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ABSTRACT 13 

Slender ribbons can be stretched, bent, and twisted, exhibiting a range of complex 14 

morphologies. We study the morphology transitions of the ribbon subjected to tension and 15 

torsion by combining experiment and theory. A unified phase diagram as a function of torque 16 

and aspect ratio is constructed by comparing the microscopic and macroscopic buckling. Two 17 

distinct types of shape evolutions are identified. For the twist of a wide ribbon, the shape 18 

transforms from the helicoid through the crease to the cylinder. But for a narrow ribbon under 19 

torsion, no crease occurs. The mechanical behavior of the stretched and twisted ribbon is 20 

described based on the energy method. It is found that the succession of transformations for 21 

the morphologies strongly depends on the aspect ratio and tension. This study sheds light on 22 

understanding the morphological complexity of the constrained slender structure. 23 

  24 



 

2 

Slender ribbons are fundamental structures playing a pivotal role in the mechanical behavior 1 

of various synthetic and biological materials 1-4. They have been used to design lightweight 2 

structures that can adapt their shapes in response to external stimulations 5, 6, in particular, 3 

under simultaneous axial tension and torsion. While a round rod or filament (aspect ratio unity) 4 

undergoes only macroscopic buckling to form a plectonemic or solenoidal configuration 7-9, a 5 

ribbon of small aspect ratio (width w , thickness h , aspect ratio 1t h w= << , Fig. 1a-I) also 6 

displays microscopic buckling configurations 10-13 , i.e., structures of size ~w . For the stretched 7 

and twisted ribbon, torsion puts the edges of the ribbon under increased axial tensile stress, 8 

and axial compressive stress 11σ  can appear in the region located close to the center of the 9 

ribbon 14-16 (helicoids, Fig. 1a-II and III). At the same time, the helical tensile stress puts the 10 

ribbon under compressive stress across the width, 22σ . The compressive stress causes the 11 

microscopic buckling of the twisted ribbon (a wrinkled helicoid, Fig. 1a-IV), also called 12 

longitudinal buckling 13. With a further twisting, the ribbon forms flat triangles with sharp 13 

creases between them, the creases going in a zig-zag along the ribbon (a creased helicoid, Fig. 14 

1a-V). At much larger torsions, macroscopic buckling occurs, similar to twisted filaments 7, 9, 15 

where the morphology transforms into a loop (Fig. 1a-VI) 13, 17, and then a cylinder (Fig. 1a-VII). 16 

Here we present a phase diagram showing the regions of the normalized torque - aspect ratio 17 

space in which the helicoid, the crease, and the cylinder are found, experimentally and 18 

theoretically, and we report the dependence of the critical torques on the tension. 19 

We study the interaction between morphology and mechanics within the stretched and 20 

twisted ribbons, by controlling both the aspect ratio of thickness to width and the tension. 21 

Torsion experiments on polyethylene terephthalate (PET) ribbons were performed with a 22 

specially-designed torsion instrument based on the flexural pivot 18, 19, see Fig. S2. The gauge 23 

length L  of each specimen is 70.00±0.50 mm; the width w  is between 1.30 and 3.50 mm, 24 

and the thickness h  is around 60 μm. One end of the specimen was glued to a deadweight 25 

made of two washers to give a tensile force F . The other end was reinforced by an adhesive 26 

paper backing for clamping by the upper grip. The deadweight was inserted into a U-shape 27 

lower grip mounted on the twisting head so the weight could move freely in the vertical 28 

direction. An optical microscope was used to record the morphology evolution of loaded 29 
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ribbons in real time. The Young's modulus E  and Poisson's ratio ν  of the PET materials 1 

were determined by tensile tests, giving 4.01 0.10E = ± GPa and 0.40 0.01ν = ± , respectively. 2 

More experimental details are provided in the Supplementary Materials. 3 

 4 

FIG. 1. (a) Morphology evolution of a twisted ribbon under a given tension: (I) Initial 5 

configuration; (II-III) Helicoid; (IV) Wrinkled helicoid; (V) Creased helicoid; (VI) Loop; (VII) 6 

Cylinder. (b) The measured torsional responses in terms of non-dimensional torque M  7 

versus twist density η . The creased stage, including the wrinkled and creased helicoid 8 

configurations, is observed in the twisted ribbon (the lower curve) with 2.71 0.02w = ± mm 9 

and 0.060F = N. The configuration of the narrow ribbon (the upper curve) with 10 

1.41 0.01w = ± mm and 0.064F = N jumped directly from III to VI. 11 

The morphology evolution of the stretched and twisted ribbons is shown in Fig. 1(a). The 12 

various configurations, helicoid, wrinkled helicoid, creased helicoid, loop, and cylinder, are 13 

observed in turn with increasing twist. Two typical different torsional responses are given in 14 

Fig. 1(b) for ribbons with 2.71 0.02w = ±  and 1.41±0.01 mm, respectively. The torsion values 15 

are given as non-dimensional torque M  and plotted against the twist density η . Here, 16 

2M Q Ehw=  with Q  being the torque, and w Lη θ= , where θ  is the torsion angle. The 17 

curves in Fig. 1(b) correspond to two different morphology evolutions. The lower curve shows 18 

microscopic buckling occurring first, where the shape develops from the helicoid, through the 19 

wrinkled helicoid, to the creased helicoid. Upon further twist, macroscopic buckling occurs with 20 

the formation of a loop at the mid-point; as the loop number increases, the cylinder 21 

configuration becomes visible (see Video S1 in Supplemental Material). The upper curve 22 
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corresponds to a narrow ribbon. As the twist increases, macroscopic buckling occurs directly 1 

without microscopic buckling. The ribbon shape transforms directly from the helicoid into the 2 

loop and then the cylinder configuration (see Video S2 in Supplemental Material). The 3 

morphology transitions strongly affect the mechanical response of the twisted ribbon. The 4 

torque increases nonlinearly with the twist during the helicoid stage, but almost linearly during 5 

the crease stage. The formation of the cylindrical configuration is accompanied by a sawtooth 6 

variation of the torque with the twist. Here, the twisting energy is converted into bending 7 

energy piece by piece as the twist increases. These abrupt changes in torque coincide with the 8 

successive instabilities of the twisted ribbon. 9 

The ribbon has been described as a two-dimensional plate 14, 20 or an inextensible rod 21, 10 

22. The mechanical response of the stretched and twisted ribbon has been quantitatively 11 

investigated only at the helicoid stage 23. To study the mechanical responses and the buckling 12 

criteria of the twisted ribbon from the helicoid through the crease to the cylinder, we 13 

developed a physical model based on the energy method. The Cartesian coordinate system is 14 

defined in Fig. 1(a)-I. In what follows, the energy and work due to torsion and tension are 15 

normalized by EhwL . The tension T  are defined by T F Ehw= . The energy balance of the 16 

ribbon under tension and torsion is given by ( ) eldM Πη Ωη + =∫ , where elΠ  is the 17 

normalized strain energy and Ω  is the normalized external work due to tension. Thus, we 18 

have M Π η= ∂ ∂ , where elΠ Π Ω= −  is the twisting strain energy.  19 

 20 

FIG. 2. Theoretical predictions of the non-dimensional torque against twist density compared 21 

with experiments. The red and blue curves are given by Eq. (2) and Eq. (4), respectively. (a) 22 
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Response of ribbon with 2.71 0.02w = ± mm and 0.060F = N. (b) Response of ribbon with 1 

1.41 0.01w = ± mm and 0.064F = N. 2 
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Solving the Föppl–von Kàrmàn (FvK) equations by assuming the helicoid geometry 23, the 4 

elastic strain energy of the stretched and twisted ribbon is given by 5 

( )
2

4 2 2el
hel

1 1
1440 12 1 2

t TΠ η η
ν

= + +
+

. The work due to tension is 2
hel

2 24T TΩ η= − . The 6 

twisting strain energy for the helicoid stage is then given by 7 

 4 2 2 2 2
hel

1 1 1 1
1440 ) 21 (1 22 4

t T TΠ η η η
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+ += − . (1) 8 

Thus, the torque for the helicoid stage is  9 
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For small twists ~0η , 
2 1

6(1 ) 12
tM Tη η
ν
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+

≈ , which gives a linear description. The nonlinear 11 

behavior of torque at larger twists is well characterized by Eq. (2), as shown in Fig. 2. 12 

As the twist density reaches a critical value *
1η , the ribbon may undergo the microscopic 13 

buckling (wrinkling), as seen in Fig. 2(a). The creased helicoid configuration has been described 14 

as an isometric shape assuming triangular facets separated by isometric ridges 12, 24. Here, we 15 

use the corrected Sadowsky's strain energy 25 to describe the response of the creased ribbon, 16 

i.e., ( )wr

2 2
el

2
 

6 1 v
t ηΠ =
−

. This strain energy has been interpreted as a relaxed energy accounting 17 

for the occurrence of wrinkle and crease 26, 27. The work due to tension is given by TΩ λ= , 18 

where ( )L L Lλ ′= −  is the contraction with L  and L′  being the end-to-end distance of 19 

the ribbon at the initial and deformed configurations, respectively. The contraction can be 20 

written as12 ( )
2 4

6

8 128
η ηλ η= − − + . The twisting strain energy for the creased ribbon is then 21 

given by  22 
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Correspondingly, the torque is given by  1 

 
2

wr
wr 23(1 ) 4

t TM Π
η

η ν
 ∂

= = + ∂ − 
. (4) 2 

It indicates that the torque strongly depends on t  and T , and increases linearly with twisting. 3 

The theoretical prediction agrees well with the measurement, see Fig. 2(a). The critical twist 4 

density *
1η  for the microscopic buckling can be obtained by equating helΠ  and wrΠ , i.e., 5 

( )* 2
1 60 1T tη ν = + −  . Substituting *

1η  into Eq. (2), we have the critical torque for the 6 

microscopic buckling 7 

 
2

1
2

cr
1

2

2

15 4
2 3(1 ) 1

t tM T T
ν ν

  
= + +  − −  

. (5) 8 

The microscopic buckling relaxes the axial compressive stress that appeared in the center 9 

range of the twisted ribbon. Upon further twisting, the wrinkling is insufficient to stabilize the 10 

ribbon configuration 15, 16, 28. Once the twist density reaches the next critical value *
2η , ribbons 11 

undergo macroscopic buckling, as seen in Fig. 2. Such a buckling is similar to the Euler buckling 12 

of a twisted filament 18, 29, 30. For both the helicoidal and creased ribbon, the midline along the 13 

longitudinal direction goes from straight to helical. A tiny increment of twist Δη  leads to a 14 

localized loop at the mid-point of the specimen with an evident axial contraction. During the 15 

loop formation, the crease characteristics are retained at both ends, while the torque drops 16 

from the upper critical value cr
2M  to the lower one cr

3M . Similar to a twisted rod, the upper 17 

critical torque can be predicted by the Timoshenko model 30,  18 

 cr
2 / 3M Tt= . (6) 19 

To obtain the lower critical torque cr
3M , we consider the curvature radius ρ  of the loop 20 

that is normalized by w  (see Fig. S4 in Supplemental Material). We then have the increment 21 

of the bending strain energy for the twist increment Δη  during the formation of the loop, 22 

i.e., 
2

BΔ ~
24
t ∆Π η

ρ
. The longitudinal contraction is associated with the curvature radius ρ  23 

and the twist density increment η∆ , i.e., ~ Δλ ηρ− . The work due to torsion is 24 
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TwΔ ~ ΔMΩ η , and the work due to tension is TΔ ~TΩ λ . From the conservation of energy, we 1 

have B Tw TΔ Δ ΔΠ Ω Ω= + . Differentiating the energy with respect to Δη , we obtain the 2 

torque  3 

 
2

~
24
tM Tρ
ρ

+ . (7) 4 

Differentiating M  with respect to ρ  and setting the differential equal to zero, we obtain 5 

the critical curvature radius for the loop configuration ~
24
t

T
ρ . Substituting it into Eq. (7) 6 

leads to the lower critical torque for the macroscopic buckling,  7 

 cr
3M kt T= , (8) 8 

where k  is a shape factor associated with the loop configuration. Here, 0.29k =  is 9 

determined by fitting the measurement data. 10 

 11 

FIG. 3. Plots of the non-dimensional torque M  against the twist density η . The theoretical 12 

predictions are given by Eq. (2). (a) The ribbons are under tension 41.90 10T −= ×  with aspect 13 

ratios t = 0.016, 0.028, and 0.045. (b) The ribbons have an aspect ratio 0.041t = , and 14 

tensions T = 58.10 10−× , 41.95 10−×  and 44.30 10−× . 15 

Fig. 3(a) shows the normalized torque-twist curves for the ribbons with various aspect ratios 16 

t , but the same tension 41.90 10T −= × . By equating the critical torque for the microscopic 17 

buckling to that for the macroscopic buckling, i.e., cr cr
1 2M M= , one can readily obtain the 18 

critical aspect ratio *t  for a given tension. Here, our analysis gives 0.043t∗ ≈  for the fixed 19 
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tension 41.90 10T −= × . Macroscopic buckling occurs directly for the ribbon with 0.045t =  1 

( *t> ). For the ribbons 0.027t =  and 0.016  ( *t< ), microscopic buckling and then 2 

macroscopic buckling occur in turn. Fig. 3(b) shows the normalized torque-twist curves for the 3 

ribbons with different tensions, but the same aspect ratio 0.041t = . The curves almost 4 

overlap at the helicoid stage for different tensions. However, a slight tension change may 5 

significantly affect the instability criteria, as seen in Fig. 3(b). As the tension increases, the 6 

critical torque increases for both the microscopic and macroscopic buckling. 7 

 8 

FIG. 4. The influence of the aspect ratio and the tension on the instabilities of twisted ribbons. 9 

(a) Phase diagram of twisted ribbon as a function of the torque and aspect ratio for a given 10 

tension 41.90 10T −= × . Below *t , there are three phases, the helicoid, the crease, and the 11 

cylinder. Above *t , there are only two phases, the helicoid and cylinder. (b) Comparison of the 12 

theoretical predictions and the experimental data for the critical torques against the tension. 13 

The solid blue and red curves are given by Eqs. (6) and (8), respectively. 14 

A unified phase diagram of the morphologies and transitions is constructed by increasing the 15 

torque in small increments for the ribbons with different aspect ratios, as shown in Fig. 4(a). 16 

The solid red and blue curves are the theoretical predictions by Eqs. (5) and (6) for the fixed 17 

tension 41.90 10T −= × . The curves meet at a crossover point, defining the critical aspect ratio 18 

*t . For the ribbon *t t< , microscopic buckling (wrinkling) occurs first with the increase of 19 

torque; and the helicoid evolves into a creased helicoid. Upon further twist, macroscopic 20 

buckling occurs where the morphology transforms from the creased helicoid through the loop 21 
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into the cylinder. For the ribbon *t t> , the macroscopic buckling occurs directly, where the 1 

shape transforms from the helicoid through the loop into the cylinder. In the limit of 1t = , the 2 

ribbon is an elastic rod, which never wrinkles or creases.  3 

Macroscopic buckling occurs for all ribbons with the formation of loops, and the torque 4 

drops from the upper critical value cr
2M  to the lower one cr

3M . The comparison of the 5 

experimental results and the theoretical predictions for cr /M t  versus T  is plotted in Fig. 6 

4(b). The solid blue and red curves correspond to the upper and lower values of critical torque 7 

for macroscopic buckling, giving by Eq. (6) and Eq. (8), respectively. The critical torques 8 

increase nonlinearly with the tension. The theoretical predictions are in good agreement with 9 

the experimental results. As the lower critical torque corresponds to a more stable stage than 10 

the upper critical torque, the uncertainty of the lower torque measurement is much smaller 11 

than that of the upper torque measurement. 12 

In summary, two distinct buckling histories of stretched and twisted ribbons are determined 13 

by comparing microscopic with macroscopic buckling. The way how the geometry and tension 14 

influence the morphology transitions of the twisted ribbons is elucidated. Further experimental 15 

and theoretical work is needed to map in M t−  and T  space the morphology transitions 16 

between all the configurations and to identify any other conditions that affect these transitions. 17 

See the supplementary material for video observation of the configuration transitions of 18 

the ribbons under twist and stretching, the experimental details, and the detailed theoretical 19 

derivation process. 20 
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1. Experimental details 

1.1 Tensile characterization 

The ribbons used here are composed of polyethylene terephthalate (PET). The tensile 

properties of PET ribbons are characterized using a specially-design tensile tester 1. 

The dimensions and Young's modulus of the ribbon specimens for the tensile 

experiments are shown in Table S1. Each specimen was clamped between the upper 

and lower grips. The lower grip was driven by a high-resolution actuator (PI, 

M227.25). The upper grip was attached to a sensitive load cell. All tensile tests were 

performed with a strain rate well below 10−3/s at room temperature. The elastic range 

of the typical stress-strain curves of the PET ribbons is given in Fig. S1. Here, the 

stress is calculated as the tensile force F  over the cross-section area, and the strain is 

calculated as 0L L∆ . Here, L∆  is the axial displacement, and 0L  the gauge length. By 

fitting the stress-strain data, we obtain the Young's modulus 4.01 0.10E = ± GPa. The 

Poisson's ratio 0.40 0.01ν = ±  is measured by the digital image correlation (DIC) 

method. 

Table S1. Geometrical parameters and Young's modulus of the PET ribbons. 

Parameters 
Width 

 (mm)w  

Thickness 

 (μm)h  

Gauge length 

0  (mm)L  

Young's modulus 

 (GPa)E  

Values 4.71±0.09 61.1±1.8 10.0±0.2 4.01±0.10 

 

Fig. S1 Tensile stress-strain curves of the PET ribbons. The Young's modulus is 

obtained by a linear fitting (blue line). 
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1.2 Micro-torsion instrument 

The torsional behaviors of PET ribbons under tension are characterized using a 

homemade torsion tester for small-scale components based on the flexural pivot, as 

shown in Fig. S2. The design is inspired by the work of Hu et al. 2, which deals with 

the torsional properties of soft filaments and other slender structures. The morphology 

of each PET ribbon was observed by a 3D super-depth digital microscope 

(KEYENCE VHX-500FE). The detail on the torsion instrument has been provided in 

Ref. 3. 

The crucial part of the instrument is the torque transducer, incorporating a 

cylindrical flexural pivot, a shim bonded to the sleeve of the pivot, and a sensitive 

angle detector. The cylindrical flexural pivot (C-Flex Bearing Co. Inc.) with a suitable 

torsional stiffness acts as the sensor element, as illustrated in Fig. 2. The flexural pivot 

is produced by joining two thin beams that rotate via relatively thin flexures. The 

flexures are positioned so that their planes are normal with each other. Their 

intersection is on the desired axis of rotation. One end of the pivot is fixed to a three-

dimensional translation stage, while the other is connected to a grip. Twisting the 

pivot results in bending the flexure beam, and hence the tilt angle of the shim is equal 

to the angular displacement of the pivot. The torsion angle of the flexural pivot ϕ  is 

measured accurately with an optical angle detector involving dual laser displacement 

sensors. If the torsional spring constant of the flexural pivot, K , is given, the torque 

Q  acting on the specimen can directly be deduced, i.e., 

 Q Kϕ= . (S1) 

The ribbon is suspended from the torque transducer. The lower end of the specimen is 

bonded to a deadweight. The deadweight provides an array of the desired extension to 

the specimen. The deadweight is put into a slot of the twisting head to prevent lateral 

movement while allowing it to slide freely in the vertical direction. A stepper motor is 

used to twist the ribbon specimen. An in-situ optical microscope consisting of a CCD 

camera is used to monitor the deformation of the ribbon in real time. 
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Fig. S2. Schematics of the torsion instrument 3. 

1.3 Torsional responses 

Typical experimental curves of non-dimensional torque M  versus twist density 

/w Lη θ=  are shown in Fig. S3. The twisted ribbons, under constant tension, 

generally transform from the helicoid through the crease to the loop and then to the 

cylinder. In Fig. S3(a), microscopic buckling and macroscopic buckling occur in turn. 

In contrast, in Fig. S3(b), the macroscopic buckling occurs directly without the 

microscopic buckling. That is, the wrinkled and creased helicoid configurations 

vanish. 

 
Fig. S3. Typical experimental curves of non-dimensional torque against twist density. 

(a) The tension varies from 43.05 10−× , 41.90 10−× , 41.63 10−× , to 41.17 10−×  and the 
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aspect ratio varies from 0.025 , 0.028 , 0.022 , to 0.016  for the test 1-4, respectively. (b) 

The tension varies from 41.91 10−× , 41.78 10−× , 41.23 10−× , to 40.85 10−×  and the aspect 

ratio varies from 0.046 , 0.044 , 0.042 , to 0.045  for the test 1-4, respectively. 

2. Theoretical analysis 

The longitudinal and transverse coordinates in the initial configuration are denoted 

as 1x  and 2x , respectively; they vary in the ranges 12 2L x L− ≤ ≤  and 22 2w x w− ≤ ≤ . 

The orientation of 3x - axis of the Cartesian coordinate system ( )1 2 3, ,x x x  is normal to 

the ribbon surface, which varies in the range 32 2h x h− ≤ ≤ .  

The energy balance of the twisted ribbon under a given tension is expressed as 

 ( ) elQ dθ Ψθ Γ+ =∫ , (S2) 

where Γ  is the work due to tension, and elΨ  is the strain energy. Thus, we obtain the 

torque 

 Q
θ
Ψ∂

=
∂

, (S3) 

where elΨ ΓΨ= −  is the twisting strain energy. 

2.1 The helicoid stage 

We adopt the nonlinear Föppl–von Kàrmàn (FvK) equations to describe the ribbon 
4, i.e., 

 ( )4
,11 ,22 ,22 ,11 12 ,212D w h u u uΦ Φ Φ∇ = + −  (S4) 

and 

 ( )24
,1,12 1 ,22E uu uΦ  ∇ = −  

, (S5) 

where Φ  is the Airy stress function, 1 2( , )u u x x=  is the deflection of the ribbons at 3x  

direction. The comma in subscript denotes the partial derivation to ( )1,2ix i = . The 

strain energy elΨ  is composed of the stretching part SΨ  and the bending part BΨ  4. 

The stretching energy in terms of the stress ijσ  and strain ijε  is given by 
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 ( )1 22S 22 111 1 1 22
1 2 d
2

VΨ σ ε σ ε σ ε= + +∫ . (S6) 

We assume that the materials are homogeneous, linear elastic, and isotropic. 

Therefore, ( )1 (1 ) , 1,2ij ij kk ij i j
E

ε ν σ νσ δ = + − =  , where ijδ  is the Kronecker delta. 

Substituting it into Eq. (S6) yields 

 2 2 2
1 2S 1 2 11 22 122

2
(1 )1 2 dV

E
Ψ σ σ νσ σ ν σ = + − + +∫ . (S7) 

The bending energy is given by 

 ( ) ( )2 2
B ,11 ,22 ,11 ,22 ,12 1 2

3

2 2(1 ) d
24(1 )

dEh u u v u u u xxΨ
ν

= + − − −
− ∫∫ . (S8) 

The deflection is assumed by 

 ( )1 2 1 2,u x x x xτ= , (S9) 

where Lτ θ=  is the twisting rate. Then, Eq. (S5) can be simplified as 
2

4

4
2

x
EΦ τ∂

∂
= . 

Integrating this formula gives 

 31 2
3 2 4

2 4 2
2 2 22 6 24

C Cx xCE x x CΦ τ + += + + . (S10) 

The stress components given by the relation with the Airy function are 

 
2 2 2

2 2
2 1 1 2

111 22 2, ,
x x x x
Φ Φ Φσ σ σ∂ ∂ ∂

= = = −
∂ ∂ ∂ ∂

. (S11) 

We assume that the stress field is invariant along the 1x  direction. The stress fields 

read 

 2
12 11 1 2

2
22 22 0,

2
E x C x Cσ σ σ τ += = += . (S12) 

As 11σ  is symmetric along the 2x  direction of the ribbons, the constant 1 0C = . We 

follow Chopin and Filho 5 and assume 2C Eλ= . Here, the parameter 

( )'L L L L Lλ ∆= − =  is the contraction with L  and 'L  being the ribbon length at the 

initial and the deformed configurations, respectively. 

 2
22

11 2
E xτσ λ
 

=  +
 

 (S13) 
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By the equilibrium condition 1 2

2

2 1 d
w

w
xF h σ

−
= ∫ , the contraction for the helicoid reads 5 

 
2 2

hel 24
F w

Ehw
τλ = −  (S14) 

Substituting the stress components and deflection into Eq. (S7) and Eq. (S8), we have 

the strain energy for the helicoid  

 
( )

4 5 3 2
el
el

2

h 1 20 2144 1
Eh w Eh w F

Ehw
L L LΨ τ τ

ν
+

+
= + . (S15) 

The work due to tension is given by 

 
2 2

hel 24
F wF L FL

Ehw
τΓ ∆

 
= = − 

 
, (S16) 

Therefore, we obtain the twisting strain energy of the ribbon at the helicoid stage  

 
( )

4 5 3 2

e

2

h

2

l

2

11440 24 22 1
L L

w
Eh w Eh w F Lw F

Eh
LΨ τ τ τ

ν
= + −

+
+ . (S17) 

We use w  as a unit of length, and Eh  as a unit of in-plane stress, and introduce the 

twist density w Lη θ= . Further, the aspect ratio t  and tension T  can be defined as 

t h w=  and T F Ehw= , respectively. The energy and work due to torsion and tension 

can be normalized by EhwL , i.e., EhwLΠ Ψ=  and EhwLΩ Γ= . The normalized 

twisting strain energy is 

 4h 2e 2 2l
h l

2
e 1

1 1 1 1
1440 ) 24 22(1EhwL

t T TΠ η η η
Ψ

ν
+=

+
= + − . (S18) 

Therefore, the normalized torque M  for the helicoid is given by 

 
2

3hel
2

1 1
360 6(1 ) 12

Q tM T
Ehw

Π
η η η

η ν
∂

= +
∂

+= =
+

. (S19) 

2.2 The crease stage 

The corrected Sadowsky's strain energy6 can be written as the function of bending 

2κ  and twisting curvature 3κ , i.e., 
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 ( ) ( )
( )

( )

22 23
2 3

3 222
2

wr 2 3
3 2

3
3 22

 if 
24 1

,

 if 
6 1

v

v

Ewh L

Ewh L

κ κ
κ κ

κ
Ψ κ κ

κ
κ κ

 +

 −= 

 −





. (S20) 

For the creased helicoid, we have 3 2κ κ . Here, 3 Lτ κ θ= = . Therefore, the strain 

energy of the twisted ribbon at the crease stage is given by  

 
( )

3
el 2
wr 26 1

wh LE
v

Ψ τ=
−

. (S21) 

The contraction for the creased ribbon can be written as ( )
2 4

6
wr 8 128

η ηλ η= − − +  7. 

The twisting strain energy of the creased ribbon is  

 ( )
4

6
3

wr

2 2 4

26(1 8 128)
Ewh L w wF Lτ τΨ τ τ

ν
 

+


= + + 
−

 . (S22) 

Only retain square terms of τ , the normalized twisting strain energy is 

 
2

2wr
wr 26(1 ) 8

T
EhwL

tΨ
Π η

ν
+

 
= =  − 

 (S23) 

The normalized torque is given by 

 
2

hel
2 3(1 ) 4

Q t TM
Ehw

Π
η

η ν
 ∂

= = = + ∂ − 
. (S24) 

2.3 Analysis of the loop configuration 

 

 

Fig. S4. Analysis of the loop configuration. (a) The mechanical response during the 

loop formation highlights a box in yellow. The torque drops from an upper critical 
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value cr
2M  to a lower critical value cr

3M . (b) The schematic diagram of the loop for the 

ribbon. 

For a tiny incremental twist angle Δθ , we obtain the increased bending strain 

energy for the loop 8  

 B 2 2d1 1Δ Δ1 1
2 2Loop

LEI S EI
R R

Ψ = ∫ 
 (S25) 

where 
3

12
h wI =  is the geometric moment of inertia. The external works due to tension 

and twist are given by TΔ ΔF LΓ   and TwΔ ΔQΓ θ , where Δ ΔL R θ− . Based on 

the law of energy conservation, we have 

 B Tw TΔ Δ ΔΨ Γ Γ= + . (S26) 

Differentiating two sides of the energy equilibrium Eq. (S26) with respect to Δθ , we 

have the torque 

 1
2

Q FR EI
R

+
. (S27) 

Differentiating Q  with respect to R , setting the differential equal to 0 , we obtain the 

critical curvature radius for the loop configuration i.e., 2R EI F . Substituting it 

into Eq. (S27), the lower critical torque for the macroscopic buckling is 

 
r

cr
3 2

c
3QM kt T

Ehw
= = , (S28) 

where k  is a shape factor associated with the loop configuration. Here, 0.29k =  is 

determined by fitting the measurement data.  

3. Supplemental Movies 

Supplemental Movie 1 

The normalized torque-twist curve is obtained by experiment. The shape is developed 

from the helicoid through the wrinkled helicoid to the creased helicoid. Upon further 

twist, macroscopic buckling occurs with the formation of a loop at the mid-point, and 

then as the loop number increases, the cylinder configuration is recognized. The 

ribbon specimens used here are of length 70.12L = mm, width 2.21w = mm, and 

thickness 62.24h = μm. It is twisted by an angle θ  and stretched longitudinally by a 
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fixed force 0.091NF = . 

Supplemental Movie 2 

The ribbon specimens are of length 69.54L = mm, width 1.34w = mm, thickness 

60.02h = μm, and stretched longitudinally by a fixed force 0.032F = N. As the twist 

increases, the ribbon shape transforms directly from the helicoid into the loop and 

then the cylinder configuration.  

Supplemental Movie 3 

The ribbon specimen is of length 70.40L = mm, width 3.10w = mm, and thickness 

62.18h = μm, and stretched longitudinally by a fixed force 0.137F = N. The crease 

stage is more evident as the width and tension increase. 
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