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AbstractÐWe suggest a data-driven approach to predict ves-
sel trajectories by mimicking the underlying policy of human
captains. Decisions made by those experts are recorded by the
automatic identification system (AIS) signals and can be fused
with additional non-kinematic factors like destination, weather
condition, current tide level or ship size to get a more accurate
snapshot of the situation that led to chosen maneuvers. In this
work, we explore the usage of a method meant for optimal
control, namely Behavioral Cloning, in a forecasting problem,
in order to generate end-to-end vessel trajectories purely based
on a given initial state. The training and test datasets consist of
trajectories from the coast of Bremerhaven, having more than
one thousand unique ships and different motion clusters. These
are processed by a single deep-learning model, showing promising
results in terms of accuracy and providing a research avenue for
a near real-time application where vessel trajectories are to be
forecast from a given snapshot of the situation Ð not from the
costly history of all the vessels present.

Index TermsÐbehavioral cloning, vessel trajectory prediction,
imitation, reinforcement learning, maritime situational awareness

I. INTRODUCTION

Including a robust model that is capable of predicting ac-

curate future vessel trajectories into any maritime surveillance

system is advantageous, as it improves the overall situational

awareness. In this context, the ability to generate end-to-end

trajectories can be utilized in a variety of different tasks, e.g.

detecting anomalous ship behavior or collision avoidance.

However, building such a sophisticated model is chal-

lenging. Although the automatic identification system (AIS)

made it possible to collect massive amounts of historical ship

records Ð like positions, identities, and other voyage-related

information Ð in order to construct a data-driven approach,

it still has some limitations. For example, the highly irregular

time sampling or poor data quality, as given by the inaccuracy

of the received position of ∼ 10 meters [1], or the unreliability

of some of the provided information [2].

In addition, real-world ship maneuvering is heavily influ-

enced by external factors like weather conditions, sea currents,

tides and surrounding ships [3]. The proposed model has

to be aware of this wide range of non-kinematic elements

complementary to the movement indicators (current position,

speed, heading) in order to capture the underlying causalities

of decisions that led to the resulting trajectories. Besides the

high-dimensional and semantically varying feature space, a

suitable system is required to have the ability of predicting

future vessel trajectories for a time horizon of up to an hour

or more while retaining low computational costs, with the goal

of potentially providing near real-time predictions.

We approach this task from the perspective of imitation

learning, where an artificial agent tries to extract and mimic

the behavior of human captains in order to generate similar

vessel trajectories. One major assumption is that, by learn-

ing from huge amounts of historical expert decisions under

certain environmental situations, the agent acquires the skill

to generalize well enough to assemble tracks based on states

it did not encounter before as well. Here, we do also make

the assumption that the generalization and average strategy of

multiple human experts is based on navigational rules which

are given to everyone, such as COLREG [4] or the harbor

specific rules. In this regard, the proposed system and model

are trained on a specific region of interest to capture the

local conditions without the intent to transfer knowledge or

generalize to any other coast or harbor.

Being in the realm of Reinforcement Learning Ð which

leverages from an artificial decision maker Ð allows us to

have a flexible prediction scheme without any restriction to

a fixed-sized prediction horizon, unlike most of the predom-

inant approaches for the trajectory prediction problem using

sequence to sequence models.

II. RELATED WORK

The topic of predicting vessel trajectories has been ap-

proached in a variety of different ways, which can be clas-

sified into model-driven and data-driven methods. In a model-

driven scenario, future trajectories are calculated based upon

a realistic modeling of the sea environment, derived purely

from the vessel’s current position and sailing velocity without

learning knowledge from historical traffic data [5]. To this ex-

tent, prominent methods in the trajectory prediction literature

are the constant velocity model [6], nearly constant velocity

model [7], Gaussian process model [8] or Ornstein-Uhlenbeck

stochastic process [9].

As mentioned in section I, real-world ship maneuvering

is a complex subject that depends on underlying semantics

that are hard to incorporate into a model, especially for the

fact that the areas of interest differ from one another in
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terms of e.g. waterways or other region-related rules. Data-

driven approaches try to overcome this challenge by learning

from historical traffic patterns and thus implicitly extracting

representative behavior. Here, works with machine learning

methods based on the extended Kalman filter [10], random

forest [11], support vector machines [12] or particle filter [13]

have been proposed.

In the past years, deep learning approaches based on re-

current neural networks such as the long-short term mem-

ory (LSTM) [14], as well as encoder-decoder models, have

become the most dominate approach towards sequence-to-

sequence tasks and trajectory prediction [5], [15], [16]. In [17],

an approach called FRA-LSTM is proposed, which uses two

components: a forward sub-network that combines an LSTM

with an attention mechanism to mine features of historical

AIS trajectory data; and another sub-network that combines a

bidirectional LSTM and attention mechanism to mine features

of backward historical trajectory data. In the end, the output

features extracted from the forward and reverse sub-networks

are fused in order to generate the final trajectory prediction.

The authors exclusively use kinematic factors and time for the

feature space.

A different approach is presented by [18], who use a geo-

metrical similarity-driven method. They exploit the Dynamic

Time Warping algorithm to find the most similar trajectory,

calculate the distances of the current point as well as the last

three points (each 10 minutes apart from each other) and use

those four distances as input for an LSTM to predict the next

four distances in order to generate the target trajectory of up

to 40 minutes. The location prediction error for a horizon of

10 minutes into the future is 0.390 km, and 1.569 km for a

horizon of 40 minutes.

In general, works that use sequence to sequence models

(like LSTM) for sequence prediction [19]±[23], are limited to

a fixed input and output windows (i.e. they map a fixed-size

rolling history of past observations to a fixed-size horizon of

future predictions). Experience shows that the size of these two

rolling windows should be chosen to be close to each other

for non-seasonal time series [24] Ð for seasonal series, the

input window should cover at least a full seasonal period. This

has two main disadvantages: 1) for long prediction horizons,

the networks require long input windows, which are hard to

process since their forgetting mechanisms result in exponential

decay of information. Recent efforts to remedy this include

enforcing power law forget gates [25]; 2) these methods are not

scalable. For near real-time applications, where accurate long-

term predictions of potentially many future vessels trajectories

are needed (say, to reason about collision avoidance), the

processing system would need to keep a large buffer of

input windows per vessel. We explore here the prediction of

complete trajectories to a destination from single initial states.

III. APPROACH

We consider the task of vessel trajectory forecasting as a

component for enhancing the situational awareness of mar-

itime surveillance centers, as illustrated in Fig. 1. The figure

Fig. 1. System Observation Window

shows a scenario where a ship (red color) enters a predefined

system observation window (SOW). Unlike the sequence to

sequence methods in Sec. II, requiring a past sequence of states

of size comparable to the prediction horizon, our proposed

system is aimed at generating a prediction of the whole

trajectory purely based on the initial state. At this moment,

the system receives an AIS message with position, COG and

SOG; it constructs the full state by fusing destination, tide,

and weather information in order to forecast the complete

trajectory. The length of the output is flexible and predicted

points have a fixed time interval of 10 seconds. If another

ship (blue color) enters the SOW, another trajectory will be

predicted, allowing for a granular check for close encounters

to eventual yield an alarm, informing a human operator.

Note that the first input state given to the agent is not

required to be around the boundaries of the SOW, making

it possible to update previously made predictions based on

the current ground-truth state of the vessel trajectory to be

imitated.

IV. IMITATION LEARNING

A. Relationship with Reinforcement Learning

Imitation Learning is the general approach of extracting the

underlying policy given a fixed dataset of expert trajectories.

Those trajectories are sampled from an environment, which

can be formalized as Markov Decision Process (MDP). This

framework consists of an agent which observes the current

state of the environment st ∈ S and interacts with it in discrete

timesteps by choosing an appropriate action at ∈ A based on

a policy πθ : S → A depending on the learnable parameters

θ. The environment then provides the next state st+1 given

the internal transition dynamics p(st+1 | st, at) and a scalar

reward derived from a hand-crafted reward function r(st, at)
that indicates how ºgoodº the proposed action was.

One way to solve such a sequential decision problem is

Reinforcement Learning, which uses the feedback of the

environment (the reward signal) to improve the policy with

an effort to maximize the discounted sum of future rewards

(the return). In fact, Reinforcement Learning has been used

in the maritime domain for the path following problem [26]
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or continuous control [27]±[29]. However, these approaches

either do not incorporate time (i.e. only the geometry of the

curves is relevant, not the timing in tracking a timed refereced

signal), or take place in the very distinct field of autonomous

driving, where an agent learns optimal strategies to control

a vessel in order to reach a destination under pre-defined

premises such as taking the fastest route or consuming the least

energy while avoiding restricted areas and collisions. These

methods require a model of the physical interaction of the

vessel with its environment.

Reinforcement Learning and Imitation Learning operate

within the same mathematical framework of MDPs with the

exception that in the case of Imitation Learning the reward

function is not required. A key difference, as designing a

suitable reward function by hand that implicitly defines the

desired goal can be a tedious task, especially if the reward

function is non-sparse (like the Gaussian cross-track error

used in [26]) and the researcher tries to ºguideº the agent (i.e.

direct feedback at every timestep instead of just a single reward

given at the very end of an episode based on the outcome).

B. Behavioral Cloning

Behavioral Cloning [30] reduces the task of imitating the

behavior of an expert to a supervised learning problem, where

a neural network πθ parameterized by θ learns to map states to

actions as closely as possible to the expert policy π∗. That is,

the network learns to sample πθ(s) → a from the probability

density Pθ(a|s) estimating the true density P∗(a|s) of expert

actions given the enviromental states. This estimation is done

by maximum likelihood optimization

argminθ E(s,a∗)∼P∗
− logPθ(a∗|s), (1)

where the latent features before the output layer of πθ are

passed as moments to a known probability density (such as

a Gaussian with diagonal covariance) to construct a neural

network for Pθ.

V. EXPERIMENTS

A. Extracting Trajectories from AIS Data

We take historical AIS data from the coast of Bremerhaven

from every first month of the quarters of the year 2020. The

process of filtering and extracting single vessel trajectories is

done in conjunction with the library MovingPandas [32].

First, AIS signals having speed-over-ground values too low

(< 3 knots; e.g. ships at moore) or unrealistically high (>= 30
knots) are filtered out, for the ship types that we are most

interested in, e.g., tankers, cargo or big cruise ships. Then, the

records are aggregated and ordered in time by their respected

Maritime Mobility Service Identity (MMSI), resulting in the

raw trajectories. In order to smooth them out, the direction

and speed information is interpolated. That is, we drop the

original values for speed-over-ground and course-over-ground

in favor of the interpolated direction and speed, respectively.

To extract single voyages, the trajectories are then split

by time gaps in consecutive AIS signals of more than 5

minutes, as well as by potential stops, anchoring or waiting in

(a) (b)

Fig. 2. (a) Example of 200 extracted trajectories. Region of interest is
within the bounds of longitude from 8°37.2′N to 8°58.8′N and latitude from
53°49′W to 53°72.2′W . (b) zoom into the entrance to the double floodgate,
displaying multiple motion clusters.

floodgates (ships that stay within the same area of 15 diameters

for at least 3 minutes). We remove stops because the state

representation does not include a specific time component,

making consecutive stop states indistinguishable for the agent.

Voyages with a length of less than 1.5 kilometers are removed

to create a dataset that consists of expert demonstrations

that span a rather long time horizon, in which underlying

navigational rules are noticeable.

Afterwards, the records of each trajectory are resampled

and linearly interpolated to have a fixed time interval of 10

seconds. This is done to implicitly incorporate a time scale into

the system. The resulting dataset, after excluding ship types

other than those defined by Appendix A, consists of 11,300

trajectories, with a subset being shown in Fig. 2(a).

B. Fusing non-kinematic information

Our raw AIS messages lack the static information, i.e. they

do not contain any data about the ship type or size of the

broadcasting vessel. A publicly available ship database service

[33] is used to fuse additional information to the data records

matching the given MMSIs. Consequently, the list of ship

types included in the final dataset consist of the definitions

given by this service.

In terms of weather conditions, the wind force and wind

direction for the respective historical time frame is taken from

the Climate Data Center of Germany’s National Meteorolog-

ical Service and the concrete weather station in Bremerhaven

with ID 701. Tide information is taken from the European

Commission Joint Research Centre and an openly accessible

water level station in Cuxhaven [34].

Information about wind and tide gauge is fused to the

nearest timestamp of the trajectory’s data frame.

C. State Representation and Action Space

The state representation plays an important role in every

Reinforcement Learning scenario. A corresponding feature
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space must include all information necessary for the agent

to be able to choose a suitable next action without the need

for past states. The agent’s decisions made for the future

purely depends on the state given in the present, with no

history involved. As our dataset consists of an arbitrary amount

of motion clusters, the state representation has to include,

besides kinematic factors such as position, speed and direction,

some information about the desired destination, namely the

angle and distance, in order for the agent to distinguish and

recognize its current motion cluster. Unfortunately, our initial

dataset of raw AIS signals does not contain any information

about the destination of the vessel. Moreover, the destination

parameters of any AIS signal has to be set manually and is

thus unreliable in the first place. For the purpose of this work,

we artificially compute related features to destination based

on the last position achieved per voyage.

Besides the features mentioned, additional information

about present water level, wind force and wind direction are

added to the state to capture potential underlying causalities

in ship maneuvering during different environmental situations.

At time step t, the state is then described as

st := {lont, latt, directiont, speedt, waterLevelt,

windForcet, windDirectiont,

angleToDestinationt, distanceToDestinationt},

with the vessel-related features representing the expert demon-

strated behavior. On the other hand, the agent’s actions are

proposals of courset and tempot (targetting directiont and

speedt, respectively) that are consistent with the next position

ŝt+1 of the imitated vessel under a constant-velocity evolution

rule between the two time steps of interest,

at := {courset, tempot}.

That is, ŝt represents the location of the imitated vessel as

predicted by the agent, which is expected to be close to the

corresponding information in the ground truth st.

D. Training Parameters

A fully connected neural network is used as internal regres-

sor of Behavioral Cloning, whose architecture can be described

by using the notation of ni
h = N , where n is the i-th hidden

layer with N neurons. The network of n1
h = 512, n2

h = 256,

n3
h = 128 and n4

h = 64 is trained for 20 epochs with a

learning rate of α = 10−7 and a batch size of 32. The Adam

optimizer [35], a gradient-based algorithm to minimize the

loss function, is used during training. The dataset is split into

9071 trajectories for training and 2267 trajectories for testing

(where the prediction error is computed).

E. Evaluation Metric

To evaluate the performance of our agent, we follow the

approach of [5] by calculating the average prediction error for

each trajectory in the test set. Hereby, the great-circle distance

dH between the true and the predicted vessel positions on the

earth’s surface is derived from the haversine formula given the

geographical coordinates of the two points s1 and s2:

Fig. 3. Histogram showing the percentage of test trajectories and their
corresponding average prediction error during validation.

dH(s1, s2) = 2R arcsin

√

sin2 φ̃+ cosφ1 cosφ2 sin
2 cos λ̃

where R is the radius of the earth, φ1 and φ2 are the latitude

and λ1 and λ2 are the longitude values of points s1 and s2,

φ̃ = φ2−φ1

2 , and λ̃ = λ2−λ1

2 .

For every trajectory T in the test set, consisting of LT total

timesteps, the average prediction error based on the haversine

distance, APEH , is then calculated as:

APEHT =
1

LT

LT
∑

i=1

dH(si, ŝi) (2)

From this, the overall prediction error is defined to be the

median of all APEHs of every trajectory in the test set.

VI. RESULTS AND DISCUSSION

We present a quantitative and qualitative analysis of the

performance of our agent, mentioning possible improvements

and opening the discussion about the desired accuracy of

vessel predictions, as there is no consensus in the literature

yet about the definition of what a ºgoodº prognosis is.

The overall prediction error, which is the median of all

APEHs, defined by Eq. 2, is 362 meters with a median absolute

deviation of 250 meters. Figure 3 illustrates the percentage of

all test trajectories within certain ranges of APEH. More than

58% of generated trajectories have an APEH of less than 500

meters, while 4% have an APEH higher than 2 kilometers.

Setting a threshold for presumably ºgoodº predictions is not

straightforward, because multiple factors are involved, namely

the pure ship size, size of the observation window, average

gap size of passing ships, time horizon of the prediction and

uncertainty of the AIS signals. In our scenario Ð the coast

and port area of Bremerhaven Ð the observation window

spans roughly 360 square kilometers. Internally, the agent is

not aware of any restrictions, e.g., waterways. In fact, Figs.

5(a) and 5(b) reveal that many predicted trajectories go over

land. Splitting the system observation window into multiple

grid cells, that only span on water, will prevent unrealistic

predictions and potentially improve the overall accuracy.

The average ship size of our dataset is 163 meters in

length and 23 meters in width. It follows, that our overall
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(a) (b)

(c) (d)

Fig. 4. Supposedly ºgoodº generated trajectories. Black lines indicate the
ground-truth trajectories, while red lines indicate the agent’s prediction. The
APEHs and time horizons are 370 m and 68.5 min. for (a), 484 m and 31.16
min. for (b), 326 m and 22.8 min. for (c), and 141 m and 7.8 min for (d).

prediction error is in the order of two average ship lengths.

If the area of interest would be, for example, the Baltic Sea

and the generated predictions would have time horizons of

multiple hours, this could intuitively be labeled as an accurate

system. However, in a close quartered area such as the port

of Bremerhaven with small waterlines and ships passing one

another with less than 50 meters distance, this accuracy is

insufficient.

Nevertheless, the agent learns representative trajectories,

meaning that it tries to extract knowledge and behavior of

what an average human captain would do under certain

conditions. As the train and test datasets contain anomalies

and diverging behaviors from normality, the agent should not

even replicate those occurrences, that in return cause worse

prediction accuracy.

In order to get a better understanding whether the agent

actually learned the data distribution and representative tra-

jectories, we illustrate 2000 predicted trajectories and their

respected ground-truth in Fig. 5. The Fig. 5(a) shows, that the

agent reproduces the motion pattern of the two ferries. Though,

the same panel also indicates that generated trajectories are all

over the place, which differs significantly from the respective

(a) (b)

(c) (d)

Fig. 5. (a)-(b) 2000 generated trajectories by the agent (c)-(d) corresponding
ground-truth trajectories of the test dataset .

ground-truth data displayed in Fig. 5(c). Looking at the area

further north in Figs. 5(b) and 5(d), we see a comparable

motion cluster, that in the case of the agent predictions spreads

a lot wider.

Single instances of predictions are displayed for good

trajectories in Fig. 4 and supposedly bad trajectories with a

high APEH in Fig. 6. Here, Fig. 4(a) is a very well predicted

trajectory, starting in Nordenham and leaving Bremerhaven

towards the North Sea. Figures 4(b) and 4(c) are instances

where the APEH is low and therefore might be seen as

accurate. This is however misleading since the average errors

of these instances Ð although due to a sideways shift of the

prediction, following the ground-truth almost in parallel Ð are

326 m and 141 m, respectively, way higher than the typical

distances (< 50 m) at which ships pass close to each other,

therefore deeming the predictions as inaccurate.

In contrast, Fig. 6 shows, except for 6(b), that predictions

with some of the highest APEHs are not that far off the

ground-truth, especially in the case of Fig. 6(c). Although the

shapes of the predicted trajectories are similar, the agent did

not adjust the speed (or more precise the tempo) correctly,

which leads to situations where the agent is constantly trailing

behind the ground-truth.

VII. CONCLUSION

We proposed an approach that utilizes Behavioral Cloning

in conjunction with a 4-layer neural network as a method to

predict end-to-end vessel trajectories based on single input

states. Therefore, the system is more flexible than related work,

dropping the need for past input sequences while at the same

time allowing for variable output lengths. Results show that the

agent is indeed capable of learning isolated motion patterns,

e.g., the ferry ride between Bremerhaven and Nordenham or

the exiting towards the North Sea. The overall prediction error

of 362 meters is hard to categorize purely based on the raw
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(a) (b)

(c) (d)

Fig. 6. Supposedly ºbadº generated trajectories. Black lines indicate the
ground-truth trajectories, while red lines indicate the agent’s prediction. The
APEHs and time horizons are 2917 m and 29.1 min. for (a), 2315 m and 43.3
min. for (b), 2088 m and 70.8 min. for (c), and 2914 m and 51.3 min for (d).

number, as argued in the previous section. In its current form,

the system is insufficient for maritime surveillance close to

the port. However, this work is the first of its kind and by

consecutive research and the investigation of improvements,

the performance could increase to practical level to be usable

in a real-world scenario.

A future research avenue contemplates using feature extrac-

tors more sophisticated than the simple multi-layer perceptrons

used. We also invite researchers to follow up and propose

a standard metric to evaluate vessel trajectory prediction

systems.
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APPENDIX

Custom definitions of ship types based on the used vessel

database [33] present in the dataset:

’Bulk Carrier’, ’Bunkering Tanker’, ’Cargo’, ’Cargo A’,

’Cargo B’, ’Cargo C’, ’Cargo D’, ’Cement Carrier’, ’Chem-

ical Tanker’, ’Container Ship’, ’Edible Oil Tanker’, ’Gen-

eral Cargo’, ’Heavy Lift Vessel’, ’Heavy Load Carrier’,’Lpg

Tanker’, ’Oil Products Tanker’, ’Oil/Chemical Tanker’, ’Pas-

senger’, ’Passengers Ship’, ’Ro-Ro Cargo’, ’Ro-Ro/Passenger

Ship’, ’Suction Dredger’, ’Tanker’, ’Tanker A’, ’Tanker B’,

’Trailing Suction Hopper Dredger’,’Vehicles Carrier’, ’Waste

Disposal Vessel’
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