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51147 Cologne, Germany

mi.mueller@dlr.de, hans-peter.kersken@dlr.de, christian.frey@dlr.de

ABSTRACT
When considering flutter problems, unsteady effects in tur-

bulence quantities are frequently not taken into account when
using time-linearized methods. However, several studies have
demonstrated that it can be necessary to resolve those effects
in certain cases. The harmonic balance method is inherently
able to capture the time dependent behaviour of the turbulence
model. However, the method can suffer from instabilities due
to problems in the turbulence model. As a possible solution, a
logarithmic formulation of the ω equation of the Wilcox k-ω
model is applied to the Harmonic Balance method in this pa-
per. The combination is validated using a flutter computation
of the NACA 3506 airfoil. One of the operating points exhibits
significant oscillations in a shock induced separation. Resolv-
ing the unsteady behaviour of the boundary layer proved to
be crucial to obtain a converged solution with the harmonic
balance method. Both model variants were able to achieve sat-
isfactory results. However, the log(ω) model variant was able
to provide advantages in accuracy and convergence, especially
under unfavourable conditions.

INTRODUCTION
Time-linearized methods are frequently used to assess the

aeroelastic behaviour of turbomachinery blades and vanes. In
those methods, the unsteady effects on the flow field are taken
into account by linearizing the flow equations and considering a
harmonic perturbation of the steady state solution. Sometimes,
it is assumed that turbulence models do not need to react to

the oscillations in the flow to capture the aeroelastic behaviour
with sufficient accuracy. Therefore, the steady state solution
of the turbulence model is never updated. This method usu-
ally performs well when considering phenomena like flutter
oscillations for the most common flow and operating condi-
tions [1]. However, as e.g. Rendu et al. [2] showed, resolving
the unsteady oscillations of the turbulence model can be neces-
sary for some cases. This ensures not only an accurate predic-
tion the damping coefficients, but in some cases it is required
to get any converged solution at all. Utilizing common time-
linearized methods to capture those effects is not necessarily
straight-forward, e.g. Philit et al. [3] linearized the k-ω turbu-
lence model for this purpose. A different approach is to use the
common turbulence models in a solution method that is inher-
ently able to capture the oscillations in the turbulent quantities.
One example is the non-linear frequency domain method har-
monic balance. While Heners et al. [4] demonstrated that the
method is able to accurately predict the damping coefficients
for a case with a shock wave boundary layer interaction, the
method sometimes lacks stability [5]. This problem is not lim-
ited to flutter cases. Harmonic balance can also be used to effi-
ciently investigate forced response or general multi row cases.
A sufficiently accurate and stable turbulence model is neces-
sary to provide all capabilities of standard URANS solvers.
The insufficient stability, caused by unphysical oscillations in
the turbulent quantities, can be addressed by reformulating the
turbulence model to use a logarithmic ω equation. In this pa-
per, the different formulations are compared using a flutter case
with different flow conditions. One operating remains sub-
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FIGURE 1: Oscillations in ω around a poorly resolved wake in
a rotating duct segment

sonic and provides a baseline comparison. The second operat-
ing point shows an oscillating shock induced separation which
causes a significant time dependent behaviour in the boundary
layer. The flow conditions for this point are similar to the cases
examined by Duquesne et al. [6] and Heners et al. [4].

NUMERICAL METHOD
In contrast to the flow quantities like density or pressure,

the value range of the variables used in the common two equa-
tion turbulence models regularly spans several orders of mag-
nitude. Especially the turbulent dissipation rate ω used in mod-
els like Wilcox k-ω [7] or Menters SST k-ω [8] model changes
rapidly from low free stream values to very high values close
to the wall, in separation bubbles or in wakes. In the harmonic
balance method, the temporal evolution of ω is approximated
by a finite Fourier series. High gradients in this signal can
lead to oscillations resembling the Gibbs phenomenon. Due
the high peaks combined with small average values, the recon-
structed ω at the sampling points can reach unphysical nega-
tive values. This behaviour is visible in figure 1 where a wake
with high values of ω passes from a stator into an empty ro-
tating duct segment. Here, this wake must then be represented
by three harmonics as an unsteady phenomenon in the rotating
duct. However, the high but narrow peak of the wake can not
be correctly resolved and oscillations become visible. In this
case ω does reach values below zero, but this is not enough to
strongly disturb the solver.

Negative values of ω are unphysical and can cause sta-
bility problems. Limiting ω to values greater than zero is
not sufficient to ensure stability and accuracy. This decouples

the residuum calculated based on ω from the actual value de-
scribed by the harmonics, which has a negative impact on con-
vergence. Increasing the number of harmonics considered also
increases the computational cost. To address this problem, we
implemented a logarithmic ω formulation for turbulence mod-
els based on the work of Bassi et al. [9]. There, the reformu-
lated turbulence model was used to deal with oscillations in a
RANS discontinuous Galerkin solver. A logarithmic formula-
tion of the ω equation can offer two advantages. Firstly, the in-
verse function elogω always returns a positive value. Secondly,
the value range of the new variable log ω is smaller than that
of ω . This also means that the gradients, for instance between
the peak in the wake and the surrounding freestream values of
ω , get smaller. The two turbulence model formulations remain
mathematically equivalent , but differences may occur due to
discretization.

The derivation is straightforward by starting e.g. from
Wilcox’s k−ω equations [7]:
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with the turbulent kinetic energy k, the specific dissipation rate
ω , and the production term Pk. A variable ω̃ can be introduced

ω̃ = logω ⇐⇒ ω = eω̃ (3)

The new variable ω̃ can now be substituted in for ω in Eqn. (1)
and Eqn. (2). This substitution is only meaningful if ω is a
dimensionless quantity, therefore the following equations are
to be understood as dimensionless. The result can be simplified
to Eqn. (4) and Eqn. (5):
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FIGURE 2: Reduced oscillations in ω when calculated from
the solution obtained with the logarithmic formulation
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This variable substitution adds an additional term in
Eqn. (5) compared to its origin, Eqn. (2). The effect of the
logarithmic reformulation is visible in Fig. 2. As in Fig. 1, the
wake has to be resolved in the rotating duct segment by three
harmonics. Oscillations are still visible, however their magni-
tude is significantly reduced. In particular there are no longer
values below zero which can prove problematic for the stability
and accuracy of the simulation. Figure 3 compares the incom-
ing wake profile to the profiles resolved in the rotating refer-
ence frame. The wake profile of the k-ω simulation is plotted
in blue, the corresponding result of the Fourier decomposition
and reconstruction done in the harmonic balance solver is plot-
ted in black. The unphysical oscillations are clearly visible,
one undershoot reaches values below 0. In contrast, k-log(ω)
does not exhibit the strong undershoots with a comparable in-
flow profile. Additionally, the peak value is better represented
and the wake is now resolved slightly sharper.

The reformulated models are also compatible to com-
monly used modifications, e.g. those used to ensure realizabil-
ity and improve the prediction of the production of k in stagna-
tion points or shocks. The modification proposed by Kato and
Launder [10] is used in the simulations presented here. Us-
ing the substitution of Eqn. (3) it is also possible to use other

FIGURE 3: Reconstructed ω in the rotating channel. The wake
profile transported into the interface is coloured blue. The re-
sulting profiles in the first cell of the rotating reference frame
is plotted black for k-ω and red for log(ω)

modifications, such as Durbin’s constraint [11].
This reformulation of the k-ω and the SST model has been

implemented in DLRs turbomachinery CFD solver TRACE
[12]. TRACE uses the finite volume approach to solve the
Reynolds-averaged Navier-Stokes (RANS) equations. The
density based, compressible solver attains second order accu-
racy using Roe’s upwind scheme and a MUSCL extrapolation.
A van Albada type flux limiter is used to smooth large gradi-
ents, e.g. in the vicinity of shocks. For the solution of turbu-
lence equations a conservative, segregated method is used. A
second order Euler backwards method is used for time domain
URANS simulations. The reformulated models were validated
on basic turbulence modelling cases in [13]. As expected for
mathematically identical models, the grid converged solutions
remained identical between the two model formulations.

The Harmonic Balance solver implemented in TRACE is
build upon the RANS/URANS solver. The aim of the method
is to solve the RANS equations for time periodic solutions in
the frequency domain. The RANS equations can be written as

dq(x, t)
dt

+R(q(x, t)) = 0 (6)

with the vector of conservative variables q, the discretised
residual vector R and the physical time t. For a time periodic
flow field, q can also be expressed as a partial Fourier series.
Equation 6 can then be formulated in the frequency domain:

ikwq̂k + R̂(q)k = 0 (7)
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where q̂k are complex valued Fourier coefficients for the con-
servative flow variables. The residual R̂(q)k is now also com-
plex. As a partial Fourier series, only a finite number of har-
monics, k = 0, . . . ,K, are considered. Due to the inherent non-
linearity of the Navier-Stokes equations R̂(q)k may depend on
the flow variables q̂k of all harmonics. Several methods with
varying degrees of complexity and accuracy have been devel-
oped to solve Eqn. (7) by giving different expressions for R̂(q)k
. The simplest is to linearise the equation with the intention
of completely decoupling the different harmonics from each
other [14]. In a related approach, nonlinear correction terms
are added to model the nonlinearity [15,16]. In the HB method
the nonlinear residuals are computed in a different manner [17].
They are first calculated in the time domain and then trans-
formed into the frequency domain via a discrete Fourier trans-
formation (DFT).

R̂(q)k = F (R(F−1q̂)) (8)

with Eqn. (7) this leads to base equation for the harmonic bal-
ance method:

ikwq̂k +F (R(F−1q̂)) = 0 (9)

with F the DFT and F−1 its inverse. Before the residual in
the frequency domain can be calculated, an inverse DFT recon-
structs several solutions for different points in time from the
Fourier coefficients qk. Once the residuals are calculated, the
K+1 equations given in Eqn. (7) are solved by a pseudo-time-
stepping scheme. The changes made to the turbulence models
only affect the time domain calculation of the original resid-
ual function R(q). More details about the Harmonic Balance
solver implemented in TRACE can be found in [18].

TEST CASE

The k-log(ω) model is applied here to a compressor test
case using the NACA 3506 profile, representing a section of a
rotor with 20 blades. A rounded trailing edge is constructed by
replacing the trailing edge region with a circle at 97% of the
camber line, so that it tangentially intersects the suction and
pressure side. An AVDR was applied starting from the leading
edge and increasing to 1.05 at the trailing edge. This was done
by linearly reducing channel height. The geometric definition
of the test case can be found in Tab. 1:

Table 1: Geometric Definition
Variable Value
Airfoil NACA 3506
Chord Length (Base Profile) 80 mm
Center of trailing edge circle 97% on camber line
Stagger Angle 40°
AVDR 1.05
Axial Position Leading Edge 51.6 mm
Domain length 160 mm
Number of blades 20
Hub Radius 195 mm
Base Channel Height 3 mm

This geometry was meshed with a structured grid. The first
cell distance was chosen so that y+ < 1 and the stretching ratio
at the blade surface was set to remain at or below 1.1. Addi-
tionally to this baseline grid with about 62.000 cells four more
grids were created. Two of those keep the y+ constant, the
other two also refine the first cell. All grids were created by in-
creasing or decreasing the number of grid points by a constant
value in both directions. The grids are labelled according to the
number of cells compared to the baseline grid. Cell counts and
approximate y+ values can be found in Tab. 2:

Table 2: Grids
Name Cell count y+

Grid 0.5 const. y+ 30,500 y+ ≈ 0.5
Grid 1 (baseline) 62,000 y+ ≈ 0.5
Grid 2 const. y+ 125,000 y+ ≈ 0.5
Grid 4 ref. y+ 304,000 y+ ≈ 0.22
Grid 16 ref. y+ 1,120,000 y+ ≈ 0.07

Two different operating conditions are considered. Oper-
ating point one (OP1) remains subsonic with a pressure at the
outlet of 220 kPa and does not exhibit a strong dependence on
the turbulence model. Operating point two (OP2) is transonic
with a pressure of 205.5 kPa. The aerodynamic parameters and
boundary conditions are summarized in Tab. 3 and 4.

Table 3: Aerodynamic Definition
Variable OP 1 OP 2
Reynolds Number 2.5 ·106 3 ·106

Mach Number 0.58 0.74
Outlet static pressure 240 kPa 205.5 kPa
Inflow Angle 45° 45°
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Table 4: Inlet Boundary Conditions
Variable Value
Stagnation Pressure 293 kPa
Stagnation Temperature 293 K
Inflow Angle 45°
Turbulence Intensity 2%
Turbulence Length Scale 4.5e-5 m

The steady flow field for the second operating point is vi-
sualized in Fig. 4. To demonstrate the effect of the logarithmic
model, the OP 2 test case was modified to include a rotating
duct into which the wake of the airfoil is transported. The re-
sult for the k-ω model is shown in figure 1. A translational
movement normal to the chord, representing a bending mode,
with a frequency of 227 Hz and an amplitude of 1.25 % of
the chord length was added to both OP for the flutter simula-
tions. This results in a reduced frequency of k = 0.667 based on
Eqn. (10). With this flutter movement, OP 2 displays flow phe-
nomena similar to those examined by Duquesne et al. [6] and
Heners et al [4]. In this case, the shock interacts strongly with
the boundary layer, making the correct treatment of turbulence
important.

k =
2π f c

u
(10)

The harmonic balance method with three harmonics was
used to calculate aerodynamic damping curves for both ver-
sions of the turbulence model. While a single harmonic is not
yet sufficient for harmonic convergence, the damping curves
calculated with three and six harmonics are identical for both
model variants. For suitable inter blade phase angles (IBPA),
multi passage time domain URANS simulations were also per-
formed. A simulation was judged as converged when the vari-
ance in massflow, pressure ratio and the aerodynamic work on
the blade dropped below 0.01%.

RESULTS
The aerodynamic damping curve for the frist operating

point is plotted in Fig. 5. The unsteadiness in the boundary
layer is minimal and the turbulence model has no large effect
on the damping curve. As expected, the two model variants do
not show relevant differences. This curve remains identical if
the higher harmonics of the turbulence model are neglected.

The aerodynamic damping coefficients for the second op-
erating point and both turbulence model variants are depicted
in Fig. 6. Additionally, the results of time domain URANS sim-
ulations are marked for several IBPA. The time domain simu-
lations agree very well with their respective frequency domain
counterparts. The two model variants predict qualitatively the

FIGURE 4: Mach number around the NACA 3506 airfoil

FIGURE 5: OP 1: Aerodynamic damping coefficients for both
turbulence model formulations

same damping curve. However, differences are visible espe-
cially for negative IPBAs. Since the solution on the baseline
mesh has not yet reached grid convergence, certain differences
can be expected.

For the this operating point it is necessary to account for
the unsteady effects of the shock wave boundary layer interac-
tion on the turbulence model by considering higher harmonics.
It was not possible to bring all points of the flutter curve to
convergence when only a time-averaged turbulence model was
used. The choice of turbulence model variant did not influence
that. The time-averaged approach is not the same as completely
freezing the turbulence model in place, as commonly done for
linearized calculations. The turbulence quantities will be up-
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FIGURE 6: OP 2: Aerodynamic damping coefficients for
both turbulence model formulations compared to time domain
URANS results

dated every iteration based on the changes in the time averaged
solution. The reason why this is insufficient is visible in Fig.
7. The shear stress on the blade surface is plotted at two dif-
ferent points in time for the IBPA -72° point in Fig. 7. The
points were chosen to visualize the extrema during an oscilla-
tion. Similarly to what Duquesne et al [6] demonstrated, the
turbulence model has to account for very different flow states
during one period. In this case the shock triggers a separa-
tion on the suction side of the profile. This separation bubble
is open during part of the oscillation, but remains closed for
most of it. The time resolved shear stress in the suction side
separation bubble is depicted in Fig. 8 at 92% of chord. The
separation with negative shear stresses is only present during
part of the cycle. This is accompanied by a cyclic increase
and decrease of the boundary layer thickness. The turbulence
model has to be able to resolve this time dependent behaviour
to correctly represent the physics and allow the simulation to
converge.

The imaginary part of the first pressure harmonic is plotted
in Fig. 9, again for an IBPA of -72°. The effect of the shock is
clearly visible in the peaks on the suction and pressure side. To-
gether they will dominate the aeroelastic behaviour. The peak
on the pressure side is stronger and sharper compared to the
suction side. The two model variants agree very well with each
other at the pressure side peak. There is a slight difference in
the peak location between the URANS and HB simulations of
a single cell. However, the very good agreement of URANS
and HB in Fig. 6 demonstrates that this does not significantly
affect the aerodynamic damping. Contrary to the first shock,
HB and URANS agree well on the pressure harmonic at the
trailing edge shock position. Only here, in the region of the

FIGURE 7: Extrema of the instantaneous shear stresses for HB
k-ω OP2 and an IBPA of -72°

FIGURE 8: Time resolved shear stress at 92% of chord length
for different IBPA

periodic flow detachment, are differences between the turbu-
lence model variants visible. In contrast, where the two model
variants coincide in the flutter curve, for IBPAs from 0° to ca.
90°, the flow reattaches after a small shock induced separa-
tion at the same position. This is visible in the time dependent
shear stresses pictured in Fig. 8. Compared to an IBPA of -
72°, the shear stresses never reach negative values for an IBPA
of 0° at this position. Since the flow is always attached, there
are no strong time dependent changes in the turbulence quanti-
ties. The two model variants do not differ noticeably from each
other under these conditions.s

With increasing IBPAs, the flow starts to become unstable
and differences due to the turbulence model emerge. This sen-
sitivity of the test case to the turbulence model is not limited to
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FIGURE 9: Imaginary part of the first pressure harmonic for
HB OP2 and an IBPA of -72°

the pressure side shock. If the modification of the production of
turbulent kinetic energy of Kato and Launder [10] is replaced
by Durbin’s constraint [11], the other shock also induces a very
small separation during part of the oscillation. The shape of the
resulting flutter curve is almost unchanged, but again slightly
shifted especially for negative IPBAs.

The pulsating separation bubble is visible in both turbu-
lence model variants and qualitatively behaves in the same way.
To investigate the differences visible in Fig. 6 and 9, a grid re-
finement was also done for this operating point using steady
RANS simulations. In this case, steady simulations are suffi-
cient to demonstrate the differences of the model variants on
grids that have not reached grid convergence. The isentropic
Mach numbers on the blade surface are plotted in Fig. 10. The
different grid levels are marked according to their cell count
compared to the baseline grid. All pictured grids keep the y+

constant under refinement. The standard k-ω model is depicted
in blue colours, the logarithmic variant in red. The position of
the shock does not depend on the model variant. This is also
true for the time averaged shock positions when unsteady ef-
fects are accounted for with URANS or HB. Small differences
in the peak values are visible between the different grid reso-
lutions, but those do not mark a relevant shift in the shock po-
sition. The increased streamwise resolution smooths the plots
and enables a better localization of the shock in between the
neighbouring cells of the coarser grids. Since this is the same
for both model variants, this does not offer an explanation for
the differences in the damping curve.

More relevant differences are visible in the shear stress
pictured in Fig. 11. Depicted are the results calculated on the
baseline grid and two refined grids for each model variant. The
refined grids used here are the finest grids of each refinement

FIGURE 10: Isentropic Mach number around the blades for
different grid resolutions with constant y+

method, one with a constant y+ and one with a refined y+. For
clarity, the solutions on grid 0.5 with constant y+ and grid 2
with refined y+ are not shown. Refining the baseline grid with
a constant y+ results in a slight shift of the solution for the
standard k-ω variant. This is especially visible in the enlarged
view, where the two dashed blue lines demonstrate this differ-
ence. The corresponding two orange lines for k-log(ω), on
the other hand, coincide for everything except the exact shock
location, as previously discussed with Fig. 10. Nevertheless, a
much larger difference in the shear stresses remain between the
model variants than between the mesh resolutions. If, on the
other hand, the first wall distance is also refined, the behaviour
expected from the theory is obtained. Both model variants con-
verge towards the same grid independent solution. The results
on the finest grid are plotted in red for k-log(ω) and in black
for k-ω and can serve as a reference. Both of those solutions
almost coincide and are in the vicinity of the two other log(ω)
solutions in orange. The two k-ω solutions in blue lie some-
what apart from all other results. Therefore, the mesh conver-
gent result is very close to that of the log(ω) versions, even
when calculated using the baseline grid. The jumps between
the mesh resolutions tend to be larger for the standard ω vari-
ant. Approaching grid convergence, however, requires a very
good resolution of the boundary layer, with a y+ of less than
0.1. Basic turbulence model test cases already showed a im-
proved behaviour of the logarithmic model variants under grid
refinement [13].

The two model variants usually need a different number
of iterations to reach convergence, as depicted in Fig. 12. k-
log(ω) converges quicker for almost all IBPA, with few ex-
ceptions among those points that converge fastest anyway. For
most points the speed-up is around 5-8%, with a maximum at
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FIGURE 11: Shear stress on the blade surface for k-ω and k-
log(ω) models and different grid resolutions

FIGURE 12: Number of iterations needed to satisfy the conver-
gence criteria in OP 2

13% for an IBPA of -52°. This speed-up is noticeable for the
longer running simulations, which also determine the run time
for a complete damping curve.

It is possible to demonstrate the instability problems with
the standard k-ω model by changing the turbulence quantities
in the inflow and increasing the CFL number. An increase in
the free stream ω caused by a moderate change of the turbu-
lent length scale from 4.5 · 10−5 m to 2 · 10−5 m is combined
with an increased CFL number of 50. Otherwise the test case

FIGURE 13: Convergence of the aerodynamic damping for sev-
eral IBPA under unfavourable conditions

is identical to OP 2. This causes a higher ω in the detached
flow region and in the wake. Due to the periodic detachment
and reattachment of the flow, the wake has to be resolved by
higher harmonics. The increased values of ω in the boundary
layer are transported into the wake, where the amplitude of the
harmonics of ω also increases. As visible in Fig. 13, this sig-
nificantly influences the convergence of the affected IBPA. The
negative IBPA from -36 to -90 are again affected most, as they
show the strongest unsteady behaviour in the separation bub-
ble. The k-log(ω) model can show its advantages under these
condition and converges significantly faster. In the case of an
IBPA of -54° the k-ω model reaches an unphysical flow state
close to the trailing edge of the profile and the simulation ter-
minates. The logarithmic model variant does not exhibit this
problem and converges faster.

SUMMARY AND CONCLUSIONS
A logarithmic formulation of the k-ω turbulence model

was implemented in DLR’s turbomachinery CFD solver
TRACE. This turbulence model variant was applied to two op-
erating points of a flutter test case based on the NACA 3506
profile using the harmonic balance method. No differences be-
tween the model formulations were observed under the condi-
tions of OP1. Including higher harmonics when solving the tur-
bulence model did not affect the flutter curve or convergence,
indicating that there are no relevant unsteady flow phenomena
in the boundary layer. Both model variants performed equiva-
lently with regard to accuracy and convergence.

The second operating point, however, was very sensitive
to small changes in the turbulence model. The shock induced
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separation on the suction side was heavily influenced by the
oscillation of the shock for negative IBPA. Depending on the
phase position in an oscillation, the separation bubble remained
either detached for the last 15% of the cord or quickly reat-
tached close to the shock. It was necessary to enable the turbu-
lence model to resolve this unsteady behaviour of the boundary
layer in order to get a converged solution. The two turbulence
model variants did predict comparable aerodynamic damping
curves, in excellent agreement with their respective time do-
main URANS simulations. However, differences were notice-
able especially for those inter blade phase angles exhibiting the
oscillating separation bubbles. Refining the grids with or with-
out keeping y+ constant showed differences between the model
variants, which agreed with the result of a previous study using
only basic turbulence modelling test cases. The log(ω) model
variant converges against the same gird independent solution as
the standard k-ω model. A substantial refinement of y+ is nec-
essary to approach true grid independence, for both model vari-
ants. However, the k-log(ω) model generally showed smaller
errors. For about half of the IBPAs, among them the longest
running simulations, the logarithmic model converged in about
5% less iterations. For the rest, it performed largely on par with
the standard variant.

The logarithmic model variants were implemented with
the idea to bring more stability to harmonic balance simula-
tions. In the case of the flutter problems considered in this pa-
per, it compares favourably with the standard variants in terms
of accuracy, grid dependence and convergence. In simple ap-
plications, such as the first OP, it did not bring any disadvan-
tages. For simulations where the time dependent behaviour of
the turbulence quantities has a large influence, however, we
were able to demonstrate advantages of the k-log(ω) model.
Under unfavourable conditions, this model was able to provide
a converged solution where the standard model reached an un-
physical flow state and terminated early. In our experience,
the use of the logarithmic models can indeed help outside of
academic test cases, if the stability problems are related to the
turbulence model. However, determining this with certainty is
difficult and time-consuming. In addition, the problems iden-
tified may not be easy to solve. The use of the log(ω) model
variants could provide several advantages at minimal cost.

NOMENCLATURE
Abbreviations
AVDR Axial velocity density ratio
CFD Computational Fluid Dynamics
DFT Discrete Fourier Transform
DLR Deutsches Zentrum für Luft- und Raumfahrt

(German Aerospace Center)
HB Harmonic Balance
IBPA Interblade Phase Angle
OP Operating Point
URANS Unsready Reynolds Averaged Navier Stokes

Latin
i Complex unit
k Turbulent Kinetic Energy
K Turbulent Kinetic Energy
Ma Mach number
P Production of turbulent kinetic energy
q Vector of conservative flow variables
R Flow residual
Re Reynolds number
t Time
u Velocity
w Angular Frequency

Greek
α,β Model constants of the Wilocx k-ω model
ρ Density
µ Eddy viscosity
ω Turbulent dissipation rate

Operators
F Fourier transform
F−1 Inverse Fourier transform

Superscripts & Subscripts
•̂ Fourier coefficient
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