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Abstract 

Noninvasive, low-cost RNA-sequencing enhances discovery potential of transcriptome studies 

Molly Martorella 

 

   Transcriptome studies disentangle functional mechanisms of gene expression regulation 

and may lend key insights into disease mechanisms. However, the cost of RNA-sequencing and 

types of tissues currently assayed pose major limitations to study expansion and disease-relevant 

discovery. This thesis develops methods for sampling noninvasive biospecimens for 

transcriptome studies, investigating their technical and biological characteristics, and assessing 

the feasibility of using noninvasive samples in transcriptomic and clinical applications. Chapter 1 

explores the technical and biological features of four potential noninvasive sample types (buccal 

swabs, hair follicles, saliva, and urine cell pellets) in a pilot study of 19 individuals whereby four 

separate collections of each tissue were performed (i.e. 76 samples/tissue, 304 samples in total). 

From this data, consistency of library preparation, cell type content, replication of GTEx cis-

eQTLs, and disease applications were assessed. In all, hair follicles and urine cell pellets were 

found to be most promising for future applications. Chapter 2 investigates the scaling potential of 

noninvasive sampling in SPIROMICS, a COPD clinical cohort. To do so, 140 hair follicle and 

110 buccal swab samples were collected from seven different clinical sites. Consistency of 

sample quality was observed to be high for hair follicles, and hair cell type abundance estimates 

were consistent within SPIROMICS and compared to the 19 subject pilot study. Mapping of cis-

eQTLs in hair revealed 339 associations not identified in any prior study. These cis-eQTLs show 

higher replication in GTEx tissues that share cell types with hair follicles, indicating hair follicles 



 

 

may indeed capture gene expression regulatory mechanisms found in more invasive tissue types 

of the body. This thesis suggests future use of noninvasive sampling will facilitate discovery by 

increasing sample sizes in more diverse populations and in tissues with greater cell type diversity 

and biological relatedness to disease mechanisms. Moreover, the nature of noninvasive sampling 

enables complex, longitudinal study designs with greater ability to capture context-dependent 

mechanisms of genetic regulation not currently able to be interrogated. 
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Introduction 

Initial Advances and Difficulties Mapping Human Genetic Variation to Phenotypes 

 The field of human genetics centrally aims to understand the mechanisms by which 

genetic variation contributes to phenotypic variation. In the context of medicine, this question 

historically focused on disorders of Mendelian inheritance, whereby a change at a single locus 

results in disease. In the past 20 years since the human genome was mapped, SNP arrays and 

sequencing technology underwent rapid advancements. This not only expedited the genetic 

mapping of Mendelian disorders and added further complexity as to our understanding of their 

manifestation, but also enabled genetic interrogation of complex, common diseases whereby 

many genetic changes contribute to a phenotype of variable presentation. At the outset, this 

approach was anticipated to yield massive, transformative insights into our understanding of 

disease risk, mechanisms, and potential treatments.  

However, the first genome wide association studies (GWASs) attempting to link 

sequence changes to human traits revealed the genetic architecture underlying most traits to be 

non-trivial. For one, there are many more genetic associations of smaller effect size than initially 

expected, and the majority of trait-associated variants localize to noncoding regions whereby 

their target gene and mechanism of action are not readily discernible from genetic sequencing 

alone1–3. Even identifying the causal variant is complicated by linkage disequilibrium blocks 

tagging both causal and nearby sites1–3. Extreme Eurocentric bias in early studies further 

exacerbates this problem and is still needing remedy today4. Furthermore, it is increasingly 

apparent that each trait will not be associated with a separate set of variants but that pleiotropy, 
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whereby a variant affects multiple traits, is a pervasive issue and adds further complexity to 

resolving genetic disease risk1–3,5.  

Much of these observed phenomena are now largely recognized as an anticipated product 

of our evolutionary past and may not be understood without integrating data from multiple 

sources and contexts. The process of evolution typically involves the co-option of previously 

existing molecular pathways and structures, thus providing some explanation for the pleiotropic 

role of many genes6. In comparing effect size distributions of variants associated with neutral, 

directional, or stabilizing selection on some trait, it is known that directional and stabilizing 

selection result in lower variance7. Most traits are under stabilizing selection whereby selection 

opposes variants resulting in large phenotypic changes, and those that do impart large changes 

are typically found at much lower frequency in the population7,8. Thus the commonly occurring 

variants discovered via GWAS most often result in small effect sizes on a given trait6,7. Further, 

many phenotypes display a pattern of evolutionary trade-off, in which an adaptation imposes a 

penalty on some other trait, or environmental mismatch, whereby modern day exposures are at 

odds with prior evolutionary changes6. These observations suggest context may play a 

substantial role in determining the mechanism and consequence of a given variant and that the 

variant effect may only be observed under specific conditions. As such, acquisition of an array of 

intermediate molecular phenotypes across multiple clinical and environmental conditions is 

necessary to reveal variant consequences and properly interrogate GWAS hits. 

Transcriptome studies provide one such area of promising investigation. In comparing the 

transcriptome across tissues, cell types or states, under different environmental or treatment 

conditions, or from samples originating from different donors, one may begin to unravel which 

genes and molecular pathways centrally contribute to various biological and disease-related 
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processes9,10. Characterizing the transcriptome began initially with microarrays, which only 

quantify a subset of all genes (and only known isoforms), restrict analyses to predetermined sets 

of probes, or impart high costs per experiment due to probe design10. RNA-sequencing enables 

quantification of many more transcripts, and, over time, advancements in technology have 

reduced cost, increased throughput, and improved the read length such that information 

regarding an even greater number of transcripts is obtained10. Further advancements in single cell 

RNA-sequencing will only continue to augment these efforts10. However, it should be noted that 

RNA-sequencing cost still imposes a large barrier for study expansion, and often reductions in 

cost come at the expense of valuable biological data11–13. 

A subset of transcriptome studies focus specifically on observations of gene expression or 

splicing changes in the context of genotypic variation. These types of studies, termed molecular 

quantitative trait loci (molQTL) studies, hold potential to contribute to the elucidation of GWAS 

findings and provide fruitful discovery in translational applications. For one, overlap between 

GWAS variants and those that elicit a change in gene expression or splicing may help prioritize 

which variants could be mechanistically important for a trait and should be further interrogated 

in laboratory settings14,15. Often expression and splicing events are cell-type specific, and thus 

discovering which cell types and tissues GWAS variants exert their effects may yield insights 

into disease etiology, pathophysiology and potential treatments16–19. This approach also provides 

opportunity to illuminate context specific genetic regulatory events that may be key to 

understanding genetic and environmental contributors to disease mechanisms20,21. However, 

there are several obstacles currently preventing transcriptome studies from delivering on their 

promised potential. Advances, limitations, and future directions of transcriptomics will be the 

focus of this thesis and covered in detail in the following sections. 
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Molecular Quantitative Trait Loci 

One technique for uncovering the phenotypic consequences of genetic variation is 

molecular Quantitative Trait Loci (molQTL) mapping. In fields of genetics studying other 

species, QTLs have long been observed and studied, but only in the last 15 years or so has this 

approach been applied to human datasets to further resolve disease-associated genetic 

variation15,22. QTL mapping involves comparing levels of an observed trait across different 

genotypes. It should be noted that genotypic variation may be tested against any trait for that 

locus to be a potential QTL. However, for the purposes here the focus will primarily be in 

regards to expression (eQTLs) and splicing QTLs (sQTLs), as these have been most heavily 

interrogated. Discoveries are typically referred to as eVariant-eGene or sVariant-sGene pairs to 

indicate a given variant associates with either expression levels or transcripts observed for a 

given gene. Previous findings support that GWAS hits are enriched for eQTLs and their 

discovery may provide insights into the regulatory consequences of GWAS variants5. Thus far, 

these sites identify a target gene for approximately 47% of GWAS loci22. 

Typically, QTLs are defined either as local or distant, and in cis or in trans. The 

following describes consequences of eQTLs, but the same nomenclature applies to sQTLs and 

transcript abundances. Local eQTLs affect expression of a gene on the same chromosome and 

are often within 1MB of the gene, whereas distant eQTLs impact expression of genes located 

anywhere throughout the genome15,23. Cis-eQTLs directly modify the expression of a gene, 

whereas trans-eQTLs affect gene expression via some diffusible factor15. Most often, cis-eQTLs 

act locally and trans-eQTLs affect genes distally, but this is not always the case15.  

In comparing eQTLs to sQTLs, observations so far suggest these loci occur largely 

independent of one another24,25. sQTLs tend to be more concentrated in transcribed regions, the 
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5’ UTR, and for splice-site acceptors, donors, and regions23,25. On the other hand, eQTLs are 

found proximal to transcription start sites and enriched in transcriptional regulatory elements like 

transcription factor binding sites, open chromatin and active promoter sequences, and 

enhancers24–26. If gene expression levels and splice junctions used are shared across tissues, then 

most often sQTLs are also overlapping27. However, many genes and splice junctions are cell-

type specific, and overall, sQTLs display increased tissue-specificity relative to eQTLs25,28,29.  

trans-eQTLs are the least characterized regulatory loci but are anticipated to contribute 

greatly to mapping genotypes to phenotypes via revealing larger networks of gene expression 

regulation. In fact, current observations suggest the majority of gene expression heritability may 

be explained by trans effects (~60-75%)15. However, discovery thus far is limited due to the 

increased burden of multiple testing corrections as well as the relatively small effect sizes of 

trans-eQTLs30,31. Notably, most trans-eQTLs also act as a cis-eQTL to a nearby gene21,25. 

However, compared to typical cis-eQTLs, the majority of loci are located farther from the TSS 

and enriched in CTCF binding sites, open chromatin, and promoter-flanking regions, further 

supporting their role in overarching and distal regulatory effects25. Much like sQTLs, trans-

eQTLs identified so far display greater tissue specificity relative to cis-eQTLs25. 

In addition to genomic features and location, QTLs may be defined in terms of the 

context in which they are active. Steady-state QTLs produce a consistent effect on gene 

expression regardless of changing conditions21. Most studies to date capture a single time point 

or use post-mortem tissue expression, and thus are primarily assumed to discover steady-state 

QTLs. Some QTLs derived from these studies show a pattern of changing phenotypic variance 

depending on genotype (vQTLs), and it is anticipated that a gene by environment interaction or 

other context-dependent effect underlies this pattern32. These QTLs are termed dynamic or 
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interaction QTLs (iQTLs), and their effect size changes depending on the value of some other 

known variable. The primary difference between dynamic and iQTLs is in regards to 

experimental design rather than underlying biology. iQTLs typically refer to a static variable and 

are modeled using an interaction term for the analysis. Thus far, iQTLs have been most heavily 

studied in regards to sex and accounting for cell type proportions16–19,33. Dynamic QTLs, on the 

other hand, refer to a temporally applied condition or biological event such that the QTL effect 

may be measured before and after a treatment or at multiple timepoints. For these studies, QTL 

analysis is performed per each measurement and results are compared afterwards rather than 

using an interaction term. Studies of immunological responses and developmental processes 

often interrogate dynamic QTLs34–36. 

Performing Quantitative Trait Loci analyses 

 Quantitative Trait Loci (QTL) analysis involves linearly modeling a phenotype as a 

function of genotype with covariates accounted for in the model (Equation 1). Notably, QTL 

models may be modified to include interaction terms to identify potential iQTLs (Equation 2).  

(1) 𝑦 ~ 𝛽G ∗ 𝐺 +  𝛽C ∗ 𝐶 + 𝜀 

where y is phenotype; G is the effect size of genotype (G) encoded as 0,1,2; C is the 

effect size of covariate (C); and  is noise. 

(2) 𝑦 ~ 𝛽G ∗ 𝐺 + 𝛽I ∗ 𝐼 + 𝛽GxI ∗ 𝐺 ∗ 𝐼 + 𝛽C ∗ 𝐶 + 𝜀 

where y is phenotype; G is the effect size of genotype (G) encoded as 0,1,2; I is the 

effect size of some known potential interacting variable (I), GxI is the effect size of 

the interaction between genotype (G) and the variable (I); C is the effect size of 

covariate (C); and  is noise. 
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The immensity of data collected in human studies today necessitates computationally 

efficient algorithms for association testing and statistical approaches that address the enormity of 

associations tested without overcorrecting. The most commonly used program for QTL analysis, 

tensorQTL, navigates both of these problems. First, the association testing is done based on 

efficient matrix operations established by MatrixQTL, and this greatly reduces the computational 

load37. Multiple testing corrections need to be implemented at both the locus and genome-wide 

level. Permutation testing previously served as the standard approach for significance testing of 

loci, but the permutation p-value limit is determined by the total number of permutations, and 

thus p-values less than 10-3 remained computationally infeasible. FastQTL introduced modeling 

the p-value distribution for every locus using a beta distribution38. This method defines the 

extreme tail of the null distribution without explicitly sampling from it, again, greatly reducing 

the computational burden of p-value calculations. Genome-wide significance is determined using 

the FDR (false discovery rate) approach described by Storey & Tibshirani39. This method 

provides a data-driven estimate of the expected proportion of null findings (v.s. Bonferroni-

Hochberg which assumes this number to be 1), and therefore allows for less-stringent 

thresholding. The variable pi0 typically represents this estimated value, with pi1 being 1 - pi0 

and representing the expected proportion of truly alternative findings39. FDR is calculated by 

dividing the expected number of false positives by the total number of findings (i.e. FP/(FP + 

TP)) below a given significance level. Significance per loci is calculated using the q-value, 

which is defined as the expected proportion of false positives when calling a feature as or more 

extreme significant. This reduced stringency compared to other multiple testing corrections is 

important because a very large fraction of phenotypes are anticipated to be affected by genetic 

variation38,39. 
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To discover overlaps between GWAS and QTL hits, colocalization approaches are used. 

The most frequently employed method is coloc40,41. This Bayesian method compares the p-value 

distribution of GWAS and QTL studies and outputs posterior probability estimates for five 

hypotheses, H0-H4, with H0 being the null. H1 states evidence for a GWAS variant but no QTL 

effect at that locus, while H2 supports a QTL effect without a GWAS association. H3 supports 

distinct QTL and GWAS findings at a given locus. Finally, H4 localizes the GWAS association 

and QTL effect to the same variant. It should be noted that allelic heterogeneity, whereby 

multiple variants are associated with a trait, still pose significant difficulties for colocalization 

approaches, and coloc explicitly imposes a single causal variant assumption40,41. Stepwise 

regression and masking allow one to test multiple variants at a given locus using coloc, however, 

stepwise regression requires an LD matrix and masking tends to bias results towards supporting 

H3 when H4 is true41. In all, colocalization methods should be viewed not necessarily as 

providing evidence for a causal variant, but rather as providing further evidence for shared or 

distinct causality. 

One emerging method of note is transcript wide association studies (TWAS). These 

analyses predict gene expression using known cis-regulatory loci and then associate predicted 

gene expression with traits42. More specifically, gene expression weights per variant are 

determined using a reference transcriptome and elastic net regression to model gene expression 

as a function of genotypic variation42,43. This model is then used to predict gene expression data 

for a study with only genotyping data available42,43. This predicted gene expression is then 

associated with the trait using regression or non-parametric methods43. This approach is still 

under development, and many limitations in regards to expression co-regulation, correlated 

expression levels across individuals, and reference panel biases remain challenging44.  
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Discoveries from and limitations of QTL studies in unraveling GWAS signals 

Questions have been raised as to whether QTL studies truly narrow the scope of possible 

disease-relevant variants and successfully pinpoint genes and molecular changes causally related 

to the GWAS trait. Largely, this critique is in regards to our current knowledge of eQTLs. 

Despite discovering an eVariant for nearly every gene, fewer than half of GWAS variants 

colocalize with an eQTL and eGenes frequently do not overlap with anticipated disease genes 

and pathways21,26,45. Moreover, only ~11% of complex trait heritability may be explained by cis 

gene expression regulation46. These observations may not merely be explained by a lack of 

necessary sample sizes and power, as larger studies reveal cis-eQTL discovery saturates at 

approximately 600 samples21,25,26. Notable features of e/sQTLs and limitations in our current 

approaches may underlie the lack of insight provided by transcriptomics thus far. 

One of the most comprehensive studies of e/sQTLs is the Genotype-Tissue Expression 

(GTEx) project. This study collected 54 tissue samples from 838 healthy, post-mortem donors 

and performed bulk RNA-sequencing for e/sQTL mapping, and much of our current QTL 

knowledge derives from this work25,29. One such observation is the pattern of QTL activity 

across different tissues. Tissue sharing of cis-eQTLs follows a bimodal distribution, whereby cis-

eQTLs are either found in all tissues or a few tissues25. This same pattern is observed for sQTLs 

and trans-eQTLs, however, these loci are generally more tissue specific25,29. Additionally, this 

data revealed nearly every gene is associated with a variant affecting its expression, and thus 

nearly every gene is an eGene23–25,29. Some eVariants affect the expression of multiple genes, 

and many genes display allelic heterogeneity whereby multiple variants play a role in their 

expression regulation23–25. The ubiquity and redundancy by which variants affect gene regulation 

and their broad sharing across many tissues emphasizes the immense pleiotropy present across 
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the genome and the complexity of disentangling variant-gene-trait associations. These 

observations suggest, much like GWAS, that many of our observations may not capture signals 

central to disease biology. 

Indeed, e/sQTLs showing activity across a large number of tissues typically show greater 

GWAS trait pleiotropy19,47. Conversely, e/sQTLs with tissue specificity show enrichment for 

GWAS signals19,47. Bulk RNA-sequencing tends to distort or result in loss of signal due to the 

mixture of cell types present with varying effect sizes16,17,20. Accounting for cell type 

composition in the GTEx tissues increases e/sQTL discovery and further enhances colocalization 

of variants with GWAS16,17. Typically tissues with shared underlying cell types also show a 

higher degree of QTL capture and effect size sharing, and as such, these tissues also tend to be 

similarly enriched for GWAS disease relevant signals18,25. Therefore, narrowing investigations to 

tissues suspected to play a central role in disease mechanisms may provide greater insights into 

variants identified by GWAS. However, tissues involved in disease processes tend to be highly 

invasive to collect and thus inaccessible.  

Instead, many studies rely on blood-related biospecimens for QTL analyses. This 

approach fruitfully identifies many regulatory mechanisms relevant to blood cell traits, and the 

large sample sizes enable trans-eQTL network discovery31. However, of the cis-eQTLs in 

linkage disequilibrium with GWAS variants, fewer than half have been found in blood47. 

Moreover, GTEx demonstrated the genetic regulatory mechanisms found in blood differ in effect 

size or are absent compared to other tissues of the body, making blood an outlier in its genetic 

regulatory architecture25,29. Likely this difference is driven by the unique cell type composition 

and function of the cell types in blood18,47. As stated above, this bears implication for potential 

future disease-relevant discovery when using blood-related samples. In cases where the cell 
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types in blood are centrally implicated in the disease or trait of interest, meaningful biological 

insights may be derived16–18,47. Elsewise, the majority of discoveries reflect broad mechanisms of 

gene regulation that lack association with disease19,47. 

By and large accounting for cell type composition and/or narrowing the focus to disease-

relevant tissues likely will not in and of itself resolve the lack of overlap between GWAS 

variants and cis-eQTL findings. Another consideration is the manner in which samples for 

e/sQTL studies are obtained. Currently samples for e/sQTL analysis are collected at a single time 

point, potentially post-mortem, and are thus steady-state e/sQTLs. Most post-mortem samples 

also originate from reportedly healthy donors, and thus the gene regulatory networks and 

associated molecular pathways bear little insight into the aberrative biological processes of 

disease21. This issue in study design is further supported by general differences in genomic 

features seen for cis-eQTLs versus GWAS variants. For one, highly conserved genes and genes 

involved in many protein-protein interaction networks show depletion for cis-eQTLs6,7,21,23,24,48. 

Generally, eQTLs reside near transcription start sites and are found less frequently at loci with 

transcription factor activity, but GWAS variants typically localize to more distal loci and to 

functional annotations under selective constraints26,48. Moreover, variants with higher allele 

frequencies display reduced QTL effect sizes and vice versa6,7,21. Jointly, these results indicate 

the way evolutionary processes may influence the genetic architecture underlying disease 

processes and suggest current approaches to assaying gene regulation may not capture the most 

phenotypically important signals. Likely many gene regulatory processes are context-specific, 

and thus evade selective forces under most circumstances unless the exposure is present6,7,21. 

Historically, mutations affecting LOF intolerant or highly conserved genes tend to bear greater 

downstream disease-relevant consequences. Serial sampling may reveal these biological 
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processes via discovery of dynamic e/sQTLs involved in more conserved molecular 

pathways21,34–36. 

In all, e/sQTL studies at this time largely capture data with tangential relevance to disease 

and thus struggle to parse the vast number of GWAS variants into discernible mechanisms. This 

is due to both the tissue i.e. cell-type specificity of disease processes as well as the temporal 

aspect of environmental exposures and disease progression. Overall, current approaches fail to 

obtain cell types and contexts necessary for impactful discovery. 

Changing the transcriptome study design paradigm 

Barriers to wide scale transcriptomic discovery and clinical use fall into two general 

categories. One regards the limitations of the biology captured, as described above, and this issue 

is largely propagated by prohibitive financial and logistical costs as well as lack of longitudinal 

access to pertinent biospecimens49,50. The second issue relates to the lack of comprehensive 

sampling and study of underrepresented and other vulnerable and typically excluded 

populations4,44,51. 

One way to navigate these problems is by exploring the biology of alternative, less 

invasive biospecimens. This approach would not only increase the flexibility of experimental 

designs to enable time course studies, but it would also mitigate cost and access barriers by 

reducing the specialization of the personnel and institutions required to obtain the samples. Also, 

depending on the source of the samples, the cell types captured could bear consequences for a 

much larger swath of diseases compared to blood. Combined, this enhances studies because 

greater sample sizes may be achieved with the same resources and because more sensical 

biological tissues and contexts may be captured. 
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Importantly, the reduced invasiveness of sample collection may result in increased 

subject enrollment and correct for current biases in transcriptome studies. The reasons for 

inequitable research recruitment are many. For one, minority populations have been historically 

subjected to unethical and immoral research studies52,53, and hesitancy surrounding research 

involvement understandably still lingers today54,55. There are additional structural factors at play 

resulting in reduced access to healthcare and decreased access to research study enrollment56. 

Because these populations often lack access to preventative care, they present with more severe 

illness, and for this reason may be excluded from research studies57,58. Unfortunately, the low 

sample sizes yielded from these populations frequently leads to their removal in downstream 

analyses59. These issues require more active recruitment from these communities and rapid 

scaling of sample sizes because the risk of worsening healthcare disparity due to clinical use of 

genomic and transcriptomic findings is high4. Noninvasive transcriptome sampling provides an 

avenue to do so. These biospecimens are highly unlikely to exacerbate current health conditions, 

and thus individuals will not be excluded by study criteria, and collection does not require a 

treatment or invasive procedure that may evoke discomfort and distrust in potential subjects. The 

simpler logistics of sample collection may also facilitate sampling in less advantaged healthcare 

and community settings. It is worth noting that others normally excluded from research studies, 

like children and pregnant persons, may be more readily enrolled due to the lack of danger posed 

by noninvasive sampling. This opportunity would provide additional insight into biological 

processes not currently available and provide better healthcare to these populations not currently 

represented. 

As a final note, some have suggested computational approaches like transcriptome wide 

association studies (TWAS) may be able to synthetically increase sample sizes by leveraging 
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datasets with only genotyping data. Arguably, this will not resolve any of the aforementioned 

issues. The design of TWAS require a reference expression panel, which, as stated above, these 

panels are largely European and capture steady-state cis-eQTL regulatory processes. The 

mechanisms of disease across populations may indeed converge on the level of gene expression, 

however, the exact variants exerting control over gene expression or splicing mechanisms may 

differ44. When performing TWAS, this results in the dropping of many sites and worse gene 

expression predictions for underrepresented groups44. Finally, as previously stated, the majority 

of trait heritability is expected to be determined by trans regulatory effects. Current expression 

reference panels lack this information and thus would not be able to fully recapitulate disease 

mechanisms. 

Thesis scope 

 Contained here are two chapters detailing the piloting and then clinical application of low 

cost, noninvasive RNA-sequencing methodologies. Chapter one investigates the use of buccal 

swabs, saliva, hair follicles, and urine cell pellets in traditional transcriptome analyses. An in-

house, low-cost library preparation method is prepared in parallel to commercial kits to 

demonstrate the feasibility of implementing reduced cost approaches for these biospecimens. The 

quality of the data yielded is compared to results from a cell line and to RNA-sequencing metrics 

typical of standard RNA-sequencing tissue types. Both biological and technical sources of 

variability are delineated. And finally, use of these samples in typical transcriptomic and disease-

relevant applications is tested. 

 Chapter two explores the use of buccal swabs and hair follicles in a clinical setting of 

patients with Chronic Obstructive Pulmonary Disease (COPD). First, the quality of the data 

yielded is established. The underlying biology of these samples in regards to cell type is 
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compared to estimates observed in the pilot study as well as to biological replicates within the 

cohort. Finally, we discover eQTLs in hair follicles and demonstrate replication of these eQTLs 

in GTEx corresponds with underlying cell type composition. Colocalization of hair eQTLs with 

variants previously discovered in lung function and imaging GWAS is a future direction of this 

work. 

 In all, this thesis aims to address key issues preventing scaling and biological relevancy 

of QTL discoveries. 
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Chapter 1: Noninvasive transcriptomics in a 19 subject pilot study1 

1.1 Introduction 

Large scale transcriptomic studies have the potential to disentangle the functional 

consequences of genetic variation and play a key role in realizing the goals of precision 

medicine. Prospective applications include biomarker identification of disease risk, onset, 

prognosis, and treatment response, discovery of potential therapies, and assessing outcomes of in 

vitro perturbations of environmental or pharmacological exposures60. One major area of 

investigation involves the integration of transcriptomic data with genetic information. Despite 

the identification of tens of thousands of trait-variant associations from thousands of genome-

wide association studies (GWAS)61, genomics alone has failed to unravel the mechanistic 

underpinnings driving these findings1,62,63. Transcriptomic data lends interpretation and 

prioritization of genetic variants for follow-up experimental and clinical investigation3,15,64. In 

the realm of cancer research, this approach has been fruitful in identifying early diagnostic 

markers, classifying cancer subtypes, identifying novel drug targets, and optimizing treatment 

choice65–67. In cases of rare, genetic disease, diagnosis is enhanced by inclusion of transcriptomic 

data due to improved detection and annotation of rare functional variants68–70. For common traits 

and diseases, however, discovery is complicated by trait polygenicity, linkage disequilibrium, 

small effect sizes of variants, and widespread pleiotropy5. Additionally, key pathways and 

potential molecular targets for a given trait may only be observable in relevant tissues and 

specific contexts21. Finally, the highly Eurocentric sampling of genetic and transcriptomic data 

results in greatly diminished performance of genomic risk assessments across ancestries4. To 

overcome the inherent limitations of genomic and transcriptomic data, capture meaningful 

biology, and mitigate impending health disparities, transcriptomic studies must expand to include 
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large, multi-ancestry sample sizes and sampling methodology that meets the needs of complex 

experimental designs. 

There are several barriers to transcriptomic study expansion. For one, processing 

sufficient sample sizes for discovery remains prohibitively expensive. In the early 2000s, 

sequencing costs rapidly declined, but this progress has stalled since 201549. An array of low cost 

library preparation methods exist11–13, though nearly all of them sequence only the 3’ end of 

transcripts, losing valuable splicing information in the process. New sequencing technologies 

have very recently emerged and promise future cost reductions71, and others propose greater 

enrollment at lower sequencing depths to increase effective sample sizes with the same monetary 

resources72. Nonetheless, these approaches have yet to be widely implemented. 

A less studied area of potential improvement is biospecimen choice. At this time, whole 

blood and peripheral blood mononuclear cells (PBMCs) are the most readily collected tissue for 

expanding transcriptomic studies. However, the Genotype-Tissue Expression (GTEx) project, the 

largest and most comprehensive study of genetic regulation across post-mortem human tissues, 

found blood is an outlier in its gene expression regulatory mechanisms relative to other tissues of 

the body25,29, and the majority of expression quantitative trait loci (eQTLs) in linkage 

disequilibrium with GWAS variants are not found in whole blood47. Previous observations 

suggest this difference is driven by the unique functions and cell type composition of blood 

versus other tissues of the body16–19. This biological difference poses major limitations to 

discovery in contexts where the cell types in blood are not centrally implicated in trait 

development or disease pathogenesis25,29,47. Sampling directly from meaningful tissue types, if 

the tissues of interest are known, provides more biologically relevant data, however, current 

approaches primarily include surgical extractions, invasive biopsies, and post-mortem donations. 
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The nature of these study designs results in high cost and complicated logistics50, low participant 

enrollment that is often biased against vulnerable and minority populations, and it only captures 

the steady-state transcriptome observed at a single time point. Dynamic changes in the 

transcriptome and molecular QTLs (molQTLs), which change over the course of development, 

disease, or environmental conditions, are suspected to lend even greater insight into the genetic 

architecture of the genome and are essential for using the transcriptome as a biomarker. 

However, current study designs do not easily accommodate gathering of longitudinal 

samples21,46,50. 

Here, we investigate the use of low cost, noninvasive biospecimens in transcriptomic 

studies as an approach to overcome these barriers. Early studies suggest buccal swabs, hair 

follicles, nasal swabs, saliva, and urine cell pellets may have potential use in clinical settings and 

for discovery. Observations thus far show that changing cell type proportion measures or 

estimates in buccal swabs, saliva, and urine cell pellets relate to current health of the 

individual73–76. For urine in particular, methods for isolating and propagating urine derived cells 

in the lab are of interest for testing patient and context specific gene regulation and treatment 

response, however, a consensus approach has not been reached74,77–79. At this time, a few groups 

have explored single cell RNA-sequencing of urine cell pellets and found enrichment of gene 

networks depending on disease status, though these cohorts were very small75,76. More recently, 

an increasing number of studies are leveraging nasal swabs to characterize the host transcriptome 

during viral infection and show promising results80,81. Previous investigations of hair found 

differences in expression between males and females using microarray data82, and one study 

mapped cis-eQTLs in hair83. Despite this progress, further work investigating noninvasive tissue 

types is needed. No study to date evaluated sample quality and reliability across different library 
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preparations, and sources of biological and technical variance across donors and collections 

remains unknown. Thus far, no comparisons to invasive sample types have been made in terms 

of cell type composition and regulation of gene expression and splicing. All studies before 

focused on a specific disease application, leaving exploration of the broad use of noninvasive 

sample types for disease and transcriptomic applications untouched. Here, we address these 

limitations. We collected buccal swabs, hair follicles, saliva, and urine cell pellets from 19 

individuals over 4 timepoints, and we prepared the samples for sequencing using both in-house 

and commercial library kits. We explore the unique biology of noninvasive sample types and 

delineate sources of technical variance, identify suitable invasive tissue type proxies, and 

demonstrate their use in transcriptomic and disease-relevant applications. We conclude hair 

follicles and urine cell pellets hold great promise for use in future studies. 

1.2 Materials and Methods 

Noninvasive sample collection 

IRB approval was obtained for the study. 19 participants were recruited and consented, 

and four total collections of four tissue types were completed. The first collection occurred 6 

months prior to confirm piloted procedures were ready to scale, and the remaining 3 collections 

were performed within a 2-4 week window per participant. 75 samples of each tissue type were 

obtained (1 participant provided only 3 collections). A detailed noninvasive sample collection 

protocol is provided on protocol.io (DOI: dx.doi.org/10.17504/protocols.io.kqdg3pjzzl25/v1). 

Library preparation and sequencing 

  RNA extraction procedures are unique to each tissue type, and thus were performed 

separately for each tissue. Collections were randomized across extractions. All samples were 

prepared using our in-house method with 15 samples of each tissue type in duplicate. Takara Bio 
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SMART-seq v4 and Illumina stranded mRNA prep kits were prepared according to the manual 

and using a random subset of 12 and 16 samples of each tissue type, respectively. In total, 6 

library preparation plates were prepared, and 2 HEK cell samples were included in triplicate on 

each library prep plate. This resulted in 508 total samples. 485 samples passed yield and size pre-

sequencing quality parameters (>2nM yield and <600 bp average size). Samples were pooled by 

tissue type with HEK cell samples randomized across the library pools. Libraries were sequenced 

2x150 bp on a Novaseq 6000 S4 flow cell. A detailed sample preparation protocol for RNA-

extraction and our in-house method is provided on protocol.io (DOI: 

dx.doi.org/10.17504/protocols.io.kqdg3pjzzl25/v1). 

Alignment, quantification of gene counts, and quality assessment 

Adapter sequences were removed using Trimmomatic 0.3684. Sequences were aligned to 

build 38 of the human genome with Gencode v35 annotation using STAR 2.7.3a85 and Samtools 

1.986 set to GTEx mapping parameters25. Marking of duplicate reads was done using Picard 

2.23.787, and gene counts were quantified using featureCounts from Subread 1.6.588. QC results 

output from FastQC 0.11.389, STAR, and RNA-SeQC 2.3.690 were consolidated using MultiQC 

1.891. QC filtering based on standard sequencing quality metrics or based on protein coding and 

lncRNA depth thresholds were found to be largely redundant (Supp. Fig. 2), and thus depth of 

mapped reads was used for its simplicity. Genes were determined to be expressed in a tissue and 

included in downstream analyses if raw counts >= 8 and TPMs >= 0.1 in >= 20% of samples 

within a given tissue type. 

Unmapped reads analysis 

Unmapped reads were output to fastq files during alignment. These reads were remapped 

using DecontaMiner 1.492. 23,488 bacterial, 21 fungal, and 11,120 viral genome references were 
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downloaded as suggested in the Installation and User Guide. Default parameters were used to 

remove low quality, human ribosomal and mitochondrial reads. For BLASTn alignments to the 

reference databases, bacterial and fungi parameters included minimum length = 50bp and gaps 

and mismatches = 2bp. Gaps and mismatches were increased to 5bp for viral genome remapping. 

Organisms were left unfiltered during initial remapping settings (Supp. Fig. 5a). For the analysis, 

we normalized the results by genomic length of the remapped species and by number of 

remapped reads per sample. We selected the top 0.5% of remapped species across all tissue 

types. 

Technical and biological sources of unmapped reads were investigated by first removing 

all Decontaminer remapped reads from the unmapped fastqs, and then using FastQC to identify 

overrepresented sequences in the remaining reads. These sequences were compiled across all 

tissues and samples into a list of 707 sequences. Command line tools were used to filter and 

quantify the overrepresented read counts per sample. Computational and manual comparison to 

primer and adapter sequences as well as comparisons across preps and tissues were used to 

delineate the potential sources of the reads (Supp. Fig. 5d). 

Downsampling 

For analyses involving downsampling, binomial sampling was performed 5 times on the 

raw, unfiltered counts matrix and then the average of the sampling was taken. Binomial 

probability of success was set to the (desired depth)/(original depth), number of observations set 

to the total gene number, and trials set to the gene counts per a given gene. Samples were QCed 

for protein coding and lncRNA depth prior to downsampling. For comparisons across different 

library preparations, all samples passing a threshold depth of 1 million reads mapped to the 

human genome were included and then subsequently downsampled to 1 million (Supp. Fig. 
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2a,b,c). Loseq analyses were thresholded and downsampled to 2.5 million protein coding depth 

(Supp. Fig. 2d,e,f), with the exception of the cell type deconvolution analysis which was 

thresholded and downsampled to 5 million. All GTEx comparisons were made with both Loseq 

and GTEx thresholded and downsampled to 5 million.   

Cross-preparation comparison 

Median TPMs per gene were calculated within a given tissue, prep, and replicate group, 

and the Pearson correlation across replicate groups 1 and 2 for a given tissue and prep was 

quantified (Supp. Fig. 3). Overlap of gene expression capture was evaluated by taking the 

median TPMs within a tissue and prep, filtering genes with zero median expression, and 

determining the gene overlap using ComplexUpset 1.3.193,94 in R 3.6.0 (Supp. Fig. 3). Principal 

component analysis was performed using DESeq2 1.26.09 VST normalized counts and by 

selecting for the top 500 most variable genes. Variance attributable to tissue and prep was done 

by performing linear regression per PC (PC ~ tissue + prep) followed by ANOVA with p-value 

correction based on the number of PCs tested (Supp. Fig. 4). 

Loseq cross-sample variance assessment 

Principle components analysis was done across tissues using DESeq2 1.26.0 VST 

normalized counts and by selecting for the top 1000 most variable genes. Correlation of technical 

variables with PCs was investigated via linear regression. VariancePartition 1.21.695 was used to 

identify sources of gene expression variance within and across tissue types. The cross tissue 

VariancePartition model included collection, extraction, donor id, and tissue as random variables 

and rRNA rate, mapping rate, duplicate rate, exonic rate, 3’ bias, RNA concentration, a260/280, 

cDNA size, and GC content as fixed variables. Within tissue models were the same except tissue 

type was dropped as a variable (Supp. Fig. 6). 
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Cell type deconvolution of noninvasive samples 

Deconvolution was done using GEDIT 1.796 and the provided BlueCodeV1.0.tsv 

reference matrix. For the final analyses, cell types were collapsed into broader umbrella 

categories by adding the estimated proportions together (Supp. Fig. 7b). Only the top 25% most 

abundant cell types per tissue were considered when looking across collections, and only donors 

with all 4 collections passing QC in urine, hair, and buccal were included in the final plot. All 

donors are plotted in the supplement (Supp. Fig. 7a). 

PCA projection of noninvasive samples onto GTEx 

For Loseq, the sample with the highest protein coding and lncRNA depth passing the 2.5 

million threshold was selected per donor and per tissue type (19 samples per hair and urine, 17 

buccal, 5 saliva), and both Loseq and GTEx were downsampled to 5 million. 19 samples of each 

representative (see xCell section) GTEx tissue were randomly sampled. Counts were VST 

normalized using DESeq2 1.26.0. Principal components analysis was run on centered and scaled 

GTEx counts using the top 1000 most variable genes. The resulting PCA loadings were 

multiplied by GTEx and Loseq centered and scaled counts, and this data was plotted as shown in 

the main figure. 

The splicing PCA was performed in the same manner except using an exon inclusion 

level matrix generated by rMATS 4.1.297 as input. Splicing events with zero inclusion for any 

sample in a tissue were excluded. The rMATS results were filtered for events found to be 

significantly different across the select GTEx tissues and with inclusion levels greater than 2 

standard deviations beyond the average inclusion (0.3). Again, PCA was run for the top 1000 

most variable events in GTEx, and the loadings were multiplied by the GTEx and Loseq centered 

and scaled inclusion levels. 
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Cell type enrichment analysis of noninvasive and GTEx samples 

75 samples were sampled from each GTEx tissue to approximately match the number of 

Loseq samples included (75 hair, 63 urine, 25 buccal, 5 saliva). GTEx and Loseq TPMs were 

deconvolved for enrichment using 64 cell type signatures in xCell 1.1.098 in R 3.6.0. Select 

GTEx tissues were chosen using gene expression clustering of median TPMs per GTEx tissue. 

GTEx groups were established using k means, and the tissue with the highest sample size per 

group was selected as representative. Kidney cortex, esophageal mucosa and lung were added 

based on their proximity to noninvasive tissues we studied. Clustering of cell type enrichment 

was done by taking the median enrichment score per tissue and then using k means in 

ComplexHeatmap 2.2.099. 

GTEx eQTL replication analysis 

Participants provided their genotyping data from 23andme (9 donors), Ancestry (2 

donors), and Gencove (8 donors) platforms. Array data was imputed using the 1000 genomes 

phase 3 reference100 and the Sanger Imputation Service101. Eagle 2.4.1102 and the 1000 genomes 

reference were used for VCF phasing. Monomorphic alleles, alleles with MAF < 0.05, 

multiallelic sites and indels were excluded from all analyses. This imputed, phased, and filtered 

VCF was used for eQTL and ASE analyses. 

For the genotyping PCA, LD pruning was performed with PLINK 1.90-b3.29103 with a 

window size of 50, shift of 5, and r squared cutoff of 0.2. Only SNPs with a 100% genotyping 

rate and HWE 1e-5 were included. Ancestry was imputed by merging the donor VCF with the 

1000 genomes VCF, excluding any individuals with relatedness >= 0.0625, running smartpca 

with eigensoft 6.1.3104, and using k-nearest neighbors to infer ancestry labels of the donors based 

on genetic similarity. Running smartpca on the donor samples alone revealed genotyping PC1 
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corresponded with ancestry, while PC2 corresponded with genotyping panel. These were 

included as covariates in the eQTL analysis, as well as expression PCs with variance explained > 

15% that accounted for global changes in gene expression (PC1 for hair and buccal and PCs 1 

and 2 for urine). Counts were TMM and inverse normalized and filtered for genes with raw 

counts >= 6 and TPMs >= 0.1 (as is the GTEx standard). eQTL mapping was done on a per 

tissue basis using TensorQTL v.1.0.5 with the window set to 1MB (following the GTEx 

parameters). 

To calculate replication, each GTEx tissue was filtered for the top eVariant-eGene pair 

per gene with MAF >= 0.05, qvalue <=0.05, and with effect size greater than the minimum 

observed in the lowest powered GTEx tissue (kidney cortex = 0.32). This was intersected with 

the pairs discovered in the noninvasive dataset, and pi1 was calculated using qvalue 2.18.039 and 

R 3.6.0. Null datasets were of the same size as the overlapping significant GTEx pairs set and 

were generated by sampling allele-frequency matched eVariant-eGene pairs from the 

noninvasive data 1000 times. Pi1 was calculated per each dataset. Significance for enrichment 

was determined based on permutation p-value calculations (Supp. Fig. 9). 

Differential expression analysis and FGSEA 

Sex-based differential expression analysis was performed on a per tissue basis using 

edgeR 3.28.1105 and Limma-Voom 3.42.2106. Counts were filtered based on GTEx parameters 

and TMM normalized prior to analysis. GTEx sex-based differential expression results33 were 

retrieved from the GTEx Portal (https://gtexportal.org/home/datasets) for overlap comparisons 

(Supp. Fig. 10b). For noninvasive tissues, a named list of sex-based differentially expressed 

genes and their t-scores was input into FGSEA 1.12.0107. The Hallmark gene sets file was 

https://gtexportal.org/home/datasets
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obtained from Molecular Signatures Database (http://www.gsea-

msigdb.org/gsea/msigdb/collections.jsp#H)108 and used for the analysis. 

Loss of function detection using ASE 

Allele-specific expression was calculated using ASEReadCounter 4.0.1.1109 and using the 

imputed, phased, and filtered VCF described in the GTEx replication analyses. Sites with fewer 

than 16 total counts were filtered from the analysis. The reference counts divided by total counts 

was assessed across tissues and donors, and one donor was removed due to extreme ratios and 

thus potential genotyping errors (Supp. Fig. 11a). Ensembl Variant Effect Predictor 5.28.1110 was 

used to annotate variant consequences, and the ratio of reference to total allele counts was 

compared given these annotations (Supp. Fig. 11b). 

OMIM Mendelian disease gene overlap 

Genes with Mendelian inheritance were downloaded from the OMIM database111 

(https://www.omim.org/). Tissues were filtered were genes meeting minimum GTEx expression 

thresholds, and then the remaining gene set was overlapped with OMIM genes (Supp. Fig. 13). 

ComplexUpset 1.3.1 was used to compare genes captured across noninvasive and select GTEx 

tissues. 

OpenTargets evaluation of disease-relevancy 

Data was retrieved from the OpenTargets database112. Disease ids were selected by 

choosing the broadest ontological category specific to a given disease (as provided on the 

OpenTargets platform). For the analysis, the association file incorporating all sources of 

evidence was used, and disease genes were included only if there were 5 or more sources of 

evidence (Supp. Fig. 12a). Loseq samples were thresholded and downsampled to a protein 

coding and lncRNA depth of 5 million, and samples with the highest depth per donor and tissue 

http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#H
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#H
https://www.omim.org/
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were selected. GTEx was similarly downsampled and 19 samples of each GTEx tissue were 

randomly selected. GTEx tissues were chosen based on their relevance to selected diseases. 

Genes were filtered based on GTEx parameters, and the median TPMs per tissue was calculated. 

10,986 tissue-elevated genes were obtained from the Human Protein Atlas113 

(https://www.proteinatlas.org/humanproteome/tissue/tissue+specific), and each tissue was 

additionally filtered for tissue-elevated genes. In the end, the top 3,411 most expressed, tissue-

elevated genes present in a tissue were analyzed, based on the tissue with the lowest number of 

genes passing post-expression and HPA filtering (Supp. Fig. 12b). 

To calculate the summed evidence score, first, the original target overlap was calculated 

by intersecting the genes present across all tissues with the disease gene targets. Summing the 

evidence score for these genes resulted in the total possible score for a given disease. Then, the 

genes expressed in a particular tissue were overlapped with disease gene targets. The evidence 

scores for tissue-specific overlapping genes were summed together and then divided by the total 

possible score for a disease. This normalized score is the summed evidence score reported in the 

analysis (Supp. Fig. 12c). 

1.3 Results 

1.3.1 Noninvasive tissues are amenable to low-input library preparations 

Buccal swabs, hair follicles, saliva, and urine cell pellets were collected from 19 healthy 

individuals at four separate time points (Figure 1a). Briefly, participants deposited a saliva 

sample into an Oragene saliva collection kit, 10 hair follicles were plucked, and participants 

provided a buccal swab sample (see Methods and DOI: 

dx.doi.org/10.17504/protocols.io.kqdg3pjzzl25/v1). Saliva samples were stored according to kit 

instructions, and hair follicles and buccal swabs were flash frozen at -80C. Saliva, hair follicles, 

https://www.proteinatlas.org/humanproteome/tissue/tissue+specific


28 

 

and buccal swabs were all able to be collected and stored within 9 minutes, on average. Urine 

samples were obtained at any time throughout the day, and underwent serial centrifugation 

before flash freezing the cell pellet at -80C. Individuals enrolled in the study provided 

genotyping data from 23andMe or Ancestry SNP arrays, or from low-pass whole genome 

sequencing provided by Gencove. 

Total RNA yielded from noninvasive tissues was typically less than 1ug and thus lower 

than traditional bulk tissue samples for RNA-sequencing. Buccal swabs and saliva resulted in 

consistent and sample-specific yields, while hair follicles and urine displayed donor-specific 

variability, with urine exhibiting a greater degree of variation (Supp. Fig. 1e). This observation 

agrees with clinically known interindividual differences in cell numbers found in urine74, while 

hair follicle output appeared to be due to individual differences in hair texture. All samples were 

prepared for sequencing using a low-cost in-house library preparation we developed specifically 

for low-input bulk RNA applications, which uses template-switching oligo (TSO) and 

tagmentation chemistry and reduces cost by 83% and 68% per reaction compared to the Illumina 

TruSeq Stranded mRNA Library Prep and SMART-seq V4 kits, respectively (Supp. Table 1, 

Table 2). We herein refer to this method as Loseq. To validate the consistency of our in-house 

method, we included 15 technical replicates per tissue in each Loseq library preparation batch. 

To compare performance across library preparation methods, 12 randomly selected samples of 

each tissue were prepared using the TakaraBio Smartseq V4 kit, a commercially available kit 

with similar chemistry to Loseq, and 16 samples were prepared using the Illumina TruSeq 

Stranded mRNA kit, one of the most frequently used kits in the transcriptomics field (Supp. Fig. 

1a). For all preparation methods, 2 HEK293 cell samples were included in triplicate to serve as a 

quality control standard. Samples passing pre-sequencing quality criteria of > 2nM concentration 
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and average library size < 600 bp were sequenced on the Illumina NovaSeq S4 platform with a 

mean depth of 25.6 million total reads per sample (Supp. Fig. 1f, 1g). 

Post-sequencing, we evaluated multiple quality control metrics returned from RNA-

SeQC90. Ultimately, we found protein-coding and lncRNA read depth corresponded with high 

quality samples and consistent gene expression capture (Supp. Fig. 2). Across all tissues, 

Illumina prepared samples yielded a lower number of reads, and we thus used a less stringent 1 

million protein-coding and lncRNA depth threshold for cross-preparation comparisons. A 2.5 

million threshold and a 5 million threshold were used for the Loseq-only and GTEx comparison 

analyses, respectively. 

Looking across tissues and library preparations, we observe most samples pass pre- and 

post-sequencing quality checks when using low-input methods (Figure 1b). Notably, hair 

performs well regardless of kit used and meets pre- and post-sequencing standards typical of 

traditionally used bulk RNA-sequencing samples (Figure 1c, Supp. Fig. 1, 2). Many urine and 

buccal samples fail pre-sequencing checks for the Illumina kit. Given urine shows excellent 

performance via traditional RNA-sequencing quality metrics when low-input protocols are used, 

we suspect this is driven by low and highly variable RNA yield not amenable to traditional bulk 

kits. Buccal and saliva display higher rates of RNA degradation, as reflected by lower RIN and 

computationally derived transcript integrity, as well as diminished performance apparent in other 

RNA-seq QC metrics (Supp. Fig. 1b, 2). The lower quality of these tissue types is likely resulting 

in the higher rate of failure across the different preparations. We found saliva to be a particularly 

poor biospecimen for transcriptomic study with few samples passing our thresholds. Looking 

across saliva collections we observe some donors more consistently pass or fail quality 

checkpoints, suggesting donor-specific variables may play a larger role in determining the 



30 

 

sample quality relative to other tissue types. Buccal, though not an ideal sample type, performs 

well enough for use in targeted applications. 

 

Figure 1. Noninvasive sample study design and processing outcomes. a. Four collections (C1-C4) of four noninvasive tissues were collected 

from 19 donors over the course of 2-4 weeks per donor. All samples were processed using our in-house method, Loseq, while a subset was 

prepared using commercially available kits. Two biological replicates of HEK293 cell controls were included in triplicate for all library 

preparations. b. Proportion of samples passing per tissue type and preparation. Failed Prep QC = exceeded 600bp average size or less than 2nM 

yield. Failed Seq QC = protein-coding and lncRNA depth less than 1 million. c. RNA-seq quality metrics for all tissues and library preparations. 

 

To compare gene expression patterns across libraries in an unbiased manner, we first 

downsampled all QC-passed samples to a depth of 1 million. We found the majority of genes 

expressed in a tissue were captured regardless of preparation method and there was high 

agreement in gene expression levels across library preparations (Supp. Fig. 3a, 3d). One 

difference of note is Loseq tends to capture longer genes with lower GC content relative to the 

commercial kits (Supp. Fig. 3b, 3c). Principal component analysis (PCA) shows that the 
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preparation method contributed minimally to variance observed across the samples (Supp. Fig. 

4). 

1.3.2 Unmapped reads capture tissue-specific microbial signatures 

Since we observed a low mapping rate for buccal and saliva and because the noninvasive 

samples were collected from non-sterile human tissues, we decided to investigate biological and 

technical sources of unmapped reads in our samples (Supp. Fig. 5a). First, we remapped 

unmapped reads to microbial genomes using Decontaminer92. This process remapped only a 

small fraction of the unmapped reads (Figure 2a, Supp. Fig. 5b), a somewhat unsurprising result 

given our library preparation is targeted to capture poly-A mRNA transcripts and most microbial 

transcripts are not polyadenylated. Nonetheless, when we look at the top 0.5% most abundant 

remapped species we observe distinct microbial signatures across the noninvasive tissues that 

support previously known microbiota of the oral cavity, human skin, and genitourinary tract 

(Figure 2b)114–117. In addition, we see high correlation in estimated species abundances across 

technical replicates suggesting that, despite the limitations in our library preparation approach, 

we are capturing real, replicable biological signal (Supp. Fig. 5c). Altogether, these findings 

support noninvasive samples may bear biological utility in follow-up microbiome studies using 

microbiome-specific or total RNA library preparations. Further investigation of the remaining 

unmapped reads showed those reads to be largely of technical origin (Supp. Fig. 5d). Overall we 

were able to account for 58.9%, 56.8%, 17.2%, and 58% of unmapped reads across all buccal, 

hair, saliva, and urine samples, respectively.  
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Figure 2. Classification of unmapped reads in noninvasive samples. a. Characterization of proportion of reads per sample. Mapped = aligned 

to hg38. Remapped = aligned to microbial species using Decontaminer. Repeated = highly abundant reads identified by FastQC. Unknown = 

reads not mapped or highly abundant. b. Normalized proportion of reads remapping per species for each tissue. The top 0.5% most abundant 

microbes are shown. Highlighted species have a median abundance > 0.05 for that tissue.  

 

1.3.3 Sources of gene expression variance between individuals and noninvasive tissue types 

Next, we investigated gene expression variance due to noninvasive tissue type or 

individual. Saliva samples largely failed to pass post-sequencing quality standards and were 

excluded from several analyses for this reason. Using a mixed linear model to delineate 
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biological and technical contributors to gene expression variability, we found tissue type is the 

main driver of variance across samples (Figure 3a). These results were supported by PCA, which 

segregated samples primarily by tissue type, with hair forming a separate, distinct cluster from 

the other tissues (Figure 3b). 

 

Figure 3. Technical and biological sources of variance in noninvasive samples. a. Factors contributing to variance in gene expression across 

tissues as determined by mixed linear modeling. b. Principal component analysis using DESeq2 normalized counts and the top 1000 most 
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variable genes. c. GEDIT cell type proportion estimates across collections per donor. Only donors with samples passing QC for all collections are 

displayed here. Niche cell types were collapsed into larger categories, and the top 25% most abundant cell type categories across tissues are 

shown. 

 

Because underlying cell type composition frequently explains gene expression variance 

across samples and tissues16,17, we deconvolved our noninvasive samples using GEDIT96 and the 

provided BlueCodeV2 single cell reference. From this we observed hair is primarily composed 

of epithelial cell types, buccal and urine capture both epithelial and immune cells, and saliva 

mostly contains neutrophils and monocytes (Supp. Fig. 7b). Looking across tissues, donors, and 

collections, hair was highly consistent in cell type abundance estimates, both within and across 

donors (Figure 3c, Supp. Fig. 7a). On the other hand, urine and buccal samples were more 

variable. In these samples, cell type composition was occasionally consistent within and across 

donors, but there were also patterns where cell type composition changed across collections for 

the same donor (e.g. donor 5, buccal), showed a different pattern of abundance compared to 

other donors (e.g. donor 16, urine), or completely lacked any consistency (e.g. donor 17 urine). 

When we used linear mixed modeling to identify biological and technical sources of gene 

expression variance within tissues, the individual donor was the primary contributor in buccal 

and urine (Supp. Fig. 6). Both of these results indicate that cell type compositions sampled from 

urine and buccal samples are potentially highly variable and donor specific. For hair, the relative 

contribution of technical factors and the donor of origin to gene expression variance is similar. 

As previously described, hair follicle data quality matches gold-standard RNA-sequencing data, 

which together with the low variance in cell type composition leads to highly consistent gene 

expression profiles. 
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1.3.4 Noninvasive tissue characteristics suggest potential invasive tissue type proxies 

To investigate the biological similarity of noninvasive tissues to known, invasive sample 

types, we compared gene expression, splicing, and cell type enrichment patterns to GTEx. To do 

so, we first selected a single noninvasive sample per donor and per tissue with the highest 

protein-coding depth. Representative GTEx tissues were chosen based on k means clustering, 

and 19 samples of each tissue type were randomly selected. Both the noninvasive and GTEx 

samples were downsampled to 5 million read counts to normalize for differences in total 

sequencing depth. 

Using this data we projected the noninvasive samples onto the GTEx PCA space to 

observe global patterns of gene expression similarity (Figure 4a). Hair clusters closely with 

esophageal mucosa and skin, saliva is proximal to spleen, blood, and EBVs, and buccal and urine 

are intermediaries between these groups. We repeated this analysis using splicing events 

generated from rMATS97 (Figure 4b). From this we recapitulate similar clustering patterns 

observed for expression. 

Since these clusters may reflect similarities in underlying cell types, we investigated this 

question by using xCell98 to calculate cell type enrichment scores. Here we used xCell because it 

is the most comprehensive cell type database available, thus enabling analysis of diverse tissues 

and biospecimens, and we observed high concordance in cell type estimates between GEDIT and 

xCell for cell types present in both references (Supp. Fig. 8). From this analysis we replicated the 

same tissue clustering we observed by PCA except using cell type enrichment estimates (Figure 

4c). Because cell type sharing is highly predictive of shared gene regulatory mechanisms26–29, 

this suggests gene expression regulatory mechanisms present in invasive tissues may be captured 

noninvasively. 

https://www.zotero.org/google-docs/?FSf1av
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Figure 4. Comparison of noninvasive samples to the GTEx dataset. a. Noninvasive sample types projected onto the GTEx expression PCA 

space. Counts were normalized using DESeq2, centered and scaled, and the top 1000 most variable genes were used. Ellipses represent 95% 

confidence intervals. b. Noninvasive sample types projected onto the top 1000 most variable rMATS splicing events in GTEx. c. xCell cell type 

enrichment estimates per tissue. Tissues are clustered using k-means clustering. d. e. f. GTEx eQTL replication estimates for hair, urine, and 
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buccal samples. Dots show 1 calculated by selecting significant GTEx gene-variant pairs from the noninvasive data with sizing indicating 

permutation p-value significance. Violin plots show null 1 distributions generated from allele-frequency matched, randomly selected gene-

variant pairs. 1000 permutations were performed. 

 

To further explore how noninvasive samples capture genetic regulatory variants 

discovered in postmortem tissues, we assessed replication of GTEx eQTLs in buccal, hair, and 

urine samples. With our sample size being insufficient for full eQTL discovery, we looked for 

enrichment of low p-values in our noninvasive dataset for the eVariant-eGene pairs previously 

discovered in GTEx. A null distribution was generated by randomly sampling allele-frequency 

matched eVariant-eGene pairs from our noninvasive data, and we calculated 1, an estimate of 

the true positive rate, in both the null datasets and when selecting the significant GTEx eVariant-

eGene pairs. In hair, we find significant replication of GTEx pairs across all studied GTEx 

tissues, with kidney cortex and skin showing the highest degree of replication (π1 = 0.44 and π1 = 

0.33, respectively, Figure 4d). Buccal and urine are less homogenous tissue types, thus further 

decreasing our power especially as our sample size does not allow highly efficient approaches to 

correct for latent variation118. As such, they showed less clear signal across all tissues (Supp. Fig. 

9). However, we did observe most significant enrichment for kidney cortex eVariant-eGene pairs 

in urine and esophageal mucosa signal enrichment in buccal (π1 = 0.17 and π1 = 0.18, 

respectively, Figures 4e and 4f). Of note, kidney cortex has a low sample size relative to other 

tissues in GTEx and thus little power for discovery of more subtle eQTL effects. Thus, it is 

unclear whether the high replication of kidney eQTL signal across noninvasive tissues is due to 

similar biology or an abundance of common and/or high effect size eQTLs in this tissue. In all, 

our results suggest noninvasive tissues capture cell types and gene expression regulatory 

mechanisms present in invasive tissue types and may provide insight into disease processes 

affecting these tissues. 



38 

 

1.3.5 Sex-specific differences in gene expression in noninvasive samples 

Because biological and environmental contexts play a major role in expression 

regulation, we aimed to explore whether RNA-sequencing from noninvasive tissues may be used 

for this purpose. To this end, we tested for sex-based differential expression and the replication 

and biological role of the discoveries. Using edgeR105 and limma-voom106, we were able to 

identify 25 and 1032 sex-based differentially expressed genes in hair and urine, respectively 

(Supp. Fig. 10a). In comparing hair to sun-exposed skin, 8 of the 25 significant hits were 

previously seen in GTEx and are highlighted in Figure 5a. Looking across all GTEx tissues, 17 

of the 25 genes were previously observed (Supp. Fig. 10b). Running FGSEA107 on the hair 

results showed significant enrichment for E2F targets and G2M checkpoint pathways in females 

(Figure 5b), and these are central to regulating the cell cycle and proliferation119,120. Though 

nonsignificant, Wnt signaling, the top hit for males, has previously been reported to play a key 

role in hair loss prevention121. In urine, 33 of the 1032 significant findings were seen in kidney 

cortex, and, overall, 582 were differentially expressed in any GTEx tissue (Figure 5c, Supp. Fig. 

10b). Notably, estrogen response is greatly enriched in females (Figure 5d). Estrogen signaling is 

central to many physiological processes in the kidney and is considered potentially protective 

against many renal diseases, though much remains unknown122. This analysis demonstrates the 

potential for noninvasive samples to elucidate underlying biology in a variety of potential 

contexts and assays. 



39 

 

 

Figure 5. Sex-based expression differences in noninvasive samples. a. Volcano plot of sex-based differentially expressed genes in hair. Genes 

highlighted in red are replicated sun-exposed skin findings in GTEx. Dotted line indicates significance threshold. b. FGSEA of all genes ranked 

by z-score and using the Hallmark Gene set from MSigDB. c. Sex-based differentially expressed genes in urine cell pellets. Genes highlighted in 

red are replicated kidney cortex findings in GTEx. d. FGSEA of all genes ranked by z-score and using the Hallmark Gene set from MSigDB. 

 

1.3.6 Noninvasive samples may be leveraged for disease-relevant applications 

Allele specific expression (ASE) analysis compares allelic expression levels within the 

same individual, and it is an important tool for investigating rare and cis-regulatory variation, 

nonsense mediated decay, and genomic imprinting109. Here we quantified ASE using 
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heterozygous sites across tissues. From this, we observe anticipated reference allele ratio patterns 

depending on the SNP annotation (Supp. Fig. 11b), and we show robust nonsense mediated 

decay for stop-gain variants across all collections for buccal, hair, and urine samples (Figure 6a). 

This suggests noninvasive sampling may be used to identify gene-disrupting variants that are a 

common focus of genetic diagnosis in rare disease. 



41 

 

 

Figure 6. Use of noninvasive samples in disease-relevant analyses. a. ASE for annotated stop-gain variants vs synonymous. Only sites with > 

16 total counts were included. b. Genes with median expression > 0.1 TPM in a tissue were intersected with the OMIM gene set. Shown is the 
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intersection of OMIM genes captured across tissues. c. Capture of common disease signals in the OpenTargets database. SES = (evidence scores 

of disease genes expressed in a tissue)/ (evidence scores of disease genes expressed in any included tissue). 

 

Application of noninvasive samples to rare and common disease was evaluated using the 

OMIM111 and OpenTargets112 repositories. For Mendelian disease, our samples captured a 

median of 80% (hair), 70% (urine), and 55% (buccal) of genes above a 0.1 TPM threshold 

(Supp. Fig. 13a). This capture is consistently high for hair samples across collections but shows 

donor-dependent consistency for urine (Supp. Fig. 13b). Clustering samples by median OMIM 

gene expression with GTEx recapitulated our prior proxy observations (Supp. Fig. 13c). In 

Figure 6b, we show the overlapping gene sets for Mendelian genes with a median expression 

greater than 0.1 TPMs in a given tissue after employing GTEx expression thresholds within that 

tissue. The selected GTEx tissues shown are relatively minimally invasive or identified as most 

similar by clustering and eQTL replication. We see the vast majority of genes are captured in 

both noninvasive and invasive tissue types, indicating noninvasive samples may be a suitable 

biospecimen for studying gene expression and regulatory processes in many rare disease 

applications. Notably, we observe a subset of genes expressed in noninvasive samples that are 

not captured in whole blood. This suggests diseases where the primary tissue type affected is 

more akin to noninvasive samples may benefit more from the use of noninvasive sampling 

versus whole blood collection. In all, efforts to improve clinical genomics studies using 

transcriptomics may be further augmented by use of noninvasive samples, especially where 

invasive surgical sampling of tissues primarily affected is often not possible. 

Looking at common disease, we first selected the most general OpenTargets ontology 

category for every disease included. We filtered for genes with greater than 5 sources of 

evidence and with tissue elevated specificity from the Human Protein Atlas database113 (Supp. 
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Fig. 12). Disease enrichment was calculated by summing together OpenTargets gene evidence 

scores (summed evidence score, SES) for genes with median expression greater than zero in a 

given tissue and dividing by the total possible summed evidence score. From this, we found 

buccal and urine captured diseases with a strong immunological component, much like whole 

blood and spleen (Figure 6c). Urine additionally showed strong signal for kidney disease (SES = 

0.42) and an array of other diseases. Hair performed best for skin-related diseases (psoriasis SES 

= 0.40), but overall did not show strong enrichment for any particular disease. These results 

suggest noninvasive samples bear promise for use in disease-relevant studies while providing the 

advantage of study designs with potentially longitudinal monitoring and greater enrollment. 

1.4 Discussion 

Discovery from transcriptomic data and its use in precision medicine is considerably 

limited by cost and access to biologically applicable biospecimens25,49. As a result, most 

transcriptomic studies have lagged behind GWAS in sample size, which now often include 

hundreds of thousands of individuals. Further, disentangling causation and finding context-

specific disease mechanisms is challenging using a single collection time point21,46. To address 

these limitations, we sought to investigate low-cost, noninvasive RNA-sequencing as an 

alternative approach. From our study we observed hair follicles and urine cell pellets provide the 

highest quality data and perform best in functional genomics applications. 

A primary advantage of noninvasive biospecimens over blood-related specimens to the 

transcriptomics field is the set of cell types captured. Shared cell type composition corresponds 

with shared regulation of gene expression and splicing16–19, and a major limitation of blood-

related samples is that they represent a highly tissue-specific set of cell types. In our samples we 

observed greater similarity by expression, splicing, and genetic regulation to invasive GTEx 
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tissues relative to GTEx whole blood. Cell type deconvolution analysis suggested that our tissues 

contain epithelial cells, myocytes, stromal cells, and others, all of which are unable to be 

captured using blood and play a key role in mechanisms of many diseases.  

Several considerations should be taken into account when deciding to use noninvasive 

tissues. Generally, ease of sample collection and consistency of library preparation performance 

and quality is biospecimen-dependent. Additionally, the feasibility of clinical use and 

longitudinal study design varies depending on the tissue type. We observed high failure rates 

using buccal swabs and saliva, and though the data yielded from samples passing quality 

standards provides valuable insights and the samples themselves are simplest to collect, we 

believe use of these biospecimens should be reserved for specialized applications where health 

status of the oral cavity and/or upper gastrointestinal tract is primarily under study. 

  Though we found urine cell pellets to yield high quality RNA, the pellet itself may be 

minimal and difficult to visualize for some donors. This is especially true for healthy donors, 

who tend to shed fewer cells into their urine74, and could introduce bias into future study designs 

if special care is not taken when using this tissue. Similarly, we found urine cell pellet RNA 

quantity to be variable and donor dependent. Others have aforementioned single cell approaches 

for urine specimens75,76, and we anticipate further development of these methods will better 

control for sampling inconsistency. Here, we showed urine cell pellets capture genetic regulatory 

mechanisms seen in the kidney as well as gene expression signatures relevant to kidney disease 

and diseases mediated via kidney functions. Given the enormous health burden kidney disease 

poses in the US and worldwide, and the central role the kidney plays in many diseases123, 

methods for noninvasively monitoring kidney function and enabling early diagnosis could 

meaningfully improve morbidity and mortality. In addition to the analyses performed here, 
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others have proposed laboratory protocols for propagating cells collected from urine for use in 

identifying disease mechanisms and novel treatments, or, in the case of stem cells, developing 

autologous cell therapies77–79. Overall, given further optimization, we expect urine holds the 

greatest potential for clinical use and discovery. 

Hair follicles perform robustly using any library preparation and exhibit low technical 

variance across collections and donors. It should be noted that hair follicle collection does 

require additional training of personnel not necessarily needed for the other biospecimens. Also, 

fine versus coarse hair type played a role in determining the ease of collection, and we do 

observe slight differences in yield depending on the donor, though this did not impact sample 

performance. We do foresee the need to explore collection of hair follicles from other parts of 

the body when head hair is not available, and it is likely necessary in future studies to collect 

additional information regarding the use of cosmetics and medications applied to the head and 

skin. Here, we showed hair follicles result in consistent quality, cell types, and expression 

profiles across collections, and, despite our low sample size, we found significant replication of 

previously observed eQTLs across all GTEx tissues. Together, these findings suggest hair is a 

highly robust biospecimen with potentially broad applications, and, because of its consistency, 

biological perturbations due to disease, treatment, or other environmental exposures will likely 

be observable in clinical and longitudinal settings. 

Notably, across all noninvasive tissues we observed a large majority of Mendelian 

disease genes were expressed. The ease and decreased invasiveness of noninvasive proxy 

biospecimens could facilitate greater use of transcriptome analyses in diagnosing rare, genetic 

disease, however, further work is needed to explore this possibility. 
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Our findings will need to be validated using larger, more diverse, and clinical cohorts. 

We expect noninvasive tissues may reduce Eurocentric sampling bias and enable sampling from 

more vulnerable populations, but this expectation will need to be measured against future study 

enrollment. Additionally, we used bulk RNA-sequencing, and the performance and features of 

noninvasive samples using single cell methods will need to be optimized and evaluated. 

This study aimed to establish whether noninvasive sampling may be used to scale 

transcriptomic studies. From our work, we were able to characterize many of the technical and 

biological features of four possible noninvasive samples, and we showed their potential utility in 

both transcriptomic and disease-related applications. Overall, we find hair follicles and urine cell 

pellets to be the most promising biospecimens, and we propose advantages in terms of cost and 

study designs for pursuing noninvasive sampling. In all, noninvasive RNA-sequencing offers 

meaningful improvements to current transcriptomic approaches that could enable dramatic 

scaling in sample size and increased discovery potential. This scaling would bring closer parity 

with GWAS via transformational increases in power, thus better positioning transcriptomic 

studies for use in diagnostic and clinical applications. 

 

1.5 Supplementary Figures and Tables 

Supplementary Figure 1. a. Outcome of library preparation QC per donor, collection, and 

preparation. The crosses indicate a failed sample, and the numbers correspond to the collection. 

b. Measured RIN vs computationally-derived transcript integrity number (TIN) per sample. 

Passing is determined by 1 million protein-coding depth threshold. c. RNA yield distribution per 

tissue type. d. cDNA average size for Loseq and SmartSeq preparations across noninvasive 

tissues. e. RNA yield per donor and tissue. Each data point is a collection. f. Total reads 
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sequenced per sample, colored by prep. g. Categorization of gene types for uniquely mapped 

reads mapping to genes across tissues. 
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Supplementary Figure 2. a-c quality statistics for all samples across all library preparations: a. 

b. Samples remaining and genes detected depending on depth threshold. Dotted line indicates 

prep QC threshold of 1 million. c. Proportion of reads mapping to various genomic features. Pass 

indicator is based on prep QC threshold. d-f quality statistics for only Loseq samples: d. e. 

Samples remaining and genes detected depending on depth threshold. Dotted line indicates 

Loseq QC threshold of 2.5 million. f. Proportion of reads mapping to genomic features. Pass 

indicator is based on Loseq QC threshold. 
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Supplementary Figure 3. a. Intersection of genes with greater than zero median expression 

across library preparations. b. c. Comparison of gene length and GC content of genes uniquely 

captured in a given preparation. d. Median expression for replicate 1 and replicate 2 samples was 

taken per tissue and preparation. The spearman correlation between these is shown. 
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Supplementary Figure 4. a. b. Principal Component Analysis of all samples passing 

preparation QC thresholds. c. Percent variance explained per PC. d. ANOVA results for PC ~ 

tissue and PC ~ preparation. P-values are Bonferroni-corrected for the number of PCs tested 

(10). 
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Supplementary Figure 5. a. Schematic of pipeline for assigning unmapped reads. b. Total 

number of reads assigned to each category. Mapped = aligned to hg38. Remapped = aligned to 

microbial species using Decontaminer. Repeated = highly abundant reads identified by FastQC. 

Unknown = reads not mapped or highly abundant. c. Per species included in the final analysis, 

spearman rank correlation between replicates is shown with the dots. Bar plot of species 

abundance with error bars is shown in the background for direct comparison (y-scale of 

abundance in Figure 2b). d. Breakdown of repeated sequence sharing across tissues and library 

preparations.  
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Supplementary Figure 6. a. Variance in gene expression across tissues explained by technical 

and biological variables. Canonical correlation analysis shows correlation between variables 

used. b. c. Variance in gene expression within each tissue explained by technical and biological 

variables. Canonical correlation analysis shows correlation between variables used. Only Loseq 

samples were included in these analyses. 
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Supplementary Figure 7. a. GEDIT cell type proportion estimates per collection and donor. 

Top 25% most abundant, condensed cell type categories are shown. b. Breakdown of all cell 

types included in the GEDIT reference. Binning into larger cell type categories is shown.  
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Supplementary Figure 8. a. xCell enrichment scores across the noninvasive and select GTEx 

tissues for cell types corresponding to the GEDIT collapsed cell type categories. Note that the 

enrichment score does not correspond to a proportion. b. Comparison of xCell enrichment scores 

and GEDIT proportions for cell types shared by both references. Only noninvasive tissues are 

shown. 
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Supplementary Figure 9. a. b. c. Calculated pi1 versus the null pi1 distribution for every tissue 

in GTEx. Pi1 was calculated by selecting for significant variants (q-value <=0.05) with MAF > 

0.05 and minimum effect size greater than the maximum minimum across GTEx tissues (kidney 

cortex 0.32) that were present in the noninvasive dataset. The null distribution was generated by 

performing 1000 samples of size equivalent to the number of overlapping gene-variant pairs used 

for the pi1 calculation for that tissue. d. e. f. Histograms of Loseq p-values for gene-variant pairs 

included in the pi1 calculation. 
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Supplementary Figure 10. a. Number of sex-based upregulated genes per noninvasive tissue 

type. b. Per tissue overlap between significant DE genes in the noninvasive dataset with genes 

previously found to be significant in the GTEx dataset. c. Sex-based differential expression for 

buccal samples, with no significant genes. FGSEA shows some rank-based gene category 

enrichment for females. 
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Supplementary Figure 11. a. Ratio of (reference allele count)/(total count) per donor and tissue. 

b. Reference ratio breakdown per VEP annotation. 
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Supplementary Figure 12. a. Total number of disease-relevant genes per OpenTargets ontology 

category. Genes with >= 5 separate sources of evidence were included in the final analysis. b. 

Number of genes per tissue following minimum expression level thresholding and overlap with 

the HPA tissue-elevated gene list. The top 3,411 most expressed genes per tissue were included 

in the analysis. c. Summed evidence scores (SESs) for all GTEx and noninvasive tissues. 
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Supplementary Figure 13. a. Proportion and total OMIM gene capture per noninvasive tissue 

type, depending on minimum median TPM threshold. b. Proportion of OMIM gene capture per 

collection, donor, and tissue using a minimum expression threshold of 0.1 TPMs. c. Clustering of 

noninvasive and select GTEx tissues based on median OMIM gene expression. 
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Supplementary Table 1.1. Breakdown of reaction cost (as of August 2022) per reagent using 

our in-house method (Loseq) versus TruSeq Stranded mRNA Library Prep and Takara SMART-

seq V4 commercial kits. The cost of Ampure XP beads (cat# A63881) is excluded, but it is 

notably lower per reaction for Loseq and SMART-seq preparations due to smaller volume 

requirements. 

Catalog Number Reagent Name Cost per reaction 

Loseq 

50-196-5299 KAPA HiFi HS reaction mix $1.38 

30281-2 NxGen® RNAse Inhibitor $0.69 

EP0752 Maxima H Minus RT $0.48 

R0192 dNTP set (10mM each) $0.14 

 3' RT Primer (anchor) HPLC purified $0.28 

 drop-TSO HPLC Purification $0.09 

 drop-PCR HPLC Purification $0.04 

20027213 Nextera UD indexes $1.75 

FC-131-1096 Nextera XT DNA Library Preparation Kit $8.95 

61012 Dynabeads mRNA Direct Purification kit $3.75 

AM8170G DNase I Buffer (10x) $0.12 

AM2224 DNase I (RNase-free) $0.03 

Illumina 

20020595 TruSeq Stranded mRNA $96.46 

20020591 TruSeq UD indexes $5.71 

SMART-seq 

634891 TakaraBio SMART-seq V4 $55.92 

 

Supplementary Table 1.2. Comparison of total cost per reaction by library preparation. Loseq 

percent cost reduction calculated as: (1-(Loseq/Commercial kit))*100 

Library Preparation Total Cost per Reaction Loseq Cost Reduction 

Loseq $17.70  

Illumina $102.17 82.68% (-$84.47) 

SMART-seq $55.92 68.35% (-$38.22) 
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Chapter 2: Using noninvasive transcriptomics in a COPD clinical 

cohort 

2.1 Introduction 

SPIROMICS is a multicenter observational study of chronic obstructive pulmonary 

disease (COPD) intended to facilitate discovery and optimization of treatments124. Broadly, 

COPD involves persistent respiratory symptoms and airflow obstruction, and frequently cited 

etiological factors include smoking, pollutant exposure, and abnormal lung development125. 

Worldwide, 10% of people over 40 years of age have COPD, and it consistently ranks as a 

leading cause of death in the US125. Current clinically recognized major subtypes of COPD 

include emphysema, chronic bronchitis, and chronic obstructive asthma, which are generally 

defined in terms of structural changes, chronic cough, and chronic inflammation, respectively125. 

Diagnosis is determined on the basis of respiratory symptomatology, spirometric evidence of 

airflow obstruction (FEV/FVC < 0.7 post-bronchodilation), and a lack of alternative diagnosis125. 

At this time, there are no treatments shown to reduce mortality or disease progression, and most 

efforts are directed towards monitoring and symptom management126. Headway in this regard is 

complicated by the heterogeneous disease presentation. SPIROMICS aims to characterize COPD 

subtypes and biomarkers using both genetic and clinical data. The SPIROMICS study design is 

described in detail in Couper et al. 2014124. Briefly, 3200 subjects have been enrolled, which 

includes persons with varying severity of COPD as well as non-smoking controls. Various lung 

function, imaging, and exercise tolerance metrics were collected over four separate exams. In 

addition, RNA-sequencing of blood and whole genome sequencing was performed for all 

participants. 
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For our work, a subset of 1000 individuals will undergo collection and RNA-sequencing 

of hair follicle and buccal swab samples. COPD involves not only immune cell types in its 

etiology and pathophysiology, but the epithelial and endothelial cells of the lung play a major 

role in determining airway lumen size and thickness127. These features importantly determine the 

degree of airway obstruction that ultimately defines COPD and its severity128. Notably, reduced 

skin elasticity has been associated with worse spirometric measures of lung function, 

emphysematous pathology, and increased inflammatory biomarkers typical of COPD129, 

suggesting the changes seen in the lung may be observed in other tissues across the body. Here, 

we hypothesize data collected from hair follicles and buccal swabs may capture epithelial and 

endothelial cell types and thus provide insight into genetic regulatory processes occurring in the 

lung tissue. This thesis examines the RNA-sequencing results from a pilot batch of 140 hair 

follicle and 110 buccal swab samples collected from seven clinical sites of the SPIROMICS 

cohort.  

2.2 Results 

2.2.1 Quality of clinically collected noninvasive samples 

Results from the library preparation largely reflect observations from the 19 subject 

noninvasive sampling pilot. Figure 1a shows the distribution of unique reads mapping to protein 

coding and lncRNA genes per sample from each tissue type. The sequencing quality threshold of 

10 million mapped reads is indicated. The validity of this approach in discriminating high and 

low quality samples is demonstrated in comparing RNA-sequencing metrics90 of failed and 

passed samples (Figure 1b). Overall, buccal displays poor performance, with only 29 samples 

remaining after library preparation (28 failed) and sequencing (53 failed) quality filters (Figure 

1c). Notably, the hair and buccal samples from the Columbia University (CU) site were prepared 
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using the Illumina Truseq V2 kit, whereas all other samples were prepared using the in-house, 

low input, low cost library preparation described in Chapter 1. Despite showing similar results 

regardless of preparation for the pilot study, hair performs robustly and consistently for the low 

input preparations and quite poorly using kits with higher starting material requirements. This is 

supported by the observation that failed samples tend to yield less RNA (Figure 1d). In terms of 

RNA quality based on RIN, it appears there is no passing trend depending on RIN score but that 

only a minimum quality is required for samples to pass downstream filtering (Figure 1d). It 

should also be noted that collection procedures at CU underwent further clarification after 

processing this pilot batch. During RNA extraction it was seen that some CU samples contained 

fewer than 5 follicles despite a 10 follicle minimum indicated in the collection procedure, and 

this is reflected in the highly variable and lower RNA yield, particularly for failed samples, from 

the CU site (Figure 1e). Of the 43 hair samples originating from CU, only 4 ultimately pass all 

quality filters (Figure 1c). For the remaining 97 hair samples from other sites, only 3 fail to pass 

quality standards. In all, 29 buccal and 98 hair samples are included in downstream analyses. 
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Figure 1. Hair shows high quality and performance across multiple clinical sites if low input RNA-sequencing library preparations are 

used. a. Number of uniquely mapped reads aligning to each genomic feature per sample as referenced in Gencode v35. The QC cutoff is 

indicated by the dashed red line. b. RNA-SeQC metrics for samples passing and failing sequencing QC. c. Total number (left) and proportion 

(right) of samples passing, failing sequencing QC, or failing library preparation QC per each clinical site. d. Summary of RNA yield and quality 

per sample using a BioAnalyzer. e. Differences in RNA yield across sites and its impact on sample performance. 

 

2.2.2 Cell type deconvolution estimates show strong replication 

Using GEDIT and the provided BlueCodeV1.0.tsv reference matrix96, cell type 

proportion estimates were generated for buccal and hair follicle samples. The cell types 
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contained in this reference were collapsed into broader cell type categories (Figure 2a). From 

this, it is apparent buccal swabs express neutrophil cell type signatures most abundantly, and hair 

is predominantly composed of epithelial cells (Figure 2b). Buccal swabs generally show 

evidence for a greater abundance of immune related cell types, whereas hair shows a mix of 

immune and stromal cells. Overall, cell type proportion estimates for buccal swabs show greater 

variance, particularly for the most prevalent cell types, compared to hair. The consistency in cell 

type estimates for hair is further demonstrated by comparing biological replicates of the hair 

samples, collected from the same individual (Figure 2c). Notably, capture of cell type expression 

signatures is consistent for both highly and lowly present cell types. Unfortunately, insufficient 

buccal samples passed quality thresholds in order for biological replication to be assessed. 

 This same approach was used to deconvolve the noninvasive samples from the 19 subject 

pilot. As such, proportion estimates may be compared across datasets to assess whether the 

biology captured in noninvasive tissues is consistent. Significant deviations could indicate either 

a systematic difference in collection and processing of the samples or a difference in biological 

signals relating to the health of the individuals recruited. Here, we see strong agreement across 

the datasets, demonstrating global patterns of gene expression and cell type deconvolution 

estimates from this metric remain consistent for noninvasive tissues (Figure 2d). For buccal, we 

observe similarly high variance in neutrophil and epithelial cell estimates in both datasets. Hair is 

remarkably consistent. These results suggest that clinically scaling noninvasive sample 

collections, even across many clinical sites, will robustly capture similar biology. 
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Figure 2. Buccal and hair follicles contain different cell type signatures that replicate within and across datasets. a. Highly specific 

BlueCode v2 cell type categories are collapsed into broad categories per sample. The median proportion across all samples per tissue type is 

shown. b.  Distribution of cell type abundances per each noninvasive sample type. c. Comparison of cell type proportion estimates for samples 

collected from the same individual. The x = y line is shown. d. Comparison of cell type proportion estimates between the SPIROMICS and 19 

subject pilot study (Loseq).  
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2.2.3 Discovery of cis-eQTLs in hair 

Next, we aimed to investigate genetic variants affecting gene expression in cis in hair and 

buccal samples. First, genotyping data underwent standard processing. This includes removing 

monomorphic alleles, alleles with MAF <= 0.05, multiallelic sites and indels. From this, 

approximately 6.2 million variants were retained for the analysis. GTEx, which imposes the 

same filters except uses a MAF threshold of 0.01, keeps approximately 10 million variants for 

QTL testing. To establish ancestry covariates necessary for the analysis, we merged our 

genotyping data with 1000 genomes, performed LD pruning with PLINK103, and ran smartpca 

using eigensoft. As anticipated, we observed our samples contain individuals of both European 

and African ancestries (Figure 3a). We see that genotyping PC1 correlates strongly with these 

superpopulations in 1000 genomes, and we see PC3 corresponds with a subpopulation (Figure 

3b). From this result, we included genotyping PCs 1-3 as covariates in our model. 

 To prepare the expression data for eQTL analysis, the data was split by tissue and all 

replicates were removed, leaving 27 buccal and 80 hair samples. Next, the expression matrix was 

TMM normalized105. Counts were then filtered for genes with raw counts >= 6 and TPMs >= 0.1 

in at least 20% of samples for a given tissue and inverse normal transformed per gene (as is the 

GTEx standard). To account for unknown batch effects in the expression data, we performed 

PCA on this processed expression data (Figure 3c). The Buja and Eyuboglu (BE) algorithm was 

then used to determine the number of PCs that explain more variance in the data than expected 

by chance130,131. In all, we included 3 genotype PCs, 7 expression PCs, sex, and RNA-

sequencing library preparation method as covariates for hair, and reduced the number of 

expression PCs to 3 for buccal. Notably, expression PC2 in the hair data shows 4 samples 

segregating from the rest of the samples, and these are the 4 samples from the CU clinical site. 
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Thus expression PC2 and library preparation are likely collinear. This may result in wider 

confidence intervals for the eQTL effect size estimates that could affect significance 

calculations. eQTL mapping was performed on a per tissue basis using TensorQTL v.1.0.538 with 

the window set to 1MB (following the GTEx parameters). 

 This analysis resulted in 339 significant eVariant-eGene pairs for hair and no significant 

hits for buccal. Similar to the 19 donor pilot study, the buccal samples show much more 

variability across samples and the sample size used is relatively small, thus limiting our power to 

detect eQTLs. Even though we find 339 pairs for hair, this number is strikingly low in 

comparison to tissues of similar sample size. For instance, there are 89 kidney cortex samples in 

GTEx and from this 1260 significant eVariant-eGene pairs were discovered. This result remains 

consistent and captures nearly the same set of eGenes even if fewer covariates are included or 

PEERs are used instead of expression PCs. To ensure there are no issues with the genotyping 

data, we compare the number of heterozygous and homozygous individuals carrying the 

alternative allele to GTEx tissues. We find no meaningful difference, suggesting low sample 

sizes of the alternative allele are not causing more noise and less power relative to GTEx (Figure 

3d). It is possible including the 4 samples from the CU site affects the normalization of the gene 

expression data. TMM and inverse normalization should remove the effects of sample depth and 

RNA composition differences, but the expression PCA shows a lot of structure remaining in the 

data (Figure 3c). Repeating normalization procedures and the PCA when excluding the CU site 

samples results in data with less structure and may be necessary for final analyses (Figure 3e). 

Because we do observe consistent and overlapping results regardless of our approach, we believe 

the eGenes we do find to be real signals but lingering problems with data processing are 

impacting our power to detect more eGenes. 
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Figure 3. Establishing covariates for hair follicle and buccal eQTL analysis. a. Genotyping data from SPIROMICS samples projected onto 

1000 genomes post-processing. b. A linear model (PC ~ populations) was used to assess association of top 20 genotyping PCs with 1000 

genomes populations. c. PCA of TMM and inverse normalized expression data prior to eQTL analysis. The number of PCs retained as covariates 
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is indicated by the red dashed line on the scree plot. d. Comparison of number of heterozygous and homozygous individuals in GTEx tissues vs 

SPIROMICS hair. e. Repeating PCA of TMM and inverse normalized expression data with CU outlier samples removed. 

 

2.2.4 Replication of hair cis-eQTLs in GTEx 

Using our current findings, we investigate replication of hair cis-eQTLs in GTEx tissues. 

First, we observe ~80% of our eVariant-eGene pairs overlap with pairs found in GTEx (Figure 

4a). Differences in the number of overlaps likely reflects differences in gene expression filtering 

such that certain genes are not tested in a given tissue. There is not full overlap because the 

variants used in each dataset are likely slightly different.  

To determine replication of our signal, we use the 1 statistic39. This measure 

approximates the proportion of true positives in the data. Because the null p-value distribution is 

uniformly distributed, the proportion of anticipated truly null findings, i.e. 0, may be estimated 

by dividing the number of observed p-values above a threshold by the theoretically expected 

number of p-values exceeding that threshold. For a truly null distribution, 0 will be equal to 1, 

and any leftward skewing of the p-value distribution towards significance will result in a smaller 

0 estimate. 1 is calculated by taking 1-0. To calculate 1 for a given GTEx tissue, the GTEx 

data is filtered for the significant eVariant-eGene pairs found in hair (Figure 4a). Because the 

GTEx p-value distribution is skewed towards significance, we calculate a null 1 distribution by 

randomly sampling the overlapping number of variant-gene pairs 1000 times for each tissue (i.e. 

271 pairs sampled 1000 times for kidney cortex, 246 pairs for whole blood, etc.). Figure 4b and 

4c show that selecting for significant findings in hair results in much greater enrichment for 

significance compared to random sampling. We see the highest rates of replication in tissue types 

expected to be most similar to hair, like skin, esophageal mucosa, and muscle. 
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 Because we observe replication in tissues likely containing similar cell types to hair, we 

test this hypothesis by comparing 1 to cell type enrichment estimates in the GTEx tissues. In the 

prior section, we observe hair to be most abundant for epithelial cells and myocytes. Here, we 

see tissues enriched for epithelial cells, keratinocytes, skeletal muscle, sebocytes, and adipocytes 

all show higher replication of cis-regulatory effects, and tissues more enriched for immune cells 

or neurons demonstrate weaker replication (Figure 4d).  

 It is possible we see higher replication in certain tissue types for reasons unrelated to their 

biological similarity to hair. For instance, GTEx samples with higher sample size are more likely 

to capture a greater number of cis-regulatory effects and thus incidentally recapitulate our 

findings in hair. Indeed, as sample size increases we do see an increase in 1 as well (Figure 4e). 

However, GTEx showed whole blood to be an outlier in its cis-regulatory architecture, and 

despite having the largest sample size in GTEx, whole blood does not result in the highest 

replication. This suggests hair shares regulatory mechanisms with tissues of the body on the 

basis of their underlying cell type compositions and not as a consequence of sample size alone. 

 Looking at effect size concordance, we observe generally underwhelming results. There 

does appear to be greater agreement for tissues with higher replication, but this is overall not a 

strong relationship (Figure 4f). 
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Figure 4. Hair eQTLs replicate strongly in GTEx tissues abundant for cell types found in hair. a. Significant hair eQTLs overlapping gene-

variant pairs in GTEx tissues. b. pi1 results per GTEx tissue indicated by the datapoint with significance indicated by color and size (all are 
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significant). The null distribution is indicated by the violin plot. c. Histograms of GTEx p-values for significant hair cis-eQTLs for a subset of 

GTEx tissues. d. Median xCell enrichment scores per select GTEx tissues is compared to the pi1 replication metric. e. Relationship between pi1 

and GTEx tissue sample size. f. Relationship between effect size concordance for hair cis-eQTLs with GTEx and pi1.  

 

2.3 Discussion 

 Here, we sought to determine whether buccal swabs and hair follicles perform robustly 

and capture cell types and gene regulatory mechanisms relevant to the lung and COPD. 

Regarding quality, buccal swabs fail processing often and do not show promise for future scaling 

across many clinical sites. Hair follicles, on the other hand, show a high degree of consistency 

and promise for continued use if low input library preparations are used. Additionally, we not 

only observe consistency in quality but in the cell types captured from hair follicles, both within 

and across datasets. Epithelial cell types are predominantly present in hair follicles, and as stated 

at the outset, these cells may play a key role in COPD pathophysiology and thus hair may be 

useful for studying this disease. Regarding gene expression regulation, we discover 339 eQTLs 

in hair follicles. These regulatory mechanisms replicate strongly across all GTEx tissues, but 

especially so in tissues enriched for cell types found in hair follicles. However, we do not 

observe particularly strong concordance in effect size with GTEx tissues. 

Next steps will primarily focus on further optimizing eQTL discovery in hair follicles. 

Given our sample size, the number of eQTLs discovered is notably low, and this suggests 

underlying issues in discovery power potentially unrelated to the sample size. Most likely, the 

expression normalization is affected by the inclusion of outlier samples from the CU site, but this 

hypothesis will require further investigation.  

Thus far applications to lung tissue and COPD remain largely unexplored. We first intend 

to investigate colocalization between hair and whole blood eQTLs with COPD GWAS hits and 
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compare these results to lung eQTL colocalization. This approach would help decipher whether 

hair identifies eQTLs with greater relevance to lung tissue and COPD in comparison to whole 

blood. It would also confirm whether hair may be used as a suitable proxy for studying genetic 

regulation in the lung. Other analyses include looking into whether COPD imaging phenotypes 

and severity correspond with differentially expressed genes in hair tissue, as well as exploring 

whether the microbial abundance in unmapped buccal swab reads relates to COPD exacerbations 

or severity.  

In all, the results here confirm our expectations from the 19 donor pilot study in regards 

to quality and scaling of hair follicles and the potential limitations of buccal swabs. Here we 

apply these noninvasive tissue types to studying lung disease, however, there may be other 

diseases directly involving the skin or oral mucosa that may show even greater benefit. At this 

time, there is sufficient evidence that hair follicles contain cell types with potential relevance to 

lung tissue, however, further investigation of its application to COPD is required.  
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Epilogue 

Conclusions 

This thesis begins to address the various shortfalls of transcriptomic and genomic 

research by proposing alternative sampling and processing methodologies of RNA-sequencing 

biospecimens. As stated at the outset, discovery remains limited by the complex genetic features 

underlying traits and by the current transcriptome study paradigm. Here, noninvasive, low-cost 

RNA-sequencing is proposed as a potential solution for augmenting current efforts to understand 

the genetic code. For one, the cost of noninvasive sampling relative to other procedures is greatly 

reduced by the lack of highly trained healthcare professionals and resources required. This 

change would enable massive scaling of studies, particularly in non-European populations that 

are disproportionately understudied and face the greatest disparities in healthcare. Biologically, 

noninvasive sampling may capture cell types not assayed by current collection methods, i.e. 

blood, which may lend insight into invasive tissues composed of non-blood related cell types. At 

this time, serial sampling of pertinent tissues remains infeasible due to the types of samples 

collected (surgical biopsies and post-mortem donations). This results in a loss of valuable, 

context specific genetic regulatory information that may be key to understanding the genesis of 

traits and disease. In all, noninvasive sampling may provide a means for capturing highly 

relevant biology and for closing the gap in research access across communities. This thesis 

aimed to interrogate the validity of this hypothesis. 

Chapter 1 investigated four potential noninvasive tissue types (buccal swabs, hair 

follicles, saliva, and urine cell pellets) as well as a low cost library preparation method. This 

section explored general features and technical considerations for each tissue, the feasibility and 

consistency of repeated sampling, cell types contained in each tissue and their similarity to 
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invasive tissues, their ability to capture genetic regulatory mechanisms found invasively, and 

finally, general application to disease-relevant analyses. 

Of the tissues studied, hair follicles and urine cell pellets bear the greatest promise for 

future use. This finding was demonstrated largely by library preparation outcomes. Buccal swabs 

and saliva, for the most part, result in poor performance due to microbial contamination. 

However, the microbiome is increasingly recognized to potentially play a large role in human 

health, and the ease of buccal swab and saliva collections may provide a future avenue for 

associating microbial changes with disease status or severity. Hair shows successful processing 

and high quality RNA-sequencing metrics regardless of preparation method, and urine is largely 

successful if low input methods are used. Downstream analyses showed hair to be extremely 

uniform in cell type composition estimates across collections and individuals. This low 

variability contributes to its replication of GTEx signals despite a very low sample size. For 

Mendelian disease, hair captures gene sets not found in blood but that are found in other invasive 

tissues. Also, hair robustly captures stop-gain allele specific expression. This suggests hair 

follicle collection may be a useful tool for providing genetic diagnoses of rare disease and may 

reduce wait times as well as the invasiveness of procedures required to establish a diagnosis. For 

urine, resolving cell type composition is a potential caveat for its future use because it is highly 

variable depending on collection and the individual sampled. Nonetheless, the ease of 

incorporating urine collections into clinical settings provides a strong impetus for its future use. 

Urine shows replication for kidney cortex eQTLs, among other tissues, as well as enrichment for 

kidney disease genes found in OpenTargets. Due to the high morbidity and mortality of kidney 

disease, and the role of the kidney in many other disease processes, urine holds great promise for 

yielding clinically relevant discovery. Overall, the findings from chapter 1 suggest noninvasive 
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sampling may be a promising approach for future scaling and discovery in transcriptome studies, 

but tissue-specific considerations may need to be explored and accounted for prior to their use. 

All of the tissues studied here were able to be collected by personnel, i.e. me, without a high 

degree of medical training beyond the specifics of the tissue collection procedures. It should be 

noted that buccal swabs, saliva, and urine cell pellets require the least time and training for 

collection, and thus more closely meet the original goal of reduced specialization and training of 

collection procedures. Hair collections vary depending on hair texture and strand thickness, and 

the ancestry populations studied in this pilot were largely European and Asian. Thus it is not able 

to be concluded whether hair follicle collections are readily scalable across all populations from 

this study alone. To summarize, chapter 1 met many of the initial goals of our original hypothesis 

and established both technical and biological features of prospective noninvasive samples that 

will guide future use of these biospecimens as well as a framework for investigating other 

sample types. 

Chapter 2 explores both the feasibility of scaling noninvasive sampling and their potential 

disease applications by testing buccal swab and hair follicle sample collections in a COPD 

clinical cohort. Much of what was noted in the pilot study was recapitulated in this work. First, 

buccal swab samples show low success in processing and in sample quality. From this study, it 

seems clear the ease of collection does not outweigh the lost cost of processing failed samples. 

Even though buccal swabs passing quality thresholds do seem to provide meaningful data 

regarding tissues of the gastrointestinal tract, broader use of this tissue is not cost effective and 

their use should be reserved for curated scientific aims. Despite seeing robust processing of hair 

regardless of library preparation in the pilot, we do observe a very high rate of failure for kits 

requiring higher initial RNA input in this clinical study. However, for the low input preparations 
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we observe exceptionally high success rates across all clinical sites. This suggests future studies 

should largely use low input methods for processing noninvasive samples to ensure success 

because the quantity of material and thus yield of RNA are typically lower than traditional tissue 

types. This also suggests that despite any perceived difficulty in pursuing hair follicle 

collections, in practice, this method is able to be scaled and executed across many clinical sites 

without compromising final sample quality. The SPIROMICS clinical cohort contains 

individuals from a multitude of ancestries compared to the pilot study in Chapter 1, and therefore 

differences in hair type likely do not affect sample collection to a meaningful degree. 

Furthermore, the cell type signatures captured in hair remain consistent across replicates within 

the study and also across studies. Importantly, the larger sample size in Chapter 2 allowed us to 

discover cis-eQTLs and investigate their replication in invasive tissue types. We did observe 

higher replication of these signals in invasive tissues that share cell types with the noninvasive 

samples, and this lends support to our original hypothesis that noninvasive samples may facilitate 

discovery of invasive tissue processes by capturing shared cell types. Future investigations will 

interrogate whether these loci primarily localize to disease-relevant variants and gene pathways. 

Altogether, these findings lend support that noninvasive sampling does scale, may indeed be 

used to narrow sampling gaps across populations in genomics, and are amenable to 

transcriptomic analyses for disease applications. 

Future Directions 

An immediate potential benefit provided by noninvasive sampling is the improved rate 

and ease of Mendelian disease diagnosis. Using exome sequencing or gene panels results in a 

diagnosis only ~50% of the time132. Whole genome sequencing is often uninformative because, 

much like GWAS, variant consequences remain unknown. Transcriptomics has thus been put 
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forth as a potential option for the remaining individuals without a diagnosis. However, similar to 

common disease, blood samples often do not capture cell types and thus gene expression 

necessary to determine a diagnosis132,133. In our pilot study, hair and urine biospecimens largely 

capture the same Mendelian gene sets as more invasive tissue types. We also observe hair 

captures genes not found in blood and vice versa. Others have similarly observed higher capture 

of disease-relevant genes in skin biopsies and other samples more closely related to the tissues 

affected by disease132,133. However, expanding the use of transcriptomics in Mendelian diagnosis 

is limited by lack of access to affected tissues (and therefore invasive biopsies are often 

required), and clinical pipelines for collection, processing, and analysis of this data have yet to be 

established133. Hair and urine cell pellets provide a considerable advantage by allowing access to 

pertinent cell types without the need for invasive testing, and these samples are amenable to low 

cost library preparations that remove financial barriers when attempting to bring clinical testing 

to scale. Overall, transcriptomic diagnosis of Mendelian disease may be facilitated by use of 

noninvasive sampling and could improve diagnosis rates and reduce diagnostic delay.  

In the chapters of this thesis, longitudinal sampling is proposed and the consistency of 

sample collections is quantified. However, none of our analyses were able to directly capitalize 

on the full utility and benefit of multiple sample collections. Much like other clinical metrics 

collected over the course of care, like bloodwork and imaging, noninvasive sampling provides 

another data point by which many of the most basic biological processes of the body, e.g. 

development, pregnancy, and aging, may be understood. If the cell types relevant to a disease are 

directly sampled, then differences across individuals during these time periods may illuminate 

gene pathways central to disease processes emerging at that time or during a different stage of 

life. Even so, diseases often manifest systemically, and even if the tissues and cell types most 
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afflicted are not sampled from and thus the data gleaned may not reveal primary disease 

mechanisms, there is opportunity to identify perturbations that may still segregate patients 

according to genetic predisposition, clinical subtypes, or treatment responsiveness. Generally, 

continued transcriptome sequencing and follow-up in individuals suffering from progressive, 

currently untreatable diseases could reveal potential treatment options by providing greater 

information as to which gene pathways and bodily processes are cause and consequence of 

disease. Noninvasive transcriptomics could also be used in the context of known, high-risk 

environmental exposures to better understand protective and predisposing factors. As stated in 

Chapter 2, pollutants are a major risk factor and cause of COPD125, and COPD development and 

progression may be better understood by sampling from the nasopharynx in individuals with 

varying pollutant exposure. And finally, our understanding of pharmacological treatment success 

or failure could be improved by sampling before and after the initiation of intervention and 

during treatment. This same approach could be used to monitor the effectiveness of lifestyle 

changes. In all, noninvasive sampling provides flexibility to study designs such that these and 

other questions of this type may be interrogated. 

Throughout, this thesis has alluded to the potential use of other noninvasive 

biospecimens. Box 1 provides a subset of future sample types and applications. An immediately 

obvious set of samples for follow-up study includes cervical swabs and cervical brushings. In 

general, female reproductive healthcare lacks adequate diagnostic and treatment tools. For 

instance, pelvic pain affects 6-25% of reproductive age females, but the diagnostic toolkit and 

treatment options are astoundingly feeble134. Blood work typically only excludes other causes 

and many current biomarkers (i.e. CA-125) are nonspecific to a single diagnosis. Imaging studies 

are typically only diagnostic if disease is severe, and for long-standing, severe pelvic pain or for 
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suspected endometriosis (which affects 10% of females), definitive diagnosis is only achievable 

via exploratory laparoscopic surgery134. Treatment options are similarly limited and typically 

include over the counter analgesics and birth control134. This dearth of clinical options for 

females also exists in regards to recurrent miscarriages, polycystic ovarian syndrome, and other 

undetermined causes of infertility. Thus collection of a sample type directly from this region of 

the body may lend key insights into the unique features of diseases affecting reproductive organs 

that allow for the development of both improved diagnostic and treatment tools. Notably, the 

cells collected from cervical brush samples are already preserved in such a way to maintain their 

integrity for laboratory analysis, and this could easily be adapted for downstream single cell 

RNA-sequencing. Similar to hair follicles and urine cell pellets, the cell types collected could 

lend opportunity for use in contexts unrelated to female reproductive health. Glandular cells and 

squamous and columnar epithelial cells exist across many tissue types of the body and play a role 

in a multitude of diseases but are not assayed in our current approaches. In the future, it may be 

beneficial to simultaneously collect multiple, different noninvasive sample types in order to 

capture the broadest array of cell types available and deepen our understanding of genetic 

mechanisms underlying disease processes. 
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Box 1. Potential noninvasive biospecimens and their applications. 

Noninvasive Sample Anticipated Cell Types Potential Disease Applications 

Nasal Brushings Epithelial (Squamous), Immune Chronic lung disease127 

Cervical Brushings Glandular, Epithelial (Columnar and 

Squamous) 

Female reproductive health134 

Cervical Swabs Epithelial, Immune HPV host-response135–137 

 
Menstrual blood Endometrial stem cells, Epithelial, 

Immune 

Mesenchymal stem cell therapy 

(Duchenne’s, Acute liver or 

lung injury)138 

Semen Spermatozoa (and progenitors), 

Epithelial, Immune 

Male reproductive health139 

Fecal Epithelial, Immune Colorectal cancer, IBD140  

Breast milk Breast milk and Mesenchymal stem 

cells, Epithelial, Smooth muscle, 

Immune141 

Breast cancer142 

 

Despite the aforementioned potential utility of noninvasive samples in clinical research or 

monitoring, the use and benefit of genomic and transcriptomic data in clinical applications 

remains underutilized and largely unproven. Thus far, -omics data has provided gains in regards 

to Mendelian disease132, pharmacogenetics143, and for diseases where inheritance of specific 

alleles carry a large genetic risk. Current limitations for Mendelian applications are delineated 

above. Pharmacogenomics faces major challenges for implementation due to a lack of evidence-

based treatment algorithms143. There are very few randomized controlled trials testing the 
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outcomes of pharmacogenetically guided clinical decision-making, and without this information, 

proper utilization of this genetic data requires expertise in the field. Furthermore, no standard 

collection, processing, and reporting format has been created, and this prevents easy 

incorporation of pharmacogenetic testing into clinical pipelines143. Because of these barriers, 

very few healthcare professionals use this technology despite its anticipated benefits143. For 

diseases with high risk alleles, like Celiac’s disease, genetic testing is often conclusive if 

symptoms are present, but in asymptomatic individuals it is nondiagnostic and generally 

uninformative because the majority of carriers do not have the disease144. Thus genetic testing is 

often reserved for situations where a diagnosis is suspect but cannot be achieved through other 

means, and it suggests using genomic data preemptively for complex disease risk prediction 

using low effect size alleles may not usefully stratify patients. Given the complications for 

clinical use arising from genomics data for relatively uncomplicated disease and treatments, it 

seems unlikely that genomic and transcriptomic data will provide clinical benefits for complex 

disease diagnosis and treatment unless research goals incorporate practical considerations 

necessary for their eventual use. 

The pitfalls of prior efforts suggest there are several changes necessary in order to 

support effective clinical use of genomic and transcriptomic data. First, if -omics data will 

continue to be directly leveraged to inform diagnostic and treatment criteria, it should be 

generated such that minimal sample processing and low-pass sequencing is sufficient. To do so, 

improved, standardized, low-cost sequencing technologies that are easily operable by technicians 

outside of genomics must be developed and tested appropriately. As demonstrated by the 

shortcomings observed in clinical pharmacogenetics, a lack of access and standardization in 

these regards prevents wide scale implementation143. It should be said, there is additional risk of 



97 

 

worsening healthcare disparities if affordable avenues for accessing this data is not concurrently 

provided. At this time, only the wealthiest hospitals are equipped with the necessary resources to 

store, transport, and potentially process samples for RNA and DNA-sequencing. Thus increased 

use of polygenic or transcriptomic risk scores or machine learning models that rely on genomic 

or transcriptomic data to tailor diagnosis or treatment may further healthcare disparities because 

underfunded and under-resourced hospital systems are very unlikely to have continued access to 

genomic and transcriptomic sequencing, in their current form, for the patient populations they 

serve. To further ensure equitable access and broad implementation, the final outcome of -omics 

testing should be readily interpretable without expert consultation, and its use should be tested in 

sufficient RCTs such that the results are rigorously reliable and healthcare workers and hospitals 

are provided with necessary guidelines. In ideal circumstances, large scale -omics data will be 

reserved for research settings and the findings will be distilled into narrow gene pathways and/or 

more easily measurable biomarkers for clinical assessment. In all, if precise identification of 

causal disease mechanisms is not possible, then future -omics research should anticipate 

potential barriers to clinical use and prioritize clinical applications and technology that will 

ensure care is equitably provided to the most underserved populations. 

To conclude, the field of genomics has undergone massive, transformative change in the 

last 20 years. Despite the immense progress made thus far, the connection between genotype and 

phenotype is deeply complex and requires a multitude of data types and flexibility of study 

designs to further our current understanding. Further, the cost of these analyses must be kept low 

to enable scaling across currently understudied populations. This thesis explored low cost, 

noninvasive RNA-sequencing as one potential solution to these limitations and demonstrated its 

promise in addressing key issues faced by the field. 
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