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Abstract—Airspace complexity is a key indicator that reflects 
the safety of airspace operations in air traffic management systems. 
Furthermore, to achieve efficient air traffic control, it is necessary 
to accurately predict the airspace complexity. In this article, we 
propose a novel spatial-temporal hybrid deep learning model for 
airspace complexity prediction to efficiently capture spatial 
correlations as well as temporal dependencies pertaining to the 
airspace complexity data. Specifically, we apply convolutional 
networks to discover the short-term temporal patterns and skip 
long short-term memory networks to model the long-term 
temporal patterns of airspace complexity data. Furthermore, it is 
observed that the graph attention network in our proposed model, 
which emphasizes capturing the spatial correlations of the 
airspace sectors, can significantly improve the prediction accuracy. 
Extensive experiments are conducted on the real data of six 
airspace sectors in Southwest China. Experimental results show 
that our spatial-temporal deep learning approach is superior to 
state-of-the-art methods. 
 

Index Terms— Airspace Complexity, Deep Learning, Graph 
Attention Network 

I. INTRODUCTION 

IRSPACE complexity is often an objective and critical 
indicator for evaluating the operational safety of given 
airspace. Air traffic management (ATM) is an aviation 

term encompassing all systems that assist aircraft to depart from 
an airport, transit airspace, and land at a destination airport [1]. 
For ATM systems, it is a worldwide applied standard that the 
airspace is partitioned into sectors as the basic control unit [2], 
[3]. Air traffic controllers (ATCos) manage each sector through 
effective strategic and tactical decisions, such as traffic flow 
modification, staff planning, and sector redesign, to achieve 
efficient and orderly airspace operation situations. 

Excessive airspace complexity brings great difficulties in 
decision-making to ATCos, resulting in lower control 
efficiency and higher airspace operation risks. In contrast, 
operating airspace sectors at lower airspace complexity will 
lead to inefficiently used airspace resources. Therefore, reliable 
prediction of airspace complexity is essential to achieve the 
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required air traffic control performance. 
NASA Ames Research Center first defined a comprehensive 

metric to describe airspace complexity, called dynamic density, 
which is calculated as a linearly weighted sum of 9 complexity 
factors [4]. With the advent of machine learning, scholars have 
further explored the dependencies among more complexity 
factors. A pioneering work by Chatterji used artificial neural 
networks to establish a nonlinear mapping between complexity 
factors and airspace complexity [5]. Subsequently, a series of 
works have been applied to calculate the real-world airspace 
complexity through supervised learning [6], unsupervised 
learning [7], transfer learning [8], etc. However, the above 
methods are insufficient to model the temporal dependencies 
implicit in the variation of airspace complexity.  

The deep learning techniques have been successfully applied 
in the field of air traffic management, including air control 
safety monitoring [9], air traffic flow forecasting [10], and 
estimated time-of-arrival prediction [11]. Among the extensive 
deep learning methods, long short-term memory (LSTM), 
convolutional neural networks (CNNs) [12], and graph neural 
networks (GNNs) [13] are widely used for time series analysis 
in intelligent transportation systems [14]. However, it is 
difficult to employ these methods seamlessly for predicting 
airspace complexity due to its inherent characteristics: 1) a 
mixture of short-term and long-term repetitive temporal 
patterns; 2) spatial correlations dominated by the topology of 
airspace sectors.  

Given these concerns, we propose a spatial-temporal hybrid 
model for airspace complexity prediction. The contribution of 
this article is threefold. 
 We design a tailored Graph learning-based Spatial-

temporal Complexity prediction model (GSC), to 
efficiently capture both the spatial and temporal features 
pertaining to the airspace complexity data. To the best of 
our knowledge, this is the first time that a spatial-
temporal deep learning approach is applied to predict 
airspace complexity. 

 The proposed GSC model incorporates convolutional 
layers and skip long short-term memory (Skip-LSTM) 
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layers to mine short- and long-term repetitive temporal 
patterns in airspace complexity data, respectively. The 
graph attention layers in GSC model can exploit the 
spatial topology of sectors to extract spatial correlations.  

 We conduct a series of comparison experiments on real 
airspace complexity datasets. The experimental results 
also demonstrate the superiority of the proposed model. 

The rest of this article is organized as follows. Section II 
provides the problem description and describes the GSC model 
in detail. Section III presents an experimental investigation. 
Finally, we conclude this study and provide further discussion 
in Section IV. 

II. METHODOLOGY 

In this section, we introduce the problem formulation of 
airspace complexity prediction. Then, we provide an overview 
of the proposed spatial-temporal deep learning model followed 
by specific discussions of each component. 

A. Problem Formulation 

Airspace complexity can be defined as a comprehensive 
index determined by synthesizing multiple complexity factors. 
The representative list of 28 complexity factors, such as aircraft 
density, variability in aircraft speed, and geometric volume of 
sectors can be referred to [6]. The detailed descriptions of these 
complexity factors can also be found in our previous work [7]. 
Furthermore, the airspace complexity is discretized into three 
levels: high, normal, and low. In this context, the airspace 
complexity prediction problem can be formulated as a 
classification task, in which the objective is to find the optimal 
mapping from a series of historical observations to future 
complexity levels.  

As shown in Fig. 1, since the proposed model consists of a 
temporal module and a spatial module, the input of our model 
consists of two parts. Firstly, the input of the temporal module 
is comprised of a series of historical observations on the target 
sector with a time window length of 30 minutes. Hence, the first 
part of the input can be denoted as 𝑋 ∈ ℝ × , where 
the row represents the time step, and the first 28 columns 
represent complexity factors while the last column indicates the 
complexity level. Secondly, the input of the spatial module 
consists of an adjacency matrix and a node feature matrix, 
where the adjacency matrix 𝐴 ∈ ℝ ×  is used to describe the 
geographical adjacency relationship between six sectors, and 
the node feature matrix 𝑋 ∈ ℝ ×  includes 29 features 
(i.e., 28 features for complexity factors and 1 feature for 
complexity level) of both the target sector and its neighboring 
sectors at the current moment. Finally, the output of the GSC 
model is the predicted airspace complexity level in the next time 
step, which is represented as a one-hot vector 𝑌 ∈ ℝ × . 

B. Overview of the GSC model 

Fig. 1 shows the framework of the proposed GSC, which is 
mainly composed of two modules, namely, the spatial module 
and the temporal module. First, the spatial module aims to 
model the spatial-temporal dependencies of the target airspace 

sector with its geographically neighboring airspace sectors. To 
distinguish the impacts among different sectors, the attention 
mechanism is applied. Second, the temporal module consisting 
of CNN and Skip-LSTM, extracts the mixture of long-term and 
short-term temporal patterns hidden in the airspace complexity 
series. To alleviate the gradient vanishing issue, skipping links 
are added between the LSTM units. Finally, the spatial-
temporal hybrid features are combined and simultaneously 
leveraged to predict the airspace complexity level in the fusion 
layers. We utilize the SoftMax activation function to get the 
discrete output of the GSC model, which is the predicted 
complexity level consisting of high, normal, and low. 

C. The Spatial Module 

The input of the spatial module is a series of spatiotemporal 
graph signals constructed from the sector network and airspace 
complexity features at each time step. The sector network is 
built based on the geographical adjacency of the target sector 
with its neighboring sectors, where a node represents a sector. 
As shown in Fig. 1, for example, “CD01” is the target sector, 
represented as 𝑣 , and its adjacent sectors are “CD02”, “CD04”, 
and “GY01”, denoted as 𝑣 , 𝑣 , and 𝑣 , respectively. The 
sector network is formulated by the adjacency matrix. If two 
nodes are adjacent, there is an undirected edge between them, 
and the value in the adjacency matrix is “1”. Otherwise, the 
edge connecting nodes 𝑖  and 𝑗  does not exist, and the 
corresponding entry 𝐴  is “0”. Moreover, the features in 
dimension 29 of each node are composed of the airspace 
complexity factors and the related complexity level.  

 
Fig. 1.  The framework of the graph learning-based 
spatial-temporal complexity prediction model (GSC). 
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To reveal the importance of the two sectors, the self-attention 
mechanism is applied. The importance of sector 𝑖  to 𝑗  is 
denoted as 𝛼 , where 𝛼  can be computed as  

𝛼 =
 ( || )

∑  ||∈
                           (1) 

where 𝑎  is the attention kernel and 𝑊  are the trainable 
weights. 𝑣  denotes the features of sector 𝑖 . ||  is the 
concatenation operation. 𝑁  is the number of neighbors of node 
𝑖. 

Finally, the weighted averaging aggregate function is used to 
get the features of neighboring sectors into fusion. The feature 
fusion in the spatial domain is represented as 

ℎ , = 𝜎(∑ 𝛼 𝑊 𝑣∈ )                              (2) 
where 𝛼  is the learned attention value, and 𝜎 represents the 
non-linear activation function. 

D. The Temporal Module 

The input to the temporal module is a series of historical 
observations of the target sector, including complexity factors 
and complexity levels. First, to capture the short-term temporal 
patterns, a one-dimensional convolution is firstly performed on 
the input sequence, which is a slice of historical observations. 
The convolution kernels roll along the time axis and produce 
the outputs of the convolutional layers. Second, the Skip-LSTM 
extracts long-term temporal patterns. Canonical LSTM usually 
fails to capture long-term correlations due to gradient vanishing. 
Motivated by the residual links, skip connections are added in 
LSTM to memorize the relative long-term dependencies in 
airspace complexity sequences. The Skip-LSTM allows direct 
backpropagation from the current recurrent unit to farther 
recurrent units, reducing the effect of gradient vanishing. 
Specifically, the 𝑡-th hidden state in the Skip-LSTM layers is 
computed as  

𝑟 = 𝜎(𝑥 𝑊 + ℎ 𝑊 + 𝑏 )                             (3) 
𝑢 = 𝜎 𝑥 𝑊 + ℎ 𝑊 + 𝑏                            (4) 
𝑐 = 𝑅𝐸𝐿𝑈(𝑥 𝑊 + 𝑟 ⊙ ℎ 𝑊 + 𝑏 )         (5) 
ℎ = (1 − 𝑢 ) ⊙ ℎ + 𝑢 ⊙ 𝑐                            (6) 

where 𝑥  is the input sequence and ℎ  is the output features at 
timestamp 𝑡. 𝑝 is the number of skipped hidden recurrent units. 
⊙  presents the Hadamard product of two tensors, and 𝜎 
represents the sigmoid function. 𝑊 , 𝑊 , 𝑊 , 𝑊 , 𝑊 , 𝑊  
and 𝑏 , 𝑏 , 𝑏  are the weights and bias. 

Finally, fully connected layers are utilized to combine the 
outputs of the Skip-LSTM layers. The inputs of the dense layers 
include 𝑝  outputs of the Skip-LSTM layers from timestamp 
(𝑡 − 𝑝 + 1) to 𝑡 denoted by ℎ , ℎ , … , ℎ : 

ℎ , = ∑ 𝑊 ℎ + 𝑏                               (7) 
where 𝑊  and 𝑏  represent the weights and bias of the dense 
layers. ℎ ,  is the output of the 𝑖-th Skip-LSTM layers. 

III. EXPERIMENTS 

A. Dataset 

The airspace complexity data used in this article is collected 
from six airspace sectors located in southwestern China, 
including “Chengdu01” (CD01), “Chengdu02” (CD02), 
“Chengdu04” (CD04), “Guiyang01” (GY01), “Guiyang02” 

(GY02) and “Kunming03” (KM03). The geographical 
characteristics of these airspace sectors are shown as the input 
of the spatial module in Fig. 1. More detailed descriptions of 
the airspace sectors can also be found in our previous work [7]. 
The study period is from 8:00 to 24:00 on July 28, 2010. Each 
sample corresponds to a one-minute air traffic scenario for one 
sector, and all samples are arranged in chronological order. The 
dimension of each sample is 29, in which the first 28 features 
are complexity factors and the last one is the complexity level 
(Low/Normal/High) assigned by ATM experts. 

B. Baselines and Implementation 

To illustrate the advantages of our model, we compare the 
proposed GSC model with the vector autoregressive model 
(VAR), LSTM, LSTM-Net [15], spatial-temporal graph 
convolutional networks (ST-GCN) [16], BPNN [6], diffusion 
convolutional recurrent neural network (DCRNN) [17]. 

The parameter settings of all these baselines are determined 
through the grid search over all tunable hyperparameters. For 
all methods, 70% of the data is used as training samples. 10% 
and 20% of the data is used as validation and testing samples, 
respectively. In this work, the time window length is set to 30 
minutes, based on the practical application [18] and a previous 
representative related study [19]. The prediction horizons are 
set to 1/5/10/15 minutes. 

C. Results and Analysis 

We carry out 100 seeded runs and use the average accuracy 
to evaluate the performance of all baseline methods. The 

accuracy is defined as , where 𝑁  denotes the 

number of testing samples which are correctly predicted and 
𝑁  represents the total number of testing samples. 

1) Model Comparison: Fig. 2 summarizes the prediction 
results of the 7 methods on 6 target sectors. The larger the time 

Fig. 2.  Performance comparison with existing methods. 
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length is, the more difficult the prediction tasks are. It can be 
seen from the results that the proposed GSC model almost 
outperforms all baseline methods on all datasets. 

Among all compared baselines, VAR, LSTM, and BPNN 
perform similarly for short prediction horizons, while LSTM-
Net, ST-GCN, and DCRNN fail to model temporal correlations 
within airspace datasets. It can also be seen that the superiority 
of GSC to VAR, LSTM and BPNN is more significant if the 
prediction horizon becomes longer. This is mainly contributed 
to the Skip-LSTM layers of GSC, which help capture the long-
term temporal dependencies in the airspace complexity data. In 
addition, the graph attention layers in GSC mine the spatial 
information of the airspace sectors, which further improves the 
prediction accuracy. 

It is worth pointing out that all methods perform much worse 
on CD02. An intuitive explanation is the geographical location 
of CD02, which is adjacent to the other five sectors. The spatial 
topological relationship of CD02 is more complicated. 

2) Variant Comparison: An ablation study is conducted to 
further demonstrate the efficiency of each component in the 
GSC. Specifically, GSC w/o GAT means the GSC without the 
graph attention layers. GSC w/o CNN and GSC w/o Skip-
LSTM represent GSC without convolutional layers and GSC 
without Skip-LSTM layers, respectively.  

Fig. 3 shows the error box including the accuracy and 
variance over 100 runs on each airspace sector. Without the 
convolutional layers, the accuracy of the short-term (i.e., 1 min 
and 5 min) prediction will significantly decrease. Other 
significant layers in our proposed GSC are the Skip-LSTM 
layers. Without the Skip-LSTM layers, the accuracy of the 
long-term (i.e., 10 min and 15 min) complexity prediction will 
decrease more than that of the short-term prediction accuracy 
in some sectors. The Skip-LSTM layers extract the long-term 
repetitive temporal patterns of the data through the skip 

connections that connect the current recurrent unit with a much 
farther recurrent unit. The effectiveness of graph attention 
layers in extracting spatial-temporal dependencies can also be 
demonstrated. 

IV. CONCLUSION 

In this article, we propose a novel airspace complexity 
prediction method GSC that incorporates graph attention layers, 
Skip-LSTM layers and convolutional layers. The proposed 
GSC model can capture the spatial correlations, long-term and 
short-term temporal dependencies of the airspace complexity 
data. When evaluated on real-world sector datasets, the GSC 
achieves better results than the state-of-the-art baselines. 
However, the current graph attention layers of our model are 
not effective enough, indicating that the spatial correlations are 
not well captured. In future work, the dynamic spatial topology 
of airspace sectors will be considered to further improve the 
prediction model. 
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