is a modular invariant matrix with entries consisting of 0’s and 1’s. Indeed,

if

χp⃗χ̄p⃗+g⃗ = χq⃗χ̄q⃗+h⃗
, (C.9)

then we should have p⃗ = q⃗ and p⃗+ g⃗ = q⃗ + h⃗ which implies that g⃗ = h⃗. Therefore, the

non-trivial terms contribute to the partition function without multiplicity.

Now let us discuss some properties of the set Bg⃗. For any g⃗, the set Bg⃗ is non-empty.

To see this, let K be the group defined in equation (6.8). Let {ei} be a set of generators

of this group. Let h⃗ ∈ Q�K be the vector denoting an element of K in the basis {ei}.
Let {fi} be a basis of Q. Then we have

fi =
∑
j

Lijej , (C.10)

for some integer matrix L with non-negative entries. We will focus on Q = Zk2. There-
fore, the non-trivial entries of Lij have the form 2rj−1. Let h⃗Q be the vector h⃗ written

in the basis {fi}. Then we have

h⃗ = LT h⃗Q . (C.11)
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We introduced the basis {fi} because Ξ has a simple description in this basis. It can

always be written as

Ξ(⃗hQ, g⃗Q) = eπi⃗h
T
QXgQ , (C.12)

where X is a symmetric integer matrix with diagonal entries equal to 1 [190]. Now, we

have

S
h⃗,p⃗

Ξ(⃗h, g⃗) = eπi⃗hMAp⃗eπi⃗h
T
QXgQ = eπi⃗h

T
QLMAp⃗eπi⃗h

T
QXgQ . (C.13)

Therefore, the constraint (C.7) can be simplified to get

hTQ(LMAp⃗+Xg⃗Q) = 0 mod 2 ∀h⃗Q ∈ Zk2 . (C.14)

We get

LMAp⃗ = α⃗−Xg⃗Q . (C.15)

where α⃗ satisfies h⃗Q · α⃗ = 0 mod 2 ∀h⃗Q ∈ Zk2. This equation always has a solution since

LMA is a full rank matrix. Therefore, we find that Bg⃗ is a non-empty set for all g⃗.

Let us look at how Bg⃗ are related to B0⃗. For g⃗ = 0⃗, the constraint (C.7) reduces to

S
h⃗,p⃗

= 1 ∀h⃗ ∈ Zk2 . (C.16)

B0⃗ is the the set of solutions to this constraint. In the bulk TQFT, solutions to this

constraint are the Wilson lines which braid trivially with all h⃗ ∈ Zk2. Using Theorem

3.2 in [49], we have

|B0⃗| =
|K|
2k

. (C.17)

Now, given some solution p⃗ ∈ Bg⃗, p⃗+q⃗ ∈ Bg⃗ where q⃗ ∈ B0⃗. Moreover, given p⃗1, p⃗2 ∈ Bg,

we have

S
h⃗,p⃗1

Ξ(⃗h, g⃗) = 1 = S
h⃗,p⃗2

Ξ(⃗h, g⃗) ∀h⃗ ∈ Zk2
=⇒ S

h⃗,p⃗1−p⃗2 = 1 ∀h⃗ ∈ Zk2 . (C.18)

Therefore, p⃗1− p⃗2 belongs to B0⃗. This shows that given some p⃗ ∈ Bg⃗, all other elements

of Bg⃗ are of the form p⃗+ q⃗ where q⃗ ∈ B0⃗. Therefore, we have

|Bg⃗| = |B0⃗| =
|K|
2k

. (C.19)

This argument implies that the total number of terms in the partition function

ZT /Q,[σ] is always |Zk2| ⊗
|K|
2k

= |K|. Therefore, the map (6.21) gives us a code with 2n

elements. Hence, the stabilizer code corresponding to the partition function ZT /Q,[σ] is

self-dual.
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C.3 Permutation modular invariants and Non-degenerate

Ξ

In this appendix, we prove the following claim:

Claim C.3.1 A code CFT is an MPMI if and only if Ξ(g⃗, h⃗), defined in (6.19),

is non-degenerate.

To understand this claim, let us consider the general expression for the partition func-

tion ZT /Q,[σ].

ZT /Q,[σ] =
∑
g⃗∈Q

∑
p⃗∈Bg⃗

χp⃗(q)χ̄p⃗+g⃗(q) , (C.20)

where

Bg⃗ :=
{
p⃗
∣∣∣ Sh⃗,p⃗ Ξ(⃗h, g⃗) = 1 , ∀h⃗ ∈ Q

}
. (C.21)

For the partition function to be given by a permutation modular invariant, we know

that p⃗ as well as g⃗+p⃗ should not repeat in the terms of the partition function. Moreover,

p⃗ should take values in all representations of the chiral algebra. Therefore, it is clear

that we need to satisfy the constraint Bg⃗ ∩Bh⃗ = ∅ for h⃗ ̸= g⃗ ∈ Zk2.
Let us restrict our attention to the case of partition functions which admit a qubit

quantum code description. Then we know that the 1-form symmetry Q = Zk2 of the

bulk TQFT should be anomaly free. Therefore, if p⃗ ∈ Bg, then p⃗+ g⃗ ∈ Bg⃗. This follows

from

S
h⃗,p⃗+g⃗

= S
h⃗,p⃗
S
h⃗,g⃗

= S
h⃗,p⃗

, (C.22)

where we have used the fact that S is a bicharacter and S
h⃗,g⃗

= 1 ∀h⃗ since Zk2 is anomaly

free. Therefore, if Bg⃗ ∩ Bh⃗ = ∅ for h⃗ ̸= g⃗ ∈ Zk2, then g⃗ + p⃗ cannot be the solution to

(C.21) for some h⃗ ̸= g. Therefore, g⃗ + p⃗ also does not repeat for different terms in

the partition function. This fact, along with (C.19), then also guarantees that p⃗ takes

values in all representations.

Therefore, we find that it is necessary and sufficient to satisfy the constraint

Bg⃗ ∩Bh⃗ = ∅ for h⃗ ̸= g⃗ ∈ Zk2 (C.23)

to have a permutation modular invariant. It is clear from (C.21) that if Ξ(⃗h, g⃗) =

Ξ(⃗h, l⃗) ∀h⃗ ∈ Zk2, then Bg⃗ = B⃗
l⃗
. Also, suppose p⃗ belongs to both Bg⃗ and B

l⃗
. Then

using (C.21), we find that Ξ(⃗h, g⃗) = Ξ(⃗h, l⃗) ∀ h⃗ ∈ Zk2. Therefore, satisfying (C.23) is

the same as having a non-degenerate Ξ(g⃗, h⃗).

230



APPENDIX C. PARTITION FUNCTION OF ORBIFOLD CFTS AND VERLINDE
SUBGROUP

C.4 The Verlinde subgroup

Using the results in Appendix C.3, we know that a non-permutation modular invariant

necessarily leads to states of the form (⃗0, ¯⃗g) where g⃗ ̸= 0⃗. The states (⃗0, ¯⃗g) form a group

under fusion we call E ≃ Zt2. In this appendix, we will discuss how we can extend the

chiral algebra using E to get a permutation modular invariant. Then we will discuss

how this gives symmetries generated by Verlinde lines which are used to construct the

Verlinde subgroup.

To that end, let γ⃗ denote a representative of the orbit {γ⃗ + b⃗|⃗b ∈ E} and γ⃗ ∈ Q.

Now, since Ξ(⃗h, a⃗) = 1 for any a⃗ ∈ E and h⃗ ∈ Zk2, Bg⃗ = Ba⃗+g⃗. That is, Bg⃗ only depends

on the E-orbit of g⃗. Therefore

ZT /Q,[σ] =
∑
γ⃗

∑
p⃗∈Bγ⃗

∑
b⃗∈E

χp⃗(q)χp⃗+γ⃗+b⃗
(q̄) , (C.24)

where the subscript on Bγ⃗ indicates that the set of elements in Bg⃗ only depends on the

E-orbit of g⃗.

For a given g⃗ and p⃗ ∈ Bg⃗, p⃗+ a⃗, for any a⃗ ∈ E, also belongs to Bg⃗. This statement

follows from that fact that a⃗, g⃗ ∈ Q braid trivially with each other. Therefore, we can

put the elements of Bg in orbits under the action of E. Let ρ⃗ denote the representative

of an orbit {p⃗+ a⃗|⃗a ∈ E} and p⃗ ∈ Bg⃗. Then the partition function becomes

ZT /Q,[σ] =
∑
γ⃗

∑
ρ⃗∈Bγ⃗

∑
b⃗∈E

∑
a⃗∈E

χρ⃗+a⃗χρ⃗+a⃗+γ⃗+b⃗
. (C.25)

In writing this, we have split the sum over p⃗ for a given g⃗ into a sum over E orbits.

We know that a⃗ + b⃗ is also an element of E. Since we are summing over all elements

in the group E, we can change variables and obtain

ZT /Q,[σ] =
∑
γ⃗

∑
ρ⃗∈Bγ⃗

∑
b⃗∈E

∑
a⃗∈E

χρ⃗+a⃗χρ⃗+γ⃗+b⃗
=
∑
γ⃗

∑
ρ⃗∈Bγ⃗

(∑
a⃗∈E

χρ⃗+a⃗

)(∑
b⃗∈E

χ
ρ⃗+γ⃗+b⃗

)
. (C.26)

Therefore, we can enlarge the chiral algebra where the vaccum character of the new

chiral algebra is given by χ̃0⃗ :=
∑

a⃗∈E χa⃗ and, more generally

χ̃ρ⃗ :=
∑
a⃗∈E

χρ⃗+a⃗ . (C.27)

Then the partition function becomes

ZT /Q,[σ] =
∑
γ⃗

∑
ρ⃗∈Bγ⃗

χ̃ρ⃗χ̃ρ⃗+γ⃗ . (C.28)
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In fact, this is again a permutation modular invariant. To see this, let δ⃗ and ϵ⃗ lie

in two distinct E-orbits. Then the sets B
δ⃗
and Bϵ⃗ have no common elements since

otherwise (using the bi-character nature of Ξ)

Ξ(⃗h, δ⃗) = Ξ(⃗h, ϵ⃗) , ∀h⃗ ∈ Zk2 ⇒ Ξ(⃗h, δ⃗ + ϵ⃗) = 1 . (C.29)

Therefore, δ⃗ + ϵ⃗ would be an element of E which would imply that δ⃗ and ϵ⃗ are in the

same E-orbit (a contradiction). Therefore, for every γ⃗, the sum over ρ⃗ is over elements

which do not repeat for any η⃗ ̸= γ⃗. Also, we know that ρ⃗ + γ⃗ ∈ Bγ⃗ if ρ⃗ ∈ Bγ⃗ . As a

result, in (C.28), the values of ρ⃗+ γ⃗ do no repeat either. In other words, after enlarging

the chiral algebra, we end up with a permutation modular invariant theory with respect

to this new chiral algebra.

It is now clear that we have Verlinde lines labelled by primaries with respect to the

enlarged chiral algebra. Then, consider the following defect partition function

Z ζ⃗T /Q,[σ] =
∑
γ⃗

∑
ρ⃗∈Bγ⃗

χ̃
ρ⃗+ζ⃗

χ̃ρ⃗+γ⃗ . (C.30)

To get a map to the corresponding code elements, it is easier to use (C.27) and substitute

Z ζ⃗T /Q,[σ] =
∑
γ⃗

∑
ρ⃗∈Bγ⃗

(∑
a⃗∈E

χ
ρ⃗+ζ⃗+a⃗

)(∑
b⃗∈E

χ
ρ⃗+γ⃗+b⃗

)
=

∑
γ⃗

∑
ρ⃗∈Bγ⃗

∑
a⃗,⃗b∈E

χ
(ρ⃗+a⃗)+ζ⃗

χ
(ρ⃗+a⃗)+γ⃗+a⃗+b⃗

. (C.31)

When we sum over a⃗ ∈ E, the term ρ⃗ + a⃗ runs over the E-orbit of ρ⃗ ∈ Bγ⃗ . Also, the

term a⃗+ b⃗ is just a permutation of b⃗. Since we are summing over all b⃗ ∈ E as well, we

can simplify the expression above to get

Z ζ⃗T /Q,[σ] =
∑
γ⃗

∑
p⃗∈Bγ⃗

∑
b⃗∈E

χ
p⃗+ζ⃗

χ
p⃗+γ⃗+b⃗

=
∑
g⃗

∑
p⃗∈Bg⃗

χ
p⃗+ζ⃗

χp⃗+g⃗ . (C.32)

Note that ζ⃗ need not be an order-two element of the MTC of the original chiral algebra,

even though it may be an order-two element in the MTC of the extended chiral algebra.

In fact, if ζ⃗ is not an order-two element of the original MTC, then we cannot relate the

defect operators {Oζ⃗

p⃗+ζ⃗,p⃗+g⃗
} to a Pauli group element. If ζ⃗ is order two, then from the

terms in (C.32), we get the Pauli group elements

{Oζ⃗

p⃗+ζ⃗,p⃗+g⃗
} ↔ XM(g⃗+ζ⃗) ◦ ZA(p⃗+ζ⃗) . (C.33)

Note that here p⃗ ∈ Bg⃗ is not independent of g⃗. In general, our RCFTs will have

other sources of order-two lines that furnish the remainder of the Pauli group (as
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discussed in Section 6.3). In the extreme example of theories that are modular-invariant

holomorphic RCFTs times modular-invariant anti-holomorphic RCFTs, all order-two

lines are non-Verlinde lines.

Since the Verlinde subgroup VT /Q is formed by order two elements, it is isomorphic

to ZNv2 . Here Nv is the number of Pauli group elements obtained from the defect

partition functions (C.32). In general |VT /Q| will depend on the choice of the group

Q by which we orbifold the CFT with the charge-conjugation partition function to get

ZT /Q,[σ]. But when the group K defined in (6.8) is such that nA2 = nB2 = nC2 = nD2 =

nE2 = nF2 = 0, then we can find a general expression for |VT /Q|. This constraint is

the same as imposing that K does not have any Z2 factors. Note that we also ignore

decoupled CFT factors described by Aqr and Bqr .

Consider the general expression of the S matrix Sp⃗,q⃗ = e
2πi
2
p⃗TMAq⃗. Consider an

element p⃗ ∈ B0⃗ which satisfies

S
h⃗,p⃗

= 1∀h⃗ ∈ Q = Zk2 =⇒ h⃗TMAp⃗ = 0 mod 2 . (C.34)

Note that since h⃗ is an order two vector, hTM is an integer vector. Moreover, h⃗ has

even components. A is also an integer matrix by definition. Let p⃗ be an order two

vector. Then, it has even components. This follows from our assumption that K does

not have any Z2 factors. Therefore, any order two vector satisfies the constraint (C.34).

That is, all the 2n distinct order two elements belong to B0⃗, where n is the number of

qubits in the corresponding quantum code or equivalently the length of the vector p⃗.

When we enlarge the chiral algebra to obtain a permutation modular invariant,

these 2n order two elements are put into orbits under the group E. Each such orbit

defines a Verlinde line whose defect partition function gives 2n Pauli group elements.

This follows form the fact that the partition function itself gives 2n distinct stabilizer

elements, as we showed in Appendix C.2. Therefore, the size of the Verlinde subgroup

is

2n−t × 2n , (C.35)

where |E| = 2t. If the Schellekens algebra gives a permutation modular invariant, t = 0

and the Verlinde subgroup has size 2n×2n = 4n. Therefore, we get the full Pauli group.
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