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Abstract

Overlapping Communities on Large-Scale Networks: Benchmark Generation and Learning via

Adaptive Stochastic Optimization

Alessandro Antonio Grande

This dissertation builds on two lines of research that are related to the task of community

detection on large-scale network data.

Our first contribution is a novel generator for large-scale networks with overlapping communi-

ties. Synthetic generators are essential for algorithm testing and simulation studies for networks, as

these data are scarce and constantly evolving. We propose a generator based on a flexible random

graph model that allows for the control of two complementary measures of centrality – the degree

centrality and the eigencentrality. For an arbitrary centrality target and community structure, we

study the problem of recovering the model parameters that enforce such targets in expectation. We

find that this problem always admits a solution in the parameter space, which is also unique for

large graphs. We propose to recover this solution via a properly initialized multivariate-Newton

Raphson algorithm. The resulting benchmark generator is able to simulate networks with a billion

edges and hundreds of millions of nodes in 30 seconds, while reproducing a wide spectrum of

network topologies – including assortative mixing and power-law centrality distributions.

Our second contribution involves variance reduction techniques for stochastic variational infer-

ence (SVI). SVI scales approximate inference to large-scale data – including massive networks –

via stochastic optimization. SVI is efficient because, at each iteration, it only uses a random mini-

batch of the data to produce a noisy estimate of the gradient. However, such estimates can suffer

from high variance, which slows down convergence. One strategy to reduce the variance of the

gradient is to use importance sampling, biasing the distribution of data for each minibatch towards



the data points that are most influential to the inference at hand. Here, we develop an impor-

tance sampling strategy for SVI. Our adaptive stochastic variational inference algorithm (AdaSVI)

reweights the sampling distribution to minimize the variance of the stochastic natural gradient. We

couple the importance sampling strategy with an adaptive learning rate providing a parameter-free

stochastic optimization algorithm where the only user input required is the minibatch size. We

study AdaSVI on a matrix factorization model and find that it significantly improves SVI, leading

to faster convergence on synthetic data.
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Chapter 1: Preliminaries

In this chapter, we review variational inference methods and discuss the Poisson factorization

model for overlapping communities on networks. This random graph model is the underlying

engine of the network generators in Chapter 2 and 3. The rest of this chapter serves as background

for the stochastic variational inference algorithm in Chapter 4.

We proceed as follows. We first provide an overview of variational inference methods. Next, we

define the variational objective (Section 1.2) and discuss a coordinate ascent algorithm for a large

family of models, called conditionally conjugate models (Section 1.3). In Section 1.4, we review

stochastic variational inference. Finally, in Section 1.5, we apply the variational paradigm to the

Poisson factorization model for overlapping community detection on large-scale networks.

1.1 An overview of variational inference methods

A central problem in statistics for large data is that of approximating hard to compute densities.

For example, in Bayesian statistics, any inference task is framed in terms of the posterior distri-

bution. As the complexity of models increases, exact posterior inference becomes intractable: on

large datasets, computing the exact posterior amounts to integrating over millions of latent vari-

ables.

This is where variational inference methods come to aid. The main idea (Jordan et al., 1999;

Wainwright and Jordan, 2008) is that of introducing a parametric approximation that minimizes

the Kullback–Leibler (KL) divergence from the target distribution. While this problem is still in-

tractable, it can be rewritten up to an added constant in terms of an alternative objective, named the

evidence lower bound (ELBO). The variational problem thus reduces to finding the approximant

that maximizes the ELBO (or equivalently, minimizes the KL divergence).
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When the full conditionals belong to the exponential family, the variational problem can be tackled

efficiently via a coordinate ascent algorithm (also known as coordinate ascent variational inference,

CAVI). A particular instance of this class is given by conditionally conjugate models, where some

latent variables are tied to single data points while other – the model parameters – govern the whole

data set. For this family, CAVI updates can be derived in closed form. This result is of great inter-

est since it makes VI readily available for a large family of models that find application in many

disciplines, such as computational biology, computational neuroscience, and natural language pro-

cessing.

Recent advances in the past decade have made VI scalable to larger datasets and applicable to a

wider class of models. In terms of scalability, while efficient, CAVI requires a full pass through the

whole dataset at each iteration. As this is unfeasible for massive datasets, inference can be further

scaled up via stochastic optimization (Stochastic variational inference, Hoffman et al., 2013). In

terms of applicability, many complicated models fall outside the class of conditionally conjugate

models. The resulting ELBO presents intractable expectations that prevent analytical solutions.

Black-box variational inference (BBVI, Ranganath, Gerrish, and Blei, 2014) circumnavigates this

problem by rewriting the gradient of the ELBO as an expectation, which can be then estimated

via Monte Carlo methods, thus making VI applicable to many complicated models. This line of

research falls outside the scope of this work.

1.2 Variational inference

Consider a probabilistic model where a set of latent factors drive the data generation process.

Let x = (G8)8∈[=] denote the data and let z = (I 9 ) 9∈[<] denote such a set of latent variables. The

joint density ?(x, z) univocally defines the model. The inference goal is to compute the conditional

distribution of the latent factors given the data:

?(z | x) = ?(x, z)
?(x) . (1.1)
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The Poisson factorization random graph model falls under this setting. The latent propensities

of nodes to connect through some communities drive the edge generation between nodes in the

network. The conditional distribution of the propensities given the observed edges defines the

community assignments of the nodes.

The normalizing constant in Eq. (1.1), also known as the evidence, is the marginal distribution

of the data and it can be obtained by intergrating out the latent variables form the joint density,

?(x) =
∫
z
?(x, z)dz. In practice, this integral is intractable, in that it does not always admit a

closed-form or it takes exponential time to compute.

1.2.1 The evidence lower bound

Variational inference methods seek to approximate the conditional ?(z | x) by minimizing the

Kullback-Leibler (KL) divergence between ?(z | x) and a family of approximant distributions.

Let Q denote such a family and @ an arbitrary member of it. The inference problem then amounts

to:

min
@∈Q

KL(@ | |?(· | x)) = min
@∈Q

E@ (log(@(z))) −E@ log(?(z | x)). (1.2)

The KL divergence is asymmetric, non-negative, and it is minimized if and only if @ ≡ ?(· | x).

However, th objective still depends on the conditional ?(z· | x), which in turn depends on the

intractable evidence.

By expanding the conditional ?(x | z), it follows that the problem in Eq. (1.2) reduces up to an

additive constant to:

max
@∈Q

E@ (log ?(x, z)) −E@ log @(z, #). (1.3)

The objective in Eq. (1.3) is known as the Evidence Lower Bound (ELBO). Minimizing the KL

divergence is tantamount to maximizing the ELBO. While the problems in Eq.s (1.2) and (1.3) are

equivalent, the ELBO does not directly target the conditional ?(· | x) and it is therefore tractable.
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1.2.2 Coordinate ascent over the mean-field variational family

The complexity of the problem in Eq. (1.3) depends on the family of approximants Q. This

family has to be simple enough to allow for efficient optimization, yet flexible enough to approx-

imate the conditional distribution of the latent variables. A popular choice of Q is the mean-field

family, under which the latent variables are mutually independent and the distribution of each I 9

can be chosen freely. More specifically, an arbitrary approximant @ ∈ Q from the mean-field

family takes the following form:

@(z) =
<∏
9=1

@ 9 (I 9 ), (1.4)

where the variational density @ 9 encodes the distribution of the latent variable I 9 .

Under the mean-field family, the optimization in Eq. (1.3) can be conveniently tackled by a coordinate-

ascent algorithm. Coordinate-ascent variational inference (CAVI) sequentially maximizes the

ELBO with respect to a given factor while keeping the others fixed. To derive the updates note

that, after replacing Eq. (1.4) in Eq. (1.3) for @, the only term of the ELBO that depends on @ 9 (I 9 )

is:

ELBO(@ 9 ) ∝ E@ 9E@− 9 log ?(x, z) −E@ 9 log @ 9 (I 9 ), (1.5)

where @− 9 =
∏
ℓ≠ 9 @ℓ. By defining the variational density @∗(I 9 ) such that:

@∗9 (I 9 ) ∝ exp
(
E@− 9 log ?(x, z)

)
, (1.6)

it follows that Eq. (1.5) can be rewritten as:

ELBO(@ 9 ) ∝ E@ 9 log @∗(I 9 ) −E@ 9 log @ 9 (I 9 ) = KL(@∗9 | |@ 9 ). (1.7)
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This shows that Eq. (1.6) is the optimal choice of the variational density and thus Eq. (1.6) defines

the coordinate updates. The optimal factor @∗
9

is given by the exponentiated expected log of the

joint density ?(x, z), where the expectation is taken with respect to all the other factors ℓ ≠ 9 . The

resulting algorithm is stated in Algorithm 1.1.

Algorithm 1.1 Coordinate-Ascent Variational Inference

Input: model ?(x, z), data x.

Output: a mean-field variational density @.

1: Initialize @ =
∏<

9=1 @ 9 .

2: while ELBO has not converged do

3: for 9 = 1, . . . , < do

4: Compute the update @(I 9 ) ∝ exp
(
E@− 9 log ?(x, z)

)
.

5: Compute �!�$ (@) = exp
(
E@ 9E@− 9 log ?(x, z)

)
.

1.3 Conditional conjugate models

We define the class of conditional conjugate models and then state the resulting CAVI updates.

1.3.1 Setting

Let x = (G8)8∈[=] denote the data, # denote a vector of global latent variables, and z = (I8)8∈[=]

denote a vector of local latent variables. While # may parametrize the distribution of any of the

data, the latent variable I8 controls only the local “context” of the 8-th data point G8. The model

reads:

?(x, z, #) = ?(#)
=∏
8=1

?(G8, I8 | #). (1.8)

Under conditional conjugacy, the distributions in Eq. (1.8) are set so that the complete conditionals

of the latent variables are an exponential family. The density of the 8-th local context (I8, G8) given

5



# is then defined as:

?(I8, G8 | #) = ℎ(I8, G8) exp
{
[(#)>C (I8, G8) − 0(#)

}
, (1.9)

where ℎ is the base measure, C the sufficient statistic, [ the natural parameter, and 0 the log-

normalizer. The prior ?(#) is set to be the conjugate prior of the global latent variables with

hyperparameter ":

?(#) = ℎ(#) exp
{
"> [#,−0(#)] − 0(")

}
. (1.10)

Finally, the complete conditional of the local latent variables I8 is also an exponential family:

?(I8 | G8, #, z−8, x−8) = ℎ(I8) exp
{
[(#, G8)>I8 − 0([(#, G8))

}
. (1.11)

1.3.2 CAVI updates

In conditional conjugate models, the coordinate ascent updates can be readily derived.

Consider a mean-field family Q over the latent variables (#, z). It follows from Equations (1.6)

and (1.11) that:

@∗(I8) ∝ exp
(
E#,z−8 log ?(x, z, #)

)
∝ exp

(
E#,z−8 log ?(z8 | x, z−8, #)

)
= exp

{
E#

(
log ℎ(I8) + [(#, G8)>I8 − 0([(#, G8))

)}
∝ ℎ(I8) exp

(
E# [[(#, G8)]> I8

)
. (1.12)

This means that the optimal variational factors belong to the same exponential family of the corre-

sponding complete conditionals, with the same base measure ℎ and log normalizer 0. Also, if we

let , and > parametrize the factors of the global and local latent variables respectively, we further

6



have:

i∗8 = E,[(#, G8). (1.13)

In other words, the variational parameter of the local latent factor @8 (I8) is given by the expected

natural parameter of the corresponding complete conditional. In CAVI for conditional conjugate

models, the optimal local variational parameters is then a function of the data from the 8-th local

context G8 and of the current instance of the global variational parameters ,.

As the same derivations apply to the global latent factors, analogues updates can be derived for the

global variational parameters, too. Under the prior in Equation (1.10), the complete conditional of

the global latent variables is an exponential family with the following natural parameter:

" +
[
=∑
8=1

C (I8, G8), =
]
. (1.14)

It follows that the CAVI updates for global variational parameters are:

,∗ = " +
[
=∑
8=1
Ei8 C (I8, G8), =

]
. (1.15)

1.4 Stochastic variational inference

Stochastic variational inference (SVI, Hoffman et al., 2013) scales CAVI to large-scale datasets

for conditionally conjugate models via stochastic optimization. This method optimizes the ELBO

with respect to the global variational parameters. It does so by using, at each iteration, a random

minibatch of the data to produce a noisy estimate of the natural gradient. Before presenting the

main algorithm, we briefly review the natural gradient and stochastic optimization.
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1.4.1 The natural gradient

Parameter spaces are non Euclidean, in that the classical notion of Euclidean distance does

not capture their structure. To this end, natural gradient methods model the parameter space as a

Riemannian space, introducing a more suitable metric. If one wants to run gradient ascent under

this new geometry, what direction should they follow? The natural gradient is the steepest ascent

direction of a function in a Riemannian space.

More specifically, consider a parameter space Θ = {) ∈ R�} on which a function 5 ()) is defined.

If Θ is Riemannian, the squared length of a small incremental vector 3) from ) to ) + 3) is given

by the quadratic form:

|3) |2 = 3)>) ())3) , (1.16)

for some �-by-� matrix) , which is called the Riemannian metric tensor and depends in general on

)1. The steepest ascent direction of 5 ()) is defined by the incremental vector 3)∗ that maximizes

5 () + 3)), or equivalently:

3)∗()) = arg max
3):|3) |2=Y2

5 () + 3)), (1.17)

where Y is a sufficiently small constant. It can be shown that the steepest direction of 5 ()) in a

Riemannian space is:

∇̃ 5 ()) = )−1()) · ∇ 5 ()), (1.18)

where ∇ 5 denotes the gradient of 5 . We call ∇̃ 5 the natural gradient of 5 .

As firstly discussed by Rao (1945), a suitable Riemannian metric for parameter spaces is the one

1In particular, if Θ is Euclidean, ) is the identity matrix and equation (1.16) reduces to:

|3) |2 = 3)>3) .
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for which ) is set to be equal to Fisher information matrix. Under such a choice of ) , the natural

gradient points in the same direction of the following incremental vector:

arg max
3)

5 () + 3)) subject to KLsym() , ) + 3)) < Y. (1.19)

Here, KLsym denotes the symmetrized KL divergence, i.e. KLsym() , )′) = KL() | |)′) +KL()′| |)).

In other words, the natural gradient points in the direction of steepest ascent in the parameter space

where the local distance between two distributions is defined by the symmetrized KL metric.

1.4.2 Stochastic optimization

Stochastic optimization climbs an objective by following noisy estimates of its gradient. Such

estimates are usually cheaper to compute than the true gradient and their randomness can prevent

algorithms from getting stuck in shallow local optima. If the step size is decreasing and it satisfies

certain conditions, then convergence to an optimum is guaranteed.

More specifically, let 5 denote the objective, � an unbiased estimator of its gradient ∇ 5 . At each

iteration C, we observe a realization 6(C) of � and make a step dC in that direction:

) (C) = ) (C−1) + dC · 6(C) . (1.20)

As shown in the seminal paper by Robbins and Monro (1951), if the step size schedule (dC)C is

such that:

∑
C

dC = ∞,
∑

d2
C < ∞, (1.21)

then ) (C) will converge the to global optimum if 5 is convex or to a local optimum if 5 is not

convex. A further result by Bottou et al. (1998) shows that the above holds also when we multiply

� by a sequence of positive-definite matrices ()−1
C )C with bounded eigenvalues, which leads to the
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following update rule:

) (C) = ) (C−1) + dC · )−1
C 6(C) . (1.22)

In particular, if ) is set to be equal to Fisher information matrix, the noisy gradient � in Eq. (1.20)

can be replaced with a noisy estimator )−1
C � of the natural gradient of 5 .

1.4.3 The algorithm

SVI optimizes the global variational parameters with stochastic natural gradient ascent of the

ELBO. At each iteration, one samples a minibatch of the data and computes the CAVI updates of

the corresponding local parameters. These parameters are in turn used to build a noisy estimate of

the natural gradient, which allows to run stochastic optimization on the global parameters.

For conditional conjugate models, the natural gradient can be readily computed. As shown in

(Hoffman et al., 2013), the classical Euclidean gradient of the ELBO with respect to the global

variational parameters , can be written as:

∇,ELBO = 0′′(,) (,∗ − ,) , (1.23)

where ,∗ is the optimal global variational parameter defined by the coordinate update Eq. (1.15).

Because in exponential families Fisher information matrix corresponds to the second derivative of

the log-normalizer, it follows from Eq.s (1.18) and (1.15) that the natural gradient of the ELBO

w.r.t. , reduces to:

∇̃,ELBO = ,∗ − , = " +
[
=∑
8=1
Ei8 C (I8, G8), =

]
− ,. (1.24)

The natural gradient is just given by the difference between the coordinate updates of , and its

current instance. Hence, for conditionally conjugate models, the natural gradient does not require

any additional derivations with respect to the classical CAVI updates. However, the gradient in
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Eq. (1.24) is still too expensive to compute, as it requires a pass through the whole dataset (similarly

to the CAVI updates). We thus turn to stochastic optimization.

One can estimate the natural gradient on a random subset (or “minibatch”) of the data by computing

only the contributions of the points that have been sampled. After reweighting each contribution

by its inverse sampling probability, the resulting quantity forms an unbiased estimate of the natural

gradient. In detail, let ( denote a random minibatch of the data of size < sampled uniformly at

random. Then:

" + =
<

[∑
8∈(
Ei8 C (I8, G8), =

]
− , (1.25)

is an unbiased estimator of the gradient in Eq. (1.24).

The SVI algorithm proceeds as follows: first, sample a minibatch of the data and update the cor-

responding local parameters via the CAVI Eq. (1.13); using these parameters, compute the noisy

gradient in Eq. (1.25); run stochastic natural gradient ascent of the ELBO on , with the noisy

gradient. The algorithm is fully stated below.
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Algorithm 1.2 Stochastic variational inference

Input: model ?(x, z, #), data x, minibatch size <, and step size sequence (YC)C∈N.

Output: global variational densities @, (#).

1: while Noisy ELBO has not converged do

2: if first iteration then

3: Set ( = [=] .

4: else

5: Sample with replacement a minibatch ( of size < according to the weights p̃.

6: Optimize the local variational parameters i∗
8

for any 8 ∈ (:

i∗8 = E,[(#, G8).

7: Compute the coordinate update:

,̂ = " +
[
=

<

∑
8∈(
Ei∗

8
C (I8, G8), =

]
.

8: Update the global variational parameters:

,C+1 = (1 − YC),C + YC ,̂.

1.5 Overlapping community detection via Poisson factorization

To illustrate the variational inference setting that we have presented so far, we derive the CAVI

and SVI algorithms for the Poisson-factorization (PF) random graph model. These methods can

be used to infer the community assignments of nodes in a network.

We first recall the model formulation. Next, we discuss a latent variable augmentation that makes

the model conditionally conjugate and state the resulting CAVI and SVI algorithms.
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1.5.1 The model

Consider a network with = nodes over  overlapping communities and let (�8 9 )8, 9∈[=] denote its

adjacency matrix. �8 9 is the number of edges that node 8 and 9 share; if �8 9 = 0, then node 8 and 9

are not connected. Under Poisson factorization, each node 8 is given a vector of latent propensities

)8 = (\8: )8∈[=],:∈[ ] that encode their preferences to connect via the  communities. The mean

number of edges between a node pair is then given by the joint propensities of the nodes to connect

via a single or multiple communities. More specifically, the generative model reads:

• Draw the latent propensities:

\8: ∼ Gamma(U, V), (1.26)

for each node 8 ∈ [=] and community : ∈ [#];

• Draw edges:

�8 9 ∼ Poisson(
∑
:∈[ ]

\8:\ 9 : ), (1.27)

for each node pair (8, 9) with 8 ≠ 9 .

Here, communities are seen as group of edges rather than nodes. Under this edge-centric perspec-

tive, overlapping communities arise because nodes connect through different types of edges. For

example, in social networks, people connect because they share activities, interests, familiar ties,

and so forth.

This model is a Bayesian extension of the random graph model in Ball, Karrer, and Newman

(2011), who were the first to propose a non-negative matrix factorization model with Poisson like-

lihood for network data. In our Bayesian setting, we equip the latent propensities with a Gamma

prior. More recent advances include Bayesian nonparametric extensions (Zhou, 2015; Ayed and

Caron, 2021) that treat the number of communities as unknown. For simplicity, here we assume
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that  is given.

We note that the model allows for multi-edges. Since most real-world network data come in the

form of simple graphs (�8 9 ∈ {0, 1}), this model may seem unrealistic. However, as pointed in

Newman (2010), the error introduced by multiedges tend to vanish as the network size = increases,

typically as 1/= in the limit.

1.5.2 CAVI and SVI via latent variable augmentation.

The Poisson factorization model in Eq.s (1.26)–(1.27) is not conditional conjugate. However,

one can introduce a set of auxiliary latent variables that make the model conditional conjugate

while preserving its original formulation. Latent variable augmentation is a common technique in

the variational inference literature: recent notable applications include Gaussian processes (Hens-

man, Fusi, and Lawrence, 2013) and logistic models (Durante and Rigon, 2019).

Following Gopalan, Hofman, and Blei (2015), we augment the model by introducing the unob-

served variable I8 9 : , which denotes the latent number of edges between nodes 8 and 9 that are

formed via community : . Under this augmentation, the model in Eq.s (1.26)–(1.27) reads:

\8: ∼ Gamma(U, V), I8 9 : | ) ∼ Poisson(\8:\ 9 : ), �8 9 =
∑
:∈[ ]

I8 9 : . (1.28)

Since the sum of independent Poisson random variables is also Poisson, the new model formula-

tion preserves the original distributional assumption in Eq. (1.27). Also, this formulation nicely

fits into the framework of conditional conjugate models with local and global latent variables.

The node-dependent propensities ) are the global latent variables, while the edge-dependent un-

observed counts z are the local latent variables.

Under this new formulation, the complete conditionals of the latent variables belong to the expo-

nential family. In particular, the complete conditional of the latent propensities follows a Gamma

distribution, which is due to the Gamma-Poisson conjugacy. The complete conditional of the aux-

iliary latent variables turns out to be multinomial: this follows from the fact that the conditional
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distribution of a vector of independent Poisson given their sum is multinomial. A full derivation of

these distributions is presented in the next section.

CAVI It follows from Equation (1.6) that the optimal mean-field variational family for this model

takes the following form:

z8 9 .
@∼ Multinomial(�8 9 , >8 9 .), (1.29)

\8:
@∼ Gamma(_8: , W8: ), (1.30)

where >8 9 · denotes the vector of multinomial probabilities parameterizing the variational factors of

the latent edge counts z, and (_8: , W8: ) denote the Gamma scale and rate parameters for the factor

of the latent propensities ) . Eq.s (1.13) and (1.15) yield the following CAVI updates:

_8: = U +
∑
9≠8

�8 9i8 9 : , (1.31)

W8: = V8 +
∑
9≠8

_ 9 :

W 9 :
, (1.32)

i8 9 : ∝ exp
{
k(_8: ) − log W8: + k(_ 9 : ) − log W 9 :

}
. (1.33)

CAVI iterates through the updates in Eq.s (1.31)–(1.33) until convergence. The resulting varia-

tional parameters univocally define a mean-field approximant of the posterior distribution, which

can then be used for Bayesian inference.

SVI The SVI updates readily follow from Eq.s (1.25) and (1.31)–(1.33). After sampling a mini-

batch ( with < edges, the corresponding local (i.e. edge-dependent) variational parameters > are

optimized via Eq. (1.33). This set of parameters is in turn used to assemble the noisy gradient for

,:

∇̃_8:�!�$ = U + =
<

∑
(8, 9)∈(

�8 9i
∗
8 9 : − _8: . (1.34)
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The gradient step is then:

,C+1 = (1 − YC),C + YC
©«U + =<

∑
(8, 9)∈(

�8 9i
∗
8 9 :

ª®¬8∈[=],:∈[ ] . (1.35)

As for the global rate parameters $, note that the update in Eq. (1.32) does not depend on the

local parameters >. Hence, the natural gradient of the ELBO with respect to $ can be computed

efficiently and the corresponding gradient ascent step will not be stochastic. The natural gradient

reads:

∇W8:�!�$ = V8 +
∑
9≠8

_8:

W8:
− W8: . (1.36)

The gradient step is then:

$C+1 = (1 − YC)$C + YC

(
V8 +

∑
9≠8

_8:

W8:

)
8∈[=],:∈[ ]

. (1.37)

Community memberships The main inference task is that of recovering communities. We note

that the Poisson factorization model does not come with a precise definition of community mem-

berships, which then need to be defined. Rather than setting a threshold for the propensities (whose

scale is hard to interpret), we turn to the expected number of edges. A natural criterion to assign

nodes to communities is to estimate their :-degree. The :-degree of a node 8, which we denote by

38: , is the number of edges that a node forms via community : . We then say that node 8 belongs to

community : if its expected :-degree is greater than 1 – or equivalently, if node 8 forms at least one

edge via community : in expectation. The :-degree can be readily estimated by approximating its

posterior mean via CAVI:

E(38: | �) =
∑
8≠ 9

E(I8 9 : | �8 9 ) ≈
∑
9≠8

�8 9i
∗
8 9 : = _

∗
8: − U, (1.38)

where >∗ and ,∗ denote the CAVI variational parameters at convergence.
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1.6 Derivations

ELBO

L(_8,: , W8,: , 58, 9 ) ∝
∑
8≠ 9 ,:

[
�8, 9 · q8, 9 ,: ·

(
k(_8,: ) − log W8,: + k(_ 9 ,: ) − log W 9 ,: − log q8, 9 ,:

)
−

_8,:

W8,:
·
_ 9 ,:

W 9 ,:

]
+

∑
8,:

[
U ·

(
k(_8,: ) − log W8,:

)
− _8,: · k(_8,: ) − (V8 − W8,: ) ·

_8,:

W8,:
+ logΓ(_8,: )

+ U log V8 − logΓ(U)
]
. (1.39)

CAVI updates The complete conditionals of the latent propensities are:

?(\8,: | z8,.,: , )−8,: ) ∝ ?(\8,: , z8,.,: , )−8,: ) (1.40)

∝ \U8,:−1
8,:

4−V8,:\8,:
∏
9

\
I8, 9 ,:

8,:
4−\8,:\ 9 ,: (1.41)

∝ Gamma(U8,: +
∑
9

I8, 9 ,: , V8,: +
∑
9≠8

\ 9 ,: ). (1.42)

As for the auxiliary latent variables, the complete conditionals read:

?(I8, 9 ,: | \8,:\ 9 ,: , �8, 9 , I8, 9 ,: ′) ∝ ?(I8, 9 ,: , \8,:\ 9 ,: , �8, 9 , I8, 9 ,: ′) (1.43)

∝ (\8,:\ 9 ,: )I8, 9 ,: (I8, 9 ,: !)−1
1{∑: I8, 9 ,:=�8,: } . (1.44)

Hence, z8, 9 ,. ∼ Multinomial(�8, 9 , >8, 9 ), where i8, 9 ,: =
\8,:\ 9 ,:∑
: \8,:\ 9 ,:

.

Since both distributions belong to the exponential family, the model is complete conjugate, and

then the variational updates can be easily derived as described in Blei, Kucukelbir, and McAuliffe

(2017).
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A memory-efficient implementation of CAVI The algorithm presented in Section 2 can be

further refined so as to make it more computationally efficient. This can be achieved by pre-

computing the terms that are needed to update the variational probabilities 5. This variation is

memory-free as we still have to store 3 · # ·  entries at each iteration.

Algorithm 1.3 Fast and memory-efficient CAVI for the Poisson factorization random graph model
1: Randomly initialize , and $.

2: while ELBO has not converged do

3: Compute b8,: = exp{k(_8,: ) − log W8,: } for all 8, : .

4: Set _8,: = U for all 8, : .

5: for each edge (8, 9) do

6: For all : , compute:

q: = b8,: · b 9 ,: .

7: Compute B =
∑
: q: and then set q: = q:/B for all : .

8: For all : , set:

_̂8,: = _8,: + q: ,

_̂ 9 ,: = _ 9 ,: + q: .

9: Set W8,: = V8 +
∑
9≠8

_ 9 ,:
W 9 ,:

for all 8, : .

10: Return 3̂8,: = _8,: − U for all 8, : .

Variational EM One can derive coordinate-ascent updates for the hyperparameters U and #, too.

This approach is called Variational EM. To this end, we first isolate the terms of the ELBO that

depend on U and # and then study the first order conditions. We have:

ELBOU,V =
∑
8,:

(
(U − 1)E@ (log \8,: ) − V8

_8,:

W8,:
+ U log V8 − logΓ(U)

)
, (1.45)
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where E@ (log \8,: ) = k(_8,: ) − log W8,: . Then:

m

mU
ELBOU,V =

∑
8,:

(
E@ (log \8,: ) + log V8 − k(U)

)
. (1.46)

Hence, the coordinate update for U is:

U∗ = k−1
(∑

8,: E@ (log \8,: ) +  
∑
8 log V8

# ·  

)
. (1.47)

Also:

m

mV8
ELBOU,V =

∑
:

−_8,:
W8,:
+ U
V8
. (1.48)

Hence, the coordinate update for V8 is:

V∗8 = U ·  ·
(∑
:

_8,:

W8,:

)−1

. (1.49)

The second order conditions can be easily verified. We have:

m2

mU2 ELBOU,V = −# ·  · k′(U) ≤ 0, (1.50)

since k′ ≥ 0. Also:

m2

mV2
8

ELBOU,V = −
 · U
V2
8

≤ 0. (1.51)
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Chapter 2: Generating networks with target degree centralities

2.1 Introduction

Any estimation task on networks benefits from a reliable generator of synthetic data. Real-

world networks are often hard to access because of privacy and cost concerns, and may be con-

stantly evolving. Such shortage of data makes synthetic networks essential for testing algorithms

under different structures, complexities, and scales. This applies in particular to community de-

tection methods. Because real-world data rarely come with community memberships, testing has

to be carried out on synthetic networks with built-in communities, also known as benchmark net-

works.

A valid benchmark generator should be equipped with some key features. First of all, while early

efforts at community detection have focused on disjoint communities, generators should allow for

an overlapping built-in community structure. This is because in social and biological applications

communities have been shown to overlap (Palla et al., 2005). Also, generators should replicate

structural properties of interest of real-world networks, such as power-law degree distributions.

Finally, with the advent of large-scale datasets, more and more attention has been given to the

development of community detection algorithms for massive networks (Gopalan and Blei, 2013).

To properly test these methods, generators need to be scalable, too.

In Chapter 2 and 3, we address the following question:

How can we generate large-scale networks with overlapping communities and a target structure

of interest?

Most efforts in the literature provide sequential algorithms that target prescribed degree centrality

sequences. For example, the de facto standard in the field (Lancichinetti, Fortunato, and Radicchi,

2008) and its overlapping extension (Lancichinetti and Fortunato, 2009) employ an edge switching
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algorithm to produce networks with node degrees and community sizes that follow a power-law

distribution. Even more recent works based on random graph models (Slota et al., 2019; Kamiński,

Prałat, and Théberge, 2021) remain algorithmic in their nature, in that their probabilistic represen-

tations are posed to solve the task at hand – that of reproducing target degree distributions – rather

than to capture a realistic community generation process.

To this end, consider a non-Bayesian version of the Poisson factorization model introduced in the

previous chapter, where the =-by-= random adjacency matrix � is generated as follows:

�8 9 ∼ Poisson

( ∑
1≤:≤ 

_8:_ 9 :

)
, (2.1)

independently for 8 < 9 . Recall that the parameter _8: can be interpreted as the propensity of node

8 to connect via community : . This formulation, originally proposed by Ball, Karrer, and Newman

(2011), gives rise to  overlapping communities.

While simple, this is a principled, flexible, and scalable random graph model. First, the idea of link

communities finds correspondence in the sociological literature with the social foci theory of Feld

(1981), for which individuals connect around social entities known as foci. Secondly, as pointed

out by Yang and Leskovec (2014), nodes that reside in overlaps of communities may be more

densely connected than those that do not. While many models assume sparse community overlaps,

the model formulation in Eq. (2.1) is flexible enough to capture dense overlaps, too. Finally, in

contraposition to the sequential design of most benchmark generators, here edges are conditionally

independent given propensities and thus their generation is pleasingly parallel.

We want to employ the model in Eq. (2.1) to generate networks that comply with a target structure

of interest. Let 6 : R=×= → R3 denote a map that encodes such a structure. It takes as input the

adjacency matrix and returns a 3-dimensional statistic that captures the target structure. A natural

way to formulate the network generation problem is to set 6(·) equal to a given goal ĝ ∈ R3 in
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expectation:

E,6(�) = ĝ. (2.2)

The subscript in the expectation emphasizes the dependence of the left-hand side above on the

model parameters ,. The task of generating networks under the constraint in Eq. (2.2) amounts to

recovering at least one set of parameters ,∗ that complies with Eq. (2.2), which can then be used to

draw random adjacency matrices from the model in Eq. (2.1). Hence, for a given target structure

6 and goal ĝ, we may wonder: does the problem in Eq. (2.2) admit a solution in the parameter

space? If such a solution exists, is it unique? If it exists and is unique, can we recover it?

The focus of this chapter is to address such questions when setting 6 equal to the degree centrality.

2.1.1 Overview of results

We fix a vector ĝ ∈ R= of target degree centralities for the nodes and seek to to recover the

model parameters , that secure ĝ ∈ R= in expectation. Under the Poisson factorization model in

Eq. (2.1), the system of equations in Eq. (2.2) reduces to a system of real multivariate polynomials

of degree 2 in ,. Since the parameters are constrained to be positive, we want to establish the

existence of solutions that live in the positive orthant. To this end, we borrow some recent results by

Bihan, Dickenstein, and Giaroli (2020) from real algebraic geometry. After establishing existence,

we turn to uniqueness. We are able to show that, for large graphs, the set of solutions shrinks

to a singleton. More precisely, we study the following asymptotic regime: first, we partition the

network into sets of stochastically equivalent nodes; then, we let the cardinalities of these subsets

grow in size.

Our results can be summarized as follows:

Under mild conditions, the degree centrality problem always admits a solution

in the parameter space that is also unique for large graphs.

22



We propose to recover the solutions of the problem via a multivariate Newton-Raphson algorithm.

Given the sensitivity of these class of methods to their initialization, we bound the roots of the

system in terms of the system coefficients and randomly sample points within such bounds to

provide a valid initialization of the algorithm. Extensive numerical experiments demonstrate the

effectiveness of the algorithm in recovering the solutions under different specifications. Also, we

show how we can initialize the centrality targets and the community structure so as to reproduce

assortative mixing and power-law centrality distributions. Our efforts result in a novel generator

that is able produce networks with a billion edges and hundreds of millions of nodes in 30 seconds,

while recreating a wide spectrum of network topologies. Our generator is implemented in the R

package genet1.

2.1.2 Related works

Benchmark generators for community detection The first generative model with built-in com-

munity structure dates back to the work of Girvan and Newman (2002), who employ the Erdös-

Rényi model to produce networks with 128 nodes evenly split between four communities. The

seminal Lancichinetti-Fortunato-Radicchi (LFR) generator by Lancichinetti, Fortunato, and Radic-

chi (2008) is the first to produce networks with heterogenous degrees and community sizes, sam-

pled from power-law distributions. This has later been extended to weighted and directed graphs

with overlapping communities (Lancichinetti and Fortunato, 2009). As the extensive rewiring pro-

cedure required by LFR generators makes them hard to scale, Hamann et al. (2018) have proposed

an external memory algorithm that can produce LFR graphs with more than 1010 edges in less than

a day with modest hardware. More recent efforts have focused on more interpretable (Kamiński,

Prałat, and Théberge, 2021), realistic (Fagnan et al., 2018), or scalable methods (Kolda et al., 2014;

Slota et al., 2019). As mentioned in the previous section, this body of literature is predominantly

algorithmic and focuses mostly on reproducing degree distributions.

1github.com/aagrande/genet.
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Poisson factorization Our work builds on the random graph model by Ball, Karrer, and New-

man (2011), which is based on Poisson factorization (PF) (Dunson and Herring, 2005). PF and its

generalizations have been used in a wide range of applications, including signal processing (Virta-

nen, Cemgil, and Godsill, 2008; Cemgil, 2008), music tagging (Liang, Paisley, Ellis, et al., 2014),

topic modelling (Paisley, Blei, and Jordan, 2014), and recommender systems (Gopalan, Ruiz, et al.,

2014; Gopalan, Hofman, and Blei, 2015). In the field of community detection, notable examples

include Bayesian non-parametric extensions (Zhou, 2015; Ayed and Caron, 2021) that allow for

an unknown number of communities to be estimated from the data

Real algebraic geometry. Under Poisson factorization, both the degree and the relaxed eigen-

centrality problems result in a system of real multivariate polynomials in the model parameters,

which are constrained to be positive. The study of solutions of real polynomial systems falls under

the domain of real algebraic geometry (Bochnak, Coste, and Roy, 2013). We employ some recent

results by Bihan, Dickenstein, and Giaroli (2020), who provide sufficient sign conditions on the

coefficient and exponent matrices of a real polynomial system that guarantee the existence of a

positive solution.

Matrix perturbation analysis In the eigencentrality problem, we bound the distance between

the sample eigencentrality and its population counterpart using a Davis-Kahan theorem. We use a

variant (Yu, Wang, and Samworth, 2015) of the original theorem that depends only on the popula-

tion eigenvalues. Also, to bound the operator norm between the sample and the expected adjacency

matrix, we extend the spectral bound by Lei and Rinaldo (2015) to our Poisson multiedge setting.

2.1.3 Setting and notation

Throughout this chapter we assume that the number of nodes # and the number of overlapping

communities  of the network we want to generate are given.
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Node types To simplify the problem complexity while preserving heterogeneity within the net-

work, we partition the nodes into ! types. Nodes within the same type share the same propen-

sities; in other words, they are stochastically equivalent. More specifically, if we let the map

f : [#] → [!] return the type of a node, we have:

f(8) = f( 9) =⇒ _8: = _ 9 : , : ∈ [ ] . (2.3)

We assume that each node type-ℓ has cardinality =ℓ > 1. Without loss of generality, we assume

that nodes 1 to =1 belong to the first node type, nodes =1 + 1 to =1 + =2 to the second type, and so

forth. Clearly,
∑
ℓ∈[!] =ℓ = # .

Membership assignments Each node type can belong to one or multiple communities. We say

that node type ℓ belongs to community : if its membership assignment Iℓ,: is positive. To allow

for varying node preferences over communities, we allow the membership assignments to take any

value in [0, 1] and require they have unitary norm,
∑
:∈[ ] I

2
ℓ,:

= 1 for each ℓ. We encode this

information in a membership matrix / = (Iℓ: )ℓ∈[!],:∈[ ] and define the type interaction matrix

� = //> ∈ R!×! . Note that �ℓ,ℓ′ > 0 if and only if the node types ℓ and ℓ′ share at least one

community. For our theoretical analysis, we will assume that the type interaction matrix is given.

In Section 2.3, we discuss how it can be generated so as to enforce assortative mixing.

Degree correction terms We relate the propensities to membership assignments as follows:

_8: = \f(8)If(8): , 8 ∈ [#], : ∈ [ ], (2.4)

where \f(8) is a positive degree correction term for node type f(8). Eq. 2.4 verifies Eq. (2.3).

We split propensities into two components: the membership assignments allocate the normalized

preferences of node types over communities; the degree correction terms allow for degree hetero-

geneity among types. While the type interaction matrix is assumed to be given, ) is assumed to be
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unknown. Recovering the degree correction terms ) = (\ℓ)ℓ∈[!] will be the object of interest in the

next sections.

Recalling that � = //>, it follows from (2.4) that:

E�8 9 =
∑
:∈[ ]

_8:_ 9 : = \f(8)\f( 9)
∑
:∈[ ]

If(8): If( 9): = \f(8)\f( 9)�f(8)f( 9) , 8 ≠ 9 . (2.5)

Hence, two nodes 8 and 9 share edges if and only if their types interact (i.e. �f(8)f( 9) > 0), or

equivalently, if and only if their types have at least one community in common.

Finally, in contrast to the original model by Ball, Karrer, and Newman (2011), we do not allow self-

loops, and setE�88 = 0. The expected adjacency matrix is univocally defined by f (or equivalently,

by the type cardinalities n = (=ℓ)ℓ∈[!]), / (or equivalently, �), and ) . We then denote it as

E�();�, n).

2.1.4 Outline

In Section 2.2, we state the degree centrality problem and show the existence and uniqueness

of its solutions. In Section 2.3, we present our generator and show how to initialize the affiliation

graph and the centrality targets so as to reproduce a wide spectrum of network topologies. Finally,

in Section 2.4, we investigate the efficacy of our generator with extensive numerical experiments.

All proofs are deferred to the Appendix.

2.2 The degree centrality problem

The degree centrality problem amounts to recovering the degree correction terms that secure

(in expectation) a target degree sequence.

Definition 2.2.1 (Degree centrality problem). Let d̂ ∈ R!+ , d̂f = (3̂f(8))8∈[#] , and let 1! denote a

vector of ones of size !. We define the degree centrality problem for (�, n, d̂) as the problem of
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finding a solution ) ∈ R!+ of the following system:

E�();�, n)1! = d̂f . (2.6)

The system defining the degree centrality problem arises from equating the expected degree of

each node to its corresponding target, which depends on the node’s type. Using the representation

in Eq. (2.5), the system in Eq. (2.6) reduces to:

(=ℓ − 1)�ℓℓ\2
ℓ +

(∑
ℓ′≠ℓ

=ℓ′�ℓℓ′\ℓ′

)
\ℓ − 3̂ℓ = 0, ℓ ∈ [!] . (2.7)

This is a system of ! sparse multivariate polynomials of degree 2 in the ! variables ) . The first

term in Eq. (2.7) results from the fact that a type-ℓ node can connect with all =ℓ type-ℓ nodes but

itself.

2.2.1 Existence of a solution

From a theoretical standpoint, the first question of interest is whether Eq. (2.7) admits a so-

lution in the parameter space R!+ . For a particular choice of (�, n, d̂), this can be assessed with

effective quantifier elimination (Basu, Pollack, and Roy, 2006) via, for example, the algebra soft-

ware SINGULAR (Decker et al., 2021). Our goal, however, is to study existence for the family

of systems arising from any choice of the parameters (�, n, d̂). To this end, we employ some

recent results by Bihan, Dickenstein, and Giaroli (2020) that provide sufficient conditions on the

coefficients of the system. Before presenting their main idea, we need to introduce yet another

representation of the system in Eq. (2.7).

Fix an exponent set E = {e1, . . . , e%} ⊆ R! of cardinality % and a coefficient matrix � ∈ R!×%.

The resulting system of ! multivariate polynomials into the ! variables in ) reads:

∑
?∈[%]

2ℓ?)
e? = 0, ℓ ∈ [!], (2.8)
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where ) e?
def
=

∏
ℓ∈[!] \

4?ℓ

ℓ
. Our system in Eq. (2.7) is a special case of Eq. (2.8) with � =

� (�, n, d̂) and % ≤ ! (! + 1)/2 + 1.

Example 2.2.1. To clarify the notation, we consider a toy setting with  = 3 communities, ! = 3

node types, and n = (2, 2, 3)>. We set the goal d̂ = (1.5, 2.5, 5)>. Also, we assume that the first

two node types belong exclusively to one community, while the third to all three, as encoded in the

following membership assignment matrix:

/ =

©«
1 0 0

0 1 0

1/
√

6 2/
√

6 1/
√

6

ª®®®®®¬
. (2.9)

The degree centrality problem amounts to finding a solution to the following system:

\2
1 +

3
√

6
\1\3 − 1.5 = 0, (2.10)

\2
2 +
√

6\2\3 − 2.5 = 0, (2.11)

2
√

6
\1\3 +

4
√

6
\2\3 + 2\2

3 − 5 = 0. (2.12)

This system of three polynomials in (\1, \2, \3) can be formulated as in Eq. (2.8) by choosing the

exponent set:

E = {(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2), (0, 0, 0)}, (2.13)

and the following coefficient matrix:

� =

©«
1 0 3/

√
6 0 0 0 −1.5

0 0 0 1
√

6 0 −2.5

0 0 2/
√

6 0 4/
√

6 2 −5

ª®®®®®¬
. (2.14)

The main idea in Bihan, Dickenstein, and Giaroli (2020) is to study a dual system to that in
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Eq. (2.8) whose solutions are in a one-to-one correspondence with the solutions of our original

system, if any. While the latter live in the positive orthant R!+ , the solutions of the dual system

are restrained in a convex and bounded polytope, and their existence can then be investigated via

degree theory. The dual system is obtained via the Gale dual matrices2 of the coefficient matrix

and of a matrix based on the exponents in E. This approach results in a set of sign conditions on

the coefficient and exponent matrix of the original system that are sufficient for the existence of at

least one positive solution.

To show that our original system in Eq. (2.7) admits a positive solution, we then reformulate it

under the representation in Eq. (2.8) and derive a closed form of the Gale duals of the resulting

coefficient and exponent matrices. This allows us to check the conditions by Bihan, Dickenstein,

and Giaroli (2020) for any choice of the system parameters. In Section 2.5, we introduce the full

framework in Bihan, Dickenstein, and Giaroli (2020) and present the proof of the following result.

Theorem 2.2.1 (Existence of a solution of the degree centrality problem). Let / be a membership

matrix that results in a type interaction matrix � = //> with strictly positive entries. Let n =

(=ℓ)ℓ∈[!] be a set of node type cardinalities that are all strictly greater than 1. Then the degree

centrality problem for (�, n, d̂) admits a solution for any target d̂ ∈ R!+ .

Theorem 2.2.1 provides a theoretical validation of the flexibility of the model, in that it guar-

antees the existence of a solution for any arbitrary centrality target. In practice, the remarkable

implication of the result is that we can reproduce any target degree centrality sequence, provided

that we can recover the degree correction terms that support it.

The technical assumption of strict positivity of the entries of the type interaction matrix � may

seem restrictive, as it forces any pair of node types to connect in expectation. However, since the

assumption involves the sign of the entries of � rather than their magnitude, we can approximate

any overlapping community structure by a perturbed version of the resulting type interaction ma-

trix. To see this, consider the setting of Example 2.2.1 in which the first two node types do not have

2We recall that a Gale dual matrix of a matrix � ∈ R<×= with maximal rank < is any matrix � ∈ R=×(=−<) of
maximal rank whose columns form a basis of the kernel of �.
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any communities in common, and thus �12 = �21 = 0. Theorem 2.2.1 still applies if we introduce

an arbitrarily small perturbation Y > 0 in the type interaction matrix � yielding:

�̃ =

©«
1 Y 1/

√
6

Y 1 2/
√

6

1/
√

6 2/
√

6 1

ª®®®®®¬
. (2.15)

2.2.2 Asymptotic uniqueness

Now that we have shown that the degree centrality problem always admits a solution, we may

wonder whether such solution is unique. It is important to note that, in order to generate networks

with a prescribed degree sequence and overlapping community structure, it suffices to recover at

least one solution in the parameter space. In this sense, uniqueness is somewhat marginal to our

main goal, especially if compared to existence. However, if uniqueness holds, then the equations

behind the degree centrality problem fully specify the model, in that each desired structure corre-

sponds to one and only one point in the parameter space.

We are able to show that, if we let the network size grow while keeping the proportion of nodes for

each type constant, the set of solutions of the degree centrality problem will converge to a single-

ton. We refer to this property as asymptotic uniqueness. Also, we can show that the limit is given

by any solution of the relaxation of the degree centrality problem that allows for self-loops, and

that convergence is uniform. This further implies that the problem with self-loops admits one and

only one solution.

We use the simplified setting of Example 2.2.1 to show the intuition behind our result, which is

stated in Theorem 2.2.2.

Example 2.2.2. Recall the setting from Example 2.2.1 with ! = 3 node types and  = 3 commu-

nities. We fix some initial cardinalities n(1) and a centrality target d̂(1). Assume that we multiply

the size of the network by some factor C ∈ N uniformly over the node types, so that the resulting

30



cardinalities are n(C) = Cn(1) and the centrality target is d̂(C) = C d̂(1).We want to find the degree

correction terms (\1(C), \2(C), \3(C)) that solve:

(=1(C) − 1)\2
1 (C) +

1
√

6
=3(C)\1(C)\3(C) − 3̂1(C) = 0, (2.16)

(=2(C) − 1)\2
2 (C) +

2
√

6
=3(C)\2(C)\3(C) − 3̂2(C) = 0, (2.17)

1
√

6
=1(C)\1(C)\3(C) +

2
√

6
=2(C)\2(C)\3(C) + (=3(C) − 1)\2

3 (C) − 3̂3(C) = 0. (2.18)

We make two simple remarks. First, the coefficients of the new system in Eq.s (2.16)–(2.18) are

multiples of those of the initial system (C = 1) except for the coefficients that correspond to the

monomials in (\2
ℓ
)ℓ∈[3] , which equal C=ℓ (1) − 1. As a result, the solutions of the initial and new

system differ. Secondly, for the equations – and thus the solutions – of the system not to change as

we multiply in size the cardinalities, we should allow self-loops. However, if we divide both sides

of the system of Eq.s (2.16)–(2.18) by C, the coefficients of the monomials in (\2
ℓ
)ℓ∈[3] would differ

from those of the problem with self-loops by 1/C. Hence, as C → ∞, we expect the set of solutions

of the degree centrality problem to converge to that of the problem with self-loops.

We defer the formal argument behind the remarks in Example 2.2.2 to the next chapter.

Theorem 2.2.2 (Asymptotic uniqueness for the degree centrality problem). Let � and n satisfy the

assumptions of Theorem 2.2.1. For C ∈ N, let S(C, �, n, d̂) denote the set of solutions of the degree

centrality problem for (�, Cn, C d̂). The solutions of the degree centrality problem for (�, n, d̂) are

asymptotically unique, in the sense that there exists )∗ such that for any Y > 0 there exists )Y > 0

such that:

sup
)∈S(C;�,n, d̂)

| |) − )∗ | | < Y for all C ≥ )Y . (2.19)

Moreover, )∗ is the solution of the degree centrality problem for (�, n, d̂) with self-loops.
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2.3 Network generation via the multivariate Newton-Raphson method

Under our framework, generating networks with target expected centralities involves two steps.

First, we need to recover a set of parameters that secures such targets; next, given the parameters,

we independently sample edges from the underlying Poisson random graph model.

In the previous sections we have shown that, for both the degree centrality and the eigencentrality,

the first task amounts to solve a system of multivariate polynomials of degree 2 in the degree cor-

rection terms. More specifically, if we let 5 : R!+ → R!+ denote the map encoding the polynomial

system, we want to find ) ∈ R+
!

such that:

5 ()) = 0. (2.20)

Our theoretical results guarantee that Eq. (2.20) always admits a solution (Theorem 2.2.1) and that,

for large graphs, such solution is unique (Theorem 2.2.2). We can recover the degree correction

terms with a multivariate Newton-Raphson (MNR) algorithm. The MNR update rule reads:

) (C+1) = ) (C) − �−1
(
) (C)

)
5

(
) (C)

)
, (2.21)

where � : R! → R!×! denotes the Jacobian of 5 . The updates can be stopped once the algorithm

has converged in a neighborhood of the solution, or equivalently if | |) (C+1)−) (C) | |+| | 5 () (C+1)) | | < Y.

The effectiveness of the algorithm to recover a solution of Eq. (2.20) is known to depend on the

validity of the initial guess ) (0) . If we start close enough to a solution, the MNR algorithm provides

quadratic convergence (Ortega, 1968). Conversely, if initialized too far from a root, the update rule

could result in a large step that makes the estimate worse. To this end, we bound the solutions

of our two problems of interest in terms of their coefficients. These bounds allow us to provide a

valid initialization to the MNR algorithm.

Theorem 2.3.1. Let ) ∈ R!+ denote the solution of the degree centrality problem for (�, n, d̂). For

each node type ℓ ∈ [!], there exist some constants
¯
\ℓ, \̄ℓ > 0 that depend on (�, n, d̂) such that
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¯
\ℓ ≤ \ℓ ≤ \̄ℓ.

After recovering the solution )∗ to Eq. (2.20), we generate networks from the model under

the propensities induced by )∗. This step can be executed efficiently under Poisson factorization.

Rather than generating each entry of the adjacency matrix �, we can first sample the total number

of multiedges " and then sample independently their 2" endpoints proportionally to the joint

propensities. Also, since edges are sampled independently, the edge generation step can be easily

scaled up via parallel computing.

A general version of our generator is stated below.

Algorithm 2.1 Graph generator for an arbitrary community structure and centrality target
Input: type interaction matrix � ∈ R!×! , cardinalities n ∈ N! , centrality target ĝ ∈ R!

Output: two-column matrix � listing edges

1: Initialize the degree correction terms ) (0) by sampling each term independently and uniformly

over the intervals generated by the bounds in Theorem 2.3.1

2: Solve (2.20) for ) with MNR initialized at ) (0)

3: for (ℓ, ℓ′) such that ℓ ≤ ℓ′, �ℓℓ′ > 0 do

4: if ℓ = ℓ′ then

5: d ← (=ℓ − 1)=ℓ�ℓℓ\2
ℓ

6: else

7: d ← =ℓ=ℓ′�ℓℓ′\ℓ\ℓ′

8: Sample <ℓ,ℓ′ ∼ Poisson(d)

9: Initialize 2-col. int. matrix � with
∑
ℓ,ℓ′ <ℓ,ℓ′ rows

10: for (ℓ, ℓ′) such that ℓ ≤ ℓ′, �ℓℓ′ > 0 do

11: Randomly sample with replacement <ℓ,ℓ′ node pairs from {(8, 9) : 8 ≠

9 , 8 is type-ℓ, 9 is type-ℓ′} and save them in �

12: Return �
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2.3.1 The MNR algorithm

We derive the multivariate Newton-Raphson (MNR) algorithm for the degree centrality prob-

lem in detail. The problem reduces to a system of multivariate polynomials of degree 2 in !

variables and ! equations, whose coefficients depend on the type interaction matrix �, the type

cardinalities n, and the centrality targets. We first state the system of equations, derive the Jaco-

bian, and then state the MNR algorithm.

The system behind the degree centrality problem for (�, n, d) reads:

(=ℓ − 1)�ℓℓ\2
ℓ +

(∑
ℓ′≠ℓ

=ℓ′�ℓℓ′\ℓ′

)
\ℓ − 3ℓ = 0, ℓ ∈ [!] . (2.22)

We encode the coefficients of the above system in the matrix of total interactions ) ∈ R!×! . We

set:

)ℓℓ′
.
=


2(=ℓ − 1)�ℓℓ ℓ′ = ℓ

=ℓ′�ℓℓ′ ℓ′ ≠ ℓ

(2.23)

We note that ) is a sparse, non-Hermitian matrix that has as many entries as �.

Solving the system in Eq.(2.22) amounts to finding the roots of a map 5 : R!×!+ → R!+ such that:

5ℓ ()) =
)ℓℓ

2
\2
ℓ +

(∑
ℓ′≠ℓ

)ℓℓ′\ℓ′

)
\ℓ − 3ℓ, ℓ ∈ [!], (2.24)

where d denotes an arbitrary degree sequence. The Jacobian of Eq. (2.24) is given by:

�ℓℓ′ ()) =
m 5ℓ

m\ℓ′
()) =



∑
ℓ′∈[!] )ℓℓ′\ℓ′ ℓ′ = ℓ

)ℓℓ′\ℓ ℓ′ : )ℓℓ′ > 0

0 otherwise

. (2.25)
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The MNR algorithm requires computing the Jacobian at each iteration. However, because ) de-

pends only on the system coefficients, this matrix can be precomputed and stored in memory before

running the MNR updates. After computing the Jacobian, the MNR updates reduce to solving a

linear system of equations at each iteration. More specifically, at the C-th iteration, we have:

� ())
(
) (C+1) − ) (C)

)
= − 5

(
) (C)

)
, (2.26)

where 5 and � are given by Eq.s (2.24) and (2.25), respectively, and ) (C) denotes the current guess

of a root of 5 . We want to solve Eq. (2.26) for ) (C+1) − ) (C) . Similarly to the total interaction

matrix ) , we note that � is a square, non-Hermitian matrix with as many entries as �. We can then

solve (2.26) via a LU factorization. To this end, we use the sparse LU-based solver provided in the

C++ library Eigen (Guennebaud, Jacob, et al., 2010), which we interface to R via the R package

RcppEigen (Bates and Eddelbuettel, 2013). This efficient solver analyzes the sparsity pattern of the

coefficient matrix and reorders its nonzero entries so as to minimize the number of fill-ins. Because

the sparsity pattern of the Jacobian in Eq. (2.25) does not change across the MNR iterations, we

can execute this step only once before running the updates.

The resulting MNR algorithm is stated below.
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Algorithm 2.2 Multivariate Newton Raphson for the degree centrality problem
Input: intial root ) (0) , sparse matrix of total interactions ) ∈ R!×! , centrality target d, error

tolerance Y

Output: root )

1: Compute � from ) and ) (0) as in (2.25)

2: Analyze pattern of �

3: ) ← ) (0)

4: not_converged← CAD4

5: while not_converged do

6: b ← 5 () , d) as in (2.24)

7: Compute � from ) and ) as in (2.25)

8: Factorize � and solve �Δ) = b for Δ)

9: if | |b | | + | |Δ) | | < Y then

10: not_converged← 5 0;B4

11: ) ← ) + Δ)

12: Return )

2.3.2 Initializing the community structure and centrality targets

To illustrate the flexibility of our generator, we show how to initialize the centrality targets and

the community structure in order to reproduce an arbitrary topology of interest. For example, one

may want to investigate the dynamics of an epidemic process on a modular network of contacts

with a power-law degree distribution and with high degree assortativity – two properties that are

known to occur in social networks (Newman and Park, 2003; Barabási and Albert, 1999). With

the general aim of capturing a wide spectrum of network topologies, we operate at two levels: on

a global scale, we reproduce an arbitrary distribution for the degree centrality; on a local scale, we

control the assortativity of the network – how likely nodes are to connect based on how similar

they are. In particular, we propose a method to initialize the cardinalities and centrality targets so
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as to reproduce an arbitrary centrality distribution, and then we discuss how to build a community

structure that supports assortative mixing.

Initializing centrality targets and cardinalities Assume that we want to generate a network

with an arbitrary degree distribution P, with probability mass function ? and finite support � ⊆

N. The empirical degree distribution of the network will depend on both the centrality target d̂

and the type cardinalities n. Hence, we need to choose d̂ and n so that the empirical degree

distribution is as close as possible to ?. To this end, we set as centrality target the vector of (!+1)-

quantiles of P, and then adjust the cardinalities so that the empirical distribution complies with ?.

More specifically, for all ℓ ∈ [!], we let 3̂ℓ be the quantile of P corresponding to the probability

ℓ/(! + 1), and then set:

=ℓ ∼ nint

(
2

?(3̂ℓ)
minℓ′∈[!] ?(3̂ℓ′)

)
, (2.27)

where nint(·) denotes the nearest integer function. In Eq. (2.27), we adjust the cardinalities while

enforcing the constraint that they must be integers greater than 1. Clearly, the greater the number

of types, the more closely the empirical distribution will resemble P. In practice, since P is

discrete, some centrality targets may be identical, especially if the number of types is large. Under

the cardinality scaling in Eq. (2.27), identical targets introduce bias. To avoid this, if any two

consecutive targets 3̂ℓ and 3̂ℓ+1 are such that 3̂ℓ ≥ 3̂ℓ+1, we set 3̂ℓ+1 = 3̂ℓ + 1; we repeat this

correction iteratively until all targets are distinct.

One limitation of this approach is that, while it can be applied to any arbitrary distribution P, highly

concentrated distributions will result in massive network sizes. This is not the case, however, for

fat-tailed distributions, such as power-law distributions, which are known to capture the empirical

distribution of centralities in real-world networks.

Initializing the community structure via assortative mixing We can control the network as-

sortativity via the type interaction matrix �. While the entries of � are positive real numbers, we
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can model their signs as Bernoulli random variables with expectation proportional to the similar-

ities of types, as measured by a similarity function of our choice. In this chapter, we focus on

the degree assortativity and show how we can control the latter via the survival function of a Beta

distribution. More specifically, denoting by 3̂ℓ the target degree for type ℓ, we let:

sign(�ℓ,ℓ′) ∼ Bernoulli
(
�̄U,V

(
|3̂ℓ − 3̂ℓ′ |
maxℓ 3̂ℓ

))
, ℓ ≠ ℓ′, (2.28)

where �̄U,V (·) denotes the survival function of a Beta random variable with shape parameters U and

V. Beta survival functions are a natural choice for assigning degree assortativity scores, as they

form a rich family of parametric curves that are bounded and strictly decreasing in [0, 1].

After generating the type interactions via Eq. (2.28), we need to build some community assign-

ments /ℓ: ’s that are compatible with sign(�). Note that if two types ℓ and ℓ′ share edges (i.e.

sign(�ℓℓ′) = 1), they have at least one community in common supporting their interaction. Any

other node type ℓ′′ belonging to that community must share edges with both type-ℓ and type-ℓ′

nodes. Hence, if we let �� denote the undirected graph of type interactions with adjacency matrix

sign(�), we can assign to each maximal clique in �� a separate community that supports the type

interactions within that clique. This approach will yield the minimum number of communities

needed to enforce the type compatibilities generated in Eq. (2.28). The resulting number of com-

munities  will be given by the number of maximal cliques plus all the single edges in �� that

belong to no clique. This procedure will determine whether or not a type belongs to a community,

i.e. the sign of the community assignments; their weight can be then assigned arbitrarily.

We may wonder whether Eq. (2.28) could be used to generate disassortative networks, for example

by adopting an increasing score function (such as the Beta cumulative distribution function) for

disassortativity scores. However, because nodes of the same type are connected with high proba-

bility (�ℓℓ = 1 by definition), the networks produced by our generator are likely to display some

level of assortativity. For this reason, our generator is not suitable for applications that are known

to present disassortative mixing, such as protein-to-protein networks (Maslov and Sneppen, 2002).
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2.4 Numerical experiments

We perform extensive numerical experiments3 to illustrate the ability of our generator to cap-

ture target degree centrality distributions, reproduce varying levels of degree assortativity, and

generate massive networks.

Power-law degree distributions Following the procedure discussed in Section 2.3.2, we initial-

ize the cardinalities and the degree centrality target so as to reproduce the right tail of a power-law

degree distribution. Under this distribution, the probability that a node has degree 3 is propor-

tional to 3−U. In our experiments, we set the minimum degree 3min = 3, the maximum degree

3max = 500, and U = 1.94, resulting in a mean degree of approximately 15. For simplicity, we

assume that each node type is assigned with equal weights to 15 out of 100 total communities. We

also ensure that no types have identical assignments, all communities have at least one type, and

the resulting graph of type interactions is connected.

Figure 2.1 compares the right tail of the target power-law distribution with that of the empirical de-

gree distribution of 1,000 networks produced by our generator, for different number of types. The

empirical degree distributions of the synthetic networks comply with the target, illustrating the ef-

ficacy of our generator. Under the initialization in Eq. (2.27), as the number of types increases, so

does the number of distinct @-quantiles that we use to pinpoint the target distribution. As a result,

the empirical distribution more closely resembles the underlying power-law distribution.

3The R package is available at github.com/aagrande/genet. All experiments are single-threaded and run in RAM
on a Intel® Core™ i7-1068NG7 CPU @2.3GHz.
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Figure 2.1: Monte Carlo estimates and 95% confidence intervals of the de-
gree distribution (1,000 networks per point) for different node types. The black
lines represent the probability mass function of the target power-law distribution
(3min = 3, 3max = 500, U = 1.938, 3̄ ≈ 15).

Assortative mixing We demonstrate the ability of our generator to produce networks that vary

in terms of degree assortativity. Following the initialization recipe presented in Eq. (2.27), we

investigate how the assortative score function determines the mean degree assortativity coefficient

(Newman, 2002) and the number of communities.

We consider three different network sizes, as indexed by the number of types ! ∈ {20, 50, 100}.

The degree centrality targets are drawn from a power-law degree distribution (3min = 3, 3max =

500, and U = 1.938 so that 3̄ ≈ 15), which results in networks with ∼103 (! = 20), ∼104 (! = 50),

and ∼105 (! = 100) nodes. In order to generate the type interaction matrices via (2.28), we must

choose the Beta shape parameters of the assortative score function. We proceed as follows. First,

we fix a different value of U for each network size and let V range from U/10 to U. Next, we in-

vestigate via numerical experiments how to choose U so as to (a) enforce different levels of degree

assortativity while (b) keeping the number of communities under control.

Figure 2.2 illustrates this two-step procedure. Figure 2.2(a) presents some assortativity score func-

tions based on the Beta survival functions. When U > 1 and V > 1, the ratio V/U determines the

location of the inflection point of the Beta survival function. The larger this ratio, the closer to
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the origin the inflection point, and thus the less likely an interaction between types with dissimilar

degrees is. We can then think of V/U as a rough measure of the level of degree assortativity that

we want to enforce. This is reflected in the second plot, Figure 2.2(b), which presents Monte Carlo

estimates (102 type interaction matrices per point, 103 networks per interaction matrix) of the de-

gree assortativity coefficient resulting from different parameter ratios. As we vary the ratio V/U,

our generator is able to produce a wide spectrum of degree assortative topologies for each network

size, ranging from mildly assortative to highly assortative networks. Finally, for a given ratio V/U,

the shape parameter U influences the steepness of the survival function. As the number of types

increases, so does the number of potential interactions; a steeper survival function will result in

a sparser type interaction matrix, thus limiting the number of communities needed to support a

given degree assortativity regime. This is shown in Figure 2.2(c), which illustrates the ability of

our generator to produce a reasonable number of communities for each network size.

(a) (b) (c)

Figure 2.2: (a) Beta survival functions for different combinations of shape pa-
rameters. (b) Monte Carlo estimates (103 networks × 103 type interaction matri-
ces per point) and 95% confidence intervals of the mean degree assortativity co-
efficient for three network sizes (! ∈ {20, 50, 100} resulting in 103–105 nodes)
under different parametric regimes. (c) Monte Carlo estimates (104 type inter-
action matrices per point) and 95% confidence intervals of the number of com-
munities for three network sizes resulting from different parametric regimes.
The communities are recovered via the maximum clique procedure discussed in
Section 2.3.2.
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Runtimes We investigate the performance of our generator on massive networks with sizes rang-

ing from 106 to 108 nodes. We choose an arbitrary degree centrality target so that the average

degree is 20 and, as a result, the expected number of edges ranges from 107 to 109. We measure

the runtimes of our generator as we vary the number of types and the sparsity of the type interac-

tion matrix, which can be seen as a proxy for the number of communities. Because types interact

through communities, the larger the number of active communities, the denser the interactions be-

tween types.

As shown in Figure 2.3, our generator produces networks with 1 billion edges and a hundred mil-

lion nodes in less than 30 seconds. This is orders of magnitude faster than the other benchmark

generators in the literature. For example, the recent and scalable Artificial Benchmark for Commu-

nity Detection (ABCD; Kamiński, Prałat, and Théberge 2021) generates networks with 107 nodes

and average degree 25 in 1.2 to 3.8 minutes. Kamiński, Prałat, and Théberge (2021) also show that

an efficient implementation of the LFR generator from the NetworKit package (Staudt, Sazonovs,

and Meyerhenke, 2016) takes between 15.4 and 20 minutes to generate a network of the same

scale. We remark that the runtimes in Figure 2.3 refer to our single-threaded implementation. Be-

cause our algorithm samples edges independently, the edge generation step is pleasingly parallel.

In the most demanding experiments (# = 108 and ! = 103), this step amounted to at least 95% of

the running time, indicating the large potential for scalability of our generator.
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Figure 2.3: Runtimes of our generator for three different network sizes. For
each size, we generated 100 networks with ! ∈ {10, 100, 1000} node types.
Each type is set to interact with 4! log ! types in the sparse interaction regime,
and with 0.5·

(!
2
)

types under the dense interaction regime. The runtimes refer to
the eigencentrality problem with a balanced eigencentrality target and average
degree equal to 20.

2.5 Proofs

Existence of a positive solution Here we prove the existence of a solution for the degree central-

ity problems. Our results follow from the main result in Bihan, Dickenstein, and Giaroli (2020),

a simplified version of which is stated in Theorem 2.5.1. Before proving our results, we recall the

framework in Bihan, Dickenstein, and Giaroli (2020) and state the results that are relevant to our

application without proof.

Existence of a positive solution of sparse polynomial systems

For a fixed exponent set E = {41, . . . , 4=} ⊂ R3 and given matrix of coefficients � ∈ R3×=,

consider the following system of 3 multivariate polynomials in 3 variables G = (G1, . . . , G3):

=∑
9=1
28 9G

4 9 = 0, 8 = 1, . . . , 3, (2.29)
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where G4 9 def
=

∏3
8=1 G

4 98

8
. We are interested in the existence of solutions that live in the positive

orthant R3
>0. To tackle this problem, Bihan, Dickenstein, and Giaroli (2020) introduce a Gale

dual system and a convex and bounded polytope such that the solutions of the dual system in

this polytope are in a one-to-one correspondence with the real and positive solutions of the initial

system Eq. (2.29). As opposed to the initial system, the solutions of the dual problem live in a

convex and bounded polytope, and we can then investigate their existence via degree theory.

Note that the number of positive solutions of the initial system is an affine invariant of the exponent

set E. We thus group the exponents in E into the matrix � ∈ R(3+1)×= by combining the vectors

(1, 48) for 8 = 1, . . . , = column-wisely, and we let : = = − 3 − 1 denote the codimension of � . The

initial system is univocally identified by the pair (�,�). We assume that � and � are of maximal

rank, and we let � and � denote some Gale dual matrices4 of � and �, respectively. We number

the columns of � from 1 to : and those of � from 0 to : . Also, we let �1, . . . , �= denote the

columns of the coefficient matrix �, and %1, . . . , %= the rows of its Gale dual �. Finally, we let:

C� = R>0�1 + · · · + R>0�=, (2.30)

denote the positive cone generated by �1, . . . , �=; similarly, we let C% denote the positive cone

generated by %1, . . . , %=.

The Gale dual system of Eq. (2.29) associated to the Gale dual matrices � and � is given by:

=∏
8=1
〈%8, H〉18 9 = 1, 9 = 1, . . . , : . (2.31)

This is a homogenous system with : equations in : + 1 variables H = (H0, H1, . . . , H: ). We look for

the solutions of Eq. (2.31) over the convex polytope:

Δ% = {H ∈ R:+1 : 〈%8, H〉 > 0, 8 = 1, . . . , =} ∩ {H ∈ R:+1 : H0 = 1}. (2.32)

4For a given matrix " ∈ RA×B of maximal rank A, a Gale dual matrix of " is any matrix � ∈ RB×(B−A ) of maximal
rank whose columns form a basis of the kernel of " .
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The following lemma provides necessary and sufficient conditions for Δ% to be fully dimensional

and bounded.

Lemma 2.5.1. Assume that � has maximal rank, 0 ∈ C� and let � be a Gale dual matrix of �.

Then (1, 0, . . . , 0) ∈ CP if and only if Δ% has dimension : and is bounded.

We can now establish the relationship between our initial problem and its Gale dual.

Lemma 2.5.2. There is a bijection between the positive solutions of the initial system Eq. (2.29))

and the solutions of the Gale dual system Eq. (2.31)) in Δ% when (1, 0, . . . , 0) ∈ C%.

To study the solutions of Eq. (2.31) in Δ%, we define the Gale map 6 = (61, . . . , 6: ) : R: → R: ,

where:

6 9 (H) =
∏
18 9>0
〈%8, (1, H)〉18 9 −

∏
18 9<0
〈%8, (1, H)〉−18 9 , 9 = 1, . . . , : . (2.33)

Note that if H ∈ R: is a zero of 6 such that (1, H) ∈ Δ%, then (1, H) is a root of Eq. (2.31). We

can assess the existence of such zeros by studying the sign of 6 on the faces of the polytope Δ%.

For our purposes, it suffices to know that this reduces to some sign conditions on the Gale dual

matrices � and �, stated in the next result. Before that, note that the facets of Δ% are supported

on the hyperplanes {H ∈ R:+1 : 〈%8, H〉 = 0} for all the vectors %8 that lie on the rays of �%; for

each %8, we denote by �8 the corresponding facet of Δ%. Also, we let �� ⊂ {1, . . . , =} be the set of

indices of the vectors %8 that belong to the boundary of Δ%. Finally, for any proper face � of Δ%,

we define ! (�) = {8 ∈ �� : � ⊂ �8} and F (Δ%) = {! (�) : � is a proper face of Δ%}.

Theorem 2.5.1. Consider the system in Eq.(2.29). Assume that � and � have maximal rank,

0 ∈ C� , and Δ% is a full dimensional bounded polytope. Also, assume that:

(8) For any ! ∈ F (Δ%), the submatrix of � given by the rows with indices in ! has at least one

nonnegative or nonpositive column with at least one non-zero entry.

(88) For any 8 ∈ �� , the following holds:
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• 18 9 · 38 9 ≥ 0 for 9 = 1, . . . , :;

• there exists 9 ∈ {1, . . . , :} such that 18 9 · 38 9 > 0;

• for all 9 ∈ {1, . . . , :}, if 18 9 = 0 then 38 9=0.

Then the system has at least one real and positive solution.

Existence of a solution for the degree centrality problem

Recall that the degree centrality problem amounts to solving the following system of polyno-

mials in the degree correction terms ) ∈ R!+ :

(=ℓ − 1)�ℓℓ\2
ℓ +

∑
ℓ′≠ℓ

=ℓ′�ℓℓ′\ℓ′\ℓ − 3̂ℓ = 0, ℓ ∈ [!] . (2.34)

If � has strictly positive entries, we can show that this problem always admits a (real and positive)

solution. Our result is a direct application of Theorem 2.5.1. In what follows, we first introduce

the coefficient and exponent matrices resulting from Eq. (2.34), and then derive their Gale duals

(Lemma 2.5.3 and 2.5.4). Finally, we show that the degree centrality problems verifies the sign

conditions in Theorem 2.5.1.

We can think of � as the adjacency matrix of a weighted undirected graph of type-to-type interac-

tions. The number of monomials that appear in the degree centrality problem for (�, n, d̂), which

we denote by &, is given by the number of edges of the type-to-type interaction graph plus one for

the constant term, i. e. & =
∑
ℓ′≥ℓ 1{�ℓℓ ′>0} + 1. The assumption of strict positivity of the entries of

� implies that the interaction graph is complete; hence, & = ! (! + 1)/2. We order the monomials

lexicographically and define the resulting map ^ : {(ℓ, ℓ′) ∈ [!] × [!] : �ℓ,ℓ′ > 0} → [& − 1] that

returns the column index associated to the monomial \ℓ\ℓ′ for both the coefficient and exponent
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matrices:

^(ℓ, ℓ′) =



^(ℓ, ℓ) +∑
ℓ′≥ℓ′′>ℓ 1{�ℓℓ ′′>0} ℓ′ > ℓ,∑

ℓ′′<ℓ
∑
ℓ′′′ 1{�ℓ ′′ℓ ′′′>0} + 1 ℓ′ = ℓ,

^(ℓ′, ℓ) ℓ′ < ℓ.

(2.35)

The coefficient and exponent matrices � ∈ R!×& and � ∈ R(!+1)×& that arise from the degree

centrality problem for (�, n, d̂) are:

�ℓ@ =



=ℓ′�ℓℓ′ @ = ^(ℓ, ℓ′) for some ℓ′ ≠ ℓ,

(=ℓ − 1)�ℓℓ @ = ^(ℓ, ℓ),

−3̂ℓ @ = &,

(2.36)

and:

�ℓ+1,@ =



1 ℓ = 0,

1 @ = ^(ℓ, ℓ′) for some ℓ′ ≠ ℓ,

2 @ = ^(ℓ, ℓ),

0 otherwise.

(2.37)

Lemma 2.5.3 (Gale dual to the exponent matrix of the degree centrality problem). Define the

matrix � ∈ R&×(&−!−1) such that:

� =
©«
�̃

�̃�

ª®®¬ , (2.38)
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where �̃ ∈ R!×(&−!−1):

�̃ℓ 9 =



1 ℓ = 1,

−1 ℓ > 1, 9 = ^(ℓ, ℓ′) − ! for some ℓ′ ∈ {2, . . . , !} \ {ℓ},

−2 ℓ > 1, 9 = ^(ℓ, ℓ) − !,

0 otherwise,

(2.39)

and �̃� ∈ R(&−!)×(&−!−1) is the matrix given by the identity matrix of size & − ! − 1 to which an

empty row has been appended from below. Then � is a Gale dual matrix of � .

Proof. Note that the columns of � are linearly independent. Also, for y ∈ R& , we have � y = 0 if

and only if
∑&

8=1 H8 = 0 and:

2H^(ℓ,ℓ) +
∑
ℓ′≠ℓ

H^(ℓ,ℓ′) = 0, ℓ ∈ [!] . (2.40)

It follows from Eq. (2.40) that:

∑
ℓ′≥ℓ

H^(ℓ,ℓ′) =
∑
ℓ

H^(ℓ,ℓ) +
∑
ℓ

∑
ℓ′>ℓ

H^(ℓ,ℓ′)

= −1
2

∑
ℓ

∑
ℓ′≠ℓ

H^(ℓ,ℓ′) +
∑
ℓ

∑
ℓ′>ℓ

H^(ℓ,ℓ′)

= 0. (2.41)

Since the entries of y sum to zero, we then have:

H& = 0. (2.42)

We will now express the set of equations Eq. (2.40) in the free variables (H^(ℓ,ℓ′))1<ℓ≤ℓ′. For all
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ℓ > 1 in [!]:

H^(1,ℓ) = −2H^(ℓ,ℓ) −
∑
ℓ′≠ℓ,1

H^(ℓ,ℓ′) . (2.43)

This in turn implies:

H^(1,1) = −
1
2

∑
ℓ≠1

H^(1,ℓ) =
∑
8>1

∑
ℓ′>ℓ

H^(ℓ,ℓ′) . (2.44)

The set of equations in Eq.s (2.42), (2.43), and (2.44) in the free variables (H^(ℓ,ℓ′))1<ℓ≤ℓ′≤! defines

the kernel of � . It follows that the columns of � span the kernel of � .

�

Lemma 2.5.4 (Gale dual to the coefficient matrix of the degree centrality problem). Define the

matrix � ∈ R&×(&−!) given by:

� =
©«
�̃

�̃�

ª®®¬ , (2.45)

where �̃ ∈ R!×(&−!) is defined as follows:

�̃8 9 =



3̂1/(=1�11) −
∑
ℓ>1 =ℓ 3̂ℓ/(=2

1�11) 8 = 1, 9 = 0,

(=ℓ − 1)=ℓ�ℓℓ/(=2
1�11) 8 = 1, 9 = ^(ℓ, ℓ) − ! for some ℓ ∈ {2, . . . , !},

2=ℓ=ℓ′�ℓℓ′/(=2
1�11) 8 = 1, 9 = ^(ℓ, ℓ′) − ! for some ℓ ≠ ℓ′ in {2, . . . , !},

3̂8/(=1�18) 8 > 1, 9 = 0,

−(=8 − 1)�88/(=1�18) 8 > 1, 9 = ^(8, 8) − !,

−=ℓ�8ℓ/(=1�18) 8 > 1, 9 = ^(8, ℓ) − ! for some ℓ ∈ {2, . . . , !} \ {8},

0 otherwise,

,
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and �̃� is given by the identity matrix of size & − ! after moving its (& − !)-th column before the

remaining & − ! − 1 columns. Then � is a Gale dual matrix of �.

Proof. Note that the columns of � are linearly independent. Also, for y ∈ R& , we have �y = 0 if

and only if (=ℓ − 1)�ℓℓH^(ℓ,ℓ) +
∑
ℓ′ =
′
ℓ
�ℓℓ′H^(ℓ,ℓ′) − 3̂ℓH& = 0 for all ℓ ∈ [!]. For all ℓ > 1:

H^(1,ℓ) = −
1

=1�1ℓ

[∑
ℓ′>ℓ

=ℓ′�ℓℓ′H^(ℓ,ℓ′) + (=ℓ − 1)�ℓℓH^(ℓ,ℓ) − 3̂ℓH&

]
. (2.46)

Hence:

H^(1,1) = −
1

=1�11

[∑
ℓ>1

=ℓ�1ℓH^(1,ℓ) − 3̂1H&

]
=

∑
ℓ>1

(=ℓ − 1)=ℓ�ℓℓ
=2

1�11
H^(ℓ,ℓ) +

∑
ℓ>1

∑
ℓ′>ℓ

2=ℓ=ℓ′�ℓℓ′
=2

1�11
H^(ℓ,ℓ′)

+
(
3̂1

=1�11
−

∑
ℓ>1

=ℓ 3̂ℓ

=2
1�11

)
H& . (2.47)

The set of equations in Eq.s(2.46) and (2.47) in the free variables (H^(ℓ,ℓ′))1<ℓ≤ℓ′≤! and H& defines

the kernel of �, which, as a result, is spanned by the columns of �. �

Theorem 2.5.2 (Existence of a solution for the degree centrality problem). Let / be a membership

matrix that results in a type-to-type interaction matrix � = //> with strictly positive entries. Let

n = (=ℓ)ℓ∈[!] be a set of node type cardinalities that are all strictly greater than 1. Then the degree

centrality problem for (�, n, d̂) admits a solution for any target d̂ ∈ R!+ .

Proof. The result is a direct application of Theorem 2.5.1. Note that � and � have maximal rank;

all the other conditions of Theorem 2.5.1 are verified below.

0 ∈ C�

Let ỹ ∈ R& . If we choose H̃& = 1 and H̃^(ℓ,ℓ′) = minℓ 3̂ℓ/(2 maxℓ
∑
ℓ′≠ℓ =ℓ′�ℓℓ′) for all ℓ ≠ ℓ′, then:

H̃^(ℓ,ℓ) =
3̂ℓ −

∑
ℓ′≠ℓ =ℓ′�ℓℓ′ H̃^(ℓ,ℓ′)
(=ℓ − 1)�ℓℓ

> 0 (2.48)
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It can be easily verified that � ỹ = 0.

Δ% is a full dimensional bounded polytope

By Lemma 2.5.1, it suffices to show that (1, 0, . . . , 0) ∈ R& belongs to C%. Let ỹ ∈ R& . It follows

from Lemma 2.5.4 that H̃� = (1, 0, . . . , 0) if and only if:

H̃& = 1 +
(∑
ℓ>1

=ℓ 3̂ℓ

=2
1�11

− 3̂1
=1�11

)
H̃^(1,1) −

∑
ℓ>1

3̂ℓ

=1�1ℓ
H̃^(1,ℓ) , (2.49)

H̃^(ℓ,ℓ) =
(=ℓ − 1)�ℓℓ
=1�1ℓ

H̃^(1,ℓ) −
(=ℓ − 1)=ℓ�ℓℓ

=2
1�11

H̃^(1,1) , (2.50)

H̃^(ℓ,ℓ′) =
=ℓ′�ℓℓ′

=1�1ℓ
H̃^(1,ℓ) +

=ℓ�ℓℓ′

=1�1ℓ′
H̃^(1,ℓ′) −

2=ℓ=ℓ′�ℓℓ′
=2

1�11
H̃^(1,1) . (2.51)

For all ℓ, ℓ′ > 1, if we set:

H̃^(1,ℓ) =

(
=ℓ�1ℓ
=1�11

+ Y
)
H̃^(1,1) , (2.52)

then we can check by means of Eqs. (2.50) and (2.51) that H̃^(ℓ,ℓ′) > 0 and H̃^(ℓ,ℓ) > 0 for any

choice of H̃^(1,1) > 0. We can then use Eq. (2.49) to set H̃^(1,1) > 0 small enough for H̃& to be

positive.

Assumption (8)

Recall the Gale dual matrix � of the coefficient matrix � in Lemma 2.5.4. Let �( denote the

submatrix of � formed by the rows of � with indices in (, and assume that ( is such that �( has

mixed-sign columns5. We want to show that ∩8∈(�8 is empty.

First, assume that 1 ∈ (. Then, for the (^(8, 8) − !)-th column of �( to be mixed-sign, we must

have 8 ∈ (, for all 8 = 2, . . . , !. Hence, [!] ⊆ (. Now assume to the contrary that there exists

(1, y) ∈ R(!−1)!/2+1 ∈ ∩8∈[!]�8.Because (%8)8∈( belong to the boundary of Δ%, we must have:

〈
∑
8∈(

08%8, (1, y)〉 = 0. (2.53)

5We say that a column is mixed-sign if it has at least two non-zero entries with opposite sign.
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for any vector of scalars (08)8∈( ∈ R|( |. However, if we were to remove the first column from the

matrix �, its first ! rows would be linearly dependent. To see this, note that by Lemma 2.5.4, we

have:

−
!∑
8=2

=8�18�8,^(ℓ,ℓ′)−! = −=ℓ�1ℓ�ℓ,^(ℓ,ℓ′)−! − 1{ℓ≠ℓ′}=ℓ′�1ℓ′�ℓ′,^(ℓ,ℓ′)−!

= =1�11�1,^(ℓ,ℓ′)−! . (2.54)

Hence:

〈
!∑
8=1

=8�18%8, (1, y)〉 =
!∑
8=1

=8�18�80 = 3̂1 > 0, (2.55)

which contradicts Eq. (2.53).

Next, assume that 1 ∉ (. �( must contain at least one of the rows with indices in {2, . . . , !},

since they are the only rows with some negative entries. Let 8 ∈ {2, . . . , !} ∩ ( be the index

of such row. The negative entries of the 8-th row of � are located on the columns with indices

{^(8, 9) − ! : 9 ∈ [!]}. Excluding the first row, the only positive entries on those columns are

located on the rows of � with indices in {^(8, 9) : 9 ∈ [!]}. Hence, since 1 ∉ (, for �( to have

mixed-sign columns we must have {^(8, 9) : 9 ∈ [!]} ⊆ (. However, �8 ∩ (∩ 9∈[!]�^(8, 9)) is empty.

To see this, assume to the contrary that there exists (1, y) ∈ ∩ 9∈[!]�^(8, 9) . Because the only non-

zero entry of row %^(8, 9) is the (^(8, 9) − !)-th entry, we have H^(8, 9)−! = 0 for all 9 ∈ [!], which

in turn implies that 〈%8, (1, y)〉 = �80 = 3̂8/=1�18 > 0.

Assumption (88)

Let �−0 denote the submatrix of � obtained by removing its first column. By Lemma 2.5.3 and

Lemma 2.5.4, sign((�−0)8 9 ) = sign(�8 9 ) for all 8 and 9 , so that second assumption in Theorem

2.5.1 is immediately verified. �

Bounding the roots We use the following bounds to initialize the multivariate Newton-Raphson

algorithm.
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Lemma 2.5.5 (Bounds for the solutions of the degree centrality problem). Let ) denote the solution

of the degree centrality problem for (�, n, d). Let \̄ℓ =
√

3ℓ
(=ℓ−1)�ℓℓ and 1ℓ =

∑
ℓ′≠ℓ =ℓ′�ℓℓ′ \̄ℓ′.

Then: √
12
ℓ
+ 4(=ℓ − 1)�ℓℓ3ℓ − 1ℓ

2(=ℓ − 1)�ℓℓ
≤ \ℓ ≤ \̄ℓ, ℓ ∈ [!] . (2.56)

Proof. The polynomial system of the degree centrality problem reads:

∑
ℓ′≠ℓ

=ℓ′�ℓℓ′\ℓ′\ℓ + (=ℓ − 1)�ℓℓ\2
ℓ = 3̂ℓ . (2.57)

The upper bound follows from the fact that all the terms in the LHS of Eq. (2.57) are non-negative,

and thus (=ℓ − 1)�ℓℓ\2
ℓ
≤ 3̂ℓ for any ℓ ∈ [!].

Because \ℓ ≤ \̄ℓ, we have:

∑
ℓ′≠ℓ

=ℓ′�ℓℓ′ \̄ℓ′\ℓ + (=ℓ − 1)�ℓℓ\2
ℓ − 3̂ℓ ≥ 0. (2.58)

The LHS of Eq. (2.58) is an upward parabola in \ℓ whose vertex falls to the left of the positive

vertical semi-axis. The parabola crosses this semi-axis at
¯
\ℓ. �

Lemma 2.5.6 (Bounds for the solutions of the eigencentrality problem). Let ) denote the solution

of the relaxed eigencentrality problem for (�, n, x, 3). Let \̄ℓ =
√ ∑

ℓ>1 =ℓ3
(=ℓ−1)�ℓℓ , 1ℓ = 1

Gℓ

∑
ℓ′≠ℓ =ℓ′�ℓℓ′Gℓ′ \̄ℓ′,

1 =
∑
ℓ

∑
ℓ′>ℓ =ℓ=ℓ′�ℓℓ′ \̄ℓ′, and:

¯
_ =

√
12 + 2

∑
ℓ>1 =ℓ (=ℓ − 1)�ℓℓ

∑
ℓ>1 =ℓ3 − 1

2
∑
ℓ>1 =ℓ (=ℓ − 1)�ℓℓ

· min
ℓ∈[!]
(=ℓ − 1)�ℓℓ . (2.59)

Then: √
12
ℓ
+ 4(=ℓ − 1)�ℓℓ ¯

_ − 1ℓ
2(=ℓ − 1)�ℓℓ

≤ \ℓ ≤ \̄ℓ, ℓ ∈ [!] . (2.60)
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Proof. Let ℓ∗ = arg maxℓ∈[!] Gℓ. Then, starting from the ℓ∗-th equation of the polynomial system

behind the relaxed eigencentrality problem, we have:

_ = (=ℓ∗ − 1)�ℓ∗ℓ∗\2
ℓ∗ +

∑
ℓ′≠ℓ∗

=ℓ′�ℓ′ℓ∗
Gℓ′

Gℓ∗
\ℓ′\ℓ∗

≤ (=ℓ∗ − 1)�ℓ∗ℓ∗\2
ℓ∗ +

∑
ℓ′≠ℓ∗

=ℓ′�ℓ′ℓ∗\ℓ′\ℓ∗

≤
(∑
ℓ≥1

=ℓ

)
3, (2.61)

where in the last step we used the average degree constraint. The upper bound for \ℓ immediately

follows after noting that \ℓ ≤
√

_
(=ℓ−1)�ℓℓ .

Let ℓ̂ = arg maxℓ∈[!] Gℓ. From the average degree constraint we have:(∑
ℓ≥1
(=ℓ − 1)=ℓ�ℓℓ

)
\2
ℓ̂
+

( ∑
ℓ,ℓ′>ℓ

=ℓ=ℓ′�ℓℓ′ \̄ℓ′

)
\ℓ̂ −

(∑
ℓ≥1

=ℓ

)
3 ≥ 0. (2.62)

Using the same argument as in Eq. (2.58), Eq. (2.62) results in a lower bound for \ℓ̂. Also, since

_ ≥ minℓ (=ℓ − 1)�ℓℓ\2
ℓ̂
, then _ ≥

¯
_. This further implies that:

(=ℓ − 1)\2
ℓ +

1
Gℓ

(∑
ℓ′≠ℓ

=ℓ′�ℓℓ′Gℓ′ \̄ℓ′

)
\ℓ − ¯

_ ≥ 0. (2.63)

Using once again the same argument as in Eq.s (2.58) and (2.62) yields the lower bound in

Eq. (2.60). �
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Chapter 3: Generating networks with target eigencentrality

3.1 Introduction and overview of results

Recall the network generation problem where we want to simulate networks that comply with

a target structure. More specifically, we want to generate random adjacency matrices � ∈ R=×=

from a Poisson factorization model under the constraint that:

E,6(�) = ĝ, (3.1)

where 6 : R=×= → R3 is a map that encodes a target structure and ĝ ∈ R3 is a fixed goal to achieve

in expectation. While in Chapter 2 we set 6 to be the degree centrality, here we turn to an opposing

measure of centrality – the eigencentrality.

The eigencentrality is defined as the principal eigenvector of the adjacency matrix and it captures

the number of connections that a node shares with highly influential nodes. As such, the eigen-

centrality is a relative measure of the influence of nodes in a network and it represents a natural

counterpart of the degree centrality problem. While most generators in the literature have focused

on targeting the degree centrality, to the best of our knowledge this is the first work that presents a

generative model for network data that allows for the control of the eigencentrality.

Before presenting our results, we summarize our contributions. Under the eigenvector centrality,

the problem of recovering the parameters that solve Eq. (3.1) does not reduce to a tractable system

of equations. Hence, rather than directly addressing the expected eigencentrality (i.e. the expected

principal eigenvector of the adjacency matrix), we study a relaxation involving the principal eigen-

vector of the expected adjacency matrix. Under this much more tractable setting, the problem

reduces to a system of multivariate polynomials of degree 2, similarly to the degree centrality case.
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We can then extend the previous arguments to show that:

Under mild conditions, the relaxed eigencentrality problem always admits a

solution in the parameter space that is unique for large graphs.

To assess the validity of such a relaxation, we show – via a Davis-Kahan argument (Yu, Wang,

and Samworth, 2015) and under the same asymptotic regime as in Chapter 2 – that the relaxed

eigencentrality converges in norm to the expected eigencentrality. In other words:

For large graphs, the relaxed eigencentrality problem is a valid approximation

of the eigencentrality problem.

Similarly to the degree centrality case, we recover the solutions of the (relaxed) eigencentrality

problem via a properly initialized multivariate Newton-Raphson algorithm.

3.2 The eigencentrality problem

Similarly to the degree centrality problem, in the eigencentrality problem we set a target eigen-

centrality for each node type and then aim to recover the degree correction terms which secure that

target in expectation. Let the map x : R=×= → R=+ return the top eigenvector (with unitary norm)

of an adjacency matrix (i.e. its eigencentrality).

Definition 3.2.1 (Eigencentrality problem). Let x̂ ∈ R!+ such that
∑
ℓ =ℓĜ

2
ℓ
= 1 and let x̂f =

(Ĝf(8))8∈[#]; let 3̂ ∈ R+. The eigencentrality problem for (�, n, x̂, 3̂) amounts to finding a solution

) ∈ R!+ of the system defined by the following set of equations:

E)x(�(�, n)) = x̂f, (3.2)

1
>
!E�();�, n)1! = #3̂. (3.3)
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In the eigencentrality problem, we pose the additional constraint Eq. (3.3) that targets the ex-

pected average degree of the graph. This is because the eigencentrality is a global – rather than

local – measure of centrality and, as such, it does not control the sparsity of the network.

Ideally, we would like to have a tractable expression of the expected eigencentrality Ex(�) as a

function of () , �, n), but this is hard to achieve. We thus turn to a relaxed version of the eigencen-

trality problem.

Definition 3.2.2 (Relaxed eigencentrality problem). The relaxed eigencentrality problem for (�, n,

x̂, 3̂) amounts to finding a solution ) ∈ R!+ of the system defined by the following set of equations:

x(E�();�, n)) = x̂f, (3.4)

1
>
!E�();�, n)1! = #3̂. (3.5)

The relaxed eigencentrality problem targets the top eigenvector of the expected adjacency ma-

trix x(E�) rather than the expected eigencentrality Ex(�). The rationale behind this relaxation

is bifaceted. First, x(E�) is much more tractable than Ex(�). While we are not able to provide

a closed form expression for x(E�) in terms of () , �, n), we can reformulate Eq. (3.4) using the

eigenequations, as shown in the next section. Secondly, we can employ recent results from matrix

perturbation analysis to control the distance between x(E�) and Ex(�). By doing so, we are able

to show that, for a fixed number of node types !, as we increase the network size # such distance

vanishes at a rate that is proportional to
√
# . This is to say that, for large graphs, x(E�) is a valid

approximation of Ex(�).

3.2.1 Existence and asymptotic uniqueness

The target eigencentrality constraint in Eq. (3.4) can be reframed in terms of the eigenequa-

tions:

E�();�, n)x̂f = _1x̂f, (3.6)
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for some _1 ∈ R+. The positivity of the top eigenvalue _1 is ensured by the Perron-Frobenius

theorem.

As done with the degree centrality problem, we reduce the eigenequations and the sparsity re-

quirement to a system of (! + 1) multivariate polynomials of degree 2 in the (! + 1) variables

() , _1) ∈ R!+1+ . The resulting system is stated in Section 3.3. We can then employ the same

arguments that we used for the degree centrality problem to show that there exists a solution to

the relaxed eigencentrality problem and that, if there exist more than one, they are asymptotically

unique.

Theorem 3.2.1 (Existence and asymptotic uniqueness of solutions of the relaxed eigencentrality

problem). Let � and n satisfy the assumptions of Theorem 2.2.1. The relaxed eigencentrality

problem for (�, n, x̂, 3̂) admits a solution for any choice of the targets (x̂, 3̂) ∈ R!+1+ such that∑
ℓ =ℓĜ

2
ℓ
= 1. Moreover, the solutions of the problem are asymptotically unique and they converge

to the solution of the problem for (�, n, x̂, 3̂) with self-loops, which is unique.

3.2.2 Perturbation analysis

Fix an affiliation graph with ! node types and  communities, and set an eigencentrality goal

x̂ = (Ĝℓ)ℓ∈! and an average expected degree goal 3̂. For given (x̂, 3̂), we want to study how x(E�)

and Ex(�) differ as we increase the network size # .

We study the same asymptotic regime as in Section 2.2.2, where the proportion of nodes that

belong to a node type stays constant as the cardinalities grow. More precisely, let n(1) denote

an initial cardinality profile and set n(C) = Cn(1) for C ∈ N; as C → ∞, the network size

# (C) not.
=

∑
ℓ∈[!] =ℓ (C) → ∞. Accordingly, we let 3̂ (1) denote an initial target average degree

and set 3̂ (C) = C 3̂ (1).

Our main result is based on the variant of the Davis-Kahan theorem introduced by Yu, Wang, and

Samworth (2015), which, compared to the original formulation, involves the population eigenval-

ues rather than their sample counterpart. The theorem statement simplifies considerably when we

are only interested in a single eigenvector, like in our case.
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Lemma 3.2.1 (Yu, Wang, and Samworth (2015)).

| |x(�) − x(E�) | | ≤
23/2 | |� −E�| |op

_1(E�) − _2(E�)
, (3.7)

where | | · | |op denotes the matrix operator norm, and the map _8 : R#×# → R returns the 8-th

largest eigenvalue of a #-by-# matrix with real entries.

We are able to show that, as we increase the network size # , the operator norm | |� − E�| |op

grows on the scale of
√
# , while the eigengap _1(E�) − _2(E�) scales linearly with # . It follows

from Lemma 3.2.1 that for large graphs the sample eigencentrality x(�) is close to its population

counterpart x(E�). This is in line with previous works from the literature that focused on simpler

generative models (see, for example, Lei and Rinaldo (2015)). Our asymptotic analysis, however,

comes with the additional difficulty that the model parameters vary as we increase the network size

while targeting a fixed eigencentrality goals x̂. Hence, as we increase the network size # , not only

will the matrix E� ∈ R#×# multiply in size, but its entries will also change non-trivially.

To control the eigengap in the denominator in Eq. (3.7), we then relate the original relaxed eigen-

centrality problem – whose solutions vary as C → ∞ – with its equivalent version with self-loops

– whose solutions stay constant as C → ∞. Let )% (C) and ) (C) denote the solutions of the relaxed

eigencentrality problem for (�, n(C), x̂, 3̂ (C)) with and without self-loops, respectively. Also, we

setE�(C) not.
= E�() (C);�, n(C)) and let % denote the expected adjacency matrix given byE� plus

the diagonal entries resulting from self-loops:

%(C) not.
= E�()% (C);�, n(C)) + diag((\2

%,1(C))1,...,=1 (C) , . . . , (\2
%,! (C))1,...,=! (C)). (3.8)

Since )% (C) = )% (1), it follows that the eigengap _1(%(C)) − _2(%(C)) is linear in C. We can then

relate the eigengap of E� with that of % via Weyl’s inequality:

_1(E�(C)) − _2(E�(C)) ≥ C [_1(%(1)) − _2(%(1))] − 2� |_1(E�(C)) − _1(%(C)) |, (3.9)
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where � > 0 is some constant that depends on x̂. It turns out that we can control the gap between

the top eigenvalues of the problem with and without self-loops.

Lemma 3.2.2. As C →∞, |_1(E�(C)) − _1(%(C)) | = $ (1).

It immediately follows that Eq. (3.9) results in the following asymptotic lower bound for our

eigengap of interest.

Lemma 3.2.3. As C →∞, _1(E�(C)) − _2(E�(C)) = Ω(C).

To control the operator norm | |� − E�| |op, we extend the spectral bound for random binary

matrices by Lei and Rinaldo (2015) to our multiedge Poisson setting.

Theorem 3.2.2 (Spectral bound for random matrices with independent Poisson entries). Let A be

the adjacency matrix of an undirected random graph on # nodes in which edges occur indepen-

dently according to the Poisson distribution. Assume that # ·max8 9 E�8 9 ≤ 3 for 3 ≥ 20 log # and

20 > 0. Then, for any A > 0, there exists a constant � = � (20, A) such that:

| |� −E�| |op ≤ �
√
3, (3.10)

with probability at least 1 − #−A .

Huang and Feng (2018) derive a similar result but further require that max8 9 E�8 9 < 1. This is

because the original argument for binary entries by Lei and Rinaldo (2015) makes extensive use of

Bernstein’s inequality, which under the Poisson distribution requires bounding the rates to control

second moments. However, this sparsity assumption does not necessarily apply to our setting. To

this end, we turn to Cramér-Chernoff bounds. The full proof is given in the Appendix.

Piecing together Theorem 3.2.2 and Lemma 3.2.3 by means of Lemma 3.2.1, we get the central

result of this section.

Theorem 3.2.3. For any A > 0, there exists � = � (n, x̂, 3̂, A) > 0 such that:

| |x(�(C)) − x̂ | | ≤ 23/2�
√
C [_1(%(1)) − _2(%(1))] −$ (1/

√
C)

as C →∞, (3.11)
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with probability at least 1 − #−A .

In words, if we fix the number of node types, as we let the cardinalities multiply in size and the

average degree grow accordingly, the sample eigencentrality converges to the target at a
√
C-rate,

with high probability.

3.3 The generator

To generate networks, we first need to recover the model parameters that reproduce the target

eigencentrality in expectation and then use them to draw adjacency matrices from the Poisson fac-

torization model. As with the degree centrality, the problem reduces to a system of multivariate

polynomials of degree 2 in ! variables and ! equations, whose coefficients depend on the type

interaction matrix �, the type cardinalities n, and the eigenvector centrality targets. We recover

the solutions of the problem via a multivariate Newton-Raphson algorithm.

Rather than tackling the problem given by the average degree constraint Eq. (3.5) and the eigen-

centrality constraint Eq. (3.6), we fix the leading eigenvalue _1 = 1 and tackle the eigencentrality

constraint while momentarily ignoring the average degree constraint. The resulting system of

polynomials reads:

(=ℓ − 1)�ℓℓGℓ\2
ℓ +

(∑
ℓ′≠ℓ

=ℓ′�ℓℓ′\ℓ′Gℓ′

)
\ℓ − Gℓ = 0, ℓ ∈ [!] . (3.12)

Any solution )∗ of Eq. (3.12) can be then rescaled so as to enforce the average degree constraint.

More specifically, if the target average expected degree is 30, then the solution of the relaxed

eigencentrality problem is given by )∗3 ()∗)/
√
30, where 3 ()∗) denotes the average expected de-

gree resulting from )∗. As done with the degree centrality case, we encode the coefficients of the

system in the matrix of total interactions ) ∈ R!×! . We set:

)ℓℓ′
.
=


2(=ℓ − 1)�ℓℓGℓ ℓ′ = ℓ

=ℓ′�ℓℓ′G
′
ℓ

ℓ′ ≠ ℓ

. (3.13)
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The map 5 : R!×!+ → R!+ encoding the system in Eq. (3.12) and its Jacobian matrix � are defined

exactly as with the degree centrality problem (see Eq.s 2.24 and 2.25).

The full MNR algorithm for the relaxed eigencentrality problem and the resulting benchmark gen-

erator follow immediately from Algorithms 2.1 and 2.2 from Section 2.3. To initialize the MNR

algorithm, we sample each parameter from the region defined by the bounds in Lemma 3.5.2 from

Appendix 3.5.2.

3.4 Numerical experiments

We first provide a numerical illustration of our result on perturbation analysis (Theorem 3.2.3),

and then examine the ability of our generator to reproduce a power-law eigencentrality distribution.

From Theorem 3.2.3 we know that, as the networks grow in size and the average degree increases

accordingly, the error introduced by our relaxation exhibits an inverse square-root decay. To inves-

tigate this result, we set a perfectly balanced eigencentrality target (i.e. Gℓ = Gℓ′ for all ℓ, ℓ′ ∈ [!])

and cardinality profile (i.e. =ℓ = =ℓ′). We generate the type interaction matrix as in the experiments

from Chapter 2. First, we assume that each node type is assigned with equal weights to 15 out of

100 total communities. Next, we ensure that no types have identical assignments, all communities

have at least one type, and the resulting graph of type interactions is connected. Finally, we fix an

initial average degree of 2 and an initial cardinality of 10 nodes for each type, and then gradually

multiply them in size.

Figure 3.1 (a) presents Monte Carlo estimates of the expected distance between the sample eigen-

centrality and the target versus the average type cardinality, for different number of types. As

expected, as the networks expands, their eigencentralities approach the target. At the same time,

as the number of types increases, so does the average cardinality needed to secure a valid approx-

imation. We may then wonder to what extent this effect impacts the precision of our method in

reproducing a target distribution.

We investigate this in Figure 3.1 (b), which compares the empirical degree distribution of our net-

works against a target power-law distribution. As shown in the plot, as we increase the number
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(a) (b)

Figure 3.1: (a) Monte Carlo estimates of the expected distance between the
sample eigencentrality and the target versus the average type cardinality, for
different number of types. (b) Monte Carlo estimates and 95% confidence inter-
vals of the eigencentrality distribution (rounded to the nearest thousandth) for
different node types. The black lines represent the target power-law distribution
(Gmin = 0.001, Gmax = 1, U = 1.5, 3̄ = 20). In both plots, the estimates are com-
puted over 100 networks per point for a single randomly generated interaction
matrix.

of types, the empirical distribution better captures the target distribution even if the sizes of the

networks are comparable for all types (∼150,000 nodes). This is because, as discussed with the

degree centrality case, the greater the number of types, the greater the number of @-quantiles used

to pinpoint the target, and thus the greater the precision of the generator. This effect dominates the

loss in precision of the eigencentrality relaxation due to the increased complexity of the problem.

These experiments demonstrate that our initialization is effective for the relaxed eigencentrality

problem, too.

3.5 Proofs

3.5.1 Existence and asymptotic uniqueness

Existence of a positive solution Here we prove the existence of a solution for the eigencentrality

problems. The proof is slightly more convoluted than – but still along the lines of – that for the
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degree centrality problem.

Recall that the system resulting from the relaxed eigencentrality for (�, n, x, 3) problem reads:

(=ℓ − 1)�ℓℓGℓ\2
ℓ +

∑
ℓ′≠ℓ

=ℓ′�ℓℓ′Gℓ′\ℓ′\ℓ − _Gℓ = 0, ℓ ∈ [!], (3.14)∑
ℓ

=ℓ (=ℓ − 1)�ℓℓ\2
ℓ +

∑
ℓ

∑
ℓ′≠ℓ

=ℓ=ℓ′�ℓℓ′\ℓ′\ℓ = #3̂. (3.15)

There is a bijection between the solutions of the relaxed eigencentrality problem and the solutions

of Eq. (3.14) with _ = 1. To see this, assume there exists a solution )∗ to Eq. (3.14) with _ = 1,

and let 3 ()∗) denote the average expected degree resulting from )∗. We can rescale )∗ such that

) = )∗
√
3̂/

√
3 ()∗) solves Eq. (3.15); as a result, ) is also a root of Eq. (3.14) with _ = 3̂/3 ()∗).

This means that () , 3̂/3 ()∗)) is a solution of the relaxed eigencentrality problem. Hence, to assess

existence of a root () , _) to Eq.s (3.14)–(3.15), it suffices to show that the system in Eq. (3.14)

with _ = 1 admits a positive root.

The matrix of coefficients resulting from Eq. (3.14) reads:

�ℓ@ =



=ℓ′�ℓℓ′G
′
ℓ

@ = ^(ℓ, ℓ′) for some ℓ′ ≠ ℓ

(=ℓ − 1)�ℓℓGℓ @ = ^(ℓ, ℓ)

−Gℓ @ = &

. (3.16)

The matrix of exponents for Eq. (3.14) is the same as that stated in Eq. (2.37) for the degree

centrality problem. As Lemma 2.5.3 still applies, we just need to derive a Gale dual matrix of �.

Lemma 3.5.1 (Gale dual to the coefficient matrix in Eq. (3.16)). Define the matrix � ∈ R&×(&−!)

given by:

� =
©«
�̃

�̃�

ª®®¬ , (3.17)
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where �̃ ∈ R!×(&−!) is defined as follows:

�̃8 9 =



(
=1G

2
1 −

∑
ℓ>1 =ℓG

2
ℓ

)
/=2

1�11G
2
1 8 = 1, 9 = 0

(=ℓ − 1)=ℓ�ℓℓG2
ℓ
/(=2

1�11G
2
1) 8 = 1, 9 = ^(ℓ, ℓ) − ! for some ℓ ∈ {2, . . . , !}

2=ℓ=ℓ′�ℓℓ′GℓGℓ′/(=2
1�11) 8 = 1, 9 = ^(ℓ, ℓ′) − ! for some ℓ ≠ ℓ′ in {2, . . . , !}

G8/(=1�18G1) 8 > 1, 9 = 0

−(=8 − 1)�88G8/(=1�18G1) 8 > 1, 9 = ^(8, 8) − !

−=ℓ�8ℓGℓ/(=1�18G1) 8 > 1, 9 = ^(8, ℓ) − ! for some ℓ ∈ {2, . . . , !} \ {8}

0 otherwise

,

(3.18)

and �̃� is given by the identity matrix of size & − ! after moving its last column in front of the

others. Then � is a Gale dual matrix of the coefficient matrix � in Eq. (3.16).

Proof. The result can be obtained along the lines of Lemma 2.5.4. �

Theorem 3.5.1 (Existence of a solution for the relaxed eigencentrality problem). Let / be a mem-

bership matrix that results in a type-to-type interaction matrix � = //> with strictly positive

entries. Let n = (=ℓ)ℓ∈[!] be a set of node type cardinalities that are all strictly greater than 1.

Then the relaxed eigencentrality problem for (�, n, x, 3) admits a solution for any centrality target

x ∈ R!+ and average expected degree target 3 ∈ R+.

Proof. The existence of a root to Eq. (3.14) with _ = 1 follows from Lemma 2.5.3, Lemma 3.5.1,

and Theorem 2.5.1. The argument is along the lines of that of Theorem 2.5.2. Because the set

of such roots is in one-to-one correspondence with the solutions of the relaxed eigencentrality

problem, the relaxed eigencentrality problem admits a solution, too. �

Asymptotic uniqueness We present the asymptotic uniqueness for the relaxed eigencentrality

problem. Recall that, in our asymptotic analysis, we let the cardinalities and the target average
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degree multiply in size by a constant factor C ∈ N, and then let C → ∞. We set n(C) = Cn(1),

3̂ (C) = C 3̂ (1), and fix an initial cardinality profile n(1) ∈ R!+ and initial target average degree

3̂ (1) ∈ R+.

Recall that the eigencentrality constraint of the relaxed problem for (�, n, x̂, 3̂) reads:

(=ℓ − 1)�ℓℓĜℓ\2
ℓ +

∑
ℓ′≠ℓ

=ℓ′�ℓℓ′ Ĝℓ′\ℓ′\ℓ − _Ĝℓ = 0, ℓ ∈ [!], (3.19)

If we allowed for self-loops, the coefficient of the monomial \2
ℓ

would be replaced by =ℓ�ℓℓGℓ.

We can reformulate both systems – the one with and the one without self-loops – by recalling the

representation in Eq. (2.29). Any system of ! multivariate polynomials in the ! variables in ) can

be represented as:

∑
@∈[&]

2ℓ@)
e@ = 0, ℓ ∈ [!], (3.20)

for some exponents (e?)?∈[&] ∈ R! and matrix of real coefficients � = (2ℓ@);∈[!],@∈[&] , and

where ) e@ =
∏
ℓ∈[!] \

4@ℓ

ℓ
. We order the exponents (and thus the columns of �, too) based on

the lexicographic order they impose on the monomials () e@ )@∈[&] . In what follows, we let �% (C)

denote the matrix resulting from omitting the last column of the coefficient matrix in Eq. (3.20)

of the problem with self-loops for (�, n, x̂, 3̂ (C)). (This column refers to the constant term of the

system, which has the vector of zeros 0 ∈ R! as exponent.) We denote by S% (�, n(C), x̂, 3̂ (C)) ∈

R!+1+ the set of solutions ()% (C), _% (C)) of the problem with self-loops. For the original problem

without self-loops, we define �E� (C) and SE� (�, n(C), x̂, 3̂ (C)) in a similar fashion. To avoid any

confusion between the solutions of the two problems, we will also denote by ()E� (C), _E� (C)) the

solutions of the original problem.

Note that, )% (C) = )% (1), _% (C) = C_% (1), and �% (C) = C�% (1). It remains to understand the

asymptotic behavior of a solution ()E� (C), _E� (C)), which is clarified by the following result.

Theorem 3.5.2. The solution ()%, _%) of the relaxed eigencentrality problem with self-loops for
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(�, n, x̂, 3̂) is unique. Moreover, |_E� (C) − C_% (1) | = $ (1) and | |)E� (C) − )% | | = $ (1/C) as

C →∞.

Proof.

Uniqueness of ()%, _%)

Fix ()%, _% (C)) ∈ S% (�, n(C), x̂, 3̂ (C)). Let S̃(C, _% (C)) denote1 the set of real and positive solu-

tions )̃ (C) of the following polynomial system:

E�(n(C), )̃ (C))x̂ = _% (C)x̂. (3.21)

Note that, because E�(n, )) is homogenous of degree 2 in ):

)E� (C)

√
_% (C)
_E� (C)

∈ S̃(C, _% (C)), (3.22)

for any ()E� (C), _E� (C)) ∈ SE� (n(C), x̂, 3̂ (C)). Hence, for any C, S̃(C, _% (C)) is non-empty.

We can rewrite (3.21) in vectorized form as:

(�% (C) + Δ�%) (6()%) + Δ6(C)) = _% (C)x̂, (3.23)

where Δ�% = �E� (C) − �% (C) does not depend on C, and Δ6(C) = 6()̃ (C)) − 6()%).

Since ()%, _% (C)) ∈ S% (�, n(C), x̂, 3̂ (C)), we have:

Δ�% (6()%) + Δ6(C)) = −�% (C)Δ6(C). (3.24)

If we apply the Frobenius norm to both sides, we can bound the LHS from below by noting that

|�% (C)Δ6(C) | ≥ d! (�% (C)) | |Δ6(C) | |, where d! (�% (C)) denotes the smallest singular value of�% (C).
1To simplify the notation, we omit the dependency of S̃ on (�, n(C), x̂).
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Since �% (C) = C�% (1), we have d! (�% (C)) = Cd! (�% (1)). Also:

d! (�% (1)) > 0. (3.25)

To see this, note that if y>�% (1) = 0 then Hℓ=ℓ (1)�ℓℓĜℓ = 0 for all ℓ ∈ [!]. Hence, the left-null

space of �% (1) is trivial for any choice of (n(1), �, x̂).

It follows from the triangle inequality that:

| |Δ�% | |� ( | |6()%) | | + | |Δ6(C) | |) ≥ Cd! (�% (1)) | |Δ6(C) | |, (3.26)

for any )̃ (C) ∈ S̃(C, _% (C)). We can control the norm of 6()̃ (C)) as follows:

| |6()̃ (C)) | | =
√∑

8≤ 9
\̃2
8
(C)\̃2

9
(C)

≤

√√√∑
8≤ 9

_2
%
(C)

�88 (C=8 (1) − 1)� 9 9 (C= 9 (1) − 1)

≤ _% (1)
(∑
8≤ 9

1
�88 (=8 (1) − 1)� 9 9 (= 9 (1) − 1)

) 1
2

, (3.27)

where in the last step we used the fact that _% (C) = C_% (1).

Combining Eq.s (3.25), (3.26), and (3.27), we conclude that there exists a constant 2(�, n, x̂, _% (1)) >

0 such that:

sup
)̃ (C)∈S̃(C,_% (C))

| |Δ6(C) | | ≤
| |Δ�% | |�

(
2| |6()%) | | + | |6()̃ (C)) | |

)
Cd! (�% (1))

≤ 2(�, n, x̂, _% (1))
Cd! (�% (1))

. (3.28)

Now, assume to the contrary that there exists a solution ()′%, _′% (C)) ∈ S% (�, n(C), x̂, 3̂) that differs

from ()%, _% (C)).
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It follows from Eq.s (3.22)) and (3.28) that:√
_% (1)
_′
%
(1) =

\%,8

\′
%,8

, 8 = 1, . . . , !. (3.29)

For the two solutions to be distinct, we must have _′
%
(1) ≠ _% (1), and thus )% and )′% must be

proportional, which contradicts the fact that the graphs induced by %(n(1), )%) and %(n(1), )′%)

have the same average degree 3̂ (1).

| |)E� (C) − )% | | = $ (1/C) as C →∞

Take (�, \E� (C), _E� (C)) ∈ SE� (n(C), x̂, 3̂ (C)) and let )̃ (C) = )E� (C)
√

_% (C)
_E�(C) . By the average

degree constraint on )E� (C):

1>E�(n(C), )̃ (C))1 = _% (C)
_E� (C)

1>E�(n(C), )E� (C))1 =
_% (C)
_E� (C)

C2
∑
8

=8 (1) 3̂ (1). (3.30)

The LHS can be expanded as follows:

1>E�(n(C), )̃ (C))1 = 1>%(n(C), )̃ (C))1 − C
∑
8

�88=8 (1)\̃2
8 (C). (3.31)

Combining Eq. (3.30) and Eq. (3.31) yields:

_% (C)
_E� (C)

=
1
3̂
·

1>%(n(1), )̃ (C))1 − 1
C

∑
8 �88=8 (1)\̃2

8
(C)∑

8 =8 (1)
. (3.32)

By Eq. (3.28) and the average degree constraint on )%, we know that 1>%(n(1), )̃ (C))1/∑8 =8 (1) →

3̂. Since \̃8 (C) = $ (1), we can deduce from Eq. (3.32) that |_E� (C) − _% (C) | = $ (1). Since

_% (C)/_E� (C) → 1, we further conclude by Eq. (3.22) and Eq. (3.28) that | |)E� (C) − )% | | =

$ (1/C). �

3.5.2 Bounding the roots

We use the following bounds to initialize the multivariate Newton-Raphson algorithm.
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Lemma 3.5.2 (Bounds for the solutions of the eigencentrality problem). Let ) denote the solution

of the relaxed eigencentrality problem for (�, n, x, 3). Let \̄ℓ =
√ ∑

ℓ>1 =ℓ3
(=ℓ−1)�ℓℓ , 1ℓ = 1

Gℓ

∑
ℓ′≠ℓ =ℓ′�ℓℓ′Gℓ′ \̄ℓ′,

1 =
∑
ℓ

∑
ℓ′>ℓ =ℓ=ℓ′�ℓℓ′ \̄ℓ′, and:

¯
_ =

√
12 + 2

∑
ℓ>1 =ℓ (=ℓ − 1)�ℓℓ

∑
ℓ>1 =ℓ3 − 1

2
∑
ℓ>1 =ℓ (=ℓ − 1)�ℓℓ

. · min
ℓ∈[!]
(=ℓ − 1)�ℓℓ (3.33)

Then: √
12
ℓ
+ 4(=ℓ − 1)�ℓℓ ¯

_ − 1ℓ
2(=ℓ − 1)�ℓℓ

≤ \ℓ ≤ \̄ℓ, ℓ ∈ [!] . (3.34)

Proof. Let ℓ∗ = arg maxℓ∈[!] Gℓ. Then, starting from the ℓ∗-th equation of the polynomial system

behind the relaxed eigencentrality problem, we have:

_ = (=ℓ∗ − 1)�ℓ∗ℓ∗\2
ℓ∗ +

∑
ℓ′≠ℓ∗

=ℓ′�ℓ′ℓ∗
Gℓ′

Gℓ∗
\ℓ′\ℓ∗

≤ (=ℓ∗ − 1)�ℓ∗ℓ∗\2
ℓ∗ +

∑
ℓ′≠ℓ∗

=ℓ′�ℓ′ℓ∗\ℓ′\ℓ∗

≤
(∑
ℓ≥1

=ℓ

)
3, (3.35)

where in the last step we used the average degree constraint. The upper bound for \ℓ immediately

follows after noting that \ℓ ≤
√

_
(=ℓ−1)�ℓℓ .

Let ℓ̂ = arg maxℓ∈[!] Gℓ. From the average degree constraint we have:(∑
ℓ≥1
(=ℓ − 1)=ℓ�ℓℓ

)
\2
ℓ̂
+

( ∑
ℓ,ℓ′>ℓ

=ℓ=ℓ′�ℓℓ′ \̄ℓ′

)
\ℓ̂ −

(∑
ℓ≥1

=ℓ

)
3 ≥ 0. (3.36)

Using the same argument as with the degree centrality case, we note that Eq. (3.36) results in a
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lower bound for \ℓ̂. Also, since _ ≥ minℓ (=ℓ − 1)�ℓℓ\2
ℓ̂
, then _ ≥

¯
_. This further implies that:

(=ℓ − 1)\2
ℓ +

1
Gℓ

(∑
ℓ′≠ℓ

=ℓ′�ℓℓ′Gℓ′ \̄ℓ′

)
\ℓ − ¯

_ ≥ 0. (3.37)

Using once again the same argument as in Eq.s (2.58) and (3.36) yields the lower bound in

Eq. (3.34). �

3.5.3 Perturbation analysis

Let � be the adjacency matrix of an undirected random graph on = nodes in which edges occur

independently according to the Poisson distribution. Our goal is to extend the spectral bound for

binary symmetric random matrices by Lei and Rinaldo (2015) to the random matrix �.

The original argument is based on a discretization of the =-dimensional unit sphere into a finite

grid of vector pairs over which we maximize the Rayleigh quotient. The entries of these pairs

are split into “light” and “heavy” entry pairs depending on their size, and their contribution to the

Rayleigh quotient is then controlled separately. In both cases, the argument makes extensive use

of Bernstein’s inequality; however, under the Poisson distribution, such bounds would require ad-

ditional assumptions on the rate to control second moments. Hence, to extend the original result to

our multi-edge setting, we turn to Cramér-Chernoff bounds.

We proceed as follows. After stating the extended spectral bound and presenting the aforemen-

tioned discretization, we show how to bound the contribution of light and heavy entry pairs. For

the proof of Lemma 3.5.3 and the combinatorial argument behind Lemma 3.5.5, we refer the reader

to the supplemental material to Lei and Rinaldo (2015).

Main result and proof overview

Theorem 3.5.3 (Spectral bound for symmetric random matrices with independent Poisson entries).

Let A be the adjacency matrix of an undirected random graph on n nodes in which edges occur

independently according to the Poisson distribution. Set E� = Λ = (_8 9 )8, 9=1,...,= and assume that
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= · max8, 9 _8, 9 ≤ 3 for 3 ≥ 20 log = and 2> > 0. Then, for any A > 0, there exists a constant

� = � (20, A) such that:

| |� − Λ| | ≤ �
√
3, (3.38)

with probability at least 1 − =−A .

Our goal is to bound:

sup
G∈R=: | |G | |2≤1

|G>(� − Λ)G |. (3.39)

This optimization can be carried over a finite grid of pairs rather than on the unit sphere in R=, at

the cost of a small loss of accuracy that is quantified in the following result.

Lemma 3.5.3. Fix X ∈ (0, 1) and let:

) =
{
G = (G1, . . . , G=) : | |G | | ≤ 1 ∧

√
=G8/X ∈ Z,∀8

}
, (3.40)

where Z denotes the set of all integers. Then for all, ∈ R=×=:

| |, | |2 ≤ (1 − X)−2 sup
G,H∈)
|G>,H |. (3.41)

For any G, H ∈ ) , we define the set of light entry pairs as:

L(G, H) =
{
(8, 9) : |G8H 9 | ≤

√
3/=

}
. (3.42)

We refer to the pairs in L̄(G, H) as heavy entry pairs. The contribution of (G, H) to G>(� − Λ)H is

then split into two parts, one corresponding to the light pairs and the other to the heavy pairs:

G>(� − Λ)H =
∑

(8, 9)∈L(G,H)
G8 (� − Λ)H 9 +

∑
(8, 9)∈L̄(G,H)

G8 (� − Λ)H 9 . (3.43)
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We bound these two addends separately.

Bounding the contribution of light pairs

Lemma 3.5.4 (Light pair bound).

%
©« sup
G,H∈)

������ ∑
(8, 9)∈L(G,H)

G8H 9 (�8, 9 − _8, 9 )

������ ≥ 2√3ª®¬ ≤ exp
{
−

(
2 − 1

4
− 2 log

(
7
X

))
=

}
. (3.44)

Proof. Let D8, 9 = G8H 91( |G8H 9 | ≤
√
3/=) + G 9 H81( |G 9 H8 | ≤

√
3/=) for 8, 9 = 1, . . . , =. Using the

independence of the �8, 9 ’s and Markov’s inequality, we have:

%

(�����∑
8< 9

D8, 9 (�8, 9 − _8, 9 )]
����� ≥ 2√3

)
≤ 2%

(
4C

∑
8< 9 D8, 9 (�8, 9−_8, 9 ) > 4C2

√
3
)

≤ 24−C2
√
3
∏
8< 9

E4CD8, 9 (�8, 9−_8, 9 )

= 2 exp

{∑
8< 9

_8, 9 (4CD8, 9 − CD8, 9 − 1) − C2
√
3

}
, (3.45)

for C > 0. To bound this further we follow the approach in Feige and Ofek (2005) and make use

of the inequality 4G − G − 1 ≤ 2G2, which holds for |G | ≤ 1/2. Since |D8, 9 | ≤ 2
√
3/=, if we pick

C = =/(4
√
3), we have |CD8, 9 | ≤ 1/2. Then:

∑
8< 9

_8, 9 (4CD8, 9 − CD8, 9 − 1) ≤ 2C2
∑
8< 9

_8, 9D
2
8, 9 ≤ 2C2

3

=

∑
8< 9

D2
8, 9 , (3.46)

where the second inequality follows from the fact that 3 ≥ =max_8, 9 . Finally, note that
∑
8< 9 D

2
8, 9
≤

2
∑
8< 9 (G2

8
H2
9
+ G2

9
H2
8
) ≤ 2

∑
8 G

2
8

∑
9 H

2
9
= 2. We then have:

%

(�����∑
8< 9

D8, 9 (�8, 9 − _8, 9 )
����� ≥ 2√3

)
≤ 2 exp

{
4C2

3

=
− C2
√
3

}
= 2 exp

{
−2 − 1

4
=

}
. (3.47)
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Finally, as discussed in Lei and Rinaldo (2015), we have |) | ≤ 4= log(7/X) by a standard volume

argument. This result combined with the union bound concludes the proof. �

Bounding the contribution of heavy pairs

Lemma 3.5.5 (Heavy pair bound). For any 2 > 0, there exists a constant � = � (2) such that:

sup
G,H∈)

������ ∑
(8, 9)∈L̄(G,H)

G8 (�8, 9 − Λ8, 9 )H 9

������ ≤ �√3, (3.48)

with probability at least 1 − 2=−2.

The full combinatorial argument behind Lemma 3.5.5 can be found in the supplemental mate-

rial to Lei and Rinaldo (2015). For this bound to hold in our Poisson setting, it suffices to show

that the following two properties apply.

Lemma 3.5.6 (Bounded degree for Poisson multi-edge networks). Let 38 denote the degree of

node 8. Assume that =max8, 9 _8, 9 ≤ 3 for 3 ≥ 20 log = and 20 > 0. Then, for 2 > 0, there exists a

constant 21 = 21(2) such that with probability at least 1 − =−2, 38 ≤ 213 for all 8.

Proof. We have:

%(38 ≥ 213) ≤ %
(∑
9

�8, 9 − _8, 9 ≥ (21 − 1)3
)

≤ inf
C≥0
4−C (21−1)3

∏
9

E4C (�8, 9−_8, 9 )

= exp

{
inf
C≥0

∑
9

_8, 9
(
4C − C − 1

)
− C (21 − 1)3

}
≤ exp

{
inf
C≥0

[
4C − C − 1 − C (21 − 1)

]
3

}
≤ =−20 [(log 21−1)21+1] , (3.49)

where the first and the second to last inequalities follows from the fact that 3 ≥ =max8, 9 _8, 9 , and

the last inequality from 3 ≥ 20 log = and the optimal choice C = log 21. �
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Lemma 3.5.7 (Bounded discrepancy for Poisson multi-edge networks). Let �, � ⊆ [=] be any two

node subsets. Let 4(�, �) denote the number of distinct edges between � and �, and let ¯̀(�, �) =

|� | |� |3/=.

For 2 > 0, there exist constants 22 = 22(2) and 23 = 23(2), both larger than 1, such that with

probability at least 1 − 2=−2, for any �, � ⊆ [=] with |� | ≤ |� |, at least one of the following holds:

1. 4(�,�)
¯̀(�,�) ≤ 422;

2. 4(�, �) log 4(�,�)
¯̀(�,�) ≤ 23 |� | log =

|� | .

The bounded discrepancy property requires the number of edges between any two subgraphs

not to deviate much from its expectation. To show this result, we employ a Cramér-Chernoff bound

for centered Poisson random variables.

Lemma 3.5.8. Let -1, . . . , -= be = independent Poisson random variables with mean E-8 = _8 >

0. Then, for any G > 0,

%

(
=∑
8=1

-8 − _8 > G
)
≤ exp

{
G −

(
=∑
8=1

_8 + G
)

log
(

G∑=
8=1 _8

+ 1
)}
. (3.50)

Proof. The result follows by a standard application of Cramér-Chernoff bounds (see, for example,

Boucheron, Lugosi, and Massart, 2013). �

Proof sketch of Lemma 3.5.7. If |� | ≥ =/4, Lemma 3.5.6 implies that 4(�,�)
3 |� | |� |/= ≤ 214. If |� | < =/4,

let B(�, �) denotes the set of distinct edges between � and �, and let : > 1 be chosen later. Then:

% (4(�, �) ≥ : ¯̀(�, �)) ≤ % ©«
∑

(8, 9)∈B(�,�)
08, 9 − _8, 9 ≥ : ¯̀(�, �) −

∑
(8, 9)∈B(�,�)

_8, 9
ª®¬

≤ % ©«
∑

(8, 9)∈B(�,�)
08, 9 − _8, 9 ≥ (: − 1) ¯̀(�, �)ª®¬ . (3.51)
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This can be further bounded using Lemma 3.5.8 by:

exp
(: − 1) ¯̀(�, �) − ©«

∑
(8, 9)∈B(�,�)

_8, 9 + (: − 1) ¯̀(�, �)ª®¬ log
(
(: − 1) ¯̀(�, �)∑
(8, 9)∈B(�,�) _8, 9

+ 1
) . (3.52)

Since G ↦→ (G + 1) log(1/G + 1) with 1 > 0 is monotonically decreasing on (0,∞), we have:

% (4(�, �) ≥ : ¯̀(�, �)) ≤ exp {(: − 1) ¯̀(�, �) − : ¯̀(�, �) log :}

≤ exp
{

1
2
(: log :) ¯̀(�, �)

}
, (3.53)

where the last inequality holds for : ≥ 8.

The rest of the proof in Lei and Rinaldo, 2015 applies. For given 23 > 0, let C (�, �) denote the

unique number such that C (�, �) log C (�, �) = 23 |� |
¯̀(�,�) log =

|� | , and set : (�, �) = max{8, C (�, �)}. Then:

% (4(�, �) ≥ : (�, �) ¯̀(�, �)) ≤ exp
{

1
2
: (�, �) log : (�, �) ¯̀(�, �)

}
≤ exp

{
23 |� |
¯̀(�, �) log

=

|� |

}
. (3.54)

From this, it can be shown that:

% [∃(�, �) : |� | ≤ |� | ≤ =/4, 4(�, �) ≥ : (�, �) ¯̀(�, �)] ≤ =− 1
2 (23−12) . (3.55)

Finally, we split the (�, �) pairs according to the value of : (�, �). If : (�, �) = 8, then 4(�, �) ≤

8 ¯̀ (�, �), with probability at least 1 − =− 1
2 (23−12) . If : (�, �) = C (�, �) > 8, 4(�, �)/ ¯̀(�, �) ≤ C (�, �)

and thus 4(�,�)
¯̀(�,�) log 4(�,�)

¯̀(�,�) ≤
23 |� |
¯̀(�,�) log =

|� | with the same probability. To conclude the proof, we set

22 = max{21, 8} and 23 = 22 + 12. �
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Chapter 4: Adaptive stochastic variational inference

4.1 Introduction

Stochastic variational inference (SVI, Hoffman et al., 2013) scales up traditional variational

inference with stochastic natural gradient ascent. At each iteration of the ascent, SVI samples a

random subset (or “minibatch”) of the data to form noisy estimates of the gradient. SVI is readily

used in conditionally conjugate models, latent-variable models for which each complete condi-

tional is in the exponential family.

While noisy gradients enable efficient inference, their variance can slow convergence. In stochastic

optimization, researchers have tried to alleviate this problem with non-uniform draws of the mini-

batch (Zhao and Zhang, 2014). In that work, the ideal minibatch distribution is often defined as

one that maximizes the expected progress (Stich, Raj, and Jaggi, 2017) or, equivalently, the trace of

the variance-covariance matrix of the gradient (Zhao and Zhang, 2015). In practice, however, the

resulting distribution is infeasible as it requires iteration-dependent updates that are too expensive

to compute.

This chapter develops adaptive minibatch sampling for SVI (AdaSVI). We show that, in the spe-

cial case of SVI in a conditionally conjugate model, we can effectively approximate the optimal

minibatch distribution. In detail, we make the following contributions:

• We derive a general closed form of the optimal minibatch distribution for the stochastic nat-

ural gradient of the variational objective. This distribution can be efficiently approximated,

preserving the computational efficiency of SVI.

• We develop the specific form of the optimal minibatch distribution for latent Dirichlet allo-

cation (Blei, Ng, and Jordan, 2003) and Poisson factorization (Gopalan, Hofman, and Blei,
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2015). We show how to interpret these distributions, explaining which observations in the

data are most pivotal for stochastic variational inference.

• We couple the optimal minibatch distribution with the adaptive learning rate by Ranganath,

Gerrish, and Blei (2014). The resulting algorithm, AdaSVI, is a parameter-free version of

SVI that only requires the minibatch size as input.

• We study AdaSVI on the Poisson factorization model. We find it significantly improves SVI,

leading to faster convergence on synthetic data.

We emphasize that AdaSVI can be readily derived for any conditionally conjugate model. Ex-

amples include: Bayesian mixtures of exponential families, hierarchical regression models, ma-

trix factorization models, and mixed-membership models (see Blei, Kucukelbir, and McAuliffe,

2017, for a review). Even some exceptions to this class, such as Gaussian processes and logistic

models, can be expressed as conditional-conjugate with augmentations of the space of latent vari-

ables (Hensman, Fusi, and Lawrence, 2013; Durante and Rigon, 2019).

The rest of this chapter is organized as follows. In Section 4.2, we briefly recall SVI for condi-

tionally conjugate models. In Section 4.3, we develop non-uniform minibatch sampling for SVI

in general. In Section 4.4, we discuss the adaptive learning rate in Ranganath, Gerrish, and Blei

(2014). In Section 4.5, we combine the results from the previous sections and present AdaSVI.

Finally, in Section 4.6, we study the performance of AdaSVI on synthetic data from the Poisson

factorization model. Section 4.7 concludes.

Related work AdaSVI contributes to the field of variance reduction for stochastic optimization.

In different settings, researchers have proposed several techniques, such as control variates (Pais-

ley, Blei, and Jordan, 2012; Ross, 2013) and Rao-Blackwellization (Casella and Robert, 1996).

This work builds on efforts to reduce the variance by non-uniform subsampling of the mini-

batch (Zhao and Zhang, 2014). As discussed, the optimal minibatch distribution is, in general,

inefficient to compute. Consequently, recent efforts focus on building suboptimal, yet efficient,
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sampling strategies. These include: optimizing an iteration-independent upper bound of the objec-

tive (Needell, Ward, and Srebro, 2014; Zhao and Zhang, 2015); partitioning the data into clusters

and then sampling from them (Zhao and Zhang, 2014; Fu and Zhang, 2017; Csiba and Richtárik,

2018); using repulsive point processes to diversify the minibatch (Zhang, Kjellstrom, and Mandt,

2017); and adaptive yet efficient sampling distributions (Csiba, Qu, and Richtarik, 2015; Papa,

Bianchi, and Clémençon, 2015; Perekrestenko, Cevher, and Jaggi, 2017; Stich, Raj, and Jaggi,

2017). These works mainly focus on stochastic gradient descent under the setting of convex objec-

tives with smooth gradients. In contrast, SVI optimizes a non-convex objective.

In the context of SVI, Gopalan and Blei (2013) propose non-uniform minibatch sampling strate-

gies for community detection on networks. Their approach maintains unbiasedness and reduces

variance, but it is not designed to be optimal. Our work generalizes this method to any model

amenable to SVI, and provides a provably optimal minibatch distribution.

Our work also builds on previous research on adaptive learning rates. For SVI, Ranganath, Wang,

et al. (2013) propose a learning rate that minimizes the expected distance between the stochastic

minibatch update and the full batch update. While inefficient to compute, the optimal learning rate

can be estimated via exponentially decaying averages, in the same spirit of Schaul, Zhang, and

LeCun (2013). AdaSVI couples this learning rate with importance minibatch sampling by jointly

optimizing the same objective in Ranganath, Wang, et al. (2013) over both the learning rate and

the sampling distribution.

While Ranganath, Wang, et al. (2013) provide a global learning rate, other works propose parameter-

specific stepsizes. For example, AdaGrad (Duchi, Hazan, and Singer, 2011) scales the learning rate

of each parameter by the root of the cumulative sum of past squared gradients. This correction term

normalizes the gradient step by taking small steps towards large gradients and large steps towards

small gradients. However, as AdaGrad progresses, the correction term accumulates in the denom-

inator leading to fast decay. To address this flaw, AdaDelta (Zeiler, 2012) and RMSProp (Hinton,

Srivastava, and Swersky, 2012) replace the cumulative correction term in AdaGrad with an expo-

nentially decaying average. These adaptive learning rates are used in popular optimizers such as
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Adam (Kingma and Ba, 2014). Inspired by this line of research, we further extend the adaptive

stepsize of Ranganath, Gerrish, and Blei (2014) so that every variational parameter is updated with

its own learning rate.

4.2 Background

We consider a conditional conjugate model with local and global latent variables. Let x =

(G8)8∈[=] denote the data, # denote a vector of global latent variables, and z = (I8)8∈[=] denote a

vector of local latent variables. The model reads:

?(x, z, #) = ?(#)
=∏
8=1

?(G8, I8 | #). (4.1)

Variational inference (VI) approximates the posterior distribution of the latent variables in (4.1) by

optimizing the evidence lower bound (ELBO):

max
@∈Q

ELBO(@) = max
@∈Q

E@ (log ?(x, z, #)) −E@ log @(z, #). (4.2)

Solving Eq. (4.2) is tantamount to minimizing the Kullback-Leibler divergence of @ to the exact

posterior. We assume that Q is a mean-field family of approximate distributions, so that the latent

variables are mutually independent under any @ ∈ &. We let > = (i8)8∈[=] and , parametrize the

densities in Q of the local and global latent factors, respectively.

Coordinate-ascent variational inference (CAVI) tackles the optimization problem in Eq. (4.2) via

a coordinate ascent algorithm. For conditional conjugate models, the optimal variational factors

are in the same exponential family of the complete conditionals and the corresponding updates

for the variational parameters (>, ,) can be derived in closed form. However, updating the global

parameters , is inefficient for large-scale data, as it requires a single pass through the whole dataset

at each iteration (Hoffman et al., 2013).

One way to address this issue is to turn to stochastic optimization. Stochastic variational inference

runs stochastic gradient ascent on the natural gradient of the ELBO with respect to the global
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variational parameters ,. As shown in Blei, Kucukelbir, and McAuliffe (2017), the natural gradient

of the ELBO with respect to , is:

6(,) = " +
[
=∑
8=1
Ei∗

8
C (I8, G8), =

]
− ,, (4.3)

where we recall that C (·, ·) is the sufficient statistic of the joint distribution of (I8, G8) given #.

At each iteration of the ascent, we estimate the natural gradient with a noisy gradient computed

over a random minibatch ( ⊂ [=] of size <. We produce such an estimate with the current local

variational parameters >∗, which are first optimized with the usual CAVI updates:

i∗8 = E, [[(#, G8)] . (4.4)

Her [ denotes the natural parameter of the complete conditional of the local variable I8, which

belongs to the exponential family.

4.3 Adaptive minibatch sampling

We present adaptive minibatch sampling for SVI. First, we introduce a framework for non-

uniform minibatch sampling and derive the optimal sampling distribution, which we refer to as the

oracle. The resulting sampling probabilities explain which observations are the most pivotal for

inference. We thus derive and interpret the oracle distribution for latent Dirichlet allocation and

Poisson factorization model. While informative, the oracle is infeasible to compute. In the last

section, we present two strategies to approximate it.

4.3.1 An optimal sampling distribution

In the original SVI formulation, the minibatch is sampled uniformly at random. In practice,

any distribution over the data can be used, provided that the resulting noisy gradient is an unbiased

estimate of the natural gradient.
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Non-uniform random sampling We introduce a more general framework where data points are

sampled with replacement into the minibatch according to a vector of probabilities p = (?8)8∈[=] .

An unbiased estimate of the natural gradient can be assembled by reweighting each contribution

from the 8-th local context by its inverse sampling probability ?8. More specifically, consider the

following noisy gradient:

6̂ p (,) = " +
[

1
<

∑
8∈(

?−1
8 Ei

∗
8
C (I8, G8), =

]
− ,, (4.5)

where we recall again that C is the sufficient statistic of the joint density of (I8, G8) given #, and i∗
8

is the local variational parameter optimized via Eq. (4.4) with the current instance of ,.

This gradient is an unbiased estimator of the natural gradient in Eq. (4.3). See Section 4.8 for the

proof.

Optimal sampling distribution Under the noisy gradient in Eq. (4.5), any choice of p leads to a

valid stochastic optimization procedure. For example, setting ?8 = 1/= yields the uniform random

sampling formulation in Hoffman et al. (2013). However, some minibatch sampling distributions

may result in very noisy gradient estimates, impairing the convergence of the algorithm. Of all

possible sampling distributions p, the optimal choice is the one that minimizes the variance of its

corresponding noisy natural gradient.

Following Zhao and Zhang (2015), we quantify the variance of the noisy gradient through the trace

of the variance-covariance matrix:

+ (6̂ p (,)) = E p

����6̂ p (,) − 6(,)����2 , (4.6)

where | | · | | denotes the !2 norm and where the expectation is taken with respect to the distribution

of the random minibatch (, drawn from p. Under sampling with replacement, minimizing the
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variance of the gradient is equivalent to the following:

min
p∈Δ=−1

+ (6̂ p (,)) ⇐⇒ min
p∈Δ=−1

=∑
8=1

?−1
8

������Ei∗
8
C (I8, G8)

������2 , (4.7)

where Δ=−1 denotes the (= − 1)-simplex. From Eq. (4.7), an application of Cauchy-Schwarz

inequality yields the optimal sampling probabilities:

?∗8 ∝
������Ei∗

8
C (I8, G8)

������ . (4.8)

See Section 4.8 for details on how to derive Eq.s (4.6) and (4.8).

We refer to the distribution p∗ = (?∗
8
)8∈[=] as the oracle distribution, and to each ?∗

8
as the opti-

mal sampling probability or importance score of the 8-th local context. We note that the optimal

probability is iteration-dependent, as it is a function of the current instance of the local variational

parameters. This makes the optimal sampling strategy adaptive: at each iteration, its weights are

dynamically adjusted as a result of the update of the variational parameters.

The unnormalized importance scores only depend on the 8-th local context, namely on the local

variational parameter i∗
8

and on the data G8. Hence, once the local variational parameters are op-

timized, the unnormalized importance scores are cheap to compute. In practice, Eq. (4.8) can be

seen as an additional variational update that comes with no computational cost. However, the full

oracle distribution cannot be maintained efficiently, as it would require a single pass over the whole

dataset at each iteration. In Section 4.3.3, we discuss two methods to approximate the oracle.

4.3.2 Importance scores for discrete factorization models

We discuss non-uniform minibatch sampling for two different high-dimensional factorization

models: topic discovery via Latent Dirichlet Allocation (LDA) and recommender systems via

Poisson factorization. We derive and interpret the optimal importance scores for both settings,

characterizing the observations that are the most pivotal for inference.
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Latent Dirichlet Allocation LDA (Blei, Ng, and Jordan, 2003) is a Bayesian topic model that

uses latent variables to recover topics from large collections of documents. LDA represents the

original motivation for SVI: while early efforts based on CAVI could handle collections of tens

of thousands of documents, SVI allows for topic discovery on corpora of millions of documents

(Hoffman et al., 2013).

Under this generative model, topics are modeled as distributions over a vocabulary of words, while

documents exhibit such topics with different proportions. We let  , �, and + denote the number

of topics, documents, and words in the vocabulary, respectively. The generative model is:

1. Draw topics (#: ):∈[ ] ∼ Dirichlet+ (().

2. For each document 3 ∈ [�]:

• Draw the topic proportions )3 ∼ Dirichlet (").

• For each word in document 3:

– Draw its topic assignments z3= ∼ Multinomial(1, )3).

– Draw the word w3= ∼ Multinomial(1, # · z3=).

The complete conditionals of both global topics and local topic proportions turn out to be Dirichlet,

while the complete conditional of local topic assignments is multinomial (Hoffman et al., 2013).

Hence, under the optimal variational mean-field family, if F3=E = 1 then I3=
@∼ Multinomial(1, >3E)

where (>3E)3∈[�],E∈+ denotes the local per-word variational parameters.

The joint distribution of the local context (w3 , z3 , )3) given the global topics # is:

?(w3 , z3 , )3 | #) ∝ ℎ(z3 , )3) exp

{∑
E,:

<3E: (w3 , z3) log VE:

}
, (4.9)

where <3E: (w3 , z3) =
∑
= 1{F3=E=1}1{I3=:=1} is the number of times word E from document 3 is

assigned to topic : . The sufficient statistic of this distribution is then C (w3 , z3) = m3 . It follows
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from Eq. (4.8) that the optimal sampling probability of document 3 is:

?∗3 ∝
√∑

E

=3E
����>3E ����2, (4.10)

where =3E is the number of occurrences of word E in document 3. The squared optimal sampling

probability of a document is a linear combination of the squared norms of the per-word parameters

>3E, whose weights depend on the frequency of word occurrences.

Note that >3E is a vector with non-negative entries that sum to one: for the norm | |>3E | | to be

maximized, word E must be assigned to one and only one topic in document 3. This coincides

with the intuition that distinctive terms define topics; Eq. (4.10) states that such terms are the most

pivotal to our estimation process. Between two documents of the same length, the one with the

most topic-defining terms is more likely to be visited by the oracle.

Poisson Factorization Poisson factorization (Dunson and Herring, 2005) is a probabilistic ma-

trix factorization method that uses the Poisson distribution to model the data. The flexibility of

this model to capture sparse factors and its efficiency on sparse matrices have proved useful in a

wide range of applications, including, for example, signal processing (Virtanen, Cemgil, and God-

sill, 2008; Cemgil, 2008), genomics (Levitin et al., 2019), and recommendation systems (Gopalan,

Hofman, and Blei, 2015).

We use the language of recommendation systems. We observe a matrix of user-behavior data over

a set of items. Each user is given a vector of latent preferences; each item has a latent vector of

attributes. When the attributes of items meet the preferences of users, a user-item interaction is

generated. The generative model reads:

1. Sample the preferences \D: ∼ Gamma(0, 1) of each user D, for all components : ∈ [ ].

2. Sample the attributes V8: ∼ Gamma(2, 3) of each item 8, : ∈ [ ].

3. For each user D and item 8:
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• sample the user-item contribution ID8: ∼ Poisson(#>8 )D) from component : , : ∈ [ ];

• set HD8 =
∑
:∈[ ] ID8: .

In the formulation above, the model is augmented with the local latent factors zD8, which make it

conditional conjugate (Gopalan, Hofman, and Blei, 2015). The complete conditionals of the global

variables )D and #8 follow a Gamma distribution, due to the Gamma-Poisson conjugacy. As for

the local latent variables zD8, the complete conditionals follow a multinomial distribution, which

arises from conditioning independent Poisson random variables on their sum.

The joint density of the 8-th user-item interaction given the latent preferences and attributes is:

?(HD8, zD8 | )D, #8) = ℎ(HD8, zD8) exp


∑
:∈[ ]

ID8: log \D: V8: −
∑
:∈[ ]

\D: VD:

 . (4.11)

The sufficient statistic of this distribution is C (HD8, zD8) = zD8. Recalling that zD8
@∼ Multinomial(HD8,

>D8), it follows that the optimal sampling probability of a user-item interaction is:

?∗D8 ∝ HD8
����>D8���� . (4.12)

The importance score of a user-item interaction is driven by two components: its magnitude and

how aligned user preferences and item attributes are. As with LDA, the norm
����>D8���� is maximized

when user D interacts with item 8 exclusively via attribute : . This means that, among interactions

of the same magnitude, those that match :-enthusiast users with :-defining items have the highest

importance score.

In practice, for our stochastic optimization algorithm, we may want to sample by row (i.e. by

user) rather than by cell (i.e. by user-item interaction). The user importance scores can be derived

similarly by treating all the user variational parameters as local. Let (Wshape
D:

, Wrate
D:
):∈[ ] denote the
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Gamma variational parameters for the users. The user importance scores read:

?∗D ∝

√√√∑
8

H2
D8

����>D8·����2 + �����
�����$shape
D·
$rate
D·

�����
�����2, (4.13)

where the ratio of vectors in Eq. (4.13) is component-wise. Recall that the ratio _shape
D:
/_rate

D:
rep-

resents the mean preference of user D for attribute : under the variational distribution. The norm

| |$shape
D· /$rate

D· | | can be then seen as an indicator of the user activity level across all attributes. Hence,

similarly to user-item interactions, the user importance scores are driven by two components: how

specialized user preferences are and how much users consume across all attributed.

Poisson Factorization for network data Below we study the specific instance of Poisson fac-

torization for community detection on networks that we discussed in the previous chapters.

In detail, consider a network with = nodes distributed over  overlapping communities. Let H8 9

denote the number of edges between two nodes 8 and 9 . The model is:

\8:
i.i.d.∼ Gamma(U8, V8), I8 9 :

i.i.d.∼ Poisson(\8:\ 9 : ), (4.14)

and H8 9 =
∑
: I8 9 : . The model in Eq. (4.14) is a specific instance of the Poisson factorization

model above, where rows and columns share the same latent space. The global latent variables \8:

represent the propensity of a node 8 to belong to community :; the local latent factors I8 9 : capture

the number of edges between 8 and 9 via community : .

The importance score of an edge between two nodes 8 and 9 is in (4.12). If we only observe

simple graphs (i.e. H8 9 ∈ {0, 1} for all 8, 9), the optimal sampling weights are proportional to����>8 9 ����, where we recall that > is the set of local variational parameters. Also, >8 9 = 1 if and

only if edge (8, 9) is formed via a single community. Such an edge can only be generated by two

nodes that belong exclusively to that community. Hence, in simple graphs, the edges with the

highest importance score will be those between non-overlapping nodes that belong to the same

community. Conversely,
����>8 9 ���� is minimized when edge (8, 9) is equally likely to be formed via
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any community, suggesting that edges that sit at the overlap of communities are less likely to be

visited by the oracle.

4.3.3 Approximating the optimal sampling distribution

We propose two methods to approximate the optimal sampling distribution in Eq. (4.8).

Iteration-independent importance scores The first approach is to approximate the optimal im-

portance scores with scores that only depend on the data x and the hyperparameters ". Letting

p4 = (?4
8
)8∈[=] denote such scores, we want:

?∗8 (i8, G8, U8) ≈ ?48 (G8, U8). (4.15)

Iteration-independent importance scores come with two computational advantages. The first is

that they do not need to be updated at each iteration, as they do not depend on the current state of

learning. The second advantage is that sampling with replacement from a static distribution is very

efficient. In general, while uniform random sampling of a minibatch of size < requires$ (<) oper-

ations, weighted sampling is more computationally burdensome. Efficient algorithms for weighted

sampling usually require building a data structure that supports fast sampling, a task that depends

at least loglinearly on =. (See, e.g., Walker’s alias method by Walker, 1977 or the binary-heap

method in Wong and Easton, 1980.) However, for static distributions, this preprocessing step is

run only at the first iteration and the subsequent sampling can be done in $ (<).

We have yet to discuss how to construct the iteration-independent scores in Eq. (4.15). A common

approach in the convex optimization literature assumes the Lipschitz-continuity of gradients and

employs the Lipschitz constants to form an iteration-independent upper bound of the variance of

the noisy gradient. The resulting variance minimization problem yields importance scores that do

not depend on the current state of learning. This approach is not feasible under our setting as the

ELBO is not necessarily Lipschitz continuous. However, we can still bound the variance of the

noisy gradient.
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The main idea is to use the CAVI updates to bound the variational parameters in terms of the model

hyperparameters and the data. Next, we employ such bounds to control the variance of the noisy

gradient with iteration-independent quantities. To illustrate this approach, consider the Poisson

factorization model stated in Section 4.3.2. The CAVI updates for the user Gamma shape and rate

parameters (Wshape
D:

, Wrate
D:
) read:

W
shape
D:

= U
shape
D +

∑
8

HD8iD8: , (4.16)

Wrate
D: = Urate

D +
∑
8

X
shape
8:

Xrate
8:

, (4.17)

where we recall that: Ushape
D denotes the Gamma shape hyperparameter of user D; HD8 is the number

of user-item interactions between user D and item 8; iD8: is the variational multinomial probability

that user-item interaction (D, 8) is via attribute :; and (Xshape
8:

, Xrate
8:
) are the variational Gamma

parameters for item 8.

Since iD8: ≤ 1, it follows from Eq. (4.16) that:

W
shape
D:

≤ Ushape
D +

∑
8

HD8 . (4.18)

Similarly, the item Gamma variational parameters are positive, it follows from Eq. (4.17) that:

Wrate
D: ≥ U

rate
D . (4.19)

While crude, these bounds allow us to control the user importance scores via the hyperparameters

(Ushape
D , Urate

D ) and the data y. To see this, recall that the user importance scores read:

?∗D ∝

√√√∑
8

H2
D8
| |>D8· | |2 +

�����
�����$shape
D·
$rate
D·

�����
�����2. (4.20)
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where the ratio of vectors in Eq. (4.20) is component-wise. Using Eq.s (4.18) and (4.19), we can

bound from above the RHS of Eq. (4.20) by:√√√∑
8

H2
D8
+  

[
U

shape
D +∑

8 HD8

Urate
D

]2

. (4.21)

We can then define the iteration-independent importance score p4D = p4D (U
shape
D , Urate

D , yD·) for user

D as the normalized scores resulting from Eq. (4.21).

Adaptive minibatch sampling via rejection sampling Iteration-independent importance scores

lack one important feature of optimal importance scores – their adaptivity. The oracle in Eq. (4.8)

dynamically reweights the scores so as to minimize the variance of the noisy gradient at the current

state of learning. This is in contrast with iteration-independent scores, which are only based on the

prior information (encoded by the hyperparameters) and on the data x.

To implement a fully adaptive minibatch sampling strategy, we turn to rejection sampling. The

iteration-independent sampling distribution p4 introduced in the previous paragraph comes in

handy as a natural candidate for a proposal distribution. Throughout the rest of this chapter we

then refer to p4 as the envelope sampling distribution, meaning that we use (a multiple of) p4 as

the envelope for rejection sampling of the oracle. We denote by ?̃∗ and ?̃4 the unnormalized oracle

and envelope scores, respectively. We set ?̃∗
8
≤ ?̃4

8
for all points 8.

To assemble a minibatch under rejection sampling, we sample a point 8 from the envelope and

compute its unnormalized oracle score ?̃∗
8

as in Eq. (4.8). We then include the candidate in the

minibatch with probability ?̃∗
8
/?̃4

8
and repeat these steps until the full minibatch is formed.

Rejection sampling allows us to sample directly from the oracle at little computational cost. Rather

than calculating the whole set of probabilities, we compute only the unnormalized scores of the

candidate points sampled from the envelope. The computational complexity of the algorithm de-

pends on how closely the envelope matches the oracle: the closer the envelope, the lower the

rejection rate, and the more efficient the sampling.
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Even if we can sample from the oracle distribution to assemble the minibatch, we still need to

estimate the inverse probability weights that make the noisy gradient unbiased. To do that, we not

only require the unnormalized scores (which we have already computed) but also the normalizing

constant,
∑
8∈[=] ?

∗
8
. This constant cannot be computed, as it would require a full pass through the

dataset at each iteration.

With the goal of estimating the normalizing constant, we use the unnormalized scores of all can-

didate points that have been sampled from the envelope (including those that were rejected). We

combine these scores with the inverse envelope probabilities so as to form an unbiased estimate

of the normalizing constant. Interestingly, the resulting probability estimates (i.e. unnormalized

scores over the estimated normalizing constant) are not unbiased estimates of the oracle probabili-

ties. This is because the normalizing constant sits at the denominator. However, the noisy gradient

is linear in the inverse probability weights, which are in turn linear in the normalizing constant.

Hence, as the estimate of the normalizing constant is unbiased, our algorithm preserves the unbi-

asedness of the noisy gradient. The full algorithm is stated below.

The additional estimation step required for the oracle normalizing constant may slow down the

convergence of the algorithm. While sampling from the oracle minimizes the variance of the noisy

gradient, estimating the normalizing constant adds extra noise. We investigate this trade-off in the

numerical studies in Section 4.6.
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Algorithm 4.1 Adaptive minibatch sampling via rejection-sampling

Input: envelope p̃4, data x, minibatch size <, current global variational parameters ,.

Output: minibatch (, noisy gradient 6.

Initialize: minibatch ( = ∅, candidate set � = ∅.

1: while |( | < < do

2: Sample 8 from the normalized envelope and set � = � ∪ {8}.

3: Optimize the local variational parameters >∗
8
= >∗

8
(,).

4: Compute the unnormalized oracle score ?̃∗
8

from Eq. (4.8).

5: Sample D ∼ Uniform([0, 1]).

6: if D < ?̃∗
8
/?̃4

8
then

7: Set ( = ( ∪ {8}.

8: Compute estimate of the oracle normalizing constant:

2 =

∑
9 ?̃

4
9

|� |
∑
8∈�

?̃∗8 /?̃48 . (4.22)

9: Compute the noisy gradient:

6 = " +
[
2

<

∑
8∈(
( ?̃∗8 )−1

Ei∗
8
C (I8, G8), =

]
− ,. (4.23)

4.4 Adaptive learning rate

Stochastic optimization methods are sensitive to learning rates. If the learning rate is too small,

the optimizer may move too slowly; if the learning rate is too large, the optimizer may oscillate too

much. A common approach in the literature is to set up a decreasing learning rate schedule, based

on Robbins-Monro conditions (see Section 1.4.2). Under this setting, the optimizer is sensitive to

the choice of the decay rate. A fast decay may slow down convergence, while a slow decay may
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lead to erratic progress.

To this end, adaptive learning rates dynamically adjust the learning step size depending on how

noisy the current gradient estimate is. They increase the step size toward the noisy gradient when

the variance is low, while they reduce it when the noise is large. Clearly, the higher the variance,

the less reliable the direction pointed by the noisy gradient.

For locally quadratic objectives, Schaul, Zhang, and LeCun (2013) propose to set the learning rate

adaptively by minimizing the expected objective at each iteration. While the ELBO is not neces-

sarily locally quadratic, one may adopt a similar approach by optimizing its Taylor approximation.

However, Ranganath, Gerrish, and Blei (2014) found that the resulting adaptive learning rate be-

haves erratically. They argue that this is due to the fact that the Taylor approximation is imprecise

when the step size is large and that the Hessian of the ELBO may not be negative definite.

Rather than tackling directly the ELBO, the same authors propose to choose the learning rate so as

to minimize the squared distance between the noisy update and its counterpart – the full batch up-

date. This defines an alternative notion of optimal learning rate which can be estimated efficiently

at each iteration. In the rest of this section we review this approach. Following Ranganath, Gerrish,

and Blei (2014), we first present the optimal learning rate arising from the distance-minimization

problem and then state an efficient algorithm to estimate it. Finally, we derive a parameter-specific

extension that assigns a different learning rate to every variational parameter.

4.4.1 An optimal adaptive learning rate

Recall from Chapter 1 that, for conditionally conjugate models, the CAVI updates for the global

variational parameters are:

,∗C = " +
=∑
8=1
EiC ,8 C (I8, G8). (4.24)

Since the CAVI update requires visiting the full dataset, we refer to it as the full batch update.

Conversely, the stochastic natural ascent update in SVI is only based on a subset of the data ( and
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it reads:

,C+1 = (1 − dC),C + dC ,̂C , (4.25)

where by _̂C we denote the intermediate minibatch-based update:

,̂C = " +
=∑
8∈(
EiC ,8 C (I8, G8). (4.26)

The minibatch update in Eq. (4.25) depends on the learning rate. The main idea in Ranganath et al.

Ranganath, Gerrish, and Blei (2014) is to choose the learning rate dC so as to minimize the expected

squared distance between the noisy update in Eq. (4.25) and the full batch update in Eq. (4.24).

The problem of interest is then:

min
dC
E

����,C+1(dC) − ,∗C ����2 , (4.27)

where the expectation is taken with respect to the sampling distribution of the minibatch, which is

the only stochastic component of the algorithm. The solution of the problem is:

d∗C =

����,C − ,∗C ����2����,C − ,∗C ����2 + CA (Σ) , (4.28)

where Σ denotes the variance-covariance matrix of the intermediate global parameter ,̂C .

The optimal learning rate in Eq. (4.28) is driven by two components: the distance between the full

batch update ,∗C and the current estimate ,C , and the trace of the variance-covariance matrix of the

intermediate global parameter ,̂C . If the current estimate is far from the batch update, the optimizer

takes a large step towards the direction pointed by the noisy gradient. At the same time, as the

noise of the intermediate parameter grows, the learning rate decreases.

While adaptive, the optimal learning rate in Eq. (4.28) cannot be computed. The full batch update

is not readily available, as it requires a single pass through the whole dataset at each iteration. The
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same applies to the variance-covariance matrix of the intermediate parameters. However, both the

numerator and the denominator in Eq. (4.28) can be estimated while preserving the computational

efficiency of the stochastic variational inference algorithm, as shown next.

4.4.2 Estimating the learning rate

To estimate the optimal learning rate, Ranganath, Wang, et al. (2013) propose to rewrite its nu-

merator and denominator in terms of expectations of (some transformations of) the noisy gradient.

One could then estimate such expectations with Monte Carlo draws. However, estimating differ-

ent noisy gradients by drawing multiple minibatches would affect the computational efficiency of

the stochastic variational inference algorithm. This is why the authors turn to exponential moving

averages, in the same spirit of Schaul, Zhang, and LeCun (2013).

Starting from the terms in the numerator, note that:

E6C = E,̂C − ,C = ,∗C − ,C , (4.29)

which follows from the fact that the intermediate parameter is an unbiased estimator of the full

batch update. (Recall that the expectation in Eq. (4.29) is defined with respect to the sampling

distribution of the minibatch.)

As for the denominator, note that:

E6>C 6C = (E6C)>E6C + trΣ =
����,∗C − ,C ����2 + trΣ. (4.30)

It follows from Eq.s (4.29) and (4.30) that the optimal learning rate can be rewritten as:

d∗C =
(E6C)>E6C
E6>C 6C

. (4.31)

The optimal learning rate can be then expressed in terms of expectations of the noisy natural

gradient 6C . In particular, to estimate the denominator, one needs not to estimate the full covariance
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matrix Σ, but just an unidimensional summary of the noisy gradient.

As previously mentioned, an efficient way to estimate the expectations in Eq. (4.31) is by using

moving averages across iterations. At a given iteration C, let 6̄C and ℎ̄C denote the current averages

for E6C and E6>C 6C , respectively, and let gC denote the current window size of the exponential

moving average. Then the estimates are updated as follows:

ḡC = (1 − g−1
C )6̄C−1 + g−1

C ĝC , (4.32)

ℎ̄C = (1 − g−1
C ) ℎ̄C−1 + g−1

C ĝ>C ĝC . (4.33)

The resulting estimate d̄C of the learning rate d∗C at time C is:

d̄C =
6̄>C 6̄C

ℎ̄C
. (4.34)

The learning rate ¯Aℎ>C is not an unbiased estimate of the optimal learning rate d∗C .

The window size can be updated as follows:

gC+1 = gC (1 − d̄C) + 1. (4.35)

The update in Eq. (4.35) reflects the fact that, when the optimizer takes a large step away from the

previous instance of the parameter, the current moving average is less accurate of an estimate. As

a result, the window size shrinks.

To initialize the algorithm, Ranganath, Gerrish, and Blei (2014) propose to estimate the noisy

gradient at the initial global parameter ,0 with Monte Carlo draws. The number of samples drawn

to initialize the moving averages can be used to set the initial window size g0.

4.4.3 Parameter-specific learning rates

The adaptive learning rate in Ranganath, Gerrish, and Blei (2014) is a single rate shared by all

variational parameters. However, when the gradient magnitudes differ significantly across param-
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eters, faster convergence may be achieved with parameter-specific learning rates (Duchi, Hazan,

and Singer, 2011; Schaul, Zhang, and LeCun, 2013). The results reviewed in the previous para-

graphs can be easily extended to this multidimensional setting as the problem is separable in the

learning rates.

To see this, let dC3 denote the learning rate of the global variational parameters (_C3) at iteration C,

and let 1C = (dC3)3∈[�] . The learning rates in 1C are chosen so as to minimize the expected squared

distance of the stochastic update ,C+1 from the full batch update ,∗C :

min
1C
E

����,C+1(1C) − ,∗C ����2 , (4.36)

where we recall that the expectation is taken with respect to the sampling distribution of the mini-

batch. It can be shown that the problem in Eq. (4.36) reduces to:

min
1C

∑
3∈[�]

(1 − dC3)2E
(
_̂C3 − _∗C3

)2 + d2
C3 (_C3 − _

∗
C3)

2, (4.37)

which is separable in dC3 . The solution is:

d∗C3 =
(_C3 − _∗C3)

2

(_C3 − _∗C3)2 + Σ33
, (4.38)

where Σ33 is the 3-th entry of the diagonal of Σ, i.e. the variance of the intermediate global param-

eter _̂C3 . The optimal parameter-specific learning rate d∗
C3

can be expressed as the ratio between

the squared mean of the noisy gradient and its second moment, which can be both estimated via

exponentially decaying averages as shown in the previous sections.

The resulting adaptive learning rate relates to other parameter-specific rates such as AdaDelta

(Duchi, Hazan, and Singer, 2011) and RMSProp (Hinton, Srivastava, and Swersky, 2012). In par-

ticular, it uses exponentially decaying averages (like AdaDelta and RMSProp) and it is unit-free

(like AdaDelta). However, it does not involve the root mean square gradient. Also, it is theoreti-

cally justified by the optimization problem in Eq. (4.36).
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4.5 Adaptive stochastic variational inference

In this section, we couple the minibatch sampling distribution with the learning rate. The result-

ing algorithm, which we name adaptive stochastic variational inference (AdaSVI), is a parameter-

free version of SVI with the minibatch size being the only user input required.

4.5.1 Coupling the sampling distribution with the learning rate

As we have shown, adaptive sampling distributions aim at reducing the variance of the noisy

gradient by biasing the minibatch sampling towards the observations that have a higher signal-

to-noise ratio. To capitalize on these variance gains, the optimizer requires an adaptive step-size

method that adjusts the learning rate depending on how noisy the gradient is. We may then wonder

whether one can couple the optimal minibatch sampling distribution in Section 4.3 with the optimal

learning rate from Section 4.4.

A natural place to start is the following joint optimization problem:

min
dC , pC

E pC

����,C+1(dC , pC) − ,∗C ����2 . (4.39)

In Eq. (4.39), the learning rate 1C and the sampling distribution pC are chosen so as to jointly

minimize the distance between the SVI update ,C+1 and its full-batch counterpart ,∗C .

It can be shown that the problem in Eq. (4.39) can be rewritten as:

min
dC

{
(1 − dC)2

����,C − ,∗C ����2 + d2
C min

pC
E pC | |,̂C ( pC) − ,

∗
C | |2

}
. (4.40)

It follows from Eq. (4.40) that the joint problem can be separated in two subproblems, one of which

depends only on the sampling distribution p. To solve Eq. (4.39), we optimize the subproblem in

the sampling distribution first and then recover the optimal learning rate.
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The solution to Eq. (4.40) is:

p∗C =

(
| |E>∗

8
C (G8, I8) | |

)
8∈[=]∑

8∈[=] | |E>∗
8
C (G8, I8) | |

, (4.41)

d∗C =

����,C − ,∗C ����2����,C − ,∗C ����2 + tr Σ∗
, (4.42)

where Σ∗ = E| | ĝC ( p∗C ) − g∗C | |2.

Eq.s (4.41) and (4.42) couple the optimal minibatch sampling distribution with the optimal learn-

ing rate. Together, they provide a recipe for a parameter-free stochastic optimization, where the

only decision required by the user is the minibatch size.

The optimal sampling distribution in Eq. (4.41) is the same as that arising from the variance min-

imization problem in Section 4.3. This comes as no surprise after noting that minimizing the

distance between the intermediate update ,̂ and the full batch update ,∗ is equivalent to minimiz-

ing the variance of the noisy gradient, when optimizing with respect to p. More specifically, we

have:

E pC | |,̂C ( pC) − ,
∗
C | |2 = E pC | |,̂C ( pC) − ,C − (,

∗
C − ,C) | |2

= E pC | |6̂C (,C ; pC) − 6C (,C) | |
2

= + (6̂C (,C ; pC)). (4.43)

4.5.2 The algorithm

We present adaptive SVI (AdaSVI). This method combines the importance sampling tech-

niques in Section 4.3 with the adaptive learning rate from Section 4.4. As shown in the previous

section, the learning rate and the minibatch sampling distribution are chosen so as to minimize the

distance of the stochastic update from the full batch update.

Since we presented two different importance sampling strategies, we consider two versions of

AdaSVI. One approximates the oracle distribution with an iteration-independent envelope; the
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other samples directly from the oracle via rejection sampling but requires estimating the oracle

normalizing constant. Both strategies employ the adaptive learning rate.

AdaSVI proceeds as follows. At each iteration, we sample a minibatch with replacement from

either the envelope or the oracle itself via rejection sampling. We update the local variational pa-

rameters for the points in the minibatch and compute the importance-weighted noisy gradient in

Eq. (4.5). We update the moving averages of the gradient and of its second moment, which we

then use to compute the adaptive learning rate. We update the global variational parameters. The

full algorithm for envelope-based AdaSVI is stated in Algorithm 4.2. For the rejection-sampling

based version of the algorithm, we replace lines 2-4 of Algorithm 4.2 with the sampling procedure

stated in Algorithm 4.1.

4.6 Numerical studies

We study AdaSVI on the Poisson factorization model stated in Section 4.3.2.

Our goal is to compare envelope-sampling and rejection-sampling AdaSVI to SVI in terms of

speed of convergence and inference.

We find that envelope-based AdaSVI converges faster than the other methods. Surprisingly, AdaSVI

with rejection sampling results in even slower convergence than SVI. We argue that this is due to

the additional noise introduced by estimating the oracle normalizing constant. The experiment

details, results, and plots follow below.

Data We simulate data from the Poisson factorization model. Recall from the discussion on im-

portance scores from Section 4.3.2 that user (/item) importance scores are driven by two factors:

the user specialization and total activity level.
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Algorithm 4.2 AdaSVI with envelope minibatch sampling

Input: normalized envelope p4, model ?(x, z, #), data x, minibatch size <.

Output: global variational densities @, (#).

Initialize: global variational parameters ,0; moving average 6̄0 for the natural gradient and

ℎ̄0 for its second moment; window size g0 of moving average (see Section 4.4 for details).

1: for C = 1, 2, . . . do

2: Sample with replacement a minibatch ( of size < from the envelope.

3: Optimize the local variational parameters i∗
8

for any 8 ∈ (.

4: Compute the importance-weighted noisy gradient:

ĝC = " +
[

1
<

∑
8∈(
(?48 )−1

Ei∗
8
C (I8, G8), =

]
− ,.

5: Update the moving averages:

ḡC = (1 − g−1
C )6̄C−1 + g−1

C ĝC ,

ℎ̄C = (1 − g−1
C ) ℎ̄C−1 + g−1

C ĝ>C ĝC .

6: Compute the learning rate:

dC = ḡ>C ḡC/ℎ̄C .

7: Update the window size:

gC+1 = gC (1 − dC) + 1.

8: Update the global variational parameters:

,C+1 = ,C + dC ĝC .
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To generate heterogenous data, we then divide the users into five classes with varying levels

of specialization over  = 50 attributes. To this end, we fix the users activity level to 10 and

generate their attribute assignments from a symmetric Dirichlet distribution:

#D
10 

∼ Symmetric Dirichlet ([f(D)), D = 1, . . . , 10, 000, (4.44)

where f(D) ∈ {1, 2, . . . , 5} denotes the specialization class of user D and where we let [2 =

102−2, 2 = 1, . . . , 5. By varying the concentration parameter [2, we generate different levels of

specialization: when [ = 0.1 users consume items almost exclusively via a single attribute; when

[ = 100 users have no preferences over the attributes. We generate 100,000 users. Finally, to

preserve the identifiability of the model, we generate 1, 000 items with perfect specialization. We

randomly assign them to the 50 attributes and set their total activity levels to 1.

Experiment details We run the four following versions of SVI, each with a different minibatch

sampling distribution: oracle sampling; envelope sampling; rejection sampling; and uniform sam-

pling (i.e. the benchmark vanilla SVI by Hoffman et al. 2013).

As discussed in the previous sections, to benefit from the variance gains introduced by impor-

tance sampling, the weighted minibatch sampling distributions (first three methods) were paired

with the adaptive learning rate from Section 4.4. For the original SVI formulation, we adopted an

exponentially decaying learning rate satisfying Robbins-Monro conditions:

dC = (C + ))− 5 . (4.45)

The forgetting rate 5 ∈ (0.5, 1] and the delay ) were chosen with a grid search, resulting in

5 = 0.51 and ) = 1, 000.

We set the Gamma shape and rate hyperparameters equal to 1 for all users and items. We initialized

the user and item variational parameters from the Gamma priors. For all methods, we set the batch

size to 1%.
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Figure 4.1 and 4.2 track the progress of the ELBO during training. Figure 4.1 shows the ELBO

by iteration. While not meaningful for computational purposes, this plots shows the information

efficiency of each method and how they compare to the oracle. Figure 4.2 plots the ELBO by

runtime, illustrating the actual speed of convergence of each method.

The results in Figure 4.1 refer to a a smaller version of the data with only 1,000 users, 10 items,

and 10 attributes. The limited size of the experiment is required to fit the model via AdaSVI with

oracle sampling, which is computationally prohibitive.

Figure 4.3 shows the progress of AdaSVI with oracle sampling on each of the five subsets of the

data.

Results AdaSVI with envelope sampling converges faster than SVI (Figure 4.2). Also, in terms

of progress per iteration, sampling from the envelope is comparable to the oracle. As shown in

Figure 4.2, the speed of convergence of these two methods is comparable when measured by iter-

ation. This similarity in performance is surprising for the envelope sampling probabilities do not

account for the users specialization levels, but only adjust for the user activity levels. It indicates

that accounting for the activity levels is enough to benefit from the convergence gains introduced

by the oracle.

AdaSVI with rejection sampling results in much slower convergence than the other methods (Fig-

ure 4.1). Recall that the only difference between AdaSVI with rejection sampling and the oracle

is that the former method requires estimating the oracle normalizing constant. The results in Fig-

ure 4.1 show that the noise introduced by this additional estimation step exceeds the variance

savings of the oracle. This extra noise negatively impacts the speed of convergence leading to even

slower progress than uniform random sampling.
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Figure 4.1: ELBO vs. iteration. The progress of AdaSVI with envelope sam-
pling is comparable to the oracle. Conversely, the added noise in the rejection-
sampling version makes AdaSVI even less efficient than the benchmark vanilla
SVI.

Figure 4.2: ELBO vs. runtime. AdaSVI with envelope sampling converges
faster than the benchmark vanilla SVI.
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Figure 4.3: Training progress of AdaSVI with oracle sampling (ELBO vs. iter-
ation) for different concentration parameters. Convergence is faster when users
are more specialized (lower concentration).

4.7 Discussion

We developed AdaSVI, a stochastic variational inference algorithm with non-uniform mini-

batch sampling paired with an adaptive learning rate. At each iteration, AdaSVI biases the mini-

batch sampling distribution toward the observations with a higher signal-to-noise ratio. AdaSVI

navigates through large-scale datasets more efficiently, achieving faster convergence on synthetic

data.

While AdaSVI can be applied to any conditional conjugate model, it does not yet extend to other

successful applications of VI, such as black-box variational inference methods (Ranganath, Ger-

rish, and Blei, 2014). A natural continuation of this work is to assess up to what extent similar

techniques can be applied to variational methods for non-conjugate models (Ruiz, Titsias, and

Blei, 2016; Agrawal, Sheldon, and Domke, 2020).
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4.8 Proofs

First, we show that the noisy gradient is unbiased and derive an expression for the trace of

its variance-covariance matrix (Eq. 4.6). Next, we show that, under sampling with replacement,

the variance minimization problem simplifies significantly (Eq. 4.7). Finally, we provide a closed

form of the resulting optimal sampling weights (Eq. 4.8). We follow Zhao and Zhang (2015), who

derive the optimal sampling weights for SGD under a regularized loss and with a minibatch of size

1. We apply this framework to SVI and extend it to a minibatch of size < under sampling with

replacement.

Notation Recall that C denotes the sufficient statistic of the conditional joint distribution of the

8-th local context (G8, I8) given the global parameters #. We assume that C is �-dimensional. Also,

we let S denote the sample space of all possible minibatches of size <, and let P be a probability

distribution over S. We define a sampling strategy as a pair (S,P). For example, under sampling

with replacement, S is the set of all the possible permutations of the data (G8)8∈[=] of length < and

P is univocally defined by the sampling weights (?8)8∈[=] .

Proof of Eq. (4.6). We have:

E(

[
1
<

∑
8∈(

?−1
8 Ei

∗
8
C (I8, G8)

]
=

1
<

∑
(∈S
P(()

∑
8∈(

?−1
8 Ei

∗
8
C (I8, G8)

=
1
<

∑
8

(∑
(:8∈(

"8 (()P(()
)
?−1
8 Ei

∗
8
C (I8, G8)

=
1
<

∑
8

E("8 ?
−1
8 Ei

∗
8
C (I8, G8), (4.46)

where we define the random variable "8 as the number of times 8 is sampled in the minibatch.

Under sampling with replacement with probabilities p, ("8)8∈[=] ∼ Multinomial(<, p) and thus

E("8 = <?8. Plugging this into Eq. (4.46) yields that E(6̂ = 6, and so 6̂ is an unbiased estimator
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of 6. As a result, the variance of the noisy gradient reduces to its expected squared norm:

+ (6̂) (,) = E( | |6̂(,) − 6(,) | |2 =
∑
3

E( (6̂3 (,) − 63 (,))2 = E( | |6̂3 (,) | |2 . (4.47)

Proof of Eq.s (4.7) and (4.8).

E( | |6̂3 (,) | |2 =
1
<2E(


∑
8∈(

?−2
8

������Ei∗
8
C (I8, G8)

������2 +∑
3

∑
8, 9∈(:8≠ 9

(?8? 9 )−1
Ei∗

8
C3 (I8, G8)Ei∗

9
C3 (I 9 , G 9 )


=

1
<2

[ ∑
8∈[=]
(E("8)?−2

8

������Ei∗
8
C (I8, G8)

������2 +∑
8, 9 :8≠ 9

(E("8" 9 ) (?8? 9 )−1
∑
3

Ei∗
8
C3 (I8, G8)Ei∗

9
C3 (I 9 , G 9 )

]
. (4.48)

Since E"8 = <?8 and E"8" 9 = <(< − 1)?8? 9 , Eq. (4.48) yields:

min
p
+ (6̂) ⇐⇒ min

p

1
<

∑
8

?−1
8

������Ei∗
8
C (I8, G8)

������2 . (4.49)

An application of Cauchy-Schwarz inequality yields:

min
p

∑
8

?−1
8

������Ei∗
8
C (I8, G8)

������2 = min
p

∑
8

?8

∑
8

?−1
8

������Ei∗
8
C (I8, G8)

������2
≥

∑
8

������Ei∗
8
C3 (I8, G8)

������ , (4.50)

which does not depend on p. The equality holds if and only if p is proportional to (
������Ei∗

8
C (I8, G8)

������)8∈[=] .
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Conclusions

We conclude by summarizing the contributions of this dissertation, its limitations, and di-

rections of future work.

We first presented a novel generator for massive networks with overlapping community struc-

ture. While the predominant approach in the literature has been algorithmic and it has mostly

focused on reproducing power-law degree distributions, our generator builds on a principled ran-

dom graph model (Ball, Karrer, and Newman, 2011) and it can be used to target a local or a global

centrality measure – namely the degree centrality and the eigencentrality. The flexibility of our

method is certified by our theoretical results, which guarantee that under some mild conditions

there always exist some model parameters that enforce an arbitrary centrality target. In practice,

our generator can produce a wide spectrum of network topologies with an underlying overlapping

community structure.

A fundamental assumption behind our generator is that of node types. From a computational

perspective, partitioning the networks into groups of stochastically equivalent nodes reduces the

complexity of the problem. This allows us to recover the solutions of the degree and the eigen-

centrality problem via a multivariate Newton-Raphson (MNR) algorithm, which proves effective

in solving sparse systems with up to 104 variables. However, as the complexity of networks scales

with their size, if we were to extend our generator to even larger settings (e.g. terascale networks),

we may want to solve multivariate systems of quadratic polynomials with hundreds of thousands –

if not millions – of variables. While such systems are not feasible for MNR, they could be tackled

with quasi-Newton methods. To further scale up our generator, a parallel implementation of the

edge generation step is required. We leave these directions of research to future work.

Next, we focused on large-scale approximate inference and developed AdaSVI, a stochastic

variational inference algorithm that combines an adaptive learning rate with weighted minibatch

sampling. AdaSVI reweights the sampling distribution of the minibatch to minimize the variance

of the natural gradient. AdaSVI navigates through large-scale datasets more efficiently, achieving

faster convergence and better predictions.
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The only user input required by AdaSVI is the minibatch size. However, this parameter could

also be chosen adaptively. Recent works in the stochastic optimization literature propose increasing

batch-size schedules to further facilitate convergence (Devarakonda, Naumov, and Garland, 2017;

Zaheer et al., 2018). A natural continuation of this work is to extend these results to the stochastic

variational objective.

Another direction of future research concerns the applicability of the algorithm. While AdaSVI

can be applied to any conditional conjugate model, it does not yet extend to other successful ap-

plications of VI, such as black-box variational inference methods (Ranganath, Gerrish, and Blei,

2014). In future work, we seek to assess up to what extent similar techniques can be applied to

variational methods for non-conjugate models (Ruiz, Titsias, and Blei, 2016; Agrawal, Sheldon,

and Domke, 2020).
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