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Abstract 

Background 

Lung cancer (LC) is the leading cause of cancer mortality worldwide. Poor survival is driven by late 
onset of non-specific symptoms, resulting in advanced stage diagnoses. Evidence for the efficacy 
of low-dose CT (LDCT) screening in detecting cancer earlier, thereby reducing lung-cancer specific 
mortality, is now well established. Attention has turned to developing and implementing 
screening programmes in the population. A key aspect of an effective screening programme is the 
successful selection of participants; this ensures a favourable benefit-to-harm ratio for 
participants and an efficient and cost-effective programme. This thesis aims to improve screening 
selection in socio-economically disadvantaged populations by identifying areas of sub-optimal 
performance and considering strategies for further improvement. The focus on socio-
economically deprived populations is of particular importance, as lung cancer risk is often higher 
in these subgroups, positioning them to be an ideal target population for LDCT screening. 

Methods 

I) A retrospective study of the Manchester Lung Health Check (LHC) pilot, a community-based LC 
screening programme, comparing the selection performance and calibration of National Lung 
Screening Trial (NLST) criteria and two risk prediction models (RPMs) (PLCOM2012 and LLPV2), as well 
as the comorbidity profile of the screening cohort. II) Retrospective modelling of a benefit-based 
selection approach (LYFS-CT) in the LHC pilot, comparing performance with a risk-based approach 
and examining the characteristics and outcomes of the screening cohort. III) A Manchester-based 
case-control study validating nine published polygenic risk score (PRS) tools and assessing if they 
could improve risk prediction. IV) A cross-sectional questionnaire study of LHC programme 
participants, examining risk perception, worry and disease knowledge. 

Results 

There were significant differences in screening selection performance based on the method of 
selection used. RPMs contributed to increased screening efficiency compared to NLST, but under-
estimated LC risk in this population and selected a screening cohort with high levels of 
comorbidity. Inclusion of spirometry (FEV1/FVC ratio) or coronary artery calcification in RPMs may 
improve risk prediction but would further increase participant comorbidity. LYFS-CT selected 
significantly younger and less comorbid participants but also directed screening away from the 
most socio-economically disadvantaged. Eight PRS tools were successfully validated in the 
Manchester cohort and two novel genetic loci were identified for possible inclusion in a future 
PRS. Participants’ comparative risk perception was more accurate than absolute risk perception. 
Women and those at high LC risk were more likely to have adverse psychological indicators.  

Conclusion 

Risk-based selection leads to high screening efficiency, but RPMs are not well calibrated for use in 
socio-economically deprived populations and the optimal RPM and risk threshold strategy is 
unclear. Benefit-based selection may be an important tool for maximising the screening benefit 
provided to participants. Prospective studies are required to further elucidate the most 
advantageous selection strategy. Inclusion of genetic risk factors in RPMs may improve both risk- 
and benefit-based screening selection. Comparative-based language and decision aids should be 
employed for communicating risk to screening participants and ensuring effective shared decision 
making.   
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Chapter One - Introduction 

1.1 Epidemiology of Lung Cancer 

Lung cancer is the second most common cancer worldwide, with an estimated 2.2 million new 

cases in 2020, representing approximately 11% of total cancer diagnoses. It is the most common 

cancer in men and third most common cancer in women. Lung cancer is the leading cause of 

cancer mortality, with 1.8 million people dying of the disease in 2020, representing 18% of total 

cancer deaths [1]. In the UK, approximately 48,000 new lung cancer cases are diagnosed annually, 

making it the third most common cancer (13% of all cancer cases). One-in-fifteen UK women and 

one-in-thirteen UK men will be diagnosed with lung cancer in their lifetime. Overall incidence 

rates decreased by 9% between 1993 and 2018, primarily as a result of reductions in risk factor 

exposure [2]. However, there is considerable divergence between the sexes; UK female age-

standardised incidence rates increased by 32% between 1993 and 2018, compared to a decrease 

of 34% for males over the same period [3] (Figure 1). This may be partially driven by sex 

differences in historic smoking patterns, although other factors have also been implicated. For 

example, women are at higher risk of developing adenocarcinoma, a specific histological subtype 

of lung cancer. It is possible that the popularisation of filtered cigarettes in the 1970s (which 

increase the risk of adenocarcinoma over other lung cancer subtypes) coincided with large 

increases in female smoking rates, resulting in accelerated incidence among women [4].  

 

Figure 1. UK lung cancer incidence by year of diagnosis (1993-2018), overall and stratified by sex. 
Created using data sourced from CRUK [3]. 
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In the UK, lung cancer is responsible for more than 20% of cancer deaths, making it the leading 

cause of cancer death for British men and women; almost 100 people die from the disease daily 

[5]. Since 1971, age-standardised mortality rates have decreased by 29%. Like for incidence rates, 

this statistic masks a marked difference between the sexes; male mortality decreased by 58% over 

this period, whilst female mortality increased by 81%. However, in the most recent decade for 

which there is complete data, mortality rates have decreased for both sexes (male: 22%; female: 

5%) (Figure 2) [6]. Age-stratified mortality trends show that rates peaked and fell in younger age 

groups before older age groups. Most mortality reduction is caused by lower rates of smoking 

uptake, rather than higher quit rates. Consequently, it takes longer for mortality rates to drop in 

older age groups who have much higher rates of ever-smoking (even if a proportion are former 

smokers), compared to younger age groups who are less likely to start smoking initially [6]. 

Mortality is projected to decrease further in the next 15 years, with a 28% reduction forecasted 

between 2014 and 2035 [7].  

 

Figure 2. UK lung cancer mortality by year of death (1971-2018), overall and stratified by sex. 
Created using data sourced from CRUK [6]. 

1.2 Lung Cancer Subtypes 

Cancer is characterised by cells that have acquired key biological abilities (‘hallmarks’), facilitating 

their development into malignant tumours. Six of these hallmarks were originally defined by 

Hanahan and Weinberg in a paper published in 2000: self-sufficiency in growth signals, 

insensitivity to anti-growth signals, tissue invasion and metastasis, limitless replicative potential, 

sustained angiogenesis, and evasion of apoptosis [8]. In 2011, Hanahan and Weinberg proposed 

two additional hallmarks: reprogramming of energy metabolism and evading immune destruction, 

as well as two enabling characteristics: genome instability and mutation, and tumour-promoting 

inflammation [9]. Lung cancer occurs when cells in the lungs or airways acquire these biological 

abilities, transform, and develop into malignant tumours.  
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The most common pathological subtype of lung cancer is non-small-cell lung cancer (NSCLC), 

comprising approximately 80-85% of cases. NSCLC can be further subcategorised histologically 

into adenocarcinomas, squamous cell carcinomas, and large-cell carcinomas. Adenocarcinomas 

and squamous cell carcinomas are the most commonly diagnosed subtypes of NSCLC (~40% and 

~30% of diagnoses respectively), with squamous cell carcinomas strongly associated with tobacco 

smoke exposure and adenocarcinomas being the dominant subtype in non-smokers with lung 

cancer [10]. Small-cell lung cancer (SCLC) is less common but more aggressive than NSCLC, with 

faster doubling times and a greater propensity to metastasise early [11]. The genetic diversity and 

clinical differences between SCLC, adenocarcinomas and squamous cell carcinomas have led some 

to suggest that these subtypes should be treated as distinct diseases [12]. 

1.3 Prognosis and Diagnosis 

Lung cancer prognosis is poor. In England and Wales, only 40% of patients survive for a year 

following diagnosis. This proportion drops to approximately 16% survival over five years and 10% 

survival over ten years [5]. In four decades, five-year age-standardised survival only improved by 

7% for women and 4% for men [13]; this stands in stark contrast to the doubling of overall cancer 

survival in the UK in that time [14]. 

Poor lung cancer survival is driven by late diagnosis in the majority of patients. NSCLC progression 

is classified using the TNM (tumour, node, metastasis) staging system, describing the size of the 

tumour and extent of spread to the lymph nodes and rest of the body. The TNM system can be 

used to define the overall stage of the disease described by the number staging system; stage I 

and stage II refer to tumours that are ‘early stage’ (small and contained within the lungs), stage III 

and stage IV refer to advanced or ‘late stage’ cancers that have grown and spread to other tissues 

and organs [15]. Most lung cancer cases are diagnosed at a late stage, with approximately half 

diagnosed at stage IV, at which point the cancer has metastasised and is incurable [5]. The one-

year survival rate of stage IV disease is 19%, compared to 88% for those diagnosed at stage I [16]. 

Even within stage I, tumour diameter is predictive of survival. Five-year survival decreases by 5% 

for each 1 cm that tumour diameter increases; this emphasises the importance of early detection, 

even at the earliest stage of lung cancer development [17]. 

Late clinical presentation of lung cancer is caused by the asymptomatic nature of early-stage 

disease; even when symptoms do appear, they are largely non-specific. The National Institute for 

Health and Care Excellence (NICE) advises doctors to activate the lung cancer referral pathway if a 

patient aged over 40 suffers from any two of: fatigue, cough, shortness of breath, chest pain, 

weight loss or appetite loss. If the patient is an ever-smoker, they are referred with any one of 

these symptoms. Any patient is referred immediately if they suffer from one of: finger clubbing, 

persistent or recurrent chest infections, supraclavicular lymphadenopathy or thrombocytosis [18]. 
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Many of these symptoms are indicators of other smoking related conditions, such as COPD and 

emphysema. This can result in lung cancer remaining undetected even after the presentation of 

symptoms.  

1.4 Treatment 

Treatment options for lung cancer depends on the stage of the disease, tumour subtype, as well 

as the condition of the patient. Treatment success rates are always superior when the cancer is 

detected at an early stage. Early-stage NSCLC is often most successfully treated through surgery, 

with a lobectomy (partial lung removal) or pneumonectomy (full lung removal) providing the most 

favourable survival statistics for patients with stage I and stage II diseases. Resection rates in the 

UK doubled from 9% to 18% between 2006 and 2018 [19].  

Radiotherapy or chemotherapy may be offered in addition to surgery to reduce the chance of 

recurrence, or instead of surgery for high-risk patients or patients with unresectable tumours [20]. 

Stereotactic ablative radiotherapy (SABR) is a form of radiotherapy which uses multiple thin 

beams of radiation directed from multiple angles to target doses more accurately at the tumour; 

there is evidence that it provides more favourable outcomes than standard radiotherapy in early-

stage NSCLC [21,22], and is recommended by NICE as the preferential treatment modality for 

patients who cannot undergo surgery [23]. 

Patients with stage III NSCLC may be offered adjuvant chemotherapy followed by surgery (or vice 

versa), chemoradiation (a combination of radiotherapy and chemotherapy), or external 

radiotherapy. Stage IV NSCLC is usually treated palliatively, with chemotherapy, radiotherapy, 

combination therapies and sometimes surgery being employed to ease symptoms [20]. 

Immunotherapy and targeted biological therapies may also be used to treat specific NSCLC types, 

depending on the specific genetic profile of the tumour [23].  

1.5 Risk Factors 

1.5.1 Smoking 

Approximately 80% of lung cancer cases can be attributed to modifiable risk factors, one of the 

highest rates of all cancer types [24]. Smoking constitutes the bulk of this modifiable risk [25]. It is 

estimated that between 72% and 86% of lung cancer cases in the UK are caused by smoking 

[24,26,27]. The relationship between smoking and lung cancer began emerging in the first half of 

the 20th century, with evidence accumulating from a large variety of population, animal, and 

cellular studies [28]. Prospective evidence relating to the link between lung cancer and smoking 

was gathered by Doll, Hill and Peto et. al. in a paradigmatic cohort study which began in 1951 and 

ran for 50-years, terminating in 2001. The study regularly surveyed the smoking habits of tens of 

thousands of British doctors and collected detailed data relating to rates and causes of mortality 
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[29,30]. The first results published in 1954 showed that men who smoked an average of >25 g of 

tobacco a day had a death rate of 1.14 per 1000, compared to a rate of 0 in non-smokers and 0.66 

in all subjects [29]. The final publication from the study in 2005 demonstrated that smokers born 

between 1900-1930 lost an average of 10 years of life compared to non-smokers; lung cancer 

(and chronic obstructive lung disease) accounted for a quarter of the excess mortality among 

smokers [30].  

Considerable research has confirmed this link as causal, with cigarette smoke found to contain 

more than 70 carcinogenic compounds [31]. These compounds are catalysed into forms that 

covalently bond with DNA, producing DNA adducts. A high volume of DNA adducts can 

overwhelm DNA repair pathways and result in persistent damage, which increases the likelihood 

of somatic mutations [32]. Mutations caused by adducts on the KRAS oncogene are common in 

lung cancer, present in between 16% and 40% of NSCLC cases. These mutations occur with 

particularly high frequency in adenocarcinomas and in ever-smokers, although can also occur in 

squamous cell carcinomas and in never-smokers [33]. Several clinical trials are underway with the 

objective of developing targeted therapies for the treatment of KRAS-mutated lung cancers [34].  

Increasing either smoking duration or intensity contributes to greater lung cancer risk, with 

duration having a larger effect; smoking at higher intensity for a shorter period is less deleterious 

than smoking at lower intensity for longer periods [35]. Use of other tobacco delivery systems 

such as shisha, cigars and pipes have also been shown to be robustly associated with increased 

lung cancer risk [36–38]. 

Passive smokers (individuals who are exposed to second-hand environmental tobacco smoke) 

may have an increased lung cancer risk of 20-30% [39]. This association was established as causal 

through large meta-analyses of epidemiological studies [40]. In the UK, 1% of lung cancer cases 

are attributed to second-hand smoke. This proportion increases to 15% of lung cancers diagnosed 

in patients who have never smoked [24]. However, a large prospective study of 76,000 women 

contended that there is no clear link between passive smoking and lung cancer, positing that 

recall bias may contribute to an increased association between the two factors in other studies 

[41]; the findings of this study were in turn questioned [42]. The extent of the association 

between second-hand smoke and lung cancer remains controversial. 

Smoking cessation is the most effective strategy to reduce lung cancer risk. The final paper from 

the prospective study by Doll et.al. reported that those who quit smoking by age 50 halved their 

smoking-derived mortality hazard, and those quitting at age 30 suffering no loss in life expectancy 

at all [30]. Another prospective study of 8,907 subjects with lengthy follow-up reported that ever-

smokers with a median pack-year exposure of at least 21.3 who had quit smoking in the last five 
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years reduced their lung cancer risk by 39.1% when compared to current smokers [43]. A 

prospective study of over one million UK women found that smoking cessation before the age of 

40 protects the individual from more than 90% of the excess mortality associated with continued 

smoking [44]. 

1.5.2 Age 

As with most cancer types, lung cancer risk increases with age. This is due to a confluence of 

factors including accumulated risk factor exposure, genetic and epigenetic mutations, and cellular 

or biochemical changes that promote carcinogenesis [45,46]. In the UK, 44% of cases occur in 

people aged over 75. The highest rate of lung cancer occurs between the ages of 80-84 years in 

women and 85-89 years in men. An average of 1,140 lung cancer cases are diagnosed in people 

below the age of 50 per year, less than 3% of the total incidence [5]. Consequently, screening 

eligibility criteria usually limit lung cancer screening to those in older age brackets, with the US 

Preventive Services Task Force (USPSTF) recommending screening to those aged 50-80 [47], and 

the NHS Targeted Lung Health Check (TLHC) Programme inviting participants aged 55-74 [48]. Age 

also negatively impacts prognosis [49]. In the UK, five-year net survival decreases progressively 

from 42% in 15-39 year-olds to 6% in 80-99 year-olds in men, and from 48% to 7% in women [5]. 

1.5.3 Asbestos, Occupational Hazards and Radon 

Occupational exposure to carcinogenic agents is estimated to be responsible for approximately 

13% of lung cancer cases in the UK [24,50]. Asbestos exposure is the main contributing factor; it is 

estimated that between 6% and 8% of annual UK lung cancer deaths are linked to this exposure 

[51]. Asbestos is a generic term referring to six naturally occurring silicate minerals which are 

fireproof, insulating, and soundproof, properties which positioned it to be used extensively in 

industry and construction, particularly in the late-19th and 20th centuries [52]. All forms of 

asbestos are carcinogenic. When asbestos is inhaled, the microscopic fibres instigate programmed 

cell necrosis as well as the release of HMGB1, a protein that triggers a chronic inflammatory 

response, which in turn promotes cellular transformation and carcinogenesis [53]. It appears that 

the association between asbestos exposure and lung cancer can be characterised as a linear dose-

response relationship [54]. It has also been reported that the risk of lung cancer begins to increase 

at very low levels of asbestos exposure and excess risk can persist for more than 40 years after 

exposure [55]. There is evidence that asbestos and tobacco smoke work synergistically to increase 

lung cancer risk [54–56].  

Air pollution, specifically particulate matter smaller than 2.5µm (PM2.5), is considered by the 

World Health Organisation (WHO) to be an extremely significant source of environmental 

carcinogens [57]. Several recent meta-analyses demonstrated a significant link between PM2.5  

exposure and lung cancer incidence and mortality [58–60]. Diesel exhaust is an important 
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contributor to PM2.5 pollution and increases lung cancer risk [61]. Silica dust exposure may also 

increase lung cancer risk [62]. 

Radon is a colourless, odourless, tasteless gas emitted by naturally occurring uranium and 

thorium as they decay. Unusually high concentrations of the gas can accumulate in indoor spaces. 

Radon can also contaminate building materials and drinking water [63]. When radon penetrates 

the lungs, ionising alpha radiation that is emitted can cause DNA damage. This can contribute to 

the development of lung cancer [64]. Radon exposure is considered the second leading cause of 

lung cancer by the World Health Organisation (WHO), with between 3% and 14% of lung cancer 

cases linked to the gas, although risk of exposure is heavily dependent on geography [65].  

1.5.4 Socio-economic Deprivation  

Socio-economic deprivation is associated with higher lung cancer risk and poorer survival [66–68]. 

In England, socio-economic status is measured using the index of multiple deprivation (IMD). This 

is a metric that ranks small geographical areas of England by relative poverty, from 1 (most 

deprived) to 32,844 (least deprived), by combining and weighting data relating to income, 

employment, education, health, crime, housing and living environment [69]. Lung cancer 

incidence rates are 170% higher in the most deprived IMD quintile compared to the least 

deprived; if the whole UK population had the age-specific crude incidence rates of the least 

deprived quintile, it is estimated that there would be 14,000 fewer annual lung cancer cases [70].  

A large multi-national meta-analysis found that men with lower educational attainment have a 

higher lung cancer mortality rate than those with higher attainment in ten separate populations, 

across all age groups [71]. Similar differences exist between manual and non-manual workers 

[72], and between women with varying numbers of factors associated with socio-economic 

deprivation [73]. This disparity is principally due to higher exposure to tobacco smoke in more 

deprived communities [74]. In addition to higher primary smoking rates, second-hand smoke 

exposure and prenatal tobacco exposure are also higher in more deprived communities (53,54). 

Furthermore, lower socio-economic status is associated with lower smoking quit rates. One study 

of over 900 British female smokers found that those who stayed in school past the age of 16 had a 

smoking cessation rate of 22% in one year, compared to 11% amongst women who left school 

before the age of 16. Previous studies have shown that only 15% of adult smokers with the lowest 

socio-economic status were able to successfully quit smoking, compared to 60% amongst the 

most affluent [77].  

There is some evidence that deprivation may be independently associated with lung cancer, even 

when smoke exposure is controlled for. One study reported an independent association between 

deprivation and both lung cancer incidence and mortality, even when adjusted for tobacco abuse 
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(a binary variable comprising of a loosely linked collection of smoking related disorders, used here 

as a surrogate for detailed smoking data. The binary and poorly defined nature of this variable 

may weaken the conclusions of this study) [78]. Another study demonstrated that even when 

smoking history is controlled for, people living in more deprived areas suffer from poorer lung 

function [79]. Several factors may drive this association, including unequal access to healthcare, 

isolation from health-promoting environments, and increased air pollution [67,68,78].  

1.5.5 Sex 

Lung cancer incidence in the UK is currently higher amongst men than women. This is primarily 

caused by historic smoking patterns; whilst the difference has been shrinking in recent decades, 

smoking prevalence has always been higher in men than women [80]. When smoking history is 

controlled for, there is evidence that women are at higher risk of lung cancer than men. A case-

control study from 1993 reported that when only examining subjects with a 40-pack-year history, 

women have approximately three times the likelihood of developing lung cancer compared to 

men [81]. Similar patterns, albeit with lower magnitudes of differences, were reported in other 

studies [82]. A Swiss study demonstrated that women with lung cancer are significantly younger 

and have smoked considerably less than their equivalent male counterparts, a pattern 

consistently found in other populations [83]. Furthermore, lung cancer risk is higher amongst 

female never-smokers than male never-smokers [84]. A recent American study concluded that the 

higher incidence of lung cancer amongst women cannot be explained by smoking behaviour alone 

[85], leading some studies to establish female sex as an independent risk factor for lung cancer 

[82,86–88]. However, the large Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial 

(PLCO) study did not find an independent link between female sex and lung cancer risk [89].  

The mechanism responsible for possible increased susceptibility to lung cancer amongst women is 

not clear. It is likely that there are biological, hormonal, and genetic contributing factors [90]. For 

example, oestrogen may play an important role in the development of lung cancer by promoting 

angiogenesis and the formation of DNA adducts [91,92]. Additionally, studies have shown that 

women are more likely to carry tumour promoting KRAS and p53 mutations which may work in 

cooperation with oestrogen to encourage cancer growth [93,94]. 

1.5.6 Other Health Conditions  

Lung cancer risk is increased in individuals with other respiratory diseases. It is often difficult to 

establish if this relationship is causal due to detection bias, reverse causality and misdiagnosis. 

Chronic obstructive pulmonary disease (COPD) is an umbrella term for a range of conditions 

including chronic bronchitis and emphysema. Symptoms associated with COPD include persistent 

coughing, breathlessness, wheezing and chest infections. COPD is diagnosed by measuring airflow 

obstruction using a spirometer. Forced expiratory volume in the first second of forced breath 
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(FEV1) and forced vital capacity (FVC) – the total volume of air in a forced exhalation – are 

measured; the ratio between the two values is referred to as the FEV1/FVC ratio. A ratio below 0.7 

is indicative of airflow obstruction and the possibility of COPD [95]. COPD develops gradually as 

the body responds to inhaled irritants, launching a chronic inflammatory response which 

eventually leads to scarring, the breakdown of lung tissue and the narrowing of airways [96]. It is 

this inflammation that may catalyse the development of lung cancer [97]. A large meta-analysis 

found that COPD confers an increased risk of lung cancer, even when adjusting for smoking 

history [98]. Further studies confirm that COPD is an independent risk factor for lung cancer 

[99,100]. 

Pneumonia is an inflammatory condition usually caused by a viral or bacterial infection. A meta-

analysis of twenty-two studies found strong evidence that an individual with a previous diagnosis 

of pneumonia is at increased risk of lung cancer [98]. However, the strongest association between 

pneumonia and lung cancer comes when there is a very short time period between the diagnosis 

of the two diseases, indicating that misdiagnosis and reverse causality may be sources of bias 

[101]. Furthermore, some studies have claimed that pneumonia actually has a protective effect 

against lung cancer and an individual’s risk of lung cancer decreases with an increase in 

pneumonia diagnoses [102]. Previous diagnosis of tuberculosis, a bacteria borne respiratory 

disease, is associated with increased lung cancer risk, although the nature of the causality is not 

clearly established [103]. 

Previous diagnosis of a malignant tumour increases the risk of development of second primary 

lung cancer. Contributors to this association include exposure to radiation during cancer 

treatment [104], genetic predisposition, and exposure to shared risk factors [105]. Patients 

treated for head and neck tumours are particularly susceptible to lung cancer [106,107]. There is 

evidence that being overweight or obese is protective against lung cancer, even amongst never-

smokers. Research to determine the biological mechanism behind this association is ongoing 

[108,109].  

1.5.7 Family History 

Family history of lung cancer is an important predictor of personal risk. Having a first-degree 

relative diagnosed with lung cancer, multiple relatives diagnosed, or relatives with early-onset 

disease, all increase an individual’s risk [110,111]. There is evidence that this increased risk is 

conferred by both shared environment as well as genetic factors. A pooled analysis of over 24,000 

lung cancer cases found that those with a family history of lung cancer had an increased risk of 

approximately 50%, even after controlling for smoking and other confounding environmental 

factors. The highest increased risk was conferred to individuals with a sibling diagnosed with lung 

cancer, even after controlling for tobacco exposure [112]. It should be noted that sampling bias 
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may affect the case-control studies included in this pooled analysis. It is unclear whether the 

magnitude of the effect reported would be reproduced at a population level. Despite this 

limitation, the implication of a significant familial element to increased lung cancer risk, with a 

potential genetic contribution, remains strongly supported by this and other studies.  

A large Icelandic study found that spouses of lung cancer patients have a 1.75-fold increased risk 

of lung cancer, indicating that shared environment is an important factor in the development of 

lung cancer. The same study demonstrated that first-degree relatives had a greater risk, up to a 

3.5-fold increase. The exact nature of the interaction between environmental and genetic 

mechanisms to increase risk is not elucidated [113]. A multicentre study found that the risk of 

lung cancer increases with family history of the disease even amongst non-smoking women [114]. 

Similarly, another study showed that non-smoking relatives of never-smoker lung cancer patients 

have a higher risk of contracting the disease when compared to controls, even though tobacco 

smoke did not contribute [115]. In summary, whilst there is certainly an environmental aspect to 

increased lung cancer risk derived from family history of the disease, there is considerable 

evidence of an important genetic contribution as well. 

1.5.8 Genetic Risk Factors 

A large prospective twin based study estimated that the overall heritability of lung cancer is 18% 

[116]. Heritability refers to the limit of genetic risk stratification on a population level and 

individuals may have a much higher level of genetically conferred lung cancer risk [117]. Genetic 

risk may be of particular importance in early onset lung cancer [118], as well as for individuals 

with multiple primary lung cancers [119]. A study of 230 never-smokers with lung cancer found 

that 18% had family history of the disease, and a large proportion had specific genetic pathogenic 

variants that increase an individual’s susceptibility to developing lung cancer [120]. Considerable 

research has taken place in recent decades to establish the nature of the genetic component of 

lung cancer risk. 

1.5.8.1 Monogenic Variants 

There is limited evidence that pathogenic variants in a single gene confer risk for lung cancer. Li 

Fraumeni Syndrome, a disorder arising from germline TP53 variants, is a notable exception which 

increases risk for several cancers, including lung [121–123]. An association between lung cancer 

risk and several rare inherited EGFR variants has also been reported [124]; these germline variants 

might cause genetic instability which predisposes cells to somatic mutations and tumorigenesis 

[125]. For example, the T790M variant is both a germline mutation and an important somatic 

variant with implications for therapy [126,127].  
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Other potential risk alleles have been identified through segregation analysis of families with high 

lung cancer incidence [128–130]. A linkage analysis of 52 high-risk families identified chr6q as a 

locus containing an inherited high-penetrance allele significantly associated with lung cancer risk. 

A further study published in 2010 confirmed the association of this chromosomal region with 

increased lung cancer risk, even in never smokers [131]; fine mapping identified gene RGS17 as a 

candidate for familial lung cancer susceptibility [132]. Whilst RGS17 overexpression has been 

shown to aid tumour cell proliferation, it has not been convincingly proven as a lung cancer 

susceptibility gene [133]. A study published in 2015 demonstrated that a high-penetrance 

missense mutation in the YAP1 oncogene significantly increases the risk of lung cancer [134]. 

Another reported association was with the c.823C>T (p.Arg275Trp) missense variant in PARK2 

[135]. However, given its low allele frequency in gnomAD (<0.002) and its lack of subsequent 

validation, it appears unlikely to be a high-risk allele [136]. 

1.5.8.2 Polygenic Variants 

Considering the limited evidence for a monogenic inheritance pattern for lung cancer risk, 

research into high-frequency, low-penetrance risk alleles has become a more promising 

endeavour. Genome-wide association studies (GWAS), in which millions of single nucleotide 

polymorphisms (SNPs) are genotyped in a very large case-control cohort, have yielded hundreds 

of variants potentially associated with lung cancer risk. In a GWAS, genome wide significance for 

an allele is usually established with a P-value of less than 5x10-8; odds ratios (OR) can then be 

calculated for the identified SNPs, indicating the increased or decreased likelihood of lung cancer 

with the presence of that particular variant.  

Since 2008, through many thousands of GWAS, more than 45 genetic loci have been associated 

with lung cancer risk, although the strength of evidence varies in each case [137]. A large 2017 

meta-analysis synthesised evidence from more than 1000 publications published until 2015, 

examining 246 SNPs from 138 loci. It concluded that 22 variants in 21 genes showed significant 

association with lung cancer with robust cumulative epidemiological evidence. Epidemiological 

evidence was graded by the Venice Criteria, a score which considers the amount of evidence 

(based on sample size and number of studies), replication of association (homogeneity of effect 

and magnitude across multiple studies), and protection from bias (based on several common 

areas of bias in genetic studies) [138]. It also reported significant heterogeneity between the SNPs 

associated with various subgroups, including ethnicity, lung cancer histology and smoking status 

[139]. A large number of similar meta-analyses have been published in recent years [140]. 

A 2017 review aimed to assess and summarise the evidence for lung cancer associated SNPs from 

more than 200 separate GWAS and meta-analyses, all published up to 2016 with at least 1000 

cases [140]. The study concluded that 137 variants were associated with lung cancer, 80 of which 
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were statistically significant. SNPs derived from meta-analyses were graded for strength of 

evidence using Venice Criteria and false positive report probability (FPRP) [141]; of the variants 

derived from the meta-analyses, 15 SNPs were graded as ‘strong’ for evidence of association and 

19 SNPs were graded as ‘moderate’. This review did not weigh and synthesise the evidence for 

each SNP as a formal meta-analysis would have; when there was conflicting evidence from 

different studies, the evidence from the largest study was treated as authoritative. Nevertheless, 

this study serves as an important summary of the SNPs likely to exhibit robust association with 

lung cancer. 

A further large case-control study was published in 2017, in which an aggregated dataset of 

20,266 cases and 56,450 controls was analysed, resulting in the discovery of 10 novel SNPs 

associated with lung cancer and the confirmation of 8 SNPs previously reported. The study claims 

to identify the SNPs responsible for 12.3% of the additional familial relative risk of lung cancer 

[142]. 

SNPs associated with traits or disease risk are often ethnicity specific. In European populations, a 

significant volume of lung cancer risk variants are localised to several gene clusters: 

CHRNA: Expression of this gene, located in the 15q25 chromosomal region, has been found to 

contribute to cancer cell signalling, proliferation, angiogenesis and inhibition of apoptosis [143]. 

Additionally, studies have identified CHRNA5 as having a role in nicotine addiction and 

dependency [144]. Several variants linked to lung cancer are located on this gene cluster. For 

example, AA risk genotype at rs16969968 in CHRNA5 is associated with both an increased risk and 

earlier diagnosis of lung cancer [145]. Several studies have demonstrated that increased lung 

cancer risk is an independent association related to SNPs in this gene [146–148]. SNP rs1051730 

in the CHRNA gene is a variant with significantly robust association with lung cancer risk in 

European populations [140].  

CLPTM1L: The CLPTM1L gene is located in the 5p15 chromosomal region. Two variants (rs401681 

and rs402710) on this gene are particularly strongly associated with increased lung cancer risk 

[149]. The gene segment containing these polymorphisms may regulate telomerase reverse 

transcriptase (TERT) expression, allowing cells to resist apoptosis and become malignant [150]. 

BAT3: The BAT3 gene is located in the 6p21 chromosomal region. The protein product of this gene 

cluster has been shown to be crucial in p53 acetylation during the repair or apoptosis of damaged, 

potentially malignant, cells. BAT3 may also be released in response to stress signals, engaging 

natural killer cells to target tumour cells [151]. 

A polygenic risk score (PRS) is a measure of an individual’s genetic risk of developing a specific 

disease, based on the combination of multiple low-penetrance SNPs with known association to 
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that disease. Whilst each SNP has minimal impact on disease risk in isolation, when combined 

they can alter risk significantly. There are several methodological approaches to building a PRS 

tool; fundamentally, the sum of the number of risk alleles present in a particular individual is 

calculated and weighted according to the variant’s strength of association with the condition in 

question, as measured by the odds ratio (OR) [152]. 

PRS tools have been shown to be useful in risk prediction in a wide variety of cancer types and 

other disease areas. There is evidence that a PRS can be used to reduce overdiagnosis in prostate 

cancer screening programmes [153], as well as facilitate the stratification of colorectal cancer 

screening by risk [154]. Use of a PRS has also been proposed for the identification of individuals at 

increased risk of cardiovascular disease [155] and Alzheimer’s disease [156]. A study of more than 

81,000 individuals published in November 2019 demonstrated that polygenic and monogenic risk 

factors interact with each other to modify risk in breast cancer, coronary artery disease and colon 

cancer [157]. A selection of polygenic variants can influence the level of penetrance of the 

monogenic risk factor; consequently, a PRS can be used to predict the level of increased risk 

conferred by the monogenic risk variant carried by the individual. The development of a validated 

PRS for breast cancer is particularly advanced, with a 313 SNP PRS demonstrated to be efficacious 

in breast cancer risk prediction. In prospective validation, the PRS area under the curve (AUC) was 

0.63 and it was well calibrated; those in the top 1% of PRS scores had between 2.78 and 4.37-fold 

increased risk compared to the middle quintile, and those in the bottom 1% had 0.16 to 0.27-fold 

risk when compared to the middle group [158].  

1.6 Lung Cancer Screening 

1.6.1 Principles of Cancer Screening 

A crucial strategy for diagnosing cancer earlier, thereby increasing the chances of curative 

treatment and improving patient outcomes, is systematically screening asymptomatic people at 

risk of the disease. Cancer screening can be population based, in which all individuals of a certain 

sex and age in a population are offered screening (such as in the NHS cervical, breast and colon 

cancer screening programmes [159]), or targeted, in which more precise tools are used to direct 

screening to those most at risk of the disease (such as NHS England’s Targeted Lung Health Check 

(TLHC) programme for lung cancer screening [48]).  

In 1968, Wilson and Jungner published ten guiding principles to establish the appropriateness of 

pursuing organised screening for a condition (Box 1) [160]. In subsequent years, attempts have 

been made to refine and modernise the principles to account for knowledge gained from half a 

century of further screening research [161,162], although the original principles remain 

remarkably enduring. One systematic review and consensus study developed twelve screening 
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principles, eight of which aligned with and further developed principles from Wilson and Jungner’s 

original set, with the novel principles focussing on the benefits, harms, quality, management and 

ethics of the screening programme as a clinical system (rather than just the core test or 

intervention) [163].  

Box 1. Wilson and Jungner’s Principles of Screening [160] 

1. The condition sought should be an important health problem. 

2. There should be an accepted treatment for patients with recognized disease. 

3. Facilities for diagnosis and treatment should be available. 

4. There should be a recognizable latent or early symptomatic stage. 

5. There should be a suitable test or examination. 

6. The test should be acceptable to the population. 

7. The natural history of the condition, including development from latent to declared disease, 

should be adequately understood. 

8. There should be an agreed policy on whom to treat as patients. 

9. The cost of case-finding (including diagnosis and treatment of patients diagnosed) should be 

economically balanced in relation to possible expenditure on medical care as a whole. 

10. Case-finding should be a continuing process and not a ‘once and for all’ project. 

 

1.6.2 Assessing Screening Performance 

Despite the relatively straightforward theory behind cancer screening, it can be challenging to 

establish whether systematically applying a specific screening test to a population would provide 

the necessary benefits to justify its implementation.  

First, test validity needs to be established. There are several possible outcomes of a screening 

test. A true positive or true negative refers to the test accurately detecting the presence or 

absence of cancer respectively. A false positive means that the test indicated a possibility of 

cancer, which upon further investigation is not found to be concerning. Conversely, a false 

negative means that the test reported no concerning findings and missed the presence of cancer. 

The performance of a screening test can be assessed by examining its sensitivity (proportion of 

true positives who are screen positive) and specificity (proportion of true negatives who are 

screen negative). These metrics can be combined into a receiver-operating characteristic (ROC) 

curve; the area under the curve (AUC) indicates the test’s overall ability to discriminate 
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successfully between cases and non-cases (an AUC of 0.5 means that the test is no better than 

random at discriminating between cases and non-cases; 1 means that the test can discriminate 

perfectly, with no false-negatives or false-positives) [164]. Positive predictive value (PPV) and 

negative predictive value (NPV), which indicate the proportion of screen positives/negatives who 

were true positives/negatives, are also useful performance metrics [165].  

Once test validity is established, actual effectiveness of applying the test in a population must be 

assessed. This can be challenging, as several sources of bias can affect screening, obscuring the 

true impact of the intervention. Lead-time bias occurs when screening diagnoses cancer early, but 

the patient still dies from that disease and does not live longer than they would have in the 

absence of screening. In such a situation, it can appear that screening has increased survival time, 

but this is only because the disease was identified earlier (Figure 3). Length-time bias occurs as a 

result of the increased chance of screening detecting cancers that are not causing symptoms and 

are therefore less aggressive and less likely to cause death. This bias also makes it seem that 

screening has increased survival time, when it is in-fact a result of the less aggressive nature of 

the tumours detected. Overdiagnosis bias refers to a situation in which the cancer detected by 

screening would never have been diagnosed in the patient’s lifetime, due to low aggressiveness of 

the cancer, competing comorbid conditions, or short baseline life expectancy (Figure 3) [166].  

 

Figure 3. Biases that affect screening trials. A = pathway of a screening participant. Demonstrates 
lead-time bias if non-screened pathway would be B. Demonstrates overdiagnosis bias if non-

screen pathway would be C. 

To investigate the performance of screening tests in the population, single arm observational 

studies can be conducted. In addition to the measures of test validity described above, 

population-based studies can assess stage of cancer at diagnosis and survival time following 

detection to indicate whether cancer diagnoses are being made at an earlier stage than would be 
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expected under regular conditions. However, this study design is particularly susceptible to lead-

time, length-time and overdiagnosis biases [167]. Consequently, whilst results from single-arm 

observational studies can provide useful indications of a potentially efficacious screening 

intervention, it does not provide evidence as to whether a real-world screening programme 

would provide actual benefit to the population.  

To provide more robust evidence, prospective randomised controlled trials (RCT) are necessary. In 

RCTs, participants are randomised into intervention and control groups, with a comparison of 

outcomes between the two groups indicating the impact of the intervention. The primary 

outcome of interest in screening RCTs is usually cancer-specific mortality; if there is a lower rate 

of cancer death in the intervention group after extended follow-up, it is presumed that this 

mortality benefit can be attributed to screening [165,167]. This metric reflects the fundamental 

objective of implementing screening: reducing the number of people who die prematurely from 

the disease of interest. However, this outcome measure is liable to bias relating to lead-time and 

overdiagnosis; it cannot demonstrate if overall life expectancy increases due to the screening 

intervention [165,167,168].  

Some very large RCTs may be able to demonstrate changes in all-cause (rather than cancer-

specific) mortality. This metric is not biased by subjective cause of death classification, takes 

harms caused by the intervention into account, and shows that the cancer-specific mortality 

reduction due to screening is not wholly eliminated by competing causes of death. However, a 

modelling study found that RCTs need to be extremely large (40,000-600,000 participants per 

arm) and long running (11-20 years) to have the possibility of demonstrating significant reduction 

in all-cause mortality [168]. Consequently, some consider all-cause mortality too stringent an 

outcome measure for the purposes of assessing cancer screening utility [169,170].  

Whilst RCT design minimises the effect of the biases which affect single-arm studies, all trial 

designs, (including RCTs) are vulnerable to ‘selection bias’ (also known as ‘healthy volunteer bias’) 

in which the trial participants are healthier and more affluent than the general population [171]. 

For example, an analysis of a large lung cancer screening RCT found that those who had cancer 

diagnosed were less comorbid and had significantly better post-operative outcomes than would 

be expected in the general population [172]. The expertise of the healthcare staff running the trial 

may also be more specialised than the equivalent practitioners in the wider community. This can 

lead to overly optimistic study results, highlighting the importance of real-world studies of 

screening in the target population to ensure benefits are also observable in a non-trial setting.  
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1.6.3 Harms of Screening 

It is important to consider that screening, as with any health intervention, has the potential to 

cause harm to participants. Even if a screening test demonstrates good performance, an analysis 

of the harms and benefits must be conducted to ensure that implementing a screening 

programme will provide net benefit to the population. 

There are several potential harms associated with screening. At the most fundamental level, 

participants may be exposed to potential harm from the screening test itself, whether radiation 

from CT scans [173], x-rays or mammography [174], or adverse reactions to blood, cervical, or 

faecal sampling. Investigations for suspicious screening findings such as physical examinations, 

biopsies, colonoscopies, ultrasounds and colposcopies can also cause harm [175].  

Overdiagnosis occurs when disease that has no clinical significance for the patient is diagnosed 

through screening. This can result in the patient undergoing invasive and unnecessary treatment 

to cure a cancer that would not have shortened their life or impaired its quality [176]. The 

mechanics of screening may exacerbate the issue of overdiagnosis, as by definition, checking 

asymptomatic people for cancer at semi-regular intervals is more likely to detect slow growing, 

less aggressive cancers. Aggressive, fast growing cancers are more likely to cause symptoms and 

be diagnosed in a clinical setting [177]. In some cases, cancer treatment can result in 

complications that shorten the patient’s life, potentially more significantly than the cancer would 

have [178]. Overdiagnosis can be quantified and monitored through extended follow-up of RCTs, 

modelling studies, pathological and imaging studies, or cohort studies. Each method has strengths 

and limitations [179]. To mitigate the potential harm of overdiagnosis, evidence for screening 

benefit should be robust before screening is implemented. Once screening is implemented, 

methods to further reduce harm from overdiagnosis include selecting an optimum screening 

frequency, targeting screening to appropriate populations, using multiple screening modalities 

and additional biomarkers, and implementing carefully considered diagnostic and treatment 

pathways (including options such as watchful waiting and active surveillance) [180].  

Another screening related harm is false-positive results, in which a screening attendee is referred 

for further investigation which does not result in an eventual cancer diagnosis. This can cause 

anxiety and other negative psychosocial impacts [181–183] and lead to invasive and unnecessary 

investigations that may cause further harm. Conversely, false-negative results can give screening 

participants undue confidence that leads them to ignore symptoms of the disease, reduce their 

engagement with healthcare professionals and make negative health-related choices. This can 

ultimately lead to poorer prognosis when the disease is correctly diagnosed [184]. Screening tests 

can also result in indeterminate results, in which repeat screening, follow-up screening, or further 
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investigations are necessary to confirm if there is cause for concern. There is some evidence of 

psychosocial harm in participants who receive an indeterminate screening result [185,186]. 

1.6.4 Evidence for Lung Cancer Screening 

The difficulty in diagnosing lung cancer at an early stage, coupled with the high mortality rate that 

results from late diagnosis, positions lung cancer screening to be a crucial strategy in reducing 

deaths from lung cancer. If individuals with lung cancer who have not yet developed symptoms 

can be identified, it could provide them with the best possible chance of having curative 

treatment at an early stage.  

Two methods of lung cancer screening trialled in the latter half of the 20th century were chest x-

ray (CXR) and sputum cytology [187,188]. The PLCO study (an RCT that ran from 1993 to 2001) 

randomised 154,901 men and women, age 55-74, into an intervention arm that received four 

annual rounds of CXR, and a control arm. It confirmed that CXR conferred no lung cancer 

mortality reduction nor any evident stage shift in cancers after 13 years of follow-up [189]. A 

Cochrane meta-analysis published in 2004 concluded that neither sputum cytology or CXR 

resulted in benefit to patients [190].  

Low dose computed tomography (LDCT) began emerging as a superior alternative in the 1990s. In 

contrast to a traditional CXR which produces a single plane, two-dimensional image, LDCT 

employs a rotating x-ray tube to take a series of images from different angles, which are then 

combined to produce a detailed three-dimensional representation of the lungs and surrounding 

tissue. A Japanese study of 1,369 high-risk individuals produced the first evidence for the 

effectiveness of LDCT for lung cancer detection, identifying 15 cases of lung cancer, 11 of which 

had been missed by CXR [191]. Further evidence accrued with the International Early Lung Cancer 

Action Project (I-ELCAP), an international multi-centre LDCT programme running until 2005 in 

which 31,567 high-risk individuals were screened with LDCT (27,456 had repeat screening one 

year after baseline). The programme identified 484 lung cancers, 85% of which were diagnosed at 

stage I [192].  

The first conclusive evidence that LDCT screening reduces lung cancer mortality was provided by 

the National Lung Screening Trial (NLST). This trial, based in the United States, randomised 53,454 

current or former (within 15 years) smokers, age 55-74 with at least 30 pack-year smoking history, 

to either LDCT or CXR screening for three annual rounds over two years. CXR was selected as the 

intervention in the control arm to complement the PLCO trial that was already comparing CXR vs. 

standard of care (no screening). After six years of follow-up, the LDCT arm had a 20% reduction in 

lung cancer-specific mortality (Figure 4) and a 6.7% reduction in all-cause mortality compared to 
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the CXR arm. Half of the lung cancer diagnosed in the LDCT arm were stage I, compared to 31% in 

the CXR arm [193].  

 

Figure 4. Lung cancer incidence (A) and deaths (B) in NLST cohort. Reproduced with permission 
from [193], Copyright: Massachusetts Medical Society. 

The Dutch-Belgian Randomised Lung Cancer Screening Trial (NELSON) confirmed the findings from 

NLST in a European population. 13,195 men and 2,594 women were randomised into two arms, 

one of which received four rounds of LDCT over 5.5 years with intervals of increasing length (1, 2 

and 2.5 years), the other of which received no screening. The primary outcome was lung cancer 

mortality reduction in men. A smaller, sub-analysis was conducted in the female subset; only 16% 

of NELSON participants were women, ostensibly due to lower female smoking prevalence and 

thus lower eligibility at the time of trial recruitment. Therefore, a small sample of high-risk women 

were proactively approached to participate. All participants were current or former smokers who 

had smoked within 10 years and had a tobacco exposure of either ≥15 cigarettes per day for 25 

years or ≥10 cigarettes per day for 30 years. After ten years of follow-up, the trial reported a 26% 

reduction in lung cancer-specific mortality in men and a 33% reduction in women due to LDCT 

screening (Figure 5). There is lower confidence around the female mortality reduction due to the 

smaller sample size in that subgroup. Almost 60% of screen-detected lung cancers were early-

stage, compared to less than 15% of non-screen detected lung cancers [194].  
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Figure 5. Lung cancer incidence (A) and mortality (B) among male participants of the NELSON trial. 
Reproduced with permission from [194], Copyright: Massachusetts Medical Society. 

Other, smaller, studies have reported similar results, although these were often not powered to 

find statistically significant differences in mortality when viewed independently. The ITALUNG trial 

randomised 3206 ever-smoking (minimum 20 pack-years in last 10 years) participants aged 55-69 

into an intervention arm that received four rounds of annual LDCT screening and a control arm 

with standard care. The study reported borderline significant reductions in lung cancer (30%; 

p=0.07) and overall mortality (17%; p=0.08) due to LDCT screening [195].The Danish Lung Cancer 

Screening Trial, which randomised 4104 participants (age 50-70, minimum 20 pack years) to have 

five annual LDCT scans or no screening, also reported nonsignificant trends, although post-hoc 

analysis in the high-risk subgroup showed results that aligned with the NLST [196]. The German 

LUSI trial randomised 4052 participants to five annual rounds of LDCT screening or standard care, 

and reported a statistically significant reduction in mortality in women, but not in men [197]. The 

Multicentric Italian Lung Detection (MILD) trial reported a 39% reduction in lung cancer mortality 

due to LDCT screening over 10-years [198]. A meta-analysis of nine RCTs (several of which were 

not powered to show statistically significant mortality reductions in isolation) found a 16% 
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relative reduction in lung cancer mortality and a small reduction in overall mortality in the 

screening arm [199].  

1.6.5 Harms from Lung Cancer Screening 

Whilst evidence for the benefits of LDCT screening for lung cancer continues to accumulate, it is 

important to consider how the various categories of screening related harms may apply in this 

context. 

Lung cancer screening trials have been significantly affected by overdiagnosis in the past; one 

historic CXR and sputum cytology trial had a likely overdiagnosis rate of 51% [200]. However, 

more recent LDCT trials have shown smaller, albeit still notable, overdiagnosis rates. The 

overdiagnosis rate for NLST was estimated by dividing the difference in lung cancer cases 

between the arms by the number of screen-detected cases at several follow-up points after the 

final screening round. Using this method, the initial estimation of overdiagnosis rate (calculated 

4.5 years after the final screening round) was 18%. However, with an extended follow-up period 

of 12 years, the estimated rate reduced to 3% as the large divergence in lung cancer incidence 

initially observed between the two arms narrowed considerably [201]. The NELSON trial reported 

an estimated overdiagnosis rate of 19.7% at 4.5 years after the final screening round, reducing to 

8.9% with a single additional year of follow-up [194]. The Danish Lung Cancer Screening Trial 

reported a much higher estimated overdiagnosis rate of 67% at five years after the final screening 

round [202]. This elevated rate may be explained by the higher baseline lung cancer risk in the 

intervention group than in the control group, the high frequency of LDCT screening in this trial, or 

the standard of care approach applied in the control group (compared to CXR in NLST) [203]. This 

stands in stark contrast to the 0% overdiagnosis rate reported by the ITALUNG trial in the same 

follow-up period [195]. Treatment for lung cancer after detection by screening is not risk free; for 

example, of 250 individuals who had lung cancer detected by screening in a variety of UK 

programmes, five (2%) had treatments or investigations that resulted in major complications, of 

which two were post-operative deaths [204]. Even if no major complications occur, treatments 

can cause a reduction in quality of life [205]. The higher the overdiagnosis rate, the more likely it 

is that patients are undergoing potentially harmful treatment for a tumour that would not have 

impacted their life had it not been detected through screening.  

False positive results are also a concern in lung cancer screening programmes. NLST reported that 

23% of the LDCT scans were false positive, equivalent to 96% of the total positive LDCT results 

[193]. NELSON reported a much lower false positive rate, at 1.2% of total LDCT scans or 57% of all 

positive LDCT results. The addition of an ‘indeterminate’ classification and surveillance screening 

in NELSON (before findings were deemed positive) was a significant contributing factor to this 

reduction in false positives [206]; this is because borderline findings could be monitored and 
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treated based on growth and volume, rather than a single time-point decision based on nodule 

diameter. As well as the psychological harms caused by false-positive results, clinical 

investigations assessing positive LDCT screening results have the potential to cause physical harm. 

One meta-analysis reported that CT guided core biopsies, a common diagnostic procedure 

performed to investigate potential lung cancer tumours, resulted in an almost 40% complication 

rate and 5.6% major complication rate [207]. Adverse events such as these are particularly 

significant when occurring in individuals who are found not to have cancer. They can significantly 

reduce the net benefit provided to that patient by undergoing screening.  

There are several secondary potential screening related harms in lung cancer screening. Radiation 

exposure from LDCT scans must be considered; the increased risk is minor in most instances, 

although there may be cause for concern in populations at lower risk of lung cancer and with 

repeated scanning [208]. There may also be psychological impacts of participating in screening, 

whatever the eventual screening result, although this has been shown to be of limited clinical 

significance [209,210]. The number of pulmonary nodules defined as ‘indeterminate’ in screening 

can also be of concern, as these require additional LDCT scans (and therefore exposure to 

potential harm) and may result in anxiety in the interim period between scans. In NELSON, 9.2% 

of scans had an indeterminate result [194].  

Several approaches can be taken to mitigate screening-related harms. One approach is to 

implement robust nodule management processes, carefully considered informed decision making, 

and appropriate screening intervals. These approaches seek to lower the risk of harm, whatever 

the characteristics of the screening cohort. An alternative (and complementary) approach is to 

shift the harm-to-benefit ratio of the cohort overall by selecting screening participants who are 

most at risk of lung cancer and/or most likely to benefit from screening, thereby reducing the 

weight of screening-related harms when considered in combination with the potential benefits. 

This was demonstrated in a recent study that examined screening related harms by aggregating 

data from five UK lung cancer screening programmes, representing more than 11,000 screened 

individuals. It found an overall false positive rate of 2% (n=219/10,898), comparable to NELSON, 

and much lower than NLST. More than 50% of those with a positive screening result went on to 

have lung cancer confirmed, much higher than both NLST (4%) and NELSON (38%). Of attendees 

who were not diagnosed with lung cancer, 0.6% underwent an invasive diagnostic test, although 

this did not lead to any complications or deaths. Approximately 5% of surgeries undertaken were 

for benign lesions, lower than the 24.4% seen in NLST. Risk-based screening selection in the UK 

programmes was identified as a crucial factor responsible for the lower level of harm observed 

when compared to NELSON and NLST [204].  
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The improvement in treatments and the development of our understanding of lung cancer in 

recent decades, as well as the ongoing accumulation of evidence relating to the efficacy of LDCT 

screening for early detection, would appear to satisfy criteria 1-5 and 7 in Wilson and Jungner’s 

principles of screening (Box 1). The remaining principles relate to screening implementation, 

ensuring that the intervention is acceptable, cost-effective, and appropriately targeted to 

minimise harms while maximising benefits. This is a crucial area of ongoing research to actualise 

the potential of LDCT screening for lung cancer. Developing the optimal method for selecting 

individuals for screening is a key facet in ensuring that lung cancer screening provides benefit and 

meets all the screening principles. 

1.6.6 Selection Methods 

1.6.6.1 Generalised Eligibility Criteria 

In NLST and NELSON, selection of participants for screening was achieved by employing 

generalised eligibility criteria, a basic threshold of age and smoke exposure (the two main risk 

factors for lung cancer). NLST enrolled participants aged 55-74, with a smoking history of ≥30 pack 

years who had smoked within 15 years of study entry. NELSON offered screening to those who 

had smoked within 10 years and had an exposure of either ≥15 cigarettes per day for 25 years or 

≥10 cigarettes per day for 30 years. The 2013 screening guidelines from the US Preventive 

Services Task Force (USPSTF) broadly matched the NLST eligibility criteria [211]; in 2020, updated 

and expanded USPSTF guidelines were published, recommending annual lung cancer screening be 

offered to those aged 50-80 with a ≥20 pack-year history, who have smoked in the past 15 years 

[47]. 

Whilst aiming to select a screening cohort that has a high-risk of lung cancer, thereby ensuring a 

favourable lung cancer detection rate and benefit-to-harm ratio for participants, generalised 

eligibility criteria have limitations. The rudimentary nature of the criteria results in a cohort with a 

heterogenous mix of risk profiles. One study of NLST found that when the trial population was 

stratified by individualised lung cancer risk, 5276 participants were screened to prevent one lung 

cancer death in the lowest risk group, compared to 161 in the highest. Overall, only 1% of lung 

cancer deaths were prevented in the lowest risk quintile of the trial [212]. Furthermore, it is 

estimated that up to 45% of ex-smokers who develop lung cancer do so more than 15 years after 

quitting [213]. A recent meta-analysis confirmed that ever-smokers maintain an increased level of 

lung cancer risk well after 15 years since quitting [214]; other studies have demonstrated 

increased lung cancer incidence even 25 years after quitting [43]. Former smokers of more than 

15 years are currently excluded from screening by most guidelines. Substituting generalised 

eligibility criteria with individualised risk prediction could be an effective method for increasing 
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the risk profile of the screening cohort to maximise programme efficiency and benefit to 

participants [215,216].  

1.6.6.2 Risk-Based Selection 

Risk prediction models (RPMs) are tools that use multiple risk factors to calculate an individual’s 

specific, personal risk of developing lung cancer over a particular period. In addition to increasing 

the overall risk-profile of the screening cohort, by taking several lung cancer risk factors into 

account, RPMs avoid assigning screening eligibility based solely on smoke exposure and age. 

Whilst age is an accurate predictor of lung cancer, actual lung cancer risk varies considerably due 

to other risk factors [217]. Similarly, individuals who are deemed ineligible for screening by 

generalised criteria due to extended quit-periods may still be at significant increased risk of lung 

cancer [43,214].  

At least 20 RPMs have been developed for lung cancer thus far [218]. Two important RPMs in the 

context of lung cancer screening in the UK are PLCOM2012 and LLPV2. PLCOM2012 is a logistic 

regression model predicting 6-year lung cancer risk [89]. It was built using the disease incidence 

data of more than 80,000 smokers and has been externally validated in several large trials [219] 

(see Table 1 for factors included in the RPM). One study showed that in a group of 37,332 ever-

smokers, the PLCOM2012 RPM selected 81 more people with lung cancer for screening than the 

NLST inclusion criteria would have [89]. When compared to the USPSTF2013 generalised eligibility 

criteria, PLCOM2012 identified 12.4% more lung cancers whilst screening 8.8% fewer individuals 

[220].  

The Liverpool Lung Project (LLP) RPM predicts lung cancer risk over 5-years [221]. LLP was 

developed in a case-control study of 579 lung cancer cases and 1157 controls, all resident in 

Liverpool; a 10-fold cross validation within the study resulted in an AUC of 0.7 [87]. External 

validation in a further three case-control cohorts confirmed the efficacy of the RPM [222]. 

Observations in the UK Lung Screening Trial (UKLS), in which the RPM was applied prospectively, 

resulted in the adaptation of the RPM to LLPV2 [223] (see Table 1 for factors included in the RPM), 

with a further model (LLPV3) published in 2020, having been recalibrated to country-wide cancer 

incidence data [224].  
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Table 1. Risk factors included in PLCOm2012 and LLPv2 risk prediction models. Below delineation = 
factors unique to RPM. 

PLCOM2012 LLPv2 

Age Age 

Smoking duration Smoking duration 

Previous cancer diagnosis Previous cancer diagnosis 

Family history of lung cancer Family history of lung cancer 

COPD diagnosis 

Pneumonia/ 

emphysema/bronchitis/tuberculosis/COPD 

diagnosis 

Smoking status (current vs. 

former) 
Sex 

Cigs per day Asbestos exposure 

Smoking quit time Family history of early onset lung cancer 

Ethnicity  

Education  

BMI  

 

An important study published in 2021 evaluated eight RPMs in three large UK cohorts (UK 

Biobank, EPIC-UK, and Generations Study), totalling more than 270,000 participants in which 

there were 1474 incident lung cancer cases, and 826 lung cancer deaths [225]. The RPMs 

evaluated were: PLCOM2012 [89], LLP [221], LLPV2 [223], LLPV3 [224], Bach [226], Hoggart [227], 

LCRAT [228], and LCDRAT [228] (which predicts risk of death from lung cancer). In the study, all 

the RPMs overestimated the number of lung cancer cases or deaths in these cohorts, with LLPV3 

and PLCOM2012 having the best calibration, and LLPV2 having the worst. AUC ranged from 0.77 for 

LLPV2 in the UK Biobank cohort, to 0.84 for Bach and LCDRAT in the EPIC-UK and Generations 

cohorts respectively [225]. 

The study found that had USPSTF2013 guidelines been used to select participants for screening, 

51% of lung cancer cases would have been eligible. At their respective recommended thresholds, 

LCDRAT and LCRAT would have selected 61% of cases, PLCOM2012 and Bach would have selected 

58%, LLPV3 would have selected 57%, and LLPV2 would have selected 54%. Had the expanded 

USPSTF2020 criteria been used to determine screening eligibility, it would have selected 26% of the 

total cohort, including 66% of lung cancer cases. The 26% highest risk individuals by each RPM 

would have contained the following proportion of total cases: LCDRAT and Bach – 77%, PLCOM2012 

and LCRAT – 75%. LLPV3 – 71%, and LLPV2 – 70%. All RPM thresholds resulting in these figures were 
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below 1%, apart from LLPV2 which was 1.3% [225]. The research cohorts examined were less socio-

economically disadvantaged than the general UK population, indicating that model calibration 

may be better when applied in a real-world setting. However, this also implies that less deprived 

individuals are more likely to have higher lung cancer risk scores (and thereby be more likely to be 

deemed eligible for screening) when compared to more deprived participants; this could result in 

the exacerbation of health inequalities [229,230].  

There is a considerable need for further retrospective and prospective analyses of lung cancer 

RPMs in actual screening programmes to examine how employing different models impacts on 

the overall performance of the programme. Selecting the most effective RPM, as well as ensuring 

it is calibrated appropriately for the population it is being used in, are key elements in ensuring 

the efficiency and success of the screening programme, as well as limiting potential harms to 

participants.    

Whilst RPM-based selection may have considerable advantages over generalised eligibility 

criteria, there are limitations. One study demonstrated that whilst RPMs may have prevented 

more deaths from lung cancer than generalised eligibility criteria, they yielded fewer life-years 

per-death prevented and contributed to higher overdiagnosis rates [231]. This is primarily 

because they selected older and more comorbid participants for screening, who were more at risk 

of lung-cancer, but had less to gain from having cancer diagnosed early. The International Lung 

Screening Trial (ILST) was the first study to publish a prospective comparison of the performance 

of USPSTF2013 criteria and PLCOM2012 for screening selection in almost 6000 participants. Interim 

analysis found that PLCOM2012 was a more efficient selection method, resulting in a higher lung 

cancer detection rate than the generalised eligibility criteria (92-95% vs. 76-79% of cancers 

detected depending on threshold; p=0.0001. 3.6% vs. 3% positive predictive value; p=0.11). 

However, it also selected older and more comorbid individuals with shorter life expectancy 

estimations (based on several predictors including age, sex, BMI, comorbidities, and smoking 

history). It should be noted that cumulative estimated life expectancy amongst those diagnosed 

with lung cancer was higher in the PLCOM2012 group (2249 vs. 2001 years; p=0.015) [232]. 

1.6.6.3 Benefit-Based Selection 

Benefit-based screening selection is an alternative method of selecting participants for screening. 

It aims to capitalise on the increased screening efficiency derived from RPMs, without selecting an 

older, more comorbid cohort likely to receive limited benefit from early cancer detection. Life-

gained prediction frameworks seek to incorporate individually calculated lung cancer risk, as well 

as projected benefits from screening, into a single metric. This metric can be used to select a 

screening cohort with an adequate level of lung cancer risk to warrant screening, as well as a long 

enough life expectancy to derive benefit from the intervention.  
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The Life Years Gained from Screening-CT (LYFS-CT) model generates a score indicating an 

individual’s projected days-of-life gained from screening. It does so by calculating life expectancy 

using an overall mortality model developed and validated in two subsets of ever-smokers in the 

National Health Interview Survey (NHIS) cohort (>100,000 subjects in total). Predictors of overall 

mortality include age, ethnicity, gender, BMI, smoking history, and co-morbid medical conditions 

such as diabetes, stroke and hypertension. Expected mortality benefit from screening (20.4% 

based on NLST) is then used to adjust life expectancy, with the difference between life expectancy 

with 3-annual rounds of LDCT screening vs. without constituting the LYFS-CT score [233]. It is 

important to note that the ‘days of life gained’ metric ‘spreads’ the expected screening benefit 

across the population. For example, an individual with 2% chance of developing lung cancer based 

on an RPM calculation, and 20 days of life-expectancy gained from undergoing screening based on 

LYFS-CT, has a 98% chance of gaining no days of life (if lung cancer is not detected) and a 2% 

chance of gaining 1000 days of life (if lung cancer is detected).  

When retrospectively applied to a test cohort of 28,458 ever-smokers (a representative NHIS 

sample of the approximately 60,712,710 ever-smokers resident in the USA [234]), life-gained 

based selection resulted in fewer lung cancer deaths prevented, but more life-years gained from 

screening in the population (overall, per-detected case and per-prevented death), when 

compared to RPM based selection. An individual selected by LYFS-CT was more likely to be 

younger, female, African-American, a current smoker and have fewer comorbidities, with a 

moderately high risk of developing lung cancer. Interestingly, USPSTF generalised eligibility 

criteria outperformed both life-gained and RPM-based selection for life years gained per-

prevented death, although it underperformed when it came to total number of deaths averted 

and life years gained counted independently [233]. The American College of Chest Physicians 

recommends the use of the LYFS-CT model to inform screening selection [235].  

To our knowledge, no study has tested benefit-based selection in an actual lung cancer screening 

cohort. Considering the impact benefit-based selection may have on reducing harms and 

increasing benefits for screening participants, further research is required to compare the 

performance of benefit-based and risk-based screening selection in real-world screening 

programme settings.  

1.6.6.4 Polygenic Risk Scores 

Whilst some RPMs and life-gained selection tools consider family history of lung cancer when 

predicting risk, no currently used model includes a direct measure of genetic risk. Despite this, 

there is evidence that a PRS of low-penetrance SNPs could aid in lung cancer risk prediction and 

screening selection. 



45 
 

A 2009 study demonstrated that integrating a 20 SNP PRS into an RPM for lung cancer increased 

its predictive ability when compared to standard risk factors alone [236]. However, the model was 

not externally validated in an independent population and had certain non-standardised study 

design elements [237]. Two other studies demonstrated that the inclusion of specific genetic 

markers resulted in modest improvements in predictive ability [238–240]. All three of these 

studies preceded the large GWAS and meta-analyses published in the last few years that have 

provided the best evidence for which SNPs are most robustly associated with lung cancer risk. 

Therefore, whilst serving as an important proof of concept, they are of limited clinical utility. 

More recent case-control studies again demonstrated improvement in risk prediction conferred 

by the SNPs, albeit modest. The limited magnitude of effect was likely a product of the small SNP 

panels tested; successful PRS systems rely on the combination of a very large number of 

independent SNPs from a range of loci [241].  

An important demonstration of an effective PRS for lung cancer risk prediction came in 2019, with 

the publication of a large Chinese study which reported the development of a 19 SNP PRS which 

had been prospectively validated in a cohort of more than 95,000 individuals. The study 

compared the PRS tool’s risk prediction when compared to age and pack-year history alone. The 

top 10% of the cohort for genetic risk were 2.96 times more likely to develop lung cancer than the 

bottom 10%. Heavy smokers with intermediate genetic risk had similar levels of risk to light 

smokers with high genetic risk. Light smokers with low genetic risk had similar overall risk to non-

smokers [242]. It should be noted that the PRS developed is specific to a Chinese population. It 

also did not test the PRS in an actual screening programme, nor did it compare the risk prediction 

against RPMs, which have superior risk prediction to generalised eligibility criteria (and it is 

therefore more challenging to improve risk prediction further with the addition of a PRS).  

A 2020 study published in Nature Communications systematically assessed the value of adding a 

PRS to RPMs for risk prediction across 16 cancer types. It tested the tools in a cohort of 413,870 

UK Biobank subjects, 22,755 of which were incident cancers. The study reported that the RPM for 

lung cancer resulted in exceptionally high levels of calibration, discrimination and predictive 

ability, based on conventional risk factors alone without inclusion of a PRS. Adding the PRS did 

result in a modest improvement in predictive value, but this was limited by the success of the 

standard RPM. However, non-event net reclassification index (the proportion of non-cases with 

risk classified downwards due to the PRS) was very high, indicating that a PRS might have utility in 

directing screening away from those who are less likely to develop cancer. Lung cancer risk 

prediction in non-smokers could be much improved by use of a PRS, as RPMs rely on risk factors 

that non-smokers are not exposed to [243]. 
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A further study published in March 2021 used a machine-learning approach to construct a PRS for 

lung cancer based on the OncoArray data of more than 23,000 individuals (approximately 13,000 

cases and 10,000 controls) which was then validated in more than 335,000 individuals sourced 

from the UK Biobank (of which 1,768 were cases). The PRS was associated with lung cancer risk in 

a dose-response relationship, although it had limited impact on improving discrimination over 

existing risk models using standard risk factors. However, the study did find that integrating a PRS 

into risk prediction could have a significant impact on the age at which an individual reaches the 

absolute risk threshold to be eligible for screening. For example, the average age at which ever-

smokers with no family history of lung cancer would be eligible for screening was 61, whilst those 

who were in the top 1% of PRS would become eligible at age 56. Current smokers with a family 

history of lung cancer, and who were in the top 10% for genetic risk, reached eligibility before the 

age of 50, considerably earlier than current screening guidelines would deem them eligible. 

Smoking cessation reduced lung cancer risk significantly, irrespective of PRS decile. Never-

smokers did not hit the screening threshold, irrespective of genetic risk [244].  

Further research is required to develop, validate, and optimise PRS tools for lung cancer risk 

prediction. Validating PRSs in actual screening cohorts, in a variety of populations, and integrating 

them into existing RPMs, are areas of particular importance in investigating whether these tools 

have the potential to improve screening selection in a real-world lung cancer screening 

programme. 

1.7 Lung Cancer Screening Implementation  

Since the publication of the NLST and NELSON trial results confirming the lung cancer mortality 

benefit derived from screening, attention has turned to developing strategies for the effective 

implementation of lung cancer screening. There are several practical prerequisites for an effective 

screening programme relating to infrastructure, organisation, funding, and governance. In 

addition to these general areas of concern, four challenges have been identified specifically 

relevant to the implementation of lung cancer screening: developing individually tailored 

invitations to screening, optimising individualised lung cancer risk assessment, investigating 

individualised screening intervals, and integrating comorbidity reducing strategies into screening 

programmes. Each category has several subsidiary questions that must be addressed to ensure a 

successful screening programme [245].  

A small RCT that had significant implications for screening implementation was the UK Lung 

Screening Trial (UKLS), which took place in 2011. It randomised 4055 participants into screening 

and control arms. Among the 1994 scanned participants, 42 lung cancers were detected, 86% 

were stage I or stage II at diagnosis [223]. Long-term follow-up found a lung cancer mortality 

reduction in the screening arm of the trial (relative rate 0.65, 95%CI 0.41-1.02; p=0.062) [199]. 
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UKLS was the first screening trial to prospectively employ an RPM for determining participant 

eligibility; it used the LLPV2 RPM to stratify individuals, those with a score of ≥5% were eligible to 

participate. The study demonstrated that lung cancer screening, employing an RPM for cohort 

selection, could be cost-effective in the NHS at £8466 per quality adjusted life year (approximately 

one-fifth of the equivalent cost in NLST). However, the invitation strategy (postal questionnaires) 

had limited effectiveness; positive response rate was 31%, with only 3.5% of those respondents 

deemed eligible for screening based on risk calculation [223].  

Results from trials such as UKLS have several important implications for screening 

implementation. However, a trial setting is fundamentally distinct from a clinical setting, 

particularly in relation to how representative the trial cohort is of actual individuals at high-risk of 

lung cancer [246,247]. In order to develop a model of lung cancer screening that could be 

practically implemented in real-world populations, community-based screening pilots and 

programmes are required. 

1.7.1 Community-Based Screening 

1.7.1.1 The Manchester Lung Health Check Pilot 

The Manchester Lung Health Check (LHC) pilot was a pioneering, community-based screening 

programme with significant implications for widescale screening implementation. Much of the 

research in this thesis utilises the Manchester LHC pilot cohort. The LHC pilot ran in 2016-2017 

and was designed as a ‘one-stop’ Lung Health Check located in easily accessible community 

locations in three socio-economically deprived areas of Manchester. This approach aimed to 

increase convenience for attendees and reduce barriers to participation amongst those most at 

risk of lung cancer [248]. As well as ensuring the overall success of the screening programme, 

reducing barriers to participation (particularly amongst high-risk deprived populations) is crucial 

to ensuring screening programmes do not exacerbate health inequalities. Screening has the 

potential to worsen health inequalities by improving outcomes in less disadvantaged people who 

are more likely to attend screening, whilst neglecting high-risk, more disadvantaged people who 

do not attend [229,230].  

A schematic of the LHC process is presented in Figure 6. In the LHC pilot, ‘ever-smokers’ aged 55-

74 from three deprived areas of Manchester were invited to attend mobile LHC units in easily 

accessible community locations such as supermarket and stadia carparks (Figure 7). Through 

nurse-guided completion of a questionnaire, each participant’s 6-year risk of lung cancer was 

calculated using the PLCOM2012 RPM; those with a score of ≥1.51% were offered annual screening 

over two rounds, with the first LDCT scan taking place immediately in an adjacent unit. LDCT 

images were examined by consultant radiologists and were classed as ‘negative’, ‘positive’ or 

‘indeterminate’. Those with a positive scan were assessed in a lung cancer clinic and managed in 
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accordance with national guidelines. Participants with an indeterminate scan returned after three 

months for a surveillance scan, whilst people with negative scans returned a year later for a 

second round of screening. In line with the holistic approach of the LHC model, participants also 

underwent spirometry to assess airflow obstruction and detect undiagnosed COPD, had QRISK 

scores calculated (a model used to quantify cardiovascular risk [249]), and were offered smoking 

cessation advice if they were a current smoker [248,250].  

Overall, 2541 participants attended the LHC pilot, most of whom were in the lowest deprivation 

quintile in England. 1429 (56.2%) were eligible for screening, of whom 4.4% were diagnosed with 

lung cancer, a significantly higher detection rate than the 1.7% seen in the first two rounds of 

NLST and 1.6% in the first two rounds of NELSON. More than 80% of the detected cancers were 

early stage; 63% underwent surgical resection [248,250].  

 

Figure 6. Participant journey through LHC programme. 

 

 

Figure 7. Images from the Manchester LHC pilot [251]. 
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1.7.1.2 Targeted Lung Health Check Programme 

The success of the Manchester LHC pilot led to the development of the NHS Targeted Lung Health 

Check (TLHC) programme, in which the LHC model is being rolled out to dozens of further sites 

[48]. It is currently operating at 23 sites in England, with a further expansion expected in the near-

future [252]. In March 2022, the UK National Screening Committee (UK NSC) published an interim 

report proposing that screening high-risk individuals for lung cancer, using the TLHC model, 

should be recommended nationwide and is likely to be cost-effective for the NHS [253]. 

Further research into optimising screening implementation is taking place embedded in, or 

parallel to, the TLHC programme. The Yorkshire Lung Screening Trial (YLST), which is operating 

within a community based LHC setting, will be the first trial to prospectively evaluate the 

performance of three screening selection methods (USPSTF, PLCO2012, and LLPV2). A cohort-based 

study previously compared these three approaches and found PLCOM2012 to be best performing in 

several respects, but analysis of real-world performance is essential [225]. YLST will also 

investigate the effectiveness of fully integrated smoking cessation services within the LHC and the 

cost-effectiveness of the screening programme [254]. 

Another implementation trial which took place within the context of an LHC programme is the 

Lung Screen Uptake Trial (LSUT). It tested whether an innovative leaflet seeking to address 

psychological barriers for screening and increase uptake would be an effective intervention. The 

trial found that the intervention did not improve uptake, but confirmed that the LHC approach 

resulted in much better participation than previous trials and studies, particularly in socio-

economically disadvantaged communities [255].  

1.7.2 Risk Perception and Risk Communication  

With the continued development of lung cancer screening programmes as clinical services, and 

the likelihood that personalised risk calculation will be used to assess screening eligibility in these 

services, understanding participants’ perception of lung cancer risk (whether it be population, 

personal, or factors that increase risk) is becoming a crucial nascent area of implementation 

research.  

Shared decision making is a process in which the clinician provides the patient with the necessary 

evidence and treatment options available to them and supports the patient to make informed 

decisions for their care. This protects patient autonomy, self-determination, and agency [256]. It 

has been argued that shared decision making provides an extension to the ethical framework of 

informed consent [256], although some conceptual and practical challenges remain in its 

implementation [257,258].  
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A crucial step in facilitating shared decision making is seeking to understand what the patient 

already knows about their medical situation, correcting incorrect assumptions, and providing high 

quality information to allow for informed deliberations and decisions. This is particularly 

important in the context of an intervention such as risk-based lung cancer screening, which may 

be preference-sensitive in patients who are older or have significant comorbidities [259]. USPSTF 

and Centers for Medicare & Medicaid Services (CMS) both emphasise the importance of shared 

decision making in lung cancer screening implementation [211,260].  

Before communicating risk and explaining options for appropriate interventions, it is important to 

understand the patient’s baseline risk perception for the disease in question. This creates an 

opportunity to correct inaccurate risk perception, ensuring the participant has an appropriate 

framework for considering the information relating to their actual risk and interventions. Several 

factors have been implicated in risk perception formation. These include numeracy, beliefs about 

the preventability and severity of the disease in question, general mental health and worry, 

previous exposure to the disease, and demographic factors such as age, sex, education and BMI 

[261–264].  

Inaccurate risk perception is common in all disease areas. A 1993 study of women in breast cancer 

family history clinics found that only 44% of women estimated their personal risk to within 50% of 

their actual risk. The study also found that women at high risk of the disease had an inaccurate 

perception of the population risk of breast cancer, with only 11% estimating this correctly [265]. A 

further study in 2016 found that 66% of low-risk women overestimate their risk of breast cancer, 

and the majority of both high and low risk women estimated the population risk of the disease 

incorrectly [266].  

A 2008 systematic review of 61 studies from across disease areas concluded that the majority of 

people (particularly those with family history of the disease) overestimate their risk of cancer. 

There was considerable evidence for poor population risk recall, and mixed evidence as to the 

association between anxiety and risk perception [267]. A study of coronary heart disease, breast 

cancer, colorectal cancer and diabetes mellitus risk perception found that high-risk patients 

usually underestimate risk, whilst low-risk patients overestimate risk. The study also found that 

BMI was the demographic factor most commonly associated with inaccurate risk perception 

[268].  

Several studies have examined lung cancer risk perception. One study evaluated risk perception in 

a subset of the NLST screening cohort. It found that personal risk estimates were higher amongst 

current smokers than in former smokers. Unlike in other studies, they did not find an optimistic 

risk perception bias amongst smokers (possibly due to those seeking out screening being less 
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likely to underestimate personal risk). Worry was also linked to risk perception [269]. Further 

studies have reported that lung cancer risk perception is influenced by cigarette smoking and 

family history of the disease [270,271]. There is also evidence that both smokers and non-smokers 

overestimate lung cancer 5-year survival rates [272]. 

A study published in 2019 examined risk perceptions in a small cohort of 70 NLST eligible 

screening participants. The study found that there was a particularly pessimistic risk perception 

amongst the participants, with the mean lifetime risk estimate being 52.1%. Following shared 

decision making counselling in which their actual calculated risk scores were provided, this was 

reduced to a mean of 32.8%. Those at higher objective risk of lung cancer had a smaller reduction 

in risk perception post-counselling. Interestingly, whilst risk perception decreased, interest in 

screening increased post-counselling [273].  

A cross-sectional study published in 2021 was the first to compare actual lung cancer risk and 

perceived risk in attendees of a screening programme. The study surveyed 2,514 participants of 

the PanCan study, all current or former smokers with ≥2% risk of developing lung cancer over 6-

years. It reported that actual and perceived comparative risk perception were positively aligned. 

Younger age, higher pack-year history, being a former smoker, having a family history of lung 

cancer, respiratory symptoms and history of COPD were also associated with higher risk 

perception. No clear relationship between lung cancer-specific worry and perceived risk was 

found [274]. 

In addition to its importance in shared decision making, risk perception may be a determinant of 

health behaviours [275]. For example, there is some evidence that risk perception and lung cancer 

worry were positively associated with intention to quit smoking [274]. Risk perception can also 

mediate feelings of anxiety and general quality of life [268]. There is evidence that risk perception 

is an important factor in individual’s willingness to attend screening [276–278]. Being aware of 

the characteristics of those with an overly optimistic or pessimistic risk perception could facilitate 

the targeting of screening related messaging to the subset of the population who would benefit 

most [279].  

There are several frameworks for risk conceptualisation, useful for understanding a participant’s 

perceived risk and for facilitating effective risk communication. Two primary approaches are to 

use absolute risk, a numerical estimation of an individual’s risk of a disease in a particular 

timeframe, or comparative risk, where you present an individual’s risk in the context of a larger 

population or group [280]. There is mixed evidence as to which approach is most effective for risk 

communication [281]. Visual aids representing risk have been shown to assist participants in their 

understanding of risk information [281]. There has been limited development of visual aids, 
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standardised communication protocols, and other communication tools for interacting with lung 

cancer screening participants [282]. Two infographics were created and published presenting 

baseline outcomes and screening related harms for people undergoing lung cancer screening in 

the UK [204], but this is not directly applicable to communicating a person’s individual lung cancer 

risk and screening eligibility. An online tool is available that allows individuals to calculate their 

personal lung cancer risk; it presents risk information in a variety of formats, including in absolute 

and comparative terms [283]. More research is required to investigate how socio-economically 

disadvantaged participants of community-based LHC programmes perceive their risk, and which 

tools are effective for risk communication and shared decision making. 
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1.8 Aims and Objectives 

Aim 

The overall aim of this project is to improve the selection of individuals in socio-economically 

disadvantaged communities for lung cancer screening. 

Hypotheses 

o Current lung cancer screening selection strategies perform sub-optimally in socio-

economically disadvantaged populations.  

o Benefit-based screening selection reduces the comorbidity profile of the cohort selected 

for screening when compared to risk-based selection. 

o Assessing the genetic profile of ever-smokers improves prediction of lung cancer risk. 

o Risk perception accuracy is low in socio-economically disadvantaged lung cancer 

screening participants. 

Objectives 

I. To analyse the performance of several risk-based methods of cohort selection in a 

community-based screening programme, including generalised eligibility criteria and two 

RPMs.  

II. To investigate the impact of applying a life-gained selection strategy in a community-

based lung cancer screening programme, assessing whether this approach may contribute 

to improving lung cancer screening selection in this population. 

III. To validate previously published polygenic risk score tools, investigating whether reported 

genetic risk factors for lung cancer are present in the Manchester population and whether 

they could be used to improve lung cancer risk prediction. 

IV. To explore novel genetic signals emergent from the Manchester case-control dataset. 

V. To assess lung cancer risk perception, disease knowledge and lung cancer-specific worry 

in attendees of a community-based lung cancer screening programme, with implications 

for effective risk communication and shared decision making in this setting. 
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Chapter Two - Methods and Protocols 

2.1 Manchester LHC Pilot Cohort  

The results and analyses described in Chapters 3-5 are derived from the Manchester LHC pilot 

cohort (introduced in section 1.7.1.1) [248,250]. The Manchester LHC pilot took place in 2016-

2017, located in Harpurhey, Gorton and Wythenshawe, three socio-economically deprived areas 

of Manchester. Participants were invited through their registered GP practices. All 96 GP practices 

in North, Central and South Manchester Clinical Commissioning Groups (CCG) were approached to 

participate, 20 practices expressed an interest, and 15 were selected based on proximity to the 

LHC pilot sites (one practice withdrew prior to pilot commencement) [284]. Ever-smokers aged 

55-74 were invited to attend the LHC, which took place in mobile units at easily accessible 

community locations.  

Participants completed a questionnaire under the guidance of a specialist nurse, facilitating the 

calculation of an individualised 6-year risk estimate of lung cancer using the PLCOM2012 RPM. Those 

with a score of ≥1.51% were offered annual screening over two rounds. LDCT images were 

examined by consultant radiologists and were classed as ‘negative’, ‘positive’ or ‘indeterminate’ 

for lung cancer. Pulmonary nodules were managed in accordance with British Thoracic Society 

guidelines [285]. The radiologist also subjectively classified the level of coronary artery 

calcification (CAC) for each scanned individual (none, mild, moderate or severe). The baseline 

LDCT images were also used to determine the presence or absence of emphysema.  

In addition to lung cancer risk calculation, all participants of the LHC pilot underwent spirometry 

(pre-bronchodilator) using a desktop spirometer (Vitalograph® ALPHA). Forced Expiratory Volume 

in one second (FEV1), Forced Vital Capacity (FVC), respective predictive values, and FEV1/FVC ratio 

were recorded. Participants completed a questionnaire related to respiratory symptoms. 

Respondents were classed as ‘symptomatic’ if they reported one or more of: breathlessness (≥2 

Medical Research Council (MRS) dyspnoea scale [286]), sputum production (≥teaspoon per day), 

and/or cough (≥6 weeks in duration), in accordance with the Global Initiative for Chronic 

Obstructive Lung Disease (GOLD) recommendations [95]. Cardiovascular disease history 

(myocardial infarction, stroke, angina or transient ischaemic attack) was collected in attendees of 

the second screening round. 

The PLCOM2012 RPM predicts lung cancer risk based on an array of risk factor and demographic 

variables (Table 1) [89]. In the LHC pilot, UK educational levels were adapted from the US 

reference in accordance with the International Standard Classification of Education [287]. 

Additional data including asbestos exposure, early-onset familial lung cancer, history of 

respiratory disease (pneumonia, tuberculosis, bronchitis and COPD) were collected to calculate 5-
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year lung cancer risk using the LLPv2 RPM (Table 1) [221], although this score was not used to 

determine screening eligibility in the pilot. LLPV2 and PLCOM2012 have been shown to perform 

differently in validation studies [225]. Consequently, it is important to note that having 

prospective data based solely on PLCOM2012 somewhat limits the post-hoc analysis contained in 

this thesis; specific impacts for each analysis are discussed in the individual results chapters. 

LHC pilot participants provided written informed consent to participate in research (REC Ref: 

17/EE/0092). All data were stored on an ethically approved Microsoft Access database (REC Ref: 

16/NW/0013).  

2.2 Manchester LHC Pilot Follow-up Data Collection 

For the analysis in Chapter Four, I collected data on outcomes, mortality, and comorbidity 

diagnoses for all LHC pilot participants who had screen-detected lung cancer, as well as for a 

subset of cancer-free individuals, at a fixed time-point approximately 5-years after the pilot took 

place. GP, hospital and NHS records were used to ascertain alive/dead status, cause of death, age 

of death or current age, details of cancer staging, treatment, complications and recurrence (for 

those diagnosed with lung cancer), and details of newly developed comorbidities (in a subset of 

the follow-up cohort).  

2.3 Life-Gained Calculations 

For the analysis in Chapter Four, I used the lcmodels R package (v.4.0.3) [288] to recalculate 

PLCOM2012 risk scores and calculate LYFS-CT life-gained scores (and associated life expectancy 

projections) for the whole LHC pilot cohort (LYFS-CT introduced in section 1.6.6.3). LYFS-CT uses 

23 variables in its calculation of expected life-gained from screening. Eleven are the same as that 

of the Lung Cancer Death Risk Assessment Tool (LCDRAT) model: age, gender, ethnicity, 

education, BMI, years smoked, years quit, cigarettes per day, pack-years, lung disease, 

pneumonia, family history of lung cancer (binary and numeric) [228]. The remaining variables are 

additional comorbidities: hypertension, coronary heart disease, angina, heart attack, other heart 

disease, stroke, diabetes, chronic bronchitis, kidney failure, liver disease, health condition 

requiring special equipment, and year of assessment.  

2.4 Case-Control Cohort Recruitment and Sample Acquisition 

Samples used for the case-control study described in Chapter Five were sourced from two 

Manchester-based resources. The control cohort comprised of whole blood samples provided by 

attendees of the second round of the Manchester LHC pilot (described in section 2.1) who were 

screen-negative for lung cancer. Blood was aseptically extracted by research nurses on the 

screening truck and stored at -80 °C within 48 hours. Written, informed consent was provided by 

all participants. 
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The case cohort comprised of whole blood samples from patients with histologically confirmed 

NSCLC, sourced from the Manchester Cancer Research Centre (MCRC) Biobank. All case samples 

originated from patients who had undergone surgical resection of lung cancer between 2010 and 

2018. Blood was aseptically extracted by biobank technicians and immediately collected in EDTA 

tubes. After extraction, samples were stored temporarily on dry ice and transferred to -80 °C 

freezers in the biobank no later than 48 hours after extraction. Samples were transferred from the 

biobank to the University of Manchester laboratories on dry ice and then stored in -80 °C freezers 

until DNA extraction was performed. Alongside blood samples, the biobank provided clinical data 

relating to the cases including age, sex, smoking history, cancer histology, tumour stage, date of 

surgery and spirometry. Written, informed consent was provided by all participants (REC Ref: 

18/NW/0092). 

2.5 Case-Control DNA Extraction  

2.5.1 Case Samples 

QIAGEN (Hilden, Germany) Gentra® PureGene® and QIAGEN FlexiGene® kits were used for DNA 

extraction from the case samples. A detailed QIAGEN Gentra® PureGene® protocol is available 

[289]. In brief, 9 ml of red blood cell lysis solution was added to 3 ml of whole blood, releasing the 

cell nuclei and mitochondria. The samples were incubated at room temperature for 5 minutes, 

following which they were centrifuged for 2 minutes at 2000 x g. The supernatant containing the 

cell fragments was discarded, leaving a white blood cell pellet which was then resuspended in the 

residual liquid by vortex mixing. A further 3 ml of cell lysis solution was added to the samples, 

followed by 10 seconds of vortex mixing. Next, 1 ml of protein precipitation solution was added to 

the samples, which were then vortex mixed for 20 seconds and centrifuged at 2000 x g for 5 

minutes. The resultant supernatant was transferred into 3 ml of isopropanol and inverted 50 

times until the DNA pellet was visible. The DNA was centrifuged at 2000 x g for 3 minutes, drained 

by inversion onto absorbent paper, and cleaned with 3 ml of 70% ethanol. The samples were 

centrifuged again, inverted onto absorbent paper, air-dried for 5 minutes, rehydrated in 300 µl of 

DNA rehydration solution, and briefly mixed. The suspended DNA samples were then incubated 

for 1 hour at 65 °C and overnight at room temperature.  

A detailed QIAGEN FlexiGene® protocol is available [290]. In brief, for each patient sample, 3 ml of 

blood was added to 7.5 ml of lysis buffer, mixed briefly, and centrifuged at 2000 x g for 5 minutes. 

The supernatant was discarded, and the pellet drained onto absorbent paper for 2 minutes. 1.5 

ml of a protease buffer was added, and the mixture vortex mixed until homogenised. The samples 

were then incubated at 65 °C for 10 minutes, at which point the solution changed colour from red 

to green indicating protein digestion. 1.5 ml of 100% isopropanol was added, and the samples 

were centrifuged at 2000 x g for 3 minutes to precipitate the DNA. The DNA pellets were drained 
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and washed with 1.5 ml of 70% ethanol. They were then re-centrifuged, drained, air-dried and 

rehydrated in 300 µl of buffer, after which the suspended DNA samples were incubated for 1 hour 

at 65 °C. 

2.5.2 Control Samples 

DNA from control blood samples was extracted using the Qiagen QIAamp® DNA Blood Midi Kit. A 

detailed protocol for this procedure is available [291]. In brief, up to 2 ml of blood from each 

sample was added to 200 µl protease and mixed. 2 ml of lysis buffer was added, and the tubes 

were inverted 15 times and mixed vigorously for 1 minute. The samples were incubated at 70 °C 

for 10 minutes. Ethanol (100%) was added, and the samples mixed. The solution was transferred 

to QIAamp® Midi (Qiagen, Hilden, Germany) columns placed in 15 ml collection tubes and 

centrifuged at 1850 x g for 3 minutes to bind the DNA; DNA adsorbs to a silica-based membrane 

inside the column, whilst impurities and contaminants pass through. The filtrate was discarded, 

and 2 ml volumes of two wash buffers were added to the columns in sequence; the columns were 

centrifuged at 4500 x g for 1 minute and 15 minutes respectively. Finally, 300 µl of elution buffer 

was added to the columns, incubated at room temperature for 5 minutes, and centrifuged at 

4500 x g for 2 minutes. To increase DNA concentration, the eluate was reloaded into the columns 

to undergo a second round of incubation and centrifugation. 

2.6 DNA Quality Control, Quantification and Normalisation 

Extracted DNA samples were tested for purity and concentration using Thermo Fisher NanoDrop™ 

(Waltham, Massachusetts, United States) either immediately (for the QIAGEN FlexiGene® and 

QiaAmp DNA Blood Midi Kit) or 24 hours after extraction (for the QIAGEN Gentra® PureGene®). 

The NanoDrop™ was calibrated using injection water, blanked using the rehydration buffer 

provided with the DNA extraction kit, after which a volume of 2 µl DNA of each sample was used 

for quantification. A concentration of ≥100 ng/µl was considered adequate for downstream 

application. A 260/280 absorbance ratio of ≥1.8 and 260/230 absorbance ratio of ≥2.0 was 

considered pure; low ratios indicate the presence of residual reagents from the extraction process 

which may interfere with downstream processes [292].  

Samples with inadequate concentration or purity were either re-purified, concentrated, or re-

extracted. Samples with low purity or concentration were purified or concentrated using Zymo 

Research Genomic Clean and Concentrator™ (Irvine, California, USA). A detailed protocol is 

available [293]. In brief, one volume of DNA was added to double its volume of DNA binding 

buffer. The mixture was transferred to a Zymo-Spin™ Column housed in a collection tube and 

centrifuged for 30 seconds at 15,000 x g. DNA binds to the silica-based membrane in the column. 

DNA wash buffer was then added to the column which was centrifuged for 1 minute. The wash 

step was repeated. Finally, DNA elution buffer (volume dependant on concentration of original 
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DNA sample) was added to the column, incubated at room temperature for 1 minute, and 

centrifuged in a clean collection tube for 30 seconds. Samples with extremely low DNA 

concentrations (indicating a possible loss of genomic material during extraction) were re-

extracted from residual blood where available. 

All DNA samples were quantified using the Qubit™ dsDNA BR Assay Kit (Thermo Fisher, Waltham, 

Massachusetts, United States), to facilitate accurate normalisation in preparation for genotyping. 

A detailed protocol is available [294]. In brief, 1 µl of each DNA sample was combined with 199 µl 

of prepared Qubit™ working solution in Qubit™ assay tubes. The two standards were made up 

with 10 µl of standard stock and 190 µl of working solution. Each mixture was vortex mixed. The 

fluorometer was blanked and calibrated before each run using freshly prepared standards. The 

concentration of each DNA sample was then measured. The value provided by the fluorometer 

was multiplied by 200 to ascertain the DNA concentration of the original sample. The DNA 

samples were normalised to 50 ng/µl in 20 µl aliquots and dispensed into 96-well plates, using 

RNase and DNase-free sterile injection water for dilutions. DNA samples were stored at -20 °C 

until genotyping.  

2.7 Genotyping 

Genotyping of DNA samples was performed on the Illumina iScan™ System (San Diego, California, 

United States), employing the Infinium OncoArray-500K for high-throughput screening (HTS). This 

is a BeadChip designed by the OncoArray consortium for the purpose of studying cancer risk and 

predisposition by examining approximately 500,000 SNPs related to common cancers, including 

lung cancer [295]. 

A detailed protocol for performing Infinium HTS is available [296]. A schematic overview is 

presented in Figure 8. A brief description follows, with several mix and centrifuge steps omitted 

for brevity. First, 4 µl of each DNA sample was added to 20 µl of buffer and denatured with 4 µl of 

0.1N NaOH. The mixtures were then neutralised with 34 µl of neutralisation buffer. 38 µl of an 

amplification master mix was added to each sample following which they were amplified by 

incubation in a 37 °C hybridisation oven overnight. This results in uniformly amplified DNA 

samples in sufficient quantity for genotyping.  

The DNA was then enzymatically fragmented with 25 µl of a fragmentation buffer and incubated 

on 37 °C heat block for one hour. This cleaves DNA into 300-600 base pair fragments, the optimal 

length for hybridisation to the OncoArray BeadChip. The fragmented DNA samples were coloured 

with 50 µl of a visualisation reagent, precipitated with 155 µl of 100% 2-propanol, mixed by 

inversion, incubated at 4 °C for 30 minutes, and centrifuged at 3000 x g and 4 °C for 20 minutes. 

Following centrifugation, the plate was drained onto an absorbent pad, leaving the blue-coloured 
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DNA pellets in the plate. The samples were then resuspended in 23 µl of buffer, the plate was 

heat sealed, and incubated in the hybridisation oven at 48 °C for 1 hour 

Next, 14 µl of each DNA sample was transferred onto the OncoArray 500K BeadChip, hybridising 

to complementary oligonucleotide probes which cover the silica beads on the chip during an 

overnight incubation period (48 °C). Each bead is coated with DNA oligonucleotide probes specific 

to one locus of interest. DNA fragments only bind to the complementary probes; specificity is 

ensured by the high stringency buffer conditions, elevated temperatures, and length of probes.  

Following overnight incubation, the BeadChip covers were removed, and excess reagents were 

removed by submerging the chips in wash buffer. The BeadChips were integrated into specialised 

flow-through chambers and placed vertically onto a water circulator set to 44 °C. The BeadChips 

then underwent an extensive manual washing and staining procedure. A reagent was added to 

wash away unhybridized excess DNA. Two buffers were then added to condition the BeadChip 

surface for DNA extension. Next, DNA polymerase was added to extend the DNA fragments with a 

single hapten-labelled base for each probe. G and C nucleotides are labelled with biotin, A and T 

nucleotides are labelled with dinitrophenyl (DNP). Following extension, the probes were stained 

with green-fluorescent streptavidin (which binds to biotin) and red-fluorescent anti-DNP 

antibodies. Successive rounds of staining and washing amplify the fluorescent signal. After 

staining, the BeadChips were washed to remove excess reagents, submerged in a coating solution, 

and dried in a vacuum desiccator for at least one hour.    

Once the BeadChips were coated and dried, they were loaded into the Illumina iScan™ System. 

The scanner exposed the BeadChip to high-performance red and green lasers, which excite the 

fluorophores bound to the DNA samples, resulting in the display of a red or green signal 

depending on the variant present for a particular SNP. For example, if the signal produced by a 

particular bead is red, it can be assumed that there is a homozygous TT allele at that locus. A 

green signal would indicate homozygous CC, whilst a yellow signal indicates a heterozygous allele. 

The BeadChip includes a series of built-in internal control probes, designed to confirm the success 

of each genotyping step, thereby ensuring reproducibility and robustness of results [297]. I added 

cross-plate sample duplicates to each genotyping run to serve as positive controls.  
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Figure 8. Illumina Infinium HTS assay manual workflow protocol. Used under license from 
Illumina, Inc. All Rights Reserved. 
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2.8 Data Quality Control 

Illumina’s GenomeStudio (v.2.0) was used for the first stages of quality control (QC) and data 

processing. SNPs were initially clustered using the Infinium OncoArray-500K v1.0 (Rev. B) Cluster 

File provided by Illumina. Samples with a call rate <95% were excluded, and in most cases, were 

re-genotyped to generate an iteration with an adequate call rate. The final sample-set was then 

re-clustered independent of pre-defined cluster positions. The PLINK Input Report Plug-in (v2.1.4) 

was used to generate PLINK compatible PED and MAP files from GenomeStudio. The PED file was 

converted to binary (BED) format in PLINK (v.1.9) [298]. PLINK was used for all QC steps unless 

otherwise specified. 

Thresholds for SNP QC were established based on previous studies [299]. Y chromosome and 

mitochondrial SNPs were excluded. SNPs with a missingness rate of >0.02 were excluded, thereby 

removing SNPs with low genotype call rates. SNPs with a minor allele frequency of <0.01 were 

excluded, as these are considered rare variants which are more prone to genotyping errors. 

Furthermore, this study is not powered to establish associations between rare variants and the 

phenotype of interest. SNPs which deviated from Hardy Weinberg Equilibrium (HWE) (1e-4) were 

excluded. In such a deviation, the allele frequencies do not conform to the HWE (which assumes 

constant allele frequencies across generations), indicating genotyping error or evolutionary 

selection. Symmetric SNPs (i.e. A/T or G/C SNPs) were excluded, as errors can occur in the 

Illumina “A” and “B” allele SNP designation process in these cases [300]. Following these steps, a 

checking tool was run to confirm strand alignment and position of SNPs in comparison to the 

haplotype reference panel (HRC) and 1000 Genome datasets [301]. 

Thresholds for individual/participant QC were sourced from previous studies [299]. Samples with 

a call rate of <98% or divergent heterozygosity (>3 SDs), indicating inbreeding or sample 

contamination, were excluded. Individuals with non-concordant phenotypic and genotypic sex 

were excluded. KING (v.1.9) software was used to assess Identity by Descent (IBD) [302]. 

Unexpected duplicates were excluded, as were one member of each pair of 1st or 2nd degree 

relatives (relatedness can skew association analyses).  

The FlashPCA (v.2.0) tool for principal component analysis (PCA) was used to ascertain genetic 

ancestry and genetic variation in the cohort [303]. To estimate genetic ancestry, I combined the 

Manchester cohort genotypes with the HapMap3 reference dataset and performed PCA on the 

combined data [304]. Samples which deviated from the European cluster were excluded. To 

ensure there were no distinct genetic subgroupings within the cohort which could skew results, 

samples from within the European ancestry subgroup were also excluded if they had outlying 

genetic variation based on a scatter plot of PC1 and PC2 values. The Aberrant (v.1.0) R package 

was used to exclude outliers [305]. 
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The scree plot generated during the PCA was used to determine the number of principal 

components (PCs) to be used as covariates in the association analysis, with the number of points 

deviating from the trend providing an indication of the appropriate number of PCs to account for 

the genetic variance in the cohort.  

2.9 Genomic Imputation 

I used the Michigan Imputation Server for genomic imputation [306]. The human genome 

reference build, HRC r.1.1 2016 (GRCh37/hg19) was used as the reference panel and Eagle v.2.4 

was used for phasing. The imputed dataset was filtered for duplicated SNPs and SNPs with low 

imputation confidence (r2 <0.5).  

2.10 PRS Validation 

I searched PubMed and the PGS Catalog [307] databases for previously developed lung cancer PRS 

in order to validate them in the Manchester case-control cohort. Effect alleles listed in the 

literature were matched with the Manchester cohort genotyped data by comparing minor allele 

frequency (MAF). The LDproxy tool [308] was used to identify proxy SNPs when SNP data were 

not available in the study cohort. The proxy-SNP appearing in the Manchester dataset with the 

highest R2 was used, with the correlated alleles provided by LDproxy used to identify the effect 

allele. If no proxy SNP with an R2 of >0.5 was available, that SNP was excluded from the PRS for 

the purposes of validation. Genetic load was calculated using the --score function in PLINK (v.1.9) 

[298]. This function applies a simple linear scoring system, by summing the number of effect 

alleles for the specified SNPs, multiplied by the allelic weight. Allelic weight was represented by 

the natural logarithm of the published ORs. Scores were centred around the mean to facilitate 

comparison between PRSs. 

Following calculation of genetic load scores for each PRS, I used the ggplot2 (v.3.3.5) package in 

RStudio to create density plots of scores stratified by phenotype, in order to visually represent the 

divergence in PRS between cases and controls [309]. Model discrimination was assessed by 

calculating area under the curve (AUC) using the pROC (v.1.17.1.0) package in RStudio [310].  

I fitted a logistic regression model using the demographic and clinical data available in both cases 

and controls. Variables included were age, sex, BMI, smoking status and FEV1/FVC ratio. Using the 

PredictABEL (v.1.2-4) R package [311], AUC was calculated for the base clinical model, then each 

of the PRSs were added to the model to examine additional discriminatory value conferred by the 

genetic score. Statistical significance of any AUC improvement conferred by PRS inclusion was 

tested using the Likelihood-ratio test. I also used PredictABEL to calculate net reclassification 

improvement (NRI) index for each model. NRI is a metric that attempts to quantify how well a 

model reclassifies subjects compared to a previous model. Cases or controls who are correctly 
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reclassified by the new model into a higher or lower risk groups respectively are assigned +1, and 

the converse are assigned -1. The sum of all individuals in each group is then divided by the total 

number of subjects in the group and added together to result in the NRI [312]. 

I selected the best performing PRS from those validated in the Manchester cohort to perform 

subgroup analysis. I split the cohort by sex, age (above vs. below median), BMI (above vs. below 

median), and smoking status (current vs. former), as well as by lung cancer histological subtype in 

the cases (adenocarcinoma vs. other) and NLST eligibility, calculating PRS performance scores in 

each of the subgroups individually. 

SNPs that appeared in multiple published PRSs were also identified and synthesised into a 

‘combined PRS’ before testing it in the study data, to explore whether the SNPs most employed in 

a variety of PRSs would provide superior performance if used in combination.  

2.11 GWAS and PRS Development 

Association analysis was performed using SNPTEST (v.2.5.2). The analysis was adjusted for PCs 

generated during PCA, as well as sex, age, smoking status and BMI. The output was uploaded to 

the Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA GWAS 

v.1.3.6) platform for GWAS data visualisation and candidate gene exploration [313]. Maximum P-

value for independently significant SNPs was set at 1e-5.  

PRSice-2 (v.2.3.3; 2020-08-05) was used to prune SNPs in linkage disequilibrium, identify the most 

predictive PRS, and generate a list of SNPs in the PRS ordered by P-value thresholds [314]. The 

analysis was adjusted for the same covariates detailed above (section 2.10). The SNPTEST output 

files were used as the base dataset; raw genotyping data from the case-control dataset was used 

as the target dataset. The beta from the SNPTEST output was used as the effect magnitude. 

PRSice-2 was also used to create a plot displaying model fit at each P-value threshold.  

2.12 Manchester LHC Programme Cohort and Recruitment 

The cross-sectional study investigated lung cancer-specific risk perception and disease knowledge, 

described in Chapter Six, took place in a subset of first-round participants of the Manchester Lung 

Health Check Programme (LHC). This programme took place in 2019-2020 (Figure 9) and was an 

expanded version of the Manchester LHC pilot described in 2.1. The programme invited ever-

smokers aged 55-80 resident in deprived areas of North and East Manchester to a community-

based LHC, in which lung cancer risk was calculated, respiratory symptoms examined, and 

smoking cessation advice offered. As in the LHC pilot and the NHS TLHC protocol [48], those 

deemed at high risk of lung cancer (PLCOM2012 6-year risk ≥1.51%) were offered immediate low-

dose computed tomography (LDCT) screening (T0) followed by a second-round LDCT scan one 

year later (T0+12). Data collected in the LHC included a variety of demographic factors: age, sex, 

https://fuma.ctglab.nl/
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ethnicity, smoking status, smoking history, educational attainment, asbestos exposure, family 

history of lung cancer, previous cancer diagnosis, BMI and postcode-based index of multiple 

deprivation (IMD). Some of these factors were used to generate a 6-year estimate of lung cancer 

risk using the PLCOM2012 risk model [89].  

I recruited participants for the study immediately as they entered the LHC site, prior to 

undergoing their LHC or any contact with clinical staff. All English-speaking participants who 

attended the LHC on the days when this study was operating were offered to take part, without 

any selection based on demographic factors. Participants consented to take part in this study and 

were asked if they agreed to have their questionnaire responses linked to the clinical and 

demographic data collected in their LHC. Participants who declined to be identified were still able 

to complete the questionnaire and their responses remained anonymous.  

 

Figure 9. Image of the mobile LHC unit from the Manchester Lung Health Check programme [315]. 
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Chapter Three - Risk Prediction Model Performance: Study of 

Manchester LHC Pilot 

3.1 Introduction 

Lung cancer is the leading cause of cancer death worldwide [1]. Poor survival is driven by late 

clinical presentation, due to early-stage cancer being largely asymptomatic [5]. LDCT screening 

significantly improves lung cancer outcomes by detecting lung cancer at an earlier stage 

[193,194]. The selection method used to determine screening eligibility is a crucial determinant of 

screening programme efficiency and effectiveness. Lung cancer screening trials often employ 

generalised eligibility criteria for screening selection (also recommended by USPSTF guidelines 

[47]). Implementation studies and NHS England’s TLHC programme favour screening selection 

based on individual risk prediction (using RPMs), which may improve screening performance 

compared to generalised eligibility criteria [89,220] (described in detail in sections 1.6.6 and 

1.7.1.2).  

The Manchester LHC pilot was a community-based screening programme that offered targeted 

LDCT screening to ever-smokers in socio-economically deprived areas of Manchester. The LHC 

pilot had a detection rate of 4.4%, significantly higher than comparable screening trials and 

programmes [248,250]. Screening eligibility in the pilot was determined using the PLCOM2012 RPM 

at a threshold of ≥1.51%. This RPM was originally developed in the PLCO study population (a large, 

North American, relatively affluent cohort [189]), which may not be representative of real-world 

lung cancer screening attendees. Consequently, PLCOM2012 and other selection tools developed in 

trial settings (such as LLPV2 and NLST criteria), may function unexpectedly or sub-optimally when 

applied to community-based lung cancer screening programmes. With the ongoing rollout of the 

TLHC programme in England, understanding the characteristics and deficiencies of the selection 

methods being widely used in clinical practice is of particular importance [48]. Furthermore, 

socio-economically disadvantaged communities, which are key targets for lung cancer screening 

due to the high risk profile of the population, may be particularly vulnerable to sub-standard risk 

prediction; this could lead to an exacerbation of health inequalities [229,230] (described in detail 

in section 1.7.1.1).  

This study aimed to test the hypothesis that screening selection strategies perform sub-optimally 

in socio-economically disadvantaged populations (see hypotheses in section 1.8). I retrospectively 

examined the performance of the PLCOM2012 RPM which was used in the Manchester LHC pilot for 

screening selection. I also modelled various alternative methods of screening selection in this 

cohort and examined the hypothetical screening performance had these strategies been used in 

the pilot. Selection performance was assessed by considering RPM calibration, the number of 
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participants selected for screening, and the associated cancer detection rates. Model calibration is 

important, as RPMs and associated risk-based screening thresholds are frequently developed in 

populations unrepresentative of the programmes they are used in clinically. A mis-calibrated 

model may underestimate or overestimate risk in the target population, thereby restricting 

screening from those who may benefit or providing screening too widely and exposing low-risk 

participants to harm. The number of participants selected for screening and cancer detection 

rates are key metrics in judging the overall efficiency of a screening programme. 

A further measure of selection performance is the comorbidity profile of the screening cohort. 

Lung cancer risk, being predominantly driven by age and smoke exposure, is strongly correlated 

with respiratory and cardiovascular comorbidities [316]. Evidence for a relationship of this nature 

could be used to augment RPMs with additional clinical risk factors to improve risk prediction. 

However, it may also indicate that the benefit high-risk individuals derive from screening could be 

limited by competing causes of mortality [233], which would severely impact on the overall 

effectiveness of the screening programme.  

3.2 Methods 

3.2.1 Study Cohort and Risk Prediction 

The population analysed in this study was the Manchester LHC pilot cohort (LHC pilot described in 

section 1.7.1.1). In depth clinical and demographic data were recorded prospectively by the 

clinical team at the LHC location. Detailed descriptions of cohort recruitment, data collection, and 

risk prediction calculations are described in section 2.1. 

3.2.2 Outcome Measures 

The number of participants selected for screening and cancer detection rates were examined by 

comparing PLCOM2012 at a ≥1.51% threshold (used in the LHC pilot for selection) with several 

alternative selection methods: NLST generalised eligibility criteria (age 55-74, ≥30 pack years, 

current smoker within 15 years [193]), LLPv2 RPM at a ≥5% threshold (as per the UKLS trial [223]), 

and LLPv2 at a ≥2.5% threshold (as per the TLHC protocol [48]). The comparison of PLCOM2012 

≥1.51% and LLPv2 ≥2.5% is particularly pertinent with important clinical implications, as these 

criteria are recommended by National Health Service England (NHSE) for determining screening 

eligibility in the TLHC programme (see section 1.7.1.2) [48].  

I examined the presence of several cardiovascular and respiratory comorbidities in the screening 

cohort, including airflow obstruction, coronary artery calcification, emphysema, and respiratory 

symptoms. I assessed the association between these comorbid conditions and PLCOM2012 

calculated lung cancer risk, as well as explored whether these comorbidities are associated with 

lung cancer detection in the Manchester LHC pilot.  
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RPM calibration was examined by comparing the projected number of detected lung cancers in 

the Manchester LHC pilot with the number of cancers predicted by the PLCOM2012 and LLPV2 RPMs.  

3.2.3 Detection Rate Projections 

In order to assess RPM calibration, I calculated hypothetical detection rates to approximate the 

number of lung cancers that might have been detected in Manchester if screening had been 

continued for a total of six years. I used lung cancer incidence data from the NELSON trial as a 

basis for projections because it was undertaken in a comparable European population, at a large 

scale and the duration of screening was similar (5.5 years) to the 6-year risk calculated by 

PLCOM2012. In the NELSON trial, lung cancer detection rates at each screen were 0.9% at baseline, 

0.8% in the second screening round (1-year after baseline), 1.1% in the third (3-years after 

baseline) and 0.8% in the fourth screening round (5.5-years after baseline) [194]. This is one-third 

and one half the detection rate seen in Manchester at baseline (3.0%) and the second round 

(1.6%). The projected detection rates used for analysis were therefore adjusted twofold to 2.2% 

(3rd round) and 1.6% (4th round). The denominator was the total number eligible for screening 

minus the number of participants diagnosed with lung cancer prior to that screening round, thus 

the estimated number of cases assumes complete adherence. Lung cancers diagnosed outside of 

screening (interval cancers) in the NELSON trial were not included in the analysis, and therefore, it 

was assumed that no interval cancers would occur. This is consistent with the LHC pilot data 

which showed no interval cancers between the first and second screening round. 

3.2.4 Statistical Analysis 

I carried out statistical analysis using IBM SPSS Statistics (v.25). Basic descriptive statistical 

techniques were used to elucidate the characteristics of screening cohorts as selected by the 

various eligibility criteria. Comparison of means was conducted by T test or one-way analysis of 

variance (ANOVA). All P-values for ANOVA were adjusted for multiple testing by post-hoc 

Bonferroni correction. P-values for trend were calculated by fitting linear or logistic regression 

models, using a single independent variable with 1 degree of freedom. I tested a number of 

variables, not included in the PLCOM2012 model, in a logistic regression analysis to see if they were 

independently predictive of lung cancer after controlling for PLCOM2012 risk score, as indicated by a 

statistically significant P-value for the variable in question (<0.05). These variables included 

FEV1/FVC ratio, CAC and emphysema. 

3.3 Results 

3.3.1 Study Cohort Recruitment and Demographics  

Detailed results from both screening rounds of the Manchester LHC pilot have been published 

previously [248,250]. In brief, 2541 ever-smokers attended the LHC pilot. Complete demographic 
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descriptors are presented in Table 2; 51% were female, mean age was 64 years, 37% had airflow 

obstruction, 35% were current smokers, and the average number of pack-years was 35. Three-

quarters of attendees were in the lowest IMD quintile, and two-thirds had no educational 

qualifications. In total, 1429 (56.2%) attendees were eligible for, and 1384 had, a baseline scan. A 

small proportion (n=25) had a scan at T1 only (98.6% of those eligible had at least one scan), 

resulting in 1409 having at least one scan over the two rounds (Table 2). 

3.3.2 Lung Cancer Detection 

A total of 62 participants were diagnosed with lung cancer in the LHC pilot, 42 at T0 (3%), 19 at T1 

(1.6%) and one during post-T1 nodule surveillance [248,250]. The number needed to screen (NNS) 

to detect one lung cancer was 23. NNS was strongly associated with lung cancer risk, with an NNS 

of 9 amongst those in the highest risk group (PLCOM2012 ≥10%) compared to a range of 66-73 

amongst those with a risk score of PLCOM2012 1.51%-3%. The NNS was lower for women than men 

at every risk threshold until ≥6%, at which point it was similar (Figure 10). At the PLCOM2012 ≥1.51% 

threshold used in the LHC pilot, the NNS was 26 for men and 20 for women (Table 2).  
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Table 2. Demographic and clinical variables of complete Manchester LHC pilot cohort and 
stratified by PLCOM2012 risk category. 

Variable All 

PLCOM2012 Score Group 

<1.51% 
1.51-

2% 
2-3% 3-4% 4-6% 6-9% ≥10% 

p value 

for 

trend 

Number 

Participants (%) 
2541 1112 

265  

(19) 

294  

(21) 

233  

(16) 

263 

(18) 

221 

(16) 

153 

(11) 
- 

Number 

Screened (%) 

1409 

(55.5) 
- 

263  

(19) 

291  

(21) 

230  

(16) 

256 

(18) 

218 

(16) 

151 

(11) 
- 

% Screened 

with Lung 

Cancer (n) 

[% 

Male/Female] 

4.4 

(62) 

[3.9/4.9] 

- 
1.5 (4) 

[1.5/1.6] 

1.4 (4) 

[1.5/1.3] 

3.0 (7) 

[2.6/3.4] 

5.5 

(14) 

[3.2/ 

7.6] 

7.8 

(17) 

[6.6/ 

9.4] 

10.6 

(16) 

[10.8/ 

10.4] 

<0.0001 

NNS to Detect 1 

LC in Group 

(M/F) 

22.7 

(25.9/ 

20.3) n 

- 
66 

(67/65) 

73 

(66/80) 

33 

(38/29) 

18 

(31/13) 

13 

(15/11) 

9 

(9/10) 
- 

NNS to detect 1 

LC 

at or above risk 

score (M/F) 

- - 
23 

(26/20) 

20 

(23/18) 

16 

(19/14) 

13 

(16/11) 

11 

(12/10) 

9 

(9/10) 
- 

Mean Age  

±SD 

64.1 

±5.5 

63.4  

±5.5 

62.4  

±5.6 

63.4  

±5.4 

64.1  

±5.2 

65.0 

±4.8 

66.1 

±4.5 

69.7 

±3.6 
<0.0001 

% Female (n) 
51 

(1296) 

52  

(573) 

49  

(130) 

55  

(162) 

51  

(118) 

52 

(136) 

44  

(98) 

52  

(79) 
0.388 

% Current 

Smokers (n) 

35 

(891) 

12  

(137) 

39  

(104) 

41  

(121) 

51  

(118) 

57 

(149) 

66 

(145) 

77 

(117) 
<0.0001 

Mean Age 

Started Smoking  

±SD 

16.6 

±5.3 

17.6  

±6.3 

16.3  

±5.1 

16.2  

±4.3 

16.0  

±4.0 

15.8 

±4.0 

15.3 

±4.0 

15.0 

±3.1 
<0.0001 

Mean Years 

Smoked  

±SD 

34.6 

±14.7 

22.8  

±12.6 

37.5  

±8.0 

40.2  

±6.8 

42.6  

±6.9 

45.7 

±5.6 

48.5 

±6.0 

53.5 

±4.6 
<0.0001 

Mean Cigs per 

Day ±SD 

20.4 

±13 

16  

±12 

21  

±10 

22  

±11 

24  

±12 

26  

±17 

26  

±12 

27  

±14 
<0.0001 

% Family 

History # (n) 

21.8 

(553) 

15  

(161) 

17  

(45) 

24  

(70) 

19  

(45) 

30  

(80) 

39  

(85) 

44  

(67) 
<0.0001 

% MRC 

Dyspnoea 1 (n) 

70.5 

(1791) 

78  

(871) 

63  

(168) 

72  

(211) 

70  

(162) 

66 

(174) 

57 

(125) 

52  

(80) 
<0.0001 

% 

Symptomatic* 

(n) 

50.3 

(1278) 

38  

(423) 

52  

(136) 

51  

(149) 

55  

(129) 

62 

(163) 

73 

(162) 

76 

(116) 
<0.0001 

Mean FEV1  

±SD 

2.3 

±0.8 

2.6  

±0.8 

2.4  

±0.7 

2.3  

±0.7 

2.2  

±0.7 

2.0  

±0.7 

2.0  

±0.7 

1.7  

±0.6 
<0.0001 

Mean FVC  

±SD 

3.3 

±1 

3.4  

±1 

3.3  

±0.9 

3.2  

±0.9 

3.2  

±0.9 

3.0  

±1.0 

3.1  

±1.0 

2.9  

±0.9 
<0.0001 

Mean FEV1/FVC 

Ratio  

±SD 

70.8 

±10.6 

75  

±9 

72  

±9 

70  

±10 

68  

±10 

67  

±11 

64  

±11 

61  

±12 
<0.0001 

% Airflow 

Obstruction (n) 

37 

(948) 

21  

(232) 

28  

(75) 

39  

(114) 

50  

(114) 

58  

(152) 

68  

(149) 

74  

(112) 
<0.0001 

% Lowest IMD 

Quintile (n) 

74.5 

(1893) 

67.8 

(754) 

79.6 

(211) 

78.2 

(230) 

77.7 

(181) 

79.1 

(208) 

81.9 

(181) 

83.7 

(128) 
<0.0001 
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% No 

Educational 

Qualifications 

(n) 

61.7 

(1567) 

51.2 

(569) 

57.4 

(152) 

61.9 

(182) 

71.7 

(167) 

74.5 

(196) 

77.8 

(172) 

84.3 

(129) 
<0.0001 

CVD %Yes (n) - - 
17.8  

(33) 

17.0  

(35) 

24.8  

(38) 

18.2 

(31) 

31.1 

(42) 

30.0 

(27) 
0.005 

Mean QRISK2 

score ±SD 
- - 

21  

±11 

22  

±12 

23  

±11 

24  

±10 

27  

±13 

31  

±12 
<0.0001 

% Emphysema  

(n) 
- - 

54  

(142) 

60  

(171) 

64  

(146) 

65 

(164) 

69 

(146) 

77 

(114) 
<0.0001 

% 

CAC 

(n) 

None - - 
34  

(81) 

26  

(66) 

27  

(52) 

29  

(62) 

23  

(42) 

20  

(25) 

<0.0001 Mild - - 
54  

(80) 

40  

(103) 

38  

(72) 

37  

(81) 

39  

(71) 

39  

(49) 

Mod-

Severe 
- - 

12  

(75) 

35  

(90) 

35  

(67) 

34  

(74) 

39  

(71) 

41  

(52) 

*LC diagnosed in a first degree relative.  

†Defined as the presence of ≥1 symptom at baseline, including: breathlessness (MRC dyspnoea scale ≥2), 
cough ≥6 weeks in duration, sputum production ≥teaspoon/day.  

‡QRISK2 score calculated in the second screening round only in those with no prior history of CVD.  

nwithin screened (n=1409) participants 

CAC, coronary artery calcification; CVD, cardiovascular disease; FEV1, forced expiratory volume in 1 second; 
FVC, forced vital capacity; LC, lung cancer; NNS, number needed to screen. 

 

 

Figure 10. Number needed to screen (NNS) to detect one lung cancer in Manchester LHC pilot, 
stratified by sex and lung cancer risk group.  
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3.3.3 Risk Prediction Model Calibration  

The mean PLCOM2012 score amongst screen-eligible participants (n=1429) was 5% (±4.03). Based on 

this, the RPM predicts the incidence of 71 lung cancers over six years; 87% (n=62) of these 

predicted cancers were detected in the 15-months of the pilot. Modelling, based on adjusted 

NELSON trial detection rates (detailed in section 3.2.2), predicts that 113 lung cancers would be 

diagnosed over a period of 5.5 years. This is 59% more than predicted by the RPM. Even with a 

more conservative unadjusted detection rate, 87 lung cancers might be detected during this time, 

23% higher than predicted. If annual detection rates were to mirror those seen in the Danish Lung 

Cancer Screening Trial [317], 168 lung cancer might be detected after 6 years, almost 2.5 times as 

many as predicted by the PLCOM2012 model (Figure 11). 

The mean LLPV2 score amongst screen-eligible participants was 6.7% (±5.4), higher than PLCOM2012. 

Based on this, LLPV2 predicts the incidence of 94 lung cancers over five years, of which 66% had 

been detected in the 15-months of the LHC pilot. The adjusted NELSON incidence trend would 

reach this number between three and four years, with a final 5-year projection of 109, 16% higher 

than the cancers predicted by LLPV2 (Figure 11). 

 

Figure 11. Projected cumulative number of individuals with lung cancer detected in the 
Manchester LHC pilot, with 6-years of follow-up. Adapted from [318], reuse permitted under CC 

BY-BC. 

3.3.4 Impact of Selection Method on Screening Performance 

3.3.4.1 Screening Performance in Manchester LHC Pilot 

UKLS employed the LLPV2 RPM at a ≥5% threshold to assess eligibility for screening. Had this 

criterion been used in the LHC pilot, 42% fewer participants (n=826) would have been eligible for 
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screening and 26% of cancers detected in the pilot would have been missed (n=16/62). 

Approximately half of those eligible by PLCOM2012 ≥1.51% criteria would have received screening 

had LLPV2 ≥5% been used for selection (52.1%, n=745/1429), it is unknown how many additional 

cancers would have been diagnosed in the 81 participants who were only eligible under LLPV2 ≥5% 

criteria (Figure 12). The distribution of screen detected lung cancers by both PLCOM2012 and LLPv2 is 

shown in Figure 13, most cancers were detected in the higher risk groups by both RPMs. 

At a LLPV2 ≥2.5% threshold (as has been recommended alongside PLCOM2012 ≥1.51% in the NHS 

TLHC programme [48]), a similar number of participants would have been eligible for screening 

(n=1430) as were by PLCOM2012 ≥1.51%, although four of the detected cancers would have been 

missed (6.5%) (Figure 12). Lung cancer outcomes are unknown among the 272 participants who 

were eligible by LLPv2 ≥2.5% but ineligible by PLCOM2012 ≥1.51%. This cohort was significantly older 

(66.7 ±4.9 vs 62.4 ±5.6 years, p<0.0001), had lower smoke exposure (pack-years 19.4 ±13.7 vs 

37.8 ±15.5, p<0.0001) and had a lower proportion of current smokers (19% vs 39%, p<0.0001) 

than the lowest risk screened group in the pilot (PLCOM2012 1.51%–1.99%; n=265). Had both LLPV2 

≥2.5% and PLCOM2012 ≥1.51% been used to ascertain screening eligibility, almost 20% more 

attendees (n=272) would have received screening.  

Had NLST generalised eligibility criteria (aged 55-74, ≥30 pack-year smoking history, smoker 

within 15 years) been used for screening selection, 17% fewer participants would have been 

selected for screening (n=1188) and 18% of the cancers detected in the pilot would have been 

missed (n=11) (Figure 12). The PLCOM2012 ≥1.51% threshold selected 92.7% of those eligible by 

NLST criteria. It is unknown how many additional cancers would have been diagnosed in those 

only eligible by NLST criteria (n=94). Had no additional cancers been found in that subset, the 

detection rate in the NLST eligible pilot cohort would have been 4.3% (n=51/1188) overall, 2.8% at 

T0 (n=35/1188) and 1.5% at T1 (n=16/1084). This detection rate was more than double that seen 

in NLST, which saw an overall 1.7% detection rate (n=438/26309), 1% at T0 and 0.7% at T1 

(p=0.0001) [193].  
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Figure 12. Participants of the Manchester LHC pilot eligible for screening by each set of eligibility 
criteria. Percentage in () = lung cancer detection rate within segment. Number in [] = number of 
participants eligible for screening. Shaded = eligible in LHC pilot. Reproduced from [318], reuse 

permitted under CC BY-NC.  
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Figure 13. Distribution of screen-detected lung cancers in the Manchester LHC pilot according to 
risk score (PLCOM2012 and LLPV2 RPMs). Reproduced from [318], reuse permitted under CC BY-NC. 

3.3.4.2 Manchester LHC Pilot vs. NLST Detection Rates 

The analysis in section 3.3.4.1 revealed a large detection rate discrepancy between the 

Manchester LHC pilot and NLST. I contributed to an investigation of the factors responsible for 

this discrepancy through a joint project with Dr Hillary Robbins et. al.  

In this study, detection ratios were calculated between several dataset iterations from NLST and 

the LHC pilot. The NLST dataset was restricted to only lung cancer detections from baseline, 

interval, and year one screenings to match the LHC pilot; the LHC pilot dataset was restricted to 

exclude NLST-ineligible participants. This resulted in 1079 LHC pilot participants with 51 detected 

lung cancers (4.7% detection rate), and 26,268 NLST participants with 454 detected cancers (1.7% 

detection rate), indicating 2.7-fold higher detection in the LHC pilot compared to NLST (95%CI 1.6-

2.8). When NLST participants who did not meet the PLCOM2012 ≥1.51% screening threshold were 

also excluded, the NLST detection rate increased to 2.1%, reducing the detection ratio to 2.2 

(95%CI 1.3-2.3).  

Even within this further restricted dataset, the risk distribution was significantly different; for 

example, 4.4% of LHC-eligible NLST participants had a PLCOM2012 score >10%, compared to 13.6% 

of LHC pilot participants. Indirect standardisation was applied to adjust for this difference; 

detection frequencies at ten categories of baseline risk in NLST were calculated and applied to the 

same categories in the LHC pilot to determine how many cancers would be expected if there was 

matching risk-specific detection. Following this analysis, the detection ratio reduced, but 

remained notable, at 1.6 (95%CI 1.2-2.1). 
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The residual discrepancy was more pronounced in participants who were older (detection ratio 

across increasing 5-year age groups from 55-74: 0.8 → 1.5 → 1.7 → 2.1), more socio-

economically deprived (IMD rank ≤1500 = 1.9 vs. IMD rank >3500 = 1.4), and who had lower 

FEV1/FVC ratios (<60% = 2.3 vs. >70% = 1.3).  

3.3.5 Prevalence of Cardiovascular and Respiratory Comorbidity 

Table 2 details the demographic and clinical characteristics of the Manchester LHC pilot attendees 

stratified by lung cancer risk. As expected, variables used as predictors of lung cancer in the 

PLCOM2012 RPM are closely associated with risk score. For example, mean age increases from 62.4 

years in the lowest screening-eligible risk group (PLCOM2012 score: 1.51%-1.99%) to 69.7 in the 

highest risk group (PLCOM2012 score: ≥10%) (p<0.001). Percentage of current smokers increases 

from 39% in the lowest group, to 77% in the highest group (p<0.001). Percentage of attendees 

with a first-degree relative with lung cancer increases from 17% in the lowest group, to 44% in the 

highest group (p<0.001).  

Other clinical factors which are not considered in the PLCOM2012 RPM also demonstrated an 

association with lung cancer risk score in this study cohort. Half (n=1273) of all LHC attendees 

reported at least one respiratory symptom (breathlessness - MRC dyspnoea scale ≥2, cough ≥6 

weeks in duration or sputum production ≥teaspoon/day). In the highest PLCOM2012 risk group the 

prevalence was 76%, double the 38% prevalence in the screening-ineligible <1.51% risk group 

(p<0.001). Respiratory symptoms were predictive of lung cancer diagnosis in univariable analysis 

(OR 2.37, 95%CI 1.16-4.85; p=0.02) (Table 3). 
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Table 3. Univariable and multivariable analysis of the risk of screen detected lung cancer stratified 
by clinical variables and PLCOM2012 score. 

Variable Number 

Risk of Lung Cancer 

Univariable Multivariable 

OR (95% CI) p value adjOR# (95% CI) p value 

Emphysema 

No 504 1 - - - 

Yes 883 
1.12 

(0.65-1.92) 
0.68 - - 

CAC 

None 328 1 - 1 - 

Mild 456 
2.44 

(1.03-5.75) 
0.042 

2.38 
(0.996-5.67) 

0.051 

Mod-Sev 429 
2.84 

(1.21-6.65) 
0.016 

2.62 
(1.11-6.20) 

0.029 

Symptomatic 

No 393 1 - 1 - 

Yes 1007 
2.37 

(1.16-4.85) 
0.018 

1.55 
(0.74-3.28) 

0.25 

FEV1/FVC ratio 1,400 
0.97 

(0.95-0.99) 
0.001 

0.98 
(0.96-1.01) 

0.19 

PLCOM2012 score 1,409 
1.13 

(1.08-1.17) 
<0.0001 

1.11 
(1.05-1.16) 

<0.0001 

 

Poor lung function also showed a robust association with lung cancer risk. Almost three-quarters 

of those with a risk score of ≥10% had airflow obstruction (defined as FEV1/FVC ratio <0.7), 

compared to 21% in those at the lowest risk of lung cancer. Overall, 37% of LHC attendees had 

airflow obstruction. FEV1/FVC ratio was inversely correlated with lung cancer risk score (Table 2, 

Figure 14; p<0.001). FEV1/FVC ratio was predictive of lung cancer diagnosis in univariable analysis 

(OR 0.97, 95%CI 0.95-0.99; p=0.001). When adjusted for PLCOM2012 score the predictiveness had 

borderline statistical significance (adjOR 0.98, 95%CI 0.96-1; p=0.07); when adjusted for the full 

multivariable model the predictiveness was not statistically significant (Table 3). The prevalence of 

scan-detected emphysema also increased across the lung cancer risk groups. Of total scan 

reports, 64% (n=883/1387) had evidence of emphysema. This ranged from 54% in the lowest 

screening-eligible risk group, to 77% in the highest (p<0.001). 
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Figure 14. FEV1/FVC ratio stratified by lung cancer risk group (PLCOM2012). Horizontal line 
represents 70% threshold indicative of airflow obstruction. Reproduced from [318], reuse 

permitted under CC BY-NC.  

Of the 939 T1 attendees who completed a cardiovascular disease (CVD) questionnaire, 22% 

reported history of CVD (at least one of myocardial infarction, angina, stroke, or transient 

ischemic attack). Amongst those in the highest lung cancer risk group, 30% reported CVD history, 

compared to 18% in the PLCOM2012 1.51%-1.99% risk group. The presence of CAC also increased 

with lung cancer risk; 80% of the highest risk group had CAC compared to 66% in the lowest risk 

group. Almost 20% of those in the PLCOM2012 ≥10% group had severe CAC. Even after adjustment 

for the multivariable model, CAC was predictive of lung cancer diagnosis with statistical 

significance (adjOR 2.50, 95%CI 1.11 to 5.64; p=0.028), this association was higher in those with 

moderate and severe CAC (n=429) (adjOR 2.62, 95%CI 1.11- 6.20; p=0.029) compared with those 

with mild CAC (n=456) (adjOR 2.38, 95%CI 0.996-5.67; p=0.051).   
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3.4 Discussion 

In this chapter, I tested the hypothesis that current screening selection strategies are not 

optimised for use in lung cancer screening programmes catering for socio-economically 

disadvantaged populations. The main driver of this hypothesis is that screening selection 

strategies and tools were developed in populations unrepresentative of the highly socio-

economically deprived populations most likely to be targeted by community-based lung cancer 

screening programmes. I used RPM calibration, cancer detection rates, and prevalence of 

comorbidities in the Manchester LHC pilot as outcomes in assessing this hypothesis.  

3.4.1 Calibration 

My analysis of the calibration of the PLCOM2012 RPM, which was used for establishing screening 

eligibility in the Manchester LHC pilot, found that during only 15 months of screening and 

associated follow-up, 88% of the predicted 6-year lung cancer incidence rate was reached. Using 

hypothetical detection rate projections based on NELSON, there was an estimated 1.6-fold 

increase in lung cancer incidence over 5.5 years of screening in our population compared with the 

incidence predicted by PLCOM2012. Analysis of LLPV2 calibration also found likely risk 

underestimation, although by a smaller magnitude than that of PLCOM2012. A possible 

interpretation of these findings is that these RPMs underestimate risk in a socio-economically 

deprived, high-risk population. This has significant implications, as it could result in high-risk 

participants being deemed ineligible for screening. The higher risk predictions and lower level of 

overestimation seen in LLPV2 may be partially explained by its development in a deprived 

Liverpool-based population, more akin to the Manchester LHC pilot population than the North 

American RCT-based population that the PLCOM2012 RPM was developed in. 

A key limitation of this analysis is that the RPMs predict risk in the absence of LDCT screening, 

whereas we observed detection in the presence of screening. Screening increases incidence over 

a short-term period by moving lung cancer diagnoses earlier in time, leading to inflated detection 

rates and potential biases relating to overdiagnosis and lead-time, the magnitude of which are 

debated in lung cancer screening (see section 1.6.5). Other limitations include that dropout and 

participation rates, and mortality from other causes, were not considered when calculating 

projected cancer diagnoses. It may be that when these factors are taken into account, detection 

rates drop significantly in later LHC screening rounds, correcting for the initial miscalibration.  

However, I present further confirmatory evidence of PLCOM2012 underestimation in this cohort, 

derived from 5-year follow-up of a subset of the LHC pilot cohort, in section 4.3.4. Other studies 

have also demonstrated PLCOM2012 underestimation in certain high-risk subgroups; for example, a 

US based study found that the RPM underestimated risk by a factor of two to three in Hispanic 

smokers [319]. Whilst a UK based study compared several RPMs (including PLCOM2012 and LLPV2) 
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and found overestimation of risk for all models, its analysis took place in biobank settings with 

participants from high socio-economic backgrounds; the study emphasised that in a less affluent 

population more representative of high-risk lung cancer screening attendees, the extent of risk 

overestimation would likely diminish [225]. It is interesting to note that in that study, LLPV2 had 

the highest overestimation of risk whilst PLCOM2012 had only slight overestimation. This may be 

congruent with our results, which showed smaller underestimation of risk in LLPV2 compared to 

PLCOM2012. Another UK study applied PLCOM2012 and LLPV2 to routinely collected primary care data 

(thereby limiting bias from screening-driven increased incidence) and similarly found that the 

RPMs overestimated risk for those at lowest risk (comparable to a biobank setting), and 

underestimated risk for those at highest risk (more comparable to an LHC setting) [320]. 

If these RPMs are confirmed to underestimate risk in high-risk populations such as that of the 

Manchester LHC pilot, this would highlight the need for a recalibration of the models to facilitate 

optimal performance and ensure screening does not exacerbate health inequalities [229,230]. 

Formal calibration of risk models would require at least 100 events, which is beyond the scope of 

this study [321]. However, the TLHC rollout and other large screening implementation studies 

provide ample opportunity for such recalibrations. For example, LLPV3 was successfully 

recalibrated using countrywide health data [224], and demonstrated much improved calibration 

over LLPV2 in comparative studies [225]. However, LLPV2 remains the TLHC recommended RPM to 

date. The prospective YLST will also provide an opportunity to examine RPM calibration in more 

detail [254].  

The way in which RPMs are applied in screening populations with differing demographic factors to 

the development population is also a crucial factor for consideration. For example, PLCOM2012 was 

originally built using North American educational and ethnic classifications which are not easily 

transferrable to a UK setting. Consequently, this risk factor is often omitted when the RPM is used 

in a non-native setting, potentially lowering the selection performance. Some research has been 

undertaken in the Manchester LHC pilot dataset to examine the impact of using a PLCOM2012noRace 

model; the study found similar overall performance when race was included or excluded (there 

were no significant differences in scan numbers and no lung cancers would have been missed), 

although risk scores were disproportionally impacted in non-white participants [322]. Further 

research is required, as the majority of the LHC pilot participants were white, precluding detailed 

analysis. The method by which educational attainment metrics are converted between North 

American and UK populations is also an important factor to consider, as this is a key surrogate 

marker for socioeconomic deprivation, which may not be appropriately captured by the RPM 

when applied in the UK population. Further research, and model recalibration in the setting of 

intended use, is required as screening programmes develop further. 
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In summation, the seeming miscalibration of both RPMs used in the Manchester LHC pilot 

supports the hypothesis that screening selection strategies perform sub-optimally in socio-

economically disadvantaged populations. More research is required to assess and recalibrate 

RPMs in actual screening implementation programmes.  

3.4.2 Detection 

The second outcome measure I analysed was the number of participants selected for screening 

and associated cancer detection. There was significant variability between the selection methods. 

For example, one in four of those with screen detected lung cancer in our cohort would not have 

qualified for screening in UKLS, which used the LLPv2 model at a threshold ≥5%. The lower LLPv2 

threshold would have classified a similar number of people as screening eligible as PLCOM2012, and 

among the individuals who were screened, it selected 93.5% of those with cancer. It is not 

possible to establish whether this detection discrepancy would have been compensated for by 

additional cancers found in the 272 participants only eligible by LLPV2. If eligibility was established 

by both PLCOM2012 and LLPv2, the number screened would have increased by almost 20%. The 

retrospective nature of our analysis means that we are unable to determine how many of those 

20% would have been diagnosed with lung cancer, and therefore, the potential benefit or 

detriment of concurrently using these two different criteria. As an aside, Previous studies have 

shown that screening performance may be superior in women [197]; particularly notable, the 

NELSON RCT found a significantly higher LDCT derived mortality reduction in women compared to 

men, although the small size of the female subgroup in NELSON limits the certainty of this 

conclusion [194]. Further research is required to investigate whether this discrepancy indicates 

that women are having their risk underestimated by the PLCOM2012 RPM. 

The relatively small difference in performance between PLCOM2012 ≥1.51% and LLPv2 ≥2.5% criteria 

is consistent with the UK-based comparative study which demonstrated modest differences in 

discriminatory ability between the RPMs tested [225]. Other studies report that PLCOM2012 

outperforms LLPV2 on discrimination and calibration [319]. Prospective studies are required to 

elucidate this further. 

RPMs may be augmented with the inclusion of additional clinical variables. We investigated a 

number of objective measures of ‘smoking damage’ (FEV1/FVC ratio, CAC and presence of 

emphysema on LDCT), not included in the PLCOM2012 model, to see if they were independently 

predictive of lung cancer after controlling for PLCOM2012 risk score. The presence and degree of 

CAC remained an independent predictor of lung cancer. If this association is confirmed in other 

datasets the value of CAC to inform screening strategies, after the baseline round, should be 

evaluated further. The ratio of FEV1/FVC showed borderline statistical significance to predict lung 

cancer after adjusting for PLCOM2012 score. Previous studies have shown that the inclusion of lung 
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function test results in lung cancer risk prediction significantly improved its precision [323,324]. As 

spirometry tests are already conducted as part of the LHC programme (and the results are 

immediately available), lung function measures could be factored into lung cancer risk prediction 

and screening selection with ease. A study in the NLST and MILD datasets found that CT derived 

measures of CVD and COPD may provide small improvements to lung cancer risk prediction in 

some cases, although validation results were inconsistent [325]. Further research in additional 

large and diverse cohorts is warranted to confirm whether these factors can improve risk 

prediction.  

NLST eligibility criteria would have missed almost 20% of the screen-detected cancers in our 

cohort, but would also have screened fewer individuals, resulting in only a marginally lower 

cancer detection rate than PLCOM2012. In contrast, interim analysis from the International Lung 

Screening Trial (ILST) found that when setting the PLCOM2012 threshold to select the same number 

of individuals for screening as USPSTF2013, PLCOM2012 cancer detection was significantly higher 

(94.7% of total cancers vs. 78.9%; p=0.0001) [326]. Other studies have shown RPMs to be superior 

to NLST criteria for sensitivity and specificity [327]. 

The high-risk nature of our cohort was also evident when we limited analysis to only those eligible 

for screening based on NLST criteria, as the lung cancer detection rate was more than double that 

seen in NLST. Further analysis revealed that the generalised eligibility criteria employed in the 

NLST was an important factor in the lower detection rate, with the older, more comorbid, and 

more socio-economically deprived profile of the LHC pilot cohort likely responsible for some of 

the residual difference. This emphasises the impact RPMs can have on detection rates, as well as 

the potential added benefit that may be derived by targeting screening to socio-economically 

disadvantaged populations. 

A significant limitation of this analysis is that it was not possible to determine the outcomes of 

LHC pilot attendees who were ineligible for screening using the PLCOM2012 threshold but were 

eligible using LLPv2 or NLST criteria. Further work is needed to prospectively evaluate the 

performance of selection methods in high-risk screening populations. The randomised controlled 

YLST (see section 1.7.1.2) is prospectively evaluating PLCOM2012 (≥1.51%), LLPv2 (≥5%) and NLST 

criteria (extended to age 80) in the context of a TLHC programme, and will provide important 

information for the optimal approach for screening selection in a UK screening programme [254].  

In summation, it seems that using RPMs rather than generalised eligibility criteria for screening 

selection results in increased efficiency and detection rates, although this improvement may be 

somewhat attenuated in very high-risk populations. Further research is required to prospectively 
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evaluate which RPM and screening threshold results in the best performance, as well as whether 

including additional clinical variables in RPMs could improve risk prediction.  

3.4.3 Comorbidity 

Finally, we analysed the comorbidity profile of the screening cohort. Since the majority of lung 

cancers diagnosed through screening (for both PLCOM2012 and LLPv2 risk models) were found in 

individuals occupying the higher risk groups, cancer detection rate can be increased dramatically 

by increasing the screening threshold. For example, setting the threshold to PLCOM2012 ≥2% (as in 

the PanCan study) reduces those eligible for screening by 20%, but only 6.5% fewer cancers are 

detected. Although such a modification could improve screening efficiency, it would fail to take 

into account the potential reduction in screening efficacy through the selection of a more 

comorbid population. Similarly, analysis of ILST showed that whilst PLCOM2012 improved screening 

efficiency over generalised eligibility criteria, it also selected an older and more comorbid 

screening cohort [326]. 

Our data underlines this by showing how increased lung cancer risk is associated with increased 

co-morbidity, such as established cardiovascular disease, the presence and severity of airflow 

obstruction as well as respiratory symptoms. Previous studies have highlighted that individuals 

with significant comorbidities may derive less benefit from screening, and selecting them may 

negatively impact the cost-effectiveness of the screening programme. For example, in colorectal 

cancer screening, individuals with diabetes at age 50 derive approximately 1.8 times fewer ‘life 

years saved per-person’ than their counterparts without diabetes [328]. Breast cancer screening 

for those aged over 79 may only be only cost-effective for the 25% of individuals with the highest 

life expectancy (based on chronological age and comorbidities) [329]. In socio-economically 

deprived areas where lung cancer screening is most warranted, disease burden is higher and 

baseline life expectancy is lower, increasing the potential impact comorbidity could have on the 

performance of risk-based screening selection [330]. 

3.4.4 Conclusion 

In conclusion, this study supports the hypothesis that current screening selection strategies have 

some sub-optimal characteristics when applied to a highly socio-economically disadvantaged 

screening population. In addition to miscalibration and uncertainties surrounding RPM and 

threshold selection, a key issue is the high levels of comorbidity in the selected screening cohort, 

which may limit the benefit from screening derived by participants. One novel approach to 

addressing this challenge is selecting participants based on expected benefit from screening, 

rather than calculated risk. I investigated this approach in the next chapter. 
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Chapter Four - ‘Life-Gained’ Screening Selection: Study of 

Manchester LHC Pilot 

4.1 Introduction 

Lung cancer is responsible for a large proportion of cancer mortality worldwide [1]. Screening 

high-risk populations for lung cancer has been demonstrated to significantly reduce mortality 

[193,194]. Many lung cancer screening implementation studies and programmes use RPMs to 

calculate individual lung cancer risk and determine screening eligibility [223,248]. In the previous 

chapter, I demonstrated how this approach can result in a screening cohort with a high-risk 

profile, leading to favourable detection rates, but preferentially selects older participants with a 

higher burden of comorbidity who may be less likely to benefit from having lung cancer detected 

early. This is congruent with other studies that demonstrate an association between lung cancer 

risk and comorbidity [231,232]. If confirmed, this may indicate an important drawback to a risk-

based approach to screening selection, which may disproportionately affect socio-economically 

disadvantaged populations who are often at higher risk of comorbidity [331].  

Selecting screening participants based on predicted benefit from screening, rather than predicted 

lung cancer risk, has been proposed as a solution to the issue of comorbidity. One benefit-based 

tool is the Life Years Gained from Screening-CT (LYFS-CT) [233], a model that calculates an 

individual’s projected days-of-life gained from undergoing screening. It does this by calculating an 

individual’s expected life expectancy in the absence of LDCT screening using a validated mortality 

model and adjusting life expectancy based on the mortality benefit from screening, with the 

difference between the two ‘life expectancies’ constituting the ‘life-gained’ from screening 

(detailed description of model in section 1.6.6.3). It is important to note that lung cancer risk is a 

significant driver of estimated life-gained from screening, as the higher an individual’s risk of lung 

cancer, the higher their chance of gaining benefit from having cancer detected early through 

screening. Even if an individual has a very favourable comorbidity profile, and therefore would 

benefit from having cancer detected early, this benefit will only be realised if there is a high 

enough likelihood that the early detection takes place. Modelling studies have indicated that 

LYFS-CT may maximise life-years gained from screening when compared to RPMs [233] and it has 

been recommended for use by The American College of Chest Physicians [235]. However, LYFS-CT 

has thus far not been tested in a real-world screening programme, an important step in 

investigating whether it has clinical utility. 

This study aimed to compare risk-based and benefit-based selection strategies (see hypotheses 

and objectives – section 1.8). I did this by retrospectively applying LYFS-CT to the Manchester LHC 
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pilot cohort and analysing the projected outcomes had benefit-based selection been used in this 

real-world screening setting.   

4.2 Methods 

4.2.1 Study Cohort and Data Collection 

This study examined the Manchester LHC pilot cohort. The design, cohort recruitment protocol, 

and data collection procedures of the LHC pilot are described in detail in section 2.1. All data were 

collected prospectively by the clinical staff at the LHC site. In addition to collecting data relating to 

lung cancer risk and respiratory comorbidities for all participants, data relating to cardiovascular 

comorbidities including history of myocardial infarction, stroke, angina or transient ischaemic 

attack was collected in second round attendees only. For the purposes of this study, the mean 

value for each of these variables was imputed for the remaining cohort where data were not 

collected.  

4.2.2 Analysis Approach 

As this is the first time LYFS-CT has been applied to a real-world screening population, first, I 

provide a basic description of the distribution of life-gained scores and association with 

demographic factors in the cohort. Following this, I performed an in-depth comparison of the 

screening performance of risk-based vs. benefit-based selection (PLCOM2012 vs. LYFS-CT).  

Two approaches were taken in analysis. First, to examine the impact a life-gained selection 

approach would have on screening selection and subsequent cancer detection rate in the LHC 

pilot, I used the equivalent LYFS-CT threshold to select the same number of individuals eligible for 

screening as were by PLCOM2012 ≥1.51%. I examined the differences in number of cancers detected 

and demographic and clinical characteristics of those who would have been selected by PLCOM2012 

vs. those who would have only been selected by LYFS-CT. I compare 5-year mortality rates 

between the two subgroups, follow-up comorbidity data were not collected for this analysis. 

Second, because comprehensive endpoints were collected only on screened individuals 

(PLCOM2012 ≥1.51%), I stratified screened individuals into ‘high risk’ (top 75% of PLCOM2012 scores) 

and ‘low risk’ (bottom 25% of PLCOM2012 scores) groups, and ‘high benefit’ (top 75% of LYFS-CT 

scores) and ‘low benefit’ (bottom 25% of LYFS-CT scores) groups. These groups were cross-

tabulated, resulting in four subgroups: A) high risk/high benefit, B) high risk/low benefit, C) low 

risk/high benefit and D) low risk/low benefit. I compared demographic characteristics and 

comorbidities of groups B and C (those ‘selected’ by PLCOM2012 only vs. those ‘selected’ by LYFS-CT 

only) and followed up these two subgroups five years post-LHC to see if there was a divergence in 

mortality and/or development of further comorbidities. Finally, I examined model calibration by 
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comparing the number of deaths and lung cancers in this subgroup after 5-years of follow-up with 

those predicted by PLCOM2012 and LYFS-CT in that time period.  

4.2.3 Life-Gained Calculations in LHC Pilot Cohort 

The protocol and tools used for calculating life-gained scores is described in section 2.3. When 

LYFS-CT scores were calculated for the Manchester LHC pilot cohort, ethnicity was coded as 

‘white’ for all participants to avoid issues of incorrect risk adjustment due to differing ethnic 

characteristics between North America and the UK [322], congruent with the protocol in the LHC 

pilot itself. Self-reported COPD/emphysema/bronchitis was used for the ‘lung disease’ variable. 

Missing variables were imputed to the population mean of the LHC pilot participants where data 

were collected. Coronary heart disease (CHD) was imputed according to angina and heart attack, 

using the National Health Interview Survey (NHIS) years 2013-2015 population mean as a 

reference (chance of CHD, rounded to nearest 25%: neither angina/heart attack = 0%; only angina 

= 50%; only heart attack = 50%; both angina & heart attack = 75%). Atrial fibrillation was used for 

the ‘other heart condition’ variable. Where data were not collected in the LHC pilot, variables 

were coded as not present (liver disease, special equipment and multiple relatives with lung 

cancer).  

4.2.4 Manchester LHC Pilot Follow-up 

The procedure for the collection of LHC pilot follow-up data is described in section 2.2. Outcomes 

were determined by individual primary care medical case record review. In addition to gathering 

data for those with lung cancer detected in the LHC pilot, data were also gathered for those who 

were selected by one selection method but not the other (either PLCOM2012 or LYFS-CT) in either of 

the two analyses performed. Comorbidities with data available at both the LHC pilot and follow-

up were categorised as ‘severe’ (diabetes mellitus, heart attack, CHD, stroke, previous cancer and 

kidney disease) or ‘other’ (COPD, pneumonia, AF, angina and hypertension) according to their 

published relative risks for mortality [233]. Other chronic or potentially life-shortening conditions 

with data only available at follow-up were labelled as ‘serious’. Minor comorbidities with data 

only available at follow-up were not analysed.   

4.2.5 Model Calibration Calculations 

To assess LYFS-CT calibration in this cohort, I used the mortality model component within LYFS-CT 

to calculate the probability of each individual surviving until the end of the follow-up period based 

on their age and comorbidities at the LHC. Within the subset of the cohort with follow-up 

mortality data available, we summed all individuals’ risk of dying in the 5-year follow-up period 

resulting in the total number of predicted deaths in that group. We then compared this with the 

number of observed deaths in the subgroup. To assess PLCOM2012 calibration, we summed the 

PLCOM2012 risk scores (as proportions not percentages) within the subgroup to result in an 
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expected number of lung cancer diagnoses in 6-years, comparing the total with the observed 

number of lung cancer diagnoses.  

4.2.6 Analysis  

Statistical analysis was carried out using RStudio (v.3.6.3) and IBM SPSS Statistics (v.25). 

Comparison of medians for non-parametrically distributed variables was conducted by Mann 

Whitney U test. T-test or ANOVA was used for comparison of means. Differences in comorbidities 

were analysed by comparison of means, despite being non-normally distributed, to allow for 

more granular comparison of divergence. Differences in frequencies was tested by Chi-squared. 

4.3 Results 

4.3.1 Overview and Comparison of LYFS-CT and PLCOM2012  

The distribution of all LYFS-CT scores in the 2541 participants of the LHC pilot are presented in 

Figure 15. Median estimated days of life gained by three rounds of LDCT screening (LYFS-CT) was 

14.8 (range: 0-114.5). As this was the first application of LYFS-CT to a real-world screening 

programme, there are no previous studies to compare this distribution to or to apply theoretical 

screening thresholds from. It is important to note that the ‘days of life gained’ metric ‘spreads’ 

the expected screening benefit across the population. For example, an individual with 2% chance 

of developing lung cancer based on an RPM calculation, and 20 days of life-expectancy gained 

from undergoing screening based on LYFS-CT, has a 98% chance of gaining no days of life (if lung 

cancer is not detected) and a 2% chance of gaining 1000 days of life (if lung cancer is detected).  

 

Figure 15. Distribution of LYFS-CT scores for all attendees of the Manchester LHC pilot. LYFS-CT 
calculates estimated days of life gained from lung cancer screening based on life expectancy, lung 

cancer risk, and screening mortality benefit. 
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Women had lower LYFS-CT scores than men, with borderline statistical significance (median: 14.2 

vs. 15.2 days; p=0.08). Those in the younger half of the cohort (<64 years) had significantly lower 

LYFS-CT scores (median: 13.8 vs. 16.2; p<0.001). Age, and other factors associated with lung 

cancer risk (such as smoking and family history of lung cancer), are significant drivers of estimated 

life-gained from screening (see Table 4 for comparison of variables in PLCOM2012 and LYFS-CT), as 

benefit is only conferred if there is an adequate chance of lung cancer being diagnosed. 

Consequently, PLCOM2012 score and many of the risk variables that contribute to this show a strong 

association with increasing LYFS-CT score (Table 5). There is a strong positive correlation between 

the two scores (Pearson Correlation: 0.89; p<0.001) (Figure 16).  

Table 4. Comparison of the variables included in PLCOM2012 and LYFS-CT. Below delineation = 
variables unique to each model. 

PLCOM2012 LYFS-CT 

Age Age 

Smoking duration Smoking Duration 

Family history of lung cancer Family history of lung cancer 

COPD diagnosis Lung Disease 

Cigs per day Cigs per day 

Smoking quit time Smoking quit time 

Ethnicity Ethnicity 

Education Education 

BMI BMI 

Previous cancer diagnosis Sex 

Smoking status (current vs. former) Pack Years 

 Hypertension 

 Coronary Heart Disease 

 Angina 

 Heart Attack 

 Other Heart Disease 

 Stroke 

 Diabetes 

 Chronic Bronchitis in Past Year 

 Kidney Failure 

 Liver Disease 

 Requires Special Equipment 

 Year of Assessment 
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Table 5. Demographic and clinical characteristics of the complete Manchester LHC Pilot, stratified 
by LYFS-CT quintile. 

 All 
LYFS-CT Quintile 

P-value 
1 2 3 4 5 

Number of 
Subjects 

2541 508 508 508 509 508 - 

Median  
LYFS-CT Score - 

days of life 
gained from 

screening 
± IQR 

(Min-Max) 

14.8 
±22.3 

(0-114.5) 

3.2 
±1.7 

(0-4.9) 

7.3 
±2.8 

(4.9-10.5) 

14.8 
±4.1 

(10.5-
19.1) 

24.5 
±6.6 

(19.1-33) 

46.9 
±20.5 

(33-114.5) 
<0.001 

Median 
PLCOM2012  

Score 
± IQR 

(Min-Max) 

1.7 
±3.4 

(0-33) 

0.2 
±0.4 

(0-1.4) 

0.8 
±0.6 

(0-3.2) 

1.7 
±0.9 

(0-6.9) 

3.3 
±1.7 

(0-10) 

7.3 
±5.7 

(0.1-33) 
<0.001 

% Screened (n) 
55.5 

(1409) 
0 

11.2 
(57) 

71.3 
(362) 

97 
(492) 

98 
(498) 

<0.001 

Mean Age 
± SD 

64.1 
±4.9 

62.6 
±5.2 

64.7 
±5.9 

63.7 
±5.6 

63.8 
±5.4 

65.9 
±4.9 

<0.001 

% Female 
(n) 

51 
(1296) 

53.3 
(271) 

52.3 
(266) 

48.2 
(245) 

53.2 
(271) 

47.8 
(243) 

0.19 

% Lung Disease 
(n) 

22.2 
(565) 

5.5 
(28) 

12.2 
(62) 

16.5 
(84) 

26.9 
(137) 

50 
(254) 

<0.001 

% Family 
History LC 

(n) 

21.7 
(551) 

11.6 
(59) 

18.5 
(94) 

20.1 
(102) 

21.6 
(110) 

36.6 
(186) 

<0.001 

% Asbestos 
Exposure 

(n) 

24.1 
(612) 

19.5 
(99) 

25.6 
(130) 

24.6 
(125) 

24.6 
(125) 

26.2 
(133) 

0.04 

% Previous 
Cancer 

(n) 

11.5 
(291) 

12.2 
(62) 

11.4 
(58) 

11.6 
(59) 

10.6 
(54) 

11.4 
(58) 

0.96 

Median BMI 
±IQR 

28.5 
±6.9 

29.6 
±7.7 

28.9 
±6.7 

29.6 
±7.1 

27.9 
±6.3 

26.3 
±6.4 

<0.001 

Mean Cigs per 
Day 
±SD 

20.4 
±13 

14.2 
±9.1 

17.1 
±11.8 

22.5 
±16.1 

23.2 
±13.1 

25.2 
±10.4 

<0.001 

Median Years 
Smoked 

±IQR 

38 
±22 

14 
±14 

29 
±15 

39 
±11 

44 
±8 

50 
±7 

<0.001 

Median Years 
Quit 
±IQR 

7 
±23 

32 
±17 

17 
±22 

7 
±16 

0 
±6 

0 
±0 

<0.001 

% Prior 
Pneumonia 

(n) 

14.2 
(360) 

9.6 
(49) 

14 
(71) 

13.4 
(68) 

14 
(71) 

19.9 
(101) 

 
<0.001 

 

Median IMD 
Rank 
±IQR 

2873 
±5873 

3126 
±8753 

3070 
±8324 

2871 
±5319 

2872 
±3893 

2693 
±3853 

<0.001 

Median 
FEV1/FVC Ratio 

±IQR 

72.7 
±11.8 

76.8 
±8.3 

73.7 
±9.3 

73.5 
±9.2 

69.8 
±12.2 

65.3 
±14.5 

<0.001 

Mean 
Hypertension* 

0.5 
±0.3 

0.49 
±0 

0.5 
±0.35 

0.54 
±0.35 

0.47 
±0.4 

0.46 
±0.38 

<0.001 
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±SD 

Mean Angina* 
±SD 

0.12 
±0.2 

0.12 
±0 

0.12 
±0.1 

0.13 
±0.24 

0.11 
±0.25 

0.11 
±0.23 

0.42 

Mean Heart 
Attack* 

±SD 

0.09 
±0.18 

0.1 
±0 

0.1 
±0.11 

0.1 
±0.22 

0.09 
±0.22 

0.09 
±0.22 

0.3 

Mean Stroke* 
±SD 

0.02 
±0.09 

0.02 
±0 

0.02 
±0.04 

0.02 
±0.1 

0.02 
±0.1 

0.02 
±0.1 

0.92 

Mean 
Diabetes* 

±SD 

0.19 
±0.24 

0.19 
±0 

0.21 
±0.14 

0.24 
±0.32 

0.19 
±0.32 

0.15 
±0.25 

<0.001 

Mean Severe 
Comorbidities 

±SD 

0.66 
±0.63 

0.66 
±0.33 

0.69 
±0.44 

0.74 

±0.74 
0.62 

±0.76 
0.6 

±0.73 
0.002 

Mean Other 
Comorbidities 

±SD 

1.05 
±0.75 

0.84 
±0.4 

0.97 
±0.56 

1.05 
±0.79 

1.06 
±0.87 

1.34 
±0.92 

<0.001 

Mean Total 
Comorbidities 

±SD 

1.7 
±1.1 

1.5 
±0.52 

1.66 
±0.78 

1.79 
±1.3 

1.68 
±1.38 

1.93 
±1.4 

<0.001 

*Means used for comorbidities as data were imputed for attendees of the first screening round 

where data was not collected (see section 4.2.3). 

 

However, as PLCOM2012 risk score increases to very high levels, life-gained estimations plateau. To 

illustrate, average LYFS-CT score increases to 50 days of life gained in the PLCOM2012 0-10% range, 

but only increases a further 25 days of life gained between PLCOM2012 10% and 32%. This is 

mediated by the increased burden of comorbidity and lower life expectancy present in those with 

the highest lung cancer risk scores (Figure 16). This can also be seen when examining LYFS-CT by 

quintile, with variables such as diabetes, stroke and total number of severe comorbidities being 

higher in the lower LYFS-CT subgroups (Table 5). In line with these observations, those who 

underwent screening in the LHC pilot due to having high lung cancer risk scores had higher LYFS-

CT scores (median LYFS-CT: 25.5 vs. 5.3; p<0.001) (Figure 17). However, there was significant 

overlap in LYFS-CT scores between the upper end of the non-screened group and the lower end of 

the screened group, as well as a minority of individuals with significantly higher LYFS-CT scores 

who were not screened. This indicates that whilst we would expect significant congruence 

between screening selection by each method, there would be some divergence. I examine this 

divergence in more detail in the sections that follow. 
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Figure 16. PLCOM2012 scores vs. LYFS-CT scores for complete LHC pilot cohort. PLCOM2012 scores 
presented in proportion form as this is how the lcmodels package generates the scores. These 
were converted to percentages in the descriptions to retain consistency with other chapters. 

 
Figure 17. LYFS-CT score distribution stratified by screening status in the LHC pilot. 1 = had LDCT 

scan in LHC pilot. 0 = did not have LDCT scan in LHC pilot. LYFS-CT calculates estimated days of life 
gained from lung cancer screening based on life expectancy, lung cancer risk, and screening 

mortality benefit. 
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4.3.2 Equivalent Eligibility Thresholds 

In this analysis, I simulated a LYFS-CT threshold to select the same number of participants for 

screening as were by PLCOM2012 ≥1.51% in the LHC pilot. Recalculation of PLCOM2012 scores in this 

study found one participant who was incorrectly classified as ineligible in the LHC pilot; we 

classified this individual by their recalculated risk score in this chapter but retain the ‘real-world’ 

calculation in Chapter Three as that was a retrospective study of actual screening performance in 

the LHC pilot. Thus, eligibility criteria of PLCOM2012 ≥1.51% resulted in the selection of 1430 

participants for screening (56.3% of the 2541 attendees). A LYFS-CT threshold of ≥12.2 days of 

life-gained from screening would have resulted in the same number of participants being 

selected. In the total cohort, 1322 participants (52%) would have been selected by both criteria, 

1003 (40%) would have been selected by neither, and 216 (8.6%) would have been selected by 

either LYFS-CT or PLCOM2012.  

A representation of a portion of the cohort, with screening thresholds by both models, is 

presented in Figure 18. Of those selected by PLCOM2012, 92.4% would have been eligible for 

screening by LYFS-CT ≥12.2. Of the 62 lung cancers diagnosed in the LHC pilot, 61 were in the 

‘Selected by Both’ segment, and 1 was in the ‘Selected by PLCOM2012 Only’ subgroup. Those to the 

left of the PLCOM2012 threshold did not receive LDCT screening in the LHC and we are therefore 

unable to ascertain if they had lung cancer at the LHC. However, in the 5-years post-LHC, there 

were no unscreened lung cancer diagnoses amongst the 108 subjects selected by LYFS-CT alone, 

indicating that it is unlikely any additional lung cancers would have been detected had this subset 

been eligible for screening. In total, more than 98% of cancers detected in the pilot, and all 

cancers with ≥5-year survival, would have been detected had LYFS-CT ≥12.2 been used as the 

screening threshold.  
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Figure 18. Distribution of LHC pilot participants by LYFS-CT and PLCOM2012 scores. Vertical line = 
PLCOM2012 1.51% threshold. Horizontal Line = LYFS-CT 12.2 days of life gained threshold. Only 

participants with PLCOM2012 score ≤5% displayed in figure to highlight differing selections. 

The subgroup who would have been eligible solely by LYFS-CT criteria (n=108) had a median 

PLCOM2012 risk score of 1%, compared to 1.8% in those only selected by PLCOM2012 criteria 

(p<0.001). Conversely, those only selected by LYFS-CT (n=108) are projected to have an average of 

14.6 days of added life-expectancy from screening compared to 10.3 days in those selected by 

PLCOM2012 (p<0.001) (Table 6). There was no significant difference in 5-year mortality between 

those selected by only one criterion (PLCOM2012-only vs. LYFS-CT-only: 6.5% vs. 8.3%; p=0.6), 

although it should be noted that this study was not powered to observe differences in mortality 

outcomes. However, there were differences in the comorbidity profiles between the two groups 

at the LHC pilot (Table 6). Those selected by LYFS-CT criteria only were significantly younger 

(median age: 63 vs. 69; p<0.001) and healthier; they were less overweight (median BMI: 28.3 vs. 

30; p=0.02), had fewer comorbidities (median 1.2 vs. 2; p=0.001), and fewer severe comorbidities 

(median 0.54 vs. 1, p<0.001) than those only eligible by risk-based selection (medians could be 

non-integer values as the dataset included imputed variables). LYFS-CT selected participants were 

also less deprived (median IMD rank: 3785 vs. 2866; p=0.04) than those selected by PLCOM2012; the 

two median ranks fell within the second most deprived and most deprived IMD deciles 

respectively. 
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Table 6. Demographics and calculated risk and benefit scores for the LHC pilot cohort, using the 
highest 1430 scores for PLCOM2012 and LYFS-CT, amongst the 2541 participants of the LHC. Test for 
median included non-integer imputed values and could therefore be non-integers. Both median 
and mean values and P-values provided for comorbidities as both are considered in analysis. 

 

Not 
selected 

by 
PLCOM2012 
or LYFS-CT 

Selected 
by both 

PLCOM2012 
and LYFS-

CT 

Selected by 
LYFS-CT 

only 

Selected 
by 

PLCOM2012 

only 

P-value 
LYFS-CT 
only vs. 

PLCOM2012 

only 

Number of Subjects 
(%) 

1003 
(39.5) 

1322 
(52) 

108 
(4.3) 

108 
(4.3) 

- 

Median Age  
±IQR 

63 
±9 

65 
±9 

63 
±9 

69 
±8 

<0.001 

Median BMI  
±IQR 

29.3  
±7.2 

27.7  
±6.6 

28.3  
±5.8 

30  
±7.5 

0.02 

Median Cigs per Day  
±IQR 

15  
±10 

20  
±12 

10  
±24 

20  
±5 

0.01 

Median Years Smoked  
±IQR 

20  
±18 

45  
±10 

39  
±15 

36  
±8.4 

0.13 

Median Years Quit  
±IQR 

26  
±23 

0  
±6 

0  
±12.5 

14  
±15 

<0.001 

% Female 
(n) 

52.4 
(526) 

50 
(661) 

42.6 
(46) 

58.3 
(63) 

0.02 

% Exposed to Asbestos  
(n) 

22.2 
(223) 

25.2 
(333) 

23.1 
(25) 

28.7 
(31) 

0.35 

% Previous Cancer Diagnosis 
(n) 

9.5 
(95) 

11.4 
(151) 

5.6 
(6) 

36.1 
(39) 

<0.001 

% COPD 
(n) 

8.28 
(83) 

34 
(449) 

11.1 
(12) 

20.4 
(22) 

0.06 

% Prior Pneumonia  
(n) 

11.5 
(115) 

16.4 
(217) 

9.3 
(10) 

16.7 
(18) 

0.1 

% Family History of LC  
(n) 

14.1 
(141) 

27.2 
(360) 

17.6 
(19) 

28.7 
(31) 

0.05 

Median IMD Rank 
±IQR 

3109  
±8463 

2866  
±3615 

3785 
±6387 

2866  
±4195 

0.04 

Severe 
Comorbidities  

Mean ±SD 
0.63  
±0.3 

0.65  
±0.79 

0.59  
±0.23 

1.1  
±0.76 

<0.001 

Median ±IQR 
0.53 
±0 

0.54 
±1 

0.54  
±0 

1 
±1 

<0.001 

Other 
Comorbidities  

Mean ±SD 
0.88 

±0.45 
1.18 
±0.9 

0.89 
±0.4 

1.2  
±0.98 

0.003 

Median ±IQR 
0.68 
±0 

1 
±1 

0.69 
±0 

1  
±1.3 

0.007 

Total 
Comorbidities  

Mean ±SD 
1.5  

±0.53 
1.83  
±1.3 

1.5  
±0.46 

2.3  
±1.5 

<0.001 

Median ±IQR 
1.2 

±1 

1.2 

±1.2 

1.2 

±0.75 

2 

±2 
0.001 

PLCOM2012 6-year LC risk: 
Median ±IQR 

(Min-Max) 

0.46 ±0.7 
(0-0.15) 

3.9 ±4 
(1.51-
31.4)  

1 ±1  
(0-1.5) 

1.8 ±0.6 
(1.53-
5.34) 

<0.001 
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4.3.3 Model Performance within Screened Participants   

LDCT results, and therefore like-for-like LHC outcome data, were only available for the 1409 

participants who had LDCT scans within the LHC pilot due to having risk scores of PLCOM2012 

≥1.51%. In order to examine how the selection criteria would have performed in a comprehensive 

screening cohort, I created simulated screening thresholds within this subgroup, comparing the 

participants with the highest PLCOM2012 scores (top 75%, threshold: ≥2.27%) vs. those with the 

highest LYFS-CT scores (top 75%, threshold: ≥17.7 days) (Table 7). These thresholds were selected 

in order to provide large enough segments in each subgroup for analysis, without being too high 

as to be completely unrepresentative of a real-world risk threshold in a screening programme. In 

the screened subgroup, 955 (68%) were selected by both criteria, 249 (18%) by neither, 103 

(7.3%) by PLCOM2012-only and 102 (7.2%) by LYFS-CT-only. A comparison of demographic and LHC 

outcome variables for all four groups are presented in Table 7. 

Participants selected by LYFS-CT-only had a median predicted screening benefit of 20.1 days of 

life-gained and a predicted lung cancer risk of 1.96%, compared to 15.2 days of life-gained and 

2.75% risk in those selected by PLCOM2012-only (p<0.001). Those selected by LYFS-CT-only were 

significantly younger (median: 58 vs. 68 years; p<0.001), less overweight (median BMI: 28 vs. 30; 

p<0.001), had fewer co-morbidities (median = 1 vs. 2; p<0.001) and fewer severe co-morbidities 

(median = 0 vs. 1; p<0.001) than those selected by PLCOM2012-only. Consequently, those selected 

by LYFS-CT-only are predicted to have greater life expectancy (median: 24.2 vs. 17.3; p<0.001) and 

greater gain in life-expectancy following lung cancer detection (median: 2.4 vs. 1.9 years; p<0.001) 

and subsequent prevention of death (median: 22.7 vs. 16.1 years; p<0.001) (Table 7). Those 

selected by PLCOM2012-only were significantly more likely to have CAC detected on their LDCT 

scans than those selected by LYFS-CT-only (81.8% vs. 57.4%; p<0.001), providing additional clinical 

confirmation of the self-reported increased CVD risk in the PLCOM2012 selected subgroup. 

I followed-up the two subgroups selected by one criterion but not the other five years post-LHC, 

in order to examine whether the differences in comorbidity increased, persisted, or diminished 

with time. This facilitates analysis of whether the difference in participant selection based on a 

cross-sectional assessment of clinical information at the LHC reflects genuine differences in long-

term health trajectories and outcomes. Five-years post-LHC, the prevalence of severe co-

morbidities remained higher in those selected by PLCOM2012-only compared to LYFS-CT-only, with 

LYFS-CT days of life-expectancy 
gained from screening: 

Median ±IQR 
(Min-Max) 

4.8 ± 4.2 
(0-12.2) 

27.3 
±22.5 
(12.2-
114.5) 

14.6 ±3.2 
(12.27-
34.5) 

10.3 ±2.9 
(4.96-
12.15) 

<0.001 

LYFS-CT Years of Life Expectancy 
Median  

±IQR 

24.5  
±7.49 

18.06  
±7.63 

21.29  
±6.6 

18.57 
±5.82 

<0.001 
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the mean difference of severe co-morbidities between the two groups increasing from 1.1 to 1.2 

(mean severe comorbidities: 1.6 vs. 0.4; p<0.001), differences between the medians remain 

consistent (1; p<0.001). The difference in ‘other’ (less severe) comorbidities lessened over time 

from 0.6 to 0.4 but remained significant (mean other comorbidities: 1.5 vs. 1.1; p=0.005) (median: 

1 vs. 1; <0.001) (Figure 19). There was no significant difference in new ‘serious’ co-morbidity 

diagnoses. There were no significant differences in the number of screen-detected lung cancers (2 

vs. 1) or deaths 5-years post-LHC (6 vs. 6; p=0.99). 
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Table 7. Demographics and follow-up outcomes of LHC pilot screened participants, stratified by 
those selected by risk vs. life-gained selection in 1409 scanned participants. 

 

Not 
selected 
by risk or 

life-
gained 

Selected 
by risk 

and life-
gained 

Selected 
by risk but 

not life-
gained 

Selected 
by life-
gained 
but not 

risk 

P-value 
for 

differences 
in 

selection 

Number of Subjects 
(%) 

249 
(17.7) 

955 
(67.8) 

103 
(7.3) 

102 
(7.2) 

- 

At LHC pilot: 

Median Age ±IQR 64 ±9 65 ±8 68 ±6 58 ±7 <0.001 

Median BMI ±IQR 
30.1 

±6.85 
27 ±6.7 30.1 ±7.3 28 ±6.35 <0.001 

Median Cigs per Day ±IQR 20 ±10 20 ±10 20 ±10 20 ±10 0.12 

Median Years Smoked ±IQR 38 ±11 47 ±8 39 ±8 41.5 ±7 0.001 

Median Years Quit ±IQR 9 ±17 0 ±3 11 ±12 0 ±1 <0.001 

% Female 
(n) 

49.8 
(124) 

50.8 
(485) 

51.5 
(53) 

47.5 
(48) 

0.53 

% Exposed to Asbestos  
(n) 

22.9 
(73) 

24.3 
(232) 

20.4 
(21) 

29.4 
(30) 

0.14 

% Prior Cancer  
(n) 

11.2 
(28) 

12.1 
(116) 

38.8 
(40) 

0 <0.001 

% COPD 
(n) 

31.7 
(40) 

40.1 
(383) 

25.2 
(26) 

13.7 
(14) 

0.04 

% Prior Pneumonia  
(n) 

14.1 
(35) 

17.7 
(169) 

13.6 
(14) 

10.7 
(11) 

0.54 

% Family History of LC  
(n) 

20.9 
(52) 

30.9 
(295) 

28.2 
(29) 

8.8 
(9) 

<0.001 

% Hypertension 48% 55% 56% 38% 0.79 

% Coronary Heart Disease 22% 22% 35% 9% <0.001 

% Angina 11% 11% 19% 5% <0.001 

% Prior Heart Attack 10% 9% 19% 4% <0.001 

% Prior Stroke 3% 1% 3% 1% 0.03 

% Diabetes 18% 25% 35% 7% <0.001 

Severe 
Comorbidities † 

Mean ± SD 0.7 ± 0.7 0.7 ± 0.8 1.3 ± 1 0.2 ± 0.3 <0.001 

Median ± IQR   1 ± 1.5 0 ± 0.5 <0.001 

Other 
Comorbidities † 

Mean ± SD - - 1.3 ± 0.8 0.7 ± 0.7 <0.001 

Median ± IQR   1 ± 1.3 0.7 ± 1 <0.001 

Total 
Comorbidities † 

Mean ± SD 1.7 ± 1.3 1.9 ± 1.5 2.6 ± 1.7 0.9 ± 0.9 <0.001 

Median ± IQR   2 ± 1 1 ± 1.2 <0.001 

PLCOM2012 6-year LC risk: 
Median ± IQR 

(Min-Max) 

1.8 ± 0.3 
(1.51-
2.27) 

4.96 ± 
4.39 

(2.27-
32.9) 

2.75 ± 
0.84 

(2.27-6) 

1.96 ± 
0.34 

(1.51-
2.25) 

<0.001 

LYFS-CT days of life-expectancy 
gained from screening: 

Median ± IQR 
(Min-Max) 

13.7 ± 4.4 
(5.2-17.7) 

34.3 ± 
22.5 

(17.7-
114.5) 

15.2 ± 3.8 
(4.96-
17.64) 

20.1 ± 
2.9 

(17.7-
33.4) 

<0.001 

LYFS-CT Years of Life Expectancy 
Median ± IQR 

21.4 ± 6.1 16.9 ± 6.7 17.2 ± 6.4 
24.2 ± 

5.6 
<0.001 

% Scan-Detected Emphysema (n) 
45.3 

(112/247) 
70.2 

(658/937) 
57.6 

(57/99) 
52.5 

(53/101) 
0.47 
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†Severe Comorbidities: diabetes, heart attack, CHD, stroke, previous cancer, kidney disease. Other 
Comorbidities: COPD, pneumonia, atrial fibrillation, hypertension. 

¶ Causes of Death: Selected by risk but not life-gained – Lung Cancer (1), Heart Failure (2), Mouth Cancer 
(1), Unknown (1). Selected by life-gained but not risk – Pneumonia (1), Hepatocellular Carcinoma (1), 
Myelodysplastic Syndrome (1), Unknown (3). 

* Serious Comorbidities: Thoracic aortic aneurysm, dementia, heart failure, valvular heart disease, liver 
cirrhosis, abdominal aortic aneurysm, idiopathic pulmonary fibrosis, severe frailty.  

% Scan-Detected Coronary Artery 
Calcification (n) 

64 
(158/247) 

78.2 
(733/937) 

81.8 
(81/99) 

57.4 
(58/101) 

<0.001 

Number of Lung Cancers Detected 4 55 2 1 - 

At 5-year follow-up: 

Number of Lung Cancers with 
Deaths 5-years post detection 

2 22 1 0 - 

% Dead ~5 Years Post-Scan ¶ - - 5.8 (6) 5.9 (6) 0.99 

Severe 
Comorbidities † 

Mean ± SD - - 1.6 ± 1.2 0.4 ± 0.6 <0.001 

Median ± IQR - - 1.2 ± 1.2 0.2 ± 0.7 <0.001 

Other 
Comorbidities † 

Mean ± SD - - 1.5 ± 1.1  1.1 ± 0.9 0.005 

Median ± IQR - - 1 ± 1.3 1 ± 1.3 <0.001 

Mean Total 
Comorbidities ± 

SD † 

Mean ± SD - - 3.1 ± 1.9 1.5 ± 1.2 <0.001 

Median ± IQR - - 2.4 ± 2.2 1.2 ± 1.3 <0.001 

Mean Serious 
Comorbidities ± 

SD * 

Mean ± SD - - 0.15 ± 0.4 
0.11 ± 
0.35 

0.44 

Median ± IQR - - 0 ± 0 0 ± 0 0.3 
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Figure 19. Mean number of comorbidities among screened individuals in the LHC pilot, selected 
(in top 75% of scores) by life-gained-benefit but not risk vs. selected by risk but not life-gained. 

In total, between the two analyses detailed above, 396 LHC pilot participants were followed-up. 

Those who died were significantly older (mean age: 67 vs. 64; p=0.03), had a higher burden of 

severe comorbidity at the LHC (mean: 1.08 vs. 0.76; p=0.05), more newly diagnosed severe 

comorbidities at follow-up (individuals with new severe comorbidity: 44% vs. 19%; p=0.06) 

(comorbidity classifications presented in Appendix 1), and had a lower probability of survival to 5-

years according to the mortality model embedded in the LYFS-CT calculator (0.89 vs. 0.92; 

p=0.006) (Table 8).  
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Table 8. Outcomes of LHC pilot participants followed-up at 5-years post-LHC. 

 All Dead Alive P-value 

Total Participants (%) 396 24 (6.1) 372 (93.9) - 

Mean Age at LHC 
±SD 

64.2 
±6 

66.9 
±5.8 

64.1 
±6 

0.03 

Mean PLCOM2012 score 
±SD 

1.8 
±0.9 

1.7 
±0.8 

1.9 
±1 

0.33 

Mean chance of survival to 5-
years in LYFS-CT mortality model 

±SD 

0.91 
±0.05 

0.89 
±0.07 

0.92 
±0.05 

0.006 

Mean Number 
of 

Comorbidities 
at LHC 

±SD 

Severe 
0.78 

±0.78 
1.08 

±1.03 
0.76 

±0.76 
0.05 

Other 
0.99 
±0.8 

1.2 
±0.64 

0.98 
±0.81 

0.12 

All 
1.77 
±1.4 

2.3 
±1.5 

1.7 
±1.4 

0.07 

% Subjects with 
≥1 new 

comorbidity at 
follow-up * 

Severe 
20 

(34/168) 
44.4 
(4/9) 

18.9 
(30/159) 

0.06 

Other 
27.4 

(46/168) 
22.2 
(2/9) 

27.7 
(44/159) 

0.72 

Serious 
11.9 

(20/168) 
22.2 
(2/9) 

11.3 
(18/159) 

0.33 

* Denominators differ as comorbidity follow-up was not performed on individuals only included in 

the ‘threshold’ analysis presented in section 4.3.2. 

For completeness, I also collected follow-up data for all those with screen-detected lung cancer in 

the LHC pilot (even if they did not fall into the analysis subgroups detailed above). Of the 62 

participants, 60% (n=37) were alive. Those who died had significantly more advanced disease at 

the time of diagnosis (stage III/IV: 40% vs. 11%; p<0.001) and were less likely to have been treated 

with surgery (36% vs. 70.3%; p=0.001). Three quarters of the deaths were caused by lung cancer 

diagnosed during the LHC. Those who died also had higher PLCOM2012 scores (mean: 9.6% vs. 7%; 

p=0.08) and LCDRAT scores (6.4% vs. 4.2%; p=0.04), indicating increased estimated lung cancer 

risk and increased chance of lung cancer death (Table 9) (LCDRAT is the lung cancer mortality 

model used in the generation of LYFS-CT scores). The borderline statistical significance of the 

PLCOM2012 association indicated the need for larger studies to confirm this link. 
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Table 9. Outcomes for those with screen-detected lung cancer in the LHC pilot.  

 All Dead Alive P-value 

Total Participants (%) * 62 25 (40) 37 (60) - 

Mean Age at Diagnosis  
±SD 

67.1 
±5 

66.6 
±5.6 

67.5 
±4.7 

0.5 

Mean PLCOM2012 score at 
Diagnosis 

±SD 

8 
±5.6 

9.6 
±6.6 

7 
±4.7 

0.08 

Mean risk of lung cancer death 
in absence of screening 

(LCDRAT) score at Diagnosis 
±SD 

 
5.1 

±4.1 
6.4 

±6.6 
4.2 

±3.2 
0.04 

% Stage at 
Diagnosis 

(n) 

Stage I 
66 

(41) 
44 

(11) 
81.1 
(30) 

0.001 
Stage II 

11.3 
(7) 

16 
(4) 

8.1 
(3) 

Stage III 
9.7 
(6) 

12 
(3) 

8.1 
(3) 

Stage IV 
12.9 
(8) 

28 
(7) 

2.7 
(1) 

% Treatment – Surgery (n) 
56.5 
(35) 

36 
(9) 

70.3 
(26) 

0.008 

* Cause of death: lung cancer (n=19), 2nd primary lung cancer (n=1), COVID-19 (n=1), oesophageal cancer 

(n=1), heart disease (n=1), complications from surgery for lung cancer (n=1), not known (n=1). 

4.3.4 LYFS-CT and PLCOM2012 Calibration 

The mortality model in LYFS-CT predicted 18.8 deaths (9.1%) at 5-years post-LHC in the absence of 

screening in the subset of LHC attendees with follow-up data in our study, 57% higher than the 12 

deaths (5.8%) observed. PLCOM2012 predicted the occurrence of 5.7 lung cancers in 6-years in this 

subgroup; at 5-year follow-up, six lung cancers had been diagnosed. Assuming a further 1.2 lung 

cancers would be diagnosed in the sixth year, it is likely that there would be 25% more lung 

cancers diagnosed in this period than predicted by the model. Extrapolated to the complete 

PLCOM2012 eligible screening cohort, this would result in 91 lung cancers diagnosed after 6-years, 

considerably higher than the 72 predicted by the RPM. Extreme caution must be employed when 

interpreting this extrapolation, considering the very small case sample size and selection bias in 

this very specific subgroup; nonetheless, this projection falls between the actual and adjusted 

NELSON incidence projections reported in section 3.3.3 and Figure 11, adding tentative 

confirmatory evidence to the previous analysis.  

 

  



101 
 

4.4 Discussion 

This retrospective study examined the impact of using a benefit-based screening selection 

method in a real-world lung cancer screening programme. The results indicate that had life-

gained-based selection (using the LYFS-CT model) been used at an equivalent threshold to select 

the same number of screening-eligible participants as PLCOM2012 ≥1.51%, the screening threshold 

would have been ≥12.2 days of life-gained from screening; 92% of the individuals selected by the 

RPM would still have received screening using this criterion. Crucially, almost all cancers detected 

in the PLCOM2012-selected screening cohort would have been detected had a screening cohort of 

the same size been selected by LYFS-CT. Attendees who would have only been selected by LYFS-

CT using these eligibility thresholds would have been significantly younger and less comorbid. 

Whilst a previous study has modelled the equivalent LYFS-CT threshold to match USPSTF eligibility 

criteria (≥16.2 days of life-gained), to my knowledge, this is the first calculation of a LYFS-CT 

threshold to match a clinically employed RPM threshold in a real-world screening programme.  

Whilst the LHC was not large enough to examine differences in subsequent mortality between 

subgroups, when comparing the top 75% of screened individuals (for whom we had 

comprehensive LHC and LDCT data) by life-gained vs. risk-based selection, those selected by life-

gained-only were younger, more likely to be a current smoker, and had substantially fewer co-

morbidities than those selected by risk-only. This is congruent with the findings of the original 

study in which LYFS-CT was developed [233]. However, unlike in the original study, in our 

‘equivalent threshold’ analysis, women were more likely to be deemed eligible for screening by 

risk-based selection than life-gained-based selection and had lower LYFS-CT scores overall. 

Previous studies have shown that screening performance may be superior in women [197]; 

particularly notable, the NELSON RCT found a significantly higher LDCT derived mortality 

reduction in women compared to men, although the small size of the female subgroup in NELSON 

limits the certainty of this conclusion [194]. Further research is required to investigate the impact 

of varying screening selection methods on the male/female split of the eligible cohort, and any 

differences in overall life-gained by screening between the sexes.  

After five years of follow-up in the subset who would only have been selected for screening by 

one model and not the other, the increased burden of co-morbidity present in the ‘risk-only’ 

subgroup persisted. Additionally, those who died in the follow-up period had a higher burden of 

comorbidity. Whilst this may indicate that those deemed ‘most eligible’ for screening by risk-

based selection may derive limited benefit from the intervention, it is important to note that the 

small size of the study and the follow-up subset significantly limits the conclusions we can draw. 

Large, prospective studies with extended and comprehensive follow-up periods are needed to 

confirm whether these tentative indications of the potential benefit of using a life-gained-based 
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selection strategy would actually improve the benefit-to-harm trade-offs in lung cancer screening 

selection. 

A further limitation of this analysis is that individuals older than 75 were ineligible for the LHC, 

and only people with a PLCOM2012 score ≥1.51% received LDCT screening. In programmes with 

more lenient age and risk restrictions, larger differences in comorbidities and outcomes between 

risk- and benefit-based selection might be expected, as risk increases with age whilst life-gained 

from screening may not. In the original LYFS-CT study, the most significant divergence between 

life-gained and risk-based selection only occurred in participants older than 75 [233]. A further 

limitation is that the comparison of screened individuals did not include PLCOM2012-eligible 

participants who did not attend screening or participants who would have been screen-eligible 

had LYFS-CT been used alongside PLCOM2012 to determine eligibility in the LHC pilot. Additionally, 

the LYFS-CT scores in our cohort were calculated retrospectively with existing datasets and 

therefore relied on several imputations and assumptions which may not be clinically accurate. 

Follow-up data were not collected for the full LHC pilot cohort, nor was the follow-up timepoint 

fixed in relation to each subject’s LHC, further limiting the conclusions I was able to draw from 

these analyses. 

Calibration analyses indicated that the mortality model in LYFS-CT may overestimate mortality 

risks and the PLCOM2012 RPM may underestimate lung cancer risk in the population served by the 

LHC pilot. This is consistent with my analysis in section 3.3.3, which based solely on the lung 

cancer detected within the LHC pilot, also showed likely risk underestimation by PLCOM2012. 

Miscalibration of both models is likely caused by their development in populations unlikely to be 

representative of highly deprived UK cohorts. However, the size of the dataset used for 

calibration analyses in this study means that there was significant margin for error and 

extrapolating the outcomes to the full cohort assumes that this subset is representative of the 

rest of the attendees. Further research is required to investigate whether this miscalibration is 

present in larger datasets, what the exact nature of any miscalibration is, and whether it has any 

impact on who is selected for screening. Large studies with extended follow-up are required to 

recalibrate models in specific populations.  

Another potential benefit of LYFS-CT was demonstrated by a recent study showing that 

augmenting USPSTF2020 criteria with LYFS-CT almost totally eliminates racial and ethnic disparities 

in screening eligibility derived from applying generalised eligibility criteria to a US population 

[332]. RPMs have also been shown to perform somewhat differently in ethnic subgroups [322]. 

This study was unable to examine this question, due to the majority white ethnicity of the 

screening cohort. Further research is required to examine whether this is a significant issue for 

RPMs and whether LYFS-CT could ameliorate this.  



103 
 

A challenge associated with using LYFS-CT is the ethical implications of restricting screening from 

those with shorter life expectancies. Whilst clinical practice guidelines regularly recommend 

factoring life expectancy into screening decisions, some studies show that this may not be well 

accepted by participants. However, effective shared decision making and communication were 

shown to assist participants in this regard [333,334]. Risk communication in the context of pre-

screening counselling is discussed in detail in Chapter Six; communicating benefit-based metrics 

to screening participants may add additional complications and requires further research. Even if 

not ultimately used for screening selection, incorporating estimates of life-gained benefits from 

screening may be useful for general shared decision-making among individuals in which screening 

may be preference-sensitive [259]. Considerable further research is required to investigate how 

LYFS-CT can be integrated successfully into pre-screening counselling and shared decision-making 

tools. An additional challenge for LYFS-CT implementation is the current lack of an accessible 

calculator that can be used easily by clinical staff in a screening programme setting. Whilst there 

are Excel and R versions of the model freely available [335], it would be beneficial to integrate 

these into a user interface similar to the PLCOM2012 software used in the TLHC programme. The 

additional time required to gather the necessary clinical information to calculate LYFS-CT scores is 

also an important factor to consider in implementation.  

In conclusion, this study demonstrates that life-gained-based selection may have the potential to 

be a useful alternative to risk-based selections for screening programmes. A life-gained approach 

could maintain high detection rates whilst selecting fewer individuals less likely to benefit from 

screening, thereby addressing the comorbidity issue which is one of the factors driving the 

hypothesis that screening selection performs sub-optimally in socio-economically deprived 

populations. However, due to the limitations of this study, significant further research is required 

to confirm if LYFS-CT-based selection confers greater gains in realized life-expectancy over risk-

based selections. To do this, studies with complete data for LYFS-CT calculation and longer and 

comprehensive follow-up data, as well as prospective studies, are needed. Further research is also 

required to ensure the model is well calibrated for the population it is being used in, as well as to 

establish effective LYFS-CT screening thresholds. Implementation studies are needed to 

investigate practical aspects of integrating LYFS-CT calculation into screening programmes, and to 

develop benefit-based communication and counselling for screening participants.   
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Chapter Five - Genetic Risk Factors for Lung Cancer: Case-Control 

Study 

5.1 Introduction 

Lung cancer is the most common global cancer and a leading cause of cancer death [1]. LDCT 

screening significantly reduces mortality through early diagnosis [193,194] but relies on careful 

targeting to prevent participants from being exposed to unnecessary harm as well as to ensure 

overall cost-effectiveness of the programme [215,216]. RPMs are used to calculate individual lung 

cancer risk scores for screening attendees based on risk factor exposure, allowing for the 

determination of risk-based screening eligibility [218]. Lung cancer risk is mediated by several risk 

factors, most notably age and smoking history, but also an array of other factors (see section 1.5), 

including family history of lung cancer [110,111]. 

Both environmental and genetic risk factors contribute to the association between family history 

of lung cancer and increased lung cancer risk [113]. In the past decade, several large GWAS have 

implicated dozens of SNPs in this association [139,140]. A PRS is a tool that integrates multiple 

low penetrance SNPs into a tool that can be used to predict an individual’s genetic risk of 

developing a particular condition. Whist several attempts have been made to use SNPs to create a 

PRS for lung cancer [242,243], thus far, no RPM used clinically for lung cancer risk prediction and 

screening selection includes a measure of genetic risk in its risk calculation (see sections 1.5.8.2 

and 1.6.6.4). Research is needed to investigate whether these PRS tools improve risk prediction 

and screening selection in high-risk populations likely to be targeted for lung cancer screening. 

This study aimed to validate several previously published lung cancer PRS tools in a Manchester-

based case-control cohort. The case samples were sourced from patients undergoing surgery for 

histologically confirmed NSCLC. The control samples were sourced from high-risk attendees of the 

Manchester LHC pilot, a community-based lung cancer screening programme [248]. I tested the 

PRS tools for overall efficacy in the cohort and performed subgroup analyses to ascertain PRS 

effectiveness in specific demographic segments. I explored novel suggestive signals in the 

genomic data by building a novel PRS which if validated in external cohorts, could provide 

additional SNPs for inclusion in future PRS tools. Previous studies have often developed and 

validated PRSs in biobank or RCT settings, which may not be wholly representative of real-world 

screening population settings [318,336]. A unique aspect of this study is the high-risk nature of 

the control cohort, having been sourced from the Manchester LHC pilot, thereby being highly 

representative of community-based lung cancer screening participants.   

If a PRS was found to be an effective risk prediction tool, this could be used to improve RPM 

discrimination, thereby facilitating the targeting of screening to those most at risk, improving 
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programme efficiency, and reducing exposure to screening related harms in those at lower risk of 

lung cancer. Moreover, genetic risk factors (unlike spirometry and CVD indicators which may also 

improve risk prediction and are examined in Chapter Three) are not directly implicated in 

increased risk from other comorbidities. This could allow for the selection of participants at high 

risk of lung cancer without concomitantly selecting a cohort with high disease burden and shorter 

life expectancies [233]. 

5.2 Dataset Processing and Methods Development 

5.2.1 Cohort Demographic Data Analysis 

An extensive description of cohort recruitment, sample collection, and data gathering can be 

found in sections 2.1 and 2.4. Comprehensive and detailed demographic and clinical information 

was available for the control group, as it was sourced from the Manchester LHC pilot. Information 

was less comprehensive for the case cohort, which was sourced from Manchester Cancer 

Research Centre (MCRC) Biobank. Consequently, for analysis, cases who had smoked within the 

previous 12 months were classed as ‘current’ (even if listed as former). Pack-years for cases were 

calculated when information was provided in the sample notes; when a range was given for 

cigarettes-per-day or smoking duration, the mid-point was used. If an explicit pack-year figure was 

provided, this was used preferentially (even if the calculated figure was different). If no pack-year 

information was available, imputed scores for current and ex-smokers were used within the cases. 

Where available, cancer stage was ascertained from the TNM coding in the sample notes, using 

the International Association for the Study of Lung Cancer (IASLC) TNM classification of malignant 

tumours 7th edition [337]. FEV1/FVC ratios above 1 were assumed to be erroneous and were 

recalculated. Missing BMI and FEV1/FVC data were imputed according to the mean of the 

remaining cases or controls as appropriate. Age, calculated pack-years, and smoking status were 

used to estimate NLST eligibility in the case cohort (age 55-74, ≥30 pack years, current smoker 

within 15 years [193]). 

Demographic differences between the case and control groups, as well as between the recruited 

control cohort and the remaining eligible control population (T1 or 3-month post-T1 surveillance 

participants who were screen-negative for lung cancer), were calculated and tested for 

significance using an Independent-Samples T Test for scale variables, Chi-square test for 

dichotomous variables (with multiple z-tests and Bonferroni correction for variables with multiple 

categories), and Mann-Whitney U-Test for medians.  

5.2.2 DNA Processing and Quality Control 

Detailed protocols for DNA extraction and quality control are described in section 2.6. A 

schematic of sample processing for the whole cohort is presented in Figure 20. A total of 701 case 
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and 706 control blood samples were provided. Of these, 98% (n=1374) had DNA successfully 

extracted and were progressed to genotyping; the vast majority of these (n=1370) were 

successfully genotyped (see section 2.7) and formed the pre-QC case-control dataset.  
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Figure 20. Sample processing and quality control flowchart for case-control study. 
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5.2.3 Genotype Data Quality Control 

Detailed procedures for processing and quality control of the genotyping data are described in 

section 2.8; a schematic of data processing is presented in Figure 20. Of the 1370 samples that 

entered the quality control workflow, 8 failed the sex discrepancy check, 21 failed due to call rate 

or heterozygosity (Figure 21), 10 failed due to relatedness, and 20 were unexpected duplicates. All 

cross-plate positive controls were correctly identified as expected duplicates, with the best 

performing sample retained for analysis. This resulted in a dataset of 1311 individuals (cases=663; 

controls=648), 96% of the pre-QC case-control dataset. This dataset progressed to the PCA QC 

step. 

 

Figure 21. Heterozygosity and call rate quality control plot. Red dashed lines indicate the 
thresholds for sample exclusion. 

PCA identified several individuals not of the predominant Caucasian genetic ancestry group, all of 

which were excluded (Figure 22). PCA also revealed a subgroup of 91 controls, all originating from 

the same genotyping plate, that formed a distinct genetic cluster (Figure 26). Troubleshooting by 

Illumina confirmed processing issues and the presence of artefacts on all four genotyping chips 

from that run. As time and budget did not allow for re-genotyping, these samples were excluded 

from the primary analysis to prevent this unusual genetic variation affecting the robustness of the 

analysis. I repeated the PCA to ensure that all outliers had been appropriately excluded. The 

lambda value in the Aberrant package was set at 30 (based on a subjective assessment of sample 

spread), trimming a further 18 outlying samples from the cohort (Figure 23). This resulted in a 

final study cohort of 1202 samples (Controls: n=550; Cases n=652), 88% of the pre-QC case-
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control dataset and 85% of the total blood samples that entered the study. The primary analysis 

cohort had a clear and robust overlapping profile of genetic variation (Figure 24). In the scree plot, 

only one point clearly deviated indicating that genetic variance could be adequately controlled for 

with inclusion of one PC as a covariate during association analysis (Figure 25); three PCs were 

used as covariates to provide additional margin for error. 

 

Figure 22. Genetic ancestry of the Manchester cohort dataset vs. the HM3 reference panel. Grey 
= excluded due to deviation from CEU cluster. CEU: Utah residents with Northern and Western 

European ancestry from the CEPH collection. CHB: Han Chinese in Beijing, China. JPT: Japanese in 
Tokyo, Japan. YRI: Yoruba in Ibadan, Nigeria. 



110 
 

 

Figure 23. Aberrant plot excluding 18 outliers from the primary analysis cohort. Dashed line = 99% 
confidence interval of inferred distribution of ‘normal’ samples. Normal individuals are coloured 
from black to grey, with darker colouring indicating sample density. Outliers are coloured from 
orange to red, with redder colours indicating higher posterior probability of being an outlier. 

 

Figure 24. PC1 and PC2 scatterplot for the final primary analysis cohort. Light blue = case; dark 

blue = control. 
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Figure 25. Scree plot for primary analysis. Dots represent eigenvalues plotted against PCs. 

I also performed a secondary analysis for comparison purposes, retaining the outlying cluster of 

control samples (Figure 26). In order to ensure that the additional genetic variance present was 

accounted for in the association analysis, I restricted the dataset to controls-only and plotted each 

of the first ten principal components on individual scatterplots (Figure 27). The plots indicated 

that the aberrant variation was restricted to PC1 and PC2, congruent with the two clearly 

deviating points on the secondary analysis scree plot (Figure 28). Three principal components 

were used as covariates during association analysis. The secondary analysis cohort contained 

1291 samples, 652 cases and 639 controls, 94% of the pre-QC case-control dataset and 92% of the 

total blood samples that entered the study. 
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Figure 26. PC1 and PC2 scatterplot for the secondary analysis cohort. Light blue = case; dark blue 
= control. Outcropping of controls with low PC1 values indicates unexpected abberant genetic 

variability. These samples were removed from primary analysis but retained in secondary. 
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Figure 27. Scatterplots for first ten principal components in the control cohort of the secondary 
analysis dataset. Light blue = aberrant plate; dark blue = remaining controls. 
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Figure 28. Scree plot for secondary analysis. 

5.2.4 Genomic Imputation 

Due to previous quality control steps, the genomic imputation was of high quality, with 100% 

reference overlap, no allelic mismatch, monomorphic sites, SNPs with low call rate, duplicated 

SNPs or invalid alleles, and no requirement for allele switching or strand flipping (indicating 

mismatch with reference genome). The overall r2 value for allele-frequency correlation between 

the reference panel and uploaded samples was 0.995 (Figure 29). 

 

Figure 29. Correlation of densities of allele frequencies between the study samples and 
imputation reference panel. 
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5.3 Results 

5.3.1 Cohort Demographics 

5.3.1.1 Control Cohort 

A total of 706 participants of the Manchester LHC pilot T1 screening round provided blood 

samples, 60.2% of the total eligible cohort (T1 negative and T1 + 3-month surveillance negative 

participants). The participating control group was highly representative of the total screen-

negative participants; the only variable with a statistically significant difference (although not 

clinically significant) was mean BMI (participating controls = 28.8 vs. remaining controls = 28.1; 

p=0.03) (Table 10). The participating control group was equally split between males and females 

and current and former smokers. Mean age was 64.6 years, median pack-year history was 45, 

67.4% had no educational qualification and 30.6% had a self-reported COPD diagnosis. Median 6-

year lung cancer risk score (PLCOM2012) was 3.5% (Table 10).  

Table 10. Comparison of control samples included in the study vs. remaining eligible control 
population. 

 

 
Remaining T1 

Negative 
Population 

Participating 
Controls 

P-value 

Total 467 706 - 

% Female (n) 47.5 (245) 49.9 (354) 0.44 

Mean Age ±SD 64.7 ±5.4 64.6 ±5.3 0.74 

% Current (n) 49.9 (233) 50.4 (356) 0.86 

Median Pack Years (±IQR) 44 (±24) 45 (±23) 0.72 

Educational 
Attainment 

% Less than GCSE/O 
Level (n) 

70.4 (329) 67.4 (476) 

0.55 

% GCSE/O Level (n) 19.2 (85) 18 (127) 

% A Level (n) 2.6 (12) 4.2 (30) 

% Some 
University/College (n) 

6 (28) 6.8 (46) 

% University Degree 
(n) 

2.1 (10) 2.3 (16) 

% Postgrad (n) 0.6 (3) 1.3 (9) 

Mean BMI ±SD 
28.1  
±5.6 

28.8  
±5.3 

0.03 

Median FEV1/FVC Ratio ±IQR 
69.3  

±13.2 
70.4  

±12.6 
0.06 

% COPD (n) 33.4 (156) 30.6 (216) 0.31 

Median PLCO Score  
±IQR 

3.6  
±3.8 

3.5  
±3.7 

0.77 
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After sample processing and QC, 550 control samples (77.9%) were eligible for inclusion in the 

primary analysis and 639 (90.5%) were eligible for inclusion in the secondary analysis (see section 

5.2.3 for an explanation of these two analyses) (Figure 20); the only variable with a statistically 

significant difference between the final control dataset and the samples which were not 

successfully processed was median FEV1/FVC ratio (70.2 vs. 71.6; p=0.05) (Table 11). 

Table 11. Demographic and clinical characteristics of controls and comparison final primary 
control cohort vs. failed samples. 

 

5.3.1.2 Case Cohort 

The MCRC Biobank provided 701 case samples; 55.1% were female, 59% were former smokers, 

and median age was 69. Pathological subtypes included: adenocarcinomas (64%), squamous cell 

carcinomas (34%), and large cell carcinomas (2%). Of the 580 (83%) with stage information 

available, 80% were early stage (stage I = 376; stage II = 86), 17% (n=100) were stage III, and 3% 

(n=18) were stage IV (Table 12). After sample processing and quality control, 652 case samples 

(93%) were eligible for inclusion in both analyses (Figure 20). There were no significant differences 

in the demographic or clinical variables between the cases in the final dataset and those that 

 
Failed  

Control Samples 

Final Primary 
Control 
Dataset 

P-value 

Total 156 550 - 

% Female (n) 48.7 (76) 50.5 (278) 0.68 

Mean Age  
±SD 

65.1 
±5.2 

64.5 
±5.3 

0.2 

% Current Smoker (n) 
48.7 
(76) 

51.3 
(282) 

0.57 

Median Pack Years  
±IQR 

45 
±28 

45 
±21 

0.72 

Educational 
Attainment 

% Less than GCSE/O 
Level (n) 

71.2 (111) 66.4 (365) 

0.4 

% GCSE/O Level (n) 16.7 (26) 18.4 (101) 

% A Level (n) 3.2 (5) 4.5 (25) 

% Some 
University/College (n) 

3.8 (6) 7.6 (42) 

% University Degree 
(n) 

3.2 (5) 2 (11) 

% Postgrad (n) 1.9 (3) 1.1 (6) 

Mean BMI  
±SD 

28.6 
±5.3 

28.7 
±5.2 

0.58 

Median FEV1/FVC Ratio ±IQR 
71.6 
±13 

70.2 
±13 

0.05 

% COPD (n) 30.8 (48) 30.5 (168) 0.96 

Median PLCO Score  
±IQR 

3.86 
±4.3 

3.37 
±3.5 

0.06 
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were not successfully processed (Table 12). Of the 652 cases, 6 (0.92%) required BMI imputation, 

88 (13.5%) required FEV1/FVC imputation, and 206 (31.5%) required pack year imputation (of 

these, 111 former smokers required imputation and 95 current smokers). 

Table 12. Demographic and clinical characteristics of cases and comparison final case cohort vs. 
failed samples. 

 

5.3.1.3 Comparison of Case and Control Cohorts 

We compared demographic characteristics between the case and control samples included in the 

analyses. For the primary analysis, the case cohort had a significantly higher proportion of former 

smokers (58.1% vs. 48.8%; p=0.001), higher average age (median: 69 vs. 65 years; p<0.001), and 

lower BMI (median 26 vs. 28.6; p<0.001). Clinical information was not sufficient to calculate 

PLCOM2012 scores for cases. A similar proportion of both cases and controls would have been 

eligible for screening according to NLST eligibility criteria (76% vs. 76.2%; p=0.93).  

 

 
Failed Case 

Samples 
Final  

Case Dataset 
P-value 

Total 49 652 - 

% Female (n) 53.1 (26) 55.2 (360) 0.77 

Median Age  
±IQR 

70.6 
±11.3 

68.9 
±8.8 

0.81 

% Current Smokers (n) 34.7 (17) 41.9 (273) 0.33 

Median Pack Years  
±IQR 

40 
±45 

44 
±25 

0.5 

Median BMI  
±IQR 

27.1 
±4.9 

26 
±6.7 

0.5 

Median FEV1/FVC Ratio  
±IQR 

65.4 
±20 

67 
±16 

0.85 

% Cancer Stage 
(n) 

I 
51 

(25) 
54 

(351) 

0.6 
II 

8 
(4) 

13 
(82) 

III 
12 
(6) 

14 
(94) 

IV 
6 

(3) 
2 

(15) 

Unknown 
22 

(11) 
16 

(110) 
0.3 

Cancer Histology 

Adenocarcinoma 
76 

(37) 
63 

(408) 
0.07 

Squamous Cell 
Carcinoma 

24.5 
(12) 

34.8 
(227) 

0.14 

Large Cell 0 
2.1 
(14) 

- 

Other 0 
0.5 
(3) 

- 
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Table 13. Comparison of demographic variables between post-QC cases and controls for primary 
analysis. 

*Imputed values do not match direct values as imputations were calculated separately in smokers and former 
smokers within the case cohort. 

 

5.3.2 Validation of Previously Published Polygenic Risk Scores – Primary Analysis 

5.3.2.1 Base clinical model 

In order to assess whether genetic risk factors improved risk prediction over the performance of 

standard clinical variables, I constructed a multivariable model using the clinical factors available 

in both the case and control datasets (‘base clinical model’). This model had an AUC of 0.723 

(0.695-0.751) (Figure 30), a Brier score of 0.21 (a score of 0 indicates perfect probabilistic 

accuracy, a score of 1 indicates perfect probabilistic inaccuracy) and a Nagelkerke R2 of 0.2 

(indicating the estimated proportion of variance explained by the clinical model). As would be 

expected, higher age, lower BMI, and lower FEV1/FVC ratio were significantly associated with 

increased likelihood of lung cancer (see section 1.5). Female sex was also associated with 

increased lung cancer risk, although only with borderline statistical significance (Table 14). Whilst 

not statistically significant, it should be noted that there was an inverse relationship between 

smoking status and lung cancer risk (Table 14), with current smoker status being more prevalent 

in the controls than the cases in the Manchester cohort (Table 13). This highlights the uniquely 

high-risk nature of the control cohort, as it is well established that being a current smoker 

increases lung cancer risk (see section 1.5.1). When all clinical factors were considered 

independently, age had the highest discriminatory ability with an AUC of 0.682 (0.653-0.712), and 

sex had the lowest with an AUC of 0.523 (0.495-0.552) (Figure 30). 

 Controls Cases P-value 

Total (%) 550 (45.8) 652 (54.2) - 

% Female (n) 50.5 (278) 55.2 (360) 0.11 

Median Age ± IQR 65 ±9 68.9 ±8.8 <0.001 

% Current Smokers (n) 51.2 (282) 41.9 (274) 0.001 

Median Pack 
Years ± IQR 

Direct 45 ± 21 44 ± 25 0.051 

Imputed* 45 ± 21 40 ± 15 <0.001 

Median BMI ± IQR 28.6 ±6.8 26 ±6.7 <0.001 

Median 
FEV1/FVC Ratio 

± IQR 

Direct 70.2 ± 13 67 ± 16 <0.001 

Imputed* 70.2 ± 13 65.5 ± 13 <0.001 

% NLST eligible (n) 
76 

(418) 
76.2 
(497) 

0.93 
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Figure 30. ROC curve for overall base clinical model, clinical model excl. FEV1/FVC ratio, and 
individual clinical factors, in primary analysis cohort. 

 

Table 14. Associations between clinical factors and lung cancer from logistic regression in primary 
analysis cohort. 

Factor 
OR – likelihood to 

be case 
(95%CI) 

P-value 
AUC 

(95%CI) 

Older Age 
1.12 

(1.09-1.14) 
<0.001 

0.682 
(0.653-0.712) 

Female Sex 
1.27 

(1-1.63) 
0.055 

0.523 
(0.495-0.552) 

Current Smoker 
Status 

0.79 
(0.61-1.02) 

0.07 
0.546 

(0.518-0.574) 

Higher BMI 
0.91 

(0.89-0.94) 
<0.001 

0.629 
(0.598-0.66) 

Higher FEV1/FVC 
Ratio 

0.99 
(0.97-1) 

0.02 
0.581 

(0.548-0.613) 
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5.3.2.2 PRS Selection 

A survey of the literature revealed eight PRSs for lung cancer which were developed based on 

large GWAS datasets and externally validated (Table 15). These were: the 109 SNP PRS published 

by Graff et. al. [338], the 35 SNP and expanded 128 SNP PRSs published by Hung et. al. [244], the 

14 SNP and expanded 19 SNP PRSs published by Fritsche et. al. [339], the 19 SNP PRS published by 

Dai et. al. [242], the 6 SNP PRS published by Shi et. al. [340], and the 19 SNP PRS published by Jia 

et. al. [341]. It is interesting to note that several of these studies used the same cohort (UK 

Biobank) for validation. We also tested the 20 SNP Young PRS [236] which was published in 2009 

(preceding many of the large GWAS studies in the field). A list of all published SNPs absent in our 

dataset, the proxy SNPs I substituted into the relevant PRSs, and associated linage disequilibrium 

values, is presented in Table 16; many proxy SNPs had R2 scores of 1 (indicating perfect 

predictiveness of the alleles in the SNP of interest), with the majority of the remaining being 

above 0.8. 

Table 15. Summary of PRSs validated in the Manchester cohort, data sourced from GRS Catalog. 

First Author (year 
published) 

[paper reference] 

PRS Development 
Population 

PRS Development 
Number of 
Individuals 
(n=cases) 

PRS Validation 
Population 

PRS Validation 
Number of 
Individuals 
(n=cases) 

Young (2009) [236] 

European 
(Manual 

recruitment of 
SNPs from small 

COPD and LC 
studies) 

- 
European 

(Clinic recruitment) 
930 

(446) 

Dai (2019) 
[242] 

Chinese 
(New GWAS) + 

Chinese & 
European (meta-

analysis) 

New GWAS: 19,546 
(9298) 

Meta-analysis: 
54,475 

(27,120) 

Chinese 
(Prospective – 
China Kadoorie 

Biobank) 

95,793 
(1316) 

Shi (2019) 
[340] 

European 
(5 x GWAS) 

258,478 
European 

(Cancer Genome 
Atlas + eMerge) 

14,335 
(908) 

Graff (2020) 
[243] [338] 

>70% European, 
pre-June 2018 

(3 x GWAS) 
183,537 

European 
(UK BioBank) 

413,753 
(1541) 

Jia (2020) 
[341] 

European 
(5 x GWAS) 

293,065 
European 

(UK BioBank) 
400,812 
(1508) 

Fritsche (2020) 
[339] 

European 
(11x GWAS + meta-

analysis) 
428,696 

European 
(UK Biobank + 

Michigan 
Genomics 
Initiative) 

446,955 
(3106) 

Hung (2021) 
[244] 

European 
(8 x GWAS + 

Training set in 
32,341 ILCCO) 

310,646 
European 

(UK BioBank) 
335,931 
(1786) 
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Table 16. Proxy SNPs used in lieu of published SNPs absent in this dataset. Magnitude of linkage 
disequilibrium between published and proxy SNPs represented by R2 and D'. D' is a basic measure 
of the difference between observed and expected frequencies of a haplotype. R2 also takes allele 
frequency into account, expressing the correlation between a pair of loci. 

Published SNP Proxy SNP R2 D' 

rs6920364 rs427824 1 1 

rs114544105 rs9274623 0.86 0.96 

rs17879961 rs186184919 1 1 

rs114928225 rs74787667 0.86 1 

rs185666783 rs2318540 1 1 

rs12722051 rs2760995 0.77 0.88 

rs2518717 rs1985742 0.99 1 

rs189146505 rs138833245 0.83 0.97 

rs28624856 rs2046144 0.82 0.96 

rs9926896 rs183161830 1 1 

rs67210567 rs1801272 0.97 1 

rs13036436 rs6011779 0.92 0.99 

rs71603396 rs35622894 0.77 1 

rs13156167 rs13167280 0.61 0.84 

rs6912292 rs1535275 1 1 

rs182364552 rs2233986 0.99 1 

rs116651383 rs3132514 0.76 1 

rs141707415 rs2524119 0.88 0.99 

rs115494074 rs2507997 0.97 0.99 

rs139850307 rs2523589 0.65 0.84 

rs139089278 rs2844518 1 1 

rs9270868 rs2097432 0.78 0.99 

rs190788477 rs9271611 0.74 0.98 

rs115566240 rs35656734 0.83 0.95 

rs9272307 rs9272306 1 1 

rs9273429 rs1049053 0.64 0.92 

rs36061084 rs2004038 0.96 1 

rs11375254 rs12696594 0.89 0.98 

rs2517873 rs376316 0.88 1 

rs5879422 rs9374663 1 1 

rs35201538 rs10758201 0.97 1 

rs200595745 rs11079710 0.87 1 

rs1799732 rs11214613 1 1 

 

5.3.2.3 Overall PRS performance 

Performance metrics of all the PRSs validated in the Manchester cohort are reported in Table 17. 

Of the nine published PRS tools validated, eight provided some level of improved discrimination 

over the clinical model (Figure 31) and had a clear divergence in score distribution between cases 

and controls (Figure 32). The exception was the PRS published by Young et. al., which was 

developed in 2009 before many of the large lung cancer GWAS studies were performed. It had an 

independent AUC of 0.5 and did not show improved AUC or net reclassification index (NRI) over 
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the base clinical model; there were several base/strand mismatches between the published SNPs 

and those observed in this study. More than half of the SNPs in this PRS had a different effect 

direction in the Manchester cohort to that published in the original study (Appendix 2). 

Consequently, it was omitted from further analysis.  

Of the remaining PRS tools, the 19 SNP Jia PRS performed most successfully, with an independent 

AUC of 0.588. It added 0.015 AUC to the base clinical model (p<0.0001), increasing the overall 

AUC from 0.723 to 0.738 (0.71-0.766) (Figure 33). More than 67% of the top quintile of PRS scores 

were cases, compared to 40% of the bottom quintile (p<0.0001) (Table 18). This PRS had the 

highest categorical NRI, at 0.11 (p<0.0001). Only 16% of SNPs in this PRS displayed a different 

effect direction to those published, the lowest proportion amongst all PRSs tested. Five SNPs 

(26%), all in the correct effect direction, reached a p-value threshold of <0.05 in our association 

analysis (Table 17) (Appendix 2).  

The 19 SNP Fritsche PRS and the 35 SNP Hung PRS also performed relatively well. Both added 

approximately 0.01 AUC to the base clinical model, increasing overall AUC from 0.723 to 0.733 

and 0.734 respectively (p<0.0001). Hung-35 had an independent AUC of 0.575, slightly higher 

than Fritsche-19 at 0.569 (Figure 33); its NRI was also higher and more significant (Hung-35: 0.07; 

p=0.006. vs. Fritsche-19: 0.04; p=0.08). 65% of the top quintile of Fritsche-19 scores and 61% of 

the top quintile of Hung-35 scores were cases, compared to 44% and 49% of the bottom quintiles 

(p=0.002 and p=0.0006) (Table 18). The two iterations of the Hung PRS were the only ones among 

all those validated to have a consistent linear increase of case-proportion across all genomic risk 

quintiles (Table 18). This may indicate that they add predictive value across the whole cohort, as 

opposed to only discriminating between those at the highest and lowest genetic risk. 

Almost 23% of the SNPs in the Hung-35 PRS and 21% of the Fritsche-19 SNPs had a different effect 

direction in the Manchester cohort compared to the published data. Four SNPs (21%) of the 

Fritsche-19 PRS, all in the correct effect direction, were statistically significant in my dataset 

(p<0.05). Twelve SNPs are shared between all three of the best performing PRSs, with Hung-35, 

Fritsche-19 and Jia containing only twenty, five and three unique SNPs respectively (Table 17) 

(Appendix 2).  

Considering its small size, the 6 SNP PRS published by Shi also performed relatively well. It had an 

independent AUC of 0.56, adding 0.009 to the base clinical model, increasing overall AUC from 

0.723 to 0.732 (p<0.0001). Five of the six (83%) SNPs in this PRS reached statistical significance 

(p<0.05) in my dataset. However, one of these significant SNPs, rs6495309, was in the incorrect 

effect direction in my results (published risk allele: ‘T’ OR: 1.3; In my data: ‘T’ OR: 0.69), indicating 

that C should be considered the risk allele. Other studies confirm that C is the risk allele for this 



123 
 

SNP [342,343]. It is unclear whether in the Shi study this is a typographical error, a methodological 

error, or whether they actually observed a higher frequency of T in the cases. Consequently, I 

retested this PRS, substituting in C as the risk allele, but maintaining the published allelic 

weighting. The updated PRS had an independent AUC of 0.569 (95% CI 0.536-0.601), 0.009 higher 

than the original Shi PRS. It added 0.012 of AUC to the base clinical model, increasing overall AUC 

from 0.723 to 0.735 (95% CI 0.707-0.762; p<0.0001), roughly comparable to Fritsche-19 and Hung-

35, despite only including approximately one-third and one-fifth of the total number of SNPs as 

those two PRSs respectively. 

The two PRSs with the largest number of SNPs, Graff and Hung-128, both displayed modest 

discrimination, with independent AUCs of 0.553 and 0.562 respectively. Each PRSs added 0.005 

and 0.007 AUC (p=0.002; p=0.0001) to the base clinical model respectively, increasing the 

combined AUC to from 0.723 to 0.728 and 0.73 (Figure 33). Almost 30% of the SNPs in Graff and 

35% of SNPs in Hung-128 had reverse effect directions in the Manchester cohort compared to the 

published data (Table 17) (Appendix 2). Of the functional PRSs, Dai performed least effectively, 

although considering it was developed in a Chinese population and this cohort is European (and it 

contained a considerable proportion of unique SNPs), it is notable that it still improved AUC above 

the base clinical model with statistical significance.



Table 17. Performance metrics for the nine PRS validations in the Manchester case-control cohort, as well as a combined PRS of most frequently included SNPs. 

 

First Author 
(year 

published) 
[paper 

reference] 

Number of 
SNPs in PRS 

(SNPs available 
in the 

Manchester 
dataset) 

Published raw 
AUC for PRS 

(95%CI) 

AUC in 
Manchester 

Cohort 
(95%CI) 

AUC Clinical 
Model + PRS 

(95% CI) 

Additional AUC 
over clinical 

model 
(p-value – 

clinical model 
vs. clinical 

model + PRS) 

Net 
Reclassification 

Index – 
categorical 
quartiles 
(p-value) 

% SNPs with 
correct 

direction of 
effect (n) 

Young (2009) 
[236] 

20 (20) 0.68 
0.5 

(0.467-0.533) 
0.723 

(0.695-0.751) 
0 

(0.88) 
-0.003 
(0.3) 

45 
(9) 

Dai (2019) 
[242] 

19 (19) Unknown 
0.552 

(0.519-0.585) 
0.726 

(0.698-0.754) 
0.003 
(0.02) 

-0.005 
(0.79) 

68.4 
(13) 

Shi (2019) 
[340] 

6 (6) Unknown 
0.56 

(0.528-0.593) 
0.732 

(0.704-0.76) 
0.009 

(<0.0001) 
0.056 
(0.02) 

83.3 
(5) 

Graff (2020) 
[243] 

109 (103) Unknown 
0.553 

(0.52-0.585) 
0.728 

(0.7-0.756) 
0.005 

(0.002) 
0.032 
(0.14) 

71.8 
(74) 

Jia (2020) 
[341] 

19 (19) 
0.591 

(0.576-0.606) 
0.588 

(0.556-0.62) 
0.738 

(0.71-0.766) 
0.015 

(<0.0001) 
0.11 

(0.0001) 
84.2 
(16) 

Fritsche (2020) 
[339] 

14 (14) 
0.529 

(0.503-0.558) 
0.562 

(0.529-0.594) 
0.731 

(0.703-0.759) 
0.008 

(<0.0001) 
0.04 

(0.08) 
78.6 
(11) 

19 (19) 
0.552 

(0.534-0.569) 
0.569 

(0.537-0.602) 
0.733 

(0.705-0.761) 
0.01 

(<0.0001) 
0.04 

(0.08) 
78.9 
(15) 

Hung (2021) 
[244] 

35 (35) 
 

Unknown 
0.575 

(0.542-0.607) 
0.734 

(0.706-0.762) 
0.011 

(<0.0001) 
0.07 

(0.006) 
77.1 
(27) 

128 (127) Unknown 
0.562 

(0.53-0.595) 
0.73 

(0.702-0.758) 
0.007 

(0.0001) 
0.05 

(0.04) 
65.5 
(83) 

Overlapping 
SNPs in >3 PRSs 

11 - 
0.57 

(0.538-0.602) 
0.73 

(0.702-0.758) 
0.007 

(<0.0001) 
0.05 

(0.02) 
- 



 

 

Figure 31. ROC curves for all PRSs validated, showing the range of AUC increases conferred by 
addition of a PRS (Young PRS not plotted as it does not add AUC). 
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Figure 32. Density plots for each of the PRS tools validated, stratified by case/control grouping. 
Mean score for overall cohort is normalised to 0. Dashed lines = mean scores for case or control 

subgroups. 

Table 18. Case proportion across the PRS quintiles in the case-control cohort. 

  

PRS 

Cases as % of PRS Quintile 
P value – 

Chi-
Square 

P value – 
Linear-by-

Linear 

1 – 
lowest 

PRS 
2 3 4 

5 – 
highest 

PRS 

Young 56 51 54 55 55 0.85 1 

Dai 46 52 57 56 61 0.02 0.001 

Shi 45 57 53 55 62 0.006 0.002 

Graff 45 54 58 56 59 0.02 0.004 

Jia 40 52 58 53 67 <0.0001 <0.0001 

Fritsche 
-14 46 51 57 53 63 0.003 0.0003 

-19 49 48 55 55 64 0.002 0.0001 

Hung 

-35 44 50 56 60 61 0.0006 <0.0001 

-128 47 50 54 58 61 0.02 0.001 



127 
 

 

Shi Graff 

Jia Fritsche-14 

Fritsche-19 Hung-35 
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Figure 33. ROC curves for all PRSs, displayed independently and added to base clinical model. 

  

Hung-128 Young 

Dai 
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5.3.2.4 Subgroup analysis  

I performed subgroup analyses using the Jia PRS as it had the best overall performance (Table 19). 

PRS inclusion resulted in superior improvement in AUC when compared to the base clinical model 

in the following subgroups: age below the median, women, former smokers, BMI above the 

median, NLST-eligible, and adenocarcinoma-only cases. In most instances, the AUC improvement 

derived from the PRS was associated with poorer discrimination in the base clinical model, 

indicating that PRS utility is strongly linked to the dynamics of existing risk prediction strategies. 

The only exception was in the BMI subgroups, each of which had the identical performing base 

clinical models, resulting in the selection with the higher independent PRS AUC (BMI above 

median) having the larger PRS-derived AUC improvement (0.019 vs. 0.016). 

The smallest PRS derived AUC improvement was observed in the NLST-ineligible subgroup 

(+0.003; p=0.05), which had the highest base clinical model performance (AUC 0.754); 

independent PRS AUC was 0.567. Whilst the independent PRS AUC was slightly lower in the ‘other 

histology’ subgroup (0.564), AUC improvement was larger (+0.007; p=0.007) due to a poorer 

performing base clinical model in that subgroup (0.75). These two subgroups had the highest 

AUCs when the base clinical model and PRS were combined (0.757).  

The largest PRS derived AUC improvements were observed in the age below median and 

adenocarcinoma-only subgroups, both with an AUC increase of +0.022 (p<0.0001) above the base 

clinical model. Of those two subgroups, the adenocarcinoma-only selection had the higher overall 

AUC when the base model and PRS were combined (0.739 vs. 0.709). The age below median 

subgroup had the lowest combined AUC of all the selections (0.709). 

  



130 
 

 

Table 19. Subgroup analyses for Jia PRS validation. 

Subgroup 
% of total 

cohort 
(n) 

AUC 

PRS 
(95% CI) 

Base Clinical 
Model 

(95% CI) 

Base Model 
+ PRS 

(95% CI) 

AUC added 
by PRS  

(p-value) 

Age 

<Median 
52.8 
(635) 

0.601  
(0.554-
0.648) 

0.687 
(0.643-
0.731) 

0.709 
(0.666-
0.752) 

0.022 
(<0.0001) 

>Median 
47.2 
(567) 

0.583 
(0.536-
0.631) 

0.71 
(0.67-0.751) 

0.731 
(0.691-
0.771) 

0.021 
(0.0003) 

Sex 

Female 
53.1 
(638) 

0.609 
(0.565-
0.652) 

0.717 
(0.677-
0.756) 

0.737 
(0.698-
0.755) 

0.02 
(<0.0001) 

Male 
47 

(564) 
0.567 

(0.52-0.614) 

0.726 
(0.685-
0.767) 

0.738 
(0.698-
0.778) 

0.012 
(0.001) 

Smoke 
Status 

Former 
53.7 
(646) 

0.594 
(0.55-0.639) 

0.703 
(0.663-
0.743) 

0.722 
(0.683-
0.761) 

0.019 
(<0.0001) 

Current 
46.3 
(556) 

0.577 
(0.53-0.625) 

0.738 
(0.697-
0.779) 

0.749 
(0.709-
0.789) 

0.011 
(0.0007) 

BMI 

<Median 
50.1 
(602) 

0.582 
(0.536-
0.629) 

0.71 
(0.669-
0.752) 

0.726 
(0.685-
0.767) 

0.016 
(0.0003) 

>Median 
49.9 
(600) 

0.592 
(0.546-
0.637) 

0.71 
(0.669-
0.752) 

0.729 
(0.688-
0.769) 

0.019 
(<0.0001) 

NLST 

Eligible 
76.1 
(915) 

0.595 
(0.558-
0.631) 

0.73 
(0.698-
0.763) 

0.746 
(0.714-
0.777) 

0.016 
(<0.0001) 

Ineligible 
23.9 
(287) 

0.567 
(0.501-
0.633) 

0.754 
(0.697-
0.811) 

0.757 
(0.701-
0.814) 

0.003 
(0.048) 

Case 
Histology 

Adeno + 
Controls 

79.6 
(957) 

0.602 
(0.566-
0.638) 

0.717 
(0.684-
0.749) 

0.739 
(0.707-0.77) 

0.022 
(<0.0001) 

Other + 
Controls 

66.1 
(795) 

0.564 
(0.521-
0.607) 

0.75 
(0.713-
0.788) 

0.757 
(0.72-0.794) 

0.007 
(0.007) 

 Underline = superior performance seen in that subgroup. 
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5.3.2.5 PRS Scores and other Clinical Variables in the Control Cohort 

Amongst the control cohort (for which additional clinical data were available), there was no 

significant association between any of the PRS scores and likelihood of being above the PLCOM2012 

or LLPV2 median, and no overall correlation between the RPM scores and any of the PRS scores. 

There was also no significant association between any PRS score and family history of lung cancer, 

previous COPD diagnosis, or LDCT detected CAC.  

There was an association between scan-detected emphysema and higher Hung-128 and Graff 

scores (Hung-128: p=0.045. Graff: p=0.02); 56.7% of the bottom quintile of Hung-128 scores had 

emphysema, compared to 69.1% of the top quintile (p=0.078). In Graff these figures were 59% 

and 66% respectively (p=0.12).  

Strikingly, in binary logistic regression analysis, previous cancer diagnosis was associated with 

higher Graff (p=0.006), Hung-35 (p=0.012) and Hung-128 (p=0.023) scores with statistical 

significance, and Shi (p=0.077), Fritsche-14 (p=0.09) and Fritsche-19 (p=0.08) scores with 

borderline statistical significance. In total, there were 70 participants with previous cancer 

diagnoses, including 40% who reported either previous breast cancer (n=14) or skin cancer (n=15). 

These and the remaining cancer types are presented in Figure 34. Distribution of participants by 

previous cancer diagnosis status across the PRS quintiles is presented in Table 20. Discrimination 

analysis with previous cancer diagnosis used as the outcome resulted in AUCs of: Hung-35: 0.6 

(0.529-0.67), Graff: 0.589 (0.517-0.661), Hung-128: 0.565 (0.491-0.639), Fritsche-14: 0.576 (0.5-

0.65), Fritsche-19: 0.574 (0.504-0.643) and Shi: 0.551 (0.481-0.621). 
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Figure 34. Reported previous cancer types in the 70 LHC pilot participants comprising the primary 
analysis dataset. 

Table 20. Distribution of participants with previous cancer diagnosis across PRS quintiles. 

PRS 
% (n) of PRS Quintile with Previous Cancer Diagnosis P-value 

(linear-by-
linear) 

1 - lowest 2 3 4 5 - highest 

Graff 
9.8 
(13) 

9.1 
(10) 

13.7 
(14) 

14.3 
(15) 

18 
(18) 

0.033 

Hung-35 
9.6 
(13) 

8.4 
(10) 

12.1 
(13) 

15.6 
(15) 

20.4 
(19) 

0.006 

Hung-128 
9.4 
(12) 

12.6 
(15) 

13.6 
(15) 

11 
(11) 

18.1 
(17) 

0.13 

Fritsche-
14 

10 
(13) 

9.3 
(11) 

13.7 
(14) 

13.5 
(15) 

19.1 
(17) 

0.03 

Fritsche-
19 

8.1 
(10) 

11.2 
(14) 

15.6 
(17) 

14 
(15) 

16.5 
(14) 

0.05 

Jia 
11 

(16) 
12.2 
(14) 

13.1 
(13) 

13.3 
(15) 

15.2 
(12) 

0.37 

Shi 
8.2 
(11) 

16.5 
(17) 

11.5 
(13) 

14.9 
(17) 

14 
(12) 

0.24 

Dai 
8.4 
(11) 

13.2 
(15) 

16.3 
(17) 

13.1 
(14) 

13.8 
(13) 

0.23 

Young 
15.2 
(16) 

11.1 
(13) 

18.2 
(20) 

10.1 
(11) 

9.2 
(10) 

0.2 
(inverse 

direction) 

 



133 
 

5.3.2.6 Combined PRS 

The SNP that appeared most frequently in the published PRSs was rs4236709 on chromosome 8; 

it was the only SNP to feature in five PRSs (Jia, Hung-35, Fritsche-14, Graff and Dai) (Appendix 2). 

In the Manchester dataset, the G effect allele had an allele frequency of 0.23, matching the MAF 

reported in three of the original studies. Whilst there was no statistically significant association 

for this SNP in this study (p=0.89), the raw OR was in the correct direction (A non-effect allele: 

0.98. 95%CI 0.81-1.19). However, when adjusted for covariates this reversed (A non-effect allele: 

1.01). The independent AUC, calculated using the mean of the reported natural logarithms of the 

ORs (lnORs) in the studies as the allelic weight, was 0.505 (0.477-0.533). 

Eleven SNPs featured in at least four of the PRSs (Table 21). When these were synthesised into a 

single PRS, it resulted in an independent AUC of 0.57 and a combined base-clinical model and PRS 

AUC of 0.73, similar to Hung-128 and Fritsche-14; it did not perform as well as Jia, Hung-35 or 

Fritsche-19 (Table 17). 

Table 21. Combined PRS, SNPs shared by at least four of the validated PRSs. 

SNP Effect Allele Effect Magnitude (lnOR) 

rs11780471 G 0.141138 

rs13080835 G 0.093074 

rs4236709 G 0.107861 

rs55781567 G 0.261372 

rs56113850 C 0.124476 

rs66759488 A 0.067721 

rs71658797 A 0.129398 

rs7705526 A 0.143531 

rs77468143 T 0.105544 

rs7953330 G 0.107096 

rs885518 G 0.122077 
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5.3.3 Novel SNPs in the Manchester Cohort  

5.3.3.1 Associated SNPs and Genes 

After running a GWAS style association analysis, the expected vs. observed P-values in the primary 

analysis dataset showed a clear divergence from the null hypothesis for lower P-values, indicating 

a higher frequency of more significant hits than would be expected by chance (Figure 35). There 

was no early-separation of expected and observed frequencies at lower P-values, indicating that 

population stratification was appropriately controlled for at earlier QC steps [344]. The peaks on 

the Manhattan plot confirmed that there was correlation of genetic variants with the outcome of 

interest at several loci. Whilst no SNP reached standard genome-wide significance, considering 

the small size of this study, the clearly defined peaks visible are highly indicative of a locus of 

interest (Figure 36).  

 

Figure 35. Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA) 
generated quantile-quantile (Q-Q) plot for Primary Analysis. 
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Figure 36. Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA) 
generated Manhattan plot of Primary Analysis. Dashed line = threshold for genome-wide 

significance.  

FUMA analysis resulted in the identification of 17 genomic risk loci, comprising of 206 candidate 

SNPs (complete list available in Appendix 3). Ten of the identified loci had multiple SNPs present, 

whilst seven were lone-SNPs (Table 22). In the Manhattan plot, there was a particularly 

pronounced peak at chromosome 7, with the lead SNP (rs17389497) reaching a P-value of 

1.0048e-07 (Figure 36).  

Seven of the seventeen lead SNPs were located on intronic regions of genes, all these genes are 

protein coding. Of the ten loci with more than a single significant SNP, five were mapped to 

specific genes. The two mapped genes containing SNPs at the highest significance level were 

MAGI2 on chromosome 7 (lead SNP: rs17389497) and DAPK1 on chromosome 9 (lead SNP: 

rs4878090). Plots of all the SNPs significantly associated with lung cancer in the Manchester 

cohort in these genomic regions are presented in Figure 37 and Figure 38. SNPs from these genes 

are not included in any of the published PRSs validated in section 5.3.2. 
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Figure 37. Regional plot for Manchester GWAS SNPs in the MAGI2 gene. Displays the genomic 
environment of the SNPs in chromosome 7 that were significantly associated with lung cancer in 

my association analysis. Purple dot = top lead SNP. Red/orange/yellow dots = independent 
significant SNPs, linkage disequilibrium with top lead SNP. Red line = mapped gene. 

 

 

Figure 38. Regional plot for Manchester GWAS SNPs in the DAPK1 gene. Displays the genomic 
environment of the SNPs in chromosome 9 that were significantly associated with lung cancer in 

my association analysis. Purple dot = top lead SNP. Red/orange/yellow dots = independent 
significant SNPs, linkage disequilibrium with top lead SNP. Red line = mapped gene.



Table 22. SNPs displaying high levels of significance from GWAS analysis of the primary analysis dataset. Shaded = lone SNP at that locus. 

Chromosome Position P-value 
Locus 
Start 

Locus End 

Unique 
Candidate 

SNPs in 
Locus 

Independe
nt 

Significant 
SNPs in 
Locus 

Lead SNP 
ID 

Lead SNP 
rsID 

Mapped 
Genes 

Gene Type 
[345] 

Nearest 
Gene 

(Distance) 

SNP 
Position 

7 78466130 1.00E-07 78464211 78532462 53 1 
7:78466130

:C:G 
rs17389497 MAGI2 

Protein 
Coding 

- Intronic 

4 30168938 3.46E-06 30168938 30233080 51 1 
4:30168938

:G:T 
rs76640173 - - 

RP11-
174E22.2  
(158999) 

Intergenic 

9 90143928 7.83E-06 90139505 90197840 40 1 
9:90143928

:A:G 
rs4878090 DAPK1 

Protein 
Coding 

- Intronic 

1 37521740 6.38E-06 37521551 37534673 19 1 
1:37521740

:A:G 
rs6676142 - - 

GRIK3 
(22009) 

Intergenic 

8 21502545 6.08E-06 21500728 21513913 12 1 
8:21502545

:G:T 
rs12549783 - - 

GFRA2 
(45369) 

Intergenic 

15 101658292 8.02E-06 101658292 101667226 10 1 
15:1016582

92:C:T 
rs12898233 - - 

RP11-
424I19.1 

(540) 

Downstrea
m 

9 106313968 5.94E-06 106275350 106429018 6 1 
9:10631396

8:A:G 
rs79091275 - - 

RP11-
436F21.1 
(121793) 

Intergenic 

11 81372090 5.96E-06 81264068 81372090 3 1 
11:8137209

0:C:T 
rs80240928 - - 

RP11-
664H7.2 
(98897) 

Intergenic 

10 21078477 7.50E-06 21056587 21078477 3 1 
10:2107847

7:A:G 
rs12244585 NEBL 

Protein 
Coding 

- Intronic 

6 124413195 7.04E-06 124413195 124438622 2 1 
6:12441319

5:A:G 
rs17629528 NKAIN2 

Protein 
Coding 

- Intronic 

19 35610725 8.71E-08 35610725 35610725 1 1 
19:3561072

5:C:G 
rs4806091 LGI4 

Protein 
Coding 

- Intronic 

9 133023677 1.91E-06 133023677 133023677 1 1 
9:13302367

7:A:G 
rs79366318 - - 

HMCN2 
(23204) 

Intergenic 

1 14233836 2.54E-06 14233836 14233836 1 1 
1:14233836

:A:T 
rs14471633

2 
- - 

PRDM2 
(82261) 

Intergenic 
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6 131852291 3.52E-06 131852291 131852291 1 1 
6:13185229

1:C:T 
rs12204890 - - 

ARG1 
(41992) 

Intergenic 

10 5551233 6.99E-06 5551233 5551233 1 1 
10:5551233

:G:T 
rs35859955 CALM5 

Protein 
Coding 

- Intronic 

1 8985036 8.00E-06 8985036 8985036 1 1 
1:8985036:

C:T 
rs10864370 - - 

CALML3-
AS1  

(4973) 
Intergenic 

12 31469921 8.91E-06 31469921 31469921 1 1 
12:3146992

1:A:G 
rs67228087 FAM60A 

Protein 
Coding 

- Intronic 



 

5.3.3.2 Polygenic Risk Score Development 

I generated polygenic risk scores for all participants in the Manchester case-control cohort using 

the 52 SNPs in the top p-value bracket (p<0.00005) of the PRSice output (Table 23). The PRS at 

this P-value threshold had a model fit of 0.47 (Figure 39). When all individuals in the cohort were 

scored and discrimination analysis performed, this PRS had an independent AUC of 0.843 (95%CI 

0.822-0.865) and 0.927 (95%CI 0.912-0.941) when combined with the base clinical model (Figure 

40). As the PRS was applied in the same dataset it was developed in, these AUC results are subject 

to a high degree of inflation [346]. It should be noted that lead SNP designation in particular loci 

differ between these results and those seen in the FUMA analysis (Table 22); this is likely a result 

of differing SNP pruning methodologies.  
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Table 23. Fifty-two SNP PRS developed in the Manchester cohort. 

rsID Chr 
Allele 

A 
Allele 

B 
MAF 

OR  
B vs. A 

OR CI 
lower 

OR CI 
higher 

P Beta 

rs9791886 7 G A 0.33026 0.672483 0.566915 0.797709 
1.20E-

07 
-0.55148 

rs79366318 9 G A 0.04277 2.46274 1.57469 3.8516 
1.91E-

06 
1.0697 

rs76640173 4 G T 0.020136 0.348977 0.18737 0.64997 
3.46E-

06 
-1.70726 

rs12204890 6 T C 0.055656 0.504759 0.352791 0.72219 
3.52E-

06 
-0.96511 

rs79091275 9 A G 0.097866 1.51502 1.14704 2.00105 
5.94E-

06 
0.720836 

rs80240928 11 C T 0.035885 0.427131 0.271795 0.671244 
5.96E-

06 
-1.17317 

rs12549783 8 G T 0.478879 1.37607 1.17137 1.61654 
6.08E-

06 
0.438173 

rs6676142 1 A G 0.471167 1.38642 1.18004 1.62889 
6.38E-

06 
0.412207 

rs35859955 10 T G 0.205618 0.683634 0.560565 0.833721 
6.99E-

06 
-0.50859 

rs17629528 6 G A 0.034446 0.401602 0.252119 0.639716 
7.04E-

06 
-1.16411 

rs12244585 10 G A 0.155607 0.652192 0.522534 0.814022 
7.50E-

06 
-0.56167 

rs4878090 9 A G 0.140939 0.662386 0.525861 0.834356 
7.83E-

06 
-0.60434 

rs10864370 1 C T 0.258812 0.700706 0.583469 0.841501 
8.00E-

06 
-0.46962 

rs12898233 15 C T 0.048388 1.89751 1.27185 2.83096 
8.02E-

06 
1.03855 

rs67228087 12 G A 0.058747 0.518916 0.366351 0.735018 
8.91E-

06 
-0.8586 

rs58482754 6 T G 0.180407 1.41761 1.14628 1.75318 
1.29E-

05 
0.563692 

rs11766078 7 T C 0.101924 0.67888 0.520664 0.885173 
1.40E-

05 
-0.68143 

rs76919286 5 T C 0.040131 0.451113 0.29497 0.689912 
1.41E-

05 
-0.98126 

rs77599664 5 G A 0.036255 0.472425 0.303151 0.736217 
1.53E-

05 
-1.21989 

rs10990760 9 A C 0.167878 1.43524 1.15302 1.78655 
1.61E-

05 
0.522484 

rs61824298 1 A G 0.053963 0.554755 0.386945 0.79534 
1.68E-

05 
-1.00558 

rs2869032 15 C T 0.199779 1.33933 1.09622 1.63635 
1.70E-

05 
0.497026 

rs9419171 10 T C 0.298442 1.50669 1.26417 1.79574 
1.87E-

05 
0.432071 

rs117161983 14 G A 0.026222 0.381141 0.222783 0.652064 
2.19E-

05 
-1.30755 

rs11120170 1 G A 0.406878 1.26872 1.07684 1.49478 
2.24E-

05 
0.455825 

rs35933466 4 G A 0.056602 0.592662 0.417492 0.841328 
2.36E-

05 
-0.88557 

rs11165236 1 G A 0.222006 1.42614 1.17207 1.73527 
2.43E-

05 
0.489492 
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rs117355684 12 A G 0.03879 0.547217 0.358651 0.834924 
2.71E-

05 
-1.04518 

rs12232670 18 A G 0.261702 1.39282 1.15775 1.67561 
2.79E-

05 
0.440224 

rs7638857 3 A C 0.254167 0.703026 0.584773 0.845193 
2.84E-

05 
-0.44752 

rs11599670 10 A G 0.057325 2.15418 1.47733 3.14114 
2.90E-

05 
0.836599 

rs34498099 7 G T 0.020364 0.326291 0.17431 0.610785 
2.99E-

05 
-1.43081 

rs55716073 17 G A 0.354226 0.764132 0.646163 0.90364 
3.18E-

05 
-0.44852 

rs173780 5 G A 0.150087 0.656735 0.524459 0.822373 
3.42E-

05 
-0.56896 

rs72712347 1 C A 0.041044 2.01287 1.29908 3.11886 
3.44E-

05 
1.06042 

rs62501800 8 C T 0.094506 1.78971 1.34094 2.38865 
3.51E-

05 
0.647157 

rs62246869 3 T C 0.072782 1.76695 1.27605 2.44671 
3.60E-

05 
0.743982 

rs2621166 18 T C 0.31425 1.47733 1.24001 1.76007 
3.67E-

05 
0.407044 

rs6940739 6 A G 0.175384 1.52187 1.22606 1.88907 
3.69E-

05 
0.50219 

rs117542875 16 G T 0.022752 0.435589 0.247942 0.765252 
3.76E-

05 
-1.43804 

rs17601891 1 A G 0.036144 2.35798 1.45743 3.81496 
3.78E-

05 
1.06945 

rs80319952 3 C T 0.084289 0.610578 0.456632 0.816425 
3.88E-

05 
-0.70922 

rs8046839 16 C T 0.196946 0.752877 0.615567 0.920815 
3.90E-

05 
-0.5282 

rs118124361 11 G A 0.109925 1.57807 1.21043 2.05736 
3.96E-

05 
0.637515 

rs62076880 18 T C 0.04385 0.469631 0.313262 0.704055 
4.14E-

05 
-0.9643 

rs75794645 13 A G 0.020776 0.331831 0.178761 0.615975 
4.22E-

05 
-1.44574 

rs945879 1 C T 0.185552 0.684317 0.55673 0.841144 
4.47E-

05 
-0.47149 

rs11678507 2 C T 0.462036 0.705195 0.600088 0.828711 
4.50E-

05 
-0.37127 

rs111748305 5 A C 0.044475 0.54598 0.367573 0.810979 
4.59E-

05 
-0.92324 

rs2477469 13 G A 0.301962 0.703396 0.58939 0.839454 
4.67E-

05 
-0.40971 

rs422331 6 C T 0.400596 1.36755 1.15982 1.61249 
4.91E-

05 
0.371941 

rs74738049 12 A C 0.060951 0.549926 0.391295 0.772867 
4.99E-

05 
-0.77818 
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Figure 39. Chart showing the model fit of various PRSice-2 generated PRSs, with increasingly 
lenient P-value thresholds (and more SNPs included). 

 

 

Figure 40. ROC curves for PRS52 in the Manchester case-control cohort. 
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5.3.4 Secondary Analysis 

The secondary analysis cohort had a larger control sample set than the primary analysis cohort; it 

retained a significant number of control samples that had aberrant PCA output (see section 5.2.3). 

These were excluded from the primary analysis to ensure robustness; here, I reran the analysis 

with these samples included to test whether it produces different results. The total dataset 

consisted of 639 control samples and 652 case samples (Figure 20). The demographics of the 91 

controls that were only included in the secondary analysis dataset were broadly similar to those 

of the controls included in both the primary and secondary analysis datasets, except for mean age 

and median PLCOM2012 scores which were significantly higher in the secondary-only cohort (mean 

age: 65.6 vs. 64.5; p=0.05. median PLCOM2012: 4.2 vs. 3.4; p=0.02) (Table 24). The case cohort was 

the same in both primary and secondary analyses. When comparing case and control 

demographics in the secondary analysis dataset, most comparisons remained the same as in the 

primary analysis. The difference in median pack years for non-imputed values became statistically 

significant (45 vs. 44; p=0.04), although the actual difference was minor (Table 25).  

Table 24. Comparison of secondary analysis-only controls and primary & secondary analysis 
controls. 

 

 
Controls in Both 

Primary and 
Secondary Analysis 

Controls in 
Secondary 

Analysis Only  
P-value 

Total 548 91 - 

% Female (n) 50.5 (277) 48.4 (44) 0.7 

Mean Age  
±SD 

64.5 ±5.3 65.6 ±4.9 0.05 

% Current Smoker (n) 51 (280) 43.4 (40) 0.21 

Median Pack Years  
±IQR 

45 ± 21 45 ± 28 0.6 

Educational 
Attainment 

% Less than GCSE/O 
Level (n) 

66.6 (365) 71.4 (65) 

0.55 

% GCSE/O Level (n) 18.1 (99) 13.2 (12) 

% A Level (n) 4.6 (25) 5.5 (5) 

% Some 
University/College (n) 

7.7 (42) 4.4 (4) 

% University Degree 
(n) 

2 (11) 3.3 (3) 

% Postgrad (n) 1.1 (6) 2.2 (2) 

Mean BMI  
±SD 

28.9 ±5.2 28.2 ±5 0.32 

Median FEV1/FVC Ratio ±IQR 70.2 ±13 70.2 ±12 0.65 

% COPD (n) 30.7 (168) 35.2 (32) 0.39 

Median PLCO Score  
±IQR 

3.4 ±3.4 4.2 ±4.7 0.02 
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Table 25. Comparison of case and control demographics in secondary analysis. 

 

 

The AUC for the base clinical model was 0.716 (0.6881-0.7433), slightly lower than in the primary 

analysis. All raw AUCs associated with the functional PRS validations were either the same or 

slightly lower than those seen in the primary analysis. There were no significant differences in p-

value for additional AUC over the clinical model between the primary and secondary analysis 

(Table 26). Due to the lack of significant differences, I did not perform detailed subgroup analyses 

for the secondary analysis and assumed that the primary analysis cohort was as representative of 

the wider population as the secondary. 

For PRS generation using PRSice, the equivalent p-value threshold which resulted in a 52 SNP PRS 

in the primary analysis resulted in a 57 SNP PRS in the secondary analysis. This PRS had an AUC of 

0.835 (0.814-0.857) and 0.91 (0.895-0.925) when combined with the base clinical model, both 

slightly lower than the equivalent metrics from the primary analysis.  

  

 Controls Cases P-value 

Total (%) 639 (49.5) 652 (50.5) - 

% Female (n) 50.2 (321) 55.2 (360) 0.07 

Median Age ± IQR 65 ±9 69 ±9 <0.001 

% Current Smokers (n) 50.1 (320) 41.9 (273) 0.004 

Median Pack 
Years ± IQR 

Direct 45 ±23 44 ±25 0.04 

Imputed 45 ±23 40 ±15 <0.001 

Median BMI ± IQR 28.3 ±6.8 26 ±6.7 <0.001 

Median 
FEV1/FVC Ratio 

± IQR 

Direct 70.2 ± 13 67 ± 16 <0.001 

Imputed 70.2 ±12.5 65.5 ±13 <0.001 

% NLST eligible (n) 75.6 (483) 76.3 (498) 0.74 
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Table 26. Comparison of PRS performance in primary and secondary analyses. 

PRS 
Primary 

AUC 
(95%CI) 

Secondary 
AUC 

(95%CI) 

Primary 
AUC Clinical 

Model + 
PRS 

(95% CI) 

Secondary 
AUC Clinical 
Model + PRS 

(95% CI) 

Primary 
Additional 
AUC over 

clinical 
model 

(p-value – 
clinical 

model vs. 
clinical 

model + 
PRS) 

Secondary 
Additional 
AUC over 

clinical 
model 

(p-value – 
clinical 

model vs. 
clinical 

model + 
PRS) 

Dai 

0.552 
(0.519-
0.585) 

0.55 
(0.519-
0.581) 

0.726 
(0.698-
0.754) 

0.72 
(0.692-
0.747) 

0.003 
(0.02) 

0.004 
(0.01) 

Shi 

0.56 
(0.528-
0.593) 

0.56 
(0.524-
0.587) 

0.732 
(0.704-0.76) 

0.724 
(0.697-
0.751) 

0.009 
(<0.0001) 

0.008 
(<0.0001) 

Graff 
0.553 

(0.52-0.585) 

0.55 
(0.519-
0.748) 

0.728 
(0.7-0.756) 

0.721 
(0.694-
0.748) 

0.005 
(0.002) 

0.005 
(0.002) 

Jia 
0.588 

(0.556-0.62) 

0.586 
(0.555-
0.617) 

0.738 
(0.71-0.766) 

0.731 
(0.704-
0.758) 

0.015 
(<0.0001) 

0.015 
(<0.0001) 

Fritsche-14 

0.562 
(0.529-
0.594) 

0.562 
(0.531-
0.593) 

0.731 
(0.703-
0.759) 

0.725 
(0.698-
0.752) 

0.008 
(<0.0001) 

0.009 
(<0.0001) 

Fritsche-19 
0.569 

(0.537-
0.602) 

0.569 
(0.538-0.6) 

0.733 
(0.705-
0.761) 

0.726 
(0.699-
0.754) 

0.01 
(<0.0001) 

0.01 
(<0.0001) 

Hung-35 

0.575 
(0.542-
0.607) 

0.573 
(0.542-
0.604) 

0.734 
(0.706-
0.762) 

0.727 
(0.7-0.754) 

0.011 
(<0.0001) 

0.01 
(<0.0001) 

Hung-128 
0.562 

(0.53-0.595) 

0.557 
(0.526-
0.589) 

0.73 
(0.702-
0.758) 

0.723 
(0.696-0.75) 

0.007 
(0.0001) 

0.007 
(0.0003) 
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5.4 Discussion 

5.4.1 Validation of Published PRSs 

In this chapter, I tested the hypothesis that assessing the genetic profile of ever-smokers 

improves the prediction of lung cancer risk. To do this, I validated several previously published 

polygenic risk score tools for lung cancer prediction in a Manchester based case-control cohort. 

Most of these tools were developed and validated in large RCT or biobank-based datasets; 

consequently, validation of their efficacy in a high-risk cohort, representative of a screening 

population, is an important step in assessing the potential benefit of using genetic risk factors in 

real-world lung cancer screening selection.  

My results showed that eight of the nine PRSs tested were predictive of lung cancer risk in the 

Manchester cohort. When applied in conjunction with a base model comprised of several non-

genetic risk factors, discrimination was significantly improved by the addition of each of these 

eight PRSs, albeit by varying magnitudes (AUC added to base clinical model ranged from 0.003 to 

0.015 depending on the PRS). The only PRS that did not improve discrimination was the Young 

PRS, which was developed over a decade ago, demonstrating the importance of building PRS tools 

based on large GWAS datasets rather than self-selected candidate genes. Of the 251 unique SNPs 

tested across all the PRSs, 37 (15%) reached nominal statistical significance (p<0.05) and 170 

(68%) were in the correct effect direction in the Manchester dataset. Fundamentally, these results 

demonstrate that the inclusion of robust measures of genetic risk could improve lung cancer risk 

prediction. 

The best performing PRS (Jia) had an independent AUC of 0.59 and added approximately 0.015 

AUC to the base clinical model. The Fritsche-19 and Hung-35 PRSs also added more than 0.01 AUC 

to the base clinical model. None of these PRSs had been previously validated in a cohort including 

individuals recruited from an actual lung cancer screening programme. Whilst the AUCs of these 

PRSs may appear relatively modest, the benefits of slight improvement in model discrimination 

and risk prediction may aggregate when utilised in risk stratification of a large population in the 

context of a screening programme [347]. For example, studies have demonstrated that even with 

limited AUC improvement, the Jia and Hung PRSs could be used to effectively modulate the 

screening commencement age for individual smokers in a population [244,348]. By highlighting 

segments of the screening cohort at even higher disease risk due to their genetic profile, PRSs 

could also be used to target the provision of chemoprevention drugs, assist in the triage of 

indeterminate screening results, or regulate the frequency of screening rounds [349].  

Alternative approaches to AUC in assessing the clinical utility of PRSs have been suggested; net 

reclassification index (NRI) is one example [312]. Using this metric, adding the Jia PRS to the base 
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clinical model would have resulted in cases being 11% more likely to move up a risk quartile than 

down. This was notably higher than the NRI observed in other PRSs tested, even if the magnitude 

of difference in AUC did not appear as stark. This finding is consistent with a previous study that 

demonstrated the Graff PRS’s ability to successfully reclassify non-cases into lower risk categories, 

even though AUC appeared modest [243]. This demonstrates how PRSs could be used to direct 

screening away from those who may not benefit, limiting exposure to harms. It should be noted 

that there has been significant criticism published regarding the statistical robustness of NRI, and 

results should be interpreted with caution [350,351]. However, when considered in combination 

with AUC and observations of the proportion of case individuals in each of the PRS quintiles, it is 

clear that these PRSs have potential clinical utility. 

In the Manchester cohort, the Jia PRS displayed superior discrimination among women, former 

smokers, and adenocarcinoma-only subgroups. Many SNPs are associated with specific lung 

cancer histological subtypes, although several significant SNPs are shared [12,352]. PRS 

construction must ensure that there is a sufficiently diverse array of SNPs on the panel to predict 

several types of lung cancer. Evidence for sex-stratification in PRS performance in several disease 

areas has been published previously [353,354]. There is evidence of increased genetic lung cancer 

risk in women compared to men [93,94,355]; further research is required to assess this 

discrepancy and ensure PRS tools perform adequately in all segments of the screening cohort.  

I found a significant association between at least four of the PRS tools and previous cancer 

diagnosis. Sample size was not large enough to allow for stratification by individual cancer type. 

The Graff PRS, which had the second largest cross-cancer association after Hung-35 in our study, 

has previously been shown to demonstrate pleiotropy, having the highest cross-cancer 

association out of all of the cancer PRSs tested in two large biobank cohorts [338]. The inclusions 

of SNPs from TERT-CLPTM1L and HLA in the PRS is likely to have contributed to this association, as 

both are well established general cancer susceptibility loci [356–358]. To my knowledge, the 

Hung-35 PRS (which had the most significant association with previous cancer diagnosis in our 

study) has not had its cross-cancer predictiveness tested previously. SNP pleiotropy may be useful 

in developing a cross-cancer PRS for risk prediction [338]. If such a PRS were employed in 

individuals attending lung cancer screening, this may facilitate the integration of additional 

diagnostic and preventative services into the screening programme, increasing benefit to 

participants and overall programme cost effectiveness. On the other hand, it may also lead to the 

selection of screening participants at higher risk of other cancers which may reduce life 

expectancy and benefit to be gained from lung cancer screening. It should be noted that both 

PLCOM2012 and LLPV2 already include previous cancer diagnosis as a factor for lung cancer risk 

prediction. Several theories have been advanced to explain the increased risk of lung cancer after 
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another cancer diagnosis (see section 1.5.6). Further research is required to examine the 

proportion of predictiveness conferred by a PRS that is already being provided by previous cancer 

diagnosis and other clinical factors. 

It is important to note that a statistically significant improvement in risk prediction does not 

always indicate a clinically significant improvement. It may not be cost effective to include an 

auxiliary biomarker to risk prediction tools (particularly one as costly as genetic testing) when the 

additional predictiveness it confers is marginal compared to traditional risk factors such as age 

and smoking history. Previous studies have demonstrated that RPMs for lung cancer perform 

extremely successfully without the inclusion of genetic factors [225,243]. Unless a very specific 

target population which will particularly benefit from SNP testing is identified, an additional 

tranche of SNPs are discovered significantly improving PRS predictiveness, or genetic testing 

reduces in price considerably, it may not be cost effective to pursue PRS integration into RPMs. 

Formal cost effectiveness analysis is required once PRS tools are fully developed, validated and 

optimised. 

A study published in February 2022 claimed to be the most extensive and fully adjusted 

prospective study of lung cancer incidence to date [27]. It developed a 33 SNP PRS for lung cancer 

and applied it prospectively in a UK Biobank cohort of close to 346,000 participants, followed-up 

for an average of seven years resulting in 1687 cases of incident lung cancer. It reported that high 

genetic risk and smoking status were both independently and robustly associated with lung 

cancer risk. In never-smokers, there was no difference in lung cancer risk based on genetic risk 

factors. This is unlike other studies which have shown risk stratification in never-smokers driven 

by genetics [242,243], although it should be noted that the prospective nature of this study 

limited its statistical power and the authors posit that an increase in incident lung cancer cases 

might result in a signal emerging in never-smokers [27]. Unfortunately, the study was published 

too late for the PRS to be validated here; however, 26 of the 33 SNPs in the PRS were present in 

PRSs I validated, so it can be assumed that this PRS would perform similarly to those in this study.  

5.4.2 Novel PRS Development 

In addition to validating previously published lung cancer PRSs, I developed a novel 52 SNP PRS in 

the Manchester dataset. Whilst internal cross-validation or external validation of the PRS was not 

performed (significantly limiting the robustness of any conclusions drawn), two particularly 

promising genomic loci had a high level of significance after association analysis.  

One cluster of associated SNPs was located on the MAGI2 gene [359]. This gene is primarily 

expressed in the brain. Its protein product is involved in anchoring, and providing a scaffolding 

for, cellular signalling proteins and maintaining the structure of neuronal synaptic junctions. It is 
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implicated in several neurodegenerative diseases [360]. The gene is also expressed at lower levels 

in non-brain tissues. Previous studies have demonstrated that MAGI2 regulates the activity of 

PTEN, an important tumour suppressor [361]. There is evidence of MAGI2 mutations in various 

cancer types [362], and it has been suggested that MAGI2 itself might act as an independent 

tumour suppressor [360]. Some studies have proposed MAGI2 as a biomarker that could be used 

to predict prostate cancer aggressiveness and recurrence, informing treatment and surveillance 

decisions [363–366].  

In recent years, studies have reported an association between the MAGI2-AS3 long non-coding 

RNA (lncRNA) and lung cancer [367]. Under-expression of this molecule has been observed in 

NSCLC tissues and cell lines [368], and is associated with poor survival in patients [369]. 

Upregulation of MAGI2-AS3 decreases NSCLC cell viability and invasiveness. The molecule may 

have potential as a prognostic biomarker or as a target for cancer therapy [367]. Interestingly, a 

SNP near MAGI2 (rs2714700; risk allele=C) has been implicated in nicotine dependence in the UK 

Biobank cohort; the SNP was independent of other genetic loci implicated in smoking behaviour 

[370], such as the well characterised CHRNA5 gene which is strongly linked to lung cancer risk (see 

section 1.5.8.2). In our dataset, this SNP was significantly associated with lung cancer (risk allele: 

C. adjOR: 1.2. p=0.04), even after adjustment for smoking status. However, there was no significant 

linkage disequilibrium between this SNP and the lead MAGI2 SNPs from the FUMA or PRSice 

analyses. MAGI2 has not been previously implicated in lung cancer risk prediction, and none of 

the PRSs tested in the validation portion of this study included SNPs from this gene. If further 

validation studies with larger cohorts and additional smoking history-based adjustments confirm 

this association, it may be an excellent candidate for inclusion in future lung cancer PRS tools. 

The second locus of interest was in the DAPK1 gene on chromosome 9. This gene is involved in 

the modulation of cell apoptosis and autophagy, and functions as a tumour suppressor. DAPK1 

under-expression has been reported in several cancer types [371–374], and may be an 

independent prognostic biomarker in clear cell renal cancer [372]. One study showed that 

upregulating DAPK1 resulted in increased natural killer cell activity and reduced tumour immune 

evasion in gastric cancer cells [371]. There is some evidence linking DAPK1 function and lung 

cancer. For example, one study of 135 patients with stage I NSCLC found that 44% had 

hypermethylation of the gene (repressing expression); those with the altered gene expression had 

significantly poorer survival (p=0.007). This was the only independent predictor of disease-specific 

survival among all parameters tested [375].  

To my knowledge, there are no published studies linking SNPs on DAPK1 with lung cancer risk. 

None of the chromosome 9 SNPs included in the PRSs validated in this study were located in or 

near DAPK1, nor were any of them in linkage disequilibrium with the lead DAPK1 SNP identified 
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by FUMA. If validated in external datasets, this locus may offer additional SNPs for inclusion in 

PRSs for lung cancer. 

5.4.3 Strengths and Limitations 

A significant limitation of this study is that clinical and demographic data for the case cohort were 

too limited to facilitate the calculation of PLCOM2012 risk scores. Lung cancer screening 

implementation in England relies on individual RPM scores and risk thresholds for screening 

selection (see Chapter Four). Had PLCOM2012 scores been available for the whole cohort, it would 

have been possible evaluate whether the PRSs validated would have augmented risk prediction 

over and above the actual methods being used for selection in screening programmes. Some of 

the variables included in RPMs such as family history and tobacco smoke exposure might already 

be accounting for a portion of the risk impact conferred by genetic variants. Considering genetic 

risk factors in combination with demographic and lifestyle risk factors and testing them in actual 

screening populations (such as has been done with the BOADICEA and Tyrer-Cuzick breast cancer 

RPMs [376,377]) ensures that personal risk is not overestimated, and that the genetic component 

of the RPM has independent utility in a screening selection context. The demographic variables 

that were available facilitated the construction of a base clinical model that was used as a 

substitute for an RPM in our analysis. Age was the main contributing factor to discrimination, 

which would be expected from RPM based risk prediction. However, the AUC derived from this 

model was lower than those of RPMs observed in comparative studies [225]; better performing 

non-genetic RPMs may reduce the added benefit of including genetic risk factors [243]. 

Additional demographic variables would also have allowed for more granular adjustment of SNP 

effect sizes and significance in GWAS analysis and novel PRS development. This would improve 

our understanding of the contribution the SNPs are making to risk prediction compared to other 

clinical variables which may interact with the genetic factors. Smoking-based factors such as pack 

years, years quit, and age started, for which data were not complete in the case cohort are 

particularly important to adjust for, as SNPs associated with lung cancer risk often mediate their 

impact by influencing smoking behaviour [378].  

The case cohort in this study was derived from a biobank rather than a screening programme 

setting, and the cancers were likely to have been diagnosed in clinic rather than through 

screening. Whilst the 80% early-stage distribution of the cancers in the case cohort are a fair 

representation of the expected stage distribution in UK-based screening programmes [204], there 

may be differences in the clinical and genetic characteristics of these cases compared to screen-

detected cases. It should be noted that as the cases in this study were sourced from the MCRC 

Biobank, we would not expect to see the ‘healthy volunteer bias’ often reported as a limitation in 

studies which validate PRSs in the UK Biobank cohort [27]. Although we do not have individual-
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level deprivation data for the cases, the MCRC Biobank collects samples from patients located in 

the same socio-economically disadvantaged areas of Manchester from which the control cohort 

was sourced. This, and the generally well-matched nature of the case and control cohorts, are 

significant strengths of this study. Going forward, studies (ideally prospective) in which both the 

case and control cohorts are derived from the same screening programme, with uniform 

demographic data available, will provide more robust evidence as to the impact of PRS inclusion 

on risk prediction.  

This study was restricted to individuals of European descent, a common feature of many PRS 

studies for lung cancer. The Dai PRS, developed and validated in Chinese datasets, is the only 

published and validated lung cancer PRS tool tailored for use in a non-European population. In the 

Manchester cohort, this PRS performed least successfully; it can be assumed that applying a 

European-developed PRS in a Chinese population would have similar results, as many SNPs 

associated with lung cancer risk are specific to a particular ethnicity. This highlights the 

importance of the development and validation of PRS tools in a wide variety of populations, 

ensuring that the use of PRS in screening selection does not exacerbate health inequalities, with 

White-European patients benefiting from disease risk prediction of a superior accuracy than 

participants of other ethnicities [379,380]. The lack of non-European GWAS and Biobank datasets 

is a significant challenge in the development of PRSs for diverse populations [349,381].  

Despite these limitations, this study contributes important evidence supporting the hypothesis 

that lung cancer risk prediction in ever-smokers can be improved by considering genetic risk 

factors. I demonstrated that PRS tools predominantly developed in RCT or biobank populations 

functioned successfully in a case-control cohort highly representative of a target population for 

lung cancer screening. Consequently, there is potential for a PRS to be integrated into RPMs used 

for lung cancer risk prediction, improving model discrimination and thereby refining screening 

selection in community-based screening programmes. The exceptionally high-risk nature of the 

control cohort in this study adds robustness to this conclusion; this cohort would not be expected 

to be protected from lung cancer due to limited exposure to other risk factors. Similarly, novel 

SNPs that emerged in this cohort, whilst requiring external validation, are derived from a cohort 

highly representative of Manchester-based screening attendees and could potentially be included 

in future PRS development. 

A unique added benefit of using genetic factors in lung cancer risk prediction is that they are often 

independent of other risk factor-associated comorbidities such as COPD and CVD. The factors that 

contribute most to risk prediction in RPMs are age and smoking history. A limitation of using such 

an approach for screening selection is that the criteria favour older and more comorbid attendees 

for screening, who are at the greatest risk of lung cancer but may have limited benefit to be 
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gained from screening. This phenomenon was observed in the Manchester LHC pilot, with 

multiple measures of respiratory and cardiovascular comorbidity associated with calculated lung 

cancer risk and screen-detected lung cancer (see section 3.3.5). This chapter adds additional 

evidence to this observation, with the case cohort being significantly older and having lower 

FEV1/FEV ratio (indicative of COPD) than the control cohort. One approach to mitigating this 

limitation is to employ benefit-based selection, such as LYFS-CT (see Chapter Four), which 

considers life expectancy when determining screening eligibility. An alternative approach may be 

to integrate additional non-comorbidity linked factors, such as polygenic risk, which stay constant 

through an individual’s life and are not necessarily linked to increased risk of other diseases [382]. 

These approaches are not mutually exclusive, as LYFS-CT relies on lung cancer risk prediction in its 

determination of the estimated benefit an individual will receive from screening [228]; improved 

risk prediction therefore enhances both benefit-based and risk-based screening selection. 

5.4.4 Implementation and Next Steps 

With further research and validation, it is not inconceivable that a PRS for lung cancer could be 

deemed viable for inclusion in pre-screening risk calculation. At that point, practical 

considerations relating to clinical implementation must be considered. Several biomarker studies 

embedded within lung cancer screening trials and programmes have provided evidence for the 

acceptability of blood collection from participants within screening settings, and that a pipeline 

for blood storage and transportation, as well as the subsequent extraction of DNA and 

genotyping, is feasible [383–385]. Whilst this provides good proof of concept, establishing a 

participant’s PRS after their initial contact with the screening service means that it could not be 

used to inform screening eligibility at their initial assessment. The PRS could still be used to inform 

decisions regarding screening interval, or to exclude low-risk individuals from further scans, but 

this limits the potential utility and effectiveness of the PRS. Asking participants to attend a 

separate clinic some time prior to screening for blood extraction would solve this issue but may 

reduce uptake and compliance amongst the target population. The genetic testing of saliva, 

rather than blood, could be an effective solution to this implementation challenge, as mailed 

collection kits can be returned by the participants for genotyping prior to any in-person contact 

with the screening service. Saliva collection has been shown to be acceptable to participants and 

a viable source of DNA for genotyping in several screening studies [386–388].   

Appropriate genetic counselling infrastructure must be implemented for PRS to become a routine 

tool for screening selection. An individual’s understanding of their lung cancer risk, how genetic 

factors influence their risk, and what impact this knowledge has on health behaviour and anxiety, 

are all important psychological considerations, some of which I investigate in Chapter Six. 

Research examining patient interest in PRS testing in other disease areas has revealed broadly 
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positive attitudes [389,390]; patients also seem to receive their genetic risk score without 

significant distress or anxiety and are able to recall the information accurately [391,392]. 

Development of tools for counselling patients in polygenic risk is ongoing [393]. This research will 

need to be replicated in lung cancer screening populations, particularly considering that those at 

high risk of lung cancer often live in deprived areas, have low educational attainment and may 

have limited health literacy [248].  

In conclusion, in this chapter I demonstrated that genetic risk factors could improve lung cancer 

risk prediction in ever-smokers and may assist with screening selection. Further studies refining 

the PRS tools, validating novel SNPs, integrating PRSs into RPMs, and testing them prospectively in 

real-world screening settings are necessary to further advance this research area. Ultimately, the 

routine adoption of a PRS tool within a lung screening programme will depend on its clinical 

impact and cost effectiveness. As it stands, the small (but significant) improvement in AUC 

conferred by inclusion of a PRS in an RPM is unlikely to position wide-scale genetic testing in the 

context of lung cancer screening to be cost-effective, especially considering how successful lung 

cancer risk prediction using standard risk factors is. On the other hand, an effective PRS might 

reduce the total number of people eligible for screening or reduce the frequency of screening, 

increasing programme efficiency. It might also favour the selection of those who have a lower 

smoking exposure and therefore a lower burden of comorbidity who have ‘more to gain’ from 

screening. To reduce the cost of the test, the PRS could be targeted to those close to the risk 

threshold (above and below) rather than being used more broadly. Ongoing research may also 

identify specific subgroups that will gain particular benefit from PRS testing. For example, whilst 

not currently recommended [394], if lung cancer screening for never-smokers becomes clinically 

viable in the coming decades, genetic risk prediction will take on a much more significant role. 

This is because never-smokers are not exposed to the primary risk factor for lung cancer, adding 

more predictive weight to secondary factors such as family history and genetic variants. It is also 

expected that genetic testing will continue to reduce in price and it may become a regularly used 

clinical tool for a range of conditions, which may further reduce the overall cost of applying it in 

lung cancer screening selection [395]. Once a well optimised PRS tool, applicable to a range of 

populations and a variety of lung cancer types, becomes available, formal cost effectiveness 

analysis will be required to determine the best approach to application, as has been performed in 

other disease areas [396–398].  
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Chapter Six - Lung Cancer Risk Perception: Study of Manchester LHC 

Programme 

6.1 Introduction 

Lung cancer is the leading cause of cancer death globally [1]. Providing LDCT screening to high-risk 

individuals has been shown to reduce lung cancer mortality significantly. NLST and NELSON, the 

two RCTs that demonstrated this mortality benefit, used generalised eligibility criteria to 

determine screening eligibility [193,194]. Targeting screening based on individually calculated 

lung cancer risk is an important method of improving programme efficiency and reducing harm to 

participants [218]; implementation studies and programmes (including NHS England’s TLHC 

programme [48]) often use RPMs to individually calculate participants’ lung cancer risk scores and 

determine screening eligibility based on a risk threshold. Consequently, screening programme 

attendees (many of whom are from socio-economically deprived areas) are having their individual 

lung cancer risk score calculated, communicated, and used to determine screening eligibility, in 

real-world clinical settings.  

The number of participants who will have their risk calculated is expected to increase dramatically 

in the coming years. Despite this, there is no recommended risk communication procedure 

included in the TLHC protocol [48]. Furthermore, studies investigating participants’ perceptions of 

lung cancer risk, knowledge of the disease, and the psychological impact of concerns regarding 

lung cancer, are very limited (see section 1.7.2). There is an urgent need for further research in 

this area. Understanding participant risk perception is an important step in ensuring risk 

communication effectively facilitates shared decision making [256]. Having an awareness of 

participants’ disease knowledge and worry would enable pre-screening counselling and screening 

related messaging to be targeted and delivered appropriately. There may also be opportunities to 

leverage risk perception and risk communication as methods to mediate health behaviours such 

as screening adherence and smoking cessation [274,275].  

This study aimed to examine lung cancer risk perception, disease knowledge and lung cancer-

specific worry in attendees of the Manchester LHC programme, a community-based lung cancer 

screening programme (see objectives - section 1.8). I examined associations between these 

measures, as well as between responses and a range of key demographic factors. To my 

knowledge, this is the first study to examine the relationship between these outcomes and the 

individually calculated actual lung cancer risk scores of the participants in such a setting. 
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6.2 Questionnaire Development and Methods 

6.2.1 Measures 

I developed the study questionnaire based on previous studies of a similar nature in other disease 

areas. The questionnaire evaluated three broad areas: lung cancer risk perception, disease 

knowledge and lung cancer-specific worry (full questionnaire available in Appendix 3 - 8.4). Each 

area was assessed with multiple individual questions: 

6.2.1.1 Risk Perception  

Three questions assessed personal lung cancer risk perception. To assess perceived absolute risk, 

participants were asked: “In an imaginary room filled with 100 people exactly like you, how many 

do you think will get lung cancer in the next 6 years?” The participant responded by completing 

the phrase: “___out of 100”. This question is based on similar questions found in previous risk 

perception studies [265]. The question was adapted to use plain language, as well as frequencies 

rather than percentages, as these techniques have been shown to aid in patient understanding of 

risk [399]. Six years was chosen as the risk timeframe to facilitate comparison with participants’ 

actual PLCOM2012 lung cancer risk score.  

Perceived comparative risk was assessed by asking participants to estimate their risk of 

developing lung cancer in comparison to other people their age: “What do you think your chances 

of developing lung cancer are compared to other people your age in the UK population?” 

Participants responded on a 5-point Likert scale ranging from ‘much less likely’ to ‘much more 

likely’. Participants were also asked to compare their lung cancer risk with other smokers (for 

smokers) or other former smokers (for former smokers) on the 5-point Likert scale. These 

questions are adapted from previously published lung and breast cancer risk perception studies 

[400–402]. 

6.2.1.2 Disease Knowledge  

Three questions assessed general knowledge of lung cancer. The first related to disease incidence 

in the UK population: “What do you think the risk of developing lung cancer is for any person in 

the general population of the UK?” The participant was asked to select one of six options 

presented in both odds and percentage formats. This is a truncated version of a question from a 

previously published study [265]. Participants were asked to identify factors which increase an 

individual’s risk of developing lung cancer by selecting ‘Yes’, ‘No’ or ‘Not Sure’ for each of 12 risk 

factors: age, air pollution, asbestos exposure, asthma, being overweight, changes or mutations in 

your genes, chronic obstructive pulmonary disease (COPD), family history of lung cancer, poor 

diet, radon exposure, smoking and second-hand smoke. Finally, participants were asked: “Think 

about all the people who are diagnosed with lung cancer in the UK in one year. What percentage 
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of these patients do you think will survive for… a. 1 year. b. 5 years. C. 10 years ...following their 

diagnosis?” Participants provided an estimate for each of these timeframes.  

6.2.1.3 Disease Specific Worry  

Participants were asked to provide both the frequency of any lung cancer-specific worry they had 

experienced in the previous two weeks, and the impact of any lung cancer-specific worry on their 

mood. Answers were on a 4-point scale ranging from ‘not at all’ to ‘nearly every day’ for 

frequency, and ‘not at all’ to ‘a lot’ for impact. These questions were adapted from the Lerman 

Cancer Worry Score instrument, with the timescale in the frequency question added to 

correspond to the PHQ-4 instrument [403]. The final question was the PHQ-4 measure of anxiety 

and depression, a validated brief four-part survey for detection of depressive and anxiety 

disorders [404,405]. PHQ-4 scores are rated as normal (0-2), mild (3-5), moderate (6-8) and severe 

(9-12). A total score of ≥3 for the first two questions suggests anxiety; a total score of ≥3 for the 

last two questions suggests depression. I used PHQ-4 results as an additional covariate when 

analysing responses but did not employ it as a primary outcome variable. 

6.2.2 Patient and Public Involvement and Engagement 

Prior to commencement of the study, the questionnaire was reviewed by a specialist cancer 

patient and public involvement and engagement (PPIE) panel convened by the Manchester 

Biomedical Research Centre (BRC). All participants (n=3) would have been eligible for invitation to 

the Manchester Lung Health Check Programme (and therefore, eligible for this study) based on 

age and smoking history. One had family history of cancer. Participants completed the survey and 

provided oral feedback as to the ease of comprehension of the questions, ease of providing 

answers and general readability. Participants’ feedback was positive and indicated that the 

questionnaire was generally understandable and did not result in undue distress. Several 

amendments were made to the questionnaire to address points raised by the panel (Table 27).  
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Table 27. Changes made to study survey after PPIE consultation. 

Question Original Updated Comments 

1 

What do you think the risk of 
developing lung cancer is for any 
person in the general population 

(UK)? 

What do you think the risk of developing 
lung cancer is for any person in the general 

population of the UK? Please circle one 
answer. 

Readability 
improvements 

and answer 
prompt. 

1 
Eleven answer options ranging from 

‘Inevitable’ to ‘Very Unlikely’ 
Six answer options ranging from ‘1 chance in 

2 - 50%’ to ‘1 chance in 100 - 1%’. 

Participants 
felt 

overwhelmed 
by number of 

options. 

2 

What do you think your risk of 
developing lung cancer is over the 

next 6-years? (Complete a or b) 
a. 1 in ____ 

OR 
b. ____ % 

Alternative Wording: In an imaginary 
room filled with 100 people just like 

you, how many will get lung cancer in 
the next 6 years?   

___out of 100 

In an imaginary room filled with 100 people 
exactly like you, how many do you think will 
get lung cancer in the next 6 years?  Please 

fill in the blank. 
_____out of 100 

Participants 
preferred the 
‘alternative 
wording’.  

“Just like you” 
adapted to 
“Exactly like 

you” for 
improved 
scientific 
accuracy. 
Answer 
prompt 
added. 

4 + 5 - 

If you are an ex-smoker, please skip question 
4 
 

If you are a current smoker, please skip 
question 5: 

Additional 
instructional 

prompts 
provided. 

Shaded boxes 
added to 
indicate 
optional 

questions. 

6 
Have you ever been told a score 

indicating your personal risk of lung 
cancer? 

Have you ever been told a score or 
percentage indicating your personal risk of 

lung cancer? Please circle one answer. 

Readability 
improvements 

and answer 
prompt. 

7 

Lots of small changes in your genes - 
Yes/No/Not Sure 

 
A few major changes in your genes - 

Yes/No/Not Sure 

Changes or mutations in your genes - 
Yes/No/Not Sure 

 

Original 
deemed too 
complex for 

audience. 

8 

What percentage of people 
diagnosed with lung cancer survive… 

a. 1 year? ______% 
b. 5 years? _____% 

c. 10 years? _____% 

Think about all the people who are 
diagnosed with lung cancer in the UK in one 
year.  

a) What percentage do you think will 
survive for 1 year after diagnosis? 
  _____% 

b) What percentage do you think will 
survive for 5 years after diagnosis? 
  _____% 

c) What percentage do you think will 
survive for 10 years after 
diagnosis?  _____% 

 

Readability 
improvements 

End - 
If anything in this questionnaire has caused 

you concern, please discuss it with the 
nurse during your Lung Health Check. 

Added to 
conclusion of 

questionnaire.  
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6.2.3 Analysis 

This study took place in the Manchester LHC programme, an expansion of the Manchester LHC 

pilot. A detailed description of screening programme structure and study recruitment is presented 

in section 2.12. Due to time constraints endemic to operating this study within the context of a 

clinical service, not all participants completed the whole questionnaire. Therefore, the 

denominators vary for different analyses in the study (Table 28). Questionnaires were included in 

analysis if the participant completed at least one question comprehensively. The subsections of 

the risk factor question were treated as distinct questions for this purpose, with any remaining 

blank responses classified as ‘blank’ for basic descriptive analysis, or ‘don’t know’ for association 

analysis. If a participant completed the comparative risk question for both current smokers and 

former smokers, both responses were discounted. Incomplete and non-valid responses to the 

three-part survival question (e.g. survival estimates increasing with time rather than decreasing) 

were excluded as it indicated a misunderstanding of the question. I describe the responses of the 

complete cohort, and then stratify them by screening eligibility. 

Statistical analysis was carried out using IBM SPSS Statistics V.25. Comparison of medians was 

conducted by Mann-Whitney U test. Comparison of means was conducted by T test. P values for 

trend were calculated by Pearson’s Chi-Squared test or fitting linear models, using a single 

independent variable with 1 degree of freedom. Correlations between two scale variables were 

measured with Pearson’s Correlation or Spearman’s Rho.  

Associations between demographic variables and questionnaire responses were assessed using 

binary logistic regression models, with univariable and multivariable analyses performed in each 

instance. In order to investigate associations between the outcome of interest and overall lung 

cancer risk score, as well as individual demographic factors that contribute to the risk score, I built 

two models for the logistic regression analyses. Model A included PLCOM2012 score, sex, PHQ-4 

score, and either lung cancer worry frequency or perceived comparative risk (depending on the 

dependant variable selected) as covariates. Model B substituted PLCOM2012 score for individual 

demographic variables: age, family history of lung cancer, pack-years, smoking status, BMI, 

previous cancer diagnosis, and educational attainment, as well as sex, PHQ-4 score and either 

lung cancer worry frequency or perceived comparative risk, as in Model A. 
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6.3 Results 

6.3.1 Study Cohort Characteristics  

A total of 371 first-round participants of the Manchester LHC programme were recruited for this 

study. Of those, 243 (65.5%) consented to their responses being linked with the clinical data 

collected during the LHC (‘identified’). There was minimal difference between the questionnaire 

responses provided by identified and non-identified individuals (Table 28); the only difference in 

responses that approached statistical significance were indicators of depression (14% vs. 25%; 

p=0.03) and PHQ-4 score (mean: 2.5 vs. 2.9; p=0.06) which were lower in the identified subset, 

although mean PHQ-4 scores in both groups remained within the ‘normal’ category. Demographic 

characteristics of the identified subset are presented in Table 29. Median age was 68 (IQR ±11), 

56% were female, 60% had no educational qualifications, 96% were white (when ethnicity was 

provided), 20% were current smokers and the median pack-year history was 23 (IQR ± 31). 

Median index of multiple deprivation (IMD) was 5631 (IQR ±10679); more than 53% of 

participants fell in the two most deprived IMD deciles. 
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Table 28. Study questionnaire responses for all respondents and stratified by consent to linked 
clinical data. 

 

  

Measures All 
Consent for data linkage P 

value Yes No 
Number (%) 371 243 (65.5) 128 (34.5) - 

Risk Perception 

Perceived Absolute Risk 
Score 

Median ± IQR 20 ± 22 20 ± 20 15 ± 24 0.67 

Total Respondents 368 242 126 - 

Perceived Comparative 
Risk. % (n) 

Lower 21 (76) 21 (51) 20 (25) 

0.9 The Same 49 (180) 49 (118) 49 (62) 

Higher 30 (111) 30 (71) 32 (40) 

Total Respondents 367 240 127 - 

Population Risk Estimate 
% (n) 

Underestimate 19 (70) 19 (46) 19 (24) 

0.47 Correct 11 (39) 9 (22) 13 (17) 

Overestimate 70 (259) 72 (172) 68 (87) 

Total Respondents 368 240 128 - 

Exposure to Risk Score 
Previously 

% Yes (n) 4 (12) 5 (10) 2 (2) 0.19 

Total Respondents 304 200 104 - 

Disease Knowledge 

Mean number of risk factors correctly identified (/11) 6 ± 2 6 ± 2 6 ± 2 0.45 

Mean Estimated Survival 
±SD 

1-year 61 ± 2 59 ± 2 65 ± 3 0.1 

5-years 39 ± 22 37 ± 21 22 ± 3 0.03 

10-years 22 ± 20 20 ± 19 22 ± 3 0.08 

Total Valid Respondents 185 123 62 - 

Lung Cancer Worry 

Lung Cancer Specific 
Worry 

Frequency 
% (n) 

Any 18 (60) 17 (38) 20 (22) 0.58 

None 82 (276) 83 (185) 81 (91) 

0.5 
Several days 12 (41) 12 (27) 12 (14) 

More than half the 
days 

3 (11) 3 (6) 4 (5) 

Nearly every day 2 (8) 2 (5) 3 (3) 

Total Respondents 336 223 113 - 

Impact 
% (n) 

Any 38 (129) 37 (82) 41 (47) 0.4 

None 62 (209) 63 (142) 59 (67) 

0.3 
A small amount 29 (99) 29 (65) 30 (34) 

Quite a lot 7 (24) 6 (13) 10 (11) 

A lot 2 (6) 2 (4) 2 (2) 

Total Respondents 338 224 114 - 

Mental Health Score 

PHQ-4 

Mean Score (±SD) 2.5 ± 3.3 2.2 ± 3.1 2.9 ± 3.6 0.06 

Overall 
Classification 

% (n) 

Normal 67 (215) 70 (150) 60 (65) 

0.03 
Mild 16 (50) 16 (34) 15 (16) 

Moderate 9 (29) 7 (15) 13 (14) 

Severe 9 (29) 7 (16) 12 (13) 

Total Respondents 323 215 108 - 

Depression Indicated % (n) 18 (58) 14 (31) 25 (27) 0.02 

Anxiety Indicated % (n) 22 (70) 19 (41) 27 (29) 0.11 



161 
 

 

Table 29. Demographic characteristics for the identified subset of the study participants. 

Variable Value 

Total 243 

% Female (n) 55.6 (135) 

Median Age (±IQR) 68 (±11) 

Median BMI (±IQR) 28.6 (±7.7) 

% Current Smoker (n) 19.8 (48) 

Median Pack Years (± IQR) 23 (±31) 

% Family History Lung Cancer (n) 16.9 (41) 

% Previous Cancer Diagnosis (n) 15.2 (37) 

Index of Multiple 
Deprivation (IMD) 

Median Rank (±IQR) 5631 (±10679) 

% Decile (n) 

1 40.3 (98) 

2 13.2 (32) 

3 6.2 (15) 

4 27.2 (66) 

5 4.1 (10) 

6 5.3 (13 

7 3.7 (9) 

% Educational Attainment 
(n) 

Left school age <16 with 
no qualification 

51 (124) 

Left school with no 
qualification 

9.1 (22) 

CSEs or equivalent 4.1 (10) 

O-levels 4.5 (11) 

A-levels or equivalent 1.2 (3) 

Some college 25.1 (61) 

College graduate 3.7 (9) 

Postgraduate 0.8 (2) 

Prefer not to say 0.4 (1) 

% Ethnicity (n) 

White - British 61.7 (150) 

White - Irish 2.5 (6) 

White - Other 0.4 (1) 

Asian – Pakistani 0.8 (2) 

Black - Caribbean 0.4 (1) 

Black - Other 0.4 (1) 

Other 0.4 (1) 

Not Known 20.6 (50) 

Not Stated 12.3 (30) 

% Asbestos Exposure (n) 15.2 (37) 

PLCOM2012 Lung Cancer 
Risk – 

 % 6-year 

Median (±IQR) 1 (±2.5) 

Mean (±SD) 2.34 (±3.68) 
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6.3.2 Questionnaire Responses 

6.3.2.1 Risk Perception 

The median perceived absolute 6-year risk of lung cancer was 20% (IQR ±22). When participants 

were asked about their comparative risk of developing lung cancer compared to others their age, 

approximately half classified themselves at ‘the same’ level of risk, 21% considered themselves at 

‘lower’ comparative risk (‘less likely’ or ‘much less likely’) and 30% classified themselves as at 

‘higher’ comparative risk (‘more likely’ or ‘much more likely’) (Table 28). Respondents with above 

average perceived absolute risk (≥20%) were more likely to have ‘higher’ comparative risk 

compared to those with below average perceived absolute risk (34% vs. 26%; p=0.04). Median 

perceived absolute risk increased progressively across the three perceived comparative risk 

groups; those in the ‘lower’ comparative risk group had a median perceived absolute risk of 14%, 

those in ‘the same’ comparative group had a median of 20%, and those in the ‘higher’ group had a 

median of 23% (p=0.02). Only 4% reported having received their lung cancer risk score previously.  

6.3.2.2 Lung Cancer-Specific Worry 

The majority (82%) of the study cohort reported no lung cancer-specific worry in the previous two 

weeks, 12% reported worry on ‘several days’, 3% on ‘more than half the days’ and 2% ‘nearly 

every day’. Participants were also asked if lung cancer-specific worry had any impact on their 

mood: 62% reported no impact, 29% reported ‘a small amount’, 7% ‘quite a lot’ and 2% ‘a lot’ of 

impact (Table 28). There was a significant difference in perceived risk between those who 

reported worry and those who did not. Amongst those who reported worry, median perceived 

absolute risk was 25%, compared to 20% in those with no worry (p=0.008). Perceived comparative 

risk was also higher, with 48.3% of those who reported worry in the ‘higher’ comparative risk 

group, compared to 24.7% of those who did not report worry (p<0.001). Only 7% of those with 

worry were in the ‘lower’ comparative risk group, compared to 23.6% of those without worry 

(p<0.001). 

6.3.2.3 Lung Cancer Knowledge 

Only 11% of respondents identified the correct lifetime risk of developing lung cancer for anyone 

in the UK (7% risk - an average of UK male and female lifetime lung cancer risk [406]). More than 

70% of respondents overestimated population risk, with almost half selecting the highest two 

options (25% or 50% risk) (Table 28) (Figure 41). Those with below average perceived absolute risk 

were more likely to choose the correct population risk estimate (16% vs. 6%; p=0.002) and less 

likely to overestimate (55% vs. 84%; <0.001).  
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Figure 41. Study participant estimates of UK lung cancer incidence. Shaded bar = correct 
response. 

Estimated survival after a lung cancer diagnosis was also widely overestimated; the reported 

mean one-, five- and ten-year survival were 61% ±24, 39% ±21, and 22% ±22 respectively. This 

compares to actual UK survival of 41%, 16% and 9.5% [13] (Figure 42).  

 

Figure 42. Study participant mean survival estimates vs. actual mean survival. 

Participants correctly identified an average of 6.4 lung cancer risk factors out of eleven. Smoking, 

asbestos exposure, passive smoking and pollution were the risk factors classified correctly most 

frequently (smoking: 93%; asbestos: 92%; passive smoking 84%; pollution 76%) (Figure 43).  
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Figure 43. Lung cancer risk factor identification in study participants. Reused from [407], 
permitted under CC BY 4.0. 

Of the analysed risk factor identification responses (inclusion criteria in section 6.2.3), participants 

with a family history of lung cancer were significantly more likely to correctly identify it as a risk 

factor compared to those without (78% vs. 57%; p=0.02). Former smokers were significantly more 

likely than current smokers to identify passive smoking (89% vs. 76%; p=0.04) and air pollution 

(79% vs. 59%; p=0.01) as lung cancer risk factors. Men were significantly more likely than women 

to correctly identify radon as a risk factor (59% vs. 39%; p=0.009). Having an educational 

qualification was significantly associated with correctly identifying smoking (100% vs. 92%; 

p=0.01) and passive smoking (97% vs. 80%; p<0.001) as risk factors. Age, BMI, IMD decile, 

previous cancer diagnosis, and asbestos exposure were not associated with any of the risk factor 

identifications.  

6.3.2.4 PHQ-4 Mental Health Score 

Two thirds of PHQ-4 scores were classified as normal (score 0-2), 16% as mild (score 3-5) and 18% 

as moderate or severe (score 6-12). When split into depression and anxiety indicators, 18% had 

scores suggestive of depression and 22% of anxiety (Table 28). Those with higher PHQ-4 scores 

had higher perceived comparative risk (proportion of each PHQ-4 category in ‘higher’ comparative 

group: 25% → 31% → 50%; p=0.001) and more lung cancer worry by both frequency (9% → 37% 

→ 35%; p<0.001) and impact (27% → 55% → 66%; p<0.001). Those in the highest PHQ-4 

subgroup had higher perceived absolute risk than the other two groups (median: 25% vs. 20%; 

p=0.06).  
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6.3.3 Questionnaire Responses Stratified by Risk Score and Screening Eligibility 

There was no correlation between individual perceived absolute risk and individual calculated risk 

scores (as calculated by PLCOM2012) in the identified cohort (p=0.4). Overall, perceived absolute 

risk was approximately twenty-times higher than actual risk score (median: 1% vs. 20%; p<0.001) 

(Figure 44). Almost 95% (n=227) of respondents perceived their absolute risk to be above the 

screening eligibility threshold eligible (PLCOM2012 score ≥1.51%), dramatically higher than the 42% 

(n=101) who were actually eligible. Median calculated risk score increased in line with perceived 

comparative risk. Those with lowest perceived comparative risk (‘much less likely’) had a median 

calculated risk score of 0.3%, increasing to 0.35%, 1.1% and 1.6% in the ‘less likely’, ‘the same’ and 

‘more likely’ group respectively, with the highest median calculated risk score of 2.9% seen in the 

‘much more likely’ group (p=0.004) (Figure 45). Those who were eligible for screening were 

approximately twice as likely to have ‘higher’ comparative risk than those who were ineligible 

(41% vs. 21%; p<0.0001) (Table 30). 

Those eligible for screening were more likely to report lung cancer-specific worry (any worry: 27% 

vs. 10%; p=0.001) and it was more likely to impact their mood (any impact: 51% vs. 27%; 

p=0.0003). More than two-thirds of those who reported worry were eligible for screening, 

compared to just over a third of those who did not report worry (p=0.01); median calculated risk 

score was 2.6% in those with lung cancer worry, compared to 1% in those without (p=0.008). The 

screening-eligible subgroup also scored higher on the PHQ-4 test for mental health (mean 2.75 vs. 

1.82; p=0.03) and were twice as likely to have a score indicative of depression (20% vs. 10%; 

p=0.05) (Table 30).  

6.3.4 Screening Adherence 

Whilst our study was not powered to examine screening adherence as a primary outcome, we 

performed exploratory analysis to investigate whether any of the questionnaire responses were 

associated with participants returning for the second round of screening. In total, 101 participants 

of the identified subset were eligible for screening and had a baseline CT scan (T0). Of these, 87 

returned 12 months later for the second-round scan (T0+12), equivalent to a screening adherence 

of 86%. There was no statistically significant difference in calculated risk, perceived risk, lung 

cancer worry or mental health between those who attended T0+12 and those who did not, 

although the small number (n=14) of T0+12 non-attendees precludes detailed analysis.  
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Figure 44. Actual and perceived absolute lung cancer risk score stratified by sex. Reused from 
[407], permitted under CC BY 4.0 

 

 

 

Figure 45. Perceived comparative risk vs. actual calculated risk (PLCOm2012). Reused from [407], 
permitted under CC BY-4.0 
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Table 30. Questionnaire responses for identified subset and stratified by screening eligibility, 
based on PLCOM2012 calculated risk score. 

Demographic Variable 
All 

Identified 

Eligibility for screening P 
value Ineligible 

(PLCOM2012<1.51%) 
Eligible 

(PLCOM2012≥1.51%) 

Number 243 142 101 - 

Risk Perception 

Perceived Absolute Risk Score Median ± 
IQR 

20 ± 20 20 ± 16 20 ± 20 0.43 

Perceived 
Comparative Risk % 

(n) 

Lower 21 (51) 31 (43) 8 (8) 

<0.0001 The Same 49 (118) 48 (68) 51 (50) 

Higher 30 (71) 21 (30) 41 (41) 

Population Risk 
Estimate % (n) 

Underestimate 19 (46) 18 (26) 20 (20) 

0.63 Correct 9 (22) 11 (15) 7 (7) 

Overestimate 72 (172) 71 (100) 73 (72) 

% Exposure to Risk Score Previously (n) 5 (10) 3 (4) 7.6 (6) 0.17 

Disease Knowledge 

Mean number risk factors correctly 
identified (11) 

6 ± 2 6 ± 2 6 ± 2 0.8 

Mean Estimated 
Survival  

(±SD) 

1-year 59 ± 23 59 ± 22 59 ± 24 0.83 

5-years 37 ± 21 37.7 ± 21 34 ± 22 0.41 

10-years 20 ± 19 20 ± 20 18 ± 19 0.56 

Lung Cancer Worry 

Lung 
Cancer 
Specific 
Worry 

Frequency 
% (n) 

Any 17 (38) 10 (13) 27 (25) 0.001 

None 83 (185) 90 (118) 73 (67) 

0.001 

Several days 12 (27) 8 (10) 19 (17) 

More than half 
the days 

3 (6) 2 (2) 4 (4) 

Nearly every day 2 (5) 1 (1) 4 (4) 

Impact  
% (n) 

Any 37 (82) 27 (35) 51 (47) 0.0003 

None 63 (142) 73 (96) 50 (46) 

0.001 
A small amount 29 (65) 22 (29) 39 (36) 

Quite a lot 6 (13) 2 (3) 11 (10) 

A lot 2 (4) 2 (3) 1 (1) 

Mental Health Score 

PHQ-4 

Mean Score (±SD) 2.21 ± 3.1 1.82 ± 2.8 2.75 ± 3.5 0.03 

Overall 
Classification 

Normal 70 (150) 74 (92) 64 (58) 

0.06 
Mild 16 (34) 15 (19) 17 (15) 

Moderate 7 (15) 5 (6) 10 (9) 

Severe 7 (16) 6 (7) 10 (9) 

% Depression Indicated (n) 14 (31) 10 (13) 20 (18) 0.05 

% Anxiety Indicated (n) 19 (41) 17 (21) 22 (20) 0.33 
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6.3.5 Demographic Factors Associated with Risk Perception 

To identify demographic factors associated with risk perception, I constructed two multivariable 

logistic regression models, described in detail in section 6.2.3. Model A used PLCOM2012 risk score 

as a covariate (Table 31), whilst model B substituted risk score for individual demographic factors 

(Table 32). 

6.3.5.1 Perceived Absolute Risk  

Female sex was the only demographic factor associated with above-average perceived absolute 

risk in both models (A: adjOR 2.4, 95%CI 1.3-4.3; p=0.004) (B: adjOR 2.1, 95%CI 1.13-3.8; p=0.02) 

(Table 31). This is consistent with the significantly higher perceived absolute risk amongst women 

when compared to men (median: 25% vs. 15%; p=0.001). It is important to highlight that there 

was no difference in calculated PLCOM2012 risk score according to sex (Figure 44). 

6.3.5.2 Perceived Comparative Risk  

The factors significantly associated with ‘higher’ perceived comparative risk were PHQ-4 score in 

model A (PHQ-4 adjOR 1.1, 95%CI 1-1.2; p=0.02) (Table 31), and family history of lung cancer in 

model B (adjOR 4.03, 95%CI 1.74-9.3; p=0.001) (Table 32). Mean PHQ-4 score was 3.58 (±3.9) in 

those with ‘higher´ perceived comparative risk, significantly higher than the mean of 1.96 (±2.9) in 

the rest of the cohort (p<0.001). Almost half of respondents with a family history of lung cancer 

placed themselves in the ‘more likely´ and ‘much more likely’ perceived comparative risk 

categories, compared to just a quarter of those without family history (p=0.002).  

Whilst not significantly predictive in the multivariable models, 46% of current smokers placed 

themselves in the ‘higher’ group, compared to 26% of former smokers (p=0.008). Even when 

current smokers and former smokers were asked to compare their risk to others within the same 

smoking category (thereby accounting for smoking history in the comparative risk estimates), 

former smokers were still more likely to estimate themselves to be in the ‘lower’ group (38% 

lower vs. 18% higher), whilst current smokers tended towards the ‘higher’ groups (32% higher vs. 

11% lower). 

The factors significantly associated with ‘lower’ perceived comparative risk in model A were male 

sex and lower PLCOM2012 calculated risk score (Female: adjOR 0.48, 95%CI 0.24-0.98; p=0.04. 

PLCOM2012 score: adjOR 0.85, 95%CI 0.71-1.01; p=0.06) (Table 31). In model B, significantly 

associated factors were no family history of lung cancer and a lower pack-year history (Family 

History: adjOR 0.21, 95%CI 0.05-0.95; p=0.04. Pack Years: adjOR 0.96, 95%CI 0.93-0.98; p=0.001) 

(Table 32). 
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6.3.6 Demographic Factors Associated with Lung Cancer Worry 

I used the multivariable models to test for factors associated with lung cancer worry. Respondents 

were categorised into those who reported any frequency of lung cancer worry vs. those who 

reported no worry, and those who reported any lung cancer-worry mediated impact on mood vs. 

those who reported no impact. In model A, PLCOM2012 score, female sex, and PHQ-4 score were all 

significantly associated with the presence of worry and impact on mood (Table 31). In model B, 

alongside female sex and PHQ-4 score which were associated with both presence of worry and 

impact on mood, lack of educational qualification was significantly associated with presence of 

worry (adjOR 4.3, 95%CI 1.56-11.7; p=0.005) and increasing pack years was a significantly 

associated with impact on mood (adjOR 1.02, 95%CI 1-1.03; p=0.03) (Table 32). 

6.3.7 Demographic Factors Associated with Mental Health 

Whilst PHQ-4 data were collected principally for use as a covariate and was not a primary 

outcome of this study, I ran an exploratory analysis to identify demographic factors associated 

with poorer mental health metrics.  

Having a PHQ-4 score indicative of anxiety was significantly associated with female sex in both 

model A (adjOR 2.69, 95%CI 1.14-6.34; p=0.02) and model B (adjOR 2.87, 95%CI 1.18-7; p=0.02) 

(Table 31 & Table 32). Indeed, significantly more women had a PHQ-4 score consistent with 

anxiety than men (26% vs. 10%; p=0.002). In model A, high perceived comparative risk was also 

significantly associated with anxiety (adjOR 2.24, 95%CI 1.05-4.85; p=0.04). In model B, presence of 

lung cancer worry and high perceived comparative risk were associated with anxiety, but with 

borderline statistical significance (Table 32).  

In model A, having a PHQ-4 score indicative of depression was significantly associated with high 

perceived comparative risk (adjOR 2.46, 95%CI 1.08-5.6; p=0.03); lung cancer worry was associated 

with borderline significance (Table 31). In model B, younger age and lack of educational 

qualifications were significantly associated with depression (age: adjOR 0.9, 95%CI 0.84-0.97; 

p=0.008. Education: adjOR 0.37, 95%CI 0.14-0.1; p=0.05) (Table 32). 
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Table 31. Binary logistic regression modelling (model 'A') for factors associated with risk 
perception, lung cancer worry, depression and anxiety (PHQ-4). 

 

 Covariates 

PLCOm2012 

Score 
Female 

Sex 
PHQ-4 
Score 

Lung Cancer 
Worry 

Frequency – 
Any 

High 
Perceived 

Comparative 
Risk 

N in 
analysis 

OR 
(95% 

CI) 
P 

OR 
(95% 

CI) 
P 

OR 
(95% 

CI) 
P 

OR 
(95% 

CI) 
P 

OR 
(95% 

CI) 
P 

D
e

p
e

n
d

an
t 

V
ar

ia
b

le
 

Perceived 
Absolute Risk 

≥ Median 
213 

1.09 
(0.99-
1.21) 

0.07 
2.36 

(1.31-
4.26) 

0.004 
1.04 

(0.95-
1.15) 

0.4 
0.92 
(0.4-
2.1) 

0.84 - - 

High 
Perceived 

Comparative 
Risk 

212 
1.08 

(0.99-
1.19) 

0.09 
1.41 

(0.72-
2.74) 

0.3 
1.12 

(1.02-
1.24) 

0.02 
1.94 

(0.85-
4.45) 

0.12 - - 

Low 
Perceived 

Comparative 
Risk 

212 
0.85 

(0.72-
1.01) 

0.06 
0.48 

(0.24-
0.98) 

0.04 
0.96 

(0.84-
1.09) 

0.51 
0.55 

(0.15-
2.04) 

0.37 - - 

Lung Cancer 
Worry 

Frequency - 
Any 

212 
1.15 

(1.03-
1.29) 

0.01 
5.39 

(1.87-
15.6) 

0.002 
1.16 

(1.03-
1.3) 

0.01 - - 
1.9 

(0.83-
4.4) 

0.13 

Lung Cancer 
Worry 

Impact Mood 
- Any 

213 
1.13 

(1.02-
1.24) 

0.02 
2.45 

(1.29-
4.64) 

0.006 
1.2 

(1.08-
1.32) 

0.001 - - 
0.94 

(0.48-
1.86) 

0.86 

PHQ-4 
Anxiety 

212 
1.03 

(0.95-
1.13) 

0.48 
2.69 

(1.14-
6.34) 

0.02 - - 
2.04 

(0.84-
4.97) 

0.12 
2.24 

(1.05-
4.85) 

0.04 

PHQ-4 
Depression 

212 
1.07 

(0.97-
1.18) 

0.16 
1.01 

(0.42-
2.43) 

0.98 - - 
2.52 

(0.96-
6.6) 

0.06 
2.46 

(1.08-
5.6) 

0.03 
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Table 32. Binary logistic regression modelling (model 'B') for factors associated with risk 
perception, lung cancer worry, depression and anxiety (PHQ-4). 

 Dependant Variable 

Perceived 
Absolute 

Risk ≥ 
Median 

High 
Perceived 

Comparative 
Risk 

Low 
Perceived 

Comparative 
Risk 

Lung 
Cancer 
Worry 

Frequency 
- Any 

Lung 
Cancer 
Worry 
Impact 
Mood 
- Any 

PHQ-4 
Anxiety 

PHQ-4 
Depression 

 N in 
analysis 

204 203 203 203 204 204 206 

C
o

va
ri

at
e

s 

Female 

OR 
(95% 

CI) 

2.07 
(1.13-
3.8) 

1.25 
(0.61-2.58) 

0.54 
(0.24-1.19) 

4.8 
(1.7-
13.6) 

2.36 
(1.2-
4.6) 

2.87 
(1.18-

7) 

0.97 
(0.37-2.5) 

P 0.02 0.54 0.13 0.003 0.01 0.02 0.97 

LC Worry – 
Freq. Any 

OR 
(95% 

CI) 

0.98 
(0.42-
2.3) 

1.81 
(0.73-4.5) 

0.64 
(0.16-2.59) 

- - 
2.35 

(0.93-
5.95) 

2.23 
(0.79-6.3) 

P 0.96 0.2 0.54 - - 0.07 0.13 

PHQ-4 

OR 
(95% 

CI) 

1.08 
(0.97-
1.19) 

1.09 
(0.98-1.2) 

0.95 
(0.81-1.1) 

1.17 
(1.04-
1.32) 

1.2 
(1.07-
1.33) 

- - 

P 0.18 0.11 0.5 0.01 0.001 - - 

High 
Perceived 

Comparative 
Risk 

OR 
(95% 

CI) 
- - - 

1.91 
(0.78-
4.7) 

0.81 
(0.39-
1.69) 

2.15 
(0.95-
4.84) 

1.99 
(0.8-4.95) 

P - - - 0.16 0.57 0.07 0.14 

Age 

OR 
(95% 

CI) 

1.03 
(0.98-
1.08) 

0.96 
(0.91-1.01) 

1.05 
(0.98-1.11) 

0.97 
(0.9-
1.05) 

0.98 
(0.94-
1.04) 

1 
(0.94-
1.06) 

0.9 
(0.84-
0.97) 

P 0.22 0.17 0.17 0.46 0.52 0.88 0.008 

Family 
History LC 

OR 
(95% 

CI) 

1.2 
(0.54-
2.65) 

4.03 
(1.74-9.3) 

0.21 
(0.05-0.95) 

1.38 
(0.48-
3.9) 

1.97 
(0.85-
4.58) 

1.2 
(0.48-
3.02) 

1.3 
(0.44-3.9) 

P 0.67 0.001 0.04 0.55 0.12 0.7 0.63 

Pack Years 

OR 
(95% 

CI) 

1 
(0.99-
1.02) 

1.01 
(1-1.03) 

0.96 
(0.93-0.98) 

1.02 
(1-1.04) 

1.02 
(1-

1.03) 

1 
(0.98-
1.02) 

1.01 
(1-1.03) 

P 0.94 0.09 0.001 0.13 0.03 0.86 0.29 

Current 
Smoking 

OR 
(95% 

CI) 

1.6 
(0.69-
3.73) 

2.06 
(0.85-5.02) 

0.85 
(0.2-3.5) 

1.09 
(0.38-
3.14) 

1.14 
(0.48-
2.68) 

1.23 
(0.45-
3.38) 

2.14 
(0.71-6.4) 

P 0.28 0.11 0.82 0.87 0.78 0.69 0.18 

BMI 

OR 
(95% 

CI) 

1.01 
(0.96-
1.06) 

1.02 
(0.97-1.08) 

1.03 
(0.97-1.1) 

0.97 
(0.9-
1.04) 

0.99 
(0.93-
1.04) 

1.01 
(0.94-
1.07) 

1.07 
(1-1.14) 

P 0.76 0.43 0.36 0.43 0.59 0.88 0.06 

Previous 
Cancer 

OR 
(95% 

CI) 

0.92 
(0.41-
2.1) 

0.97 
(0.36-2.66) 

0.95 
(0.34-2.66) 

0.51 
(0.11-
2.4) 

1.4 
(0.57-
3.4) 

1.15 
(0.38-
3.5) 

1.81 
(0.5-6.6) 

P 0.84 0.96 0.92 0.39 0.47 0.8 0.45 

Educational 
Qualification 

OR 
(95% 

CI) 

0.89 
(0.48-
1.64) 

0.99 
(0.48-2.02) 

1.45 
(0.63-3.3) 

0.24 
(0.09-
0.64) 

1.22 
(0.62-
2.39) 

1.42 
(0.62-
3.24) 

0.37 
(0.14-0.1) 

P 0.7 0.97 0.38 0.005 0.38 0.4 0.05 
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6.4 Discussion 

This cross-sectional study examined lung cancer risk perception, disease knowledge and lung 

cancer-specific worry in ever-smoking attendees of a community-based lung cancer screening 

service located in highly socio-economically deprived areas. To my knowledge, it is the first to 

compare perceived lung cancer risk with actual calculated risk in this setting. Whilst it would have 

been unrealistic to expect highly accurate perceived absolute risk on an individual level, it is 

notable that as a cohort, the average perceived absolute risk was 20-times higher than actual risk 

score calculated by the PLCOM2012 RPM. In addition, we observed no correlation between 

perceived absolute risk and actual risk score. Conversely, there was a robust association between 

increasing perceived comparative risk and increasing calculated risk; family history of lung cancer 

was a significant factor driving this association. Perceived absolute and comparative risk, as well 

as levels of lung cancer-specific worry and general anxiety, were significantly higher in women 

than in men, despite no increased actual lung cancer risk in this cohort. These data provide first 

insights into how community lung cancer screening attendees perceive their cancer risk, with 

important implications for pre-screening counselling, informed participation, and public health 

messaging. 

Shared decision making has been identified as an important aspect of lung cancer screening 

implementation [211,260]. Understanding how the participant perceives their lung cancer risk 

and being able to effectively communicate risk in order to correct inaccurate perceptions are 

important foundational steps in facilitating shared decision making; a patient’s healthcare 

decisions need to be based on an accurate awareness of the potential risks and benefits 

associated with the disease and intervention they are considering [256]. Previous studies have 

shown that inflated and inaccurate estimations of absolute risk are common, both in the context 

of perceived personal and population risk of disease [265–267,273]. In our study, participants 

who overestimated personal absolute lung cancer risk were more likely to overestimate 

population absolute lung cancer risk, suggesting that limited health literacy or understanding of 

absolute risk may be driving both phenomena. In order to address these misperceptions, some 

have emphasised the importance of clearly communicating absolute risk scores to screening 

participants in order to improve absolute risk perception accuracy and facilitate shared decision 

making [266,273]. However, others have questioned the benefits of such a strategy, both in the 

context of helping participants make decisions about screening, as well as influencing subsequent 

health behaviours [267,273,408–413].  

Employing comparative risk terminology during risk counselling may be a better approach. 

Participants in our study displayed a fairly accurate perception of their risk in comparative terms, 

with exposure to lung cancer risk factors, particularly family history of the disease, being 
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associated with higher perceived comparative risk. A recently published risk perception study in 

the Pan-Canadian Early Detection of Lung Cancer (PanCan) study cohort also highlighted family 

history as the most significant risk factor associated with increased perceived comparative risk. 

Like our study, it demonstrated a direct association between comparative risk perception and 

actual lung cancer risk, albeit not in a community-based lung cancer screening programme 

located in highly socio-economically deprived areas [274]. Other studies have also implicated 

family history of lung cancer as an important driver of perceived comparative risk [273,401], 

alongside other risk factors such as smoking status [270,279,402,414]. It is important to note that 

relying solely on comparative risk metrics could inappropriately bias a patient’s decisions [399]. 

Employing a variety of formats, language, and decision aids may be important when 

communicating risk [415].  

Our findings indicate that certain subgroups of the study cohort were more likely to display 

adverse psychological indicators. For example, women had increased perceived lung cancer risk, 

lung cancer-specific worry (both frequency and impact), and general anxiety. This is congruent 

with other studies which report increased perceived disease risk and anxiety amongst women 

[414,416–418]. We also found that screening-eligible (high risk) participants had significantly 

higher perceived comparative risk compared to screening-ineligible (low risk) participants. They 

were also almost three-times as likely to report lung cancer-specific worry, twice as likely to 

report lung cancer-specific worry impacting their mood and twice as likely to have a PHQ-4 score 

indicative of depression. These results may reveal segments of screening attendees who may 

benefit from additional pre-screening counselling to ensure they are adequately supported 

through the risk calculation and screening process. It also begs the question as to whether LHC 

attendance would increase or decrease worry and anxiety in each of the subgroups; further 

research is required to address this. 

In addition to the association between actual risk and perceived comparative risk, our results 

show that measures of poor mental health were associated with higher perceived comparative 

risk, but lung cancer-specific worry was not. The nature of the relationship between mental 

health, worry, risk perception and actual risk is complex and requires further research to establish 

the direction of causality [267]. Whilst previous studies have demonstrated a link between lung 

cancer worry and risk factors such as smoke exposure and family history, in-line with our results 

[269–271,419], the PanCan risk perception study reported no association between actual risk and 

lung cancer worry. It also showed no link between worry and perceived risk, in common with our 

study [274]. Our study highlights the importance of including a measure of mental health as a 

covariate in lung cancer risk perception studies, as it may be a confounding variable when 

examining links between the other psychological measures. 
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An additional benefit of communicating risk in comparative terms may be that it facilitates a 

direct interaction with existing risk perception in the participant, thereby providing an 

opportunity to influence health behaviours linked to risk perception [420–422]. There is some 

evidence that lung cancer risk perception is correlated with intention to quit smoking and success 

in quitting [274,423]. A large prospective study in the SUMMIT cohort (an ongoing study taking 

place in London, trialling LDCT and blood-based cancer screening) found that increased risk 

perception is associated with screening uptake, although several other psychological constructs 

such as perceived lung cancer controllability, survival, willingness to be treated, and perceived 

benefit of screening were also implicated and may be more significant in high-risk populations 

[414]. Other studies have shown that interventions aimed at increasing uptake by utilising risk 

perception may not be effective [408,409], and psychological interventions to increase screening 

uptake must take a complex, multilevel approach rather than a one-off individual communication 

targeting a single psychological construct [414]. Further research is required to elucidate the most 

effective interventions for improving the uptake of positive health behaviours. Considering that 

more than 95% of this study cohort had never received a personalized lung cancer risk score 

before, the LHC programme could be an ideal setting for both investigating and implementing 

such strategies.   

The lung cancer risk factors identified most accurately by our study participants were smoking, 

passive smoking, asbestos exposure, and exposure to pollution. A previous UK study also found 

these factors to be the most well-known [424], possibly highlighting the success of public health 

messaging in recent decades. In contrast, some of the factors included in RPMs used to establish 

screening eligibility, such as age and COPD, had much lower recognition. Genetic factors, which 

are emerging as a potentially important additional risk factor for screening selection (see Chapter 

Five), were only successfully identified as a risk factor by 50% of the study cohort. Considerable 

additional research will be required to ensure genetic risk information is communicated ethically 

and successfully before it can be practically implemented into real-world screening programmes; 

similar research has taken place in breast cancer screening [391,393,425] (see section 5.4.4). 

Participants with family history of lung cancer were significantly more likely to correctly identify it 

as a risk factor. Increasing awareness of familial lung cancer risk has been suggested as an 

important method of promoting protective behaviours [426]. Conversely, current smokers were 

less likely to identify passive smoking or pollution as risk factors. This is congruent with a large US 

study that reported significantly higher perceived harm from second-hand smoke among non-

smokers and non-combustible users when compared to smokers [427]. Another study found that 

perceived risk of passive smoking was positively associated with intention to quit and successful 

smoking cessation [428]. Further research is required to establish if there is a causal link between 
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this awareness and smoking cessation, and whether this could be a useful approach in public 

health messaging [429].  

The cohort significantly overestimated lung cancer survival rates, a phenomenon previously 

described [430,431]. Raising awareness of lesser-known risk factors and true survival rates may 

have an impact on health behaviours; previous studies have shown that accurate risk factor and 

survival rate awareness (as opposed to an overly fatalistic attitude [414,432]) can affect risk 

perception and may improve screening compliance and other protective behaviours 

[431,433,434]. 

With its cross-sectional design, our study was not able to investigate the impact of LHC 

attendance on long-term risk perception accuracy, mental health, worry, or health-related 

behaviours such as smoking cessation. Further research at multiple time-points is required to 

investigate the impact LHC attendance has on these factors. We were also unable to examine risk 

perception in those who declined invitation to screening, and thereby investigate factors that 

influence screening uptake, an important area for future research; additional psychological 

constructs such as perceived disease controllability, stigma, and perceived effectiveness of risk-

reducing behaviours are emerging as important mediators of health behaviour alongside risk 

perception [414] and should also be examined in future research. We used a single RPM 

(PLCOM2012) to calculate actual risk score in our study, alternative RPMs may provide different risk 

scores for individuals; research into RPM performance in the LHC setting is ongoing (see Chapter 

Three). Benefit-based screening selection is emerging as a viable and potentially superior 

alternative to risk-based selection (see Chapter Four); this study did not examine perceived 

benefits or participant understanding of risk vs. benefit considerations, an important area of 

future research if benefit-based selection implementation continues. The single-centre, majority-

White British profile of our study may prevent extrapolation of our findings to other populations; 

further research in a variety of diverse screening programmes is required. Whilst there were no 

major differences in questionnaire responses between identified and non-identified participants, 

we were not able to analyse differences in demographics between these groups (or indeed among 

those who attended the LHC but declined to participate in this study) and cannot exclude the 

possibility of selection bias.  

Despite these limitations, our study provides important information about risk perception in 

attendees of a ‘real-world’, targeted screening programme located in communities with high 

levels of socio-economic deprivation. Furthermore, participants were surveyed at the closest 

possible timepoint prior to risk calculation and counselling. In other study settings (such as 

screening trials), participation bias and healthy volunteer effect may result in a study cohort less 

representative of actual screening attendees [318,336]. These factors contribute to the novelty of 
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our findings and position our results and their associated implications for risk communication and 

pre-screening counselling to be directly applicable to the target population.   
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Chapter Seven – Discussion and Future Work 

7.1 Project Overview 

In March 2022, the UK National Screening Committee (UK NSC) (the advisory body which 

recommends screening policy to the UK government), published an interim report regarding 

targeted LDCT screening for lung cancer [253]. In this report, the UK NSC proposed that screening 

high-risk individuals for lung cancer should be recommended nationwide. The TLHC strategy for 

screening implementation, including the use of multivariable risk models for screening selection, 

was deemed “feasible, practical and effective”. It also found that LDCT screening for lung cancer is 

likely to be cost-effective for the NHS. One of the areas the report highlighted as an area requiring 

additional consideration was: “which multivariable risk assessment tool or combination of tools 

should be used to maximise efficiency within the screening programme.” This objective highlights 

the pressing need for further research into how risk prediction tools can be operated optimally in 

a real-world screening setting, aligning perfectly with one of the hypotheses of this thesis, that 

screening selection strategies perform sub-optimally in the socio-economically disadvantaged 

populations most likely to be targeted for lung cancer screening.  

In Chapter Three, I presented evidence that supports this hypothesis by demonstrating that risk 

prediction models used in a community based LHC pilot may be poorly calibrated, had significant 

performance variation based on RPM and threshold selected, and favoured older, more comorbid 

participants for screening. It is important to note that despite these concerns, my analyses were 

congruent with a large volume of previous research demonstrating that risk-based selection does 

result in an effective, successful, and efficient screening programme. I also demonstrated that 

risk-based screening selection resulted in a highly comorbid screening cohort, highlighting what 

may be a strategic oversight in the UK NSC recommendation to “maximise efficiency within the 

screening programme”. High efficiency is indeed crucial in ensuring the screening programme is 

cost-effective and provides benefit to the population. However, if efficiency is narrowly defined as 

maximal detection rates from screening, aiming to maximise screening efficiency means 

optimising risk prediction as much as possible and directing screening away from those at lower 

risk, concurrently increasing the age and comorbidity burden in the screening cohort. This would 

result in very high cancer detection rates but could result in increased overdiagnosis and limited 

actual life expectancy benefit for the screening attendees. 

In Chapter Four, I assessed one approach to addressing this concern: calculating individual life-

gained from screening scores (using LYFS-CT) and employing these scores in benefit-based 

screening selection. I demonstrated that risk-based and benefit-based screening selection would 

have resulted in broadly similar screening cohorts in the Manchester LHC pilot, but participants 
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favoured by benefit-based selection were younger and had a lower burden of comorbidity. This 

divergence in comorbidity persisted after five years of follow-up, which may indicate that this 

subgroup would be expected to have a longer life-expectancy and more to gain from screening. 

Unfortunately, the size of this study, and more specifically the size of the follow-up subset and 

length of follow-up period, did not allow for conclusions regarding differences in mortality or 

cancer detection rates between the risk-selected or benefit-selected cohorts. However, to my 

knowledge, this was the first time LYFS-CT has been applied to real-world screening participants, 

and my results demonstrated that this framework for screening selection certainly has the 

potential to address the issue of the high burden of comorbidity in the RPM-selected screening 

cohort. Developing a benefit-based approach to screening selection may still adhere to the UK 

NSC recommendation to “maximise efficiency within the screening programme” if ‘efficiency’ is 

defined more holistically, focussing on maximising the life-years gained from screening for 

participants per scan, rather than simply increasing the lung cancer detection rate.  

In Chapter Five, I presented evidence that supported the hypothesis that considering genetic risk 

factors in ever-smokers has the potential to improve risk prediction for lung cancer. I did this by 

validating several previously published polygenic risk score tools in a case-control cohort highly 

representative of the target population for community-based lung cancer screening. Most of the 

PRSs improved the discrimination of a base clinical model with statistical significance, indicating 

that they could improve risk prediction when integrated into an RPM. These PRSs were developed 

in large RCT or biobank populations, so validation in this cohort is an important novel finding 

providing additional evidence regarding their clinical utility. I also identified novel SNPs on two 

genes of interest which were not included in the PRSs previously published. If validated in 

external study populations, SNPs from these loci may be candidates for inclusion in future PRSs. 

Including genetic factors in risk prediction is a method of generally optimising the risk prediction 

framework (as the inclusion of any additional biomarker would) and may also assist in selecting 

high-risk screening participants without simultaneously selecting a very comorbid cohort. This is 

an important added benefit and ties two of the primary aims of this thesis together. 

In the final section of this thesis, I examined how socio-economically disadvantaged participants 

of a community-based lung cancer screening programme perceive personal and population risk of 

lung cancer, what their knowledge of the disease is, and how much lung cancer-specific worry 

they experience. My findings have implications for pre-screening risk communication, an area 

with very limited previous research in the lung cancer screening field. The results may also be 

useful for ensuring worried, anxious, or fatalist participants receive the appropriate supportive 

counselling whilst attending screening. A further potential implication is developing tailored 

behavioural medicine strategies which use risk perception and communication as tools to 
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influence positive health behaviours such as smoking cessation and screening adherence. My 

study was unable to investigate such interventions, but it does provide an important foundational 

snapshot of participant attitudes which should be built upon in future research. The ever-

expanding implementation of lung cancer screening provides ample opportunity for this research 

to be developed further. 

7.2 Future Work 

The results presented in this thesis highlight the urgent need for the development of large 

prospective studies embedded in community-based lung cancer screening programmes. Such 

studies would facilitate prospective screening selection using multiple RPMs, allowing for like-for-

like performance comparisons between the various methods of selection. Full cohort extended 

follow-up would allow for model recalibration, ensuring RPMs are functioning adequately in the 

target screening population. The YLST is currently seeking to prospectively address this question 

but will not be assessing PLCOM2012 ≥1.51% vs. LLPV2 ≥2.5%, the two criteria which were most 

closely matched in the results presented here [254]. Other RPMs which have gained prominence 

since the YLST protocol was published [225] should also be tested in this setting, necessitating the 

advancement of additional prospective studies to ensure optimal risk prediction is achieved. With 

the ongoing rollout of the TLHC (including in Manchester) resulting in tens of thousands of 

participants passing though screening programmes, as well as the potential final recommendation 

of a national targeted lung cancer screening programme by the UK NSC at the end of 2022, there 

will be many opportunities to perform further extensive prospective studies assessing risk-based 

selection using several RPMs at varying selection thresholds. This would facilitate model 

recalibration and allow for a fully informed assessment of which selection method performs best 

in the socio-economically deprived populations most at risk of lung cancer.  

Prospective studies of this nature are also the key to establishing whether benefit-based selection 

should be considered alongside, or as an alternative to, risk-based selection. Whilst my results 

provide an indication of the potential for this selection method, considerable additional research 

is required to investigate if it provides an actual mortality benefit. To my knowledge, there are no 

current plans to consider LYFS-CT alongside RPMs in TLHC-based prospective studies and the UK 

NSC interim report does not mention benefit-based selection [253]. Testing LYFS-CT in screening 

programmes will require careful pre-emptive planning, as some of the variables needed to 

calculate LYFS-CT are not routinely collected during an LHC. Even if prospective studies in which 

LYFS-CT is used for screening selection are not deemed feasible, it would be advantageous to 

collect the necessary data during LHCs to facilitate large retrospective studies. I believe this 

should be a priority in lung cancer screening research moving forward.  
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It is important to note that whilst the results presented in this thesis indicate that using a PRS 

would result in a statistically significant improvement to lung cancer risk prediction, the clinical 

significance of the relatively modest effects derived from genetic risk factors remains unclear. 

Existing risk prediction strategies harnessing standard clinical risk factors function very 

successfully in lung cancer screening selection [225]. In order to be cost effective, it is likely that 

adding a PRS will either require the identification of specific subgroups of the population who 

would be particularly likely to benefit from incrementally improved risk prediction, a drastic 

reduction in the cost or increase in the ubiquity of genetic testing, or the identification of a 

significant additional tranche of SNPs responsible for lung cancer heritability. The ongoing 

development of GWAS cohorts of ever increasing sample sizes (Million Veterans Project, UK 

Biobank, 23andme, and others) is an important step in both identifying these additional SNPs, as 

well as precisely defining the effect size of each variant to improve predictive ability [435]. 

Methodological advances such as advanced genomic imputation [435], machine learning [436], 

and functional studies [437] will also assist in improving PRS tools. It is absolutely crucial that 

GWAS and associated studies take place in datasets representing populations of diverse and non-

European ethnicities to ensure PRS tools are applicable to non-European screening attendees and 

health disparities are not exacerbated. This represents a significant gap in the field until this point 

[438].  

In addition to continued study to further develop PRSs, considerable research is required to 

validate these tools in real-world screening programmes. Priority should be given to conducting 

validation studies in which both the cases and controls are derived from the same screening 

cohort, as well as comparing PRS performance with the actual RPM used for screening selection 

(neither of which I was able to do in this study). Further research is also required to ensure PRSs 

predict risk for all lung cancer subtypes, and for all subgroups of the screening cohort. 

The strategies for improving risk prediction and screening selection analysed in this thesis are not 

the only ones available. We did not analyse every RPM published (some of which have 

demonstrated superior performance to those tested in this thesis) [225], nor did we consider 

RPMs that integrate LDCT results into ongoing risk prediction and determination of screening 

schedule [439,440]. Other biomarkers such as nasal swab RNA sequencing [441], circulating 

tumour DNA [442], and epigenetic risk factors [443] may also have the potential to augment risk 

prediction. Currently, research into these biomarkers is relatively siloed, although there are some 

attempts to integrate genetic and epigenetic risk factors into a combined risk calculator in some 

disease areas [444]. Plans have been developed to undertake a study at Bristol University 

examining the epigenetic profile of the samples from my case-control cohort; it is hoped that the 
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data generated from my project and this study will be able to be integrated to provide further 

insight into the determinants of lung cancer risk. 

Finally, I think the prospect of utilising risk perception and pre-screening counselling to influence 

participants’ beliefs and health behaviours is particularly exciting. There is extremely mixed 

evidence as to the effectiveness of such interventions, but systematic studies examining a variety 

of communication techniques and tools in a structured community lung cancer screening 

programme are rare. The TLHC rollout provides an ideal setting for such studies. Studies 

examining the impact of simple LHC attendance (without any additional behavioural intervention) 

on risk perception, worry, mental health, and health behaviours are also extremely important. 

In conclusion, this thesis has successfully addressed its overall aim: to improve lung cancer 

screening selection in socio-economically disadvantaged communities. I used data and samples 

sourced directly from individuals in these communities to identify several areas of concern that 

may inhibit optimal screening selection in the target population for lung cancer screening. I 

considered two key approaches to addressing these areas of concern, and demonstrated that 

with further research, they may be important strategies in further improving screening selection. I 

also examined how real-world screening participants perceive lung cancer risk and the 

implications this may have for pre-screening counselling, an under-researched and important area 

of screening implementation directly relevant to risk-based screening selection; this aspect of my 

thesis highlights the real patients who stand to benefit from lung cancer screening. My thesis 

addresses two of the four key focus areas for successful lung cancer screening implementation 

identified by Van Der Aalst et.al. [245]. With the ongoing expansion of lung cancer screening in 

the UK, and the likely development of a national screening programme, I hope that the research 

contained in this thesis contributes to the accumulating evidence that lung cancer screening has 

significant potential to reduce mortality and save lives, particularly in socioeconomically deprived 

communities. However, this thesis also highlights the many questions still unanswered with 

regards to the optimal way to select individuals for lung cancer screening to maximise benefit. 

Further research, funding, and organisation is absolutely crucial to continue to address these 

issues and give lung cancer screening the best chance at being efficacious and cost-effective. A 

unified approach to digitizing, amalgamating, and analysing data from all LHCs across the country 

(and perhaps internationally), in a way similar to that seen when the COVID-19 vaccine was rolled 

out to the population [445], would facilitate a wealth of diverse and well powered prospective 

and retrospective studies, aiming to answer some of the questions still remaining in this field. 
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Appendices 

8.1 Appendix 1 – Comorbidity Classification for Life-Gained Study Follow-up 
Severe Other Serious Minor 

2nd primary lung 
cancer 
Acute coronary 
syndrome 
Bowel cancer 
Breast cancer 
Cerebrovascular 
disease 
Chronic kidney disease 
Coronary artery 
disease 
Coronary artery 
disease 
Diabetes type II 
Endometrial cancer 
Hepatocellular 
carcinoma 
Ischaemic heart 
disease 
Malignant melanoma 
Mouth cancer 
Myelodysplastic 
syndrome 
Myocardial infarction 
NSTEMI 
Prostate cancer 
Renal cell cancer 
Salivary gland cancer 
Thyroid cancer 

Atrial Fibrillation 
COPD 
Hypertension 
Pneumonia 

Abdominal aortic 
aneurysm 
Alzheimer’s disease 
Aortic aneurysm 
Corticobasal 
degeneration 
Dementia 
Emphysema 
Heart failure 
Idiopathic pulmonary 
fibrosis 
Interstitial lung disease 
Liver cirrhosis 
Pneumothorax 
Pulmonary embolism 
Severe frailty 
Small vessel 
cerebrovascular disease 
Thoracic aortic 
aneurysm 
Valvular heart disease 

Acoustic neuroma 
Alcohol problem drinking 
Barrett's oesophagus 
Benign pleural effusion 
Bronchiectasis 
Cervical disc prolapse 
Cholecystitis 
Cholelithiasis 
Cognitive impairment 
Colitis 
Crohn's disease 
DVT 
Deep vein thrombosis 
Degenerative disc disease 
Diabetic foot ulcer 
Diabetic retinopathy 
Diverticular disease 
Diverticulitis 
Epilepsy 
Fatty liver 
Fibromyalgia 
Gallstones 
Gastric ulcer 
Gastro-oesophageal 
reflux disease 
Glaucoma 
Gout 
Graves' disease 
Hiatus hernia 
Housebound 
Hypercholesterolaemia 
Hyperlipidaemia 
Hyperthyroidism 
Iron deficiency anaemia 
Lower limb DVT 
Lower limb ischaemia 
Lumbar spondylosis 
Obstructive sleep apnoea 
Oesophagitis 
Opioid dependant 
Osteoarthritis 
Osteopenia 
Osteoporosis 
Peripheral vascular 
disease 
Polymyalgia rheumatica 
Primary 
hyperparathyroidism 
Psoriasis 
Pulmonary Embolus 
Reflux 
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8.2 Appendix 2 - SNP-level Data for PRSs Validated in Manchester Cohort 
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8.3 Appendix 2 – Full GWAS Results for Significant SNPs in Manchester Cohort 

uniqID rsID 
ch
r 

pos ref 
effe
ct 

MAF P or beta se r2 IndSigSNP 
Genomic 

Locus 
Nearest Gene dist func 

CAD
D 

RD
B 

1:8985036:C:T 
rs108643

70 
1 

898503
6 

C T 
0.239

6 
8.00E-

06 
0.7007

06 

-
0.4696

2 

0.1051
73 

1 
rs108643

70 
1 RP3-477M7.6 

1507
2 

intergenic 
1.09

5 
5 

1:14233836:A:T 
rs144716

332 
1 

142338
36 

T A 
0.018

89 
2.54E-

06 
3.0156

8 
1.4583 

0.3099
7 

1 
rs144716

332 
2 PRDM2 

8226
1 

intergenic 
7.68

1 
7 

1:37521551:A:C rs581878 1 
375215

51 
C A 

0.442
3 

2.57E-
05 

1.3391
4 

0.3995
64 

0.0949
46 

0.6222
17 

rs667614
2 

3 GRIK3 
2182

0 
intergenic 

0.86
9 

NA 

1:37521740:A:
G 

rs667614
2 

1 
375217

40 
A G 

0.438
4 

6.38E-
06 

1.3864
2 

0.4122
07 

0.0913
32 

1 
rs667614

2 
3 GRIK3 

2200
9 

intergenic 
1.85

7 
7 

1:37521938:A:
G 

rs668748
5 

1 
375219

38 
G A 

0.435
4 

0.0001
61 

1.3097 
0.3423

53 
0.0907

4 
0.8476

21 
rs667614

2 
3 GRIK3 

2220
7 

intergenic 
0.40

1 
5 

1:37521983:G:T 
rs667918

8 
1 

375219
83 

T G 
0.427

4 
0.0002

71 
1.3001

9 
0.3306

06 
0.0907

88 
0.7734

66 
rs667614

2 
3 GRIK3 

2225
2 

intergenic 13.3 5 

1:37522030:A:
G 

rs668758
8 

1 
375220

30 
G A 

0.429
4 

0.0002
71 

1.3002
7 

0.3305
64 

0.0907
83 

0.7733
92 

rs667614
2 

3 GRIK3 
2229

9 
intergenic 

3.19
7 

5 

1:37522629:C:T rs822904 1 
375226

29 
T C 

0.420
5 

NA NA NA NA 
0.7606

88 
rs667614

2 
3 GRIK3 

2289
8 

intergenic 
0.58

5 
NA 

1:37522637:G:T 
rs642600

6 
1 

375226
37 

T G 
0.462

2 
NA NA NA NA 

0.6423
41 

rs667614
2 

3 GRIK3 
2290

6 
intergenic 

0.05
6 

6 

1:37522641:G:T 
rs202023

532 
1 

375226
41 

T G 
0.456

3 
NA NA NA NA 

0.6478
89 

rs667614
2 

3 GRIK3 
2291

0 
intergenic 

0.76
7 

6 

1:37522645:G:T 
rs669052

1 
1 

375226
45 

T G 
0.432

4 
NA NA NA NA 

0.7558
82 

rs667614
2 

3 GRIK3 
2291

4 
intergenic 

0.58
8 

6 

1:37522916:A:T rs656826 1 
375229

16 
T A 

0.425
4 

0.0001
7 

1.3066
3 

0.3421
92 

0.0910
02 

0.7520
33 

rs667614
2 

3 GRIK3 
2318

5 
intergenic 

2.03
1 

7 

1:37522957:A:
G 

rs527907 1 
375229

57 
G A 

0.425
4 

0.0001
8 

1.3048
3 

0.3409
38 

0.0910
4 

0.7520
33 

rs667614
2 

3 GRIK3 
2322

6 
intergenic 

1.78
6 

NA 

1:37524007:G:
GA 

rs107141
60 

1 
375240

07 
G GA 

0.387
7 

NA NA NA NA 
0.6149

7 
rs667614

2 
3 GRIK3 

2427
6 

intergenic 
0.90

9 
NA 

1:37525639:A:
G 

rs550273 1 
375256

39 
A G 

0.424
5 

0.0003
43 

1.2999
3 

0.3179
32 

0.0887
94 

0.7489
49 

rs667614
2 

3 GRIK3 
2590

8 
intergenic 

1.40
6 

5 
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1:37525676:A:C rs613720 1 
375256

76 
C A 

0.424
5 

0.0001
7 

1.3063
8 

0.3421
14 

0.0909
99 

0.7489
49 

rs667614
2 

3 GRIK3 
2594

5 
intergenic 

2.13
1 

NA 

1:37525698:C:T rs549417 1 
375256

98 
T C 

0.423
5 

0.0002
75 

1.2956
5 

0.3311
57 

0.0910
22 

0.7450
57 

rs667614
2 

3 GRIK3 
2596

7 
intergenic 

3.04
6 

NA 

1:37526481:C:T rs521696 1 
375264

81 
T C 

0.412
5 

0.0002
5 

1.3003
8 

0.3346
98 

0.0913
99 

0.7884
36 

rs667614
2 

3 GRIK3 
2675

0 
intergenic 

4.78
5 

NA 

1:37530753:A:
G 

rs218406 1 
375307

53 
G A 

0.423
5 

0.0004
34 

1.2826
8 

0.3187
29 

0.0905
88 

0.7458
97 

rs667614
2 

3 GRIK3 
3102

2 
intergenic 

0.48
2 

NA 

1:37534313:C:T rs849942 1 
375343

13 
T C 

0.427
4 

0.0005
19 

1.2836
7 

0.3190
97 

0.0919
41 

0.7028
69 

rs667614
2 

3 GRIK3 
3458

2 
intergenic 

0.50
8 

NA 

1:37534673:C:T rs218424 1 
375346

73 
T C 

0.424
5 

0.0005
88 

1.2865
5 

0.3179
4 

0.0925 
0.6749

94 
rs667614

2 
3 GRIK3 

3494
2 

intergenic 
8.68

9 
NA 

4:30168938:G:T 
rs766401

73 
4 

301689
38 

G T 
0.025

84 
3.46E-

06 
0.3489

77 

-
1.7072

6 

0.3678
15 

1 
rs766401

73 
4 

RP11-
174E22.2 

1589
99 

intergenic 
2.90

7 
7 

4:30168960:C:T 
rs115363

044 
4 

301689
60 

C T 
0.025

84 
3.48E-

06 
0.3491

04 

-
1.7067

5 

0.3678
38 

1 
rs766401

73 
4 

RP11-
174E22.2 

1590
21 

intergenic 
1.07

3 
7 

4:30169405:A:
AAAG 

rs148111
093 

4 
301694

05 
AAA

G 
A 

0.025
84 

NA NA NA NA 1 
rs766401

73 
4 

RP11-
174E22.2 

1594
66 

intergenic 
1.40

9 
NA 

4:30169961:A:
G 

rs772963
50 

4 
301699

61 
G A 

0.025
84 

3.68E-
06 

0.3503
78 

-
1.6946

4 

0.3661
28 

1 
rs766401

73 
4 

RP11-
174E22.2 

1600
22 

intergenic 
0.00

2 
7 

4:30171304:A:
G 

rs114414
502 

4 
301713

04 
G A 

0.025
84 

3.66E-
06 

0.3501
65 

-
1.6958

7 

0.3662
86 

1 
rs766401

73 
4 

RP11-
174E22.2 

1613
65 

intergenic 
0.86

2 
7 

4:30171934:G:T 
rs116585

012 
4 

301719
34 

G T 
0.025

84 
3.85E-

06 
0.3502

1 

-
1.6884

1 

0.3654
96 

1 
rs766401

73 
4 

RP11-
174E22.2 

1619
95 

intergenic 
0.19

9 
7 

4:30174024:A:
G 

rs115852
532 

4 
301740

24 
G A 

0.023
86 

1.69E-
05 

0.3588
37 

-
1.6241

2 

0.3774
51 

0.9192
23 

rs766401
73 

4 
RP11-

174E22.2 
1640

85 
intergenic 

2.10
2 

7 

4:30179734:G:T 
rs755732

18 
4 

301797
34 

G T 
0.025

84 
4.54E-

06 
0.3491

84 

-
1.6794

8 

0.3663
16 

1 
rs766401

73 
4 

RP11-
174E22.2 

1697
95 

intergenic 
2.18

2 
6 
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4:30181119:C:C
TT 

rs564195
700 

4 
301811

19 
C CTT 

0.024
85 

NA NA NA NA 
0.9595

27 
rs766401

73 
4 

RP11-
174E22.2 

1711
80 

intergenic 
3.97

8 
NA 

4:30185359:C:
G 

rs800924
55 

4 
301853

59 
G C 

0.025
84 

NA NA NA NA 1 
rs766401

73 
4 

RP11-
174E22.2 

1754
20 

intergenic 
0.45

9 
7 

4:30187639:C:T 
rs753567

50 
4 

301876
39 

T C 
0.024

85 
NA NA NA NA 

0.9595
27 

rs766401
73 

4 
RP11-

174E22.2 
1777

00 
intergenic 

0.37
8 

5 

4:30195644:G:T 
rs732237

18 
4 

301956
44 

G T 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
1857

05 
intergenic 

0.72
6 

7 

4:30205385:C:T 
rs732237

22 
4 

302053
85 

T C 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
1954

46 
intergenic 

0.83
8 

7 

4:30210737:A:C 
rs681939

1 
4 

302107
37 

C A 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2007

98 
intergenic 

0.66
8 

5 

4:30212116:A:
G 

rs604018
52 

4 
302121

16 
G A 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2021
77 

intergenic 
0.91

2 
6 

4:30212194:A:C 
rs575627

11 
4 

302121
94 

A C 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2022

55 
intergenic 

0.56
9 

7 

4:30212685:A:
G 

rs732237
24 

4 
302126

85 
A G 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2027
46 

intergenic 
5.92

3 
7 

4:30213404:A:T 
rs119343

22 
4 

302134
04 

A T 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2034

65 
intergenic 

0.13
9 

7 

4:30213444:A:T 
rs119300

25 
4 

302134
44 

T A 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2035

05 
intergenic 

0.34
4 

6 

4:30213600:A:
G 

rs732237
25 

4 
302136

00 
A G 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2036
61 

intergenic 
0.53

6 
6 

4:30213690:C:
G 

rs732237
26 

4 
302136

90 
G C 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2037
51 

intergenic 
0.10

8 
6 

4:30214160:A:
G 

rs119355
24 

4 
302141

60 
A G 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2042
21 

intergenic 
2.16

4 
5 

4:30214281:C:T 
rs119446

17 
4 

302142
81 

C T 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2043

42 
intergenic 

0.13
1 

6 

4:30214571:A:C 
rs732237

27 
4 

302145
71 

A C 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2046

32 
intergenic 

13.4
7 

7 

4:30214741:G:T 
rs119436

59 
4 

302147
41 

T G 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2048

02 
intergenic 

12.1
6 

6 

4:30214753:C:T 
rs574004

01 
4 

302147
53 

C T 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2048

14 
intergenic 0.06 7 
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4:30215110:C:T 
rs683699

2 
4 

302151
10 

T C 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2051

71 
intergenic 

4.90
8 

7 

4:30215507:C:T 
rs644869

9 
4 

302155
07 

T C 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2055

68 
intergenic 

0.21
5 

5 

4:30216257:A:
G 

rs766207
9 

4 
302162

57 
G A 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2063
18 

intergenic 
2.60

7 
6 

4:30217539:A:
G 

rs141957
700 

4 
302175

39 
G A 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2076
00 

intergenic 
0.08

5 
6 

4:30218508:A:
G 

rs732237
30 

4 
302185

08 
A G 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2085
69 

intergenic 3.41 5 

4:30218695:A:
G 

rs768066
0 

4 
302186

95 
G A 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2087
56 

intergenic 
0.02

9 
7 

4:30219313:C:T 
rs768156

0 
4 

302193
13 

C T 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2093

74 
intergenic 2.2 5 

4:30219615:A:C 
rs732237

31 
4 

302196
15 

C A 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2096

76 
intergenic 1.53 7 

4:30219617:A:
G 

rs732237
32 

4 
302196

17 
G A 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2096
78 

intergenic 
0.05

7 
7 

4:30221873:A:
G 

rs732237
33 

4 
302218

73 
G A 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2119
34 

intergenic 
1.72

5 
7 

4:30222207:C:T 
rs732237

34 
4 

302222
07 

T C 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2122

68 
intergenic 

1.55
9 

7 

4:30222603:A:
G 

rs168831
09 

4 
302226

03 
G A 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2126
64 

intergenic 
0.40

6 
7 

4:30223587:C:T 
rs732237

35 
4 

302235
87 

C T 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2136

48 
intergenic 

1.15
3 

7 

4:30223966:C:T 
rs769191

3 
4 

302239
66 

T C 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2140

27 
intergenic 

2.54
8 

7 

4:30224887:C:
G 

rs789779
54 

4 
302248

87 
C G 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2149
48 

intergenic 
0.24

7 
7 

4:30225317:A:
G 

rs732237
36 

4 
302253

17 
A G 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2153
78 

intergenic 
3.00

1 
6 

4:30225508:G:T 
rs340521

74 
4 

302255
08 

G T 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2155

69 
intergenic 

1.75
2 

5 

4:30226180:A:
G 

rs591442
12 

4 
302261

80 
G A 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2162
41 

intergenic 
2.80

2 
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4:30228019:C:T 
rs767294

6 
4 

302280
19 

C T 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2180

80 
intergenic 

1.35
8 

7 

4:30229098:C:T 
rs732237

37 
4 

302290
98 

T C 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2191

59 
intergenic 

1.78
5 

7 

4:30229686:A:
G 

rs732237
38 

4 
302296

86 
G A 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2197
47 

intergenic 
1.18

4 
7 

4:30229977:G:T 
rs768638

2 
4 

302299
77 

G T 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2200

38 
intergenic 

0.89
3 

7 

4:30231440:A:
G 

rs732237
39 

4 
302314

40 
A G 

0.018
89 

NA NA NA NA 
0.6424

76 
rs766401

73 
4 

RP11-
174E22.2 

2215
01 

intergenic 
1.32

5 
6 

4:30231557:A:T 
rs732237

41 
4 

302315
57 

A T 
0.017

89 
NA NA NA NA 

0.6034
47 

rs766401
73 

4 
RP11-

174E22.2 
2216

18 
intergenic 1.98 7 

4:30233080:A:T 
rs732237

43 
4 

302330
80 

T A 
0.018

89 
NA NA NA NA 

0.6424
76 

rs766401
73 

4 
RP11-

174E22.2 
2231

41 
intergenic 

6.77
9 

6 

6:124413195:A:
G 

rs176295
28 

6 
1.24E+

08 
G A 

0.026
84 

7.04E-
06 

0.4016
02 

-
1.1641

1 

0.2591
26 

1 
rs176295

28 
5 NKAIN2 0 intronic 

2.13
5 

6 

6:124438622:A:
G 

rs176300
88 

6 
1.24E+

08 
G A 

0.026
84 

1.13E-
05 

0.4083
63 

-
1.1245

3 

0.2561
39 

0.9232
56 

rs176295
28 

5 NKAIN2 0 intronic 
4.63

4 
7 

6:131852291:C:
T 

rs122048
90 

6 
1.32E+

08 
T C 

0.048
71 

3.52E-
06 

0.5047
59 

-
0.9651

1 
0.2081 1 

rs122048
90 

6 ARG1 
4199

2 
intergenic 

1.33
6 

5 

7:78464211:C:T 
rs192891

2 
7 

784642
11 

C T 
0.406

6 
4.57E-

07 
0.6837

77 
-

0.5085 
0.1008

2 
0.8134

04 
rs173894

97 
7 MAGI2 0 intronic 

2.25
3 

NA 

7:78464280:C:T 
rs192891

1 
7 

784642
80 

T C 
0.408

5 
4.59E-

07 
0.6840

05 

-
0.5084

4 

0.1008
28 

0.8151
97 

rs173894
97 

7 MAGI2 0 intronic 
5.98

8 
NA 

7:78464645:A:T 
rs126700

51 
7 

784646
45 

T A 
0.406

6 
4.86E-

07 
0.6862

67 

-
0.5078

1 

0.1009
25 

0.8202
85 

rs173894
97 

7 MAGI2 0 intronic 
7.21

8 
5 

7:78464855:C:T 
rs779435

2 
7 

784648
55 

T C 
0.406

6 
4.20E-

07 
0.6839

47 

-
0.5095

1 

0.1007
02 

0.8202
85 

rs173894
97 

7 MAGI2 0 intronic 
12.0

9 
6 

7:78465200:C:
G 

rs780843
1 

7 
784652

00 
C G 

0.406
6 

5.01E-
07 

0.6858
64 

-
0.5067 

0.1008
16 

0.8202
85 

rs173894
97 

7 MAGI2 0 intronic 
1.42

3 
7 
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7:78465349:A:
G 

rs979188
6 

7 
784653

49 
G A 

0.360
8 

1.20E-
07 

0.6724
83 

-
0.5514

8 

0.1041
82 

1 
rs173894

97 
7 MAGI2 0 intronic 

5.70
8 

5 

7:78465639:A:
G 

rs141153
3 

7 
784656

39 
A G 

0.406
6 

1.41E-
07 

0.6749
66 

-
0.5314

7 

0.1009
64 

0.8202
85 

rs173894
97 

7 MAGI2 0 intronic 
1.16

5 
NA 

7:78465646:C:T 
rs141153

2 
7 

784656
46 

T C 
0.406

6 
1.41E-

07 
0.6749

66 

-
0.5314

7 

0.1009
64 

0.8202
85 

rs173894
97 

7 MAGI2 0 intronic 
6.22

4 
NA 

7:78465922:A:T 
rs174549

91 
7 

784659
22 

A T 
0.360

8 
1.16E-

07 
0.6721

52 
-

0.5518 
0.1041

3 
1 

rs173894
97 

7 MAGI2 0 intronic 6.42 7 

7:78466130:C:
G 

rs173894
97 

7 
784661

30 
C G 

0.360
8 

1.00E-
07 

0.6670
14 

-
0.5459

8 

0.1025
15 

1 
rs173894

97 
7 MAGI2 0 intronic 

0.39
3 

7 

7:78468394:G:T 
rs205240

5 
7 

784683
94 

T G 
0.443

3 
0.0002

39 
0.7647

81 

-
0.3577

1 

0.0973
61 

0.6796
28 

rs173894
97 

7 MAGI2 0 intronic 
3.31

5 
7 

7:78473591:C:T rs961928 7 
784735

91 
C T 

0.406
6 

4.02E-
07 

0.6795
18 

-
0.5021

2 

0.0990
78 

0.8202
85 

rs173894
97 

7 MAGI2 0 intronic 
0.22

7 
7 

7:78474408:C:T 
rs133049

5 
7 

784744
08 

C T 
0.350

9 
1.74E-

07 
0.6721

18 
-

0.5385 
0.1030

61 
0.9570

09 
rs173894

97 
7 MAGI2 0 intronic 

6.67
2 

5 

7:78480565:A:
AG 

rs113147
12 

7 
784805

65 
AG A 

0.406
6 

NA NA NA NA 
0.8202

85 
rs173894

97 
7 MAGI2 0 intronic 

8.74
1 

NA 

7:78481391:A:
G 

rs117704
08 

7 
784813

91 
G A 

0.351
9 

4.03E-
07 

0.6754
96 

-
0.5214

1 

0.1028
9 

0.9526
26 

rs173894
97 

7 MAGI2 0 intronic 2.54 6 

7:78497786:C:T 
rs473055

2 
7 

784977
86 

T C 
0.359

8 
5.00E-

07 
0.6687

44 

-
0.4963

2 

0.0987
44 

0.9956
14 

rs173894
97 

7 MAGI2 0 intronic 
5.94

8 
7 

7:78506474:A:
G 

rs126693
40 

7 
785064

74 
G A 

0.350
9 

3.02E-
06 

0.6857
82 

-
0.4763

5 

0.1020
06 

0.9231
68 

rs173894
97 

7 MAGI2 0 intronic 
1.24

1 
7 

7:78511912:C:T 
rs102609

96 
7 

785119
12 

T C 
0.395

6 
7.20E-

05 
0.7355

29 
-

0.3854 
0.0970

86 
0.7741

26 
rs173894

97 
7 MAGI2 0 intronic 

2.34
2 

6 
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7:78513820:A:
G 

rs778839
3 

7 
785138

20 
G A 

0.395
6 

0.0001
16 

0.7416
87 

-
0.3751

7 

0.0973
43 

0.7741
26 

rs173894
97 

7 MAGI2 0 intronic 
0.06

5 
6 

7:78514198:A:T 
rs345420

90 
7 

785141
98 

T A 
0.357

9 
2.36E-

06 
0.6822

86 
-0.482 

0.1021
17 

0.9020
77 

rs173894
97 

7 MAGI2 0 intronic 
2.31

2 
7 

7:78517379:C:T 
rs208072

4 
7 

785173
79 

C T 
0.408

5 
3.13E-

05 
0.7284

72 

-
0.4028

1 

0.0967
42 

0.6408
27 

rs173894
97 

7 MAGI2 0 intronic 
1.23

7 
5 

7:78518132:C:
G 

rs694964
6 

7 
785181

32 
G C 

0.414
5 

NA NA NA NA 
0.6137

01 
rs173894

97 
7 MAGI2 0 intronic 

0.82
7 

6 

7:78518191:C:T 
rs112160

495 
7 

785181
91 

C T 
0.414

5 
NA NA NA NA 

0.6137
01 

rs173894
97 

7 MAGI2 0 intronic 
0.19

6 
7 

7:78518420:C:T 
rs164289

8 
7 

785184
20 

T C 
0.414

5 
6.36E-

05 
1.3473

6 
0.3834

29 
0.0958

82 
0.6137

01 
rs173894

97 
7 MAGI2 0 intronic 

1.90
6 

6 

7:78519102:A:
G 

rs164290
2 

7 
785191

02 
A G 

0.414
5 

NA NA NA NA 
0.6137

01 
rs173894

97 
7 MAGI2 0 intronic 

1.26
3 

7 

7:78519111:C:T 
rs164290

3 
7 

785191
11 

C T 
0.414

5 
NA NA NA NA 

0.6137
01 

rs173894
97 

7 MAGI2 0 intronic 
2.08

5 
7 

7:78519306:C:T 
rs150064

128 
7 

785193
06 

T C 
0.414

5 
NA NA NA NA 

0.6137
01 

rs173894
97 

7 MAGI2 0 intronic 
0.11

5 
7 

7:78519949:A:T 
rs191224

678 
7 

785199
49 

T A 
0.414

5 
NA NA NA NA 

0.6137
01 

rs173894
97 

7 MAGI2 0 intronic 
1.16

3 
7 

7:78520049:C:T 
rs113606

840 
7 

785200
49 

C T 
0.414

5 
NA NA NA NA 

0.6137
01 

rs173894
97 

7 MAGI2 0 intronic 
4.36

5 
7 

7:78520787:A:C 
rs453408

2 
7 

785207
87 

A C 
0.414

5 
NA NA NA NA 

0.6137
01 

rs173894
97 

7 MAGI2 0 intronic 
0.79

2 
6 

7:78522482:A:C 
rs202116

580 
7 

785224
82 

C A 
0.417

5 
NA NA NA NA 

0.6058
09 

rs173894
97 

7 MAGI2 0 intronic 
2.30

3 
6 

7:78522489:C:T 
rs113911

324 
7 

785224
89 

T C 
0.417

5 
NA NA NA NA 

0.6058
09 

rs173894
97 

7 MAGI2 0 intronic 
1.38

7 
6 

7:78522616:A:
G 

rs697074
2 

7 
785226

16 
A G 

0.414
5 

NA NA NA NA 
0.6137

01 
rs173894

97 
7 MAGI2 0 intronic 

1.25
7 

6 

7:78522759:C:T 
rs697205

1 
7 

785227
59 

T C 
0.414

5 
NA NA NA NA 

0.6137
01 

rs173894
97 

7 MAGI2 0 intronic 7.09 6 

7:78522848:A:T 
rs696179

6 
7 

785228
48 

A T 
0.414

5 
NA NA NA NA 

0.6137
01 

rs173894
97 

7 MAGI2 0 intronic 
3.27

1 
6 
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7:78522889:A:C 
rs125380

09 
7 

785228
89 

A C 
0.414

5 
NA NA NA NA 

0.6137
01 

rs173894
97 

7 MAGI2 0 intronic 
5.04

5 
7 

7:78523544:C:T 
rs164290

4 
7 

785235
44 

T C 
0.415

5 
5.77E-

05 
1.3483

4 
0.3861

09 
0.0960

02 
0.6121

04 
rs173894

97 
7 MAGI2 0 intronic 

2.17
2 

7 

7:78524295:C:
G 

rs179901
9 

7 
785242

95 
G C 

0.415
5 

6.85E-
05 

1.3449
1 

0.3819
84 

0.0959
41 

0.6121
04 

rs173894
97 

7 MAGI2 0 intronic 
2.50

7 
5 

7:78524370:C:
G 

rs472777
6 

7 
785243

70 
C G 

0.365
8 

5.74E-
07 

0.6674
98 

-
0.5051

7 

0.1010
39 

0.7898
52 

rs173894
97 

7 MAGI2 0 intronic 
2.11

9 
5 

7:78524614:C:T 
rs179901

7 
7 

785246
14 

T C 
0.415

5 
6.22E-

05 
1.3583

3 
0.3778

71 
0.0943

66 
0.6121

04 
rs173894

97 
7 MAGI2 0 intronic 

4.96
1 

NA 

7:78524726:C:T 
rs179901

6 
7 

785247
26 

C T 
0.415

5 
5.35E-

05 
1.3508

5 
0.3875

68 
0.0959

4 
0.6121

04 
rs173894

97 
7 MAGI2 0 intronic 

0.21
8 

NA 

7:78524838:T:T
A 

rs588510
0 

7 
785248

38 
TA T 

0.418
5 

NA NA NA NA 
0.6026

79 
rs173894

97 
7 MAGI2 0 intronic 

8.16
7 

NA 

7:78525163:A:T 
rs164290

5 
7 

785251
63 

T A 
0.415

5 
6.75E-

05 
1.3456

9 
0.3822

97 
0.0959

38 
0.6121

04 
rs173894

97 
7 MAGI2 0 intronic 

9.00
4 

6 

7:78526104:C:
G 

rs164290
6 

7 
785261

04 
C G 

0.415
5 

6.75E-
05 

1.3457
2 

0.3823
16 

0.0959
38 

0.6121
04 

rs173894
97 

7 MAGI2 0 intronic 
0.26

5 
6 

7:78527758:C:
G 

rs164290
8 

7 
785277

58 
C G 

0.415
5 

5.60E-
05 

1.3528
1 

0.3868
65 

0.0960
21 

0.6121
04 

rs173894
97 

7 MAGI2 0 intronic 
0.28

2 
7 

7:78527994:A:
G 

rs164290
9 

7 
785279

94 
G A 

0.423
5 

6.77E-
05 

1.3510
9 

0.3803
08 

0.0954
54 

0.6463
21 

rs173894
97 

7 MAGI2 0 intronic 
0.05

6 
7 

7:78528140:C:T 
rs179901

2 
7 

785281
40 

T C 
0.423

5 
6.87E-

05 
1.3507

7 
0.3799

46 
0.0954

43 
0.6463

21 
rs173894

97 
7 MAGI2 0 intronic 

6.20
7 

NA 

7:78529998:C:T 
rs425507

3 
7 

785299
98 

C T 
0.410

5 
3.42E-

05 
0.7280

53 
-0.401 

0.0967
77 

0.6303
06 

rs173894
97 

7 MAGI2 0 intronic 
3.27

5 
7 

7:78530733:G:T 
rs102339

75 
7 

785307
33 

T G 
0.415

5 
3.34E-

05 
0.7280

21 

-
0.4015

4 

0.0967
87 

0.6310
13 

rs173894
97 

7 
MAGI2:MAGI

2-IT1 
00:00 

ncRNA_exo
nic 

2.21
9 

7 

7:78530979:C:T 
rs205240

7 
7 

785309
79 

T C 
0.424

5 
NA NA NA NA 

0.6627
4 

rs173894
97 

7 
MAGI2:MAGI

2-IT1 
00:00 

ncRNA_intr
onic 

0.82
2 

5 

7:78531682:A:
G 

rs179900
8 

7 
785316

82 
G A 

0.419
5 

9.07E-
05 

1.3425
6 

0.3757
63 

0.0959
97 

0.6027
7 

rs173894
97 

7 
MAGI2:MAGI

2-IT1 
00:00 

ncRNA_intr
onic 

8.89 NA 
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7:78531705:A:
G 

rs473056
1 

7 
785317

05 
A G 

0.393
6 

1.19E-
05 

0.7183
9 

-
0.4342

3 

0.0991
73 

0.6995
07 

rs173894
97 

7 
MAGI2:MAGI

2-IT1 
00:00 

ncRNA_intr
onic 

4.28
3 

5 

7:78532462:A:C 
rs603177

14 
7 

785324
62 

A C 
0.365

8 
9.79E-

07 
0.6998

78 

-
0.5078

4 

0.1037
3 

0.6000
68 

rs173894
97 

7 
MAGI2:MAGI

2-IT1 
00:00 
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rs105037
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8 

215007
28 

T G 
0.448

3 
1.08E-

05 
0.7320

43 

-
0.4194

7 

0.0953
15 

0.9623
17 

rs125497
83 

8 GFRA2 
4718

6 
intergenic 

1.14
8 

7 

8:21501464:C:T 
rs699551

0 
8 

215014
64 

T C 
0.446

3 
1.21E-

05 
0.7346

49 

-
0.4182

1 

0.0955
69 

0.9620
07 

rs125497
83 

8 GFRA2 
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0 
intergenic 0.7 7 

8:21501471:A:
G 

rs624921
92 

8 
215014

71 
G A 

0.439
4 

1.06E-
05 

0.7297
16 

-
0.4230

3 

0.0960
59 

0.9884
52 

rs125497
83 

8 GFRA2 
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3 
intergenic 

1.15
4 

7 

8:21502545:G:T 
rs125497

83 
8 

215025
45 

G T 
0.438

4 
6.08E-

06 
1.3760

7 
0.4381

73 
0.0968

68 
1 

rs125497
83 

8 GFRA2 
4536

9 
intergenic 

0.16
2 

7 

8:21505259:A:T 
rs413442

8 
8 

215052
59 

T A 
0.449

3 
9.31E-

06 
1.3682 

0.4273
79 

0.0964
17 

0.9582
9 

rs125497
83 

8 GFRA2 
4265

5 
intergenic 

7.24
2 

7 

8:21506198:A:T 
rs132746

54 
8 

215061
98 

A T 
0.470

2 
0.0002

39 
1.2996

2 
0.3529

77 
0.0960

7 
0.8718

65 
rs125497

83 
8 GFRA2 

4171
6 

intergenic 
12.2

2 
5 

8:21510088:A:T 
rs174277

34 
8 

215100
88 

A T 
0.400

6 
1.32E-

05 
0.7285

42 

-
0.4190

5 

0.0961
99 

0.8443
1 

rs125497
83 

8 GFRA2 
3782

6 
intergenic 

1.69
1 

6 

8:21510244:C:
G 

rs174996
20 

8 
215102

44 
G C 

0.408
5 

1.11E-
05 

0.7308
98 

-
0.4198

5 

0.0955
52 

0.8179
49 

rs125497
83 

8 GFRA2 
3767

0 
intergenic 0.86 7 

8:21510700:A:T 
rs126819

66 
8 

215107
00 

T A 
0.401

6 
1.03E-

05 
0.7266

81 

-
0.4233

8 
0.096 

0.8399
88 

rs125497
83 

8 GFRA2 
3721

4 
intergenic 

0.98
5 

5 

8:21510901:C:T 
rs126794

08 
8 

215109
01 

C T 
0.408

5 
1.23E-

05 
0.7342

01 

-
0.4176

6 

0.0955
3 

0.8179
49 

rs125497
83 

8 GFRA2 
3701

3 
intergenic 

1.15
5 

6 

8:21512427:A:
G 

rs138357
3 

8 
215124

27 
G A 

0.449
3 

1.53E-
05 

1.3888
6 

0.3958
97 

0.0915
39 

0.9584
29 

rs125497
83 

8 GFRA2 
3548

7 
intergenic 

0.31
3 

6 
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8:21513913:A:
G 

rs119887
72 

8 
215139

13 
G A 

0.487
1 

0.0003
16 

1.2991
9 

0.3474
15 

0.0964
6 

0.8152
02 

rs125497
83 

8 GFRA2 
3400

1 
intergenic 

0.67
2 

5 

9:90139505:C:T 
rs798638

88 
9 

901395
05 

C T 
0.127

2 
8.95E-

06 
0.6469

4 

-
0.6257

1 

0.1408
88 

0.9072
78 

rs487809
0 

9 DAPK1 0 intronic 
5.55

8 
5 

9:90139865:C:T 
rs779622

76 
9 

901398
65 

C T 
0.127

2 
8.66E-

06 
0.6463

41 

-
0.6264

3 

0.1408
26 

0.9072
78 

rs487809
0 

9 DAPK1 0 intronic 
1.30

1 
6 

9:90140925:A:
G 

rs487736
1 

9 
901409

25 
A G 

0.137
2 

1.13E-
05 

0.6664
72 

-
0.5933

5 

0.1351
27 

0.9844
72 

rs487809
0 

9 DAPK1 0 intronic 0.38 6 

9:90141002:C:T 
rs487736

2 
9 

901410
02 

C T 
0.137

2 
1.37E-

05 
0.6665

9 

-
0.5870

9 

0.1350
03 

0.9844
72 

rs487809
0 

9 DAPK1 0 intronic 
3.76

6 
7 

9:90141193:A:
G 

rs487808
8 

9 
901411

93 
G A 

0.136
2 

1.05E-
05 

0.6644
52 

-
0.5955

4 

0.1351
77 

0.9921
88 

rs487809
0 

9 DAPK1 0 intronic 
4.30

5 
6 

9:90141324:C:
G 

rs126856
65 

9 
901413

24 
G C 

0.140
2 

1.38E-
05 

0.6668
78 

-
0.5867

8 

0.1350
02 

0.9618
77 

rs487809
0 

9 DAPK1 0 intronic 
0.15

7 
5 

9:90143089:A:C 
rs174778

27 
9 

901430
89 

C A 
0.135

2 
1.14E-

05 
0.6666

46 

-
0.5930

9 

0.1351
41 

1 
rs487809

0 
9 DAPK1 0 intronic 

1.72
1 

7 

9:90143928:A:
G 

rs487809
0 

9 
901439

28 
A G 

0.135
2 

7.83E-
06 

0.6623
86 

-
0.6043

4 

0.1352
07 

1 
rs487809

0 
9 DAPK1 0 intronic 

3.42
2 

5 

9:90144609:C:T 
rs173994

59 
9 

901446
09 

C T 
0.135

2 
1.38E-

05 
0.6709

64 

-
0.5851

9 

0.1346
24 

1 
rs487809

0 
9 DAPK1 0 intronic 

4.39
9 

5 

9:90146173:C:T 
rs487809

3 
9 

901461
73 

C T 
0.135

2 
1.50E-

05 
0.6627

76 

-
0.5635

7 

0.1301
89 

1 
rs487809

0 
9 DAPK1 0 intronic 

2.91
5 

7 

9:90148464:A:
G 

rs126861
92 

9 
901484

64 
G A 

0.138
2 

2.01E-
05 

0.6681
61 

-
0.5539

1 

0.1299
1 

0.9768
49 

rs487809
0 

9 DAPK1 0 intronic 
0.54

8 
4 
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9:90148887:C:T 
rs126864

43 
9 

901488
87 

C T 
0.138

2 
2.01E-

05 
0.6681

62 

-
0.5538

9 

0.1299
09 

0.9768
49 

rs487809
0 

9 DAPK1 0 intronic 
4.58

4 
7 

9:90154407:C:T 
rs558733

03 
9 

901544
07 

T C 
0.139

2 
NA NA NA NA 

0.9536
06 

rs487809
0 

9 DAPK1 0 intronic 
2.98

5 
7 

9:90154789:A:T 
rs779926

76 
9 

901547
89 

A T 
0.136

2 
1.73E-

05 
0.6630

85 

-
0.5592

8 

0.1301
66 

0.9764
69 

rs487809
0 

9 DAPK1 0 intronic 
0.13

1 
6 

9:90156846:C:T 
rs104132

6 
9 

901568
46 

C T 
0.139

2 
2.65E-

05 
0.6698

51 

-
0.5438

8 

0.1294
31 

0.9383
06 

rs487809
0 

9 DAPK1 0 intronic 
5.40

4 
3a 

9:90158881:A:
G 

rs784453
78 

9 
901588

81 
A G 

0.137
2 

2.59E-
05 

0.6698
93 

-
0.5452

1 

0.1296
06 

0.9844
72 

rs487809
0 

9 DAPK1 0 intronic 
0.02

4 
6 

9:90159340:A:C 
rs126857

61 
9 

901593
40 

A C 
0.137

2 
2.57E-

05 
0.6696

48 

-
0.5453

5 

0.1295
91 

0.9844
72 

rs487809
0 

9 DAPK1 0 intronic 
0.31

9 
7 

9:90162495:A:T 
rs237874

8 
9 

901624
95 

T A 
0.157

1 
NA NA NA NA 

0.8408
98 

rs487809
0 

9 DAPK1 0 intronic 
0.31

5 
7 

9:90162497:A:T 
rs237874

9 
9 

901624
97 

T A 
0.115

3 
NA NA NA NA 

0.8357
29 

rs487809
0 

9 DAPK1 0 intronic 
0.03

5 
7 

9:90164559:A:
G 

rs126833
32 

9 
901645

59 
A G 

0.136
2 

2.86E-
05 

0.6702
38 

-
0.5396

6 

0.1289
65 

0.9921
88 

rs487809
0 

9 DAPK1 0 intronic 
6.67

4 
7 

9:90170834:C:T 
rs126855

88 
9 

901708
34 

C T 
0.136

2 
3.32E-

05 
0.6715

65 

-
0.5318

2 

0.1281
31 

0.9921
88 

rs487809
0 

9 DAPK1 0 intronic 
3.23

3 
5 

9:90171415:C:T 
rs703897

1 
9 

901714
15 

C T 
0.134

2 
2.61E-

05 
0.6664

62 

-
0.5390

1 

0.1281
84 

0.9764
41 

rs487809
0 

9 DAPK1 0 intronic 
7.21

2 
4 

9:90172040:A:C 
rs174791

42 
9 

901720
40 

C A 
0.132

2 
3.38E-

05 
0.6687

77 

-
0.5240

5 

0.1263
84 

0.9608
81 

rs487809
0 

9 DAPK1 0 intronic 
2.31

3 
4 

9:90172917:A:
G 

rs571962
81 

9 
901729

17 
A G 

0.133
2 

4.49E-
05 

0.6761
83 

-
0.5218 

0.1278
66 

0.9686
41 

rs487809
0 

9 DAPK1 0 intronic 
4.10

8 
5 
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9:90172939:A:T 
rs578134

41 
9 

901729
39 

T A 
0.133

2 
4.49E-

05 
0.6762

21 

-
0.5217

6 

0.1278
61 

0.9686
41 

rs487809
0 

9 DAPK1 0 intronic 
6.52

1 
4 

9:90173374:A:
G 

rs174791
84 

9 
901733

74 
A G 

0.133
2 

4.50E-
05 

0.6762
7 

-
0.5217

3 

0.1278
69 

0.9686
41 

rs487809
0 

9 DAPK1 0 intronic 
3.30

6 
5 

9:90174759:A:
G 

rs753375
78 

9 
901747

59 
A G 

0.132
2 

0.0001
37 

0.6947
3 

-
0.4895

2 

0.1283
47 

0.9608
44 

rs487809
0 

9 DAPK1 0 intronic 
4.01

3 
4 

9:90176617:A:
G 

rs767968
44 

9 
901766

17 
G A 

0.132
2 

0.0001
14 

0.6899
97 

-
0.4956

3 

0.1284
14 

0.9608
44 

rs487809
0 

9 DAPK1 0 intronic 6.24 5 

9:90176981:A:
G 

rs748844
76 

9 
901769

81 
G A 

0.132
2 

0.0001
51 

0.6965
36 

-
0.4856

5 

0.1281
59 

0.9608
44 

rs487809
0 

9 DAPK1 0 intronic 
1.04

2 
5 

9:90178806:C:
G 

rs928114 9 
901788

06 
C G 

0.131
2 

0.0001
14 

0.6899
97 

-
0.4956

3 

0.1284
14 

0.9530
91 

rs487809
0 

9 DAPK1 0 intronic 
1.58

7 
5 

9:90183188:A:
G 

rs362331
93 

9 
901831

88 
A G 

0.132
2 

3.89E-
05 

0.6730
93 

-
0.5265

7 

0.1279
96 

0.9608
81 

rs487809
0 

9 DAPK1 0 intronic 
6.50

4 
5 

9:90184270:A:
G 

rs340062
74 

9 
901842

70 
G A 

0.154
1 

0.0010
16 

0.7501
53 

-
0.3908

7 

0.1189
52 

0.8046
15 

rs487809
0 

9 DAPK1 0 intronic 1.93 4 

9:90184967:C:T 
rs362034

37 
9 

901849
67 

C T 
0.132

2 
4.01E-

05 
0.6739

21 

-
0.5259

6 

0.1280
62 

0.9608
81 

rs487809
0 

9 DAPK1 0 intronic 
4.83

8 
4 

9:90185139:C:
G 

rs362034
41 

9 
901851

39 
C G 

0.132
2 

5.02E-
05 

0.6787
91 

-
0.5188

4 

0.1279
55 

0.9608
81 

rs487809
0 

9 DAPK1 0 intronic 
12.9

3 
2b 

9:90186711:C:
G 

rs487810
3 

9 
901867

11 
C G 

0.134
2 

6.36E-
05 

0.6829
54 

-
0.5112

8 

0.1278
5 

0.9608
18 

rs487809
0 

9 DAPK1 0 intronic 
0.93

5 
5 

9:90194227:A:
G 

rs126851
16 

9 
901942

27 
G A 

0.146
1 

0.0010
41 

0.7667
22 

-
0.4200

7 
0.1281 

0.7943
43 

rs487809
0 

9 DAPK1 0 intronic 
12.5

5 
5 
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9:90194242:A:C 
rs126830

54 
9 

901942
42 

A C 
0.127

2 
0.0001

06 
0.7190

45 

-
0.5278

8 

0.1362
05 

0.9224
72 

rs487809
0 

9 DAPK1 0 intronic 
9.89

2 
5 

9:90194645:A:
G 

rs126853
72 

9 
901946

45 
G A 

0.146
1 

0.0010
25 

0.7663
76 

-
0.4205

4 

0.1280
69 

0.7943
43 

rs487809
0 

9 DAPK1 0 intronic 
3.24

1 
6 

9:90195542:A:
G 

rs362047
68 

9 
901955

42 
A G 

0.128
2 

0.0001
31 

0.7241
12 

-
0.5202

9 

0.1360
32 

0.9300
68 

rs487809
0 

9 DAPK1 0 intronic 
1.72

4 
6 

9:90197840:A:
G 

rs789349
70 

9 
901978

40 
A G 

0.125
2 

0.0001
79 

0.7254
3 

-
0.5198

6 

0.1387
39 

0.8923
26 

rs487809
0 

9 DAPK1 0 intronic 
7.29

6 
5 

9:106275350:C:
T 

rs145244
544 

9 
1.06E+

08 
C T 

0.114
3 

0.0019
41 

1.2531 
0.4302

7 
0.1388

34 
0.6587

91 
rs790912

75 
10 

RP11-
436F21.1 

8317
5 

intergenic 
0.11

7 
6 

9:106313968:A:
G 

rs790912
75 

9 
1.06E+

08 
A G 

0.082
5 

5.94E-
06 

1.5150
2 

0.7208
36 

0.1591
78 

1 
rs790912

75 
10 

RP11-
436F21.1 

1217
93 

intergenic 
1.14

3 
7 

9:106336114:A:
G 

rs749325
65 

9 
1.06E+

08 
A G 

0.082
5 

2.28E-
05 

1.4775
4 

0.7259
09 

0.1713
68 

0.9238
91 

rs790912
75 

10 RNA5SP291 
1156

40 
intergenic 

0.21
5 

6 

9:106377751:A:
G 

rs797460
57 

9 
1.06E+

08 
A G 

0.116
3 

0.0006
38 

1.2914
6 

0.4655
9 

0.1363
38 

0.6641
01 

rs790912
75 

10 RNA5SP291 
7400

3 
intergenic 

1.78
7 

7 

9:106423369:A:
G 

rs798953
21 

9 
1.06E+

08 
G A 

0.079
52 

3.01E-
05 

1.3961 
0.7089

84 
0.1698

98 
0.8114

89 
rs790912

75 
10 RNA5SP291 

2838
5 

intergenic 2.89 3a 

9:106429018:A:
G 

rs777281
30 

9 
1.06E+

08 
G A 

0.079
52 

3.93E-
05 

1.3840
6 

0.6994
78 

0.1701
28 

0.8114
89 

rs790912
75 

10 RNA5SP291 
2273

6 
intergenic 

10.7
7 

7 

9:133023677:A:
G 

rs793663
18 

9 
1.33E+

08 
G A 

0.049
7 

1.91E-
06 

2.4627
4 

1.0697 
0.2246

08 
1 

rs793663
18 

11 HMCN2 
2320

4 
intergenic 

7.26
9 

5 

10:5551233:G:T 
rs358599

55 
10 

555123
3 

T G 
0.225

6 
6.99E-

06 
0.6836

34 

-
0.5085

9 

0.1131
67 

1 
rs358599

55 
12 CALML3-AS1 4973 intergenic 

0.17
7 

4 

10:21056587:A:
C 

rs474742
1 

10 
210565

87 
C A 

0.103
4 

3.09E-
05 

0.6653
82 

-
0.5260

3 

0.1262
51 

0.8696
91 

rs122445
85 

13 NEBL 
1231

4 
intergenic 

1.07
3 

7 

10:21064851:A:
G 

rs108281
30 

10 
210648

51 
G A 

0.128
2 

0.0012
56 

0.7304
39 

-
0.3910

8 

0.1212
31 

0.7061
33 

rs122445
85 

13 NEBL 4050 intergenic 
5.51

5 
6 
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10:21078477:A:
G 

rs122445
85 

10 
210784

77 
G A 

0.109
3 

7.50E-
06 

0.6521
92 

-
0.5616

7 

0.1253
98 

1 
rs122445

85 
13 NEBL 0 intronic 

2.84
1 

7 

11:81264068:C:
G 

rs772344
87 

11 
812640

68 
C G 

0.032
8 

0.0026
75 

0.6085
93 

-
0.6769

1 

0.2254
21 

0.7448
97 

rs802409
28 

14 RP11-664H7.1 509 
downstrea

m 
11.9

1 
6 

11:81366365:C:
G 

rs763235
55 

11 
813663

65 
G C 

0.024
85 

6.36E-
06 

0.4289
93 

-
1.1709

3 

0.2593
94 

1 
rs802409

28 
14 RP11-664H7.2 

9889
7 

intergenic 
1.63

4 
7 

11:81372090:C:
T 

rs802409
28 

11 
813720

90 
C T 

0.024
85 

5.96E-
06 

0.4271
31 

-
1.1731

7 

0.2591
03 

1 
rs802409

28 
14 RP11-664H7.2 

1046
22 

intergenic 
1.42

2 
7 

12:31469921:A:
G 

rs672280
87 

12 
314699

21 
G A 

0.064
61 

8.91E-
06 

0.5189
16 

-
0.8586 

0.1932
87 

1 
rs672280

87 
15 FAM60A 0 intronic 

4.09
3 

3a 

15:101658292:
C:T 

rs128982
33 

15 
1.02E+

08 
C T 

0.055
67 

8.02E-
06 

1.8975
1 

1.0385
5 

0.2326
12 

1 
rs128982

33 
16 

RP11-
424I19.1 

540 
downstrea

m 
0.20

7 
7 

15:101658669:
A:C 

rs124376
07 

15 
1.02E+

08 
A C 

0.055
67 

1.20E-
05 

1.8074
4 

1.0115
1 

0.2310
86 

1 
rs128982

33 
16 

RP11-
424I19.1 

917 
downstrea

m 
0.01

6 
5 

15:101661778:
G:T 

rs603985
88 

15 
1.02E+

08 
G T 

0.054
67 

NA NA NA NA 
0.9821

07 
rs128982

33 
16 

RP11-
424I19.1 

4026 intergenic 
1.48

8 
2b 

15:101662001:
C:T 

rs610948
55 

15 
1.02E+

08 
C T 

0.052
68 

1.31E-
05 

1.8818
8 

0.9701
14 

0.2225
64 

0.9465
58 

rs128982
33 

16 
RP11-

424I19.1 
4249 intergenic 

2.18
9 

4 

15:101662165:
A:T 

rs591016
97 

15 
1.02E+

08 
A T 

0.052
68 

1.33E-
05 

1.8807 
0.9694

33 
0.2225

65 
0.9465

58 
rs128982

33 
16 

RP11-
424I19.1 

4413 intergenic 
2.93

4 
2b 

15:101662626:
A:C 

rs241207
0 

15 
1.02E+

08 
A C 

0.054
67 

3.76E-
05 

0.7117
31 

-
0.9104

4 

0.2208
94 

0.9118
25 

rs128982
33 

16 
RP11-

424I19.1 
4874 intergenic 2.93 NA 

15:101664912:
T:TG 

rs714587
32 

15 
1.02E+

08 
TG T 

0.052
68 

NA NA NA NA 
0.9112

41 
rs128982

33 
16 

RP11-
424I19.1 

7160 intergenic 
0.21

9 
NA 

15:101664914:
A:T 

rs201171
595 

15 
1.02E+

08 
A T 

0.052
68 

NA NA NA NA 
0.9112

41 
rs128982

33 
16 

RP11-
424I19.1 

7162 intergenic 
1.33

2 
5 

15:101665261:
C:T 

rs129133
37 

15 
1.02E+

08 
C T 

0.051
69 

1.68E-
05 

1.8308 
0.9534

94 
0.2215

37 
0.9289 

rs128982
33 

16 
RP11-

424I19.1 
7509 intergenic 

1.28
6 

4 

15:101667226:
C:T 

rs496578
9 

15 
1.02E+

08 
T C 

0.052
68 

6.33E-
05 

0.7298
53 

-
0.8784

1 

0.2195
97 

0.9112
41 

rs128982
33 

16 
RP11-

424I19.1 
9474 intergenic 5.31 4 
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19:35610725:C:
G 

rs480609
1 

19 
356107

25 
C G 

0.067
59 

8.71E-
08 

0.5365
98 

-
0.9397

3 

0.1755
88 

1 
rs480609

1 
17 FXYD3 0 intronic 0.28 4 

                   



 

8.4 Appendix 3 – Lung Cancer Risk Survey 
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Participant ID ___________ 

Lung Cancer Risk Survey 

1) What do you think the risk of developing lung cancer is for any person in 

the general population of the UK? Please circle one answer. 

a) 1 chance in 2 (50%) 

b) 1 chance in 4 (25%) 

c) 1 chance in 8 (13%) 

d) 1 chance in 14 (7%) 

e) 1 chance in 30 (3%) 

f) 1 chance in 100 (1%) 

 

2) In an imaginary room filled with 100 people exactly like you, how many 

do you think will get lung cancer in the next 6 years?  Please fill in the 

blank. 

_____out of 100 

 

3) What do you think your chances of developing lung cancer are compared 

to other people your age in the UK population? Please circle one answer. 

a) Much less likely 

b) Less likely 

c) The same 

d) More likely  

e) Much more likely  

 

If you are an ex-smoker, please skip question 4: 

4) What do you think your chances of developing lung cancer are compared 

to other smokers? Please circle one answer. 

a) Much less likely 

b) Less likely 

c) The same  

d) More likely  

e) Much more likely  
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Participant ID ___________ 

 

If you are a current smoker, please skip question 5: 

5) What do you think your chances of developing lung cancer are compared 

to other ex-smokers? 

a) Much less likely 

b) Less likely 

c) The same 

d) More likely 

e) Much more likely  

 

6) Have you ever been told a score or percentage indicating your personal 

risk of lung cancer? Please circle one answer. 

a) No 

b) Yes – by my GP 

c) Yes – I did an online test 

d) Yes – Another source. Please write what this was: _________ 

e) I’m not sure 

 

7) Do you think these factors increase a person’s risk of lung cancer?  

Please circle Yes or No or Not Sure 

a) Age - Yes/No/Not Sure 

b) Air Pollution - Yes/No/Not Sure 

c) Asbestos Exposure - Yes/No/Not Sure 

d) Asthma - Yes/No/Not Sure 

e) Being Overweight - Yes/No/Not Sure  

f) Changes or mutations in your genes - Yes/No/Not Sure 

g) Chronic Obstructive Pulmonary Disease (COPD) - Yes/No/Not Sure 

h) Family History of Lung Cancer - Yes/No/Not Sure 

i) Poor Diet - Yes/No/Not Sure 

j)  Radon Exposure - Yes/No/Not Sure 

k)  Smoking – Yes/No/Not Sure 

l)  Second-hand smoke - Yes/No/Not Sure 

 

Participant ID ___________ 
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8) Think about all the people who are diagnosed with lung cancer in the UK 

in one year.  
d) What percentage do you think will survive for 1 year after diagnosis?   

_____% 

e) What percentage do you think will survive for 5 years after diagnosis?   

_____% 

f) What percentage do you think will survive for 10 years after diagnosis?  

_____% 

 

9) In the last two weeks, how often have you worried about developing lung 

cancer? Please circle one answer. 

a) Not at all 

b) Several days 

c) More than half the days 

d) Nearly every day 

 

10) How much does any worry about getting lung cancer impact your 

mood  

(cause you distress or upset)? Please circle one answer. 

a) Not at all 

b) A small amount 

c) Quite a lot 

d) A lot 

 

11)  

  Over the last 2 weeks, how often 

have you  

  been bothered by the following 

problems? 

  (Use “✔” to indicate your answer) 

Not  

at 

all 

Several 

days 

More than half 

the days 

Nearly every 

day 

        1.  Feeling nervous, anxious or 

on edge 

0 1 2 3 

        2.  Not being able to stop or 

control worrying 

0 1 2 3 

        3.  Little interest or pleasure in 

doing things 

0 1 2 3 
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        4.  Feeling down, depressed, or 

hopeless 

0 1 2 3 

 

If anything in this questionnaire has caused you concern, please discuss it with the 

nurse during your Lung Health Check. 

 

Thank you for participating in our research! 

 

 


