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Abstract
The societies of the Greater Horn of Africa (GHA) are vulnerable to variability in two distinct rainy seasons, the March–May 
‘long’ rains and the October–December ‘short’ rains. Recent trends in both rainy seasons, possibly related to patterns of 
low-frequency variability, have increased interest in future climate projections from General Circulation Models (GCMs). 
However, previous generations of GCMs historically have poorly simulated the regional hydroclimate. This study conducts a 
process-based evaluation of simulations of the long and short rains in CMIP6, the latest generation of GCMs. Key biases in 
CMIP5 remain or are worsened, including long rains that are too short and weak and short rains that are too long and strong. 
Model biases are driven by a complex set of related oceanic and atmospheric factors, including simulations of the Walker 
Circulation. Biased wet short rains in models are connected with Indian Ocean zonal sea surface temperature (SST) gradients 
that are too warm in the west and convection that is too deep. Models connect equatorial African winds with the strength of 
the short rains, though in observations a robust connection is primarily found in the long rains. Model mean state biases in 
the timing of the western Indian Ocean SST seasonal cycle are associated with certain rainfall timing biases, though both 
biases may be due to a common source. Simulations driven by historical SSTs (AMIP runs) often have larger biases than 
fully coupled runs. A path towards using biases to better understand uncertainty in projections of GHA rainfall is suggested.
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1  Introduction

The Greater Horn of Africa (GHA), comprising eleven coun-
tries in East Africa, is a region of both climatic extremes and 
related societal vulnerability. It comprises the driest area 
of the tropics, while its societies are heavily dependent on 

the rainfall cycle. Around 75% of the population in Ethio-
pia, Kenya, and Tanzania are smallholder farmers primarily 
working on rainfed lands (Salami et al. 2019; Biazin et al. 
2012), and around 60% of the Somali population practice 
pastoralism in arid and semi-arid water-stressed regions 
(UNDP 2019). Consequently, droughts are often associated 
with threats to food security—for example, the 2011 East 
African Drought led to the United Nations declaring a fam-
ine in southern Somalia, where 2.8 million people needed 
‘life-saving assistance’ (NASA Earth Observatory 2011).

A notable characteristic of the regional climate is the 
presence of two distinct rainy seasons in the coastal plains 
of Ethiopia, Somalia, Kenya, and Tanzania: the stronger 
‘long’ rains, known locally as the gu in Somali or masika in 
Swahili, occur in the boreal spring, and the generally weaker 
but more variable ‘short’ rains, known locally as the deyr in 
Somali or vuli in Swahili, occur in the boreal fall (these will 
be referred to as the ‘long’ and ‘short’ rains, respectively, 
throughout this paper). Drought extremes that contribute 
to famines often result from a mistiming or a complete 
loss of a rainy season such as during the fall 2010 drought 
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(FEWSNET 2011), in which the short rains largely failed. 
Conversely, particularly wet seasons can cause destructive 
flooding, such as during the record short rains associated 
with the 1997–1998 El Niño, which resulted in over 1300 
deaths and 270,000 displacements in Somalia alone (IRIN 
97).

Recent trends in the observational records in both rainy 
seasons have heightened concerns about the impact of 
climate change on rainfall variability in the GHA region. 
Declines in total annual rainfall since 1983 and specifically 
during the long rains have been found in studies examin-
ing satellite data, station records, satellite-station hybrid 
datasets, and in farmer recollections (Diem et al. 2014, 
2019; Ssentongo et al. 2018; Cattani et al. 2018; Salerno 
et al. 2019). These changes are associated with a decrease 
in the rainy season length, with both later onsets and ear-
lier demises (Wainwright et al. 2019). The frequency of 
droughts during the long rains seems to have increased 
since 1998, which may be the consequence of natural or 
forced variability attributable to changes in Pacific Ocean 
SSTs (Lyon 2014; Vigaud et al. 2017; Funk et al. 2018; 
Gebremeskel Haile et al. 2019). An increase in the zonal 
SST gradient in the tropical Pacific in particular, which is 
not well-captured in CMIP5 and CMIP6 models, may be due 
to a response to radiative forcing (Seager et al. 2019, 2022), 
and could be favoring La Niña conditions, a stronger Walker 
circulation and drought over the GHA. Conversely, similar 
research has found increases in the strength of the short rains 
in parts of the region (Diem et al. 2014; Cattani et al. 2018; 
Gebremeskel Haile et al. 2019).

Consequently, many recent studies have used climate 
models to project changes in rainfall characteristics under 
global warming scenarios. Modeling studies predict wet-
ter, more intense, and later short rains (e.g. Dunning et al. 
(2018); Otieno and Anyah (2013); Wainwright et al. (2021)) 
and wetter long rains (e.g., Wainwright et al. (2021)). These 
projections may be at odds with recent decreases in boreal 
spring rainfall, an ‘East African Paradox’ likely related to 
internal variability in the system (e.g. Lyon and Vigaud 
(2017)) or possible modeling deficits.

Climate models are increasingly used to project the 
impacts of regional climate change into the future (e.g. 
Hsiang et al. (2017); Carleton et al. (2019)). In East Africa, 
recent studies have for example used CMIP5-era models to 
project the impact of global warming on maize and beans 
production in Ethiopia (Abera et al. 2018; Thornton et al. 
2010), groundwater resources (Taylor et al. 2013), and met-
rics of fisheries, flood management, urban infrastructure, 
and urban health (Bornemann et al. 2019), among others. 
Climate model studies are also routinely cited in government 
documents such as Kenya’s National Climate Action Plan 
Government of Kenya (2018), Ethiopia’s National Adapta-
tion Plan (Federal Democratic Republic of Ethiopia 2019), 

or Somalia’s communications to the UN Framework Con-
vention on Climate Change (Office of the Prime Minister, 
the Federal Republic of Somalia 2018).

However, despite their heavy use in both academic and 
government sources, climate models historically have a poor 
record in simulating rainfall in East Africa. CMIP5 models 
have well-known biases in simulating both the strength and 
the timing of the long and short rains in East Africa. The 
long rains in CMIP5 models start 19 days later on average 
than in observations (Dunning et al. 2017); the long rains are 
generally too weak and the short rains too strong in models, 
leading to the short rains being stronger than the long rains 
(Yang et al. 2014).

A process-based model evaluation is however particularly 
complex in the GHA due to the many regional and large-
scale processes that affect local rainfall. Both the long and 
short rains in the GHA are affected by the behavior of the 
large-scale circulation over the global tropics and the Indian 
Ocean basin. In its long-term average state, the atmosphere 
above the Indian Ocean is formed into a zonal overturning 
circulation referred to in the recent literature as the Indian 
Ocean Walker Cell or Walker-type circulation due to its sim-
ilarities with the Pacific Ocean Walker Cell pattern over the 
Pacific Ocean. The Indian Ocean pattern mirrors its Pacific 
Ocean counterpart; the climatological circulation involves 
near-surface westerlies, high-level easterlies, ascent over 
the eastern Indian Ocean and Indo-Pacific Warm Pool, and 
descent over the GHA (Nicholson 2017). This descent sup-
presses convection and is present to a certain extent even 
during the climatological average short rain period (Nichol-
son 2017; King et al. 2019).

The long and short rains occur during the temporary 
reprieve of this climatological descent in the ‘shoulder’ 
seasons between the summer and winter monsoons. The 
long rains generally begin in late March or early April as 
the Arabian High dissipates and the strong surface norther-
lies of the boreal winter weaken and turn southerly, and end 
as the Mascarene High intensifies, reversing the low-level 
meridional geopotential height gradient, and strong south-
erly winds feed into the broader Indian Monsoon circulation 
(Riddle and Cook 2008; Vizy and Cook 2020; Camberlin 
et al. 2010). The short rains generally begin in late Septem-
ber, as these strong southerly winds weaken and reverse once 
more (Vizy and Cook 2020).

The wet seasons are both characterized by seasonal peaks 
in offshore sea surface temperatures (SSTs), positive anoma-
lies in large-scale instability as measured by the difference 
between surface moist static energy (MSE) hs and satura-
tion MSE h∗ in the free troposphere and rising motion in 
the atmosphere above the GHA (Yang et al. 2015a). They 
feature weak, onshore surface winds bringing warm, wet air 
onto the GHA. During the long rains, additional moisture 
may be entrained from the Congo Basin through westerly 
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zonal wind anomalies in equatorial Africa (Finney et al. 
2020; Walker et al. 2020). The dry seasons are characterized 
by seasonal minima in offshore SSTs, large-scale descent 
through the middle and upper troposphere, negative anoma-
lies in hs − h∗ , and surface winds that are both parallel to the 
shore and dry (Yang et al. 2015a; Nicholson 2017).

Studies that have taken a process-based approach to 
evaluating previous generations of models have developed 
a series of dynamical metrics for model rainfall behavior. 
For example, Yang et al. (2015b) examined SSTs over the 
western Indian Ocean and aspects of MSE in CMIP5 mod-
els, finding that biases in near-surface MSE modulated by 
biases in SSTs can explain differences between historical 
and AMIP runs of the MRI-CGCM3 model. King et al. 
(2019) focused on mid-tropospheric ascent over the GHA 
to diagnose Kenyan rainfall. Dyer and Washington (2021), 
focusing on the Kenyan long rains, developed a series of 
diagnostic metrics for model evaluation.

This complex system suggests the influence of both 
oceanic and atmospheric factors; studies tracing the inter-
annual variability of the long and short rains have found 
corresponding influences from both. This variability is 
particularly strong in the short rains, which, despite being 
weaker on average than the long rains, contribute more to 
the overall interannual precipitation variability in the region 
(Camberlin and Philippon 2002).

It is likely possible to learn about origins of model biases 
by examining in observations and models the processes that 
lead to interannual variability of the rains. For example, if 
some state of the climate system causes anomalously wet 
rains, then models that are biased towards that state in the 
mean may be expected to also be biased to rains that are 
too wet. To this effect, anomalies representing a strength-
ening of the mean structure of the Indian Ocean Walker 
Cell are associated with drier rainy seasons in the GHA and 
vice-versa in observations (e.g., Funk et al. (2018); Zhao 
and Cook (2021)). Stronger low-level westerlies over the 
Indian Ocean are negatively correlated with the strength 
of the short rains (Nicholson 2017). Conversely, low-level 
easterlies, often associated with the positive phase of the 
Indian Ocean Dipole (IOD), a mode of the zonal SST gra-
dient, are often associated with particularly strong short 
rains (Liebmann et al. 2014; Nicholson 2017; Blau and Ha 
2020). Mid-tropospheric vertical velocity, corresponding to 
the descending limb of the Walker Cell, has also been con-
nected to regional rainfall; for example, models that overes-
timate the strength of the descending limb tend to be biased 
dry during both the long and short rains in Kenya (King 
et al. 2019) and models that explicitly resolve convection 
over the GHA reduce timing biases in both seasons (Wain-
wright et al. 2021). The influence of the direction of the 
high-level zonal winds above the GHA is complex; weaker 
easterlies may indicate a weaker Walker Cell (e.g. King et al. 

(2019); Limbu and Tan (2019); Hastenrath et al. (2011)) and 
divergence aloft associated with convective activity in the 
western Indian Ocean and wetter seasons (Camberlin and 
Philippon 2002; Limbu and Tan 2019); conversely, during 
the long rains in particular, stronger easterlies may be associ-
ated with the Asian monsoon anticyclone and drying of the 
GHA (Liebmann et al. 2017).

Given their connection to the interannual variability in 
the GHA rainy seasons, simulations of the surface SSTs 
and the Indian Ocean Walker Circulation are logical tar-
gets for diagnostic metrics of model behavior. We con-
sequently develop metrics based on two aspects of the 
oceanic state: the Indian Ocean zonal SST gradient and 
western Indian Ocean SSTs (WIOSSTs); and four aspects 
of the atmospheric circulation: zonal winds aloft, ascent, 
and MSE over the GHA, and mid-tropospheric zonal 
winds over equatorial Africa, to identify these sources.

Warmer WIOSSTs and a stronger SST zonal gradient 
with warm western and cold eastern Indian Ocean tempera-
tures during the rainy seasons are expected to correlate with 
stronger rainy seasons; later peaks of the SST seasonal cycle 
in both variables may be indicative of broader biases in a 
model’s large-scale seasonal cycles and may therefore cor-
relate with later peaks in the rainy seasons. Given the IOD’s 
connection to interannual variability in the short rains in 
particular, metrics of the zonal SST gradient are expected 
to particularly correlate with metrics of the short rains in 
models.

Stronger high-level easterlies above the GHA may be an 
indicator of the development of a convective center in the 
western Indian Ocean. This connection may be particularly 
strong in the short rains when the coherence of the Walker 
Cell is stronger (Hastenrath et al. 2011), though studies have 
shown easterly anomalies aloft for March-April in years in 
which the long rains seem to be particularly affected by 
the ENSO cycle (Camberlin and Philippon 2002) and have 
found a role for the Walker Cell in recent long rain droughts 
(Vigaud et al. 2017; Funk et al. 2018). If connected to west-
ern Indian Ocean convection in models, easterly anomalies 
during the rainy seasons may therefore correlate with wetter 
seasons, particularly during the short rains. Liebmann et al. 
(2017) on the other hand find suppressed easterlies to be 
a pre-condition for the onset, and strengthened easterlies 
for the demise, of the long rains, relating to modulation of 
large-scale descent over the GHA; in this paradigm, westerly 
anomalies in the boreal spring would therefore be expected 
to correlate with wetter long rains.

The difference between surface MSE and saturation 
MSE in the free troposphere hs − h∗ is expected to be cor-
related with stronger rainy seasons, particularly during the 
short rains. During the long rains, this connection may be 
weaker since hs − h∗ does not directly capture the impact of 
mid-level entrainment from the Congo Basin not captured 
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through hs . This process would be more easily identified 
through a connection between westerly anomalies over equa-
torial Africa and MSE h in the mid-troposphere and stronger 
long rains.

Finally, stronger ascent, an indicator of convective activ-
ity, is expected to be tightly correlated with both stronger 
long and short rains, as is later ascent with later rainy sea-
sons; biases in these metrics could diagnose problems with 
model convection simulations.

CMIP6 models are now available, and offer higher reso-
lutions, more explicitly modeled physical processes, and 
improvements in key dynamics for the Indian Ocean basin 
(e.g., Gusain et al. (2020)). Increased CMIP6 model resolu-
tion does not remedy biases in precipitation over East Africa 
(Akinsanola et al. 2021), suggesting that orography is not 
the primary driver of biases, at least within the resolution 
range of CMIP6 models ( 0.70◦ − 2.8◦ per grid cell). Conse-
quently, the source of model biases is likely in their ability to 
simulate the large-scale dynamics of the region. A necessary 
but insufficient condition for users of CMIP6 output to be 
confident in their projections is the models’ ability to repro-
duce key aspects of the climate variability in the historical 
record related to the task at hand (see e.g., the discussion 
in Nissan et al. (2020)). Since these models will likely be 
extensively used to create projections of the impacts of cli-
mate change on East Africa in the coming years, this paper 
seeks to understand whether these models accurately repre-
sent the characteristics of the seasonal cycles in the double 
rainy season area of the GHA, and whether they replicate 
key physical drivers of regional rainfall gleaned from the 
literature and derived from observations.

The rest of this paper is structured as follows: Sect.  2 
will introduce the daily observational and CMIP6 data 
used; Sect. 3 introduces the methodology for calculating 
seasonal and dynamical metrics. Section 4 will detail issues 
in CMIP6 representations of GHA rainfall. Sections 5 and 6 
will investigate to what extent metrics of the ocean and the 
atmospheric circulation can explain biases in seasonal char-
acteristics, respectively. Finally, Sect. 7 summarizes conclu-
sions and charts a path forward for how this information 
can be used to interpret projections of the rainy seasons in 
the GHA.

2 � Data

Daily data are used throughout this study to accurately char-
acterize the timing of the rainy seasons. Not only are rainy 
seasons often less than two months long, but sub-seasonal 
variability apparent even in monthly data suggests that 
higher resolution data are needed to fully resolve the relevant 
dynamics (e.g., Camberlin and Okoola (2003); Camberlin 
and Philippon (2002)).

To cover the longest timeframe included in all observa-
tional and modeling data products used, all analysis involv-
ing rainfall and atmospheric variables is conducted over 
the years 1981–2014 for climatological averages. Analysis 
for individual years is limited to the period 1981–2013, to 
account for the demise of the short rains sometimes occur-
ring after the Gregorian New Year. Analysis involving SSTs 
is conducted over the years 1982–2014 to account for the 
later start of the ocean observations used.

2.1 � Observational data

To characterize precipitation in the Horn of Africa, we 
use daily rainfall data from the Climate Hazards Infrared 
Precipitation with Stations (CHIRPS) dataset (Funk et al. 
2015). CHIRPS combines satellite data from the TRMM 
satellite with interpolated rain gauge products and an eleva-
tion model. Though evaluation is complicated by the lack of 
a dense rain gauge network in the region (e.g. Dinku (2018)), 
studies have shown CHIRPS to outperform other commonly 
used datasets in the GHA; while it overestimates the occur-
rence of rainfall, rainfall in those extra events tends to be 
minimal (e.g. Diem et al. (2019); Ayehu et al. (2018)).

Daily sea surface temperatures (SSTs) from the Daily 
Optimum Interpolation Sea Surface Temperature (OISST) 
record, version 2.1 (Huang et al. 2021) are used to construct 
the ocean metrics. OISST is a 0.25-degree gridded product 
blending in situ ship and buoy measurements with satellite-
derived estimates from the Advanced Very High Resolu-
tion Radiometer (AVHRR). Though the Indian Ocean in 
OISST is biased slightly low compared to in situ measure-
ments (e.g., ∼ 0.08◦ C vs. Argo floats in Huang et al. (2021)), 
having gridded daily data allows for a direct comparison to 
model output. OISST begins on September 1, 1981; we use 
data from 1982 to 2014.

250 hPa and 700 hPa zonal velocity, 250 hPa and 500 hPa 
vertical pressure velocity, and surface and 700 hPa specific 
humidity and temperature from the ERA5 reanalysis product 
are used to analyze historical circulation patterns (Hersbach 
et al. 2020). Data were downloaded in ERA5’s native hourly 
format and daily averages were taken to obtain daily data.

2.2 � Model data

This study examines biases in models from the 6th edition 
of the Coupled Model Intercomparison Project (CMIP6; 
Eyring et al. (2016)). Compared to the previous generation 
of climate models (CMIP5), CMIP6 models on average have 
slightly higher resolution and directly simulate more physi-
cal processes. Precipitation, SSTs, zonal velocity at 250 hPa 
and 700 hPa, vertical pressure velocity at 250 hPa and 500 
hPa, and surface and 700 hPa specific humidity and tem-
perature from any CMIP6 model with daily data for that 
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variable (not every model has daily data for each variable, 
see Table 2) are used.

This study analyses three types of climate model experi-
ments. The bulk of the analysis focuses on each model’s 
‘historical’ experiment, in which models are forced using 
historical observed atmospheric compositions, solar forc-
ings, and land use patterns (Eyring et al. 2016). In Sect. 5.3, 
to isolate the impact of SST biases on the biases in the GHA 
rainy seasons, daily precipitation data from CMIP6 model 
runs forced by historical SSTs are additionally analyzed, and 
referred to as ‘AMIP’ runs (‘atmospheric model intercom-
parison project’) throughout. From both sets of model out-
put, the years 1981–2014 are used in analyses of precipita-
tion and other atmospheric variables, spanning from the start 
of the CHIRPS dataset to the end of the ‘historical’ forcing 
scenario in the CMIP6 project. For analyses of SSTs, 1982-
2014 are used to span the spread of the OISST dataset. In 
Sect.  7, to illustrate the challenges in using current biases to 
partition future model projections, precipitation from model 
runs using the SSP3 scenario (O’Neill et al. 2016), repre-
senting high challenges to mitigation and adaptation, are 
used as well.

3 � Methods

3.1 � Study area

This study focuses on the area of the GHA that experiences 
two distinct rainy seasons (hereafter referred to as the “dou-
ble-peaked region”). In calculations of seasonal statistics, 
we consider every land grid cell in observations or models 
between 32◦ E and the Indian Ocean and between −3◦ S 
and 12.5◦ N for which the second harmonic is larger than 
the first harmonic. This region is similar to commonly-used 
geographic subsets for studies of East African rainfall, see 
e.g., the regions studied by Wainwright et al. (2021) or Yang 
et al. (2014). Some authors use a smaller region centered on 
Southern Somalia (e.g. Camberlin et al. (2010); Liebmann 
et al. (2014)); we show our results are robust to the particular 
region studied.

Each model is evaluated based on its own reality—i.e., 
the study area is calculated separately for each model and 
for observations. Models do differ in the exact geographic 
area in which a double-peaked rainfall climatology is 
simulated (Fig.  1); however, models generally place this 
region in the coastal plains of Somalia, southeast Ethio-
pia, and northern Kenya, consistent with observations. 
Many models also show a region with a single dominant 
summer peak in rainfall along the Somali coast. Such a 
region does exist in observations along the coast between 
roughly 42◦ E and 45◦ E, including the cities of Kismayo 
and Mogadishu, where peak rainfall is in June, though its 

extent is more limited than in models. In the literature, 
this rainy season is sometimes classified as an extension 
of the long rains (e.g., Camberlin and Planchon (1997) for 
its occurrence farther south in Kenya), though these rains 
are referred to as occurring during the hagaa or xagaa dry 
season in the rest of Somalia by UN bulletins (e.g., OCHA 
(2020)), or during a separate, local rainy season called the 
hhagaayo by e.g. Galaal (1992). The factors causing these 
differences in geographic locations of the rainy seasons 
may be important for understanding model behavior in this 
region, but are beyond the scope of this paper. In Sect. 4, 
we additionally perform analysis on only the part of the 
GHA where more than 40 models and CHIRPS observa-
tions show a double-peaked region; results are consistent 
to this subset.

Different areas in the double-peaked region have phenom-
enologically similar rainy seasons; however, geographic dif-
ferences in the strength and timing of the rainy seasons are 
well-known. The long rains tend to begin earlier in the south 
and later in the north, and vice-versa, and the north tends 
to be drier than the south. Geographic subsets of the GHA 
are to a certain extent always arbitrary, given the number of 
different precipitation regimes discovered. Nicholson (2017) 
lists studies that found between 3 and 26 distinct rainfall 
regions, given the strong spatial homogeneity in interannual 
variability, particularly during the short rains. To ensure that 
focusing on each model’s own reality does not bias results 
due to geographical differences in the march of the seasons, 
in Sect. 4 we additionally conduct our analysis on 7 separate 
subsets of the region and note differences where applicable.

3.2 � Seasonal definitions

Throughout this paper, we use the seasonal definitions 
by Dunning et al. (2016) based on inflection points in the 
cumulative precipitation rate. This method was specifically 
designed for African regions with a double-peaked rainfall 
climatology, and is designed to reduce the likelihood of 
‘false starts’—early-season storms followed by prolonged 
periods of dryness—that may be particularly damaging to 
recently-planted crops (Huho et al. 2012; Dunning et al. 
2016). Notably, however, it is derived from the data itself, 
and therefore may not overlap with local agricultural or 
pastoral definitions of the seasons. These may emphasize 
different aspects of the season, other variables such as soil 
moisture content, or use threshold-based definitions that are 
easier to measure using local information (e.g., Goddard 
et al. (2010); Lala et al. (2020)).

For each grid cell in the study area, the onset and demise 
of the 1981-2014 climatological rainfall is determined using 
the Dunning et al. (2016) method, as is the onset and demise 
of the rainy seasons in each individual year from 1981 to 
2013 (see Sect. S1 for full details).
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3.3 � Seasonal metrics

For each season, seasonal characteristics are calculated 
based on the onset and demise determined using the meth-
odology detailed above. The ‘duration’ of each season is 
defined as the simple difference in days between the onset 
and demise, and the ‘total integrated rainfall’ or ‘strength’ as 
the total sum of daily rainfall between the onset and demise. 
The ‘peak timing‘ is the day of peak rainfall, while the ‘peak 
amount‘ is the amount of rain on that day.

3.4 � Definition of circulation variables

We develop diagnostic metrics for the strength and timing of 
the rainy seasons based on two aspects of the oceanic state—
IOD and western Indian Ocean SSTs, and four aspects of the 
atmospheric circulation—upper-tropospheric zonal winds 
above the GHA, ascent over the GHA, mid-tropospheric 
zonal winds over equatorial Africa, and moist static energy 
over the GHA (see Table 1 for summary). We examine cir-
culation metrics from both fully coupled simulations from 
each model’s “historical” experiment run, and from simula-
tions forced by historical sea surface temperatures, referred 
to as AMIP (Atmospheric Model Intercomparison Project) 
runs throughout.

Western Indian Ocean SSTs (WIOSSTs). Following the 
region used in Yang et al. (2015a), average SSTs in the west-
ern Indian Ocean (referred to as WIOSSTs) are calculated 
as the average from 10◦ S to 12◦ N and 38◦ E to 55◦ E. For 
each year, the day of peak WIOSSTs and the peak WIOSSTs 
are calculated using daily OISST data, for days 30–250 to 
compare to the long rains, and 250–30 of the following year 
to compare to the short rains.

Indian Ocean zonal SST gradient. The IOD is character-
ized by the zonal gradient in Indian Ocean SSTs, using 
the same regions as those used for the Dipole Mode Index 
(DMI) developed by Saji et al. (1999) and used e.g. in Lyon 
(2020). To be able to measure model mean differences, we 
use the raw difference between SSTs in the West (average 
in the box 10◦ S to 10◦ N, 50◦-70◦ E) and East (average in 
the box 10◦ S - 0 ◦ S, 90◦-110◦ E) Indian Ocean. Note that 
this is different from the DMI, which is the gradient in 
anomalies vs. the seasonal cycle; in Sect. 5.2.2 we note dif-
ferences in results between the two metrics. If this metric is 
positive, then SSTs in the western Indian Ocean are higher 
than in the eastern Indian Ocean. For each year, the day 
of the peak gradient and the peak gradient are calculated 
using daily OISST data, for the days 30–230 to compare to 
the long rains, and 230–30 of the following year to com-
pare to the short rains.

Zonal winds aloft. The average 250 hPa zonal velocity above 
the study area (3◦ S to 12.5◦ N and 32◦ E to 52◦ E) is used 
to characterize the zonal circulation aloft. For each year, the 
day of peak westerlies and the peak westerly strength are 
calculated using daily ERA5 data, for the days 30–230 to 
compare to the long rains, and 230–30 of the following year 
to compare to the short rains.

Moist Static Energy. We analyze three metrics of MSE. In 
addition to MSE h at 700 hPa (Dyer and Washington 2021), 
following Yang et al. (2015a), the large-scale stability in the 
atmosphere is characterized by the difference between surface 
moist static energy hs and saturation moist static energy h∗ at 
700 hPa:

Table 1   Circulation metrics analyzed

Area refers to area over which the variable is averaged; “double-peaked region” means every pixel in a model or reanalysis in which there are 
two distinct rainy seasons

Variable name Description Area

WIOSSTs West Indian Ocean SSTs 10◦ S to 12◦ N, 38◦E to 55◦ E
Indian Ocean SST zonal gradient Difference between mean SSTs in the west and east Indian Ocean West box: 10◦ S to 10◦ N, 50◦ 

E to 70◦ E; east box: 10◦ S 
to 0 ◦ , 90◦ E to 110◦ E

Indian Ocean Dipole Mode Index Difference between mean SST anomalies vs. the seasonal cycle in the west 
and east Indian Ocean

West box: 10◦ S to 10◦ N, 50◦ 
E to 70◦ E; east box: 10◦ S 
to 0 ◦ , 90◦ E to 110◦ E

GHA 250 hPa u Upper tropospheric zonal winds over the GHA 3◦ S to 12.5◦ N, 32◦ E to 52◦ E
eq. Africa 700 hPa u Equatorial African mid-tropospheric zonal winds 5◦ S to 5 ◦ N, 10◦ W to 30◦ E
GHA h

s
− h

∗ Difference between surface MSE and 700 hPa saturation MSE over the GHA Double-peaked region
GHA h 700 hPa MSE over the GHA Double-peaked region
GHA 250 hPa � Upper tropospheric vertical velocity over the GHA Double-peaked region
GHA 500 hPa � Mid-tropospheric vertical velocity over the GHA Double-peaked region
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Table 2   Models analyzed in 
this study

A ‘–’ marks models where we do not have data for a given variable / forcing scenario. See Table S1 for 
modeling group information

Model Precipitation (experiment) Circulation (variable)

Historical AMIP SSP370 WIOSST IOD u � h
s
− h

∗

ACCESS-CM2 X X X X X X X X
ACCESS-ESM1-5 X X X X X X X X
AWI-ESM-1-1-LR X – X X X X X X
BCC-CSM2-MR X X X X X X X –
BCC-ESM1 X X – X X X X –
CESM2 X X X X X X X X
CESM2-FV2 X – – X X X X X
CESM2-WACCM X X X X X X X X
CESM2-WACCM-FV2 X X – X X – X –
CMCC-CM2-HR4 X X – X X – – X
CMCC-CM2-SR5 X X X X X X X X
CMCC-ESM2 X – X X X – – –
CNRM-ESM2-1 X X X – – – – –
CanESM5 X X X X X X X –
EC-Earth3 X X X X X X X X
EC-Earth3-AerChem X X X X X – – –
EC-Earth3-CC X X X X X – – –
EC-Earth3-Veg X X X X X X X X
EC-Earth3-Veg-LR X – X X X X X X
FGOALS-f3-L X X – X – X X X
FGOALS-g3 X X X X – X X -
GFDL-CM4 X X – X X X X X
GFDL-ESM4 X X X X X – X -
IITM-ESM X X X X – – X X
INM-CM4-8 X X X X – X X X
INM-CM5-0 X X X X – X X X
IPSL-CM5A2-INCA X – X X X – – –
IPSL-CM6A-LR X X X X X X X –
IPSL-CM6A-LR-INCA X – – X X – – –
KACE-1-0-G X X X X – X X –
KIOST-ESM X X – X X - X –
MIROC6 X X X X X X X –
MPI-ESM-1-2-HAM X X – X X X X X
MPI-ESM1-2-HR X X X X X X X X
MPI-ESM1-2-LR X X X X X X X X
MRI-ESM2-0 X X X X X X X X
NESM3 X X – X X X X –
NorCPM1 X X – X – – X –
NorESM2-LM X – X X X X X –
NorESM2-MM X – X X X X X X
SAM0-UNICON X X – X X X X –
TaiESM1 X X X X – X X X
UKESM1-0-LL X – – – – – – –
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for temperature T in K, specific humidity q, and height z 
above a reference value (in this case, mean sea level) in m, 
with the subscript s denoting surface values. cp is the specific 
heat capacity of air at constant pressure 1004.6 J∕(kg ⋅ K) , Lv 
is the latent heat of vaporization of water 2.257 × 106 J∕kg , 
and g is the gravitational constant 9.807 m∕s2 . The satura-
tion specific humidity q∗ is a function of temperature alone 
and is calculated using the approximation by Murray (1967).

hs − h∗ is therefore

where (z − zs) is the height difference between the local 
topography and the pressure level of interest, which in this 
case is 700 hPa. Note that hs − h∗ ignores the effect of possi-
ble mid-tropospheric entrainment, which has been suggested 
as an important source of convective energy for the long 
rains (Walker et al. 2020; Finney et al. 2020); consequently, 

h = cpT + Lvq + gz

hs = cpTs + Lvqs + gzs

h∗ = cpT + Lvq
∗ + gz

where q∗ = f (T)

hs − h∗ = cp(Ts − T) + Lv(qs − q∗) + g(z − zs)

following Dyer and Washington (2021), hs − h∗ is analyzed 
in conjunction with h at 700 hPa, which depends on both 
temperature and specific humidity.

h, hs , and h∗ are analyzed as the mean across all grid 
cells in the double-peaked region.

Ascent. To directly diagnose ascent in the GHA, the aver-
age 500 and 250 hPa vertical pressure velocities across grid 
cells in the double-peaked region are used to characterize 
mid-level and upper-level ascent, respectively. For each year, 
the day of peak ascent and the peak vertical velocity using 
daily ERA5 data, for the days 50–250 to compare to the 
long rains, and 250–50 of the following year to compare to 
the short rains.

Mid-tropospheric zonal winds over equatorial Africa.
To further diagnose the possible impact of moisture 

entrainment from west of the GHA, mid-tropospheric 
zonal winds over equatorial Africa are analyzed. Follow-
ing the region used in Walker et al. (2020), the average 
700 hPa zonal velocity over equatorial Africa is calculated 
as the average from 5 ◦ S to 5 ◦ N and 10◦ W to 30◦ E). For 
each year, the day of peak westerlies and the peak westerly 
strength are calculated using daily ERA5 data, for the days 
30–230 to compare to the long rains, and 230–30 of the 
following year to compare to the short rains.

3.5 � Characterizing circulation variables

Connections between statistics of the rainy seasons as 
defined above and diagnostic statistics of the broader cir-
culation are investigated. Each variable, except for equa-
torial African zonal winds, has a similar double-peaked 
seasonal cycle to the rainy seasons (Figs. 2, 3). For these 
variables, the analysis focuses primarily on two metrics 
defined independently from the rainy seasons—the day on 
which the variable peaks, referred to as the ‘peak timing,’ 
and the value of the variable on that peak day, referred to 
as the ‘peak amount,’ for either the first or second portion 
of the calendar year. For each metric, this cutoff point 
between the boreal spring and fall seasons is chosen ad 
hoc to encompass the inflection points for each CMIP6 
model and the observations. The boreal spring peak timing 
and amount values are compared to metrics for the long 
rains, and the boreal fall values with the metrics for the 
short rains. All metrics are calculated both as a climato-
logical mean and individually for all years in the sample, 
after each time series has been smoothed using a Gaussian 
filter with a 30-day width.

When possible, we choose definitions of circulation 
metrics that are independent of the definitions of the rainy 
seasons—i.e., using the peak timing and peak magnitude. 
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Fig. 1   Study area in CHIRPS observations and CMIP6 models. The 
red contour shows the area with a double-peaked rainfall structure 
over GHA land in CHIRPS; note that CHIRPS is a land-only data 
product and rainfall observations over the ocean are not considered 
in this study. Darker shading means more CMIP6 models have a 
double-peaked rainfall climatology in that location. All models are 
shown at their native resolutions; grid cells may only partially overlap 
between models. Most models place the double-peaked region along 
the coastal plains of Somalia, Kenya, and southeastern Ethiopia, con-
sistent with observations. For the remainder of this study, statistics of 
the rainy seasons (and ascent) are averaged over each data product’s 
double-peaked region over land
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This is to avoid defining explanatory variables using char-
acteristics of the rainy seasons they may be imperfectly 
related to. This is not feasible for variables such as equato-
rial African zonal winds, the climatology of which does 
not have a similar double-peaked seasonal cycle to the 
rainy seasons; consequently, we use their seasonal mean 
value over the long or short rains as defined using the 
onset and demise calculated as in Sect. 3.2, and do not 
investigate their relationship to the timing of the seasons. 
Furthermore, to verify the robustness of the results to the 
metric definition, we also investigate the seasonal mean of 
variables with a double-peaked seasonal cycle; results are 
compared to those calculated using the peak value alone.

3.6 � Analysis

To understand the magnitude and cause of CMIP6 biases 
in the GHA rainy seasons, first the biases compared to 
CHIRPS observations in the onset, demise, duration, peak 
timing, peak strength, and total strength of the long and short 
rains in each model’s ‘historical’ experiment are analyzed 
in Sect. 4, following the methodology detailed above in 
Sects. 3.2 and 3.3.

Then, in Sects.  5, 6, we use the circulation metrics 
defined above in Sect. 3.4 to study whether models replicate 
observed relationships between the rainy seasons and the 
large-scale dynamics of the region. To do so, the timing and 

Circulation metrics and the rainy seasons: climatologies

Fig. 2   Rainfall (blue) and key variable (red) climatologies in obser-
vations (CHIRPS for rainfall, OISST for SST variables) or reanaly-
sis (ERA5 for circulation variables). Light green shading is the geo-
graphical average long (centered on May) and short (centered on 

October) rainy seasons. Note that this shading shows the average 
onset and demise across grid cells and not the onset and demise of 
the rainfall climatology shown in blue. See Fig. 3 for composite cli-
matologies
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magnitude of the circulation variables are compared with the 
timing and strength of the rainy seasons in both models and 
observations. For the rest of this paper, ‘correlations’ refer to 
Pearson’s correlation coefficients. First, interannual correla-
tions in observations �OI between these circulation metrics 
and their precipitation counterparts are calculated, which 
reveals whether these facets of the circulation are associ-
ated with characteristics of the rainy seasons in the historical 
record (see Sect. S3.1 for a detailed derivation). Significance 
is reported based on two-sided confidence 95% confidence 
intervals for correlation calculations.

Interannual correlations between the circulation metrics 
and their precipitation counterparts �MI,mod for each individ-
ual model mod are then calculated, revealing whether these 
facets of the circulation are associated with characteristics of 
the rainy seasons within a given model (Sect. S3.2). Finally, 
the correlation between model climatological means of these 
circulation and rainy season metrics �MM is calculated, which 
gives insight into whether the mean state of the model is 
associated with the biases in these metrics (Sect. S3.3).

We report �OI  , �MI,mod , and �MM for all circulation 
metrics for both long and short rains, even if a certain 

Circulation metrics and the rainy seasons: seasonal composites

Fig. 3   Seasonal composites of key variables in observations (OISST 
for SST variables) or reanalysis (ERA5 for circulation variables). Val-
ues are the average across years relative to CHIRPS seasonal onset 
(1981–2013); the average peak day of each season is shown in dotted 

lines and the average end of each season in a solid line. All variables 
peak roughly around the GHA rainy seasons, though peaks generally 
correspond more closely to rainfall peaks during the long rains. See 
Fig. 2 for raw (not composite) climatologies
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dynamical process is only associated with either the long 
or short rains in observations. This is to capture possi-
ble model errors in seasonal connections; for example, 
in Sect. 6.4 we show how mid-tropospheric winds over 
equatorial Africa are more associated with the short than 
the long rains in models, whereas no connection is found 
in observations with the short rains.

In each section, model behavior in metrics that particu-
larly well explain interannual or intermodel variability in 
CMIP6 models (i.e., high �MI,mod s or �MM ) are then ana-
lyzed to specifically diagnose underlying model issues. 
Furthermore, when analyzing the impact of ocean SSTs 
on the rainy seasons, biases from fully coupled models 
are compared to biases from the same models’ AMIP 
configurations.

Whether a model is truly simulating the right processes 
for the right reasons is a combination of both low biases in 
variables of interest and good performance at replicating the 

dynamical factors that affect these variables in the observa-
tional record. Though evaluation metrics calculated for pre-
vious generations of models have poorly partitioned future 
projections (Rowell et al. 2016), whether relationships are 
robustly mirrored in both models and observations may be 
a first identifier for metrics useful for diagnosing model per-
formance of CMIP6 models.

4 � Precipitation biases in CMIP6 models

Previous generations of models tended to begin the long 
rains too late, produce too little rain in the long rains, and 
produce too much rain in the short rains (Yang et al. 2014; 
Dunning et al. 2017). These biases remain largely unchanged 
in the CMIP6 generation of models.

Fig. 4   Key characteristics of the long and short rains in the study 
region in CMIP6 models (light blue) and CHIRPS observations 
(red). Each dot shows a model-year (CMIP6) or an observation-
year (CHIRPS) between 1981 and 2013. Box plots show the median 
(notch), 0.25 and 0.75 quartiles (box), up to 1.5 × IQR beyond the 
0.25 and 0.75 quartiles (whiskers), and outliers beyond this limit (cir-

cles). The range of models is biased versus observations for almost 
every characteristic, except for the onset of the short rains (panel a, 
x-axis). Otherwise, models tend to be too late in their demise and 
peak timing, rain too little on the wettest days, overestimate the 
length and strength of the short rains, and underestimate the length 
and strength of the long rains
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4.1 � Timing biases

The average model long rains across CMIP6 models begin 
24 ± 18  days late (with ± expressing one standard devia-
tion across model-years) compared to the average onset in 
the study area in CHIRPS data (Fig.  4a). This bias is of 
similar magnitude to biases in CMIP5 ( 19 ± 13 in Dunning 
et al. (2017)). The bias in the onset of the short rains, on the 
other hand, is minor across models; the ensemble model-
year bias is 2 ± 9 days too early.

The peak day of the rainy seasons is also too late in 
both the long and the short rains, but more consistently so 
between rainy seasons than in the onset ( 19 ± 18 days and 
14 ± 13 days, respectively; Fig. 4d), with more late outliers 
during the short rains.

Models tend to be late on the demise of both rainy sea-
sons—and similarly so; models that are late on the demise 
in the long rains also tend to be late on the demise of the 
short rains. Note that the perceived relationship between 
the demise of the long and short rains in Fig. 4b is largely 
between models rather than across years; individual years 
in models or observations with a late demise of the long 
rains do not tend to have a late demise of the short rains or 
vice-versa. Given that the demise of the long rains has been 
connected in observations to the onset of the Indian Mon-
soon (Camberlin et al. 2010), a pattern unique to the boreal 
summer, the robust intermodel connection with the demise 
of the short rains before the boreal winter is surprising.

These factors combine to make model long rains slightly 
too short on average, and short rains significantly too long 
on average (Fig. 4c), and are likely connected to the biases 
in relative strength of the rainy seasons, since rainy season 
strength is largely modulated by its length rather than aver-
age or peak rate (Camberlin et al. 2009; Wainwright et al. 
2019).

4.2 � Strength biases

As in CMIP5 models (Yang et al. 2015b), CMIP6 models 
also overestimate the strength of the short rains and under-
estimate the strength of the long rains (Fig. 4f). The average 
ratio of the amount of rain in the long rains to the short 
rains in models is 0.7, compared to 1.3 in the observations. 
Like in CMIP5 models, this discrepancy arises both from 
an underestimation of the strength of the long rains (29 ± 
93 mm too dry) and an overestimation of the strength of the 
short rains (129 ± 152 mm too wet). In the amount of both 
long and short rains, there is however substantial overlap 
with the range of observations (Fig. 4f).

Models tend to underestimate peak rainfall of both rainy 
seasons (Fig. 4e), which is consistent with existing biases 
in CMIP3 and CMIP5-generation models (e.g. Sun et al. 
(2015)). In the short rains in particular, which are biased wet 

in models, this result underscores that biases in the strength 
of the rainy seasons are not primarily driven by biases in 
peak rainfall intensity. These biases may more generally be 
related to model treatment of rainfall extremes, which is 
beyond the scope of this study.

4.3 � Geographic variation in biases

The long and short rains are not identical everywhere within 
the double-peaked region. In observations, the long rains 
tend to be spatially less coherent (Nicholson 2017), and gen-
erally begin towards the west and south earlier than towards 
the east and north, for example, while the short rains tend 
to progress from north to south (Fig. S1). To investigate 
the regional coherence in model behavior, we additionally 
calculate model biases in rainy season metrics in geographic 
subsets of the double-peaked region (Figs. S1–S3). Though 
the rainy season metrics show geographical variation, biases 
tend to be geographically coherent across the region; the 
median model long rains are too short and the median model 
short rains too long in every studied subset, for example 
(Figs. S2–S3). A notable exception is models’ inability to 
capture the much earlier onset and demise of the short rains 
in the subset of the GHA including the Golis, Cal Madow, 
and Cal Miskaad mountain ranges parallel to the Gulf of 
Aden (the ‘North’ region in Fig. S1).

Regionally, model biases are not limited to the double-
peaked area alone (Fig. 5). During the long rains, nearly all 
models are also too dry in an arc from Tanzania via the rift 
valleys to the southern Democratic Republic of the Congo 
and Angola (Fig.  5 top left). During the short rains, nearly 
all models are also too wet in most of southeastern Africa 
(Fig.  5 bottom left). These coherent biases are due to the 
timing biases in the model long and short rains; since model 
rainy seasons tend to be too late compared to observations, 
at the time of the rainy seasons, the rain band in the rest of 
the continent is farther north than in observations during the 
long rains and farther south during the short rains (Fig. S4). 
Examining instead March–April–May (MAM) and Octo-
ber–November–December (OND) means, as is often done 
in studies of East African rainfall, extraregional biases are 
less coherent across models (Figure S5). During OND, most 
models are too wet in Tanzania and the Ethiopian Highlands 
in addition to the GHA (Fig. S5 bottom left).

5 � SST representations

5.1 � Expected impact of SSTs

To diagnose the impact of model SST biases on GHA rain-
fall biases, the relationships between WIOSSTs and the 
IOD and the GHA rainy seasons are investigated. Given 
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connections found between the interannual variability of 
SSTs and the GHA rainy seasons in observations, mod-
els with WIOSSTs and IODs that are too strong may be 
expected to have rainy seasons that are biased wet, or dry for 
models with WIOSSTs and IODs that are too weak. Connec-
tions between SSTs and the timing of the rainy seasons are 
more tenuous—forecast skill is connected more to atmos-
pheric variables (e.g., MacLeod (2018))—but a recent study 
has connected onset variability in the short rains to SST 
anomalies in the Indian Ocean (Gudoshava et al. 2022).

Like rainfall in the double-peaked region, both variables 
climatologically peak twice a year (see Fig. 2 for climatolo-
gies, and Fig. 3 for composite climatologies relative to the 
onset of each season), though the average SST peak during 
the short rains is notably a few weeks after the average end 
of the season. Since most of the interannual variability of 

the IOD is concentrated in the boreal fall, analyses have 
generally focused on its impact on the short rains; however, 
a west-east temperature gradient generally also forms in the 
boreal spring, peaking along with the average long rains.

Biases in the IOD and in WIOSSTs may point to errors 
in different, but related underlying processes. The IOD is 
closely related to the structure of the Indian Ocean Walker 
Cell—a positive IOD (warm west, cool east) is generally 
associated with low pressure in the western Indian Ocean 
and surface easterly winds that advect warm, moist air onto 
the GHA. A positive IOD generally involves anomalously 
positive WIOSSTs; however, several studies have also sug-
gested a role for offshore SSTs in encouraging moisture con-
vergence over central East Africa, regardless of the presence 
of a dipole event (e.g., Liu et al. (2020)).

Model biases: regional context

Fig. 5   Regional context of GHA precipitation biases. Figure shows 
the multi-model mean (MMM) bias vs. CHIRPS in rainfall dur-
ing the GHA long (top) or short (bottom) rains, averaged across the 
years 1981 to 2014, for the 35 models in the sample with both a fully 
coupled run and an AMIP run. Figure shows results for both fully 
coupled (left) and AMIP (right) model runs. The red line shows the 
extent of the study area for which seasonal definitions were derived, 
for reference. Dotted areas indicate lower model agreement; in those 
regions, fewer than 28 out of 35 models agree on the sign of the bias. 
Each model’s own seasonal definitions is used, taking into account 

the different timings of the seasons between models and observations. 
Note that as a result biases shown in this figure largely reflects timing 
biases relative to the rainfall climatologies in the rest of the continent; 
for example, during the long rains, which tend to be late in models, 
rainfall is biased high in the Sahel and low in southern Africa, in line 
with the rain band having moved farther North by the time the long 
rains start in models compared to observations. See Fig. S5 for a ver-
sion of this map using monthly averages, i.e., consistent time periods 
across datasets
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5.2 � SSTs and the rainy seasons

For each SST metric and each rainy season, six correla-
tions are calculated – the interannual correlation in obser-
vations �OI , the interannual correlation in an individual 
model �MI,mod for every model mod separately, and corre-
lations across model means �MM for ‘strength’ (correlation 

between peak value of the variable and total rainfall in 
a season) and the ‘timing’ of the rainy seasons (correla-
tion between peak timing of the variable and peak timing 
of the rainy season) (see Sect. S3 for derivations). The 
correlations across model means �MM are based on cli-
matological values of each metric, while the interannual 
correlations �OI in observations and �MI in models are 

Model behavior: correlations between the rainy seasons and circulation metrics

Fig. 6   Correlations between statistics of the GHA rainy seasons 
and statistics of peak WIOSSTs (a), the peak zonal SST gradient 
(b), seasonal mean equatorial Africa 700 hPa zonal winds (c), peak 
GHA 250  hPa zonal winds (d), peak GHA hs − h∗ (e), and peak 
GHA 250 hPa pressure velocity (f) in models and observations. For 
each sub-panel, the leftmost column (red dot) shows the correlation 
between years of the variable and the rainy season in observations 
(‘observation-year’ correlation), the center column (blue dots) shows 
the correlation between years of the variable and the rainy season 
for each model (‘model-year’ correlation), and the rightmost column 
(blue bar) shows the correlation between model means of the variable 
and the rainy season (‘model-means’ correlation). Black vertical lines 
show 95% confidence intervals; for individual models and observa-

tions, darker blue or red dots show significant Pearson’s correlation 
coefficients at the p < 0.05 level. For each peak variable and season, 
correlations between two sets of statistics are shown: ‘timing’ means 
the correlation between the peak day of the rainy season and the peak 
day of the variable, ‘amount’ means the correlation between the total 
amount of rain in that season and the peak magnitude of the vari-
able. See Figure S11 for a comparison between correlations calcu-
lated either using the peak magnitude or seasonal mean of circulation 
variables. In panel c., we show statistics of seasonal mean equatorial 
Africa u, but no timing, since the metric does not have a double-
peaked climatology. Correlations are robust to different subsets of the 
GHA; see Fig.  S12 for the same calculations over a smaller box cen-
tered on southeastern Somalia
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calculated across values for each individual year. Fig-
ure 6a-b shows �OI  , �MI,mod , and �MM between the two 
diagnostic SST metrics and the strength and timing of 
the rainy seasons. Correlations are relatively robust to the 
GHA subset chosen (Fig. S12).

5.2.1 � Mean state biases in WIOSSTs correlate with mean 
state biases in model rainy seasons

Though the observed climatology of WIOSSTs closely 
matches that of the long rains (Figs. 2a, 3a), neither their 
peak magnitude nor the peak timing are significantly cor-
related with the total rainfall or peak timing of the long rains 
in observations (Fig. 6a, light red dots). During the boreal 
fall, the WIOSST climatology peaks over a month after the 
short rains (Fig. 3a); no interannual correlation is found with 
the peak timing of the short rains. The peak magnitude of 
boreal fall WIOSSTs does correlate with the total rainfall, 
or strength, of the short rains, which may be related to the 
zonal SST gradient (see below).

A handful of models, however, show significant interan-
nual correlations across years between WIOSSTs and both 
the timing and strength of the long rains (Fig. 6a, blue dots). 
In line with this interannual correlation and the fact that 
model long rains’ onset, peak, and demise are all late on 
average compared to observations (Fig. 4a, b, d), the average 
model WIOSSTs tend to peak 13 ± 7 days too late during 
the boreal spring as well (Fig. S6; compare to the model 
long rain peaks being 19 ± 18 days late). Models that find 
a strong interannual correlation between WIOSSTs and the 
timing and strength of the long rains may be producing a 
coupling between SSTs and rains that is not mirrored in 
observations.

Models generally correctly replicate both the interannual 
correlation of the total strength of the short rains with the 
peak magnitude of WIOSSTs and the lack of a correlation 
between the timing of peak of WIOSSTs and the timing of 
peak rainfall. Model WIOSSTs tend to peak on average 12 ± 
15 days too early in the boreal fall, but the lack of an interan-
nual connection in models and the fact that model short rains 
tend to happen too early suggests that the WIOSST seasonal 
cycle is not at fault for short rain timing biases.

However, model mean state biases in the timing and mag-
nitude of peak WIOSSTs in both the boreal spring and fall 
are correlated with model mean state biases in the strength 
and timing of the long and short rains, respectively (Fig. 6a, 
blue bars), despite interannual correlations only being sig-
nificant in some models and not at all in observations for 
the long rains and the timing of the short rains. This com-
bination suggests that while the direct relationship between 
WIOSSTs and the rainy seasons may be weak in many mod-
els, mean-state biases easily visible in the SST seasonal 
cycle may nevertheless be indicative of common drivers of 

both SST and GHA rainfall biases. A model that is particu-
larly suggestive of this mean-bias relationship is KIOST-
ESM, which has the lowest mean state bias in the timing of 
the boreal spring SST peak, one of the lowest biases in the 
strength of the boreal spring SST peak, and one of the lowest 
biases in the timing and strength of the long rains (Fig. S7).

5.2.2 � IOD strength biases associated with model short rain 
biases

Generally, the westward magnitude of the zonal SST gradi-
ent—meaning how much warmer the western Indian Ocean 
is than the eastern Indian Ocean, or how much the state of 
the Indian Ocean resembles positive IOD conditions—and 
the WIOSSTs peak are strongly correlated with the strength 
of the short rains in all metrics; i.e., �OI , �MM , and �IM for 
many models are generally positive and significant (right-
most columns in Fig. 6a–b). The correlation is stronger with 
the zonal gradient than with WIOSSTs by themselves, in line 
with previous studies connecting the zonal gradient to the 
short rains in observations on interannual timescales. Cor-
relations are similar when calculated using the DMI instead 
of the raw zonal gradient (Fig. S18). The high correlation 
between the zonal SST gradient and short rain strength 
across model years suggests that models on average are 
reproducing this well-known ocean-atmosphere relationship. 
One notable outlier to this strong relationship is AWI-ESM-
1-1-LR, for which the magnitude of the zonal SST gradient 
is entirely uncorrelated and the magnitude of the DMI is 
significantly negatively correlated with the strength of the 
short rains; AWI-ESM-1-1-LR also has the largest dry bias 
in the short rains among models studied.

These relationships in both models and observations seem 
to suggest the use of the IOD as a diagnostic variable for 
model simulation of processes that affect the strength of 
the short rains in the double-peaked region. In particular, 
some of the models with the most prominent mean state 
wet biases in the short rains also systematically create cli-
matological SST gradients that are too westward;1 i.e., the 
western Indian Ocean is much too warm compared to the 
eastern Indian Ocean. For many models, the western Indian 
Ocean is warmer than the east even in the climatological 
mean, a reversal of the mean gradient in observations, which 
is climatologically eastward (Fig. S6, top right). Models with 
low mean state IOD magnitude biases in the boreal fall tend 
to also have low biases in the strength of the short rains. 
A notable exception is IPSL-CM6A-LR, which has a low 
strength bias in the magnitude of the zonal SST gradient 

1  e.g. MRI-ESM2-0, BCC-ESM1, the EC-Earth3 models, SAM0-
UNICOM, BCC-CSM2-MR, see models highlighted in green in the 
top right panel of Figure S6.
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despite overestimating the strength of the short rains by a 
factor of more than 2, suggesting that this low bias may 
mask structural errors in the model simulation of the region 
(Fig. S8).

The strong relationship between model mean-state 
biases in the IOD and corresponding biases in the rainy 
seasons are in line with the findings of Hirons and Turner 
(2018), who show that many CMIP5 models have climato-
logical low-level equatorial easterlies in the Indian Ocean 
instead of observed westerlies and associated zonal SST 
gradients that are too anomalously westward—i.e., the 
west is too warm compared to the east—during the short 
rains; these models subsequently cannot correctly capture 
the dynamics of moisture advection onto East Africa dur-
ing IOD events in the boreal fall.

Interestingly, the timing of the peak zonal SST gradi-
ent in the boreal spring is positively correlated with the 

timing of the long rains in several models, though it is 
insignificant in observations. The correlation is once again 
strongest for model means (i.e., 𝜌MM

> 𝜌
OI , 𝜌MI ), further 

suggesting that the mean state of the SST seasonal cycle 
may be related to rainfall biases in the double-peaked 
region. However, since the corresponding timing corre-
lation across model means for WIOSSTs is larger, it is 
possible that this correlation may be capturing the effect 
of WIOSSTs by themselves, which are generally higher 
during IOD events and are more frequently connected to 
long rain variability (e.g., Yang et al. (2015a)).

5.3 � Evidence from atmosphere‑only runs

Do the mean state correlations imply that the SST biases are 
the primary driver of rainy season biases or, perhaps, that 
both SST and rainy season biases are affected by a common 

Fig. 7   Key characteristics of the long and short rains in the study 
region (as in Fig. 4), for models with available daily rainfall data from 
both fully coupled runs (light blue) and runs forced with historical 
SSTs (dark blue). Coupling doesn’t uniformly reduce biases. AMIP 
runs tend to end the long rains later, leading to an increase in the 
duration bias, and begin the short rains later than fully coupled runs, 
leading to a decrease in the duration bias. In both rainy seasons, the 

late bias in the timing of the rainy season peak is increased compared 
to the fully coupled runs. In line with the changes in duration bias, 
the average model-year total amount is too strong in the AMIP long 
rains, but the positive rainfall bias is decreased in the short rains. In 
line with observations, the AMIP long rains are now stronger than the 
short rains
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driver? To investigate this connection, we take advantage of 
“AMIP” runs—versions of the studied CMIP6 models that 
replace their ocean component with historical SSTs. These 
runs can simulate to a certain extent how the model would 
behave if it perfectly simulated the ocean, though important 
atmosphere-ocean feedbacks are removed by prescribing 
SSTs. We recalculate model biases in the rainy seasons and 
compare them to biases in the same models run in their fully 
coupled mode (Fig. 7). Forcing CMIP6 models with his-
torical SSTs only improves biases under certain conditions; 
instead, for many models and metrics, biases are increased, 
particularly concerning the peak timing and demises of the 
GHA rainy seasons (Fig. 8, S10), suggesting the relation-
ship between SST and rainfall biases may be more complex.

Correlations between the model mean SST peak timing 
and the model mean rainy season timing in coupled mod-
els have suggested a role for mean state biases in the sea-
sonal cycle in the modulation of the rainy seasons (Fig. 6a, 
b blue bars). The average WIOSSTs in a CMIP6 model’s 
coupled run peak too late compared to observations dur-
ing the long rains, but too early during the short rains (Fig.  
S6); however, forcing models with historical SSTs does not 
lead to a consistent shift in the timing of the rains across 
most models, nor a consistent reduction in the magnitude of 
the timing bias in the peak timing and demise of the rains. 
The bias in the demise of the long rains is in fact worsened, 
from 9 days on average in coupled runs to 30 days in AMIP 
runs on average (Fig.  7b, x axis) and up to a factor of 10 
in one model, BCC-CSM2-MR (Fig. 8 and S10, ‘demise’ 

column in left panel). Given that the demise of the long rains 
is tightly correlated with the start of the Indian Monsoon 
in Kerala in observations (e.g., Camberlin et al. (2010)), 
this bias may therefore be related to changes in monsoon 
dynamics brought on by the lack of interactive atmosphere-
ocean coupling in AMIP runs. In fact, Yang et al. (2015b) 
show that coupling-induced biases in GHA rainy seasons 
in CMIP5 models can appear jointly with dry biases in the 
Indian Monsoon.

In one of the few robust improvements in biases in AMIP 
runs, the subset of coupled models that are most biased in 
the timing of the early year peak of WIOSSTs also tend to 
have the largest reductions in the bias of the onset of the long 
rains in their AMIP runs (Fig. 9, L panel). A similar pattern 
is seen during the short rains; in AMIP runs, the SST peak 
in the second half of the year is pushed back compared to 
coupled runs (WIOSSTs are biased early; Fig. S2), and the 
onset of the short rains is biased late on average in AMIP 
runs instead of early in coupled runs.

Given that a similar number of models have improved or 
worsened biases in the onset and demise of the rainy seasons 
(Fig.  8), geographic patterns of intermodel mean African 
rainfall biases during each model’s long and short rains, 
which are largely driven by the timing mismatch between 
models and observations, are similar between AMIP and 
historic runs (Fig. 5 right column).

AMIP runs have long rains that are longer and stronger 
than the short rains, a reversal of a key bias in CMIP6 mod-
els; now, the ratio of the climatological model strength of 

Fig. 8   Change in bias between fully coupled and AMIP runs. Each 
dot represents the climatological bias difference |AMIP|— |coupled|, 
scaled by the average climatological bias of the fully coupled runs 
for the long (L) and short (R) rains. A value of 0 means the AMIP 
and coupled biases are identical; a value of 1 means the AMIP bias is 

larger than the coupled bias by an amount equal to the average cou-
pled bias, a value of -1 means the opposite. AMIP models do not uni-
formly decrease (or increase) biases; the long rain demise bias in par-
ticular is worsened in most models. See Fig. S10 for a version with 
the raw fractional change instead
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the long rains to the short rains is 1.4 compared to 1.3 in 
observations and 0.7 in fully coupled runs. Biases in the 
mean strength of the rainy seasons are moderately corre-
lated between coupled and AMIP runs (correlations of 0.55 
for the long rains, and 0.59 for the short rains). In all but 
one model, AMIP runs are wetter than coupled runs, though 
this represents an increase in model bias for many mod-
els (Fig. S10). AMIP long rains are now too long and too 
strong compared to observations. (Fig. 7c, f; dots to the right 
and below the dotted 1:1 line show model- or observation-
years in which the long rains are wetter than the short rains). 
These two processes are likely linked; the total rainfall in 
a season is more modulated by the rainy season’s length 
than the average intensity of rainfall in observations (Wain-
wright et al. 2019). It is important to emphasize however that 
these improvements in the biases in the strength of the rainy 
seasons in AMIP runs were the result of increased timing 
biases, and underscores the point that models may produce 
the right metrics, but for the ‘wrong’ reasons.

Furthermore, the coupled models with the largest boreal 
fall IOD biases have the largest reduction in the strength 
biases of the short rains in their AMIP runs (Fig. 9, R panel). 
These coupled models have zonal SST gradients that are 
substantially too westward—i.e., the west being too warm 
compared to the east—and correspondingly tend to produce 
short rains that are too powerful as well. As a result, par-
ticularly unphysical values of the mean state IOD in a model 
may be a useful diagnostic to determine model skill in simu-
lating the East African short rains.

5.4 � Conclusions on ocean‑driven biases

SST biases play a role in some, but not all facets of the biases 
in the rainy seasons in East Africa, in line with the highly cou-
pled nature of the regional dynamics. Model mean correlations 
between mean state biases in SSTs and rainfall metrics that 
are not borne out in model interannual correlations suggest 
certain SST biases are driven by the same underlying patterns 
that produce erroneous long and short rains in the GHA in 
models. AMIP runs tend to substantially reduce biases only in 
limited situations, for example, in models whose climatologi-
cal IODs are 100–400% too strong during the short rains, or for 
models whose SST seasonal cycle is particularly out of phase 
with observations. Instead, many biases are worsened in AMIP 
runs, implying either that the coupling between the atmosphere 
and ocean is crucial to the regional dynamics affecting those 
aspects of the GHA rainy seasons, or that competing atmos-
phere-ocean biases in different aspects of the model may have 
fortuitously ‘cancelled out’ in the fully coupled runs.

These findings are only partially consistent with those of 
Lyon (2020), which suggested that SST biases are the primary 
driver of both timing and strength biases of the East African 
rainy seasons, though that study used only one model which 
was not present in our sample. They are, however, consistent 
with previous studies showing that AMIP runs did not substan-
tially fix biases in the rainy seasons in CMIP5, the previous 
generation of models (Hirons and Turner 2018; King et al. 
2019). Furthermore, the substantial differences in the long 
rain biases between fully coupled and AMIP runs confirm that 
despite the weak correlations between the long rains and SSTs 

Fig. 9   Examples of metrics in which fully coupled runs tend to have 
stronger biases than AMIP runs. Points show model means. Y axes 
represent the change in the absolute bias between AMIP and coupled 
runs (negative values mean AMIP runs have lower biases) in a given 
metric; x axes represent the early year WIOSST timing bias (L panel) 
or the late year IOD strength bias (R panel) in the fully coupled run. 

Shading shows coupled model bias. Models whose WIOSSTs peak 
the latest compared to observations tend to see the biggest improve-
ments in the late onset bias seen in the most models’ long rains (L 
panel). Similarly, the models with the largest positive IOD biases (the 
8 models in the red box in the R panel) show the largest improve-
ments in short rain strength biases when forced with historical SSTs
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in most parts of the global ocean (e.g., Liebmann et al. (2017)) 
aspects of ocean-atmosphere coupling are nevertheless crucial 
to the dynamics of the long rains in models.

6 � Circulation representations

6.1 � Expected impact of circulation biases

Circulation metrics have been found to explain more vari-
ability in GHA precipitation than ocean variables (Nicholson 
2017), and the moisture budget is affected more by the cir-
culation than the humidity cycle in observations (Yang et al. 
2015a), making aspects of the circulation useful foci for 
diagnosing biases in the processes driving the rainy seasons.

The climatological circulation pattern over the Indian 
Ocean Basin, particularly during the dry seasons, consists 
of ascent in the East over the Maritime Continent, easterlies 
aloft, descent over the western Indian Ocean and GHA, and 
surface westerlies along the equator. Strong descent over the 
GHA inhibits convection for most of the year.

During the rainy seasons, this pattern reverses around 
the GHA: there is anomalous ascent over the GHA, anoma-
lous westerlies aloft, anomalous large-scale instability, and 
anomalous easterlies close to the GHA coast. The seasonal 
reversal of the winds aloft, hs − h∗ , and the vertical motion 
over the GHA roughly track GHA rainfall, exhibiting a clear 
double-peaked structure (Figs.  2d–f, 3d–f); all three of these 
are associated with an eastward shift in the descending arm 
of the Indian Ocean Walker Circulation during the rainy 
seasons, reducing its ability to suppress convection over the 
GHA (e.g. King et al. (2019); Hastenrath et al. (2011)).

Surface easterlies are also strongly correlated with the 
short rains in Kenya in observations (e.g. ∼ 0.85 in Has-
tenrath et al. (1993) or ∼ 0.82 for the start of the long rains 
in Dyer and Washington (2021)); however, their influence 
decreases farther north in the double-peaked region where 
the surface circulation is less zonal, and are not considered 
in this analysis.

Zonal velocity aloft (at 250mb), vertical velocity, and 
hs − h∗ over the GHA are therefore examined to diagnose 
biases in the circulation processes associated with the verti-
cal structure of the atmosphere during the rainy seasons.

More recently, authors have also noted a connection 
between zonal winds over equatorial Africa and the GHA, 
with westerly anomalies over the Congo Basin and the Gulf 
of Guinea associated with wetter long rains in observations 
(Finney et al. 2020; Walker et al. 2020; Dyer and Washing-
ton 2021) and in future CMIP5 model projections (Giannini 
et al. 2018). Following Dyer and Washington (2021), 700 
hPa zonal winds over equatorial Africa and h are therefore 
examined to characterize this connection.

6.2 � High‑level zonal winds are associated 
with the strength of short rains

During the long rains, Liebmann et al. (2017) show that 
rainfall begins when upper-level easterlies weaken, and ends 
when easterlies strengthen with the onset of the monsoonal 
anticyclone, and associate the recent decrease in the strength 
of the long rains with an increase in the strength of upper-
level easterlies. In observations, the climatology of 250 hPa 
u over the double-peaked region closely matches the rainfall 
climatology, with winds turning westerly as the rains begin 
and peaking with the long rains. However, this relationship 
is not observed in our sample across years; �OI and �MI in 
most models are insignificant for the timing of the rainy 
seasons (Fig. 6d.), which suggest a better metric for this 
relationship may have to be developed. Most models and 
observations do have a positive correlation between peak 
westerly anomalies and stronger long rains, though this is 
only significant in a handful of models. The peak seems to 
be a better diagnostic than the average u over the season in 
models (Fig. S11c.). Models generally tend to simulate the 
climatology of the upper-level zonal winds during the boreal 
spring relatively well (Fig. S6).

During the short rains, the Walker circulation is more 
coherent (Hastenrath et al. 2011) and expected to play a 
larger role in the interannual variability of the region. In 
observations, the strength of the short rains are significantly 
negatively correlated with the peak zonal wind value in the 
second half of the year (Fig. 6c); i.e., wetter short rains are 
associated with stronger easterly anomalies. Strong easterlies 
directly above the GHA may be related to a reversal of the 
structure of the Indian Ocean Walker Cell, with a convec-
tive center in the Indian Ocean off the coast of the GHA 
and upper-level divergence, as Limbu and Tan (2019) found 
in the OND climatology. This relationship is robust across 
model means as well (significant �MM ), and is present across 
years in most models, though it is only significant in 6 mod-
els. The one model with a significant positive correlation (a 
positive �MI ), i.e., where wetter short rains are associated 
with weaker easterlies across years, INM-CM4-8, also has 
the largest wet bias in the short rains. Furthermore, only one 
model, BCC-CSM2-MR, has strong westerlies during the 
short rains on average together with a substantial wet bias. 
Models however simulate the range of peak 250 hPa zonal 
winds relatively well (Fig. S6); biases in the upper-level 
zonal winds are therefore unable to well partition models 
based on short rain performance.

6.3 � Models overestimate the depth of short rain 
convection

Vertical velocity is closely related to convection processes 
in observations and models. Rainfall in the double-peaked 
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region tends to occur when the processes that inhibit con-
vection, such as descent associated with the Walker Cell or 
the import of cool, dry air leading to strong static stability, 
weaken (King et al. 2019; Hastenrath et al. 2011; Yang et al. 
2015a). Correspondingly, ascent, especially in the mid-trop-
osphere, tends to closely track the development of both rainy 
seasons (Figs.  2f, 3f).

As expected, peak ascent at both 500mb and 250mb is 
strongly correlated with the strength of both the long and 
short rains in observations (Fig. 6f, red dot and S13 for 
500 mb), and peak timing of ascent with the timing of the 
long rains. As with other metrics, the timing of the short 
rains tends to not be strongly correlated with the timing of 
ascent in observations or models, though one model is a 
particularly prominent outlier (CanESM5), for which later 
onsets are significantly associated with earlier peaking of 
ascent.

Models generally replicate this strong relationship 
between peak ascent and peak strength of the rainy seasons, 
both across years in individual models and across mean 
states in different models (blue dots and bars in Fig. 3f). 
Biases in ascent are therefore expected to translate directly 
to rainfall biases; this seems particularly relevant in the case 
of biases in the depth of convection during the short rains. 
In observations, convection during the average short rains is 
much shallower than during the long rains and tends to not 
reach 250 hPa (Fig.  12, red bars). The average model, how-
ever, produces ascent at 250 hPa during the short rains (Fig.  
12); in particular, models that produce climatological ascent 
at 250 hPa during the short rains are on average 150 mm too 
wet, compared to 11 mm too dry for those that don’t. Models 

overestimate ascent in the long rains on average as well (left 
panel in Fig. 12), but this discrepancy is weaker.

In other words, the strength biases of the short rains may 
manifest through model convection being too deep. In par-
ticular, models whose convection is not too deep tend to have 
short rains closer to observed strengths, though even within 
this group, biases range from 140 mm too dry to 157 mm 
too wet. This signal is visible in other metrics as well; for 
example, the same models that are particularly biased in 
their vertical velocity also tend to be the models producing 
an IOD that is too powerful (see above in Sect.  5). Since 
the strength bias in the short rains is reduced in those mod-
els’ AMIP runs, the deep convection in the short rains is 
likely connected to the same overall structural error in these 
models that produces too much boreal fall convection in the 
western Indian Ocean.

6.4 � Models associate equatorial westerlies 
with the short rains instead of the long rains

In observations, westerly anomalies over the Gulf of Guinea 
and the Congo Basin are strongly correlated with wetter long 
rains, but uncorrelated with the strength of the short rains 
(Fig.  6c), as has been previously found by e.g., Walker et al. 
(2020). Though some models correctly replicate the relation-
ship during the long rains, the majority of models only have 
a significant correlation between westerlies and the strength 
of the short rains instead (Fig. 6c). During the short rains, 
most models produce anomalous westerlies in a geographic 
region similar to that in which anomalous westerlies are pre-
sent during particularly wet long rains in observations (Fig.  

Model u biases: the relationship between eq. Africa zonal winds and GHA rainfall

Fig. 10   Difference between the mean u in the ten wettest long (L) and 
short (R) rains from 1981 to 2013 and the mean u in the average long 
and short rains in the CMIP6 multi-model mean (top) and in ERA5 
reanalysis (bottom). Stippling in top indicates areas where fewer than 
21 models have the same anomaly during wet years. Though mod-

els correctly show westerly anomalies during wet long rains over the 
Congo Basin, these are weaker and more geographically constrained 
than in observations on average. During wet short rains, nearly all 
models coherently show westerly anomalies over the Gulf of Guinea 
and the Congo Basin which are not seen in observations
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10). During the long rains, most models correctly associate 
wet years with anomalous westerlies over the Congo Basin, 
but fail to replicate the same over the Gulf of Guinea.

6.5 � Models produce too much surface moisture 
in the GHA

In observations, years in which hs − h∗ peaks later during 
the boreal spring have long rains that peak later, and years 
in which hs − h∗ is larger during the boreal fall have stronger 
short rains; the connection between hs − h∗ timing and the 
short rains or magnitude and the long rains is weaker (Fig.  
6e.). A strong connection between hs − h∗ and the timing but 
not the strength of the long rains is consistent with a possible 
role of mid-tropospheric entrainment by Congo Basin mois-
ture during the boreal spring proposed by e.g. Finney et al. 
(2020); hs − h∗ does not consider mid-tropospheric moisture, 
but higher values are associated with unstable conditions 
that could be amplified by mid-tropospheric entrainment. 
Correlations across years in observations between the mag-
nitude of h at 700 hPa and the strength of the long rains 
are higher (Fig. S16), though a strong correlation would be 

expected regardless of any additional moisture advection 
above the boundary layer due to convective moisture ascent.

Models largely reproduce this relationship, with one 
prominent exception: the correlation between peak hs − h∗ 
and the model long rains is much higher in all models stud-
ied than in observations (Fig. 6e.). Since the lower corre-
lation in observations may be related to mid-tropospheric 
entrainment not captured by hs − h∗ , this bias is consistent 
with models not fully replicating the connection between 
equatorial African moisture and the long rains, as analyzed 
in Sect. 6.4. Many models have lower correlations between 
the strength of the long rains and 700 hPa h than do observa-
tions, which may indicate a less prominent role for entrain-
ment above the boundary layer (Fig. S16c.).

More generally, however, the peak and average magnitude 
of hs − h∗ is highly correlated with the strength of both the 
long and short rains in most models, suggesting it is a use-
ful diagnostic of large-scale stability. On average, hs − h∗ is 
too high for most of the year over the GHA (Fig. 11) in all 
CMIP6 models analyzed. The bias is particularly high dur-
ing the short rains, in line with higher biases in the strength 
of the short rains. The general magnitude of hs − h∗ biases, 
and the positive biases during the long rains despite the long 

Model hs –– h* biases

Fig. 11   1981–2014 Climatologies of hs − h∗ and its components 
in CMIP6 models (light blue) and ERA5 reanalysis (red). Positive 
biases in hs − h∗ arise from models overestimating hs (top middle) 

during both seasons, largely due to positive biases in surface moisture 
qs (bottom R). During the short rains, the hs − h∗ bias is enhanced by 
negative biases in h∗
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rains being on average too dry in models, suggest that mod-
els require more instability to produce the same amount of 
rainfall in the region. This may be related to model convec-
tion schemes; Wainwright et al. (2021) show that a convec-
tion-resolving model fixes many key GHA biases, including 
strength biases in the model in question.

Positive hs − h∗ biases in models are largely driven 
through substantial positive biases in surface moisture (Fig.  
6), though most models additionally underestimate h∗ during 
the short rains. Together, these biases are consistent with 
the too deep convection identified in model short rains in 
Sect. 6.3. Similar biases had been identified in CMIP5 mod-
els by Yang et al. (2015b), who identified their source as 
positive WIOSST biases. In CMIP6 models, most, but not 
all CMIP6 models have WIOSSTs that are too high during 
the short rains; however, all models save one have too high 
surface moisture during the short rains, suggesting that SST 
biases alone cannot explain this discrepancy. Similarly, dur-
ing the long rains, almost all models have too high surface 
moisture, but many models have WIOSSTs that are too cold, 
suggesting a role for discrepancies in the model circulations 
causing increased moisture transport.

7 � Conclusions and discussion

In conclusion, models continue to produce poor simu-
lations of the rainy seasons in the GHA double-peaked 
region. As in the CMIP5 generation of models, in CMIP6 
the timing of both the long and short rains tends to be late, 
the short rains tend to be too strong, and the long rains 

tend to be too weak. These biases decrease confidence in 
projections of the evolution of future rainfall in the GHA, 
particularly since many are connected to problems simu-
lating the underlying large-scale processes of the Indian 
Ocean Basin and equatorial Africa.

Model performance in the short rains is affected by a 
cascade of likely interrelated biases. WIOSSTs are too 
high and the zonal SST gradient is too westward, leading 
to anomalously high surface moisture over the double-
peaked region, increased hs , and decreased large-scale 
stability through positive hs − h∗ biases. Consequently, 
convection over the GHA is too deep, likely helped by 
moisture entrainment from the Congo Basin by equatorial 
westerlies, which are correlated with the short rains in 
models but not observations.

During the long rains, many models fail to replicate the 
observed relationship between equatorial westerly anoma-
lies and the strength of the rainy season. Less entrainment 
from the Congo Basin may explain part of the dry bias; 
however, surface moisture and hs − h∗ are both too high 
in nearly all models, suggesting that moisture availability 
alone cannot account for this discrepancy.

Increased moisture advection from the Congo Basin has 
been identified as a driver of wetter GHA rainy seasons in 
future projections in CMIP5 models (Giannini et al. 2018). 
These results suggest that CMIP6 models have short rains 
that are already more susceptible to the circulation patterns 
associated with this moisture advection in their historical 
simulations. However, there is little evidence that models 
that correctly lack a relationship between equatorial Africa 
u and the short rains are less biased in their strength of 

Fig. 12   Peak strength of vertical pressure velocity ( � ) over the dou-
ble-peaked region in models and observations. Models tend to pro-
duce deeper convection than observations in the short rains (vertical 

axes; model bias in pressure velocity is stronger at 250   hPa, where 
observations rarely show strong upward motion, than at 500 hPa)
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the short rains, or that those with a strong relationship are 
more biased (Fig. S15). The same is largely true in reverse 
for the long rains, though the models that are most biased 
wet tend to have a significant �MI between easterly anoma-
lies and the strength of the long rains (Fig. S15).

Mean state biases in the timing and strength of peak 
SSTs in the boreal spring and fall are correlated with 
biases in the timing and strength of the long and short 
rains, respectively, suggesting that biases in the large-scale 
seasonal cycle may be affecting the GHA rainy seasons.

Though many of these biases are related to simula-
tions of SSTs, most rainy season biases in models are not 
reduced by fixing ocean biases; timing biases in particu-
lar are increased in AMIP runs in many models. Conse-
quently, improvements to the performance of ocean mod-
els in GCMs alone may not be sufficient to improve model 
performance over the GHA. Nevertheless, due to their con-
nection with both the long and short rains, particularly 
significant mean state biases in the timing of the WIOSST 
cycle and the magnitude and sign of the zonal SST gradi-
ent may still be used as diagnostics for general biases in 
the simulation of the overall seasonal cycle of the basin.

Model biases may therefore be particularly susceptible 
to issues in the simulation of broader circulation patterns. 
Peak zonal winds in the boreal fall aloft above the GHA 
are indeed significantly correlated with the strength of the 
short rains across years in observations and across model 
means, with stronger easterlies or weaker westerlies asso-
ciated with wetter seasons, but the same correlation only 
appears across years in a subset of models. This suggests 
that biased simulation of the Indian Ocean Walker Cell 
may exacerbate rainfall biases, which is consistent with 
the findings of King et al. (2019) for CMIP5 models, who 
also highlight the importance of improving Walker Cell 
dynamics in future modeling efforts.

Finally, ascent over the double-peaked region itself, 
which is predictably connected with the strength of both 
the long and short rains, is a useful diagnostic of biases 
in model representations of convection. Despite the aver-
age 250 hPa vertical pressure velocity being positive, i.e., 
descending, in observations, models produce high-level 
ascent on average, that is, convection that is too deep. The 
models with the biggest ascent bias are also the models 
with the largest positive bias in the zonal Indian Ocean 
SST gradient, suggesting an anomalously strong Bjerknes-
type feedback, as had previously been found in CMIP3 and 
CMIP5 models by Cai and Cowan (2013). The models are 
also those with the largest strength bias in the short rains.

A logical next step in evaluating model behavior would 
be to identify the drivers of model biases in Walker Cell 
dynamics. For example, studies have found recent con-
nections between warm northwest Pacific SSTs and dry 
long rains, a connection brokered through a strengthened 

Walker Cell (Vigaud et al. 2017; Funk et al. 2018). In line 
with this explanation, models whose SSTs are biased par-
ticularly low in the northwest Pacific Ocean tend to have 
AMIP long rains that are dryer than those in their coupled 
configuration (Fig. S17), a result consistent with a previ-
ous modeling study by Lyon and DeWitt (2012) using an 
ensemble of runs from a CMIP3-generation model. Given 
the complexity of and internal variability in this connec-
tion over the study time period in observations (Vigaud 
et al. 2017; Funk et al. 2018), a more targeted study may 
be needed to diagnose how this connection interacts with 
CMIP6 simulations of the GHA rainy seasons.

Our results also show that relying solely on monthly aver-
ages can result in misleading results about model behavior 
in the GHA. Since seasonal timing can be radically differ-
ent between models, the same calendar month can represent 
wholly different stages of a given model’s seasonal cycle. 
Rather, such results should be interpreted using the addi-
tional help of seasonal composites that take into account the 
actual onset and demise dates of the seasons in observations 
and each model, which in this case has shown more coherent 
results across models. Differences in seasonal timing also 
complicate the evaluation of subseasonal variability in mod-
els, which is often done using day-of-year or month-of-year 
cutoffs developed from observations (e.g., Dyer and Wash-
ington (2021)). More work will be needed to consistently 
generalize the evaluation of known subseasonal patterns of 
variability to models.

Ideally, a process-based model evaluation such as this 
one can be used to diagnose whether models are simulating 
the rainy seasons correctly for the ‘right’ reasons. A logical 
direction for future research would be to determine whether 
CMIP6 models that replicate observed relationships between 
the rainy seasons in East Africa and aspects of the atmos-
pheric and ocean circulations produce different projections 
of future rainfall than those that don’t. However, climate 
models in the GHA are rarely consistently ‘good’ or ‘bad’ 
across metrics and seasons (Akinsanola et al. 2021). More 
broadly, metrics-based approaches to model subsetting have 
failed to reduce projection uncertainty in CMIP5 models 
(Rowell et al. 2016). CMIP6 models may run into a similar 
issue, illustrated through a sample model partitioning based 
on IOD behavior. Figure 13 shows changes in characteristics 
of the GHA rainy seasons between the historical period and 
end of century (2066–2098) in SSP370 (see Figure S19 for 
future values), with models with the largest historical bias in 
the strength of the IOD shown in green (the 5 models with 
available SSP370 data of the 8 models in the box in Fig. 9). 
These models’ changes are relatively clustered in the short 
rains (as would be expected given the increased relevance 
of the IOD to the short rains), particularly in their onset, 
demise and total rainy season amount changes. Similar to 
historical simulations, these models tend to be show some 
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of the wettest future short rains as well (Fig.  S19). However, 
plausible ranges of future changes in seasonal metrics are 
not well-constrained by this subset, despite the unrealistic 
simulation of the Indian Ocean in the removed models.

Future research will need to verify whether this lack of 
clear partitioning extends towards other aspects of CMIP6 
biases as well. Nevertheless, even if easy partitions are unre-
alistic, process-based model evaluations remain important 
for understanding the sources of model biases in ‘expert 
judgment’ approaches suggested by Rowell et al. (2016). 
Studying the biases in underlying processes is particularly 
crucial to identifying models that may have a low bias in the 
rainy seasons despite having an unrealistic simulation of the 
broader circulation; these models may have the ‘right’ rainy 
seasons, but for the ‘wrong’ reasons.

More generally, studies that use climate model projec-
tions to estimate the impact of climate change on society 
should verify that the models are adept at simulating not 
just the variables of interest, but the processes that affect 
them. This is particularly important for rainfall, which is 
often poorly simulated, and in regions with complex dynam-
ics such as the GHA, where biases in rainy seasons may have 
many causes.
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Fig. 13   Changes in GHA rainy season characteristic between models’ 
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dots highlight models with IOD biases above 1.5  K. Projections of 
future changes in onset, demise, peak daily amount, and total amount 

for the short rains in particular seem to be similar across models with 
particularly biased historical IODs; however, three of these models 
are variants from the same modeling group (EC-Earth), which may 
explain the clustering

https://doi.org/10.1007/s00382-022-06622-5
https://github.com/ks905383/gha_rainfall_cmip6
https://github.com/ks905383/gha_rainfall_cmip6


Understanding CMIP6 biases in the representation of the Greater Horn of Africa long and short…

1 3

included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abera K, Crespo O, Seid J, Mequanent F (2018) Simulating the 
impact of climate change on maize production in Ethiopia, 
East Africa. Environ Syst Res 7(1):4. https://​doi.​org/​10.​1186/​
s40068-​018-​0107-z

Akinsanola AA, Ongoma V, Kooperman GJ (2021) Evaluation of 
CMIP6 models in simulating the statistics of extreme precipita-
tion over Eastern Africa. Atmosph Res 254(105):509. https://​doi.​
org/​10.​1016/j.​atmos​res.​2021.​105509

Ayehu G, Tadesse T, Gessesse B, Dinku T (2018) Validation of new 
satellite rainfall products over the Upper Blue Nile Basin. Drought 
Mitigation Center Faculty Publications, Ethiopia

Biazin B, Sterk G, Temesgen M, Abdulkedir A, Stroosnijder L (2012) 
Rainwater harvesting and management in rainfed agricultural sys-
tems in sub-Saharan Africa—a review. Phys Chem Earth 47:139–
151. https://​doi.​org/​10.​1016/j.​pce.​2011.​08.​015

Blau MT, Ha KJ (2020) The Indian Ocean Dipole and its Impact on 
East African Short Rains in Two CMIP5 Historical Scenarios 
With and Without Anthropogenic Influence. Journal of Geophysi-
cal Research: Atmospheres 125(16):e2020JD033,121, https://​doi.​
org/​10.​1029/​2020J​D0331​21

Bornemann FJ, Rowell DP, Evans B, Lapworth DJ, Lwiza K, Mac-
donald DM, Marsham JH, Tesfaye K, Ascott MJ, Way C (2019) 
Future changes and uncertainty in decision-relevant measures of 
East African climate. Clim Change 156(3):365–384. https://​doi.​
org/​10.​1007/​s10584-​019-​02499-2

Cai W, Cowan T (2013) Why is the amplitude of the Indian Ocean 
Dipole overly large in CMIP3 and CMIP5 climate models? Geo-
phys Res Lett 40(6):1200–1205. https://​doi.​org/​10.​1002/​grl.​50208

Camberlin P, Okoola RE (2003) The onset and cessation of the “long 
rains” in eastern Africa and their interannual variability. Theo-
retical and Applied Climatology 75(1):43–54. https://​doi.​org/​10.​
1007/​s00704-​002-​0721-5

Camberlin P, Philippon N (2002) The East African March–May Rainy 
Season: associated atmospheric dynamics and predictability over 
the 1968–97 Period. J Clim 15(9):1002–1019. https://​doi.​org/​10.​
1175/​1520-​0442(2002)​015<​1002:​TEAMM​R>2.​0.​CO;2

Camberlin P, Planchon O (1997) Coastal precipitation regimes in 
Kenya. Geografiska Annaler 79(1–2):109–119. https://​doi.​org/​
10.​1111/j.​0435-​3676.​1997.​00010.x

Camberlin P, Moron V, Okoola R, Philippon N, Gitau W (2009) 
Components of rainy seasons’ variability in Equatorial East 
Africa: Onset, cessation, rainfall frequency and intensity. Theo-
retical Appl Climatol 98(3):237–249. https://​doi.​org/​10.​1007/​
s00704-​009-​0113-1

Camberlin P, Fontaine B, Louvet S, Oettli P, Valimba P (2010) Climate 
adjustments over Africa accompanying the Indian Monsoon onset. 
J Clim 23(8):2047–2064. https://​doi.​org/​10.​1175/​2009J​CLI33​02.1

Carleton T, Delgado M, Greenstone M, Houser T, Hsiang S, Hultgren 
A, Jina A, Kopp RE, McCusker K, Nath I, Rising J, Rode A, Seo 
HK, Simcock J, Viaene A, Yuan J, Zhang AT (2019) Valuing 
the Global Mortality Consequences of Climate Change Account-
ing for Adaptation Costs and Benefits. SSRN Scholarly Paper 

ID 3224365, Social Science Research Network, Rochester, NY, 
10.2139/ssrn.3224365

Cattani E, Merino A, Guijarro JA, Levizzani V (2018) East Africa 
rainfall trends and variability 1983–2015 using three long-term 
satellite pAroducts. Remote Sens 10(6):931. https://​doi.​org/​10.​
3390/​rs100​60931

Diem JE, Ryan SJ, Hartter J, Palace MW (2014) Satellite-based 
rainfall data reveal a recent drying trend in central equatorial 
Africa. Clim Change 126(1):263–272. https://​doi.​org/​10.​1007/​
s10584-​014-​1217-x

Diem JE, Konecky BL, Salerno J, Hartter J (2019) Is equatorial Africa 
getting wetter or drier? Insights from an evaluation of long-term, 
satellite-based rainfall estimates for western Uganda. Int J Clima-
tol 39(7):3334–3347. https://​doi.​org/​10.​1002/​joc.​6023

Dinku T (2018) Overcoming challenges in the availability and use of 
climate data in Africa. ICT Update

Dunning CM, Black ECL, Allan RP (2016) The onset and cessation of 
seasonal rainfall over Africa. Journal of Geophysical Research: 
Atmospheres 121(19):11,405–11,424, 10.1002/2016JD025428

Dunning CM, Allan RP, Black E (2017) Identification of deficiencies 
in seasonal rainfall simulated by CMIP5 climate models. Envi-
ronmental Research Letters 12(11):114,001, 10.1088/1748-9326/
aa869e

Dunning CM, Black E, Allan RP (2018) Later Wet Seasons with More 
Intense Rainfall over Africa under Future Climate Change. J Clim 
31(23):9719–9738. https://​doi.​org/​10.​1175/​JCLI-D-​18-​0102.1

Dyer E, Washington R (2021) Kenyan long rains: a subseasonal 
approach to process-based diagnostics. J Clim 34(9):3311–3326. 
https://​doi.​org/​10.​1175/​JCLI-D-​19-​0914.1

Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, 
Taylor KE (2016) Overview of the coupled model intercompari-
son project phase 6 (CMIP6) experimental design and organi-
zation. Geosci Model Dev 9(5):1937–1958. https://​doi.​org/​10.​
5194/​gmd-9-​1937-​2016

Federal Democratic Republic of Ethiopia (2019) Ethiopia’s Climate 
Resilient Green Economy: National Adaptation Plan. Tech. rep, 
Addis Ababa, Ethiopia

FEWSNET (2011) Eastern Africa: Drought - Humanitarian Snapshot 
(as of 24 Jun 2011). Humanitarian Snapshot

Finney DL, Marsham JH, Walker DP, Birch CE, Woodhams BJ, Jack-
son LS, Hardy S (2020) The effect of westerlies on East Afri-
can rainfall and the associated role of tropical cyclones and the 
Madden–Julian Oscillation. Q J R Meteorol Soc 146(727):647–
664. https://​doi.​org/​10.​1002/​qj.​3698

Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, 
Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) 
The climate hazards infrared precipitation with stations—a new 
environmental record for monitoring extremes. Scientific Data 
2(1):150,066, 10.1038/sdata.2015.66

Funk C, Harrison L, Shukla S, Pomposi C, Galu G, Korecha D, 
Husak G, Magadzire T, Davenport F, Hillbruner C, Eilerts G, 
Zaitchik B, Verdin J (2018) Examining the role of unusually 
warm Indo-Pacific sea-surface temperatures in recent African 
droughts. Q J R Meteorol Soc 144(S1):360–383. https://​doi.​
org/​10.​1002/​qj.​3266

Galaal MHI (1992) Stars. Seasons Weather in Somali Pastoral Tradi-
tion, CELHTO, Niamey

Gebremeskel Haile G, Tang Q, Sun S, Huang Z, Zhang X, Liu X (2019) 
Droughts in East Africa: causes, impacts and resilience. Earth-Sci 
Rev 193:146–161. https://​doi.​org/​10.​1016/j.​earsc​irev.​2019.​04.​015

Giannini A, Lyon B, Seager R, Vigaud N (2018) Dynamical and Ther-
modynamic Elements of Modeled Climate Change at the East 
African Margin of Convection. Geophys Res Lett 45(2):992–
1000. https://​doi.​org/​10.​1002/​2017G​L0754​86

Goddard L, Aitchellouche Y, Baethgen W, Dettinger M, Graham R, 
Hayman P, Kadi M, Martínez R, Meinke H (2010) Providing 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s40068-018-0107-z
https://doi.org/10.1186/s40068-018-0107-z
https://doi.org/10.1016/j.atmosres.2021.105509
https://doi.org/10.1016/j.atmosres.2021.105509
https://doi.org/10.1016/j.pce.2011.08.015
https://doi.org/10.1029/2020JD033121
https://doi.org/10.1029/2020JD033121
https://doi.org/10.1007/s10584-019-02499-2
https://doi.org/10.1007/s10584-019-02499-2
https://doi.org/10.1002/grl.50208
https://doi.org/10.1007/s00704-002-0721-5
https://doi.org/10.1007/s00704-002-0721-5
https://doi.org/10.1175/1520-0442(2002)015<1002:TEAMMR>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<1002:TEAMMR>2.0.CO;2
https://doi.org/10.1111/j.0435-3676.1997.00010.x
https://doi.org/10.1111/j.0435-3676.1997.00010.x
https://doi.org/10.1007/s00704-009-0113-1
https://doi.org/10.1007/s00704-009-0113-1
https://doi.org/10.1175/2009JCLI3302.1
https://doi.org/10.3390/rs10060931
https://doi.org/10.3390/rs10060931
https://doi.org/10.1007/s10584-014-1217-x
https://doi.org/10.1007/s10584-014-1217-x
https://doi.org/10.1002/joc.6023
https://doi.org/10.1175/JCLI-D-18-0102.1
https://doi.org/10.1175/JCLI-D-19-0914.1
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1002/qj.3698
https://doi.org/10.1002/qj.3266
https://doi.org/10.1002/qj.3266
https://doi.org/10.1016/j.earscirev.2019.04.015
https://doi.org/10.1002/2017GL075486


	 K. Schwarzwald et al.

1 3

Seasonal-to-Interannual Climate Information for Risk Manage-
ment and Decision-making. Proc Environ Sci 1:81–101. https://​
doi.​org/​10.​1016/j.​proenv.​2010.​09.​007

Government of Kenya (2018) National Climate Change Action Plan 
2018–2022 (NCCAP). Tech. rep, Ministry of Environment and 
Forestry, Nairobi, Kenya

Gudoshava M, Wainwright C, Hirons L, Endris HS, Segele ZT, 
Woolnough S, Atheru Z, Artan G (2022) Atmospheric and oce-
anic conditions associated with early and late onset for Eastern 
Africa short rains. International Journal of Climatology n/a(n/a), 
10.1002/joc.7627

Gusain A, Ghosh S, Karmakar S (2020) Added value of CMIP6 over 
CMIP5 models in simulating Indian summer monsoon rainfall. 
Atmosph Res 232(104):680. https://​doi.​org/​10.​1016/j.​atmos​res.​
2019.​104680

Hastenrath S, Nicklis A, Greischar L (1993) Atmospheric-hydrospheric 
mechanisms of climate anomalies in the western equato-
rial Indian Ocean. Journal of Geophysical Research: Oceans 
98(C11):20,219–20,235, 10.1029/93JC02330

Hastenrath S, Polzin D, Mutai C (2011) Circulation mechanisms of 
Kenya rainfall anomalies. J Clim 24(2):404–412. https://​doi.​org/​
10.​1175/​2010J​CLI35​99.1

Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-
Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, 
Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, 
Bidlot J, Bonavita M, Chiara GD, Dahlgren P, Dee D, Diaman-
takis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, 
Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley 
S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum 
I, Vamborg F, Villaume S, Thépaut JN (2020) The ERA5 global 
reanalysis. Q J R Meteorol Soc 146(730):1999–2049. https://​doi.​
org/​10.​1002/​qj.​3803

Hirons L, Turner A (2018) The impact of Indian ocean mean-state 
biases in climate models on the representation of the East Afri-
can short rains. J Clim 31(16):6611–6631. https://​doi.​org/​10.​
1175/​JCLI-D-​17-​0804.1

Hsiang S, Kopp R, Jina A, Rising J, Delgado M, Mohan S, Rasmus-
sen DJ, Muir-Wood R, Wilson P, Oppenheimer M, Larsen K, 
Houser T (2017) Estimating economic damage from climate 
change in the United States. Science 356(6345):1362–1369. 
https://​doi.​org/​10.​1126/​scien​ce.​aal43​69

Huang B, Liu C, Banzon V, Freeman E, Graham G, Hankins B, 
Smith T, Zhang HM (2021) Improvements of the Daily Opti-
mum Interpolation Sea Surface Temperature (DOISST) Ver-
sion 2.1. Journal of Climate 34(8):2923–2939, 10.1175/
JCLI-D-20-0166.1

Huho JM, Ngaira JKW, Ogindo HO, Masayi N (2012) The changing 
rainfall pattern and the associated impacts on subsistence agri-
culture in Laikipia East District, Kenya. J Geography Regional 
Plann 5(7):198–206. https://​doi.​org/​10.​5897/​JGRP12.​018

IRIN (97) Central and Eastern Africa: Background brief on floods, 
11/25/97. IRIN background brief, UN Department of Humani-
tarian Affairs, Nairobi, Kenya

King JA, Washington R, Engelstaedter S (2019) Representation of 
the Indian Ocean Walker circulation in climate models and 
links to Kenyan rainfall. International Journal of Climatology 
n/a(n/a), 10.1002/joc.6714

Lala J, Tilahun S, Block P (2020) Predicting Rainy Season Onset 
in the Ethiopian Highlands for Agricultural Planning. J 
Hydrometeorol 21(7):1675–1688. https://​doi.​org/​10.​1175/​
JHM-D-​20-​0058.1

Liebmann B, Hoerling MP, Funk C, Bladé I, Dole RM, Allured D, 
Quan X, Pegion P, Eischeid JK (2014) Understanding recent 
Eastern Horn of Africa rainfall variability and change. J Clim 
27(23):8630–8645. https://​doi.​org/​10.​1175/​JCLI-D-​13-​00714.1

Liebmann B, Bladé I, Funk C, Allured D, Quan XW, Hoerling M, Hoell 
A, Peterson P, Thiaw WM (2017) Climatology and interannual 
variability of Boreal spring wet season precipitation in the East-
ern Horn of Africa and implications for its recent decline. J Clim 
30(10):3867–3886. https://​doi.​org/​10.​1175/​JCLI-D-​16-​0452.1

Limbu PTS, Tan G (2019) Relationship between the October–Decem-
ber rainfall in Tanzania and the Walker circulation cell over the 
Indian Ocean. Meteorologische Zeitschrift pp 453–469, 10.1127/
metz/2019/0939

Liu W, Cook KH, Vizy EK (2020) Influence of Indian Ocean 
SST regionality on the East African short rains. Clim Dyn 
54(11):4991–5011. https://​doi.​org/​10.​1007/​s00382-​020-​05265-8

Lyon B (2014) Seasonal drought in the greater Horn of Africa and 
its recent increase during the March–May long rains. J Clim 
27(21):7953–7975. https://​doi.​org/​10.​1175/​JCLI-D-​13-​00459.1

Lyon B (2020) Biases in CMIP5 sea surface temperature and the annual 
cycle of East African rainfall. J Clim 33(19):8209–8223. https://​
doi.​org/​10.​1175/​JCLI-D-​20-​0092.1

Lyon B, DeWitt DG (2012) A recent and abrupt decline in the 
East African long rains. Geophysical Research Letters 39(2), 
10.1029/2011GL050337

Lyon B, Vigaud N (2017) Unraveling East Africa’s Climate Paradox. 
In: Climate Extremes, American Geophysical Union (AGU), 
chap 16, pp 265–281, 10.1002/9781119068020.ch16

MacLeod D (2018) Seasonal predictability of onset and cessation of 
the east African rains. Weather Clim Extremes 21:27–35. https://​
doi.​org/​10.​1016/j.​wace.​2018.​05.​003

Murray FW (1967) On the computation of saturation vapor pressure. 
J Appl Meteorol Climatol 6(1):203–204. https://​doi.​org/​10.​1175/​
1520-​0450(1967)​006<​0203:​OTCOS​V>2.​0.​CO;2

NASA Earth Observatory (2011) Severe Drought Causes Famine in 
East Africa. https://earthobservatory.nasa.gov/images/51411/
severe-drought-causes-famine-in-east-africa

Nicholson SE (2017) Climate and climatic variability of rainfall over 
eastern Africa. Rev Geophys 55(3):590–635. https://​doi.​org/​10.​
1002/​2016R​G0005​44

Nissan H, Muñoz ÁG, Mason SJ (2020) Targeted model evaluations 
for climate services: a case study on heat waves in Bangladesh. 
Climate Risk Manag 28(100):213. https://​doi.​org/​10.​1016/j.​
crm.​2020.​100213

OCHA (2020) Somalia: Hagaa Season Floods Update 1, As of 19 
July 2020. Situation Report, UN Office for the Coordination of 
Humanitarian Affairs, Somalia

Office of the Prime Minister, the Federal Republic of Somalia (2018) 
The Initial National Communication for Somalia to the United 
Nations Framework Convention on Climate Change (UNFCCC). 
Tech. rep

O’Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein 
P, Hurtt G, Knutti R, Kriegler E, Lamarque JF, Lowe J, Meehl 
GA, Moss R, Riahi K, Sanderson BM (2016) The Scenario 
Model Intercomparison Project (ScenarioMIP) for CMIP6. 
Geosci Model Dev 9(9):3461–3482. https://​doi.​org/​10.​5194/​
gmd-9-​3461-​2016

Otieno VO, Anyah RO (2013) CMIP5 simulated climate conditions 
of the Greater Horn of Africa (GHA). Part II: Projected climate. 
Climate Dynamics 41(7):2099–2113. https://​doi.​org/​10.​1007/​
s00382-​013-​1694-z

Riddle EE, Cook KH (2008) Abrupt rainfall transitions over the Greater 
Horn of Africa: Observations and regional model simulations. 
Journal of Geophysical Research: Atmospheres 113(D15), 
10.1029/2007JD009202

Rowell DP, Senior CA, Vellinga M, Graham RJ (2016) Can climate 
projection uncertainty be constrained over Africa using metrics 
of contemporary performance? Clim Change 134(4):621–633. 
https://​doi.​org/​10.​1007/​s10584-​015-​1554-4

https://doi.org/10.1016/j.proenv.2010.09.007
https://doi.org/10.1016/j.proenv.2010.09.007
https://doi.org/10.1016/j.atmosres.2019.104680
https://doi.org/10.1016/j.atmosres.2019.104680
https://doi.org/10.1175/2010JCLI3599.1
https://doi.org/10.1175/2010JCLI3599.1
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/JCLI-D-17-0804.1
https://doi.org/10.1175/JCLI-D-17-0804.1
https://doi.org/10.1126/science.aal4369
https://doi.org/10.5897/JGRP12.018
https://doi.org/10.1175/JHM-D-20-0058.1
https://doi.org/10.1175/JHM-D-20-0058.1
https://doi.org/10.1175/JCLI-D-13-00714.1
https://doi.org/10.1175/JCLI-D-16-0452.1
https://doi.org/10.1007/s00382-020-05265-8
https://doi.org/10.1175/JCLI-D-13-00459.1
https://doi.org/10.1175/JCLI-D-20-0092.1
https://doi.org/10.1175/JCLI-D-20-0092.1
https://doi.org/10.1016/j.wace.2018.05.003
https://doi.org/10.1016/j.wace.2018.05.003
https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
https://doi.org/10.1002/2016RG000544
https://doi.org/10.1002/2016RG000544
https://doi.org/10.1016/j.crm.2020.100213
https://doi.org/10.1016/j.crm.2020.100213
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1007/s00382-013-1694-z
https://doi.org/10.1007/s00382-013-1694-z
https://doi.org/10.1007/s10584-015-1554-4


Understanding CMIP6 biases in the representation of the Greater Horn of Africa long and short…

1 3

Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A 
dipole mode in the tropical Indian Ocean. Nature 401(6751):360–
363. https://​doi.​org/​10.​1038/​43854

Salami A, Kamara AB, Brixiova Z (2019) Smallholder Agriculture 
in East Africa: Trends, Constraints and Opportunities. Working 
Paper 105, African Development Bank Group

Salerno J, Diem JE, Konecky BL, Hartter J (2019) Recent intensifica-
tion of the seasonal rainfall cycle in equatorial Africa revealed by 
farmer perceptions, satellite-based estimates, and ground-based 
station measurements. Clim Change 153(1):123–139. https://​doi.​
org/​10.​1007/​s10584-​019-​02370-4

Seager R, Cane M, Henderson N, Lee DE, Abernathey R, Zhang H 
(2019) Strengthening tropical Pacific zonal sea surface tempera-
ture gradient consistent with rising greenhouse gases. Nat Clim 
Change 9(7):517–522. https://​doi.​org/​10.​1038/​s41558-​019-​0505-x

Seager R, Henderson N, Cane M (2022) Persistent Discrepancies 
between Observed and Modeled Trends in the Tropical Pacific 
Ocean. J Clim 35(14):4571–4584. https://​doi.​org/​10.​1175/​
JCLI-D-​21-​0648.1

Ssentongo P, Muwanguzi AJB, Eden U, Sauer T, Bwanga G, Kateregga 
G, Aribo L, Ojara M, Mugerwa WK, Schiff SJ (2018) Changes in 
Ugandan climate rainfall at the village and Forest level. Sci Rep 
8(1):3551. https://​doi.​org/​10.​1038/​s41598-​018-​21427-5

Sun Q, Miao C, Duan Q (2015) Comparative analysis of CMIP3 and 
CMIP5 global climate models for simulating the daily mean, 
maximum, and minimum temperatures and daily precipitation 
over China. J Geophys Res 120(10):4806–4824. https://​doi.​org/​
10.​1002/​2014J​D0229​94

Taylor RG, Todd MC, Kongola L, Maurice L, Nahozya E, Sanga H, 
MacDonald AM (2013) Evidence of the dependence of groundwa-
ter resources on extreme rainfall in East Africa. Nat Clim Change 
3(4):374–378. https://​doi.​org/​10.​1038/​nclim​ate17​31

Thornton PK, Jones PG, Alagarswamy G, Andresen J, Herrero M 
(2010) Adapting to climate change: agricultural system and house-
hold impacts in East Africa. Agricult Syst 103(2):73–82. https://​
doi.​org/​10.​1016/j.​agsy.​2009.​09.​003

UNDP (2019) More than 360,000 farmers and pastoralists are set to 
benefit from GEF-funded project - Somalia. https://reliefweb.int/
report/somalia/more-360000-farmers-and-pastoralists-are-set-
benefit-gef-funded-project

Vigaud N, Lyon B, Giannini A (2017) Sub-seasonal teleconnections 
between convection over the Indian Ocean, the East African long 
rains and tropical Pacific surface temperatures. Int J Climatol 
37(3):1167–1180. https://​doi.​org/​10.​1002/​joc.​4765

Vizy EK, Cook KH (2020) Interannual variability of East African 
rainfall: role of seasonal transitions of the low-level cross-equa-
torial flow. Clim Dyn 54(11):4563–4587. https://​doi.​org/​10.​1007/​
s00382-​020-​05244-z

Wainwright CM, Marsham JH, Keane RJ, Rowell DP, Finney DL, 
Black E, Allan RP (2019) ‘Eastern African Paradox’ rainfall 
decline due to shorter not less intense Long Rains. npj Climate 
and Atmospheric Science 2(1):1–9, 10.1038/s41612-019-0091-7

Wainwright CM, Black E, Allan RP (2021) Future changes in wet and 
dry season characteristics in CMIP5 and CMIP6 simulations. 
J Hydrometeorol 22(9):2339–2357. https://​doi.​org/​10.​1175/​
JHM-D-​21-​0017.1

Walker DP, Marsham JH, Birch CE, Scaife AA, Finney DL (2020) 
Common Mechanism for Interannual and Decadal Variability 
in the East African Long Rains. Geophysical Research Letters 
47(22):e2020GL089,182, 10.1029/2020GL089182

Yang W, Seager R, Cane MA, Lyon B (2014) The East African long 
rains in observations and models. J Clim 27(19):7185–7202. 
https://​doi.​org/​10.​1175/​JCLI-D-​13-​00447.1

Yang W, Seager R, Cane MA, Lyon B (2015) The Annual Cycle of East 
African Precipitation. J Clim 28(6):2385–2404. https://​doi.​org/​10.​
1175/​JCLI-D-​14-​00484.1

Yang W, Seager R, Cane MA, Lyon B (2015) The rainfall annual cycle 
Bias over East Africa in CMIP5 coupled climate models. J Clim 
28(24):9789–9802. https://​doi.​org/​10.​1175/​JCLI-D-​15-​0323.1

Zhao S, Cook KH (2021) Influence of Walker circulations on 
East African rainfall. Clim Dyn. https://​doi.​org/​10.​1007/​
s00382-​020-​05579-7

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/43854
https://doi.org/10.1007/s10584-019-02370-4
https://doi.org/10.1007/s10584-019-02370-4
https://doi.org/10.1038/s41558-019-0505-x
https://doi.org/10.1175/JCLI-D-21-0648.1
https://doi.org/10.1175/JCLI-D-21-0648.1
https://doi.org/10.1038/s41598-018-21427-5
https://doi.org/10.1002/2014JD022994
https://doi.org/10.1002/2014JD022994
https://doi.org/10.1038/nclimate1731
https://doi.org/10.1016/j.agsy.2009.09.003
https://doi.org/10.1016/j.agsy.2009.09.003
https://doi.org/10.1002/joc.4765
https://doi.org/10.1007/s00382-020-05244-z
https://doi.org/10.1007/s00382-020-05244-z
https://doi.org/10.1175/JHM-D-21-0017.1
https://doi.org/10.1175/JHM-D-21-0017.1
https://doi.org/10.1175/JCLI-D-13-00447.1
https://doi.org/10.1175/JCLI-D-14-00484.1
https://doi.org/10.1175/JCLI-D-14-00484.1
https://doi.org/10.1175/JCLI-D-15-0323.1
https://doi.org/10.1007/s00382-020-05579-7
https://doi.org/10.1007/s00382-020-05579-7

	Understanding CMIP6 biases in the representation of the Greater Horn of Africa long and short rains
	Abstract
	1 Introduction
	2 Data
	2.1 Observational data
	2.2 Model data

	3 Methods
	3.1 Study area
	3.2 Seasonal definitions
	3.3 Seasonal metrics
	3.4 Definition of circulation variables
	3.5 Characterizing circulation variables
	3.6 Analysis

	4 Precipitation biases in CMIP6 models
	4.1 Timing biases
	4.2 Strength biases
	4.3 Geographic variation in biases

	5 SST representations
	5.1 Expected impact of SSTs
	5.2 SSTs and the rainy seasons
	5.2.1 Mean state biases in WIOSSTs correlate with mean state biases in model rainy seasons
	5.2.2 IOD strength biases associated with model short rain biases

	5.3 Evidence from atmosphere-only runs
	5.4 Conclusions on ocean-driven biases

	6 Circulation representations
	6.1 Expected impact of circulation biases
	6.2 High-level zonal winds are associated with the strength of short rains
	6.3 Models overestimate the depth of short rain convection
	6.4 Models associate equatorial westerlies with the short rains instead of the long rains
	6.5 Models produce too much surface moisture in the GHA

	7 Conclusions and discussion
	Acknowledgements 
	References




