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Abstract

Essays on Online Learning and Resource Allocation

Steven Yin

This thesis studies four independent resource allocation problems with different assumptions

on information available to the central planner, and strategic considerations of the agents present

in the system.

We start off with an online, non-strategic agents setting in Chapter 1, where we study the

dynamic pricing and learning problem under the Bass demand model. The main objective in the

field of dynamic pricing and learning is to study how a seller can maximize revenue by adjusting

price over time based on sequentially realized demand. Unlike most existing literature on dynamic

pricing and learning, where the price only affects the demand in the current period, under the

Bass model, price also influences the future evolution of demand. Finding a revenue-maximizing

dynamic pricing policy in this model is non-trivial even in the full information case, where model

parameters are known. We consider the more challenging incomplete information problem where

dynamic pricing is applied in conjunction with learning the unknown model parameters, with the

objective of optimizing the cumulative revenues over a given selling horizon of length 𝑇 . Our main

contribution is an algorithm that satisfies a high probability regret guarantee of order 𝑚2/3; where

the market size 𝑚 is known a priori. Moreover, we show that no algorithm can incur smaller order

of loss by deriving a matching lower bound.

We then switch our attention to a single round, strategic agents setting in Chapter 2, where

we study a multi-resource allocation problem with heterogeneous demands and Leontief utilities.



Leontief utility function captures the idea that for certain resource allocation settings, the utility

of marginal increase in one resource depends on the availabilities of other resources. We gen-

eralize the existing literature on this model formulation to incorporate more constraints faced in

real applications, which in turn requires new algorithm design and analysis techniques. The main

contribution of this chapter is an allocation algorithm that satisfies Pareto optimality, envy-freenss,

strategy-proofness, and a notion of sharing incentive.

In Chapter 3, we study a single round, non-strategic agent setting, where the central planner

tries to allocate a pool of items to a set of agents who each has to receive a prespecified fraction of

all items. Additionally, we want to ensure fairness by controlling the amount of envy that agents

have with the final allocations. We make the observation that this resource allocation setting can be

formulated as an Optimal Transport problem, and that the solution structure displays a surprisingly

simple structure. Using this insight, we are able to design an allocation algorithm that achieves the

optimal trade-off between efficiency and envy.

Finally, in Chapter 4 we study an online, strategic agent setting, where similar to the previous

chapter, the central planner needs to allocate a pool of items to a set of agents who each has to

receive a prespecified fraction of all items. Unlike in the previous chapter, the central planner has

no a priori information on the distribution of items. Instead, the central planner needs to implic-

itly learn these distributions from the observed values in order to pick a good allocation policy.

Additionally, an added challenge here is that the agents are strategic with incentives to misreport

their valuations in order to receive better allocations. This sets our work apart both from the online

auction mechanism design settings which typically assume known valuation distributions and/or

involve payments, and from the online learning settings that do not consider strategic agents. To

that end, our main contribution is an online learning based allocation mechanism that is approx-

imately Bayesian incentive compatible, and when all agents are truthful, guarantees a sublinear

regret for individual agents’ utility compared to that under the optimal offline allocation policy.
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Introduction

A surprisingly large number of applications can be viewed as resource allocation problems.

From hospitals and federal agencies, to Ad auction platforms and online retailers, many organiza-

tions faces the problem of allocating some scarce resource (e.g. equipment, funding, user attention,

and inventory) to a group of agents (e.g. patients, research groups, advertisers, and customers). De-

pending on the specific application, agents can sometimes act strategically in order to maximize

their own benefits, often at the expense of other participants in the system. This poses interesting

challenges to the central planner that needs to design allocation policies that perform well in the

presence of strategic agents. Additionally, with the advent of data driven decision making, there

has been increasing interests in building systems that can continuously improve based on past

observations. Designing online learning algorithms that can adapt to new information presents

another dimension of challenge for the central planner. In this thesis, we explore four independent

resource allocation problems, each with a different combination of the above properties (online

vs single round setting, strategic vs non-strategic agents). Table 1 provides an overview of the

problems we study.

Table 1: The four chapters of this thesis.

Non-strategic agents Strategic agents
Online/Multiple rounds Chapter 1 Chapter 4

Single round Chapter 3 Chapter 2

In the remainder of this section, We will give an overview of the motivations behind each of

1



the problems we studied, and a summary of our contribution to each problem.

Chapter 1 In this chapter, we study a revenue maximization problem, where a seller tries to

maximize its revenue by the end of a fixed time period. The main observation from the dynamic

pricing and learning literature is that by dynamically adjusting the pricing strategies based on

the observations collected over time, sellers can achieve higher revenues than they would have

otherwise. Demands are typically realized following a “demand model”, which describes the rate

at which customers will purchase the product at a given price. Most of the work however has

been focused on i.i.d. and contextual demand models, where in each time step, the price that the

seller picks only affects demand in that time step. Departing from such relatively simple demand

models, we consider a novel formulation of the dynamic pricing and demand learning problem,

where the evolution of demand in response to posted prices is governed by a stochastic variant of

the popular Bass model with parameters (𝛼, 𝛽) that are linked to the so-called “innovation” and

“imitation” effects. With these two parameters, the Bass model is able to capture the so called

“word of mouth” effect, where an item that is able to garner significant popularity becomes even

more popular as a result. Unlike the more commonly used i.i.d. and contextual demand models, in

this model the posted price not only affects the demand and the revenue in the current round but

also the future evolution of demand, and hence the fraction of potential market size 𝑚 that can be

ultimately captured. This long term dependence of demand on price introduces many challenges to

designing good pricing algorithms. In fact, finding a revenue-maximizing dynamic pricing policy

in this model is non-trivial even in the full information case, where model parameters are known.

In this paper, we consider the more challenging incomplete information problem where dynamic

pricing is applied in conjunction with learning the unknown model parameters, with the objective

of optimizing the cumulative revenues over a given selling horizon of length 𝑇 .

Our main contribution is an algorithm that satisfies a high probability regret guarantee of order

𝑚2/3; where the market size 𝑚 is known a priori. Moreover, we show that no algorithm can incur

smaller order of loss by deriving a matching lower bound. Unlike most regret analysis results,

2



in the present problem the market size 𝑚 is the fundamental driver of the complexity; our lower

bound in fact, indicates that for any fixed 𝛼, 𝛽, most non-trivial instances of the problem have

constant 𝑇 and large 𝑚. We believe that this insight sets the problem of dynamic pricing under the

Bass model apart from the typical i.i.d. setting and multi-armed bandit based models for dynamic

pricing, which typically focus only on the asymptotic with respect to time horizon 𝑇 .

Chapter 2 Conceptually, the challenges we faced in Chapter 1 stem from the fact the central

planner has no a priori information on the demand model parameters, and that the underlying

demand model has intricate state dependencies. In this chapter, we turn our attention to a different

resource allocation problem setting where the challenge to designing a good algorithm stems from

a completely different source. In this setting, the central planner interacts with the agents only

once, but the agents can potentially behave strategically to benefit themselves at the expense of

others. The main challenge here is that the agents could misreport their valuations for the different

resources. As such, we have to take advantage of the structure in the agents’ utility function in

order to design an algorithm that performs well in the presence of strategic agents.

The problem was initially motivated by the COVID-19 pandemic, where we saw many hospi-

tals were in need of different medical supplies, and that the federal and local governments were

in a position to distribute/reallocate some of the supplies. We study a generalization of the multi-

resource allocation problem with heterogeneous demands and Leontief utilities. Unlike existing

settings, we allow each agent to specify requirements to only accept allocations from a subset of

the total supply for each resource. These requirements can take form in location constraints (e.g.

A hospital can only accept volunteers who live nearby due to commute limitations). This can also

model a type of substitution effect where some agents need 1 unit of resource A or B, both belong-

ing to the same meta-type. But some agents specifically want A, and others specifically want B. We

propose a new mechanism called Dominant Resource Fairness with Meta Types which determines

the allocations by solving a small number of linear programs. The proposed method satisfies Pareto

optimality, envy-freeness, strategy-proofness, and a notion of sharing incentive for our setting. To

3



the best of our knowledge, we are the first to study this problem formulation, which improved upon

existing work by capturing more constraints that often arise in real life situations. Finally, we show

numerically that our method scales better to large problems than alternative approaches.

Chapter 3 The challenges in the first two chapters stem from 1) unknown demand distribution

and 2) strategic agents. One might be under the impression that if the central planner has perfect

information on the demand distribution and agents’ individual utility for the items, then the allo-

cation problem would be easy. This is not the case, and we study one such instance in this chapter.

We consider the problem of allocating a distribution of items to 𝑛 receivers where each receiver

has to be allocated a fixed, pre-specified fraction of all items, while ensuring that each receiver

does not experience too much envy. Intuitively, the main challenge here is a computational one:

with items represented as a distribution, naive formulation of the resource allocation problem lead

to an infinite dimensional optimization problem. We show however, that in this specific setting,

the problem can be formulated as a variant of the semi-discrete optimal transport (OT) problem,

whose solution structure in this case has a concise representation and a simple geometric inter-

pretation. Unlike existing literature that treats envy-freeness as a hard constraint, our formulation

allows us to optimally trade off efficiency and envy continuously. Additionally, we study the statis-

tical properties of the space of our OT based allocation policies by showing a polynomial bound on

the number of samples needed to approximate the optimal solution from samples. Our approach is

suitable for large-scale fair allocation problems such as the blood donation matching problem, and

we show numerically that it performs well on a prior realistic data simulator.

Chapter 4 Finally, in the last chapter, we study a resource allocation problem that combines all

of the challenges we have encountered so far. We study the problem of allocating 𝑇 sequentially

arriving items among 𝑛 homogenous agents under the constraint that each agent must receive a pre-

specified fraction of all items, with the objective of maximizing the agents’ total valuation of items

allocated to them. The agents’ valuations for the item in each round are assumed to be i.i.d. but

their distribution is a priori unknown to the central planner. Therefore, the central planner needs to

4



implicitly learn these distributions from the observed values in order to pick a good allocation pol-

icy. However, an added challenge here is that the agents are strategic with incentives to misreport

their valuations in order to receive better allocations. This sets our work apart both from the online

auction mechanism design settings which typically assume known valuation distributions and/or

involve payments, and from the online learning settings that do not consider strategic agents. To

that end, our main contribution is an online learning based allocation mechanism that is approx-

imately Bayesian incentive compatible, and when all agents are truthful, guarantees a sub-linear

regret for individual agents’ utility compared to that under the optimal offline allocation policy.
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Chapter 1: Dynamic Pricing and Learning under the Bass Model

1.1 Background and Motivation

The dynamic pricing and learning literature, often referred to as “learning and earning,” has at

its focal point the objective of maximizing revenues jointly with inferring the structure of a demand

model that is a priori not known to the decision maker. It is an extremely active area of research that

can essentially be traced back to two strands of work. Within the computer science community, the

first paper on the topic is [1] that studies a posted price auction with infinite inventory in which the

seller does not know the willingness-to-pay of buyers and must learn it over repeated interactions.

The problem is stateless, and demand is independent from period to period. Various refinements

and improvements have been proposed since in what has become a very active field of study in

economics, computer science and operations research. The second strand of work originates in the

operations research community [2] which focuses on the same finite horizon regret criteria in the

posted-price auction problem but with limited inventory. This problem is sometimes referenced as

“bandits with knapsacks” due to the follow up work of [3] and subsequent papers. In that problem,

the learning objective is more subtle as the system state (i.e., the remaining inventory and time)

is changing over time. For further references and historical notes on the development of the topic

see, e.g., the recent survey [4].

Most of the literature that has evolved from the inception points identified above has focused

on a relatively simple setting where given current pricing decision, demand is independent of

past actions and demand values. In addition, much of the literature has focused on the “stateless”

problem setting, which provides further simplification and tractability. With the evolution of online

platforms and marketplaces, the focus on such homogeneous modeling environments is becoming

increasingly less realistic. For example, platforms now rely more and more on online reviews and
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ratings to inform and guide consumers. Product quality information is also increasingly available

on online blogs, discussion forums, and social networks, that create further word-of-mouth effects.

One clear implication on the dynamic pricing and learning problem is that the demand environment

can no longer be assumed to be static; for example, in the context of online reviews, sales of the

product trigger reviews/ratings, and these in turn influence subsequent demand behavior etc.

While it is possible to model demand shifts and non-stationarities in a flexible (nonparametric)

manner within the dynamic pricing and learning problem (see, e.g., [5], and [6] for a general MAB

formulation), this approach can be too broad and unstructured to be effective in practical dynamic

pricing settings. To that end, product diffusion models, such as the popular Bass model [7, 8], are

known to be extremely robust and parsimonious, capturing aforementioned word-of-mouth and

imitation effects on the growth in sales of a new product. The Bass diffusion model, originally

proposed by Frank Bass in 1969 [7] has been extremely influential in marketing and management

science, often described as one of the most celebrated empirical generalizations in marketing. It

describes the process by which new products get adopted as an interaction between existing users

and potential new users.

The Bass diffusion model [7, 8] has two parameters: the “coefficient of innovation” repre-

senting external influence; and the “coefficient of imitation” representing internal influence or

word-of-mouth effect. Let 𝑚 be the number of potential buyers, i.e., the market size, and let 𝑋𝑡 be

fraction of customers who has already adopted the product until time 𝑡. Then, 𝑚𝑋𝑡 represents the

cumulative sales (i.e., adoptions) up until time 𝑡, and 𝑚(1− 𝑋𝑡) is the size of remaining market yet

to be captured. The instantaneous sales at time 𝑡, 𝑚 𝑑𝑋𝑡
𝑑𝑡

can then be expressed as

𝑚
𝑑𝑋𝑡

𝑑𝑡
= 𝑚𝛼(1 − 𝑋𝑡)︸        ︷︷        ︸

sales due to external influence

+ 𝑚𝛽𝑋𝑡 (1 − 𝑋𝑡)︸           ︷︷           ︸
sales due to internal influence or imitation

(1.1)

A generalization of the Bass diffusion model that can be harnessed for the dynamic pricing

context was proposed by Robinson and Lakhani [9]. In the latter model, 𝑝𝑡 denotes the price

7



(a) Daily sales (b) Cumulative sales

Figure 1.1: Left: Bass model’s daily sales predictions over time have the same bell shape as the
realized daily sales, whereas the other i.i.d. models do not. Right: The Bass model is able to
capture the S-shaped adoption curve while the other models are not. The faint green line in the
background is the price history.

posted at time 𝑡. Then, the number of new adoptions at time instant 𝑡 is given by

𝑚
𝑑𝑋𝑡

𝑑𝑡
= 𝑚𝑒−𝑝𝑡 (𝛼 + 𝛽𝑋𝑡) (1 − 𝑋𝑡). (1.2)

Thus, the current price affects not only the immediate new adoptions and revenue, but also future

adoptions due to its dependence on the adoption level 𝑋𝑡 .

The Bass model therefore creates a state-dependent evolution of market response which is well

aligned with the impact of recent technological developments, such as online review platforms, on

the customer purchase behavior. To that end, several recent empirical studies in marketing science

and econometrics utilize abundant social data from online platforms to quantify the impact of

word-of-mouth effect on consumer purchase behaviors and a new product diffusion process (e.g.,

[10, 11, 12, 13, 14, 15], also see [16, 17] for literature surveys).

In Figure 1.1, we present some empirical motivation for this model using the UCI online retail

dataset [18]. This dataset contains information on roughly half a million transactions from a UK-

based online retail, including price and time of each transaction, so that the price curve and demand

evolution over time can be observed. In Figure 1.1, we fit the Bass model (as given by (1.2)) to
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this data and compare it to the best fitting i.i.d./stationary models with linear and exponential

price response functions. Figure 1.1(a) shows the curve of new adoptions, i.e., sales per day, and

Figure 1.1(b) shows the typical S-shaped curve of cumulative sales. Clearly, the Bass model is

able to nicely capture the S-shape in the cumulative adoption curve, whereas the i.i.d./stationary

models fail to capture this phenomenon.

Motivated by these observations, the objective of this chapter is to investigate a novel formu-

lation of the the dynamic pricing and demand learning problem, where the evolution of demand

is governed by the Bass diffusion model, and where the parameters of this model are unknown a

priori and need to be learned from repeated interactions with the market.

1.2 Main contributions

The proposed model and main problem studied We consider a stochastic variant of the above

Bass model, where customer arrivals at time 𝑡 is governed by a non-homogeneous Poisson process

with rate _𝑡 given by the right hand side of (1.2). More details on the stochastic model are provided

in Section 1.4 where we describe the full problem formulation and performance objectives.

The problem of dynamic pricing under demand learning can then be described, informally, as

follows: the learner (seller) is required to dynamically choose prices {𝑝𝑡} to be posted at time

𝑡 ∈ [0, 𝑇], where 𝑝𝑡 is chosen based on the past observations that include the number of customers

arrived so far, their times of arrival (which stand for the inter-arrival times between customers)

and the price decisions made in the past. The number of customers 𝑑𝑡 arriving until any time 𝑡 is

given by the stochastic Bass model. Note that we use the term “customer arrival” and “customer

adoption” interchangeably to mean the same thing, i.e., every customer arriving at time 𝑡 adopts the

product and pays the price 𝑝𝑡 . We assume that the size of the market𝑚 and the horizon𝑇 are known

to the learner, but the Bass model parameters 𝛼, 𝛽 (i.e., coefficient of innovation and coefficient

of imitation) are unknown. The aim is to maximize the cumulative revenue over the horizon 𝑇 ,

i.e.,
∑𝑑𝑇
𝑑=1 𝑝𝑑 , via a suitable sequence of prices, where 𝑝𝑑 is the price paid by the 𝑑𝑡ℎ customer and

𝑑𝑇 is the total number of adopters until time 𝑇 . Finding a revenue-maximizing optimal pricing
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trajectory in such a dynamic demand model is non-trivial even in a deterministic setting and when

the model parameters are known, e.g., see [19] for some characterizations. In the learning problem

considered here, we will not be directly maximizing this quantity but rather, and much in line with

the online learning and multi-armed bandits literature, will focus on evaluating a suitable notion of

regret and establishing “good” regret performance of our proposed pricing and learning algorithm.

Main contributions The paper makes two significant advances in the study of the aforemen-

tioned Bass model learning and earning problem. First, we present a learning and pricing algo-

rithm that achieves a high probability �̃�
(
𝑚2/3

)
regret bound. (Here, and in what follow we make

rather standard use of the big-Oh notation convention, delaying further clarifying remarks to the

subsequent section.) Second, under certain mild restrictions on algorithm design, we provide a

matching lower bound, showing that any algorithm must incur order Ω(𝑚2/3) regret for this prob-

lem. The precise statements of these results are provided as Theorem 1 and Theorem 2, in Section

1.6 and 1.7 respectively. Hence the “price” of incomplete information and the “cost” of learning

it on the fly, are reasonably small. Unlike most regret analysis results, in the present setting the

market size 𝑚 is the fundamental driver of the problem complexity; our lower bound, in fact, indi-

cates that for any fixed 𝛼, 𝛽, most non-trivial instances of the problem have constant 𝑇 and large 𝑚.

This is also reflected in the regret of our algorithm which depends sub-linearly on market size 𝑚,

and only logarithmically on the time horizon 𝑇 . This insight sets the problem of dynamic pricing

under Bass model uniquely apart from the typical i.i.d. and multi-armed bandit-based models for

dynamic pricing.

1.3 Literature Review

Several other models of non-stationary demand have been considered in recent literature on

dynamic pricing and demand learning. Boer [20] studies an additive demand model where the

market condition is determined by the sum of an unknown market process and an adjustment term

that is a known function of the price. The paper numerically studies several sliding window and
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weight decay based algorithms, including one experiment where their pricing strategy is tested

on the Bass diffusion model. However, they do not provide any regret guarantees under the Bass

model. Besbes and Zeevi [21] and Chen et al. [22] consider the pricing problem under a piece-

wise stationary demand model. Keskin and Zeevi [5] consider a two-parametric linear demand

model whose parameters are indexed by time, and the total quadratic variation of the parameters

are bounded. Many of the existing dynamic pricing and learning algorithms borrow ideas from

related settings in multi-armed bandit literature. Garivier and Moulines [23] and Cao et al. [24]

study piecewise stationary bandits based on sliding window and change point detection techniques.

Besbes et al. [6] and Russac et al. [25] and Luo et al. [26] study regret based on an appropriate

measure of reward variation. In rested and restless bandits literature, Tekin and Liu [27] and

Bertsimas and Niño-Mora [28] also study a related problem where the reward distribution depends

on the state which follows an unknown underlying stochastic process. However, these models

of non-stationarity are very broad and unstructured, and fundamentally different from the stateful

structured Bass diffusion model studied here.

There is also much recent work on learning and regret minimization in stateful models using

general MDP and reinforcement learning frameworks (for example [29, 30, 31]). However, these

results typically rely on having settings where each state can be visited many times over the learn-

ing process. This is ensured either because of an episodic MDP setting (e.g., [29]), or through

an assumption of communicating or weakly communicating MDP with bounded diameter, i.e., a

bound on the number of steps to visit any state from any starting state under the optimal policy

(e.g., see [31, 30]). Our setting is non-episodic, and every state is transient – the state is described

by the number of cumulative adopters so far and the remaining time, both of which can only move

in one direction. Therefore, the results in the above and related papers on learning general MDPs

are not applicable to our problem setting.

In the marketing literature, there is significant work on using the Bass model to forecast de-

mand before launching a product. Stochastic variants of Bass model have also been considered

previously, e.g., in Grasman and Kornelis [32] and Niu [33]. In addition to the work mentioned

11



in the introduction, Lee et al. [34], Fan et al. [35], Yin et al. [36], and Grasman and Kornelis [32]

present empirical methods for using historical data from similar products or from past years to es-

timate Bass model parameters, in order to obtain reliable forecasts. In this context, we believe our

proposed dynamic pricing and learning algorithm may provide an efficient method for adaptively

estimating the Bass model parameters while optimizing revenue. However, the focus of this paper

is on providing theoretical performance guarantees; the empirical performance of the proposed

method has not been studied.

The work most closely related to ours is a parallel recent paper by Zhang et al. [37]. In [37], the

authors consider a dynamic pricing problem under a similar stochastic Bass model setting as the

one studied here. They propose an algorithm based on Maximum Likelihood Estimation (MLE)

that is claimed to achieve a logarithmic regret bound of �̃� (log(𝑚𝑇)). At first glance this regret

bound seems to contradict our lower bound1 of Ω(𝑚2/3). However, it appears the results in [37]

may have some mistakes (see, in particular, the current statement and proofs of Lemma 3, Theorem

5 and Theorem 6 in [37] which we believe contain the aforementioned inconsistencies). To the best

of our understanding, these inconsistencies cannot be fixed without changing the current results in

a significant way. Further evidence for the 𝑚2/3 lower bound can be found in a recent parallel work

in [38], where the authors showed that one needs at least 𝑚2/3 observations to estimate Bass model

parameters up to a constant error. However, their paper does not consider the adaptive learning

setting where different actions (e.g., dynamically setting prices) can be used to potentially learn

more efficiently. Our paper shows that even with adaptive learning, 𝑚2/3 regret is unavoidable, and

we also provide an online learning algorithm with a regret upper bound that closely matches that

lower bound.
1Technically our lower bound only holds for algorithms that satisfy certain conditions (Assumption 1 and 2) stated

in Section 1.7. However, we believe it is still applicable to the algorithm in [37]. Their algorithm with its constant
upper bound on prices seems to satisfy both of our assumptions.
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1.4 The Bass model and problem formulation

The stochastic model and problem primitives There is an unlimited supply of durable goods

of a single type to be sold in a market with 𝑚 customers. We consider a dynamic pricing problem

with sequential customer arrivals over a time interval [0, 𝑇]. We denote by 𝑑𝑡 , the number of

arrivals by time 𝑡; with 𝑑0 = 0. At any given time 𝑡, the seller observes 𝑑𝑡 , the number of arrivals

so far as well as their arrival times {𝜏1, 𝜏2, . . . , 𝜏𝑑𝑡 }, and chooses a new price 𝑝𝑡 to be posted for

times 𝑡′ > 𝑡. The seller can use the past information to update the price any number of times until

the end of time horizon 𝑇 . As mentioned earlier, in our formulation a customer arriving at time 𝑡

immediately adopts the product and pays the posted price 𝑝𝑡 , and therefore the terms “adoption"

and “arrival" are used interchangeably throughout the text.

The customer arrival process for any pricing policy is given by a stochastic Bass diffusion

model with (unknown) parameters 𝛼, 𝛽. In this model, number of arrivals 𝑑𝑡 by time 𝑡 is a non-

homogeneous Poisson point process 2 with rate _𝑡 given by (1.2), the adoption rate in the deter-

ministic Bass diffusion model [9]. That is,

_𝑡 = 𝑚𝑒
−𝑝𝑡 (𝛼 + 𝛽𝑋𝑡) (1 − 𝑋𝑡)

where 𝑋𝑡 = 𝑑𝑡/𝑚. For convenience of notation, we define the function

_(𝑝, 𝑥) := 𝑚𝑒−𝑝 (𝛼 + 𝛽𝑥) (1 − 𝑥),

so that _𝑡 = _(𝑝𝑡 , 𝑋𝑡), with 𝑋𝑡 = 𝑑𝑡/𝑚.

The seller’s total revenue is simply the sum of the prices paid by the customers who arrived

before time 𝑇 , under the dynamic pricing algorithm used by the seller. We denote by 𝑝𝑑 , the price

2A counting process {𝑑𝑡 , 𝑡 ≥ 0} is called a non-homogeneous Poisson process with rate _𝑡 if all the following
conditions hold: (a) 𝑑0 = 0; (b) 𝑑𝑡 has independent increments; (c) for any 𝑡 ≥ 0 we have Pr(𝑑𝑡+𝛿 − 𝑑𝑡 = 0) =
1 − _𝑡𝛿 + 𝑜(𝛿), Pr(𝑑𝑡+𝛿 − 𝑑𝑡 = 1) = _𝑡𝛿 + 𝑜(𝛿), Pr(𝑑𝑡+𝛿 − 𝑑𝑡 ≥ 2) = 𝑜(𝛿).
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paid by 𝑑𝑡ℎ customer, i.e., 𝑝𝑑 = 𝑝𝜏𝑑 . Then, the revenue over [0, 𝑇] is given by:

Rev(𝑇) =
𝑑𝑇∑︁
𝑑=1

𝑝𝑑 .

The optimal dynamic pricing policy is defined as the one that maximizes the total expected revenue

𝐸 [Rev(𝑇)]. We denote by𝑉 stoch(𝑇), the total expected revenue under the optimal dynamic pricing

policy. Then, regret is defined as the difference between the optimal expected revenue 𝑉 stoch(𝑇)

and seller’s revenue, i.e.,

Regret(𝑇) = 𝑉 stoch(𝑇) − Rev(𝑇). (1.3)

In this chapter, we aim to provide a dynamic learning and pricing algorithm with a high prob-

ability upper bound of �̃� (𝑚2/3) on regret, as well as a closely matching lower bound. Instead of

directly analyzing the regret, we define a notion of “pseudo-regret,” which measures regret against

the optimal revenue under the deterministic Bass model (𝑉det(𝑇)). This is useful because as we

will show later in (1.4), there is a simple expression for the optimal prices in the deterministic

Bass model. This can be leveraged using a fluid model approach, widely used in the analysis of

stochastic systems, which targets a deterministic “skeleton" as a stepping stone toward developing

insights for policy design and complexity drivers. Later, we show more formally that the pseudo-

regret upper bounds the regret measure Regret(𝑇), and is also within �̃� (
√
𝑚) of Regret(𝑇). This

justifies our focus on the pseudo-regret for both the purpose of developing lower bounds, as well

as analyzing upper bounds on policy performance. Next, we discuss the expressions for optimal

pricing policy and revenue under the deterministic Bass model, and use those to define the notion

of pseudo-regret.

Optimal revenue and pricing policy under the deterministic Bass model Recall (refer to in-

troduction) that the adoption process under the deterministic Bass model is described as follows:

given the current adoption level 𝑋𝑡 and price 𝑝𝑡 at time 𝑡, the new adoptions are generated deter-
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ministically with rate given in (1.2)3.

The optimal price curve for the deterministic Bass model is then defined as the price trajectory

{𝑝𝑡} that maximizes the total revenue 𝑚
∫ 𝑇

0 𝑝𝑡𝑑𝑋𝑡 under the above adoption process. We denote

by 𝑉det(𝑇) the total revenue under the optimal price curve.

An analytic expression for the optimal price curve under the deterministic Bass model is in

fact known. It can be derived using optimal control theory (see expression (8) in [19]). For a Bass

model with parameters 𝛼, 𝛽, horizon 𝑇 , and initial adoption level 0, the price at adoption level 𝑥 in

the optimal price curve is given by the following expression:

𝑝∗(𝑥, 𝛼, 𝛽) = 1 + log
(
(𝛼 + 𝛽𝑥) (1 − 𝑥)
(𝛼 + 𝛽𝑋∗

𝑇
) (1 − 𝑋∗

𝑇
)

)
, (1.4)

where 𝑋∗
𝑇

, the adoption level at the end of horizon 𝑇 , is given by the following equations:

𝑋∗𝑇 =
1
𝑒
(𝛼 + 𝛽𝑋∗𝑇 ) (1 − 𝑋∗𝑇 )𝑇, (1.5)

or, more explicitly

𝑋∗𝑇 =
𝑇 (𝛽 − 𝛼) − 𝑒 +

√︁
[𝑇 (𝛽 − 𝛼) − 𝑒]2 + 4𝛼𝛽𝑇2

2𝛽𝑇
. (1.6)

For completeness, a derivation of the above expression of 𝑋∗
𝑇

is included in Appendix A.2. Using

the above notation for optimal price curve, we can write 𝑉det(𝑇), the optimal total revenue, as:

𝑉det(𝑇) = 𝑚
∫ 𝑋∗

𝑇

0
𝑝∗(𝑥, 𝛼, 𝛽) 𝑑𝑥.

3A subtle but important difference between this deterministic model vs. the stochastic Bass model introduced
earlier is that in the deterministic model, the increment 𝑚𝑑𝑋𝑡 in adoptions is fractional. On the other hand, in our
stochastic model, the number of customer arrivals (or adoptions) 𝑑𝑡 is a counting process with discrete increments.
This difference will be taken into account later when we compare our pseudo-regret to the original definition of regret.
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Pseudo-Regret We define pseudo-regret as the difference between 𝑉det(𝑇), the optimal total

revenue in the deterministic Bass model, and the algorithm’s total revenue Rev(𝑇). That is,

Pseudo-Regret(𝑇) = 𝑉det(𝑇) − Rev(𝑇). (1.7)

Essentially, pseudo-regret replaces the benchmark of stochastic optimal revenue 𝑉 stoch(𝑇) used

in the regret definition by deterministic optimal revenue 𝑉det(𝑇). We show that the deterministic

optimal revenue is a stronger benchmark, in the sense that it is always larger than the stochastic

optimal revenue. Furthermore, we show that it is within �̃� (
√
𝑚) of the stochastic optimal revenue.

To prove this relation between the two benchmarks we demonstrate a concavity property of de-

terministic optimal revenue which is crucial for our results. Specifically, we define an expanded

notation 𝑉det(𝑥, 𝑇) as the deterministic optimal revenue starting from adoption level 𝑥 and remain-

ing time 𝑇 . Note that 𝑉det(𝑇) = 𝑉det(0, 𝑇). Then, we show that 𝑉det(𝑥, 𝑇) is concave in 𝑥 for any

𝑇 , and any market parameters 𝑚, 𝛼, 𝛽. More precisely, we prove the following key lemma.

Lemma 1 (Concavity of deterministic optimal revenue). For any deterministic Bass model,𝑉det(𝑥, 𝑇),

defined as the optimal revenue starting from adoption level 𝑥 and remaining time 𝑇 , is concave in

𝑥, for all 𝑇 ≥ 0, and all adoption levels 𝑥 ∈ [0, 1].

Using these observations, we can prove the following relation between Pseudo-Regret(𝑇) and

Regret(𝑇); all proofs can be found in the appendix.

Lemma 2 (Pseduo-regret is close to regret). With probability 1, for any 𝑇 ≥ 0,

Pseudo-Regret(𝑇) ≥ Regret(𝑇)

Pseudo-Regret(𝑇) ≤ Regret(𝑇) +𝑂
(√
𝑚 log2(𝑚) + log((𝛼 + 𝛽)𝑇) log2(𝑚 log((𝛼 + 𝛽)𝑇))

)
.

A simpler summary of this result can be stated as the following almost sure inequality:

Regret(𝑇) ≤ Pseudo-Regret(𝑇) ≤ Regret(𝑇) + �̃� (
√
𝑚).
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Therefore, an upper bound on Pseudo-Regret(𝑇) implies the same upper bound on Regret(𝑇).

And, a lower bound on Pseudo-Regret(𝑇) implies a lower bound on Regret(𝑇) within �̃� (
√
𝑚). In

the rest of the paper, we therefore only derive bounds on the pseudo-regret.

Notation conventions Throughout this Chapter, if a potentially fractional number (like 𝑚𝑋∗
𝑇

,

𝑚2/3, 𝛾𝑚 etc.) is used as a whole number (for example as number of customers or as boundary

of a discrete sum) without a floor or ceiling operation, the reader should assume that it is rounded

down to its nearest integer. As indicated earlier, we use the conventional big-Oh 𝑂 (·) to mean a

quantity is “of this order," and �̃� (·) when ignoring poly-logarithmic terms. When such an order

statement is applied to stochastic quantities it may be interpreted either to hold in the almost sure

sense, or with suitably high probability. To that end, 𝛿 ∈ (0, 1) will frequently be used to define

events that hold with 1− 𝛿 probability. The Ω(·) notation is the equivalent to 𝑂 (·) for lower bound

purposes and will be used following similar convention.

1.5 Algorithm description

The concavity property of deterministic optimal revenue and the implied relation between

pseudo-regret and regret derived in Lemma 2 suggests that deterministic optimal revenue pro-

vides a benchmark that is comparable to the stochastic optimal revenue. Further, this benchmark

is more tractable than the stochastic optimal due to the known and simple analytical expressions

for optimal pricing policy, as stated in Section 1.4. Using these insights, our algorithm is designed

to essentially follow (an estimate of) the optimal price curve for the deterministic model at every

time. We believe this approach could be applied to other finite horizon MDP problems where such

concavity property holds, which may be of independent interest. We now describe our algorithm.

1.5.1 Algorithm outline

Our algorithm is provided, as input, the market size 𝑚, and a constant upper bound 𝜙 on 𝛼 + 𝛽.

For many applications, it is reasonable to assume that 𝛼 + 𝛽 ≤ 1, i.e., 𝜙 = 1, but we allow for
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more general settings. The market parameters 𝛼, 𝛽 are unknown to the algorithm. The algorithm

alternates between using a low “exploratory” price aimed at observing demand in order to improve

the estimates of model parameters, and using (a lower confidence bound on) the deterministic

optimal prices for the estimated market parameters. Setting the exploratory price 𝑝0 as 0 suffices

for our analysis, but more generally it can be set as any lower bound on the deterministic optimal

prices, i.e., we just need 0 ≤ 𝑝0 ≤ 𝑝∗(𝑥, 𝛼, 𝛽), ∀𝑥. Using a non-zero exploratory price could be

better in practice.

Our algorithm changes price only on arrival of a new customer, and holds the price constant in

between two arrivals. The prices are set as follows. The algorithm starts with using an exploratory

price 𝑝0 for the first 𝛾𝑚 customers, where 𝛾 = 𝑚−1/3. The prices 𝑝1, . . . , 𝑝𝛾𝑚 and the observed

arrival times 𝜏1, . . . , 𝜏𝛾𝑚 for the first 𝛾𝑚 customers are then used to obtain an estimation of 𝛼, and

a high probability error bound 𝐴 on this estimate. The estimate of 𝛼 is not updated in subsequent

time steps. The algorithm then proceeds in epochs 𝑖 = 1, 2, . . . 𝐾 . Let 𝛾𝑖 = 2𝑖𝛾. Epoch 𝑖 starts

right after customer 𝛾𝑖𝑚 arrives and ends either when customer 2𝛾𝑖𝑚 arrives, or when we reach the

end of the planning horizon 𝑇 . In the beginning of each epoch 𝑖, the exploratory price 𝑝0 is again

offered for the first 𝛾𝑚 customers in that epoch. The arrival times observed from these customers

are used to update the estimate of 𝛽 and its’ high probability error bound 𝐵𝑖. For the remaining

customers in epoch 𝑖, the algorithm offers a lower confidence bound 𝑝𝑖 on the deterministic optimal

price 𝑝∗
(
𝑑−1
𝑚
, 𝛼, 𝛽

)
computed using the current estimates of 𝛼, 𝛽 and their error bounds.

1.5.2 Estimation and price computation details

Since our algorithm fixes prices between two arrivals, the arrival rate of the (Poisson) adoption

process is constant in between arrivals, which in turn implies that the inter-arrival times are expo-

nential random variables. This greatly simplifies the estimation procedure for 𝛼, 𝛽: the estimates

�̂�, and 𝛽𝑖 for every epoch 𝑖 are calculated using the following equations which match the observed
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ALGORITHM 1: Dynamic Learning and Pricing under Bass Model
Input: Horizon 𝑇 , market size 𝑚, 𝛿 ∈ (0, 1), a constant upper bound 𝜙 on 𝛼 + 𝛽.
Initialize: 𝑋0 = 0, 𝛾 = 𝑚−1/3, 𝛾𝑖 = 2𝑖−1𝛾 for 𝑖 = 1, 2, . . ., and exploratory price 𝑝0 = 0
Offer 𝑝0 for the first 𝛾𝑚 customers.
Use observed arrival times of the first 𝛾𝑚 customers to compute �̂� according to (1.8).
Also, obtain a high probability estimation bound on |𝛼 − �̂� | ≤ 𝐴 where 𝐴 is as defined in
(1.10).

for 𝑖 ← 1, 2, 3, ... do
Post price 𝑝0 for customers 𝑑 = 𝛾𝑖𝑚 + 1, . . . , 𝛾𝑖𝑚 + 𝛾𝑚.
Use �̂� along with the observed arrival times of the first 𝛾𝑚 customers in the current

epoch to calculate a new estimate 𝛽𝑖 according to (1.9). Also update the high
probability bound |𝛽 − 𝛽𝑖 | ≤ 𝐵𝑖, with 𝐵𝑖 as defined in (1.10).

Use �̂�, 𝐴, 𝛽𝑖, 𝐵𝑖 to compute price 𝑝𝑖 ( 𝑑−1
𝑚
) according to (1.11). Post price 𝑝𝑖 ( 𝑑−1

𝑚
) for

𝑑 = 𝛾𝑖𝑚 + 𝛾𝑚 + 1, . . . , 2𝛾𝑖𝑚, or until end of time horizon 𝑇 .
If 𝛾𝑖 ≥ 1

3 then extend the current epoch until the end of the planning horizon.
end

inter-arrival times to the expected value of the corresponding exponential random variables:

1
𝑒−𝑝0 �̂�𝑚

⌊𝛾𝑚⌋ = 𝜏𝛾𝑚 (1.8)

⌊𝛾𝑚⌋
𝑒−𝑝0 (�̂� + 𝛽𝑖𝛾𝑖) (1 − 𝛾𝑖)𝑚

= 𝜏𝛾𝑖𝑚+𝛾𝑚 − 𝜏𝛾𝑖𝑚 . (1.9)

Also, we define

𝐴 B
8𝜙
(1−𝛾)2

√︃
8 log( 2

𝛿
) 𝑚−1/3, 𝐵𝑖 B

16𝜙
𝛾𝑖 (1/3−𝛾)2

√︃
8 log( 2

𝛿
) 𝑚−1/3. (1.10)

Then, using concentration results for exponential random variables, we can show that the estima-

tion errors in �̂�, 𝛽𝑖 are bounded by 𝐴 and 𝐵𝑖 respectively. Specifically, we show the following

result. The proof is in Appendix A.4.

Lemma 3. Assume 𝑚1/3 ≥ 64 (𝛼+𝛽)
2

𝛼2

√︃
8 log( 2

𝛿
). Then with probability 1 − 𝛿, |𝛼 − �̂� | ≤ 𝐴. And for

any 𝑖 = 1, . . . , 𝐾 , with probability 1 − 𝛿, |𝛽 − 𝛽𝑖 | ≤ 𝐵𝑖.

Note that only the estimate and error bounds (𝛽𝑖 and 𝐵𝑖) for the parameter 𝛽 are updated in

every epoch. The estimate and error bound (�̂� and 𝐴) for 𝛼 is computed once in the beginning and
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remains fixed throughout the algorithm. Given �̂�, 𝐴, 𝛽𝑖, 𝐵𝑖, we define the price 𝑝𝑖 (𝑑/𝑚) to be used

by the algorithm in epoch 𝑖 as follows. For any 𝑑 ≤ 𝑚,

𝑝𝑖 (
𝑑

𝑚
) = clamp

(
𝑝∗( 𝑑

𝑚
, �̂�, 𝛽𝑖) − 𝐿𝛼𝐴 − 𝐿𝛽𝑖𝐵𝑖, [0, log(𝑒 + 𝜙𝑇)]

)
,

where 𝐿𝛼 =
2

�̂� − 𝐴 +
𝛽𝑖 + 𝐵𝑖
(�̂� − 𝐴)2

, 𝐿𝛽𝑖 =
3

�̂� − 𝐴 +
3

𝛽𝑖 − 𝐵𝑖
.

(1.11)

Here 𝑝∗(·, ·, ·) is the optimal deterministic price curve as given by (1.4). In above, we clamped the

price to the range [0, log(𝑒 + 𝜙𝑇)]. That is, if the computed price is less than 0 we set 𝑝𝑖 to 0; and

if it is above log(𝑒 + 𝜙𝑇), which is an upper bound on the optimal price (proven later in Lemma 7),

we set 𝑝𝑖 equal to this upper bound.

Later in Lemma 4, we show that the quantities 𝐿𝛼, 𝐿𝛽𝑖 play the role of Lipschitz constants for

the optimal price curve: they provide high probability upper bounds on the derivatives of the opti-

mal price curve with respect to 𝛼, 𝛽 respectively. Consequently (in Corollary 1), we can show that

with high probability the price defined in (1.11) will be lower than the corresponding deterministic

optimal price. The reason that the algorithm uses a lower confidence bound on the optimal price

is that we want to acquire at least as many customers in time 𝑇 as the optimal trajectory. The

intuition here is that losing customers (i.e., the revenue associated with those customers, as well as

the potential word-of-mouth effect that they bring) cost a lot more than losing a little bit of revenue

from each customer. Our algorithm is described in detail as Algorithm 1.

1.6 Regret upper bound

The main result from this section is the following upper bound on the pseudo-regret of the

algorithm proposed in the previous section. Since pseudo-regret upper bounds regret (refer to

Lemma 2) it directly implies the same upper bound on Regret(𝑇).

Theorem 1 (Regret upper bound). For any market with parameters 𝛼, 𝛽, 𝛼 + 𝛽 ≤ 𝜙, market size
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𝑚, and time horizon 𝑇 , Algorithm 1 achieves the following regret bound with probability 1 − 𝛿,

Pseudo-Regret(𝑇) ≤ 𝑂
(
𝑚2/3 log(𝑚) log(𝑇

𝛿
)
(

1
𝛼
+ 1
𝛽
+ 𝛽

𝛼2

)
𝜙

)
= �̃� (𝑚2/3).

Proof Intuition We first give an intuitive explanation for why our algorithm works well. As

mentioned earlier in the introductory sections, there is a simple closed form expression for the

optimal prices in the deterministic model for any 𝛼, 𝛽, 𝑇 (see (1.4)–(1.6)). Moreover, the definition

of pseudo-regret and Lemma 2 allows us to replace the stochastic optimal revenue 𝑉 stoch(𝑇) with

the deterministic optimal revenue 𝑉det(𝑇). Our algorithmic strategy is then to follow (an estimate

of) the deterministic optimal price trajectory, and show that the resulting revenue is close to the

deterministic optimal revenue with high probability.

To prove this, we show that the prices 𝑝𝑖 used by our algorithm were set so that they lower

bound the deterministic optimal price with high probability. Intuitively, using a lower price would

ensure that the algorithm sees at least as many as optimal number of customer adoptions in horizon

𝑇 , so that the gap in revenue can be bounded simply by the gap in prices paid by those customers.

The final piece of the puzzle is to show that we can learn or estimate 𝛼, 𝛽 at a fast enough rate so

that the estimated prices are increasingly close to the optimal price and we do not lose too much

revenue from learning.

Proof Outline In the remainder of this section we outline the proof of Theorem 1 in four steps.

All the missing proofs from this section can be found in Appendix A.4.

Step 1 (Bounding the estimation errors) In Lemma 3 we provided a high probability upper

bound on the estimation errors in 𝛼, 𝛽 in each epoch of the algorithm. Using these error bounds

and the definition of price 𝑝𝑖 in (1.11), we show that the prices offered by the algorithm are, with

high probability, close lower bounds of the optimal prices. Specifically, we prove the following

result.

Lemma 4 (Error bounds for estimated prices). Given any market parameters 𝛼, 𝛽 and their es-
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timators �̂�, 𝛽𝑖 that satisfy |𝛼 − �̂� | ≤ 𝐴, |𝛽 − 𝛽𝑖 | ≤ 𝐵𝑖, �̂� − 𝐴 > 0, 𝛽𝑖 − 𝐵𝑖 > 0, then for every

𝑑 = 0, . . . , 𝑚 − 1, ��𝑝∗( 𝑑
𝑚
, �̂�, 𝛽𝑖) − 𝑝∗( 𝑑𝑚 , 𝛼, 𝛽)

�� ≤ 𝐿𝛼𝐴 + 𝐿𝛽𝑖𝐵𝑖,
where 𝐿𝛼, 𝐿𝛽𝑖 are as defined in (1.11).

The proof of above results can be found in Appendix A.4.1. From the expressions of 𝐴 (error

bound for �̂�) vs. 𝐵𝑖 (error bound for 𝛽𝑖 in epoch 𝑖) in (1.10), observe that 𝐴 = �̃� (𝑚−1/3) and

𝐵𝑖 = �̃� ( 1
𝛾𝑖
𝑚−1/3). Therefore, the estimation of 𝛽 is the bottleneck here: it has an extra 1

𝛾𝑖
factor in

the error bound. This is because the imitation factor 𝛽 is multiplied with the current adoption level

in the definition of the Bass model (see (1.1)). This means that the estimation error on 𝛽 is likely

to be large when the adoption level is low. This is why the algorithm needs to keep updating the

estimate of 𝛽 in each epoch but not 𝛼.

The above lemma and the definition of 𝑝𝑖 immediately implies the following.

Corollary 1 (Lower confidence bound on optimal price). Under the same assumptions as in

Lemma 4, and given the definition of 𝑝𝑖 in (1.11), we have that for every 𝑑 = 0, . . . , 𝑚 − 1,

𝑝𝑖 ( 𝑑𝑚 ) ≤ 𝑝
∗( 𝑑
𝑚
, 𝛼, 𝛽).

Step 2 (Bounding the revenue loss due to lower price) Using the fact that there are 𝛾𝑖𝑚 cus-

tomers in epoch 𝑖, and the price difference bound in Lemma 4 in Step 1, we can show that we lose

at most �̃�
(
𝛾𝑖𝑚

(
𝐿𝛼𝑚

−1/3 + 𝐿𝛽𝑖 1
𝛾𝑖
𝑚−1/3

))
= �̃�

(
𝑚2/3

)
revenue per epoch. This loss bound per

epoch is benchmarked against the optimal revenue earned from the same 𝛾𝑖𝑚 customers, assuming

that the stochastic trajectory is given enough time to reach the same number of customers. More

precisely, let Rev𝑖 denote the algorithm’s revenue from the (2𝛾𝑖𝑚 ∧ 𝑚𝑋∗𝑇 ) − 𝛾𝑖𝑚 customers in an

epoch 𝑖 completed by the algorithm, and 𝑉det
𝑖

denote the potential revenue from those customers if

they paid the deterministic optimal price instead. Then, we prove the following bound.

Lemma 5. For any epoch 𝑖 in the algorithm, with probability 1 − 𝛿,

𝑉det
𝑖
− Rev𝑖 ≤ 𝑂

(
𝑚2/3 log

(
𝑇
𝛿

) (
1
𝛼
+ 1
𝛽
+ 𝛽

𝛼2

)
𝜙

)
= �̃� (𝑚2/3).
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Step 3 (Bounding the revenue loss due to fewer adoptions) In the previous step, we upper

bounded the potential revenue loss for the 𝛾𝑖𝑚 customers that arrive in any epoch 𝑖 of the algorithm.

However it is possible that the algorithm reaches the end of time horizon 𝑇 early and never even get

to observe some customers, i.e. 𝑑𝑇 < 𝑋∗
𝑇
𝑚. In that case the algorithm would incur an additional

regret due to fewer adoptions. Therefore, we need to show that our total number of adoptions in

time 𝑇 cannot be much lower than that in the optimal trajectory. To show this, recall in Step 1

we showed that the algorithm always offer a lower confidence bound on the optimal prices (note

that the exploration price 𝑝0 = 0 is always a lower bound on the optimal prices). Due to the use

of lower prices, we can show that with high probability our final number of adoptions can be at

most �̃� (
√
𝑚) below the optimal number of adoptions in the deterministic Bass model. Further, we

can prove an 𝑂 (log(𝑇)) upper bound on the optimal price, which allows us to easily bound the

revenue loss that may result from the small gap in number of adoptions. Lemma 6 and Lemma 7

make these results precise.

Lemma 6. If the seller follows Algorithm 1, then with probability at least 1−𝛿 log(𝑚), the number

of adoptions at the end of time horizon 𝑇 is lower bounded as:

𝑑𝑇 ≥ 𝑚𝑋∗𝑇 −
√︃

8𝑚𝑋∗
𝑇

log( 4
𝛿
).

Lemma 7 (Upper bound on optimal prices). All prices in the optimal price curve for deterministic

Bass model are upper bounded as:

𝑝∗(𝑥, 𝛼, 𝛽) ≤ log (𝑒 + (𝛼 + 𝛽)𝑇)

These two results combined tell us that, compared to the optimal, we lose at most �̃� (
√
𝑚 log(𝑇))

revenue due to fewer adoptions. The dominant term in regret comes from the seller losing roughly

�̃� (𝑚−1/3) revenue on each customer, which led to �̃� (𝑚2/3) revenue loss per epoch in Step 2.
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Step 4 (Putting it all together). Finally, we put the previous steps together to prove Theorem 1.

Since the number of customers in each epoch grows geometrically and there are at most 𝑚 cus-

tomers in total, the number of epochs is bounded by 𝑂 (log(𝑚)). By Step 2, the algorithm loses at

most ≈ 𝑚2/3 revenue on adoptions in each epoch. By Step 3, it loses at most ≈
√
𝑚 log(𝑇) revenue

due to missed adoptions. The total regret is therefore bounded by ≈ (log(𝑚)𝑚2/3 +
√
𝑚 log(𝑇)).

1.7 Regret lower bound

We prove a lower bound on the regret of any dynamic pricing and learning algorithm under the

following mild assumptions on algorithm design. Through out our discussion of the lower bound,

we also make two additional assumptions on the pricing policy:

Assumption 1. The algorithm can change price only on arrival of a new customer. The price is

held constant between two arrivals.

Assumption 2. Given a planning horizon 𝑇 , the price offered by the algorithm at any time 𝑡 ∈

[0, 𝑇] is upper bounded by 𝑝𝑚𝑎𝑥 B log(𝑇) + 𝐶 (𝛼, 𝛽), for some function 𝐶 of 𝛼, 𝛽.

The above assumptions are indeed satisfied by Algorithm 1 since it changes prices only on

arrival of a new customer, and the prices offered are clamped to the range [0, log(𝑒 + 𝜙𝑇)] (refer

to (1.11)) where 𝜙 is a constant upper bound on 𝛼 + 𝛽. These assumptions are also satisfied by

the optimal dynamic pricing policy for the deterministic Bass model since the optimal prices are

bounded by log(𝑒+ (𝛼+ 𝛽)𝑇) (refer to Lemma 7). Note that since customer arrivals are continuous

in the deterministic Bass model, Assumption 1 is vacuous in that setting.

We argue that these assumptions do not significantly handicap an algorithm and preserve the

difficulty of the problem. Assuming an upper bound on the price is a common practice in dynamic

pricing literature. Indeed, unlike most existing literature which assumes a constant upper bound,

Assumption 2 allows the price to potentially grow with the planning horizon. Intuitively, given

enough time to sell the product, the seller should be able to potentially increase prices in exchange
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for a slower adoption rate.4 Such a dynamics is observed in the optimal dynamic pricing policy for

deterministic Bass model, where the price can grow with the time horizon. However, the optimal

prices are still uniformly upper bounded by log(𝑒 + (𝛼 + 𝛽)𝑇).

Furthermore, in the proof of Lemma 2 (specifically, refer to Lemma 24 in Appendix A.3),

we show that there exist pricing policies in the stochastic Bass model that satisfy both the above

assumptions and achieve an expected revenue that is at most �̃� (
√
𝑚) additive factor away from

the deterministic optimal revenue 𝑉det(𝑇). Since the lower bound provided in this section is of

the order 𝑚2/3, this indicates that removing these assumptions from algorithm design is unlikely to

provide an advantage significant enough to overcome the current lower bound.

Our main result in this section is the following regret lower bound on any algorithm under the

above assumptions.

Theorem 2 (Regret lower bound). Fix any 𝛼 > 0, 𝛽 > 0, and 𝑇 =
2(1+
√

2)𝑒
𝛼+𝛽 . Then, given any

pricing algorithm satisfying Assumption 1 and 2, there exist Bass model parameters (𝛼, 𝛽′) with

𝛽′ ∈ [𝛽, 𝛽 + (𝛼+𝛽)
2

𝛼
] such that the expected pseudo-regret of the algorithm in this market has the

following lower bound:

E[Pseudo-Regret(𝑇)] ≥ Ω

((
𝛼
𝛼+𝛽

)4/3
𝑚2/3

)
.

Here the expectation is taken with respect to the stochasticity in the Bass model as well as any

randomness in the algorithm.

Note that given the relation between pseudo-regret and regret in Lemma 2, the above theorem

directly implies an Ω(𝑚2/3) lower bound on E[Regret(𝑇)].

Lower bound implications Theorem 2 highlights the regime of horizon 𝑇 where this learning

problem is the most challenging. In this problem, we observe that if 𝑇 is large, the seller can

simply offer a high price for the entire time horizon and still capture most of the market, making

4In Lemma 32 in Appendix A.6, we show that if a constant upper bound is required on the price, then the problems
becomes trivial for any 𝑇 ≥ Ω(log(𝑚))).
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the problem trivial. Specifically, for 𝑇 ≥ Ω(log(𝑚)), under an additional assumption that there

is a constant upper bound on price, we can show that an 𝑂 (log(𝑚)) upper bound on regret can

be trivially achieved by offering the maximum price at all times (see Lemma 32). On the other

hand, when 𝑇 = 𝑜(1), then we can show that achieving a sub-linear (in 𝑚) regret is trivial for any

algorithm. This is because from (1.5) we have that in this case the optimal number of adoptions

𝑋∗
𝑇
≤ 𝛼+𝛽

𝑒
𝑇 = 𝑜(1). Furthermore, from Lemma 7 we know that all prices in the optimal curve

can be bounded by 𝑝∗𝑚𝑎𝑥 = 𝑂 (1) in this case. This means that the optimal revenue is at most

𝑚𝑋∗
𝑇
𝑝∗𝑚𝑎𝑥 = 𝑜(𝑚), i.e., sublinear in 𝑚. Intuitively, for such a small 𝑇 , the word-out-mouth effect

never comes into play (i.e., the 𝛼 + 𝛽𝑥 term in the Bass model is dominated by 𝛼), making the

problem uninteresting. Our lower bound result therefore pinpoints the exact order of 𝑇 , i.e., 𝑇 =

Θ(1/(𝛼 + 𝛽)), where the difficult and interesting instances of this problem come from.

In the rest of this section, we describe the intuition and an outline for proving 2.

Proof Intuition We start with showing that the pseudo-regret of any algorithm can be lower

bounded in terms of its cumulative pricing errors. Therefore, in order to achieve low regret, any

algorithm must be able to estimate optimal prices accurately. Next, we observe that in this problem,

the main difficulty for any algorithm is in estimating the market parameter 𝛽. Since 𝛽’s observed

influence on the arrival rate of customers is proportional to the current adoption level 𝑥, one cannot

estimate 𝛽 accurately when 𝑥 is small. This makes intuitive sense because when the number of

adopters is small, we do not expect to be able to measure the word of mouth effect accurately. In

fact, we demonstrate that for any Y, before the adoption level exceeds
(
𝑚
Y

)2/3, no algorithm can

distinguish two markets with Bass model parameters (𝛼, 𝛽) vs. (𝛼, 𝛽 + Y). Further, we can show

that in some problem instances (specifically for instances with 𝑇 = Θ(1/(𝛼 + 𝛽))), the optimal

prices for the first 𝑚2/3 customers are very sensitive to the value of 𝛽. Therefore, if an algorithm’s

estimation of 𝛽 is not accurate, it cannot accurately compute the optimal price for these customers.

This presents an impossible challenge for any algorithm: it needs an accurate estimate of 𝛽 in order

to compute an accurate enough optimal price for the first 𝑚2/3 customers, but it cannot possibly
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obtain such an accurate estimate while the adoption level is that low; thus, it must incur pricing

errors resulting in the given lower bound on regret.

Proof Outline A formal proof of Theorem 2 is obtained through the following four steps. All

the missing proofs from this section can be found in Appendix A.5.

Step 1. First we show that the pseudo-regret of an algorithm can be lower bounded in terms of

cumulative pricing errors. Note that this result is not a priori obvious because as we have discussed

earlier, prices have long term effects on the adoption curve: the immediate loss of revenue in the

current round by offering too low of a price might be offset by the fact that we saved some time for

the future rounds (lower price means faster arrival rate). On the other hand, if we offer a price that

is higher than the optimal price, the resulting delay in customer arrival (higher price means slower

arrival rate) may lead to less remaining time and fewer adoptions, which could be more harmful

than the immediate extra revenue. The result proven here is crucial for precisely quantifying these

tradeoffs and lower bounding the regret in terms of pricing errors.

To obtain this result, we first lower bound the impact of offering a suboptimal price at any time,

on the remaining value in the deterministic Bass model. Given any current adoption level 𝑥 and

remaining time 𝑇 ′, the instantaneous impact or ‘disAdvantage’ 𝐴𝑑𝑒𝑡 (𝑥, 𝑇 ′, 𝑝) of price 𝑝 is defined

as the overall decrease in value over the remaining time when 𝑝 is offered for an infinitesimal time

and then optimal policy is followed. That is,

𝐴𝑑𝑒𝑡 (𝑥, 𝑇 ′, 𝑝) := lim
𝛿→0

𝑉det(𝑥, 𝑇 ′) − 𝑝_(𝑝, 𝑥)𝛿 −𝑉det(𝑥 + _(𝑝, 𝑥)𝛿/𝑚,𝑇 ′ − 𝛿)
𝛿

.

We prove the following lemma lower bounding this quantity.

Lemma 8. At any adoption level 𝑥 and remaining time 𝑇 ′, the disadvantage of offering a subopti-

mal price 𝑝 in the deterministic Bass model is lower bounded as:

𝐴𝑑𝑒𝑡 (𝑥, 𝑇 ′, 𝑝) ≥ _(𝑝, 𝑥)min
(
1
4
(𝜋∗(𝑥, 𝑇 ′) − 𝑝)2, 1

10

)
.
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where 𝜋∗(𝑥, 𝑇 ′) = arg min𝑝 𝐴𝑑𝑒𝑡 (𝑥, 𝑇 ′, 𝑝) denotes the optimal price at 𝑥, 𝑇 ′.

Now recall that pseudo-regret is defined as the total difference in revenue of the algorithm,

which is potentially offering suboptimal prices, compared to the deterministic optimal revenue

𝑉det(𝑇). We use the above result to quantify the impact of offering suboptimal prices for the first

𝑛 ≈ 𝑚2/3 customers, along with a bound on difference in stochastic vs. deterministic optimal

revenue, to obtain the following lower bound on the pseudo-regret:

E [Pseudo-Regret(𝑇)] ≥ E
[
𝑚

∫ 𝑛/𝑚

0
min

(
1
4
(𝜋∗𝑥 − 𝑝𝑥)2,

1
10

)
𝑑𝑥

]
− �̃�

(
𝑚1/3

)
.

Here, 𝑝𝑥 denotes the price trajectory obtained on using the algorithm’s prices in the deterministic

Bass model, and 𝜋∗𝑥 denote the prices that would minimize the disadvantage at each point in this

trajectory. A more precise statement of this result is in Lemma 29 in Appendix A.5.

The remaining proof focuses on lower bounding the cumulative difference in pricing errors

(𝜋∗𝑥 − 𝑝𝑥)2 that any algorithm must make for the first 𝑛 ≈ 𝑚2/3 customers.

Step 2. Consider two markets with parameters (𝛼, 𝛽), and (𝛼, 𝛽 + 𝜖) for some constant 𝜖 . We

show that for the first 𝑛 ≈
(
𝑚
𝜖

)2/3 customers, any pricing algorithm will be “wrong” with a constant

probability. Here by being wrong we mean that the algorithm will set a price that is closer to the

optimal price of the other market. Lemma 30 and Corollary 4 formalize this idea. The proof is

based on a standard information theoretic analysis using KL-divergence.

Step 3. Next we show that for 𝑇 = Θ( 1
𝛼+𝛽 ), the difference between the optimal prices for the

two markets ((𝛼, 𝛽) and (𝛼, 𝛽 + Y)) is large (≈ 𝛼Y

(𝛼+𝛽)2 ). We show this by proving a bound on

the derivative of optimal price with respect to 𝛽. Lemma 31 in Appendix A.5 gives the precise

statement.

Step 4. Finally, we put together the observations made in the previous three steps to prove Theo-

rem 2. We have shown that with constant probability any algorithm will make a pricing mistake for
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the first ≈ (𝑚
𝜖
)2/3 customers [Step 2] and that this mistake will be large (on the order of 𝜖) [Step 3]

under the condition that 𝑇 = Θ(1/(𝛼 + 𝛽)). We also have a lower bound on pseudo-regret in terms

of total (square of) pricing errors made over the first 𝑛 ≈ 𝑚2/3 customers [Step 1]. Combining

these observations with an appropriately chosen 𝜖 gives us that the pseudo-regret is lower bounded

by 𝑂 (𝜖2(𝑚
𝜖
)2/3) ≈ 𝑂 (𝑚2/3).

All the missing details of this proof can be found in Appendix A.5.

1.8 Conclusion and Future Directions

In this Chapter we investigated a novel formulation of dynamic pricing and learning, with a

non-stationary demand process governed by an unknown stochastic Bass model. In particular, we

presented an online algorithm that learns to price from past observations without a priori knowl-

edge of the model parameters. A key insight that we derive and utilize in our algorithm design is

the concavity of the optimal value in the deterministic Bass model setting. Using this concavity

property, we can show that the optimal value in the deterministic Bass model is always higher than

in the stochastic model, and therefore can be used as a stronger benchmark to compete with. Based

on this insight, the main algorithmic idea is to follow the optimal price curve for the deterministic

model but with estimated model parameters substituted in place of their true values.

Our main technical result is an upper bound of �̃� (𝑚2/3) on the regret of our algorithm in a mar-

ket of size 𝑚, along with a matching lower bound of Ω(𝑚2/3) under mild restrictions on algorithm

design. Thus, our algorithm has close to the best performance achievable by any algorithm for this

problem. The derivation of our lower bound is especially involved, and requires deriving novel

dynamic-programming based inequalities. These allow for lower bounding the loss in long-term

revenue in terms of instantaneous pricing errors made by any non-anticipating algorithm.

An interesting and perhaps surprising aspect of our bounds is the role of the horizon 𝑇 vs.

market size 𝑚. Our upper bound depends sublinearly on 𝑚 but only logarithmically on the horizon

𝑇 . And in fact our lower bound indicates that for any fixed 𝛼, 𝛽 the most “interesting" (and chal-

lenging) instances of this problem are characterized by 𝑇 which is of constant order, and large 𝑚.
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This highlights the distinct nature of pricing under state-dependent models, like the Bass model,

when compared to the independent demand models and multi-armed bandit based formulations

where asymptotics with respect to 𝑇 form the main focus of the analysis. Interesting directions for

future research include investigation of other state-dependent demand models where the concavity

property and other new dynamic programming based insights derived here may be useful.
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Chapter 2: Dominant Resource Fairness with Meta-Types

Taking a step back from the specific dynamic pricing application that we studied in Chapter 1,

we can view the problem from the broader perspective of a central planner having to make sequen-

tial decisions while learning the underlying dynamics of the system over time. In order to achieve

good performance, the central planner has to take actions that not only give him good short and

long term reward, but also allow him to estimate the unknown parameters quickly. In other words,

the challenge mainly came from the “learning” component. In this chapter, we turn our attention to

a resource allocation problem where the main challenge stem from the potentially strategic agents.

Agents report how much they value the items and the central planner decides on an allocation based

on the reported values. This creates obvious incentives for the agents to potentially misreport their

valuations so that they could get more or better items. As we will see later in the chapter, we are

able to take advantage of the structure of the agents’ utility function in order to design an allocation

algorithm that is robust to strategic behaviors.

2.1 Background and Motivation

The recent COVID-19 pandemic has brought forward many problems that are particularly rel-

evant to the operations research and computer science communities. Among them, an often over-

looked problem is the effective and fair allocation of resources, such as volunteer medical workers,

ventilators, and emergency field hospital beds.

There are several key challenges to the medical resource allocation problem in the face of an

infectious disease outbreak. First, utilities from different types of resources are not additive nor

linear. For example, when there are enough nurses but not enough doctors, the marginal utility

of having one additional nurse on staff is very low. Second, not all resources are accessible to all
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hospitals (referred to henceforth as accessibility constraints). For instance, the home location of

each volunteer medical worker determines where she can commute to work; thus, she can only be

assigned to hospitals within her commutable radius. Third, hospitals have different capacities (big

medical centers versus small hospitals) and are in different stress levels (hospitals in an epicenter

versus the ones in rural areas with few cases), so they should naturally be prioritized differently.

Another setting that has the above characteristics is the compute resource sharing problem

with sub-types. For example, suppose a compute server has several compute nodes, and there are

different types of GPU/CPU on the various nodes (e.g. NVIDIA vs. AMD GPU, Intel vs. AMD

CPU). Some users look for specific hardware configurations (e.g. accept only Intel CPU) while

others might be less selective (e.g. accept all CPU brands).

In this paper, we propose a new market mechanism that tackles the three challenges out-

lined above and achieves desirable properties including Pareto optimality, envy-freeness, strategy-

proofness, and sharing incentive. In our numerical experiments, we demonstrate that compared to

the Maximum Nash Welfare (MNW), and the Discrete MNW approach, our mechanism is cheaper

to compute and enjoys theoretical properties that MNW approaches do not have.

2.2 Literature Review

Recently, a flurry of papers have come out of the operations research, statistics, and computer

science communities addressing resource allocations in the aftermath of a pandemic. For instance,

Jalota et al. [39] proposed a mechanism for allocating public goods that are capacity constrained

due to social distancing protocols, focusing on achieving a market clearing outcome. Mehrotra et

al. [40] studied the allocation of ventilators under a stochastic optimization framework, minimizing

the expected number of shortages in ventilators while also considering the cost of transporting

ventilators. Zenteno [41] combined influenza modeling techniques with robust optimization to

handle workforce shortfall in a pandemic. These papers differ from our work in that they do not

explicitly address any fairness considerations that we study in this paper.

There has also been a growing interest in developing resource allocation mechanisms with
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fairness properties. Under a fairly general class of utility functions including the Leontief utility,

computing market equilibrium under the fisher market setting (divisible goods) can be done using

an Eisenberg-Gale (EG) convex program Eisenberg and Gale [42]. Market equilibrium solutions

satisfy Pareto optimality, proportionality, and envy-freeness. It is also known that an EG convex

program implicitly maximizes Nash welfare, which is the product of all agents’ utilities. However,

MNW is generally not strategy-proof, and can be computationally expensive for large problems.

Chen et al. [43] studied the computation and approximation of market equilibria under the so-

called “hybrid Linear-Leontief” utilities. They assume that there are 𝑚 disjoint groups and each

group contains several types of resources. An agent’s utility is a linear combination of 𝑚 Leontief

utilities, each associated with a group. Note that although we use the terms “meta-type” and

“group” in our problem formulation, our setting is different from theirs because there is only one

Leontief utility per user in our setting.

For Leontief utilities, Ghodsi et al. [44] introduced the Dominant Resource Fairness alloca-

tion mechanism (DRF) which in addition to the three properties satisfied by market equilibrium

solutions, is also strategy-proof. Later Parkes et al. [45] extended the setting to allow agents to be

weighted and have zero demand over some resources while maintaining all four desiderata. Our

paper generalizes the setting further by allowing accessibility constraints, which as mentioned in

the introduction, arise naturally in many practical settings.

For indivisible resources, Caragiannis et al. [46] showed that maximizing Nash welfare with

integer constraints (Discrete MNW) satisfies envy-freeness up to one resource unit and has nice

guarantees on the Max-Min Share ratio. However, similar to MNW, it is not strategy-proof and

as we will see in the numerical section, it does not scale well to large number of agents and

resource types. Although exact market equilibrium might not exist in indivisible settings, Budish

[47] showed that a close approximation of it exists in the unweighted, binary allocation case. This

was later put into practice for course allocation in Budish et al. [48]. However, the theory does

not provide useful approximation bounds when assignments are not binary (e.g., each student only

needs one seat from each class, but each hospital may require hundreds of doctors), and therefore
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it is not well suited to our setting.

2.3 Problem Formulation

For the remainder of the paper we use local medical personnel allocation as a running example,

even though other resource allocation problems can be formulated in a similar fashion. We group

resources into meta-types: doctors, nurses, ventilators, emergency field hospital beds, etc. Within

each meta-type (e.g. doctors), we have types (e.g. doctors from the Bronx, doctors from Brooklyn,

doctors from Manhattan, etc.1). We assume that demands are given over meta-types, but each

agent sometimes can only receive allocation from a subset of the resources in a meta-type because

of constraints such as location (e.g. a hospital is indifferent to where doctors assigned to it come

from as long as they are within commutable radius). We refer to such subsets of resource types in

each meta-type as the agents’ demand groups.

Let Ω1,Ω2, . . . ,Ω𝐿 denote the meta-types. Each meta-type Ω𝑙 is a collection of resource types.

We assume that Ω𝑖 ∩Ω 𝑗 = ∅ for any two different meta-types 𝑖, 𝑗 , which means that each resource

type belongs to exactly one meta-type. Let 𝑅 denote the set of all resource types: 𝑅 = ∪𝑙∈[𝐿]Ω𝑙 ,

and 𝑁 denote the set of agents. We use 𝑚 = |𝑅 | and 𝑛 = |𝑁 | to denote the total number of resource

types and agents. Each type of resource 𝑟 has a finite supply of 𝑆𝑟 . We assume that the supplies

are normalized within each meta-type:

∑︁
𝑟∈Ω𝑙

𝑆𝑟 = 1 ∀𝑙 ∈ [𝐿] .

Each agent 𝑖 ∈ 𝑁 submits a demand vector [𝑑𝑖1, . . . , 𝑑𝑖𝐿] where 𝑑𝑖𝑙 denotes the fraction of meta-

type 𝑙 that agent 𝑖 needs in order to get one unit of utility (one can think of this as each agent

trying to complete as many units of work as possible, where each unit of work requires 𝑑𝑖𝑙 units

of meta-type 𝑙). Additionally, each agent has access to only a subset of resource types within each

meta-type. We represent this accessibility constraint in the form of a set of demand groups. Let

1Manhattan, the Bronx, and Brooklyn are three boroughs of New York City.
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𝐺𝑖 = {𝑔𝑖𝑙 ⊆ Ω𝑙 : 𝑙 ∈ [𝐿], 𝑑𝑖𝑙 > 0}, be the set of demand groups for agent 𝑖, where 𝑔𝑖
𝑙
⊆ Ω𝑙 is agent

𝑖’s demand group for 𝑙, specifying the subset of resource types belonging to meta-type 𝑙 that agent

𝑖 can access. Note that we only include in 𝐺𝑖 meta-types that agent 𝑖 has non-zero demand of. This

is to simplify notation in the later analysis. Intuitively, the introduction of meta-types models the

substitution effects, and the introduction of demand groups models the accessibility constraints.

When 𝑖 is clear from the context, we sometimes use 𝑔𝑙 instead of 𝑔𝑖
𝑙

to simplify the notation.

Following the setup in Parkes et al. [45], we also allow agents to be weighted differently for

each meta-type and we denote the weight of agent 𝑖 for meta-type 𝑙 as 𝑤𝑖𝑙 . Having different weights

for different meta-types makes the model more expressive: if we let 𝑤𝑖1 = . . . = 𝑤𝑖𝐿 , then this

reduces to having a single priority weight for each agent. This weight can depend on factors such

as agent 𝑖’s contribution to the resource pool of meta-type 𝑙, as well as the size and stress level of

agent 𝑖. In the case of medical supplies allocation, weights can represent how much each hospital is

in need of extra resources. In the cloud compute setting, weights can represent how much money

each user has paid for each meta-type of resource. Note that weights are fixed apriori, not self

reported by the agents, nor determined by the allocation algorithm. We assume that weights are

normalized within each meta-type:
∑
𝑖∈𝑁 𝑤𝑖𝑙 = 1 for 𝑙 ∈ [𝐿]. Note that weights represent agents’

priorities over the meta-types, not agents’ preferences. Therefore they do not appear in the agents’

utility functions, as we will define next.

Let 𝑥𝑖 be the allocation vector of agent 𝑖: 𝑥𝑖𝑟 represents the assignment of resource type 𝑟 to 𝑖.

For each meta-type 𝑙,
∑
𝑟∈𝑔𝑖

𝑙
𝑥𝑖𝑟 is the fraction of the total supply of meta-type 𝑙 that is assigned to

agent 𝑖. The utility of agent 𝑖 is then defined as:

𝑢𝑖 (𝑥𝑖) B min
𝑔𝑙∈𝐺𝑖

{
1
𝑑𝑖𝑙

∑︁
𝑟∈𝑔𝑙

𝑥𝑖𝑟

}
(2.1)

Since agent 𝑖 needs 𝑑𝑖𝑙 fraction of each meta-type 𝑙 to finish one unit of work, 𝑢𝑖 (𝑥𝑖) is the total

units of work that agent 𝑖 can finish given allocation vector 𝑥𝑖. This form of utility measure is

called the Leontief utility.
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Figure 2.1: All three hospitals can accept both types of doctors. However, hospitals I and II can
only accept Nurse type C, while hospital III accepts only Nurse type D.

We now give a concrete example, which is also illustrated in Figure 2.1. To keep the example

simple we assume that each agent has the same weight over all meta-types: only one weight 𝑤𝑖 is

defined for each agent 𝑖.

Example 1. Consider a case of three hospitals (agents) {1, 2, 3} and two resource meta-types.

The first meta-type consists of two types of doctors (resource 𝐴, 𝐵), and the second consists of

two types of nurses (resource 𝐶, 𝐷): Ω1 = {𝐴, 𝐵},Ω2 = {𝐶, 𝐷}. The normalized weights for

the three hospitals are: 𝑤1 = 𝑤2 = 1
4 , 𝑤3 = 1

2 . The supply for each type of doctor and nurse

is 500. Thus, the total available units of each meta-type is 500 + 500 = 1000, and 𝑆𝑟 = 500
1000 =

1
2 ∀𝑟 ∈ {𝐴, 𝐵, 𝐶, 𝐷}. All three hospitals have access to both types of doctors but hospitals

1, 2 only have access to nurse type 𝐶 while the third hospital only has access to nurse type 𝐷:

𝐺1 = {𝑔1
1 = {𝐴, 𝐵}, 𝑔1

2 = {𝐶}}, 𝐺2 = {𝑔2
1 = {𝐴, 𝐵}, 𝑔2

2 = {𝐶}}, 𝐺3 = {𝑔3
1 = {𝐴, 𝐵}, 𝑔3

2 = {𝐷}}.

For each unit of utility, hospital 1 demands 4 doctors and 1 nurse, hospital 2 demands 1 doctor

and 4 nurses, and hospital 3 demands 1 doctor and 1 nurse. Since the total units of supply for each

meta-type is 1000, 𝑑1 = [ 4
1000 ,

1
1000 ], 𝑑2 = [ 1

1000 ,
4

1000 ], 𝑑3 = [ 1
1000 ,

1
1000 ].
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2.3.1 Desirable Properties

Now we formally define the properties studied in this paper.

Pareto optimality. An allocation mechanism is Pareto optimal if compared to the output allo-

cation 𝑥, there does not exist another allocation 𝑥′ where some agent is strictly better off without

some other agent being strictly worse off: ∃𝑖 𝑠.𝑡. 𝑢𝑖 (𝑥′𝑖) > 𝑢𝑖 (𝑥𝑖) =⇒ ∃ 𝑗 𝑠.𝑡. 𝑢 𝑗 (𝑥′𝑗 ) < 𝑢 𝑗 (𝑥 𝑗 ).

Weighted envy-freeness. Given an allocation 𝑥 𝑗 for agent 𝑗 , let 𝑥𝑖 be the same allocation adjusted

to agent 𝑖’s weights and demand groups, i.e., 𝑥𝑖𝑟 = 𝑥 𝑗𝑟
𝑤𝑖𝑙
𝑤 𝑗𝑙

for all 𝑟 ∈ 𝑔𝑖
𝑙
, 𝑙 ∈ [𝐿], and 𝑥𝑖𝑟 = 0

otherwise. 𝑢𝑖 (𝑥𝑖) − 𝑢𝑖 (𝑥𝑖) is how much 𝑖 envies 𝑗 . An allocation is weighted envy free if for any

𝑖, 𝑗 ∈ 𝑁 this quantity is non-positive, i.e.,

𝑢𝑖 (𝑥𝑖) − 𝑢𝑖 (𝑥𝑖) ≤ 0.

Intuitively, this means an agent prefers her allocation over the allocation of any other agent scaled

by the weight ratios of the two agents. Note that since there is a separate weight for every meta-

type 𝑙, the allocations for each resource type 𝑟 is scaled according to the corresponding weight for

the meta-type that it belongs to.

Strategy-proofness. In the existing literature, agents can only be strategic by misreporting their

demand vector. In our setting however, agents have the additional possibility of misreporting their

accessibility constraints for the meta-types (e.g. One can report that she accepts both Intel and

AMD CPUs but in fact her program only runs on Intel CPU). Our definition of strategy-proofness

guards against both types of misreporting. Let 𝑥 be the allocation returned by the mechanism

under truthful reporting from all agents. Let 𝑥′ be an allocation returned by the mechanism when

all agents report truthfully except agent 𝑖 reports an alternative demand vector and/or alternative

demand groups. The mechanism is strategy-proof if 𝑢𝑖 (𝑥𝑖) ≥ 𝑢𝑖 (𝑥′𝑖).
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Sharing incentive. In settings where the supplies for each resource come from the participants’

contribution, sharing incentive is satisfied when the resulting allocation gives each participant at

least as much utility as she originally had. More specifically, for each 𝑖 ∈ 𝑁 and 𝑙 ∈ [𝐿], let 𝑠𝑖𝑙 be

the proportion of meta-type 𝑙 contributed by agent 𝑖 that she can also access. We can also think

of 𝑠𝑖𝑙 as the amount of “useful” resource agent 𝑖 originally possessed of meta-type 𝑙 (she might

contribute more than 𝑠𝑖𝑙 to the pool). Prior to reallocation of resources, agent 𝑖’s utility would be

𝑢𝑜𝑖 := min
𝑔𝑙∈𝐺𝑖

{
𝑠𝑖𝑙

𝑑𝑖𝑙

}
.

Sharing incentive says that 𝑢𝑖 (𝑥𝑖) ≥ 𝑢𝑜𝑖 ∀𝑖 ∈ 𝑁 , where 𝑥𝑖 is the output allocation of the algorithm

(i.e., all agents have incentives to share (pool) their individual resources for reallocation).2

2.4 Dominant Resource Fairness with Meta-Types

Before describing the algorithm we first define some key concepts used in the algorithm:

𝑙∗𝑖 B arg min
𝑙∈[𝐿]

𝑤𝑖𝑙

𝑑𝑖𝑙
𝑑𝑖∗ B 𝑑𝑖𝑙∗

𝑖
𝑤𝑖∗ B 𝑤𝑖𝑙∗

𝑖

Namely, 𝑙∗
𝑖

is the meta-type from which agent 𝑖 demands the biggest proportional share, adjusted

by her priority weights. We refer to 𝑙∗
𝑖

as the dominant resource meta-type for agent 𝑖. 𝑑𝑖∗ is the

proportional share demanded by agent 𝑖 from its dominant resource meta-type to finish one unit of

work.

We now present our fair allocation mechanism, which we call Dominant Resource Fairness

with Meta-Types (DRF-MT). The mechanism proceeds in rounds and agents are gradually “elim-

inated”. In each round 𝑡, we use the linear program described in (2.2) to maximize a fractional

value 𝑦𝑡 so that each remaining agent 𝑖 (𝑖 ∈ 𝑁𝑡) receives at least 𝑦𝑡 ×𝑤𝑖∗ fraction of the total supply

from its’ dominant resource meta-type 𝑙∗
𝑖
, and more generally 𝑦𝑡 × 𝑤𝑖∗ × 𝑑𝑖𝑙/𝑑𝑖∗ of each demanded

2A closely related concept called proportionality is also often seen in the literature. We focus on Sharing Incentive
in the main paper and include a discussion of proportionality in the Appendix.
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meta-type 𝑙.3 Based on this solution, we eliminate at least one resource and one agent using Defi-

nition 1 and 2 (although the algorithm only needs to explicitly maintain a list of active/eliminated

agents, not resources). For each agent 𝑖 eliminated in round 𝑡, we set 𝛾𝑖 = 𝑦𝑡 . We fix the fraction

of dominant meta-type 𝑙∗
𝑖

assigned to agent 𝑖 to 𝛾𝑖 × 𝑤𝑖∗, without fixing the specific allocations of

the resources. We first observe the following fact (proof is in the Appendix):

Fact 1. In any round 𝑡 of Algorithm 2, the allocation constraints in Equation 2.2 for 𝑖 ∉ 𝑁𝑡 are

tight for optimal solutions.

This fact implies that when an agent is eliminated, her utility in the final allocation is fixed,

even though the exact allocation is not. Not fixing the allocation is a deliberate algorithmic design

choice because agents who are flexible with their demand groups should accommodate agents who

are more restrictive (e.g. if agent 1 accepts both type A and B, and agent 2 only accepts type A,

then we should allocate agent 1 mostly type B resource, and leave type A resource for agent 2).

When the number of agents and resource types is large, it is difficult to characterize such dynamics

explicitly. So it is crucial to not fix the allocation to the agents until the last iteration.

We will show that there is at least one new resource and one agent being eliminated in each

round. Thus our algorithm requires at most min(𝑚, 𝑛) rounds (in practice it often terminates in 2-3

rounds even with a large number of resources types and agents). Since each round requires solving

a polynomial-sized linear program, the overall procedure can be run in polynomial time.

Let 𝑁𝑡 , 𝑅𝑡 be the set of active agents and resources at the beginning of round 𝑡. The LP for

round 𝑡 is defined in (2.2). Note that the ratio 𝑑𝑖𝑙
𝑑𝑖∗

is simply making sure that there is no waste in

the allocation. For an agent who has been eliminated, 𝛾𝑖𝑤𝑖∗
𝑑𝑖∗

is her final utility. If agent 𝑖 is not

yet eliminated after round 𝑡, then 𝑦𝑡𝑤𝑖∗
𝑑𝑖∗

represents how much utility she is currently guaranteed to

3We also considered an alternative design that did not yield a strategy-proof and envy-free algorithm. See Ap-
pendix D .
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receive (it will never decrease in later rounds, see Fact 2).

max 𝑦𝑡

s.t. (active agents allocation constraints)

𝑦𝑡 × 𝑤𝑖∗ ×
𝑑𝑖𝑙

𝑑𝑖∗
≤

∑︁
𝑟∈𝑔𝑙

𝑥𝑖𝑟 ∀𝑖 ∈ 𝑁𝑡 , 𝑔𝑙 ∈ 𝐺𝑖

(eliminated agents allocation constraints)

𝛾𝑖 × 𝑤𝑖∗ ×
𝑑𝑖𝑙

𝑑𝑖∗
≤

∑︁
𝑟∈𝑔𝑙

𝑥𝑖𝑟 ∀𝑖 ∉ 𝑁𝑡 , 𝑔𝑙 ∈ 𝐺𝑖 (2.2)

(supply constraints)∑︁
𝑖∈𝑁

𝑥𝑖𝑟 ≤ 𝑆𝑟 ∀𝑟 ∈ 𝑅

(non-negativity constraints)

𝑥𝑖𝑟 ≥ 0 ∀𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅

Fact 2. The optimal value for Equation 2.2 is non-decreasing over rounds: 𝑦∗1 ≤ 𝑦
∗
2 ≤ ..., where

𝑦∗𝑡 is the optimal objective function value of the LP in round 𝑡.

This follows because the constraints on eliminated agents are less restrictive than the constraints

on active agents, and the set of active agents is decreasing over time.

Definition 1. Resource 𝑟 is eliminated in round 𝑡 if 𝑡 is the first round in Algorithm 2 in which∑
𝑖∈𝑁 𝑥𝑖𝑟 = 𝑆𝑟 for every optimal 𝑥.

By Fact 2 it is also easy to see that the set of remaining resources 𝑅𝑡 decreases over time.

Definition 2. We give two equivalent definitions for eliminating agents:

• Agent 𝑖 is eliminated in round 𝑡 when there exists 𝑔𝑙 ∈ 𝐺𝑖 such that 𝑔𝑙 ∩ 𝑅𝑡+1 = ∅.

• Agent 𝑖 is eliminated in round 𝑡 when there exists 𝑔𝑙 ∈ 𝐺𝑖 such that 𝑦𝑡 × 𝑤𝑖∗ × 𝑑𝑖𝑙
𝑑𝑖∗

=
∑
𝑟∈𝑔𝑙

𝑥𝑖𝑟

for every optimal 𝑥, 𝑦𝑡 .

40



Intuitively, both definitions are saying that agent 𝑖 can not improve her utility further in later

rounds. Due to space constraint we defer the proof of their equivalence, and most of the other

results to the Appendix. We include the proof of Claim 1 here because it is a good representation

of the flavor of arguments used in other proofs. First we address the question of whether the

DRF-MT can be efficiently implemented.

ALGORITHM 2: Dominant Resource Fairness with Meta-Types (DRF-MT)
Input: Agents 𝑁 , resources 𝑅, supplies 𝑆𝑟 ∀𝑟 ∈ 𝑅, demand groups 𝐺𝑖 ∀𝑖 ∈ 𝑁 , normalized

demands 𝑑𝑖𝑙 ∀𝑖 ∈ 𝑁, 𝑔𝑙 ∈ 𝐺𝑖, priority weights 𝑤𝑖𝑙 ∀𝑖 ∈ 𝑁, 𝑙 ∈ [𝐿]
Initialize 𝑁0 = 𝑁

for 𝑡 ← 0, 1, 2, ... do
𝑦∗𝑡 ← Solve (2.2)
Update the remaining active agents 𝑁𝑡+1 (using Claim 2)
for agent 𝑖 eliminated in this round do

𝛾𝑖 ← 𝑦∗𝑡
end
if 𝑁𝑡+1 = ∅ then

Solve Equation 2.2 and assign resources according to 𝑥𝑖𝑟 with rounding
break

end
end

Claim 1. In each round 𝑡 of Algorithm 2, at least one remaining resource 𝑟 ∈ 𝑅𝑡 and one remaining

agent 𝑖 ∈ 𝑁𝑡 is eliminated.

Proof. Suppose no resource is eliminated in round 𝑡, then for each 𝑟 ∈ 𝑅𝑡 , there exists an optimal

solution such that
∑
𝑖∈𝑁 𝑥𝑖𝑟 < 𝑆𝑟 . Then the convex combination of these solutions gives us an

optimal solution 𝑥∗ that satisfies
∑
𝑖∈𝑁 𝑥

∗
𝑖,𝑟
< 𝑆𝑟 ∀𝑟 ∈ 𝑅𝑡 . However, by Definition 2, for every

remaining agent 𝑖 ∈ 𝑁𝑡 , 𝑔𝑙 ∩ 𝑅𝑡 ≠ ∅ ∀𝑔𝑙 ∈ 𝐺𝑖. So if we assign a little more of every active

resource to every active agent, then the overall objective value would be higher. This contradicts

the optimality of the LP.

Now suppose some resource 𝑟 ∈ 𝑅𝑡 is eliminated in round 𝑡 but no agent is eliminated. Suppose

this resource type is part of meta-type 𝑙. By the first definition in Definition 2, this means that for

every 𝑖 such that 𝑥𝑖𝑟 > 0, there exists 𝑟′ ∈ 𝑔𝑖
𝑙

such that 𝑟′ is not eliminated. By the same convex
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combination argument above, we know that there is an optimal solution such that
∑
𝑖 𝑥𝑖𝑟 ′ < 𝑆𝑟 ′ for

every such 𝑟′. Then for every such agent we can remove 𝜖 allocation of 𝑟 from her and replace it

with 𝜖 allocation of the corresponding 𝑟′. This gives us an allocation that has the same objective

as before without using up the entire supply of 𝑟, contradicting 𝑟 being eliminated. □

This result shows that DRF-MT can be implemented efficiently by solving at most min(𝑚, 𝑛)

number of polynomial-size linear programs. However, it does not tell us how to find the eliminated

agents. The following theorem says that we can do so by looking at the dual variables of the LP.

Note that the algorithm does not need to explicitly maintain a list of active resources (Equation 2.2

does not depend on 𝑅𝑡).

Claim 2. This claim has two parts:

• If the shadow price of an allocation constraint of an active agent in round 𝑡 is positive, then

its corresponding agent is eliminated in round 𝑡.

• In each round 𝑡, at least one allocation constraint corresponding to an agent in 𝑁𝑡 has a

positive shadow price.

Now we state our main results.

Lemma 9. DRF-MT is Pareto optimal.

Lemma 10. DRF-MT is weighted envy-free.

Lemma 11. DRF-MT is strategy-proof.

The proofs for these three lemmas all involve a case analysis of different scenarios and showing

that the undesirable outcomes violate either the optimality of the LP or the definition of eliminated

resources/agents, similar to the arguments presented in the proof of Claim 1.

Lemma 12. Assume that demands, weights and supplies are all rational numbers. If priority

weights of the algorithm are set according to the each agent’s accessible contribution to the re-

source pool (for each meta-type), then DRF-MT satisfies sharing incentive.
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In resource pooling settings, having a separate weight for each meta-type is crucial in proving

this result (e.g. contributing a ton of hard drive space but no GPU should not give the agent high

priority if GPU is its dominant/bottleneck resource type). The proof constructs a bipartite graph

of supplies and demands of the resources, then uses Hall’s Theorem [49] to show that there exists

a feasible solution to the first round’s LP that already gives every agent at least as much utility

as they could get without participating in the pool. Since agents’ utilities only increase in later

rounds, the final allocation must also satisfy sharing incentive.

2.4.1 Integral Allocation from Rounding

So far we have implicitly assumed that the resources are divisible, and all fairness results are

stated with respect to the fractional assignment output of Algorithm 2. In practice we round down

the output to obtain the final assignment, since resources such as ventilators are indivisible. Each

agent loses at most 1 unit of each type of resource through rounding. Since we focus on problems

where each agent receives hundreds of units of each resource, the performance loss due to rounding

is small. For example, starting with an envy-free fractional allocation, one agent can envy another

by at most 2𝑚 items after rounding. In Example 1, 𝑚 is 4, while the total allocations each agent

receives are in the hundreds. So an envy of 2𝑚 items is not significant. Note that such divisibility

assumption is also standard in existing DRF literature, which often focus on the compute resource

sharing problem: even though CPU cores are discrete, it’s common to treat the problem as a

continuous problem since there is a large quantity of cores in a compute cluster.

There are many existing algorithms that focus on fair allocation of indivisible goods (e.g. Dis-

crete MNW from Caragiannis et al. [46]). Indivisible resource allocation is particularly important

when the quantities of the resources are small (e.g. fairly assigning a car, a house, and a ring to two

people). However, as is the case with most discrete optimization problems, these algorithms do not

scale well to the sizes that we deal with in a pandemic with hundreds of hospitals and many types

of resources. In settings where each agent receives hundreds of units of each resource, the perfor-

mance loss due to rounding is often small compared to the dramatic increase in computational cost
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Figure 2.2: Left: Running time comparison. Middle: Normalized max envy comparison. Right:
Distribution of normalized difference in social welfare between Discrete MNW and DRF-MT over
all trials. Normalized difference is calculated by subtracting the social welfare of Discrete MNW
from that of (rounded) DRF-MT and then dividing by the social welfare of Discrete MNW.

for solving Mixed Integer Programs (see Section 2.5 for a numerical comparison).

2.4.2 Connection to Previous Dominant Resource Fairness Algorithms

The core difference between our problem setup and the existing DRF settings ([44], [45]) is

the addition of accessibility constraints. When |Ω𝑙 | = 1 for each 𝑙 ∈ [𝐿], both our problem

formulation and the DRF-MT algorithm reduce to the problem and algorithm studied in those

papers. Note that in this simplified setting one can write out the closed form solutions to the LPs,

so no actual optimization needs to be performed. However, it is natural that resources come in

different “flavors” and that agents have different constraints/preferences over these variations. So

our formulation captures a much wider range of problems encountered in practice.

2.4.3 Alternative Fair Allocation Mechanisms

As discussed in Section 2.2 and Section 2.4.1, the other most suitable approaches in our setting

are MNW and Discrete MNW. When the weights are equal, MNW is also commonly referred

to as the Competitive Equilibrium with Equal Income (CEEI) approach. Without the accessibility

constraints, MNW is known to be Pareto optimal, envy-free and satisfy sharing incentive. However,

unlike DRF-MT, it is known that MNW is not strategy-proof (see Section 6 of [44] for an example).

We show in Section 2.5 that our DRF-MT mechanism achieves almost as much social welfare (i.e.

sum of utilities of all agents) as MNW, and also runs faster in practice.
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2.4.4 Extension to Arbitrary Group Structure

We currently assume that resources and demands follow a meta-type/group/type structure. One

might be interested in a general group structure where a demand group can contain any subset of all

possible resources (not necessarily from a single meta-type). The problem with this kind of flexible

group structure is that it opens up possibilities for people to cheat the system by misreporting their

true demand structure (e.g. instead of reporting that they are indifferent to resource A and B, and

that they only need one unit of either one to finish a unit of work, agents can claim that they need

one unit each from both A and B to finish one unit of work). In particular, Dominant Resource

Fairness based approaches will likely not work, since it is unclear how one would even define the

dominant resource under such a general setting. We leave this as an open question for future work.

2.5 Numerical Experiments

We compare the algorithms on running time, normalized max envy, and social welfare. Nor-

malized max envy is the maximum envy (see Section 2.3.1) between any pair of agents normalized

as a fraction of each agent’s allocated utility. Social welfare is the sum of utilities of all agents.

We fix a meta-type structure (Ω1 = {0},Ω2 = {1, 2},Ω3 = {3, 4, 5},Ω4 = {6, 7, 8, 9}) and ran-

domly generate the demands, group structures, and weights for the agents. For each choice of

number of agents, we ran 16 trials. All three algorithms Allocations are rounded down for MNW

and DRF-MT. All three algorithms allow specifying different agent weights and also observe the

accessibility constraints. Gurobi[50] and Mosek [51] are used to implement the algorithms. More

details on the experimental setup and additional experiments can be found in Appendix B .

First we investigate scalability. As shown in Figure 2.2 (left), the running time for Discrete

MNW quickly explodes while MNW and DRF-MT are much more scalable. DRF-MT runtime in

particular grows very slowly. The error region represents one standard deviation from the mean.

Recall that DRF-MT is envy-free before rounding. We now investigate envy when the solution

is rounded. Without accessibility constraints, MNW is also envy-free before rounding, and Dis-

45



crete MNW satisfies envy-free up to one good. Figure 2.2 (middle) shows that all three algorithms

have small max envy after rounding in practice (< 4% in most trials).

Finally, we compare the social welfare obtained under DRT-MT and Discrete MNW. Figure 2.2

(right) shows that in roughly 95% of the trials, DRF-MT obtained at least 90% as much social

welfare as Discrete MNW. In Appendix B we show that MNW has slightly lower social welfare

than Discrete MNW, so the above conclusion holds when DRF-MT is compared to rounded MNW

as well.

In conclusion, compared to both Discrete MNW and MNW, DRF-MT 1) achieves almost

as much social welfare, 2) has comparable level of max envy, 3) has the additional property of

strategy-proofness (in the fractional case), and 4) is more scalable. An interesting avenue for

future work is to determine the properties of the rounded variant of DRF-MT. A particularly inter-

esting question would be whether one can show that approximate strategy-proofness holds when

there is large supply of each item.

46



Chapter 3: Optimal Efficiency Envy Trade-Off via Optimal Transport

So far we have seen how having partial information of the system (Chapter 1) and dealing with

potentially strategic agents (Chapter 2) can lead to different challenges for the central planner who

wants to optimize some objective. In this chapter, we study a problem where despite the central

planner having full information of the system (which means that the central planner does not need

to rely on any input from the agents’ themselves) finding a solution is still non-trivial. In particular,

we assume that the central planner knows exactly which items are being allocated, and how much

each agent values each and every item. As we will show later, the challenge in this setting is

a computational one. Instead of relying on statistical tools (which were helpful for tackling the

learning challenge in Chapter 1), or the structure of the utility function (which were crucial in

solving the problem in Chapter 2), in this chapter we will use tools from optimization and duality

theory to design tractable algorithms.

3.1 Background and Motivation

In this chapter, we focus on the problem of finding a resource allocation policy that divides a

pool of items, represented by a distributionD, to 𝑛 receivers, under the constraint that each receiver

𝑖 must be allocated a prespecified fraction 𝑝∗
𝑖

of the items, where 𝑝∗
𝑖
∈ (0, 1), 1⊤𝑝∗ = 1 is an input

to the problem that characterizes the priority of each receiver. We refer to {𝑝∗
𝑖
}𝑛
𝑖=1 as the target

matching distribution. In addition to this matching distribution constraint, we also require that

the receiver’s envy, which we will define formally later, be bounded. Unlike the existing resource

allocation literature, where envy-free is either treated as a hard constraint or not considered at all,

we allow the central planner to specify the level of envy that is tolerated, and find the most efficient

allocation given the amount of envy budget. This allows us to reduce the envy significantly without
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paying the full price of fairness with respect to efficiency.

To concretely motivate our model, let us consider the blood donor matching problem that was

first studied in [52]. The Meta platform has a tool called Facebook Blood Donations, where users

who opt in to receive notifications are notified about blood donation opportunities near them. De-

pending on the user’s and the blood bank’s specific characteristics (e.g., age, occupation for the

user, and locations, hours for the blood bank), notifications about different donation opportunities

have different probabilities of resulting in an actual blood donation. The platform would like to

send each user the most relevant notifications (to maximize the total number of potential blood

donations), while maintaining certain fairness criteria for all the blood banks that participate in

this program. Although the platform can theoretically send each user multiple notifications about

multiple blood banks, for user experience and other practical reasons, this is not done, at least in

the model introduced in [52]. Therefore in this problem, users’ attention is the scarce resource

that the platforms needs to allocate to different blood banks. The most natural type of fairness

criteria in this setting is perhaps the number of users that received notifications about each of

the blood banks. For example, it is not desirable to match zero users to a particular, potentially

inconveniently-located, blood bank, even if matching zero users to this blood bank results in more

blood donations in expectation.

Another fairness desideratum commonly studied in the literature is called envy-freeness. We

say that receiver 𝐴 envies receiver 𝐵 if 𝐴 values 𝐵’s allocation more than her own. Intuitively,

an allocation that is envy-free–where no agent envies another agent–is perceived to be fair. This

chapter considers both of the two fairness criteria mentioned above: we study a setting where the

goal is to maximize social welfare under a matching distribution constraint, while ensuring that

each receiver has bounded envy. We make the following contributions in regards to this problem:

1. We formulate it as a constrained version of a semi-discrete optimal transport problem and

show that the optimal allocation policy has a concise representation and a simple geometric

structure. This is particularly attractive for large-scale allocation problems, due to the fast

computation of a match given an item. This insight also shines new light on the question of
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when envy arises, and when the welfare price on envy-freeness is large.

2. We propose an efficient stochastic optimization algorithm for this problem and show that it

has a provable convergence rate of 𝑂 (1/
√
𝑇).

3. We investigate the statistical properties of the space of our optimal transport based allocation

policies by showing a Probably Approximately Correct (PAC)-like sample complexity bound

for approximating the optimal solution given finite samples.

In Section 3.4 we formally define the problem we are interested in. In Section 3.5, we show

that this problem can be formulated as a semi-discrete optimal transport problem, whose solution

has a simple structure with a nice geometric interpretation. Section 3.6 develops a stochastic

optimization algorithm. In Section 3.7, we show that an 𝜖-approximate solution can be found with

high probability given �̃� ( 𝑛
𝜖2 ) samples, where 𝑛 is the number of receivers. Finally, in Section 3.8

we demonstrate the effectiveness of our approach using both artificial and a semi-real data.

3.2 Review of Optimal Transport

Since our work draws an explicit connection to optimal transport (OT), we provide a summary

of key OT results here. The results in this Section will also be useful later in Chapter 4 where we

discuss a different but related resource allocation problem. Let 𝛼, 𝛽 be two probability measures

on the metric spaces X,Y respectively. We define Π(𝛼, 𝛽) as the set of joint probability measures

on X × Y with marginals 𝛼 and 𝛽. The Kantorovich formulation of the optimal transport problem

[53] can be written as

𝐿 (𝛼, 𝛽) B min
𝜋∈Π(𝛼,𝛽)

∫
X×Y

𝑐(𝑥, 𝑦)𝑑𝜋(𝑥, 𝑦) (3.1)

where 𝑐(𝑥, 𝑦) is the cost associated with “moving” 𝑥 to 𝑦. This is called a transportation problem

because the conditional probability 𝜋(𝑦 |𝑥) specifies a transportation plan for moving probability

mass from X to Y. If 𝛽 is a discrete measure, i.e. Y is finite, then it is known from [54] that
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the dual to (3.1) can be written as (here we abuse the notation 𝛽 to also represent the vector of

probability masses, where 𝛽𝑖 is the probability mass on point 𝑦𝑖):

max
𝑔∈R𝑛
E(𝑔) B

∑︁
𝑖∈[𝑛]

∫
L𝑦𝑖 (𝑔)

𝑐(𝑥, 𝑦𝑖) − 𝑔𝑖 𝑑𝛼(𝑥) + 𝑔⊤𝛽 (3.2)

where 𝑛 = |Y|, and L𝑦𝑖 is what is sometimes referred to as the Laguerre cell:

L𝑦𝑖 (𝑔) =
{
𝑥 ∈ X : ∀𝑖 ≠ 𝑗 , 𝑐(𝑥, 𝑦𝑖) − 𝑔𝑖 ≤ 𝑐(𝑥, 𝑦 𝑗 ) − 𝑔 𝑗

}
(3.3)

Proposition 1 (Proposition 2.1 [54]). If 𝛼 is a continuous measure, and 𝛽 a discrete measure, then

𝐿 (𝛼, 𝛽) = max
𝑔
E(𝑔), and the optimal solution 𝜋 of (3.1) is given by the partition

{
L𝑦𝑖 (𝑔∗), 𝑖 ∈ [𝑛]

}
,

i.e. 𝑑𝜋(𝑥, 𝑦𝑖) = 𝑑𝛼(𝑥) if 𝑥 ∈ L𝑦𝑖 (𝑔∗), 0 otherwise.

3.3 Literature Review

Blood donation matching. McElfresh et al. [52] introduced this problem and modeled it as an

online matching problem, where the matching quality between an user and a blood bank is assumed

to be known to the platform. The model formulation there is complex, as it takes into account the

fact that not every blood bank is in need of blood every day, a dynamic which we do not consider

here. Furthermore, their matching policy is rather cumbersome, requiring a separate parameter

for each (donor, receiver) pair. Compared to their paper, we are able to provide better structural

insights to the problem by utilizing a simpler model that still captures the most salient part of the

problem.

Online Resource Allocation. Another strand of work that our paper is closely related to is that

of online resource allocation, especially those with i.i.d. or random permutation input models [55,

56, 57]. Agrawal et al. [58] studied the setting with linear objective and gave competitive ratio
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bounds. Then, Agrawal and Devanur [59] generalized the results to concave objectives and con-

vex constraints. Later, Devanur et al. [57] improved the approximation ratio bounds and relaxed

the input assumptions on the budgets. Balseiro et al. [60] show that online mirror descent on the

dual multpliers does well under both i.i.d. adversarial, and certain non-stationary input settings.

However, none of theses papers study the envy-free criterion. Recently, Balseiro et al. [61] stud-

ied an online resource allocation problem with fairness regularization. Although the authors did

not explicitly study envy regularization, their regularization framework can be modified to accom-

modate envy regularization. However, like all the other papers mentioned in this paragraph, the

offline solution is used as the benchmark to measure regret, but no explicit solution is given to the

offline problem. Our analysis focuses on the offline problem, and draws an explicit connection

to optimal transport, which allowed us to provide a novel PAC-like analysis on the sample com-

plexity of the problem. In another recent paper, Sinclair et al. [62] studied the trade-off between

minimizing envy and minimizing waste, which refers to un-allocated resources. Despite close sim-

ilarity between our titles, their offline benchmark is the standard Eisenberg-Gale program, which

is envy-free, but does not address the welfare cost of achieving envy-freenes.

Fair Division. Offline resource allocation, or commonly known as fair division, is also a popular

research area. A large body of these papers are formulated as a cake-cutting problem ([63, 64,

65]) where the resources are modeled as an interval and the agents’ valuations are represented as

functions on this interval. However most existing results are based on relatively simple (e.g., piece

wise uniform, or piece wise linear) valuation functions, where as our problem can be thought of as

a cake cutting problem with arbitrarily complex valuation functions. Other fair division literature

that studies envy-freeness as a fairness criterea usually treat it as a hard constraint, and tries to

maximize social welfare subject to that constraint ([66, 67]). Others have also characterized the

worst-case loss in social welfare due to the requirement of envy-freeness [68], and other fairness

notions [69]. Unlike these papers that focus on achieving zero envy, we treat the allowable envy as

a parameter, and find the most efficient solutions subject to the desired amount of envy.
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3.4 Problem Formulation

There is a set of 𝑛 receivers Y. There is a “pool” of items, represented by a distribution 𝛼

over X ⊆ [0, 𝑥]𝑛. Each random draw from this distribution 𝑋 ∼ 𝛼 is a vector representing the 𝑛

receivers’ valuations of this item. The goal is to maximize the expected matched utilities of the

recipients, while maintaining the constraint that the receiver 𝑦𝑖 is matched 𝑝∗
𝑖

fraction of the times

in expectation. Here {𝑝∗
𝑖
}𝑛
𝑖=1 is called the target matching distribution which intuitively represents

receivers’ importance. A matching policy 𝜋 takes a valuation vector and maps it (potentially with

randomness) to one of the 𝑛 receivers. Let 𝜋(𝑦 |𝑥) denote the probability of matching the item to

𝑦 given valuation vector 𝑥. The basic problem formulation is to solve the following optimization

problem:

max
𝜋
E𝑋∼𝛼

[
𝑛∑︁
𝑖=1

𝑋𝑖𝜋(𝑦𝑖 |𝑋)]
]

(3.4)

𝑠.𝑡. P [𝜋(𝑦𝑖 |𝑋)] = 𝑝∗𝑖 ∀𝑖 ∈ [𝑛]

We assume that 𝑝∗
𝑖
> 0 for all 𝑖. This is WLOG, because we can always pretend that a receiver

does not exist, if the target fraction for that receiver is 0. An example of such problem can be

see in Figure 3.1, where 𝛼 is a distribution over the unit square, and the goal is to partition the

square into blue and orange regions (given to 𝐴 and 𝐵 respectively) such that each region covers

the desired 𝑝∗
𝐴
, 𝑝∗

𝐵
probability mass. Note that the orange and blue regions are allowed to over

lap (probabilitistic partition), and that the boundary does not have to be linear as illustrated in

the figure. As we will show later in Section 3.5, despite the large design space permitted by the

formulation in (3.4), we can in fact focus on a much smaller design space.

In resource allocation problems, it is often the case that we care not just about efficiency (max-

imizing social welfare, or the sum of all receivers’ utilities), but also other fairness criteria. One of

the most commonly studied fairness criteria is envy-freeness. Agent 𝑦𝑖 envies another agent 𝑦 𝑗 if

agent 𝑦𝑖 values the allocation given to 𝑦 𝑗 more (after adjusting for their priority weights). We can
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formally define agent 𝑦𝑖’s envy as

𝐸𝑛𝑣𝑦(𝑦𝑖) = max
𝑗
E𝛼

[
𝑋𝑖𝜋(𝑦 𝑗 |𝑋)

𝑝∗
𝑖

𝑝∗
𝑗

− 𝑋𝑖𝜋(𝑦𝑖 |𝑋)
]

(3.5)

Instead of the vanilla formulation in (3.4), we consider the following more general formulation:

max
𝜋
E𝑋∼𝛼

[
𝑛∑︁
𝑖=1

𝑋𝑖𝜋(𝑦𝑖 |𝑋)]
]

(3.6)

𝑠.𝑡. P [𝜋(𝑦𝑖 |𝑋)] = 𝑝∗𝑖 ∀𝑖 ∈ [𝑛]

𝐸𝑛𝑣𝑦(𝑦𝑖) ≤ _𝑖 ∀𝑖

In existing fair resource allocation literature, people focus on finding allocations such that 𝐸𝑛𝑣𝑦(𝑦𝑖)

is at most 0 for every 𝑦𝑖. This can be a very restrictive constraint, often satisfied at the cost

of reducing efficiency by a significant amount (This reduction is sometimes referred to as the

Cost-of-Fairness). We take a different approach, and allow the central planner to set non-negative

constraints on envy.

3.5 Optimal Solution Structure

The space of feasible solutions for (3.6) is large, which makes the problem difficult to optimize

directly. However we can use the tools from OT to reduce the search space to something with much

more structure. The key observation is that (3.6) can be formulated as variation of the semi-discrete

optimal transport problem given in Equation (3.1).

Let’s first consider the simpler case in (3.4) where there are no envy constraints. In this case,

the problem can be stated in the form of (3.1) as follows: the cost function is the negative utility

of the matched receiver 𝑐(𝑥, 𝑦𝑖) = −𝑥𝑖, the 𝛽 measure is the discrete measure
∑𝑛
𝑖=1 𝑝

∗
𝑖
𝛿𝑦𝑖 , and the

matching policy 𝜋(𝑦 |𝑥) in (3.6) is exactly the conditional probability of the joint distribution in

(3.1). From Theorem 1 it follows that the optimal matching policy is represented by Laguerre cells

given in (3.3): 𝑥 is matched to 𝑦𝑖 if 𝑖 = arg min𝑘 −𝑥𝑘 −𝑔𝑘 . Note that the dual variables 𝑔 ∈ R𝑛 serve
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Figure 3.1: Left: An illustration of what Laguerre cells look like when 𝑛 = 2. Consider any
distribution on the support [0, 1]2. The optimal division of the space is to move the diagonal line
up or down until the probability mass contained in the orange region is equal to 𝑝∗. Right: A
pictorial proof of the optimality of such partition. Suppose one can find an 𝜖 mass above this
line that is matched to 𝐴, and an 𝜖 mass below the line that is matched to 𝐵, then switching the
assignments of these two regions increases the matched weights.

as an “adjustment” over the agents’ reported utilities, and the resulting matching policy is simply

a greedy policy over this adjusted valuation vector.

Geometrically, each Laguerre cell is simply the intersection of half-spaces: L𝑖 (𝑔) = ∩𝑘 {𝑥 :

𝑥𝑖 + 𝑔𝑖 ≥ 𝑥𝑘 + 𝑔𝑘 }. To visualize this better, consider the simple setting with two receivers 𝐴, 𝐵

where their valuations for an item is a joint distribution supported on [0, 1]2. Suppose we want to

match 𝑝∗ fraction of the items to receiver 𝐵. Figure 3.1 gives a proof-by-picture that the optimal

strategy is to divide the space up with a slope-1 diagonal line such that the probability mass lying

above the line is equal to 𝑝∗. This geometric interpretation of the matching policy plays a crucial

role in getting us a sample complexity bound later in Section 3.7.

With this geometric interpretation of the solution space in mind, let us consider the more gen-

eral case with envy constraints as formulated in (3.6). The envy constraints can be added to the OT

problem in (3.1) like so:

𝐿 (𝛼, 𝛽, _) = min
𝜋∈Π(𝛼,𝛽)

∫
X×Y

𝑐(𝑥, 𝑦)𝑑𝜋(𝑥, 𝑦) (3.7)

𝑠.𝑡.

∫
X
𝑐(𝑥, 𝑦 𝑗 )𝑑𝜋(𝑥, 𝑦 𝑗 ) −

∫
X
𝑐(𝑥, 𝑦 𝑗 )𝑑𝜋(𝑥, 𝑦𝑘 )

𝛽 𝑗

𝛽𝑘
≤ _ 𝑗 ∀( 𝑗 , 𝑘) ∈ [𝑛]2, 𝑗 ≠ 𝑘

Although envy constraints make the solution space more complicated, we show that it retains the

geometric structure of being the intersection of half-spaces. The dual of (3.7) can be derived using
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Fenchel-Rockafellar’s theorem:

max
𝑔∈R𝑛,𝛾∈R𝑛2−𝑛

+

E(𝑔, 𝛾) B
∑︁
𝑗∈[𝑛]

∫
L𝑦 𝑗 (𝑔,𝛾)

�̄�𝛾,𝑐 (𝑥, 𝑦 𝑗 )𝑑𝛼(𝑥) + 𝑔⊤𝛽 −
∑︁
𝑗 ,𝑘, 𝑗≠𝑘

𝛾 𝑗 𝑘_ 𝑗 (3.8)

where

�̄�𝛾,𝑐 (𝑥, 𝑦 𝑗 ) B
©«1 +

∑︁
𝑘≠ 𝑗

𝛾 𝑗 𝑘
ª®¬ 𝑐(𝑥, 𝑦 𝑗 ) −

∑︁
𝑘≠ 𝑗

𝛾𝑘 𝑗𝑐(𝑥, 𝑦𝑘 )
𝛽𝑘

𝛽 𝑗
− 𝑔 𝑗 , (3.9)

L𝑦 (𝑔, 𝛾) B
{
𝑥 ∈ X : 𝑦 = arg min

𝑦′∈Y
�̄�𝛾,𝑐 (𝑥, 𝑦′)

}
. (3.10)

Theorem 3. If 𝛼 is a continuous measure, and 𝛽 a discrete measure, then 𝐿 (𝛼, 𝛽, _) = max
𝑔,𝛾
E(𝑔, 𝛾),

and the optimal solution 𝜋 of (3.7) is given by the partition
{
L𝑦𝑖 (𝑔∗, 𝛾∗), 𝑖 ∈ [𝑛]

}
: 𝑑𝜋(𝑥, 𝑦𝑖) =

𝑑𝛼(𝑥) if 𝑥 ∈ L𝑦𝑖 (𝑔∗, 𝛾∗), 0 otherwise.

Note that when 𝑐(𝑥, 𝑦𝑖) = −𝑥𝑖, �̄�𝛾,𝑐 (𝑥, 𝑦 𝑗 ) is linear in 𝑥, which means that the new Laguerre

cells L𝑦 (𝑔, 𝑦) given in Equation (3.10) are still intersections of half spaces (some examples are

given later in Figure 3.2). Furthermore, the allocation policy can be interpreted as a greedy policy

based on the adjusted utility given by (3.9), which contains additional interaction terms that take

envy into account.

3.6 Stochastic Optimization

Theorem 3 shows that the optimal solution to our allocation problem in (3.6) is represented by

the optimal dual solution from (3.8). To solve this optimization problem, first note that the objective

function E(𝑔, 𝛾) is concave. To see this, we can rewrite the objective function as follows:

E(𝑔, 𝛾) =
∫
X

min
𝑖∈[𝑛]

�̄�𝛾,𝑐 (𝑥, 𝑦𝑖)𝑑𝛼(𝑥) + 𝑔⊤𝛽 −
∑︁
𝑗 ,𝑘, 𝑗≠𝑘

𝛾 𝑗 𝑘_ 𝑗 (3.11)

Since �̄�𝛾,𝑐 (𝑥, 𝑦 𝑗 ) is linear in 𝑔 and 𝛾 and taking a minimum preserves concavity, the objective

function is concave. Therefore, the dual problem is a constrained convex optimization problem.
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The gradient of E(𝑔, 𝛾) can be computed as follows:

∇𝑔E(𝑔, 𝛾) 𝑗 = −
∫
L𝑦 𝑗 (𝑔,𝛾)

𝑑𝛼(𝑥) + 𝛽 𝑗 (3.12)

∇𝛾E(𝑔, 𝛾) 𝑗 𝑘 =
∫
L𝑦 𝑗 (𝑔,𝛾)

𝑐(𝑥, 𝑦 𝑗 )𝑑𝛼(𝑥) −
∫
L𝑦𝑘 (𝑔,𝛾)

𝑐(𝑥, 𝑦 𝑗 )
𝛽 𝑗

𝛽𝑘
𝑑𝛼(𝑥) − _ 𝑗 (3.13)

ALGORITHM 3: Projected SGD for Envy Constrained Optimal Transport
Input: Distribution 𝛼, target matching distribution 𝑝∗, timesteps 𝑇 .
Initialize 𝑔0 = 0, 𝛾0 = 0, [ = 1√

𝑇
.

for 𝑡 ← 0, 1, 2, . . . , 𝑇 do
Sample 𝑥𝑡 ∼ 𝛼
𝑔𝑡+1 ← 𝑔𝑡 + [∇̂𝑔E(𝑔, 𝛾)
𝛾𝑡+1 ←

(
𝛾𝑡 + [∇̂𝛾E(𝑔, 𝛾)

)+
end
return

∑𝑇
𝑡=1 𝑔𝑡/𝑇,

∑𝑇
𝑡=1 𝛾𝑡/𝑇

Calculating this gradient is hard, as it involves integration over an arbitrary measure 𝛼. How-

ever, an unbiased, stochastic version of the gradient can be easily obtained from a single sample

𝑥 ∼ 𝛼:

∇̂𝑔E(𝑔, 𝛾) 𝑗 = −1[𝑥 ∈ L𝑦 𝑗 (𝑔, 𝛾)] + 𝛽 𝑗 (3.14)

∇̂𝛾E(𝑔, 𝛾) 𝑗 𝑘 = 𝑐(𝑥, 𝑦 𝑗 )1[𝑥 ∈ L𝑦 𝑗 (𝑔, 𝛾)] − 𝑐(𝑥, 𝑦 𝑗 )
𝛽 𝑗

𝛽𝑘
1[𝑥 ∈ L𝑦𝑘 (𝑔, 𝛾)] − _ 𝑗 (3.15)

The details of the algorithm is given in Algorithm 3. Standard projected SGD analysis (see for

example [70]) tells us that Algorithm 3 converges at the rate E(𝑔∗, 𝛾∗) − E (E[𝑔𝑇 ],E[𝛾𝑇 ]) ≤

𝑂

(
1√
𝑇

)
.

3.7 Learning from Samples

So far we have considered the setting where the true underlying distribution is known, and

assumed that we can freely draw independent samples from that distribution. In many settings,
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we only have access to 𝛼 in the form of finite number of i.i.d. samples. In this section, we focus

only on the assignment cost function 𝑐(𝑥, 𝑦𝑖) = −𝑥𝑖, which models our original resource allocation

problem proposed in Section 3.4. The goal of this section is to establish a sample complexity

bound for solving the dual problem (3.8). Let 𝑆 = {𝑋1, 𝑋2, . . . , 𝑋𝑚} be 𝑚 independent samples

from 𝛼. The empirical version of the dual objective (3.11) is:

E𝑆 (𝑔, 𝛾) =
1
𝑚

𝑚∑︁
𝑡=1

min
𝑖∈[𝑛]

�̄�𝛾,𝑐 (𝑋 𝑡 , 𝑦𝑖) + 𝑔⊤𝛽 −
∑︁
𝑗 ,𝑘, 𝑗≠𝑘

𝛾 𝑗 𝑘_ 𝑗 (3.16)

Let �̂�𝑆, �̂�𝑆 be the empirical maximizer given the set of samples 𝑆: (�̂�𝑆, �̂�𝑆) B arg maxE𝑆 (𝑔, 𝛾),

and 𝑔∗, 𝛾∗ be the population maximizer (𝑔∗, 𝛾∗) = arg maxE(𝑔, 𝛾). We are interested in bounding

the number of samples needed so that E(𝑔∗, 𝛾∗) − E(�̂�𝑆, �̂�𝑆) is small with high probability. Let’s

introduce some new notations to facilitate our later discussions. Define the following hypothesis

class for each 𝑖:

𝐹𝑖 =

𝑥 ↦→ �̄�𝛾,𝑐 (𝑥, 𝑦𝑖) + 𝑔⊤𝛽 −
∑︁
𝑗 ,𝑘, 𝑗≠𝑘

𝛾 𝑗 𝑘_ 𝑗 : 𝑔 ∈ R𝑛, 𝛾 ∈ R𝑛(𝑛−1)
+

 . (3.17)

as well as the overall hypothesis class:

𝐹 =

𝑥 ↦→ min
𝑖∈[𝑛]

�̄�𝛾,𝑐 (𝑥, 𝑦𝑖) + 𝑔⊤𝛽 −
∑︁
𝑗 ,𝑘, 𝑗≠𝑘

𝛾 𝑗 𝑘_ 𝑗 : 𝑔 ∈ R𝑛, 𝛾 ∈ R𝑛(𝑛−1)
+

 . (3.18)

Plugging 𝑐(𝑥, 𝑦𝑖) = −𝑥𝑖 into the definition of �̄�𝛾,𝑐, we see that for a given 𝑔, and 𝛾, the correspond-

ing hypothesis 𝑓𝑖 ∈ 𝐹𝑖 can be written as 𝑓𝑖 (𝑥) = 𝑤⊤𝑥 + 𝑏, where

𝑤 𝑗 =


−(1 + ∑

𝑘≠𝑖

𝛾𝑖𝑘 ), if 𝑗 = 𝑖

𝛾 𝑗𝑖
𝛽 𝑗
𝛽𝑖
, if 𝑗 ≠ 𝑖

, (3.19)

and

𝑏 = −𝑔𝑖 + 𝑔⊤𝛽 −
∑︁
𝑗 ,𝑘, 𝑗≠𝑘

𝛾 𝑗 𝑘_ 𝑗 . (3.20)
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It also follows that

𝐹 ⊆ 𝐹𝑚𝑖𝑛 B {𝑥 ↦→ min
𝑖
𝑓𝑖 (𝑥) : 𝑓𝑖 ∈ 𝐹𝑖}.

This interpretation of the original hypothesis class as the minimum over 𝑛 affine hypothesis classes

is the key observation to prove the sample complexity bound. We prove our main result under the

following boundedness assumption:

Assumption 3. The hypothesis 𝑓 (𝑥) = min𝑖 𝑓𝑖 (𝑥) = min
𝑖
𝑤𝑖
⊤
𝑥 + 𝑏𝑖 corresponding to the optimal

dual solution 𝑔∗, 𝛾∗ satisfies ∥𝑤𝑖∥1 ∨ |𝑏𝑖 | ≤ 𝑅 for some 𝑅 > 0. In particular, these assumptions

imply that 𝐹𝑖 and 𝐹 are uniformly bounded by 𝑅𝑥 + 𝑅.

From (3.19) and (3.20) we can see that this is essentially a bound on the optimal dual variables

𝑔∗, 𝛾∗, and a bound on the ratio 𝛽 𝑗/𝛽𝑖, both of which are determined by the input distributions 𝛼, 𝛽,

and do not depend on the number of samples. In other words, 𝑅 is a problem dependent constant.

Theorem 4. Under Assumption 3, for a given sample size 𝑚, with probability 1 − 𝛿, E(𝑔∗, 𝛾∗) −

E(�̂�𝑆, �̂�𝑆) < 𝑂
(√︃
(log𝑚)3+log(1/𝛿)

𝑚

)
.

Proof. We prove the result via uniform convergence:

E(𝑔∗, 𝛾∗) − E(�̂�𝑆, �̂�𝑆)

=E(𝑔∗, 𝛾∗) − E𝑆 (�̂�𝑆, �̂�𝑆) + E𝑆 (�̂�𝑆, �̂�𝑆) − E(�̂�𝑆, �̂�𝑆)

≤E(𝑔∗, 𝛾∗) − E𝑆 (𝑔∗, 𝛾∗) + E𝑆 (�̂�𝑆, �̂�𝑆) − E(�̂�𝑆, �̂�𝑆)

≤ sup
𝑔,𝛾

(E(𝑔, 𝛾) − E𝑆 (𝑔, 𝛾)) + sup
𝑔,𝛾

(E𝑆 (𝑔, 𝛾) − E(𝑔, 𝛾))

≤2 sup
𝑔,𝛾

|E(𝑔, 𝛾) − E𝑆 (𝑔, 𝛾) | (3.21)

Clearly, it suffices to show that E𝑆 (·) converges uniformly to E(·). For a given 𝑔, 𝛾, the dual

objective function can be written as an expectation over their corresponding 𝑓 ∈ 𝐹,

E(𝑔, 𝛾) = E𝛼 [ 𝑓 (𝑋)],
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and similarly for the empirical objective function

E𝑆 (𝑔, 𝛾) =
1
𝑚

𝑚∑︁
𝑡=1

𝑓 (𝑋 𝑡).

Then we can rewrite the supremum in (3.21) as:

sup
𝑔,𝛾

|E(𝑔, 𝛾) − E𝑆 (𝑔, 𝛾) | = sup
𝑓 ∈𝐹

�����E𝛼 [ 𝑓 (𝑋)] − 1
𝑚

∑︁
𝑋∈𝑆

𝑓 (𝑋)
����� (3.22)

Since | 𝑓 (𝑋) | ≤ (𝑅𝑥 + 𝑅) for all 𝑓 ∈ 𝐹, 𝑋 ∈ X, it follows from Theorem 26.5 in [71] that with

probability 1 − 𝛿,

sup
𝑓 ∈𝐹
E𝛼 [ 𝑓 (𝑋)] −

1
𝑚

∑︁
𝑋∈𝑆

𝑓 (𝑋) ≤ 2E𝑆 [Rad𝑚 (𝐹 ◦ 𝑆)] + (𝑅𝑥 + 𝑅)
√︂

2 log(2/𝛿)
𝑚

(3.23)

and the same also holds by replacing 𝐹 with −𝐹. Here

Rad𝑚 (𝐹 ◦ 𝑆) B E𝜎


1
𝑚

sup
𝑓

𝑚∑︁
𝑗=1
𝜎𝑗 𝑓 (𝑋 𝑗 )


is the standard definition of Rademacher complexity of the set 𝐹◦𝑆. Since 𝜎𝑖 are 𝑖.𝑖.𝑑. Rademacher

random variables, it is easy to see that Rad𝑚 (𝐹 ◦ 𝑆) = Rad𝑚 (−𝐹 ◦ 𝑆). Therefore we can use a

union bound to obtain that with probability 1 − 𝛿,

sup
𝑓 ∈𝐹

�����E𝛼 [ 𝑓 (𝑋)] − 1
𝑚

∑︁
𝑋∈𝑆

𝑓 (𝑋)
����� ≤ 2E𝑆 [Rad𝑚 (𝐹 ◦ 𝑆)] + (𝑅𝑥 + 𝑅)

√︂
2 log(4/𝛿)

𝑚
(3.24)

It remains to bound the Rademacher complexity of the 𝐹 ◦𝑆. To do so, we use tools from learn-

ing theory, and give the following bound on the fat-shattering dimension ([72]) of the hypothesis

class 𝐹.

Lemma 13. Under Assumption 3, 𝐹 has Z-fat-shattering dimension of at most 𝑐0 (𝑅𝑥+𝑅)2
Z2 𝑛 log(𝑛),

where 𝑐0 is some universal constant.
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Figure 3.2: Allocation policy for artificial data under different envy constraints. From left to right:
𝜖 = 0.2, 0.1, 0.0. When the envy constraint is loose (large 𝜖), 𝐵 envies 𝐴, since both agents prefer
the items on the top right, but most of them are allocated to 𝐴. As the envy constraint tightens,
the allocation boundary tilts in the direction that makes the allocations more even between the two
agents.

Figure 3.3: The trade-off curve between envy
and welfare for both data-sets. The shaded re-
gion is between 25th and 75th percentile of the
trials. The non-monotonicity in the plot for the
simulator data is due to the stochasticity in the
SGD algorithm.

Figure 3.4: Approximation gap with respect
to sample size. Both 𝑥 and 𝑦 axis are in log
scale. The solid line is the median and the
shaded region is between the 25th and 75th per-
centile. The dashed lines show what the theo-
retical 1/

√
𝑚 rate would look like.

Proof. Theorem 3 in [73] shows that fatZ (𝐹𝑚𝑖𝑛) ≤ 𝑐0 (𝑅𝑥+𝑅)2
Z2 𝑛 log 𝑛. Since the shattering dimension

is monotone in the size of the set, we are done.

□

The above bound on the fat-shattering dimension can be used to bound the covering number

(see Definition 27.1 of [71]) of 𝐹 ◦ 𝑆. Theorem 1 from [74] states that

N(𝛿, 𝐹, | | · | |2) ≤
(
2𝐵
𝛿

)𝑐1fat𝑐2 𝛿 (𝐹)
(3.25)
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where 𝐵 is a uniform bound on the absolute value of any 𝑓 ∈ 𝐹. Let 𝐵 = (𝑅𝑥 + 𝑅), we have that

Rad𝑚 (𝐹 ◦ 𝑆)

≤ inf
𝛿′>0

{
4𝛿′ + 12

∫ 𝐵

𝛿′

√︂
logN(𝛿, 𝐹, | | · | |2)

𝑚
𝑑𝛿

}
≤ inf
𝛿′>0

4𝛿′ + 12
√
𝑐1𝑐0

𝑐2
𝐵

√︂
𝑛 log 𝑛
𝑚

∫ 𝐵

𝛿′

√︄
log

(
2𝐵
𝛿

)
𝑑𝛿


= inf
𝛿′>0

{
4𝛿′ + 8

√
𝑐1𝑐0

𝑐2
𝐵2

√︂
𝑛 log 𝑛
𝑚

(
log(2𝐵

𝛿′
) 3

2 + (log 2) 3
2

)}
=𝑐′

√︂
𝑛 log 𝑛(log𝑚)3

𝑚

Where in the first, second, and last step we used Dudley’s chaining integral [75, 76], Lemma 13

and (3.25), and setting 𝛿′ = 1√
𝑚

respectively. Plugging the above back to (3.24) and (3.21), we see

that with probability 1 − 𝛿,

E(𝑔∗, 𝛾∗) − E(�̂�𝑆, �̂�𝑆) ≤ 𝑐′ ©«
√︂
𝑛 log 𝑛(log𝑚)3

𝑚
+

√︄
1 log 1

𝛿

𝑚

ª®¬ .
Conversely, ignoring the log terms, 𝑚 needs to be at most on the order of �̃�

(
𝑛

𝜖2

)
in order for

E(𝑔∗, 𝛾∗) − E(�̂�𝑆, �̂�𝑆) to be bounded by 𝜖 with high probability.

□

3.8 Experiments

We test our solution with both artificial data, and simulated data from a realistic simulator

for blood donor matching developed by [52]. The artificial data contains two receivers, and their

valuation distribution is a linearly transformed uniform distribution. This is to make visualization

of the resulting allocation policy easier. The simulator data is based on geographical and population

information from San Francisco, and contains 5 receivers. To set the envy budgets _ ∈ R𝑛, we first

decide on a constant 𝜖 ∈ R+, and then multiply this by the target matching distribution 𝑝∗ ∈ R𝑛:
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_𝑖 𝑗 = 𝜖 𝑝
∗
𝑖
∀𝑖, 𝑗 . With this setup 𝜖 is a bound on the normalized envy for each receiver: 1

𝑝∗
𝑖
𝐸𝑛𝑣𝑦(𝑖) ≤

𝜖 ∀𝑖. Figure 3.2 illustrates how the allocation policy changes as we change 𝜖 . As the envy constraint

tightens, the decision boundary tilts in the direction that split the “good” (items which both agents

prefer) and “bad” (items which both agents dislike) items more evenly between the receivers.

Next we investigate the tradeoff between envy and social welfare by using SGD to compute ap-

proximately optimal allocations for varying 𝜖 . We plot the percent welfare gap (difference between

the maximum welfare without envy constraints, and the welfare with envy constraints, divided by

the former) with respect to realized, max normalized envy. Figure 3.3 shows the result. For the

simulator data, the welfare gap is small even with a no-envy constraint, which means that aiming

for envy free allocations might make sense. In the case of the artificial data however, paying 50%

of the full price of fairness reduces 65% of the envy. In such settings, one might want to sacrifice

some envy for better welfare.

These experiments also highlight when envy arises. When receivers’ utilities are highly cor-

related, but one receiver has larger variance than others, that receiver receives almost all the good

items (which results in large envy for other receivers), even though others value the items almost

as much. In such cases, a small reduction in welfare can reduce a large amount of envy. This

seems to be the case for the simulator data. On the other hand, if utilities are correlated, but only

one receiver has very strong preferences, then allowing a small amount of envy can improve the

welfare significantly.

Finally, in Figure 3.4 we investigate the quality of the empirical solutions as the sample size

increases. It can been seen that the approximation gap decreases faster than the theoretical rate,

confirming our sample complexity bound in Theorem 4.

3.9 Conclusion and Future Directions

Although we believe that the model proposed here is natural, and captures the most salient as-

pects of some of the resource allocation problems in real life, any implementation of our proposed

strategy in critical applications such as blood donation should be prefaced with more rigorous back-
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testing in order to minimize the risk of unintended consequences in application specific metrics not

studied in this chapter.

For future directions, one key property that we did not study in this chapter is the problem

of incentive compatibility. For our motivating application of blood donation, this is not an issue

because online platforms such as Meta has proprietary models that can predict the matching quality

between donor and receiver. This means that the platform observes the value of matchings without

having to rely on the receivers to self-report. This is also true in many other online matching

problems such as sponsored ads. However, in settings where the central planner relies on the

receivers to self-report their valuations for each of the items, incentive compatibility becomes a

crucial issue. We are excited about the potential of using Optimal Transport in fair-division, and

plan on exploring the incentive issues in future work.
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Chapter 4: Online Allocation and Learning in the Presence of Strategic

Agents

The previous Chapter focused on an offline, constrained resource allocation problem where the

distribution of the items is either readily available, or can be closely approximated with existing

samples. Furthermore, we assumed that the central planner can observe the agents’ true valuations

for the items, which means that the agents cannot misreport their valuations to game the system.

In this Chapter, we relax the above assumptions by first assuming that the central planner has no

a priori information about the distribution of the agents’ valuations, which means that the central

planner has to adjust its’ allocation policy over time to achieve good performance. We further

assume that the central planner relies on the agents to report their private valuations, which means

that the agents can now potentially misreport their valuations in order to receive better items at the

expense of social welfare. As such, the problem we study in this chapter combines all the elements

from the previous chapters, which makes it especially interesting to tackle. To make the problem

tractable however, we do need to make additional assumptions on the agents’ valuations for the

items.

4.1 Background and Motivation

A classic sequential resource allocation problem is to allocate 𝑇 sequentially arriving items to

𝑛 agents, where each agent must receive a predetermined fraction of the items. The goal is to max-

imize social welfare, i.e., the agents’ total valuation of the items allocated to them. This problem

is non-trivial even when the agents’ valuations are stochastic and i.i.d. with a known distribution,

the main difficulty being that the allocations must be performed in real-time; specifically, an item

must be allocated to an agent in the current round without knowledge of their future valuations.
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A more challenging (and quite useful) extension of the problem which has been the focus of re-

cent literature considers the case where the distribution of the agents’ valuations is apriori unknown

to the planner. In such settings, algorithms based on online learning can be used to adaptively learn

the valuation distribution from observed valuations in previous rounds, and improve the allocation

policy over time (see [77, 78, 60, 61] for some examples). However, these mechanisms implicitly

assume that the agents report their valuations truthfully, so that the mechanism can directly learn

from the reported valuations in order to maximize the social welfare.

Many practical resource allocations settings do not conform with the truthful reporting assump-

tion. In particular, selfish and strategic agents may have an incentive to misreport their valuations

if that can lead to individual utility gain (possibly at the expense of social welfare). Hence, an

allocation policy that does not take such misreporting incentives into account can incur significant

loss in social welfare in presence of strategic agents. For example, consider a simple setting with

two agents whose true valuations are i.i.d. and uniformly distributed between 0 and 1. That is,

𝑋1, 𝑋2
𝑖.𝑖.𝑑.∼ Uniform[0,1]

Each agent is pre-determined to receive an equal fraction of all the items. The optimal welfare

maximizing allocation policy is to allocate the item to the agent with higher valuation in (almost)

every round. This policy results in 𝑇/3 expected utility (E[𝑋1 |𝑋1 > 𝑋2]/2) for each agent, and a

social welfare of 2𝑇/3. However, suppose that the first agent chooses to misreport in the follow-

ing way: the agent reports a high valuation of 1 whenever her true valuation is in [0.5, 1] and a

low valuation of 0 whenever her true valuation is in [0, 0.5]. Assuming the other agent remains

truthful, this will lead to the first agent receiving all the items in her top 1/2 quantile, and there-

fore a significantly increased utility of 3𝑇/8 (E[𝑋1 |𝑋1 > 0.5]/2) compared to 𝑇/3 under truthful

reporting. The social welfare however, goes down to 5𝑇/8 in this case. Thus under the optimal

policy, each agent has an incentive to misreport her valuations in order to gain individual utility.

The incentives to misreport may be further amplified under an online learning based allocation
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algorithm that learns approximately optimal policies from the valuations observed in the previous

rounds. In such settings, the agents can potentially mislead the online learning algorithm to learn

a more favorable policy over time by repeatedly misreporting their values.

Motivated by these shortcomings, in this chapter, we consider the problem of designing an

online learning and allocation mechanism in the presence of strategic agents. Specifically, we

consider the problem of sequentially allocating𝑇 items to 𝑛 strategic agents. The problem proceeds

in 𝑇 rounds. In each round 𝑡 = 1, . . . , 𝑇 , the agents’ true valuations 𝑋𝑖,𝑡 , 𝑖 = 1, . . . , 𝑛 for the 𝑡𝑡ℎ

item are generated i.i.d. from a distribution 𝐹 a priori unknown to the central planner. However,

the central planner can only observe a value �̃�𝑖,𝑡 reported by each agent 𝑖, which may or may not

be the same as her true valuation 𝑋𝑖,𝑡 for the item. Using the reported valuations from the current

and previous rounds, the central planner needs to make an irrevocable decision of who to allocate

the current item. The allocations should be made in a way such that each agent at the end receives

a fixed fraction 𝑝∗
𝑖

of the 𝑇 items, where 𝑝∗
𝑖
> 0,

∑𝑛
𝑖=1 𝑝

∗
𝑖
= 1. The objective of the central planner

is to maximize the total utility of the agents, where utility of each agent is defined as the sum total

true valuations of items received by the agent.

Our main contribution is a mechanism that achieves both: (a) Bayesian incentive compatibility,

i.e., assuming all the other agents are truthful, with high probability no single agent can gain a

significant utility by deviating from the truthful reporting strategy, and; (b) near-optimal regret

guarantees, namely, the utility of each individual agent under the online mechanism is “close" to

that achieved under the optimal offline allocation policy.

Organization After discussing the related literature in some further detail in Section 4.2, we

formally introduce the problem setting and some of the core concepts in Section 4.3. Section 4.4

describes our online learning and allocation algorithm and provides formal statements of our main

results (Theorem 5 and Theorem 6). Section 4.5 and Section 4.6 provide an overview of the proofs

of the above theorems. All the missing details of the proofs are provided in the appendix. Finally,

in Section 4.7 we discuss some limitations and future directions.
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4.2 Literature Review

Our work lies at the intersection of online learning and mechanism design. From an online

learning perspective, our setting is closely related to the recent work on constrained online re-

source allocation under stochastic i.i.d. rewards/costs (e.g., see [78, 77, 59, 60, 61]). However, a

crucial assumption in those settings is that the central planner can observe the true rewards/costs

of an allocation, which in our setting would mean that the central planner can observe agents’ true

valuations of the items being allocated. Our work extends these settings to allow for selfish and

strategic agents who may have incentives to misreport their valuations. As discussed in the intro-

duction, unless the online allocation mechanism design takes these incentives into account, selfish

agents may significantly misreport their valuations to cause significant loss in social welfare.

Incentives and strategic agents have been previously considered in online allocation mechanism

design, however, most of that work has focused on auction design where payments are used as a

key mechanism for limiting rational agents’ incentives to misreport their valuations. For exam-

ple, Amin et al. [79] study a posted-price mechanism in a repeated auction setting where buyers’

valuations are context dependent. Golrezaei et al. [80] extend this work to multi-buyer setting, us-

ing second-price auction with dynamic personalized reserve prices. Kanoria and Nazerzadeh [81]

study a similar problem in a non-contextual setting. (There is also a significant literature that stud-

ies learning in repeated auction settings from the bidder’s perspective. Since this chapter focuses

on the central planner’s point of view, we omit references to that literature. ) All of the above-

mentioned works are concerned with maximizing revenue for the seller, and use money/payments

as a key instrument for eliciting private information about the bidder’s valuations for the items. In

this chapter, we are concerned with online allocation without money, and the goal is to maximize

each agent’s utility.

Recently, there has been some work on studying reductions from mechanism design with

money to those without money. Gorokh et al. [82] provided a black-box reduction from any one-

shot, BIC mechanism with money, to an approximately BIC mechanism without money. However,
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their reduction relies crucially on knowing the true value distribution of agents and therefore is not

applicable to our setting. Procaccia and Tennenholtz [83] consider a specific (one-round) facility

allocation problem and explicitly formulate the idea of designing mechanisms without money to

achieve approximately optimal performance against mechanisms with money. Subsequently, there

is a series of papers that extended the results on mechanism design without money in a single shot

setting, when the bidders’ value distribution is unknown [84, 85, 86, 87, 86]. These papers either

use a very restricted setting with just two agents, or use very specific/simple valuation functions

for the agents. Even in these basic settings, they show that the best one can hope for is a constant

approximation to what one can achieve with a mechanism that uses money. It is not clear what

kind of regret guarantees such reductions imply in a repeated online learning setting. Therefore,

we do not consider such reductions from auction mechanisms with money to be a fruitful direction

for achieving our goals of both incentive compatibility and low (sublinear) regret for our online

allocation problem.

Finally, in a repeated allocation settings with known valuation distribution, there are more

positive results for truthful mechanism design without money. For example, Guo et al. [88] and

later Balseiro et al. [89] studied the problem of repeatedly allocating items to agents with known

value distributions; both use a state-based “promised utility” framework.

To summarize, to the best of our knowledge, this is the first work to incorporate strategic agents’

incentives in the well-studied online allocation problem with stochastic i.i.d. rewards and unknown

distributions. Thus, it bridges the gap between the online learning and allocation literature which

focuses on non-strategic inputs, and the work on learning in repeated auctions which focuses on

allocation mechanisms that utilize money (payments) to achieve incentive compatibility.

4.3 Problem formulation

4.3.1 The offline problem

We first state the offline version of the problem which will serve as our benchmark for the

online problem. There is a set of 𝑛 agents, and a distribution 𝑭 over X B [0, 𝑥]𝑛. Each draw
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𝑿 ∼ 𝑭 from this distribution represents the 𝑛 agents’ valuations of one item: 𝑿 = [𝑋1, . . . , 𝑋𝑛].

We assume that the agents’ valuations are i.i.d., i.e.

𝑭 = 𝐹 ⊗ . . . ⊗ 𝐹.

A matching policy (aka allocation policy) maps, potentially with some exogenous randomness,

a value vector 𝑿 to one of the agents 𝑖 ∈ {1, . . . , 𝑛}. Specifically, given a realized value vector

𝑿 ∈ [0, 𝑥]𝑛, a (possibly randomized) policy 𝜋 maps 𝑿 to agent 𝜋(𝑿) ∈ {1, . . . , 𝑛}, with the

probability of agent 𝑖 receiving an allocation given by P(𝜋(𝑿) = 𝑖). The offline optimization

problem is to find a social welfare-maximizing policy 𝜋∗ such that each agent 𝑖 in expectation

receives a predetermined fraction 𝑝∗
𝑖

of the pool of items, where 𝑝∗
𝑖
> 0,

∑
𝑖 𝑝
∗
𝑖
= 1. The problem

of finding optimal policy can therefore be stated as the following

max
𝜋

E

[
𝑛∑︁
𝑖=1

𝑋𝑖1(𝜋(𝑿) = 𝑖)
]

(4.1)

s.t. P(𝜋(𝑿) = 𝑖) = 𝑝∗𝑖 ∀𝑖

where the expectations are taken both over 𝑿 ∼ 𝑭 and any randomness in the mapping made

by policy 𝜋 given 𝑿. Solving the offline problem is non-trivial, as it is an infinite dimensional

optimization problem as stated in its’ current form in (4.1). But it turns out to be closely related to

Semi-Discrete Optimal Transport, and that the dual of (4.1) can be written as

min
_∈R𝑛
E(_, 𝑭) B

∑︁
𝑖∈[𝑛]

∫
L𝑖 (_)
(𝑋𝑖 + _𝑖) 𝑑𝑭(𝑿) − _⊤𝑝∗ (4.2)

where L𝑖 is the Laguerre cell that we first encountered in (3.3), restated here in a slightly different

notation:

L𝑖 (_) =
{
𝑿 : 𝑋𝑖 + _𝑖 > 𝑋 𝑗 + _ 𝑗 ∀ 𝑗 ≠ 𝑖,

}
. (4.3)

69



Let _∗(𝑭) denote an optimal solution to (4.2). When it is clear from the context, we omit the

distribution 𝑭. It is known that an optimal solution to (4.1) is given by the following deterministic

policy defined by the Laguerre cell partition (Proposition 2.1 [54]):

𝜋∗(𝑿) = 𝑖 for all 𝑿 ∈ L𝑖 (_∗), 𝑖 = 1, . . . , 𝑛 (4.4)

More generally, we will refer to any policy defined by a Laguerre cell partition as a greedy policy.

Definition 3 (Greedy allocation policy). Consider any allocation policy that partitions the domain

[0, 𝑥]𝑛 as L𝑖 (_) (as defined in (4.4)) for some _ ∈ R𝑛. We refer to such a policy as the greedy

allocation policy with parameter _.

Note that there are efficient algorithms for solving (4.2) (see[54]) when the distribution 𝑭 is

known. Therefore we will not be focusing on how to solve the offline problem, and will assume

_∗(�̂�) can be computed efficiently for any given input distribution �̂�.

4.3.2 The online problem: approximate Bayesian incentive compatibility and regret

We are interested in the case when items are sequentially allocated over 𝑇 rounds, and that the

distribution 𝑭 is initially unknown. Specifically, in each round 𝑡 = 1, . . . , 𝑇 , the agents’ true valu-

ations 𝑿𝑡 = (𝑋𝑖,𝑡 , 𝑖 = 1, . . . , 𝑛) are generated i.i.d. from the distribution 𝑭 a priori unknown to the

central planner. However, the central planner does not observe 𝑿𝑡 but only observes the reported

valuations �̃�𝑡 = ( �̃�𝑖,𝑡 , 𝑖 = 1, . . . , 𝑛) which may or may not be the same as the true valuations.

An online allocation mechanism consists of a sequence of allocation policies 𝜋1, . . . , 𝜋𝑡 where

the policy 𝜋𝑡 at time 𝑡 may be adaptively chosen based on the observed information until before

time 𝑡:

H𝑡 = {�̃�1, . . . , �̃�𝑡−1, 𝜋1, . . . , 𝜋𝑡−1}. (4.5)

Given allocation policy 𝜋𝑡 at time 𝑡, the agent 𝑖’s utility at time 𝑡 is given by

𝑢𝑖 ( �̃�𝑡 , 𝑿𝑡 , 𝜋𝑡) = 𝑋𝑖,𝑡1[𝜋𝑡 ( �̃�𝑡) = 𝑖]
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Note that since the allocation policy may be randomized, for any given value vector 𝑿, 𝜋𝑡 (𝑿) is a

random variable. To ensure truthful reporting in presence of strategic agents, we are interested in

mechanisms that are (approximately) Bayesian incentive compatible.

Definition 4 (Approximate-BIC). For an online allocation mechanism, let 𝜋𝑡 , 𝑡 = 1, . . . , 𝑇 be the

sequence of allocations when all agents report truthfully, i.e., when �̃�𝑡 = 𝑿𝑡 ,∀𝑡; and let �̃�𝑖𝑡 , 𝑡 =

1, . . . , 𝑇 be the sequence when all agents except 𝑖 report truthfully, i.e., 𝑋 𝑗 ,𝑡 = �̃� 𝑗 ,𝑡 ,∀ 𝑗 ≠ 𝑖. Then

the online allocation mechanism is called (𝛼, 𝛿)-approximate Bayesian Incentive Compatible if,

for all 𝑖 = 1, . . . , 𝑛, with probability at least 1 − 𝛿,

𝑇∑︁
𝑡=1

𝑢𝑖 ( �̃�𝑡 , 𝑿𝑡 , �̃�𝑖𝑡) −
𝑇∑︁
𝑡=1

𝑢𝑖 (𝑿𝑡 , 𝑿𝑡 , 𝜋𝑡) ≤ 𝛼

Here, the probability is with respect to the randomness in true valuations 𝑿𝑡 ∼ 𝑭 and any random-

ness in the online allocation policy. For the online policy to be approximate-BIC, the statement

should hold for all possible misreporting of valuations �̃�𝑖,𝑡 ≠ 𝑋𝑖,𝑡 .

Therefore, if 𝛼 is small, then an individual agent has little incentive to strategize.

Assuming that all agents are truthful, we are also interested in bounding each individual agent’s

regret.

Definition 5 (Individual regret). We define an individual agent 𝑖’s regret under an online allocation

mechanism as the difference between agent 𝑖’s realized utility over𝑇 rounds and the expected utility

achieved in the offline expected problem. That is,

Regret𝑖 (𝑇) = 𝑇E[𝑢𝑖 (𝑿, 𝑿, _∗)] −
𝑇∑︁
𝑡=1

𝑢𝑖 (𝑿𝑡 , 𝑿𝑡 , 𝜋𝑡). (4.6)

Here 𝜋1, . . . , 𝜋𝑇 denote the allocation policies used by the online allocation mechanism in round

𝑡 = 1, . . . , 𝑇 .

Note that since social welfare is given by the sum of all agents’ utilities, a bound on individual

regret implies a bound on the regret in social welfare of the mechanism.
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4.4 Algorithm and main results

We present an online allocation mechanism that is approximately-BIC, and further achieves

low regret guarantees on individual regret when all agents are truthful.

Our algorithm contains two components: a learner, and a detector. Intuitively, the detector

makes sure that the mechanism is approximately BIC, and the learner adaptively learns utility-

maximizing allocation policies assuming truthful agents.

The learner runs in epochs with geometrically increasing lengths. The starting time of each

epoch 𝑘 is given by 𝐿𝑘 = 2𝑘 , 𝑘 = 0, 1, . . ., which is also when the allocation policy is updated. At

the end of each epoch (i.e., at time 𝑡 = 𝐿𝑘 − 1 for epoch 𝑘), the learner takes all the previously

reported values from all the agents, and uses them to construct an empirical distribution of the

agents’ valuations. The learner implicitly assumes truthful agents in its computations. Therefore,

since the agents’ true valuations are i.i.d., it first constructs a single, one-dimensional empirical

distribution �̂�𝑡 , and then uses it to construct the corresponding 𝑛-dimensional distribution �̂�𝑡 :

�̂�𝑡 (𝑥) =
1
𝑡𝑛

𝑡∑︁
𝑠=1

𝑛∑︁
𝑖=1

1[�̃�𝑖,𝑠 ≤ 𝑥] (4.7)

�̂�𝑡 = �̂�𝑡 ⊗ . . . ⊗ �̂�𝑡

The learning algorithm then solves the offline problem (4.2) using �̂�𝑡 , and uses the resulting greedy

allocation policy characterized by _∗(�̂�𝑡) to allocate the items in the following epoch.

In parallel to the learner, the detector constructs and monitors, in each time step 𝑡, and for each

agent 𝑖, two empirical distributions. One using the reported valuations from agent 𝑖: �̄�𝑡 , and one

using the reported valuations from all the other agents: �̃�𝑡 . The detection algorithm then computes

the supremum between the two empirical CDFs, sup𝑥 |�̄�𝑡 (𝑥) − �̃�𝑡 (𝑥) |. If this difference is greater

than a predetermined threshold Δ𝑡 , then the detector raises a flag that there has been a violation of

truthful reporting and the entire allocation game stops. Otherwise, the process continues.

The threshold Δ𝑡 needs to be chosen such that if everyone is truthful, then with high probabil-

72



ity the detection algorithm will not pull the trigger. At the same time, if someone deviates from

truthful reporting significantly, then it should detect this with high probability. The typical con-

centration result used in comparing empirical CDFs is the Dvoretzky-Kiefer-Wolfowitz (DKW)

inequality[90]. However, since a strategic agent can adaptively change its’ misreporting strategy,

we cannot directly apply the DKW inequality, which assumes i.i.d. samples. Instead, we use mar-

tingale version of the DKW inequality (Lemma 14), and use that to choose an appropriate threshold

Δ𝑡 . The details are given in Algorithm 4 and Algorithm 5.

ALGORITHM 4: Epoch Based Online Allocation Algorithm
Input: 𝑇, 𝛿
Initialize: _ = [0, . . . , 0], 𝑘 = 0, 𝐾 = log2(𝑇), 𝐿𝑘 = 2𝑘 , 𝑘 = 0, . . . , 𝐾;
for 𝑡 ← 1, 2, 3, . . . , 𝑇 do

Observe 𝑿𝑡
Run Detection Algorithm (Algorithm 5) with sample set 𝑆 = {𝑿1, . . . , 𝑿𝑡}, and

threshold Δ𝑡 = 64
√︃

1
𝑡

log( 256𝑒𝑡
𝛿
)

if Detection Algorithm Return Reject then
Terminates.

end
Allocate item using greedy allocation policy _
if one of the agents 𝑖 ∈ {1, . . . , 𝑛} has reached the allocation capacity 𝑝∗

𝑖
𝑇 then

Terminates.
end
if 𝑡 = 𝐿𝑘+1 − 1 then

Compute �̂�𝑡 from samples {𝑿1, . . . , 𝑿𝑡} as in (4.7).
_← _∗(�̂�𝑡)
𝑘 ← 𝑘 + 1

end
end

Our main results are the following guarantees on incentive compatibility and regret of our

online allocation algorithm.

Theorem 5 (Approximate-BIC). Algorithm 4 is (𝑂 (
√︁
𝑛𝑇 log(𝑛𝑇/𝛿)), 𝛿)-approximate BIC.

Since truthful reporting constitutes an approximate equilibrium, it is reasonable to then assume

that agents will act truthfully. We show the following individual regret bound assuming truthful-

ness.
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ALGORITHM 5: Detection Algorithm
Input: Sample set 𝑆 = {𝑿1, . . . , 𝑿𝑡}, threshold Δ𝑡 .
for 𝑖 ← 1, . . . , 𝑛 do

Compute �̄�𝑡 (𝑥) = 1
𝑡

∑𝑡
𝑠=1 1[𝑿𝑠

𝑖
≤ 𝑥] as the empirical CDF of the samples collected

from agent 𝑖
Compute �̃�𝑡 (𝑥) = 1

𝑡 (𝑛−1)
∑𝑡
𝑠=1

∑
𝑗≠𝑖 1[𝑿𝑠

𝑗
≤ 𝑥] be the empirical CDF of all reported

values from the other agents.
if sup𝑥 |�̃�𝑡 (𝑥) − �̄�𝑡 (𝑥) | ≥

Δ𝑡
2 then

Return Reject
end

end
Return Accept

Theorem 6 (Individual Regret). Assuming all agents report their valuations truthfully, then under

the online allocation mechanism given by Algorithm 4, with probability 1 − 𝛿, every agent 𝑖’s

individual regret can be bounded as:

Regret𝑖 (𝑇) ≤
4
√

2
√

2 − 1

√︂
𝑛𝑇 log(

4𝑛 log2 𝑇 + 𝑛𝑇
𝛿

)𝑥

= 𝑂 (
√︁
𝑛𝑇 log(𝑛𝑇/𝛿))

Showing approximate incentive compatibility, and then guaranteeing regret under the assump-

tion of truthfulness, is an approach commonly seen in the online mechanism design literature (e.g.

Theorem 4 in [81]). In the next section, we describe the high level proof ideas for the main results

above.

4.5 Proof ideas

Proof ideas for Theorem 5 We establish that the mechanism is approximately BIC by showing

that no single agent has incentive to significantly deviate from reporting true valuations if all the

other agents are truthful. The proof consists of two parts. In Step 1, we prove that any significant

deviation from the truth can be detected and will lead the mechanism to terminate. In Step 2,3, we

prove that in order to achieve a significant gain in utility, an agent indeed has to report values that
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significantly deviate from the truth.

Step 1 Assuming that there is only one (unidentified) strategic agent while all the other agents

are truthful, we first show that if the detector does not trigger a violation by time 𝑡 then with high

probability, the empirical distribution of valuations reported by the strategic agent is no more than

𝑂 (1/
√
𝑡) away from the true distribution (Lemma 16). The key observation here is that since the

agents’ valuations are i.i.d., we can compare their reported values to detect if any single agent’s

distribution is significantly different from everyone else’s. A technical challenge in making sta-

tistical comparisons here is that the strategic agent can adaptively change their reporting strategy

over time based on the realized outcomes. Therefore, we derive a novel martingale version of the

DKW inequality to show concentration of the empirical distribution relative to the true underlying

distribution.

Step 2 In a given round, given the history, the mechanism’s allocation policy is a fixed greedy

allocation policy given by _. If the distribution of strategic agent’s reported values differs from

the true distribution by at most Δ, then the agent’s expected utility gain in that round, compared to

reporting truthfully, is at most 𝑂 (Δ), (see Lemma 17).

Step 3 If over 𝑡 rounds, the distribution of the strategic agent’s reported values is at most Δ away

from the true distribution, then the learning algorithm will, with high probability find an allocation

policy that is at most𝑂 (
√
𝑛Δ) away (in terms of individual utility) from what it would have learned

if all the agents were truthful instead (see Lemma 15).

To understand the significance and distinction between results in Step 2 vs. Step 3, note that a

strategic agent has two separate ways to gain utility. The first is to report valuations in a way that

the agent immediately wins more/better items under the central planner’s current allocation policy.

However, since the central planner is updating its’ allocation policy over time, the strategic agent

can also misreport in a way that benefits its’ future utility, by “tricking” the central planner into

learning a policy that favors him later on. Together, Step 2 and Step 3 show that the agent cannot
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gain significant advantage over being truthful in either manner.

In many existing works on online auctions mechanisms design, where the central planner dy-

namically adjusts the reserve price over time, these two types of strategic behaviors are in conflict:

the agent either sacrifices future utility to gain immediate utility; or sacrifices near-term utility for

future utility. The results in those settings therefore often rely on this observation to show approxi-

mate incentive compatibility. In our case however, since there is no money involved, it is not clear

if such a conflict between short and long term utility exists. Nonetheless, we are able to bound the

agents’ ability to strategize. Step 2 bounds the agent’s short term incentive to be strategic, whereas

Step 3 bounds the longer term incentive to be strategic. Combining these steps gives us a proof for

Theorem 5.

Proof ideas for Theorem 6 Recall that here we assume all agents’ are truthful. The proof in-

volves two main steps.

Step 1 We show that uniformly for any 𝑡 = 1, . . . , 𝑇 , with high probability, the empirical esti-

mate of the valuation distribution from the first 𝑡 rounds of samples is close (within a distance of

�̃� (1/
√
𝑛𝑡)) to the true value distribution 𝐹. Here, the factor of 1/

√
𝑛 comes from the fact that in

each round we observe 𝑛 independent samples from the value distribution, one from each of the

agents. This also implies that if all the agents are reporting truthfully, then, with high probability,

the detector will not falsely trigger.

Step 2 We show that the allocation policy learned under the empirical distribution estimated from

the samples is close to the the optimal allocation policy (Lemma 15). Specifically, after 𝑡 rounds if

the empirical CDF is at most𝑂 (1/
√
𝑛𝑡) away from the true distribution, then each agents’ expected

utility in one round under the learned allocation policy is at most
√︁
𝑛/𝑡 away (both from above and

from below) from the optimal. By using an epoch based approach we can then show that each

agents’ individual regret is with high probability bounded by 𝑂 (
√
𝑛𝑇) over the entire planning

horizon 𝑇 .
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4.6 Proof details

We will now outline our proof in more detail. All missing proofs can be found in the Appendix.

First we state the following martingale variation of the well-known Dvoretzky-Kiefer-Wolfowitz

(DKW) inequality[90]. This is critical when dealing with strategic agents as they can adapt their

strategy over time, resulting in non-independent (reported) values.

Lemma 14 (Martingale Version of DKW Inequality). Given a sequence of random variables

𝑌1, . . . , 𝑌𝑇 , let F𝑡 = 𝜎(𝑌1, . . . , 𝑌𝑡), 𝑡 = 1, . . . , 𝑇 be the filtration representing the information in

the first 𝑡 variables. Let 𝐹𝑡 (𝑦) := Pr(𝑌𝑡 ≤ 𝑦 |F𝑡−1), and �̄�𝑇 (𝑦) := 1
𝑇

∑𝑇
𝑡=1 1[𝑌𝑡 ≤ 𝑦]. Then,

P

(
sup
𝑦

������̄�𝑇 (𝑦) − 1
𝑇

𝑇∑︁
𝑡=1

𝐹𝑡 (𝑦)
����� ≥ 𝛼

)
≤

(
128𝑒𝑇
𝛼

)
𝑒−𝑇𝛼

2/128

Next we introduce a new notation to to denote the fraction of allocation that 𝑗 receives under

the greedy allocation policy with parameter _ and valuation distribution 𝑭:

𝑝 𝑗 (𝑭, _) := P𝑿∼𝑭 (𝑿 ∈ L 𝑗 (_)).

We start with proving Theorem 6, as we will use this to prove Theorem 5 later.

4.6.1 Individual Regret Bound (Theorem 6)

In Algorithm 4, the allocation policy is trained on the empirical distribution constructed from

samples. We want to show that this difference between empirical and population distribution will

not impair the performance of the resulting allocation policy too much.

Lemma 15. Let 𝑮 = 𝐺1 ⊗ . . . ⊗ 𝐺𝑛, and 𝑭 = 𝐹1 ⊗ . . . ⊗ 𝐹𝑛 be two distributions over [0, 𝑥]𝑛

where the marginals on each coordinate are independent. Suppose sup𝑥 |𝐹𝑖 (𝑥) − 𝐺𝑖 (𝑥) | ≤ Δ∀𝑖.

Let _ = _∗(𝑮), and _∗ = _∗(𝑭). Then

|E𝑿∼𝑭 [𝑢𝑖 (𝑿, 𝑿, _)] − E𝑿∼𝑭 [𝑢𝑖 [𝑿, 𝑿, _∗]] | ≤ 𝑛Δ𝑥
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Proof of Theorem 6 Now we have the main ingredients for Theorem 6. We use the DKW

inequality to show that the empirical distribution constructed in (4.7) is close to the true distribution

w.h.p.. Then we use Lemma 15 to show that the allocation policy selected by the learner based

on the empirical distribution is almost optimal in expectation. The details can be found in the

Appendix D.2.

4.6.2 Approximate-Bayesian Incentive Compatibility (Theorem 5)

Theorem 6 says that online utility of each agent cannot be too far below the offline optimum

if everyone behaves truthfully. In order to show approximate-BIC, it suffices to show that the

strategic agent cannot gain too much more than the offline optimum. To do so, we need to bound

both the short term and longer term incentives for the agent to be strategic.

Short term incentive

We start with bounding the short term strategic incentive. We first show that if agent reports

from an average distribution that is very different from the truthful distribution, then with high

probability Algorithm 5 can detect that. Note that given the strategic agent’s strategy in a given

round, his reported value is drawn from a distribution potentially different from 𝐹.

Lemma 16. Fix a time step 𝑡. Let Δ = 64
√︃

log( 256𝑒𝑡
𝛿
)

𝑡
. Let 𝐹𝑠, 𝑠 = 1, . . . , 𝑡 be the strategic agent’s

reported value distributions in each time step given the history, i.e., 𝐹𝑠 (𝑥) := P( �̃�𝑖,𝑠 ≤ 𝑥 |H𝑠). If

the average distribution �̄� = 1
𝑡

∑𝑡
𝑠=1 𝐹𝑠 is such that sup𝑥 |�̄� (𝑥) − 𝐹 (𝑥) | ≥ Δ, then Algorithm 4 will

terminates at or before time 𝑡 with probability at least 1 − 𝛿.

Next, we show that if the agent restricts the reported distribution to not deviate more than Δ

from the true distribution (so that the deviation may go undetected by the detection algorithm),

then the potential gain in the agent’s utility compared to truthful reporting is upper bounded by 𝑥Δ.

This bounds the agent’s incentive to be strategic.
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Lemma 17. Fix a round 𝑡 and a single strategic agent 𝑖, so that the remaining agents are truthful,

i.e., �̃� 𝑗 ,𝑡 = 𝑋 𝑗 ,𝑡 ,∀ 𝑗 ≠ 𝑖. Let 𝐹𝑟 (·) denote the marginal distribution of values �̃�𝑖,𝑡 reported by the

strategic agent 𝑖 at time 𝑡 conditional on the history, i.e.,

𝐹𝑟 (𝑥) := P( �̃�𝑖,𝑡 ≤ 𝑥 |H𝑡).

Suppose that sup𝑥 |𝐹 (𝑥) − 𝐹𝑟 (𝑥) | ≤ Δ. Then, at any time 𝑡, given any greedy allocation policy _,

E[𝑢𝑖 ( �̃�𝑡 , 𝑿𝑡 , _) |H𝑡] − E[𝑢𝑖 (𝑿𝑡 , 𝑿𝑡 , _)] ≤ 𝑥Δ

Note that 𝐹𝑟 specifies only the marginal distribution of �̃�𝑖,𝑡 |H𝑡 and not the joint distribution

of ( �̃�𝑡 , 𝑿𝑡) |H𝑡 . Indeed the above lemma claims that the given bound on utility gain holds for all

possible joint distributions as long as the marginal 𝐹𝑟 of �̃�𝑖,𝑡 |H𝑡 is at most Δ away from 𝐹.

Intuitively, Lemma 16 and Lemma 17 together bound the agent’s short term incentive to be

strategic: if the agent deviates from the truthful distribution too much, then the mechanism will

terminate early and the agent will lose out on all the future utility (Lemma 16); and given any

greedy allocation strategy set by the central planner, we have that if the agents deviates within the

undetectable range of Algorithm 5, then the gain in utility compared to acting truthfully is small

(Lemma 17). Next, we bound an agent’s incentive to lie in order to make the mechanism learn a

suboptimal greedy allocation policy that is more favorable to the agent.

Long term incentive

In order to bound the longer term incentive to be strategic, we want to show that despite agent 𝑖

being strategic, the central planner can still learn an allocation policy that closely approximates the

offline optimal allocation policy. This means that the agent’s influence over the central planner’s

allocation policies is limited.

Lemma 18. Fix a round 𝑇 ′ ≤ 𝑇 and a strategic agent 𝑖. If agent 𝑖 is the only one being strategic,

and Algorithm 5 has not been triggered by the end of time 𝑇 ′, then with probability 1 − 𝛿, _̂ B
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_∗(�̂�𝑇 ′) satisfies

E[𝑢𝑖 (𝑿, 𝑿, _̂)] − E[𝑢𝑖 (𝑿, 𝑿, _∗)] ≤ 𝑛Δ𝑇 ′𝑥

where Δ𝑇 ′ = 81
√︃

1
𝑛𝑇 ′ log( 256𝑒(𝑇 ′)

𝛿
) and _∗ = _∗(𝑭).

In particular, consider 𝑇 ′ = 𝐿𝑘 . Then the lemma above shows that if an agent was not kicked

out by the end of epoch 𝑘−1, then with high probability the greedy allocation policy in epoch 𝑘 will

be such that the agents’ expected utility by being truthful is close to what he would have received

in the offline optimal solution (Lemma 18). We can now combine this result with Lemma 16 and

Lemma 17 to bound the utility that any single strategic agent can gain over the entire trajectory.

Lemma 19. If agent 𝑖 is the only one being strategic, then with probability 1 − 𝛿, agent 𝑖’s online

utility is upper bounded by

𝑇∑︁
𝑡=1

𝑢𝑖 ( �̃�𝑡 , 𝑿𝑡 , _̃𝑘𝑡 ) ≤ 𝑇E [𝑢𝑖 (𝑿, 𝑿, _∗)] +
286
√

2
√

2 − 1

√︂
𝑛𝑇 log(

256𝑒 log2 𝑇

𝛿
)𝑥

Here 𝑘𝑡 denotes the epoch number that time step 𝑡 lies in, and _̃𝑘𝑡 denotes the allocation policy

used by the central planner in that epoch.

Proof of Theorem 5 We have already proven Theorem 6 which bounds individual regret defined

as the difference 𝑇E[𝑢𝑖 (𝑿, 𝑿, _∗)] −
∑𝑇
𝑡=1 𝑢𝑖 (𝑿𝑡 , 𝑿𝑡 , _𝑘𝑡 ), i.e., the difference between the utility

of agent 𝑖 under the offline optimal policy and that under the allocation policy learned by the

algorithm when all the agents are truthful. The proof of Theorem 5 follows from plugging in

the upper bound on 𝑇E[𝑢𝑖 (𝑿, 𝑿, _∗)] from this theorem into Lemma 19, to obtain the desired

bound on the expression
∑𝑇
𝑡=1 𝑢𝑖 ( �̃�𝑡 , 𝑿𝑡 , _̃𝑘𝑡 ) −

∑𝑇
𝑡=1 𝑢𝑖 (𝑿𝑡 , 𝑿𝑡 , _𝑘𝑡 ), i.e., on the total gain in utility

achievable by misreporting under our mechanism. Further details are in Appendix D.3.

4.7 Conclusion and Future Directions

Although our goal is to develop mechanisms that are robust to selfish and strategic agents, real

applications often involve bad faith actors that have extrinsic motivation to behave adversarially.
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As such, deployment of such resource allocation mechanisms to critical applications requires sig-

nificant additional validation. In future work we would like to explore the limit of relaxing the i.i.d.

assumption that we place on the distribution of valuations across agents. This is a natural relax-

ation because if one agent thinks the item is good then it’s likely that other agents would like the

item as well. Furthermore it is also conceivable that agents are heterogeneous and so have differ-

ent value distributions for the items. However this seems to require a completely different strategy

for detecting, and disincentivize strategic behaviors, as we can no longer catch the strategic agent

through comparing each agent’s reported distribution with that of others.
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Appendix A: Appendices for Chapter1

A.1 A Concentration Result on Exponential Random Variables

Before moving on to the next sections, we state a concentration result that is used in many of

the remaining proofs.

Lemma 20. Let [𝐼𝑑 , 𝑑 = 1, . . . , 𝑛] be a sequence of random variables with filtration F𝑑 such that

𝐼𝑑 |F𝑑−1 is an exponential random variable with rate _𝑑 ∈ F𝑑−1. Suppose that there exists _ > 0

such that _𝑑 ≥ _ almost surely. Then for any 𝜖 ≤ 2𝑛
_

,

P

(
𝑛∑︁
𝑑=1

𝐼𝑑 −
1
_𝑑
≤ −𝜖

)
≤ 𝑒𝑥𝑝

(
−𝜖2_2

8𝑛

)

P

(
𝑛∑︁
𝑑=1

𝐼𝑑 −
1
_𝑑
≥ 𝜖

)
≤ 𝑒𝑥𝑝

(
−𝜖2_2

8𝑛

)

Proof. An exponential random variable with rate _ satisfies (see [91])

E[𝑒𝑠𝑋] = 1
1 − 𝑠/_ ≤ 𝑒

𝑠
_
+2 𝑠2

_2 ∀𝑠 ∈ [−_
2
,
_

2
] (A.1)
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P

(
𝑛∑︁
𝑑=1

𝐼𝑑 −
1
_𝑑
≤ −𝜖

)
= P

(
𝑒
𝑠
𝑛∑
𝑑=1

1
_𝑑
−𝐼𝑑
≥ 𝑒𝑠𝜖

)
(Markov’s Inequality) ≤ 1

𝑒𝑠𝜖
E

[
𝑒
𝑠

(
𝑛∑
𝑑=1

1
_𝑑
−𝐼𝑑

) ]
≤ 1
𝑒𝑠𝜖
E

𝑒
𝑠

(
𝑛−1∑
𝑑=1

1
_𝑑
−𝐼𝑑

)
E

[
𝑒
𝑠( 1
_𝑛
−𝐼𝑛) ��F𝑛−1

]
(Using (A.1) and _𝑛 ≥ _) ≤

1
𝑒𝑠𝜖
E

𝑒
𝑠

(
𝑛−1∑
𝑑=1

1
_𝑑
−𝐼𝑑

)
𝑒

2 𝑠
2
_2


(Repeating the above argument) = 𝑒𝑠

2 2𝑛
_2 −𝑠𝜖

(solve for optimal 𝑠 =
𝜖_2

4𝑛
) = 𝑒𝑥𝑝

(
−𝜖2_2

8𝑛

)

Note that to use (A.1) in the last inequality we needed that 𝑠 =
𝜖_2

4𝑛 ≤
_𝑑
2 for every 𝑑, which is

satisfied if 𝜖 ≤ 2𝑛
_

. P
(
𝑛∑
𝑑=1

𝐼𝑑 − 1
_𝑑
≥ 𝜖

)
can be bounded similarly. □

A.2 Some Properties of the Deterministic Optimal Price Curve

A.2.1 Optimal pricing policy expression

The expressions in (1.4) (1.5) and (1.6) provided the expressions for the optimal price curve

𝑝∗(𝑥, 𝛼, 𝛽), 𝑥 ∈ [0, 𝑋∗
𝑇
] and for the total number of adoptions 𝑋∗

𝑇
when optimal pricing policy is

followed from an initial adoption level 𝑋0 = 0 at 𝑡 = 0 to the end of the time horizon 𝑇 . Here

we derive a more general expression for the optimal pricing policy 𝜋∗(𝑥, 𝛼, 𝛽, 𝑇) that will give

the optimal price at any current adoption level 𝑥 and remaining planning horizon 𝑇 (irrespective

of what pricing policy was followed for how much time to reach the adoption level 𝑥). Also, we

derive an expression for 𝑋∗
𝑇
(𝑥), the adoption level at the end of time 𝑇 if optimal pricing policy is

followed for time 𝑇 starting from the adoption level 𝑋0 = 𝑥 at 𝑡 = 0. These expressions will be

especially useful in our lower bound derivations.

Note that under this expanded notation, 𝑋∗
𝑇

= 𝑋∗
𝑇
(0). We sometimes also use the notation
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𝑋∗
𝑇
(𝑥, 𝛼, 𝛽) to emphasis the dependence 𝑋∗

𝑇
has on the market parameters. Note that by this def-

inition, 𝑋∗
𝑇−𝑡 (𝑋𝑡) = 𝑋∗

𝑇
(𝑋0) if 𝑋𝑡 is the adoption level reached at time 𝑡 on following the optimal

price trajectory from time 0.

The optimal price to offer at any given adoption level 𝑥 and remaining time 𝑇 can be derived

using optimal control theory (see Equation (8) of [19]). and is given by the following pricing

policy. Given adoption 𝑥 ∈ [0, 1) and remaining time 𝑇 > 0, the optimal price is given by

𝜋∗(𝑥, 𝛼, 𝛽, 𝑇) := 1 + log
(

(𝛼 + 𝛽𝑥) (1 − 𝑥)
(𝛼 + 𝛽𝑋∗

𝑇
(𝑥)) (1 − 𝑋∗

𝑇
(𝑥))

)
(A.2)

When the value of 𝛼, 𝛽 is clear from the context, we sometimes drop the dependence on 𝛼, 𝛽,

and use shorter notations 𝑝∗(𝑥) and 𝜋∗(𝑥, 𝑇) instead of 𝑝∗(𝑥, 𝛼, 𝛽) and 𝜋∗(𝑥, 𝛼, 𝛽, 𝑇) respectively.

To see the connection (and distinction) between 𝑝∗(𝑥) and 𝜋∗(𝑥, 𝑇), note that 𝑝∗(𝑥) is the price

trajectory if the optimal policy 𝜋∗ is followed from 𝑡 = 0, 𝑋0 = 0 to the end of horizon 𝑇 . That is,

if 𝑋𝑡 , 𝑝𝑡 denotes the adoption level and price at time 𝑡 ∈ [0, 𝑇] on following optimal pricing policy

from 𝑡 = 0, 𝑋0 = 0, then 𝑝𝑡 = 𝑝∗(𝑋𝑡 , 𝛼, 𝛽) = 𝜋∗(𝑋𝑡 , 𝛼, 𝛽, 𝑇 − 𝑡).

Now consider the adoption process on starting from an initial adoption level 𝑥 at time 𝑡 = 0,

and then following the optimal pricing policy. Again 𝑋𝑡 denotes the adoption level at time 𝑡 in this

process. Plugging 𝑝𝑡 = 𝜋∗(𝑋𝑡 , 𝛼, 𝛽, 𝑇 − 𝑡) back into (1.2), it’s easy to derive that

𝑑𝑋𝑡

𝑑𝑡
=

1
𝑒
(𝛼 + 𝛽𝑋∗𝑇 (𝑥)) (1 − 𝑋∗𝑇 (𝑥)) (A.3)

This means that under the optimal policy, the rate of adoption is constant. We can integrate the

above from 𝑡 = 0 to 𝑇 , and also solve the resulting quadratic equation for 𝑡 = 𝑇 to compute the

final adoption level 𝑋∗
𝑇
(𝑥) under the optimal pricing policy when starting from an initial adoption
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level 𝑥 at 𝑡 = 0:

𝑋∗𝑇 (𝑥) − 𝑥 =
1
𝑒
(𝛼 + 𝛽𝑋∗𝑇 (𝑥)) (1 − 𝑋∗𝑇 (𝑥))𝑇 (A.4)

𝑋∗𝑇 (𝑥) =
𝑇 (𝛽 − 𝛼) − 𝑒 +

√︁
[𝑇 (𝛽 − 𝛼) − 𝑒]2 + 4𝛼𝛽𝑇2 + 4𝑒𝛽𝑥𝑇

2𝛽𝑇
(A.5)

Note that on plugging 𝑥 = 0 in (A.5), we obtain the expression for 𝑋∗
𝑇

in (1.6).

A.2.2 Price Lipschitz Bound

We start with some Lipschitz bounds on how the optimal price offered at adoption level 𝑥 can

change with respect to 𝛼, 𝛽. Note that here we are assuming 𝑋0 = 0 and that the entire optimal

price curve from the beginning changes if we change 𝛼, 𝛽 (i.e., we use (1.4) not (A.2)). In the

following lemma, 𝑋∗
𝑇

denotes the adoption curve on following the optimal pricing policy for all

times 𝑡 ∈ [0, 𝑇] starting from 0 adoption level under the deterministic Bass model with parameters

(𝛼, 𝛽) as given in (1.6). Using the expanded notation introduced in the previous subsection, it can

also be called 𝑋∗
𝑇
(0, 𝛼, 𝛽).

Lemma 21. 0 ≤ 1
1−𝑋∗

𝑇

𝜕𝑋∗
𝑇

𝜕𝛼
≤ 1

𝛼
, and 0 ≤ 1

1−𝑋∗
𝑇

𝜕𝑋∗
𝑇

𝜕𝛽
≤ 1

𝛽

Proof. Below, we use 𝑋𝑇 instead of 𝑋∗
𝑇

to denote the adoption at time 𝑇 , in the deterministic

optimal trajectory starting at 𝑋0 = 0. Differentiating (1.5) with respect to 𝛼:

𝛽𝑇𝑋2
𝑇 + 𝑒𝑋𝑇 − 𝛽𝑇𝑋𝑇 + 𝛼𝑇𝑋𝑇 − 𝛼𝑇 = 0

2𝛽𝑇
𝜕𝑋𝑇

𝜕𝛼
𝑋𝑇 + 𝑒

𝜕𝑋𝑇

𝜕𝛼
− 𝛽𝑇 𝜕𝑋𝑇

𝜕𝛼
+ 𝑇𝑋𝑇 + 𝛼𝑇

𝜕𝑋𝑇

𝜕𝛼
− 𝑇 = 0

𝜕𝑋𝑇

𝜕𝛼
(2𝑇𝑋𝑇 𝛽 + 𝑒 − 𝛽𝑇 + 𝛼𝑇) = 𝑇 (1 − 𝑋𝑇 )
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Rearranging and substituting 𝑋𝑇 using (1.6):

1
1 − 𝑋𝑇

𝜕𝑋𝑇

𝜕𝛼
=

𝑇

2𝛽𝑇𝑋𝑇 + 𝑒 + (𝛼 − 𝛽)𝑇

=
𝑇

𝑇 (𝛽 − 𝛼) − 𝑒 +
√︃

4𝑇2𝛼𝛽 + (𝑇 (𝛽 − 𝛼) − 𝑒)2 + (𝛼 − 𝛽)𝑇 + 𝑒

=
𝑇√︃

4𝑇2𝛼𝛽 + (𝑇 (𝛽 − 𝛼) − 𝑒)2
≥ 0.

Note the denominator can be bounded in two ways:

√︃
4𝑇2𝛼𝛽 + (𝑇 (𝛽 − 𝛼) − 𝑒)2 ≥ |𝑇 (𝛽 − 𝛼) − 𝑒 | and,√︃

4𝑇2𝛼𝛽 + (𝑇 (𝛽 − 𝛼) − 𝑒)2 =

√︃
𝑇2(𝛼 + 𝛽)2 + 2(𝛼 − 𝛽)𝑇 + 𝑒2 ≥ |𝑇 (𝛼 + 𝛽) − 𝑒 | .

So

1
1 − 𝑋𝑇

𝜕𝑋𝑇

𝜕𝛼
≤ min( | 1

𝛼 + 𝛽 − 𝑒
𝑇

|, | 1
𝛼 − 𝛽 + 𝑒

𝑇

|) = 𝑚𝑖𝑛( | 1
𝛼 + (𝛽 − 𝑒

𝑇
) |, |

1
𝛼 − (𝛽 − 𝑒

𝑇
) |) ≤

1
𝛼

Following a similar procedure, (differentiating (1.5) with respect to 𝛽 and using (1.6)) we can

also get the following bound:

1
1 − 𝑋𝑇

𝜕𝑋𝑇

𝜕𝛽
=

𝑇𝑋𝑇

2𝛽𝑇𝑋𝑇 + 𝑒 + (𝛼 − 𝛽)𝑇

=
𝑇 (𝛽 − 𝛼) − 𝑒

2𝛽
√︃

4𝑇2𝛼𝛽 + (𝑇 (−𝛼 + 𝛽) − 𝑒)2
+ 1

2𝛽

0 ≤ 1
1 − 𝑋𝑇

𝜕𝑋𝑇

𝜕𝛽
≤ 1
𝛽

where in the last step we used the fact that |𝑇 (𝛽−𝛼)−𝑒 |√
4𝑇2𝛼𝛽+(𝑇 (−𝛼+𝛽)−𝑒)2

≤ 1. □

In our proofs we will sometimes need to compare the optimal final adoption level under two
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different market parameters. To derive the results comparing two different market parameters,

instead of 𝑋∗
𝑇
(𝑥), we use the notation 𝑋∗

𝑇
(𝑥, 𝛼, 𝛽) that makes the dependence on 𝛼, 𝛽 explicit.

Corollary 2. 𝑋∗
𝑇
(0, 𝛼, 𝛽) ≥ 𝑋∗

𝑇
(0, 𝛼, 0) = 𝛼𝑇

𝛼𝑇+𝑒 .

Proof. The inequality follows from the non-negativity of 𝜕𝑋∗

𝜕𝛽
proved in Lemma 21. The equality

can be easily derived by solving for 𝑋∗
𝑇

in (1.5) after plugging in 𝛽 = 0. □

Lemma 22. For any 0 ≤ 𝑥 ≤ 𝑋∗
𝑇

,
��� 𝜕𝑝∗ (𝑥,𝛼,𝛽)𝜕𝛼

��� ≤ 2+𝛽/𝛼
𝛼,

,

��� 𝜕𝑝∗ (𝑥,𝛼,𝛽)𝜕𝛽

��� ≤ 3
min(𝛼,𝛽) .

Proof. Below, we use 𝑋𝑇 instead of 𝑋∗
𝑇

to denote the optimal final adoption level, assuming that

the initial adoption level is 0. Taking the derivatives of (1.4), and by using Lemma 21:����𝜕𝑝∗(𝑥, 𝛼, 𝛽)𝜕𝛼

���� = ����𝜕 log(𝛼 + 𝛽𝑥)
𝜕𝛼

+ 𝜕 log(1 − 𝑥)
𝜕𝛼

− 𝜕 log(𝛼 + 𝛽𝑋𝑇 )
𝜕𝛼

− 𝜕 log(1 − 𝑋𝑇 )
𝜕𝛼

����
=

���� 1
𝛼 + 𝛽𝑥 −

1
𝛼 + 𝛽𝑋𝑇

(1 + 𝛽𝜕𝑋𝑇
𝜕𝛼
) + 1

1 − 𝑋𝑇
𝜕𝑋𝑇

𝜕𝛼

����
≤ max

(���� 1
𝛼 + 𝛽𝑥 +

1
1 − 𝑋𝑇

𝜕𝑋𝑇

𝜕𝛼

���� , ���� 1
𝛼 + 𝛽𝑋𝑇

(1 + 𝛽𝜕𝑋𝑇
𝜕𝛼
)
����)

≤ max
(

2
𝛼
,

1
𝛼
+ 𝛽/𝛼(1 − 𝑋𝑇 )

𝛼

)
≤ 2 + 𝛽/𝛼

𝛼

����𝜕𝑝∗(𝑥, 𝛼, 𝛽)𝜕𝛽

���� = ����𝜕 log(𝛼 + 𝛽𝑥)
𝜕𝛽

− 𝜕 log(𝛼 + 𝛽𝑋𝑇 )
𝜕𝛽

− log(1 − 𝑋𝑇 )
𝜕𝛽

����
=

���� 𝑥

𝛼 + 𝛽𝑥 −
1

𝛼 + 𝛽𝑋𝑇
(𝑋𝑇 + 𝛽

𝜕𝑋𝑇

𝜕𝛽
) + 1

1 − 𝑋𝑇
𝜕𝑋𝑇

𝜕𝛽

����
≤

���� 𝑥

𝛼 + 𝛽𝑥 −
1

𝛼 + 𝛽𝑋𝑇
(𝑋𝑇 + 𝛽

𝜕𝑋𝑇

𝜕𝛽
)
���� + ���� 1

1 − 𝑋𝑇
𝜕𝑋𝑇

𝜕𝛽

����
≤ 1
𝛼
(1 + 𝛽𝜕𝑋𝑇

𝜕𝛽
) + 1

𝛽

≤ 2
𝛼
+ 1
𝛽

≤ 3
min(𝛼, 𝛽)
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□

A.3 Proof of Lemma 1 and Lemma 2

We first prove the concavity property of the deterministic optimal value stated as Lemma 1.

Lemma 1 (Concavity of deterministic optimal revenue). For any deterministic Bass model,𝑉det(𝑥, 𝑇),

defined as the optimal revenue starting from adoption level 𝑥 and remaining time 𝑇 , is concave in

𝑥, for all 𝑇 ≥ 0, and all adoption levels 𝑥 ∈ [0, 1].

Proof. For simplicity of notation, in this proof we use 𝑇 to denote the remaining time. The optimal

value function for the continuous deterministic Bass model when the remaining time is 𝑇 can be

expressed using the following dynamic programming equation (for all 𝛿 ≥ 0),

𝑉det(𝑥, 𝑇) = max
𝑝
𝑝_(𝑝, 𝑥)𝛿 +𝑉det(𝑥 + _(𝑝, 𝑥)𝛿/𝑚,𝑇 − 𝛿) + 𝑜(𝛿) (A.6)

where _(𝑝, 𝑥) = 𝑚𝑒−𝑝 (𝛼 + 𝛽𝑥) (1 − 𝑥).

Using the Hamilton-Jacobi-Bellman equation for the deterministic Bass model (see equation

(12.8) in [92]):
𝜕𝑉det(𝑥, 𝑇)

𝜕𝑇
= max

𝑝
𝑝_(𝑝, 𝑥) + _(𝑝, 𝑥)

𝑚

𝜕𝑉det(𝑥, 𝑇)
𝜕𝑥

. (A.7)

And the optimal price is the price that achieves the maximum in the above expression (see equation

(12.9) in [92]), i.e.,

𝜋∗(𝑥, 𝛼, 𝛽, 𝑇) = arg max
𝑝

𝑝_(𝑝, 𝑥) + _(𝑝, 𝑥)
𝑚

𝜕𝑉det(𝑥, 𝑇)
𝜕𝑥

Solving the above maximization problem gives us an expression for the optimal price at state

𝑥 with 𝑇 time left.

𝜋∗(𝑥, 𝛼, 𝛽, 𝑇) = 1 − 1
𝑚

𝜕𝑉det(𝑥, 𝑇)
𝜕𝑥

(A.8)
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From (A.2), the optimal price is also given by

𝜋∗(𝑥, 𝛼, 𝛽, 𝑇) = 1 + log
(

(𝛼 + 𝛽𝑥) (1 − 𝑥)
(𝛼 + 𝛽𝑋∗

𝑇
(𝑥)) (1 − 𝑋∗

𝑇
(𝑥))

)
where (refer to (A.4), (A.5))

𝑋∗𝑇 (𝑥) = 𝑥 +
1
𝑒
(𝛼 + 𝛽𝑋∗𝑇 (𝑥)) (1 − 𝑋∗𝑇 (𝑥))𝑇

𝑋∗𝑇 (𝑥) =
𝑇 (𝛽 − 𝛼) − 𝑒 +

√︁
[𝑇 (𝛽 − 𝛼) − 𝑒]2 + 4𝛼𝛽𝑇2 + 4𝑒𝛽𝑥𝑇

2𝛽𝑇

Therefore, substituting,

1
𝑚

𝜕𝑉det(𝑥, 𝑇)
𝜕𝑥

= − log
(

(𝛼 + 𝛽𝑥) (1 − 𝑥)
(𝛼 + 𝛽𝑋∗

𝑇
(𝑥)) (1 − 𝑋∗

𝑇
(𝑥))

)
1
𝑚

𝜕2𝑉det(𝑥, 𝑇)
𝜕𝑥2 =

−𝛽
𝛼 + 𝛽𝑥 +

1
1 − 𝑥 +

𝛽
𝜕𝑋∗

𝑇
(𝑥)

𝜕𝑥

𝛼 + 𝛽𝑋∗
𝑇
(𝑥) −

1
1 − 𝑋∗

𝑇
(𝑥)

𝜕𝑋∗
𝑇
(𝑥)

𝜕𝑥
(A.9)

Now we split (A.9) to two parts and bound them by zero individually. First note that differen-

tiating 𝑋∗
𝑇
(𝑥) with respect to 𝑥 (using (A.4)) gives us

𝜕𝑋∗
𝑇
(𝑥)

𝜕𝑥
=

𝑒

𝑒 + (𝛼 − 𝛽)𝑇 + 2𝛽𝑇𝑋∗
𝑇
(𝑥) (A.10)

Then, first we show that

1
1 − 𝑥 −

1
1 − 𝑋∗

𝑇
(𝑥)

𝜕𝑋∗
𝑇
(𝑥)

𝜕𝑥
≤ 0,
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which is equivalent to showing that

1 − 𝑋∗𝑇 (𝑥) ≤
𝜕𝑋∗

𝑇
(𝑥)

𝜕𝑥
(1 − 𝑥)

Using (A.4) ⇐⇒ 1 − 𝑋∗𝑇 (𝑥) ≤
𝜕𝑋∗

𝑇
(𝑥)

𝜕𝑥
(1 − 𝑋∗𝑇 (𝑥)) +

𝜕𝑋∗
𝑇
(𝑥)

𝜕𝑥

𝑇

𝑒
(𝛼 + 𝛽𝑋∗𝑇 (𝑥)) (1 − 𝑋∗𝑇 (𝑥))

Using (A.10) ⇐⇒ 1 − 𝑋∗𝑇 (𝑥) ≤ (1 − 𝑋∗𝑇 (𝑥)) (
𝑒

𝑒 + (𝛼 − 𝛽)𝑇 + 2𝛽𝑇𝑋∗
𝑇
(𝑥) ) (

𝑒 + 𝑇 (𝛼 + 𝛽𝑋∗
𝑇
(𝑥))

𝑒
)

⇐⇒ 1 − 𝑋∗𝑇 (𝑥) ≤ (1 − 𝑋∗𝑇 (𝑥)) ·
𝑒 + 𝛼𝑇 + 𝛽𝑇𝑋∗

𝑇
(𝑥)

𝑒 + (𝛼 − 𝛽)𝑇 + 2𝛽𝑇𝑋∗
𝑇
(𝑥)

Using expression for 𝑋∗
𝑇
(𝑥) from (A.5), we have

𝑒 + (𝛼 − 𝛽)𝑇 + 2𝛽𝑇𝑋∗
𝑇
(𝑥) =

√︁
[𝑇 (𝛽 − 𝛼) − 𝑒]2 + 4𝛼𝛽𝑇2 + 4𝑒𝛽𝑥𝑇 ≥ 0.

Then, since 𝛽 ≥ 0, 𝑇 ≥ 0, 0 ≤ 𝑋∗
𝑇
(𝑥) ≤ 1, we have that the fraction in the last inequality is at least

1, and therefore the last inequality holds.

Now we bound the remaining terms in the RHS of (A.9) by 0. This requires showing that

−𝛽
𝛼 + 𝛽𝑥 +

𝛽
𝜕𝑋∗

𝑇
(𝑥)

𝜕𝑥

𝛼 + 𝛽𝑋∗
𝑇
(𝑥) ≤ 0

⇐⇒ (𝛼 + 𝛽𝑥)
𝜕𝑋∗

𝑇
(𝑥)

𝜕𝑥
≤ 𝛼 + 𝛽𝑋∗𝑇 (𝑥)

Using (A.4) ⇐⇒
𝜕𝑋∗

𝑇
(𝑥)

𝜕𝑥

(
𝛼 + 𝛽𝑋∗𝑇 (𝑥) − 𝛽

𝑇

𝑒
(𝛼 + 𝛽𝑋∗𝑇 (𝑥)) (1 − 𝑋∗𝑇 (𝑥))

)
≤ 𝛼 + 𝛽𝑋∗𝑇 (𝑥)

⇐⇒ (𝛼 + 𝛽𝑋∗𝑇 (𝑥))
𝜕𝑋∗

𝑇
(𝑥)

𝜕𝑥
(1 − 𝛽𝑇

𝑒
(1 − 𝑋∗𝑇 (𝑥))) ≤ 𝛼 + 𝛽𝑋∗𝑇 (𝑥)

Using (A.10) ⇐⇒
𝑒 − 𝛽𝑇 + 𝛽𝑋∗

𝑇
(𝑥)𝑇

𝑒 + (𝛼 − 𝛽)𝑇 + 2𝛽𝑋∗
𝑇
(𝑥)𝑇 ≤ 1

Since 𝛼, 𝛽 ≥ 0, 𝑇 ≥ 0, 𝑋∗
𝑇
(𝑥) ≥ 0, the last inequality holds.

Therefore the sum of all the terms in the right hand side of (A.9) is bounded by 0. This proves

the lemma statement. □

Now we use the above concavity property to show that for any starting point and remaining

time, the optimal revenue in the deterministic model is at least the optimal expected revenue in
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the stochastic model. Let 𝑉 stoch(𝑑, 𝑇) be the optimal expected revenue one can achieve in the

stochastic Bass model with 𝑑 current adopters and 𝑇 time remaining.

Lemma 23. For any 𝑑 ∈ {0, . . . , 𝑚}, 𝑥 = 𝑑
𝑚

, and any 𝑇 ≥ 0:

𝑉det(𝑥, 𝑇) ≥ 𝑉 stoch(𝑑, 𝑇)

Proof. Given any 𝛿 ≥ 0, let Δ(𝑝, 𝑑) be the random number of adoptions that take place in the next

𝛿 time in the discrete stochastic Bass model when the current price is 𝑝 and current number of

adopters is 𝑑. Let 𝑥 = 𝑑
𝑚

, then E[Δ(𝑝, 𝑥)] = _(𝑝, 𝑥)𝛿 + 𝑜(𝛿). Using dynamic programming, we

have:

𝑉 stoch(𝑑, 𝑇) = max
𝑝
E

[
𝑝Δ(𝑝, 𝑑) +𝑉 stoch(𝑑 + Δ(𝑝, 𝑑), 𝑇 − 𝛿)

]
+ 𝑜(𝛿)

= max
𝑝
𝑝E[Δ(𝑝, 𝑑)] + E

[
𝑉 stoch(𝑑 + Δ(𝑝, 𝑑), 𝑇 − 𝛿)

]
+ 𝑜(𝛿).

Also,

𝑉det(𝑥, 𝑇) = max
𝑝
𝑝E[Δ(𝑝, 𝑑)] +𝑉det(𝑥 + E[Δ(𝑝, 𝑑)]/𝑚,𝑇 − 𝛿) + 𝑜(𝛿)

We use induction to prove the lemma by working from the end of the planning horizon (no

time remaining). We know 𝑉det(𝑥, 0) = 𝑉 stoch(𝑑, 0) = 0 for all 𝑑, 𝑥 = 𝑑
𝑚

. Suppose the inequality

holds for 𝑇 − 𝛿, and any 𝑑, 𝑥 = 𝑑
𝑚

. Then,

𝑉det(𝑥, 𝑇) = max
𝑝
𝑝E[Δ(𝑝, 𝑑)] +𝑉det(𝑥 + E[Δ(𝑝, 𝑑)]/𝑚,𝑇 − 𝛿) + 𝑜(𝛿)

(using concavity from Lemma 1) ≥ max
𝑝
𝑝E[Δ(𝑝, 𝑑)]𝑚 + E

[
𝑉det(𝑥 + Δ(𝑝, 𝑑)/𝑚,𝑇 − 𝛿)

]
+ 𝑜(𝛿)

(inductive assumption on 𝑇 − 𝛿) ≥ max
𝑝
𝑝E[Δ(𝑝, 𝑑)]𝑚 + E

[
𝑉 stoch(𝑑 + Δ(𝑝, 𝑑), 𝑇 − 𝛿)

]
+ 𝑜(𝛿)

= 𝑉 stoch(𝑑, 𝑇) + 𝑜(𝛿)
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Then, taking 𝛿→ 0, we obtain the lemma statement. □

Finally, we prove the following lemma that will allow us to establish an upper bound on the

deterministic optimal revenue compared to the stochastic optimal revenue.

Lemma 24. Fix any 𝛼, 𝛽, 𝑇 such that

𝑚𝑋∗𝑇 ≥ 8 log2 (4𝑚 log(𝑒 + (𝛼 + 𝛽)𝑇)) + 32

then

𝑉det(0, 𝑇) −𝑉 stoch(0, 𝑇) ≤ 𝑂
(
log ((𝛼 + 𝛽)𝑇)

√︃
𝑚𝑋∗

𝑇
log(𝑚)

)
Proof. The proof constructs a fixed price sequence such that the expected revenue in the stochastic

Bass model under these prices is within 𝑂 (
√
𝑚) of the optimal deterministic revenue. Then, since

the optimal expected stochastic revenue is at least as much as that obtained under the given price

sequence, we will obtain the lemma statement.

Consider the following pricing scheme: for all time instances after arrival of (𝑑−1)𝑡ℎ customer,

and until arrival of 𝑑𝑡ℎ customer, post price 𝑝∗
𝑑

given by: 𝑝∗
𝑑
B 𝑝∗

(
𝑑−1
𝑚
, 𝛼, 𝛽

)
for 𝑑 = 𝑑0 +

1, . . . , ⌊𝑚𝑋∗
𝑇
⌋. Here 𝑝∗(·, 𝛼, 𝛽) and 𝑋∗

𝑇
are given by the optimal price curve and adoption levels

for the deterministic Bass model, as defined in (1.4) and (1.6).

Now, since in our price sequence, the prices are fixed between two arrivals, we know that (in

the stochastic Bass model) the inter-arrival time between customer 𝑑 − 1 and 𝑑 is an exponential

random variable 𝐼𝑑 ∼ 𝐸𝑥𝑝
(
_(𝑝∗

𝑑
, 𝑑−1
𝑚
)
)
, where _(𝑝, 𝑥) = 𝑒−𝑝 (𝛼 + 𝛽𝑥) (1 − 𝑥)𝑚. Note that from

(A.3) and (A.4) we have that _(𝑝∗
𝑑
, 𝑑−1
𝑚
) = 𝑚𝑋∗

𝑇

𝑇
, and that

𝑛∑
𝑑=1

1
_(𝑝∗

𝑑
, 𝑑−1
𝑚
) =

𝑛𝑇
𝑚𝑋∗

𝑇

for any 𝑛 ≤ ⌊𝑚𝑋∗
𝑇
⌋.

Let 𝜏𝑛 denotes the time of arrival of the 𝑛𝑡ℎ customer in the stochastic model. Set 𝑛 = ⌊𝑚𝑋∗
𝑇
−√︃

8𝑚𝑋∗
𝑇

log( 2
𝛿
)⌋, _ =

𝑚𝑋∗
𝑇

𝑇
, 𝜖 =

√︃
8𝑛
_2 𝑙𝑜𝑔( 2𝛿 ), for some 𝛿 ≥ 0 to be specified later. Assume 𝑛 ≥

2 log(2/𝛿) for now, then by Lemma 20, we have with probability 1 − 𝛿:������𝜏𝑛 − ©«1 −

√︄
8 log( 2

𝛿
)

𝑚𝑋∗
𝑇

ª®¬𝑇
������ ≤ 𝑇

√︄
8
𝑋∗
𝑇
𝑚

log(2
𝛿
)
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Therefore, with probability at least 1 − 𝛿, 𝜏𝑛 ≤ 𝑇 , which means that the total number of adoptions

𝑑𝑇 observed in the stochastic Bass model in time 𝑇 is at least 𝑛. Let 𝑝∗𝑥 = 𝑝∗(𝑥, 𝛼, 𝛽), 𝑝∗𝑚𝑎𝑥 =

max
𝑥
𝑝∗(𝑥, 𝛼, 𝛽). Then,

𝑉det(0, 𝑇) −𝑉 stoch(0, 𝑇) ≤𝑚
∫ 𝑋∗

𝑇

0
𝑝∗𝑥𝑑𝑥 −

𝑑𝑇∑︁
𝑑=1

𝑝∗𝑑−1
𝑚

(Corollary 3) ≤
⌊𝑚𝑋∗

𝑇
⌋∑︁

1
𝑝∗𝑑−1

𝑚

−
𝑑𝑇∑︁
𝑑=1

𝑝∗𝑑−1
𝑚

+ 𝛽

2𝛼
+ 1

2
log (𝑚) + 3𝑝∗𝑚𝑎𝑥

≤
⌊𝑚𝑋∗

𝑇
⌋∑︁

𝑛+1
𝑝∗𝑑−1

𝑚

+ 𝛽

2𝛼
+ 1

2
log (𝑚) + 3𝑝∗𝑚𝑎𝑥 w.p. 1 − 𝛿

(Lemma 7) =𝑂

(
log ((𝛼 + 𝛽)𝑇)

√︂
𝑚𝑋∗

𝑇
log(1

𝛿
)
)

w.p. 1 − 𝛿

where we borrowed Corollary 3 from Appendix A.4.2, and used the price upper bound 𝑝∗𝑚𝑎𝑥 ≤

𝑂 (log ((𝛼 + 𝛽)𝑇)) from Lemma 7.

Note that the third step holds with probability 1 − 𝛿. When it does not hold (with probability

at most 𝛿), we can bound the gap between deterministic and stochastic revenue by a trivial upper

bound of 𝑝∗𝑚𝑎𝑥𝑚𝑋
∗
𝑇

on the deterministic revenue. We set 𝛿 = 1√
𝑚𝑋∗

𝑇
𝑝∗𝑚𝑎𝑥

to get that

𝑉det(0, 𝑇) −𝑉 stoch(0, 𝑇)

≤(1 − 𝛿)𝑂
(
log ((𝛼 + 𝛽)𝑇)

√︂
𝑚𝑋∗

𝑇
log(1

𝛿
)
)
+ 𝛿𝑝∗𝑚𝑎𝑥𝑚𝑋∗𝑇

≤𝑂
(
log ((𝛼 + 𝛽)𝑇)

√︃
𝑚𝑋∗

𝑇
log (𝑚)

)
.

Finally, one can verify that the condition on 𝑚𝑋∗
𝑇

implies that 𝑛 ≥ 2 log(2/𝛿). Let 𝑀 = 𝑚𝑋∗
𝑇

, and
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assume that log(2
√︁
𝑀𝑝∗𝑚𝑎𝑥) ≥ 1:

𝑛 ≥ 2 log(2/𝛿) ⇐⇒ 𝑀 ≥ 2
√︃

2𝑀 log(2
√︁
𝑀𝑝∗𝑚𝑎𝑥) + 2 log(2

√︁
𝑀𝑝∗𝑚𝑎𝑥)

⇐= 𝑀 ≥
(
2
√

2𝑀 + 2
)

log(2
√︁
𝑀𝑝∗𝑚𝑎𝑥)

⇐=
√
𝑀 ≥ 2

√
2 log(4𝑀𝑝∗𝑚𝑎𝑥)

(Lemma 7) ⇐=
√
𝑀 ≥ 2

√
2 log (4𝑀 log(𝑒 + (𝛼 + 𝛽)𝑇))

If log(2
√︁
𝑀𝑝∗𝑚𝑎𝑥) < 1, then the first line is implied by 𝑀 ≥ 2

√
2𝑀 + 2, which is satisfied by

𝑀 ≥ 32.

□

The proof of Lemma 2 can now be completed using the upper and lower bounds on determin-

istic optimal revenue compared to the stochastic optimal revenue proven above.

Proof of Lemma 2. The first part of Lemma 2 follows directly from Lemma 23 because

Pseudo-Regret(𝑇) ≥ Regret(𝑇) ⇐⇒ 𝑉det(0, 𝑇) ≥ 𝑉 stoch(0, 𝑇).

Similarly, the second part follows from Lemma 24. Note that if the condition on 𝑚𝑋∗
𝑇

does not

hold, then the gap 𝑉det(0, 𝑇) −𝑉 stoch(0, 𝑇) can be trivially bounded by 𝑂
(
log𝑇 log2 (𝑚 log𝑇)

)
:

𝑉det(0, 𝑇) −𝑉 stoch(0, 𝑇) ≤𝑚𝑋∗𝑇 𝑝∗𝑚𝑎𝑥 − 0

(Lemma 7) ≤
[
8 log2 (4𝑚 log(𝑒 + (𝛼 + 𝛽)𝑇)) + 32

]
𝑂 (log((𝛼 + 𝛽)𝑇))

=𝑂

(
log((𝛼 + 𝛽)𝑇) log2 (𝑚 log((𝛼 + 𝛽)𝑇))

)
□
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A.4 Upper Bound Proofs

A.4.1 Step 1: Bounding the estimation errors (Proof of Lemma 3, Lemma 4)

We prove the estimation bound on �̂� and 𝛽𝑖 separately in Lemma 25 and Lemma 26 respec-

tively. Lemma 3 follows directly from these two results.

Lemma 25. Assuming that 𝑚1/3 ≥ 16(𝛼+𝛽)
𝛼

√︃
8 log( 2

𝛿
), then with probability 1 − 𝛿, |𝛼 − �̂� | ≤ 𝐴.

Proof. From (1.8) we have the following expression for the estimator error of �̂�:

|𝛼 − �̂� | = 𝛾𝑒𝑝0 | 1
𝛾𝑚E[𝜏1]

− 1
𝜏𝛾𝑚
|

Recall that 𝜏𝑑 denotes the (stochastic) time of arrival of 𝑑𝑡ℎ customer in the stochastic Bass model

under the pricing decisions made by the algorithm. Note that in our algorithm prices do not change

between customer arrivals. Therefore, the interarrival time 𝐼𝑑 = 𝜏𝑑 − 𝜏𝑑−1 between 𝑑 − 1 and 𝑑

customer follows an exponential distribution. Specifically, since the prices were fixed as 𝑝0 for

the first 𝛾𝑚 customers, we have 𝐼𝑑 ∼ 𝐸𝑥𝑝(_(𝑝0,
𝑑−1
𝑚
)) for 𝑑 ∈ {1, . . . , 𝛾𝑚} where _(𝑝, 𝑥) =

𝑚𝑒−𝑝 (𝛼 + 𝛽𝑥) (1 − 𝑥) and _(𝑝0,
𝑑−1
𝑚
) ≥ _ B 𝑒−𝑝0𝛼(1 − 𝛾)𝑚 for 𝑑 ∈ {1, . . . , 𝛾𝑚}.

Therefore, E[𝜏1] = E[𝐼1] = 1
𝑒−𝑝0𝛼𝑚 , and E[𝜏𝛾𝑚] = E[

∑𝛾𝑚

𝑑=1 𝐼𝑑]. Using Lemma 20 we have:

P

(�����𝜏𝛾𝑚 − 𝛾𝑚∑︁
𝑑=1
E[𝐼𝑑]

����� ≥ 𝜖
)
≤2 exp(−

𝜖2_2

8𝛾𝑚
),

so that

�����𝜏𝛾𝑚 − 𝛾𝑚∑︁
𝑑=1

1
_(𝑝0, 𝑑)

����� ≤ 𝑒𝑝0

𝛼(1 − 𝛾)

√︂
8 log(2

𝛿
) 𝛾
𝑚

with probability 1 − 𝛿,

where we set 𝜖 =

√︂
8 log( 2

𝛿
)𝛾𝑚

_2 . Since 𝑚1/3 ≥
√︃

2 log( 2
𝛿
) =⇒ 𝜖 ≤ 2𝛾𝑚

_
, the condition for
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Lemma 20 is satisfied. To bound the estimation error of 𝛼:

��𝜏𝛾𝑚 − 𝛾𝑚E[𝜏1]
�� = �����𝜏𝛾𝑚 − 𝛾𝑚∑︁

𝑑=1

1
_(𝑝0, 𝑑)

����� +
����� 𝛾𝑚∑︁
𝑑=1

1
_(𝑝0,

𝑑−1
𝑚
)
− 𝛾𝑚E[𝜏1]

�����
(with probability 1 − 𝛿) ≤ 𝑒𝑝0

𝛼(1 − 𝛾)

√︂
8 log(2

𝛿
) 𝛾
𝑚
+

����� 𝛾𝑚∑︁
𝑑=1
( 1
_(𝑝0,

𝑑−1
𝑚
)
− 1
𝑒−𝑝0𝛼𝑚

)
�����

≤ 𝑒𝑝0

𝛼(1 − 𝛾)

√︂
8 log(2

𝛿
) 𝛾
𝑚
+

����� 𝛾𝑚∑︁
𝑑=1

|𝑒−𝑝0𝛼𝑚 − 𝑒−𝑝0 (𝛼 + 𝛽 𝑑−1
𝑚
) (𝑚 − 𝑑 + 1) |

(𝑒−𝑝0𝛼(1 − 𝛾)𝑚)2

�����
≤ 𝑒𝑝0

𝛼(1 − 𝛾)

√︂
8 log(2

𝛿
) 𝛾
𝑚
+

����� 𝛾𝑚∑︁
𝑑=1

max(𝛼, 𝛽)𝑑
𝑒−𝑝0𝛼2(1 − 𝛾)2𝑚2

�����
≤ 𝑒𝑝0

𝛼(1 − 𝛾)

√︂
8 log(2

𝛿
) 𝛾
𝑚
+ 𝑒

𝑝0 max(𝛼, 𝛽)𝛾2

𝛼2(1 − 𝛾)2

≤ 2𝑒𝑝0 (𝛼 + 𝛽)
𝛼2(1 − 𝛾)2

√︂
8 log(2

𝛿
)𝑚−2/3

Denote the above bound by B𝛼. Plug this and 𝑝0 = 0 into the |�̂�−𝛼 | expression above we have

with probability 1 − 𝛿:

|�̂� − 𝛼 | ≤ 𝛾 B𝛼
(𝛾𝑚E[𝜏1] − B𝛼)2

≤ 𝛾 4B𝛼
𝛾2𝑚2E[𝜏1]2

=
8(𝛼 + 𝛽)
(1 − 𝛾)2

√︂
8 log(2

𝛿
)𝑚−1/3

where in the second inequality we used the fact that 𝑚1/3 ≥ 16(𝛼+𝛽)
𝛼

√︃
8 log( 2

𝛿
) =⇒ B𝛼 ≤

1
2𝛾𝑚E[𝜏1].

□

Lemma 26. Assuming that 𝑚1/3 ≥ 64 (𝛼+𝛽)
2

𝛼2

√︃
8 log( 2

𝛿
), then for any 𝑖 = 1, . . . , 𝐾 , with probability

1 − 𝛿, |𝛽 − 𝛽𝑖 | ≤ 𝐵𝑖.

Proof. Note that E[𝐼𝛾𝑖𝑚+1] = E[𝜏𝛾𝑖𝑚+1 − 𝜏𝛾𝑖𝑚] = 1
_(𝑝0,𝛾𝑖) =

1
𝑒−𝑝0 (𝛼+𝛽𝛾𝑖) (1−𝛾𝑖)𝑚 . From (1.9) we can
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bound the estimation error of 𝛽 as follows. We have

�̂� + 𝛽𝑖𝛾𝑖 =
𝛾𝑚

𝑒−𝑝0 (1 − 𝛾𝑖)𝑚(𝜏(𝛾𝑖+𝛾)𝑚 − 𝜏𝛾𝑖𝑚)
,

𝛼 + 𝛽𝛾𝑖 =
𝛾𝑚

𝑒−𝑝0 (1 − 𝛾𝑖)𝑚E[𝜏𝛾𝑖𝑚+1 − 𝜏𝛾𝑖𝑚]𝛾𝑚
.

Therefore,

|𝛽 − 𝛽𝑖 | ≤
|�̂� − 𝛼 |
𝛾𝑖

+ 𝛾𝑚

𝛾𝑖𝑒
−𝑝0 (1 − 𝛾𝑖)𝑚

���� 1
𝜏(𝛾𝑖+𝛾)𝑚 − 𝜏𝛾𝑖𝑚

− 1
𝛾𝑚E[𝜏𝛾𝑖𝑚+1 − 𝜏𝛾𝑖 ]

���� .
Similar to the estimation bound of �̂�, the main step is to bound the arrival times. Note that

_(𝑝0,
𝑑−1
𝑚
) ≥ 𝑒−𝑝0 (𝛼 + 𝛽𝛾𝑖) (1 − 𝛾𝑖 − 𝛾)𝑚 ≥ _ B 𝑒−𝑝0 (𝛼 + 𝛽𝛾𝑖) (1/3 − 𝛾)𝑚 for 𝑑 ∈ {𝛾𝑖𝑚 +

1, . . . , (𝛾𝑖 + 𝛾)𝑚}, where we used the fact that by the construction of Algorithm 1, 𝛾𝑖 ≤ 2/3 for all

𝑖 = 1, . . . , 𝐾 . Using Lemma 20 we have:

P

(�����𝜏𝛾𝑚 − 𝛾𝑚∑︁
𝑑=1
E[𝐼𝑑]

����� ≥ 𝜖
)
≤2𝑒𝑥𝑝(−

𝜖2_2

8𝛾𝑚
)

so that

�����𝜏𝛾𝑚 − 𝛾𝑚∑︁
𝑑=1

1
_(𝑝0, 𝑑)

����� ≤ 𝑒𝑝0

(𝛼 + 𝛽𝛾𝑖) (1/3 − 𝛾)

√︂
8𝑙𝑜𝑔(2

𝛿
) 𝛾
𝑚

with probability 1 − 𝛿

where we set 𝜖 =

√︂
8 log( 2

𝛿
)𝛾𝑚

_2 . Since 𝑚1/3 ≥
√︃

2 log( 2
𝛿
) =⇒ 𝜖 ≤ 2𝛾𝑚

_
, the condition for

Lemma 20 is satisfied. To bound the estimation error of 𝛽:
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�� (𝜏(𝛾𝑖+𝛾)𝑚 − 𝜏𝛾𝑖𝑚 )
− 𝛾𝑚E[𝜏𝛾𝑖𝑚+1 − 𝜏𝛾𝑖𝑚]

�� = ������
(𝛾𝑖+𝛾)𝑚∑︁
𝑑=𝛾𝑖𝑚+1

𝐼𝑑 −
𝛾𝑚

_(𝑝0, 𝛾𝑖)

������
≤

������
(𝛾𝑖+𝛾)𝑚∑︁
𝑑=𝛾𝑖𝑚+1

(
𝐼𝑑 −

1
_(𝑝0,

𝑑−1
𝑚
)

)������ +
������
(𝛾𝑖+𝛾)𝑚∑︁
𝑑=𝛾𝑖𝑚+1

1
_(𝑝0,

𝑑−1
𝑚
)
− 𝛾𝑚

_(𝑝0, 𝛾𝑖)

������
(w.p. 1 − 𝛿) ≤ 𝑒𝑝0

(1/3 − 𝛾) (𝛼 + 𝛽𝛾𝑖)

√︂
8 log(2

𝛿
) 𝛾
𝑚
+

������
𝛾𝑖𝑚+𝛾𝑚∑︁
𝑑=𝛾𝑖𝑚+1

( 1
_(𝑝0, 𝑑)

− 1
_(𝑝0, 𝛾𝑖)

)

������
≤ 𝑒𝑝0

(1/3 − 𝛾) (𝛼 + 𝛽𝛾𝑖)

√︂
8 log(2

𝛿
) 𝛾
𝑚

+

������
𝛾𝑖𝑚+𝛾𝑚∑︁
𝑑=𝛾𝑖𝑚+1

|𝑒−𝑝0 (𝛼 + 𝛽 𝑑−1
𝑚
) (𝑚 − 𝑑 + 1) − 𝑒−𝑝0 (𝛼 + 𝛽𝛾𝑖) (1 − 𝛾𝑖)𝑚 |

(𝑒−𝑝0 (𝛼 + 𝛽𝛾𝑖) (1 − 𝛾𝑖 − 𝛾)𝑚)2

������
≤ 𝑒𝑝0

(1/3 − 𝛾) (𝛼 + 𝛽𝛾𝑖)

√︂
8 log(2

𝛿
) 𝛾
𝑚
+

������
𝛾𝑖𝑚+𝛾𝑚∑︁
𝑑=𝛾𝑖𝑚+1

( (𝛼 + 𝛽)𝛾
𝑒−𝑝0 (𝛼 + 𝛽𝛾𝑖)2(1 − 𝛾𝑖 − 𝛾)2𝑚

)

������
≤ 𝑒𝑝0

(1/3 − 𝛾) (𝛼 + 𝛽𝛾𝑖)

√︂
8 log(2

𝛿
) 𝛾
𝑚
+ 𝑒𝑝0 (𝛼 + 𝛽)𝛾2

(𝛼 + 𝛽𝛾𝑖)2(1/3 − 𝛾)2

≤ 2𝑒𝑝0 (𝛼 + 𝛽)
(𝛼 + 𝛽𝛾𝑖)2(1/3 − 𝛾)2

√︂
8 log(2

𝛿
)𝑚−2/3

Let B𝛽 denote this bound. Plug this result back into the bound on |𝛽 − 𝛽𝑖 |:

|𝛽 − 𝛽𝑖 | ≤
|�̂� − 𝛼 |
𝛾𝑖

+ 𝛾𝑚

𝛾𝑖𝑒
−𝑝0 (1 − 𝛾𝑖)𝑚

(
1

𝜏(𝛾𝑖+𝛾)𝑚 − 𝜏𝛾𝑖𝑚
− 1
𝛾𝑚E[𝜏𝛾𝑖𝑚+1 − 𝜏𝛾𝑖 ]

)
≤ |�̂� − 𝛼 |

𝛾𝑖
+ 𝑒𝑝0𝛾

𝛾𝑖 (1 − 𝛾𝑖)

( B𝛽
(𝛾𝑚E[𝐼𝛾𝑖𝑚+1] − B𝛽)2

)
(*) ≤ |�̂� − 𝛼 |

𝛾𝑖
+ 𝑒𝑝0𝛾

𝛾𝑖 (1 − 𝛾𝑖)

( 4B𝛽
𝛾2𝑚2E[𝐼𝛾𝑖𝑚+1]2

)
≤ |�̂� − 𝛼 |

𝛾𝑖
+ 8(𝛼 + 𝛽) (1 − 𝛾𝑖)

𝛾𝑖 (1/3 − 𝛾)2

√︂
8 log(2

𝛿
)𝑚−1/3

≤ 16(𝛼 + 𝛽) (1 − 𝛾𝑖)
𝛾𝑖 (1/3 − 𝛾)2

√︂
8 log(2

𝛿
)𝑚−1/3

where for the (*) step we used the fact that 𝑚1/3 ≥ 64 (𝛼+𝛽)
2

𝛼2

√︃
8 log( 2

𝛿
) =⇒ B𝛽 ≤ 1

2𝛾𝑚E[𝐼𝛾𝑖𝑚+1].
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□

Lemma 4 (Error bounds for estimated prices). Given any market parameters 𝛼, 𝛽 and their es-

timators �̂�, 𝛽𝑖 that satisfy |𝛼 − �̂� | ≤ 𝐴, |𝛽 − 𝛽𝑖 | ≤ 𝐵𝑖, �̂� − 𝐴 > 0, 𝛽𝑖 − 𝐵𝑖 > 0, then for every

𝑑 = 0, . . . , 𝑚 − 1, ��𝑝∗( 𝑑
𝑚
, �̂�, 𝛽𝑖) − 𝑝∗( 𝑑𝑚 , 𝛼, 𝛽)

�� ≤ 𝐿𝛼𝐴 + 𝐿𝛽𝑖𝐵𝑖,
where 𝐿𝛼, 𝐿𝛽𝑖 are as defined in (1.11).

Proof. Clearly, �̂� − 𝐴 ≤ 𝛼, 𝛽𝑘 − 𝐵𝑘 ≤ 𝛽, and 𝛽𝑘 + 𝐵𝑘 ≥ 𝛽. Then using Lemma 22 we have

|𝑝∗(𝑥, �̂�, 𝛽𝑘 ) − 𝑝∗(𝑥, 𝛼, 𝛽) | ≤ max
𝛼′∈[𝛼,�̂�] or 𝛼′∈[�̂�,𝛼]

{����𝜕𝑝∗(𝑥, 𝛼, 𝛽)𝜕𝛼

����
𝛼=𝛼′

}
|𝛼 − �̂� |

+ max
𝛽′∈[𝛽,𝛽] or 𝛽′∈[𝛽,𝛽]

{����𝜕𝑝∗(𝑥, 𝛼, 𝛽)𝜕𝛽

����
𝛽=𝛽′

}
|𝛽 − 𝛽𝑘 |

≤𝐿𝛼𝐴 + 𝐿𝛽𝑖𝐵𝑘

□

A.4.2 Step 2: Proof of Lemma 5

Since the prices that we offer in the stochastic Bass model is based on a discretized version

of the continuous price curve in the deterministic Bass model, we first need to prove a result that

says that this discretization does not introduce a lot of error. Lemma 27 below shows that it only

introduces a logarithmic (in 𝑚) amount of error, for any fixed 𝛼, 𝛽, 𝑇 .

Lemma 27. For any fixed 𝑇, 𝛼, 𝛽 and 𝑛 = 1, . . . , 𝑚𝑋∗
𝑇

,����� 𝑛∑︁
𝑑=1

𝑝∗
(
𝑑 − 1
𝑚

, 𝛼, 𝛽

)
− 𝑚

∫ 𝑛/𝑚

0
𝑝∗(𝑥, 𝛼, 𝛽)𝑑𝑥

����� ≤ 𝑛

2𝑚
𝛽

𝛼
+ 1

2
log (𝑚) + 2𝑝∗𝑚𝑎𝑥

where 𝑝∗𝑚𝑎𝑥 denotes an upper bound on the optimal prices 𝑝∗(𝑥, 𝛼, 𝛽) for all 𝑥.

106



Proof. Using (1.4), ����𝜕𝑝∗(𝑥, 𝛼, 𝛽)𝜕𝑥

���� ≤ 𝛽

𝛼
+ 1

1 − 𝑥 .

In below we abbreviate 𝑝∗(𝑥, 𝛼, 𝛽) as 𝑝∗𝑥 .����� 𝑛∑︁
𝑑=1

𝑝∗
(
𝑑 − 1
𝑚

, 𝛼, 𝛽

)
− 𝑚

∫ 𝑛/𝑚

0
𝑝∗(𝑥, 𝛼, 𝛽)𝑑𝑥

�����
≤
𝑛−2∑︁
𝑑=1

�����𝑝∗𝑑−1
𝑚

− 𝑚
∫ 𝑑/𝑚

𝑑−1
𝑚

𝑝∗𝑥𝑑𝑥

����� + 2𝑝∗𝑚𝑎𝑥

≤
𝑛−2∑︁
𝑑=1

[
𝑚

∫ 𝑑/𝑚

𝑑−1
𝑚

(
𝛽

𝛼
+ 1

1 − 𝑑/𝑚

)
(𝑥 − 𝑑 − 1

𝑚
)𝑑𝑥

]
+ 2𝑝∗𝑚𝑎𝑥

=
𝑛

2𝑚
𝛽

𝛼
+
𝑛−2∑︁
𝑑=1

1
2(1 − 𝑑/𝑚)𝑚 + 2𝑝∗𝑚𝑎𝑥

≤ 𝑛

2𝑚
𝛽

𝛼
+ 1

2𝑚

∫ 𝑛−1

1

1
(1 − 𝑔/𝑚) 𝑑𝑔 + 2𝑝∗𝑚𝑎𝑥

≤ 𝑛

2𝑚
𝛽

𝛼
+ 1

2
log

(
1

1 − 𝑛−1
𝑚

)
+ 2𝑝∗𝑚𝑎𝑥

≤ 𝑛

2𝑚
𝛽

𝛼
+ 1

2
log (𝑚) + 2𝑝∗𝑚𝑎𝑥

The first inequality follows because we know 𝑝∗(𝑥, 𝛼, 𝛽) is bounded below and above by 0 and

𝑝∗𝑚𝑎𝑥 . Therefore the difference between 𝑝∗ evaluated at two different 𝑥 values is at most 𝑝∗𝑚𝑎𝑥 . □

Corollary 3. For any fixed 𝑇, 𝛼, 𝛽,������
⌊𝑚𝑋∗

𝑇
⌋∑︁

𝑑=1
𝑝∗

(
𝑑 − 1
𝑚

, 𝛼, 𝛽

)
− 𝑚

∫ 𝑋∗
𝑇

0
𝑝∗(𝑥, 𝛼, 𝛽)𝑑𝑥

������ ≤ 𝛽

2𝛼
+ 1

2
log (𝑚) + 3𝑝∗𝑚𝑎𝑥

Proof. Let 𝑛 = ⌊𝑚𝑋∗
𝑇
(𝑥0)⌋ − 𝑑0. Since rounding 𝑚𝑋∗

𝑇
introduces at most at additional 𝑝∗𝑚𝑎𝑥

difference in revenue, the result then immediately follows from Lemma 27. □

For the lemma below, we define

𝑉det
𝑖 (𝑇) B 𝑚

∫ 2𝛾𝑖∧𝑋∗𝑇

𝛾𝑖

𝑝∗(𝑥, 𝛼, 𝛽) 𝑑𝑥
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Rev𝑖 B
⌊2𝛾𝑖𝑚⌋∧⌊𝑋∗𝑇𝑚⌋∑︁
𝑑=⌊𝛾𝑖𝑚⌋+1

𝑝𝑑

Lemma 5. For any epoch 𝑖 in the algorithm, with probability 1 − 𝛿,

𝑉det
𝑖
− Rev𝑖 ≤ 𝑂

(
𝑚2/3 log

(
𝑇
𝛿

) (
1
𝛼
+ 1
𝛽
+ 𝛽

𝛼2

)
𝜙

)
= �̃� (𝑚2/3).

Proof. Let 𝐴, 𝐵𝑖 be the bound on the estimation error stated in Lemma 25, Lemma 26. Recall

that first 𝛾𝑚 customers in every epoch are offered an exploration price 𝑝0 = 0. Let 𝑝𝑑 be the

price paid by customer 𝑑 as specified in Algorithm 1 and (1.11). Recall also that 𝑝∗(𝑥, 𝛼, 𝛽) is the

optimal price curve as specified in (1.4). We use the short hand notations 𝑝∗𝑥 B 𝑝∗(𝑥, 𝛼, 𝛽), 𝑝∗
𝑑
B

𝑝∗( 𝑑−1
𝑚
, 𝛼, 𝛽), 𝑝∗𝑚𝑎𝑥 B max

𝑥∈[0,1)
𝑝∗𝑥 in the following calculations.

𝑉det
𝑖 − Rev𝑖 = 𝑚

∫ 2𝛾𝑖∧𝑋∗𝑇

𝛾𝑖

𝑝∗𝑥 𝑑𝑥 −
2𝛾𝑖𝑚∧⌊𝑋∗𝑇𝑚⌋∑︁
𝑑=𝛾𝑖𝑚+1

𝑝𝑑

=

2𝛾𝑖𝑚∧⌊𝑋∗𝑇𝑚⌋∑︁
𝑑=𝛾𝑖𝑚+1

[
𝑝∗𝑑 − 𝑝𝑑

]
+

������
2𝛾𝑖𝑚∧⌊𝑋∗𝑇𝑚⌋∑︁
𝑑=𝛾𝑖𝑚+1

𝑝∗𝑑 − 𝑚
∫ 2𝛾𝑖∧𝑋∗𝑇

𝛾𝑖

𝑝∗𝑥𝑑𝑥

������
(Corollary 3) ≤

2𝛾𝑖𝑚∧⌊𝑋∗𝑇𝑚⌋∑︁
𝑑=𝛾𝑖𝑚+1

[
𝑝∗𝑑 − 𝑝𝑑

]
+ 𝛽

2𝛼
+ 1

2
log (𝑚) + 3𝑝∗𝑚𝑎𝑥

≤ (𝛾𝑚 + 3)𝑝∗𝑚𝑎𝑥 +
2𝛾𝑖𝑚∧⌊𝑋∗𝑇𝑚⌋∑︁
𝑑=(𝛾𝑖+𝛾)𝑚+1

[
𝑝∗𝑑 − 𝑝𝑑

]
+ 𝛽

2𝛼
+ 1

2
log (𝑚)

(Lemma 4, Lemma 25, Lemma 26) ≤ (𝛾𝑚 + 3)𝑝∗𝑚𝑎𝑥 + 2𝛾𝑖𝑚(𝐿𝛼𝐴 + 𝐿𝛽𝑖𝐵𝑖) +
𝛽

2𝛼
+ 1

2
log (𝑚) 𝑤.𝑝.1 − 2𝛿

(Lemma 7) ≤ 𝑂
(
𝑚2/3 log ((𝛼 + 𝛽)𝑇)

)
+ 2𝛾𝑖𝑚(𝐿𝛼𝐴 + 𝐿𝛽𝑖𝐵𝑖)

where 𝐿𝛼, 𝐿𝛽𝑖 are defined in (1.11).

The second to last step follows because we know that |𝑝∗
𝑖
( 𝑑−1
𝑚
) − 𝑝∗

𝑑
| ≤ 2(𝐿𝛼𝐴 + 𝐿𝛽𝑖𝐵𝑖) using

the definition of 𝑝∗
𝑖

in (1.11) and Lemma 4, and that from Lemma 25 and Lemma 26 we know that

the error bounds 𝐴, 𝐵𝑖 hold with probability 1 − 2𝛿.

Assuming that 𝑚1/3 ≥ 64𝜙
𝛼

√︃
8 log( 2

𝛿
), and 𝛾𝑖𝑚1/3 ≥ 640𝜙

𝛽

√︃
8 log( 2

𝛿
), one can check this implies
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that 𝐴 ≤ 𝛼
4 and 𝐵𝑖 ≤ 𝛽

4 , which in turn implies that �̂� − 𝐴 ≥ 𝛼
2 and 𝛽 − 𝐵𝑖 ≥ 𝛽

2 . Applying these

bounds to (1.11) we have:

𝐿𝛼 ≤
4
𝛼
+ 6𝛽
𝛼2 𝐿𝛽𝑖 ≤ 6

(
1
𝛼
+ 1
𝛽

)
Plug in the expressions of 𝐴 and 𝐵𝑖, as well as the above bounds on 𝐿𝛼, 𝐿𝛽𝑖, we have with

probability 1 − 𝛿,

𝑉det
𝑖 (𝑇) − Rev𝑖 ≤ 𝑂

(
𝑚2/3 log

(
𝑇

𝛿

) (
1
𝛼
+ 1
𝛽
+ 𝛽

𝛼2

)
𝜙

)
When 𝑚1/3 ≤ 64𝜙

𝛼

√︃
8 log( 2

𝛿
), or 𝛾𝑖𝑚1/3 ≤ 640𝜙

𝛽

√︃
8 log( 2

𝛿
), the regret can be trivially bounded

by 𝑝∗𝑚𝑎𝑥𝛾𝑖𝑚 ≤ 𝑂
(
log((𝛼 + 𝛽)𝑇)

(
𝜙

𝛼

√︃
log( 1

𝛿
)
)3
+ log((𝛼 + 𝛽)𝑇) 𝜙

𝛽

√︃
log( 1

𝛿
)𝑚2/3

)
, where we used

Lemma 7 to bound 𝑝∗𝑚𝑎𝑥 . Since the first component is a constant with respect to 𝑚 and the second

is no larger than the expression from before, we are done.

□

A.4.3 Step 3: Proof of Lemma 6 and Lemma 7

Lemma 6. If the seller follows Algorithm 1, then with probability at least 1−𝛿 log(𝑚), the number

of adoptions at the end of time horizon 𝑇 is lower bounded as:

𝑑𝑇 ≥ 𝑚𝑋∗𝑇 −
√︃

8𝑚𝑋∗
𝑇

log( 4
𝛿
).

Proof. Let 𝑝𝑑 be the prices that the algorithm offers for customer 𝑑. Since Algorithm 1 offers

either 𝑝0 = 0 or the lower confidence bound price defined in (1.11), we know from Corollary 1, as

well as Lemma 25, Lemma 26, that with probability 1 − 𝛿𝐾 , 𝑝𝑑 ≤ 𝑝∗( 𝑑−1
𝑚
, 𝛼, 𝛽)∀𝑑 ≤ 𝑑𝑇 ∧ 𝑚𝑋∗𝑇 ,

where 𝐾 is the total number of epochs. This means that _(𝑝𝑑 , 𝑑−1
𝑚
) ≥ _(𝑝∗( 𝑑−1

𝑚
, 𝛼, 𝛽), 𝑑−1

𝑚
) =

1
𝑒
(𝛼 + 𝛽𝑋∗

𝑇
) (1 − 𝑋∗

𝑇
)𝑚. Let _ B 1

𝑒
(𝛼 + 𝛽𝑋∗

𝑇
) (1 − 𝑋∗

𝑇
)𝑚, which by (1.5) is equal to 𝑋∗

𝑇
𝑚

𝑇
.

Set 𝑛 = ⌊𝑚𝑋∗
𝑇
−

√︃
8𝑚𝑋∗

𝑇
log( 2

𝛿
)⌋, _ =

𝑚𝑋∗
𝑇

𝑇
, 𝜖 =

√︃
8𝑛
_2 𝑙𝑜𝑔( 2𝛿 ), then by Lemma 20, we have with
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probability 1 − 𝛿: ������𝜏𝑛 − ©«1 −

√︄
8 log( 2

𝛿
)

𝑚𝑋∗
𝑇

ª®¬𝑇
������ ≤ 𝑇

√︄
8
𝑋∗
𝑇
𝑚
𝑙𝑜𝑔(2

𝛿
)

This means that with probability 1 − 𝛿(𝐾 + 1),𝜏𝑛 ≤ 𝑇 , which means that the total number of

adoptions observed in the stochastic Bass model is at least 𝑛. The result follows by observing that

there can be at most log(𝑚) epochs. □

Lemma 7 (Upper bound on optimal prices). All prices in the optimal price curve for deterministic

Bass model are upper bounded as:

𝑝∗(𝑥, 𝛼, 𝛽) ≤ log (𝑒 + (𝛼 + 𝛽)𝑇)

Proof. Here we use the expanded notation of 𝑋∗
𝑇
(𝑥, 𝛼, 𝛽) introduced in Appendix A.2. Using (1.4),

we have for any 𝑥 ≤ 𝑋∗
𝑇
(0, 𝛼, 𝛽):

𝑝∗(𝑥, 𝛼, 𝛽) ≤1 + log
(

1 − 𝑥
1 − 𝑋∗

𝑇
(0, 𝛼, 𝛽)

)
≤1 + log

(
1

1 − 𝑋∗
𝑇
(0, 𝛼, 𝛽)

)
≤ log (𝑒 + (𝛼 + 𝛽)𝑇)

The last step follows from the following upper bound on 𝑋∗
𝑇

:

𝑋∗𝑇 (0, 𝛼, 𝛽) ≤ 𝑋∗𝑇 (0, 𝛼 + 𝛽, 0) =
(𝛼 + 𝛽)𝑇
(𝛼 + 𝛽)𝑇 + 𝑒

The first inequality is easy to see from (1.5): by replacing 𝛼 + 𝛽𝑋∗
𝑇

with 𝛼 + 𝛽, we can see that

𝑋∗
𝑇
/(1 − 𝑋∗

𝑇
) increases, and since this quantity is strictly monotone in 𝑋∗

𝑇
, 𝑋∗

𝑇
must be larger. And

the last equality follows from solving (1.5) after replacing 𝛼 + 𝛽𝑋∗
𝑇

with 𝛼 + 𝛽. □
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A.4.4 Step 4: Putting it all together for proof of Theorem 1

Proof of Theorem 1.

Pseudo-Regret =
𝐾∑︁
𝑖=1

[
𝑉det
𝑖 − Rev𝑖

]
+

𝑚𝑋∗
𝑇∑︁

𝑑=𝑑𝑇+1
𝑝𝑑

≤ log(𝑚)𝑂
(
𝑚2/3 log

(
𝑇

𝛿

) (
1
𝛼
+ 1
𝛽
+ 𝛽

𝛼2

)
𝜙

)
w.p. 1 − (𝐾 + 1)𝛿

+𝑂
(
log ((𝛼 + 𝛽)𝑇)

√
𝑚

)
= 𝑂

(
𝑚2/3 log(𝑚) log(𝑇

𝛿
)
(

1
𝛼
+ 1
𝛽
+ 𝛽

𝛼2

)
𝜙

)
where the per epoch regrets are bounded using Lemma 5 and the “uncaptured revenue” term is

bounded using Lemma 6 and 7.

The inequality holds with probability 1− (𝐾 + 1)𝛿, and 𝐾 is the total number of epochs, which

is bounded by log(𝑚) since the epoch length is defined with respect to the number of customers

and increases geometrically. □

A.5 Lower Bound Proofs

A.5.1 Step 1: missing lemmas and proofs

Lemma 8. At any adoption level 𝑥 and remaining time 𝑇 ′, the disadvantage of offering a subopti-

mal price 𝑝 in the deterministic Bass model is lower bounded as:

𝐴𝑑𝑒𝑡 (𝑥, 𝑇 ′, 𝑝) ≥ _(𝑝, 𝑥)min
(
1
4
(𝜋∗(𝑥, 𝑇 ′) − 𝑝)2, 1

10

)
.

where 𝜋∗(𝑥, 𝑇 ′) = arg min𝑝 𝐴𝑑𝑒𝑡 (𝑥, 𝑇 ′, 𝑝) denotes the optimal price at 𝑥, 𝑇 ′.

Proof. Let 𝜋∗ denote 𝜋∗(𝑥, 𝑇 ′) for the remainder of this proof. Using (A.6), we can rewrite the left
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hand side of the lemma:

𝐴𝑑𝑒𝑡 (𝑥, 𝑇 ′, 𝑝)

= lim
𝛿→0

𝑉det(𝑥, 𝑇 ′) − 𝑝_(𝑝, 𝑥)𝛿 −𝑉det(𝑥 + _(𝑝, 𝑥)𝛿/𝑚,𝑇 ′ − 𝛿)
𝛿

= lim
𝛿→0

𝜋∗_(𝜋∗, 𝑥)𝛿 +𝑉det(𝑥 + _(𝜋∗, 𝑥)𝛿/𝑚,𝑇 ′ − 𝛿) − 𝑝_(𝑝, 𝑥)𝛿 −𝑉det(𝑥 + _(𝑝, 𝑥)𝛿/𝑚,𝑇 ′ − 𝛿)
𝛿

=𝐺det(𝑥, 𝑇 ′, 𝜋∗) − 𝐺det(𝑥, 𝑇 ′, 𝑝) (A.11)

where we define

𝐺det(𝑥, 𝑇 ′, 𝑝) = lim
𝛿→0

𝑝_(𝑝, 𝑥) + 𝑉
det(𝑥 + _(𝑝, 𝑥)𝛿/𝑚,𝑇 ′ − 𝛿) −𝑉det(𝑥, 𝑇 ′ − 𝛿)

𝛿

= 𝑝_(𝑝, 𝑥) + _(𝑝, 𝑥)
𝑚

𝜕𝑉det(𝑥, 𝑇 ′)
𝜕𝑥

(A.12)

The distribution of limits is valid since both limits exist. The new quantity 𝐺det(𝑥, 𝑇 ′, 𝑝) will

help us quantify the instantaneous impact, or the (dis)Advantage, of offering a suboptimal price.

From above, note that 𝜋∗(𝑥, 𝑇 ′) := arg min𝑝 𝐴𝑑𝑒𝑡 (𝑥, 𝑇 ′, 𝑝) = arg max𝑝 𝐺𝑑𝑒𝑡 (𝑥, 𝑇 ′, 𝑝). We de-

rived the expression for 𝜋∗(𝑥, 𝑇 ′) earlier in the proof of Lemma 1 (equation (A.8)) as

𝜋∗(𝑥, 𝑇 ′) = 1 − 1
𝑚

𝜕𝑉det(𝑥, 𝑇 ′)
𝜕𝑥

.
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We can now bound (A.11) using the derivative of 𝐺det:

𝜕𝐺det(𝑥, 𝑇 ′, 𝑝)
𝜕𝑝

= _(𝑝, 𝑥) − 𝑝_(𝑝, 𝑥) − _(𝑝, 𝑥)
𝑚

𝜕𝑉det(𝑥, 𝑇 ′)
𝜕𝑥

= (𝜋∗ − 𝑝)_(𝑝, 𝑥)

𝐺det(𝑥, 𝑇 ′, 𝜋∗) − 𝐺det(𝑥, 𝑇 ′, 𝑝) =
∫ 𝜋∗

𝑝

(𝜋∗ − 𝜌)_(𝜌, 𝑥)𝑑𝜌

= _(𝑝, 𝑥) (𝜋∗ − 𝑝) + _(𝜋∗, 𝑥) − _(𝑝, 𝑥)

= _(𝑝, 𝑥) (𝑒𝑝−𝜋∗ − 1 − (𝑝 − 𝜋∗))

≥ _(𝑝, 𝑥)min
(

1
10
,

1
4
(𝑝 − 𝜋∗)2

)
To see the last step, consider 𝑓 (𝑥) = 𝑒𝑥 − 1 − 𝑥 which is a convex function minimized at 𝑥 = 0.

For 𝑥 ≥ −1
2 , it’s easy to show that 𝑓 ′′(𝑥) ≥ 𝑒−1/2 ≥ 1

2 . So by standard strong convexity argument

𝑓 (𝑥) ≥ 1
4𝑥

2. For 𝑥 ≤ −1
2 we have 𝑓 (𝑥) ≥ 𝑓 (−1

2 ) ≥
1

10 . □

Before we translate the above result into a regret bound in terms of cumulative pricing error,

we explain the proof idea with some more details.

Given any arbitrary pricing algorithm, let

[(𝑝1, 𝐼1), . . . , (𝑝𝑛, 𝐼𝑛)]

be the first 𝑛 observations (tuples of price 𝑝𝑑 and inter-arrival times 𝐼𝑑 between customer 𝑑 − 1

and 𝑑) in the stochastic Bass model, on following the algorithm’s pricing policy. Here we as-

sume that the algorithm is allowed to continue running even after the planning horizon 𝑇 has

passed. If the algorithm is undefined after time 𝑇 , we assume that it offers 0 price. We use

these observations to define a continuous price trajectory 𝑝𝑥 , 0 ≤ 𝑥 ≤ 𝑛/𝑚 as follows: set

𝑝𝑥 = 𝑝𝑑 ,∀ 𝑥 ∈ [ 𝑑−1
𝑚
, 𝑑
𝑚
), 𝑑 = 1, . . . , 𝑛. We call 𝑝𝑥 the induced price trajectory of 𝑝𝑑 . Let 𝑡𝑑𝑒𝑡

𝑛/𝑚

denote the time when the adoption level hits 𝑥 in the deterministic Bass model following this in-

duced pricing trajectory 𝑝𝑥 . In other words, 𝑡𝑑𝑒𝑡𝑥 =
∫ 𝑥

0
𝑚

_(𝑥 ′,𝑝𝑥′) 𝑑𝑥
′. Note that 𝑡𝑑𝑒𝑡

𝑛/𝑚 is a stochastic

quantity because it depends on stochastic trajectory 𝑝𝑥 , which in turn depends on the prices 𝑝𝑑

offered to the first 𝑛 customers in the stochastic model.
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Recall that 𝜏𝑛 =
𝑛∑
𝑑=1

𝐼𝑑 denotes the arrival time of customer 𝑛 in the stochastic model. First we

show that the total time for 𝑛 customer arrivals in the deterministic vs. stochastic model (i.e., 𝑡𝑑𝑒𝑡
𝑛/𝑚

vs. 𝜏𝑛) under the two price trajectories (𝑝𝑥 vs. 𝑝𝑑) is roughly the same.

Lemma 28. Given 𝑛 ≤ 𝑚, 𝛿 ∈ (0, 1) such that 𝑛 ≥ 2 log( 2
𝛿
). Then for any algorithm satisfying

Assumption 1, with probability at least 1 − 𝛿,

|𝑡𝑑𝑒𝑡
𝑛/𝑚 − 𝜏𝑛 | ≤

𝑒𝑝𝑚𝑎𝑥

𝛼(𝑚 − 𝑛)

√︂
8𝑛 log(2

𝛿
) + 𝑒𝑝𝑚𝑎𝑥 (𝛼 + 𝛽)𝑛

2𝛼2(𝑚 − 𝑛 − 1)2𝑚

where 𝑝𝑚𝑎𝑥 is an upper bound on the prices 𝑝𝑑 , 1 ≤ 𝑑 ≤ 𝑑𝑇 offered by algorithm.

Proof. Since algorithm’s prices are fixed between arrival of two customers (by Assumption 1), we

have that inter-arrival times follow an exponential distribution. That is, for any 𝑑, given 𝑝𝑑+1, the

price paid by (𝑑 + 1)𝑡ℎ customer, 𝜏𝑑+1 − 𝜏𝑑 follows the exponential distribution 𝐸𝑥𝑝(_(𝑝𝑑+1, 𝑑𝑚 )),

where _(𝑝, 𝑥) = 𝑒−𝑝 (𝛼 + 𝛽𝑥) (1− 𝑥)𝑚. Note that _(𝑝𝑑+1, 𝑑𝑚 ) ≥ _ B 𝑒−𝑝𝑚𝑎𝑥𝛼(𝑚 − 𝑛) for all 𝑑 ≤ 𝑛.

Set 𝜖 =
√︃

8𝑛
_2 log( 2

𝛿
), then Lemma 20 in Appendix A.1 provides that with probability 1 − 𝛿:

|𝜏𝑛 −
𝑛∑︁
𝑑=1
E[𝜏𝑑 − 𝜏𝑑−1 |F𝑑−1] | ≤

√︄
8𝑛
_2 log(2

𝛿
)

Note that the condition on 𝜖 in Lemma 20 is satisfied since
√︃

8𝑛
_2 log( 2

𝛿
) ≤ 2𝑛

_
⇐⇒ 𝑛 ≥ 2 log( 2

𝛿
).

On the other hand, for any 𝑑 ≤ 𝑛, 𝑡𝑑𝑒𝑡𝑑+1
𝑚

− 𝑡𝑑𝑒𝑡𝑑
𝑚

= 𝑚
∫ 𝑑+1

𝑚

𝑑/𝑚
1

_(𝑝𝑑+1,𝑥) 𝑑𝑥. It’s easy to check that

| 𝜕
𝜕𝑥

1
_(𝑝,𝑥) | = |

1
𝑚

𝑒𝑝 [𝛽(1−𝑥)−(𝛼+𝛽𝑥)]
(𝛼+𝛽𝑥)2 (1−𝑥)2 | ≤

𝑒𝑝 (𝛼+𝛽)
𝛼2 (1−𝑥)2𝑚 . So

���𝑡𝑑𝑒𝑡𝑑+1
𝑚

− 𝑡𝑑𝑒𝑡
𝑑/𝑚 − E[𝜏𝑑+1 − 𝜏𝑑 |F𝑑]

��� = �����𝑚 ∫ 𝑑+1
𝑚

𝑑/𝑚

1
_(𝑝𝑑+1, 𝑥)

𝑑𝑥 − 1
_(𝑝𝑑+1, 𝑑/𝑚)

�����
≤

�����𝑚 ∫ 𝑑+1
𝑚

𝑑/𝑚

1
_(𝑝𝑑+1, 𝑑𝑚 )

+ 𝑒𝑝𝑑+1 (𝛼 + 𝛽)
𝛼2(1 − 𝑑+1

𝑚
)2𝑚
(𝑥 − 𝑑

𝑚
)𝑑𝑥 − 1

_(𝑝𝑑+1, 𝑑/𝑚)

�����
≤

����� 𝑒𝑝𝑑+1 (𝛼 + 𝛽)𝛼2(1 − 𝑑+1
𝑚
)2

∫ 𝑑+1
𝑚

𝑑/𝑚
(𝑥 − 𝑑

𝑚
)𝑑𝑥

�����
≤ 𝑒𝑝𝑑+1 (𝛼 + 𝛽)

2𝛼2(1 − 𝑑+1
𝑚
)2𝑚2
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In the second to last step we canceled the first and third term from the previous step. Combining

this with above, we have with probability 1 − 𝛿

|𝑡𝑑𝑒𝑡
𝑛/𝑚 − 𝜏𝑛 | ≤

𝑒𝑝𝑚𝑎𝑥

𝛼(𝑚 − 𝑛)

√︂
8𝑛 log(2

𝛿
) + 𝑒𝑝𝑚𝑎𝑥 (𝛼 + 𝛽)𝑛

2𝛼2(𝑚 − 𝑛 − 1)2𝑚

□

Using 𝑡𝑑𝑒𝑡𝑥 and the induced pricing trajectory 𝑝𝑥 as defined right before Lemma 28, we can now

obtain the following result.

Lemma 29. Fix any 𝛼, 𝛽. Then for any 𝑚,𝑇 such that 𝑚𝑋∗
𝑇
≥ 𝑛 :=

⌊(
𝛼
𝛼+𝛽

)4/3
𝑚2/3

⌋
, and any

algorithm satisfying Assumption 1 and 2,

E [Pseudo-Regret(𝑇)] ≥ E
[
𝑚

∫ 𝑛/𝑚

0
min

(
1
4
(𝜋∗𝑥 − 𝑝𝑥)2,

1
10

)
𝑑𝑥

]
−𝑂

(
(𝛼 + 𝛽)1/3𝑇𝑒𝐶

𝛼1/3 𝑚1/3√︁log(𝑚)
)

where 𝜋∗𝑥 := 𝜋∗(𝑥, 𝛼, 𝛽, 𝑇 − 𝑡𝑑𝑒𝑡𝑥 ) denotes the deterministic optimal price at adoption level 𝑥, 𝑝𝑥 :=

𝑝𝑑 denotes the price offered by the algorithm for customer 𝑑 = ⌊𝑚𝑥⌋ + 1, and 𝑡𝑑𝑒𝑡𝑥 is the time at

which adoption level reaches 𝑥 on following the price trajectory 𝑝𝑥 ′,∀𝑥′ ≤ 𝑥 in the deterministic

Bass model.

Proof. Let 𝑋𝑡 be the trajectory of adoption levels in the deterministic Bass model on following

price curve 𝑝𝑥 . Recall that by (1.2), 𝑚 𝑑𝑋𝑡
𝑑𝑡

= _(𝑝𝑡 , 𝑋𝑡). Let 𝑝𝑡 B 𝑝𝑋𝑡 be the same price trajectory

as 𝑝𝑥 but indexed by time.

First, note that for 𝑚 large enough we have 𝑡𝑑𝑒𝑡
𝑛/𝑚 ≤

𝑛
𝑒−𝑝𝑚𝑎𝑥𝛼(𝑚−𝑛) ≤

𝑇𝑒𝐶𝑛
𝛼(𝑚−𝑛) ≤ 𝑇 , This is because

the last inequality holds for 𝑚 ≥ 𝑛 + 𝑛
𝛼
𝑒𝐶 , i.e., for any 𝑚 satisfying 𝑚1/3 ≥

(
(𝛼+1)𝛼1/3

(𝛼+𝛽)4/3

)
𝑒𝐶 . Here we

used the upper bound 𝑝𝑚𝑎𝑥 := log(𝑇) + 𝐶 from Assumption 2. Therefore for the rest of the proof
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we can assume that 𝑡𝑑𝑒𝑡
𝑛/𝑚 ≤ 𝑇 .

E[Pseudo-Regret(𝑇)]

=E

[
𝑉det(0, 𝑇) −

𝑛∑︁
𝑑=1

𝑝𝑑 −
𝑑𝑇∑︁

𝑑=𝑛+1
𝑝𝑑

]
=E

[
𝑉det(0, 𝑇) −

𝑛∑︁
𝑑=1

𝑝𝑑

]
− E

[
E

[
𝑑𝑇∑︁

𝑑=𝑛+1
𝑝𝑑

�����F𝑛
] ]

≥E
[
𝑉det(0, 𝑇) −

𝑛∑︁
𝑑=1

𝑝𝑑

]
− E

[
𝑉 stoch( 𝑛

𝑚
,𝑇 − 𝜏𝑛)

]
=E

[
𝑉det(0, 𝑇) −

𝑛∑︁
𝑑=1

𝑝𝑑 −𝑉det( 𝑛
𝑚
,𝑇 − 𝑡𝑑𝑒𝑡

𝑛/𝑚)
]
+ E

[
𝑉det( 𝑛

𝑚
,𝑇 − 𝑡𝑑𝑒𝑡

𝑛/𝑚) −𝑉
stoch(𝑛, 𝑇 − 𝜏𝑛)

]
(A.13)

Given a particular sequence of 𝑝𝑑 for 𝑑 = 1, . . . , 𝑛, and its’ induced continuous version 𝑝𝑥 as

defined in the lemma statement, the quantity inside the first expectation brackets is the cumulative

“disadvantage” that the 𝑝𝑥 incurs on the deterministic Bass model, where disadvantage is defined

in Lemma 8. Therefore we can bound it as follows:

E

[
𝑉det(0, 𝑇) −

𝑛∑︁
𝑑=1

𝑝𝑑 −𝑉det(𝑛/𝑚,𝑇 − 𝑡𝑑𝑒𝑡
𝑛/𝑚)

]
=E

[∫ 𝑡𝑑𝑒𝑡
𝑛/𝑚

0
𝑉det(𝑋𝑡 , 𝑇 − 𝑡) −𝑄det(𝑋𝑡 , 𝑇 − 𝑡, 𝑝𝑡 , 𝑑𝑡)

]
=E

[∫ 𝑡𝑑𝑒𝑡
𝑛/𝑚

0

𝑉det(𝑋𝑡 , 𝑇 − 𝑡) − 𝑝_(𝑝𝑡 , 𝑋𝑡)𝑑𝑡 −𝑉det(𝑋𝑡 + _(𝑝𝑡 , 𝑋𝑡)𝑑𝑡/𝑚,𝑇 − 𝑡 − 𝑑𝑡)
𝑑𝑡

𝑑𝑡

]
≥E

[∫ 𝑡𝑑𝑒𝑡
𝑛/𝑚

0
_(𝑝𝑡 , 𝑋𝑡)min

(
(1
4
𝜋∗𝑋𝑡 − 𝑝𝑡)

2,
1

10

)
𝑑𝑡

]
=𝑚E

[∫ 𝑛/𝑚

0
min

(
1
4
(𝜋∗𝑥 − 𝑝𝑥)2,

1
10

)
𝑑𝑥

]
where in the last step we applied change of variables _(𝑝𝑡 , 𝑋𝑡)𝑑𝑡 = 𝑚 𝑑𝑋𝑡

The second part of (A.13) can be bounded by using Lemma 23 and bounding the difference
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between 𝜏𝑛 and 𝑡𝑑𝑒𝑡
𝑛/𝑚:

E
[
𝑉det( 𝑛

𝑚
,𝑇 − 𝑡𝑑𝑒𝑡

𝑛/𝑚) −𝑉
stoch(𝑛, 𝑇 − 𝜏𝑛)

]
=E

[
𝑉det( 𝑛

𝑚
,𝑇 − 𝜏𝑛) −𝑉 stoch(𝑛, 𝑇 − 𝜏𝑛)

]
+ E

[
𝑉det( 𝑛

𝑚
,𝑇 − 𝑡𝑑𝑒𝑡

𝑛/𝑚) −𝑉
det(𝑛, 𝑇 − 𝜏𝑛)

]
≥E

[
𝑉det( 𝑛

𝑚
,𝑇 − 𝑡𝑑𝑒𝑡

𝑛/𝑚) −𝑉
det(𝑛, 𝑇 − 𝜏𝑛)

]
Now recall from (A.7) and (A.8) that 𝜋∗(𝑥, 𝛼, 𝛽, 𝑇 ′) = 1 − 𝑚 𝜕𝑉det (𝑥,𝑇 ′)

𝜕𝑥
and

𝜕𝑉det(𝑥, 𝑇 ′)
𝜕𝑇 ′

= 𝜋∗_(𝜋∗, 𝑥) + _(𝜋∗, 𝑥) (1 − 𝜋∗) = _(𝜋∗, 𝑥) ≤ (𝛼 + 𝛽)𝑚 (A.14)

Using Lemma 28, which bounds the difference between 𝑇 − 𝑡𝑑𝑒𝑡
𝑛/𝑚 and 𝑇 − 𝜏𝑛, we have with proba-

bility 1 − 𝛿:

|𝑉det( 𝑛
𝑚
,𝑇 − 𝑡det

𝑛/𝑚) −𝑉
det( 𝑛

𝑚
,𝑇 − 𝜏𝑛) | ≤𝑂

(
𝑒𝑝𝑚𝑎𝑥 (𝛼 + 𝛽)1/3

𝛼1/3 𝑚1/3
√︂

log(2
𝛿
)
)

Since 𝑉det( 𝑛
𝑚
, 𝑇 − 𝜏𝑛) ≤ 𝑉det( 𝑛

𝑚
, 𝑇) ≤ 𝑚𝑝∗𝑚𝑎𝑥 = 𝑂 (𝑚 log((𝛼 + 𝛽)𝑇)), we can set 𝛿 = 1

𝑚
and use

Assumption 2 to conclude that

E
[���𝑉det( 𝑛

𝑚
,𝑇 − 𝑡det

𝑛/𝑚) −𝑉
det( 𝑛

𝑚
,𝑇 − 𝜏𝑛)

���] ≤ 𝑂 (
(𝛼 + 𝛽)1/3𝑇𝑒𝐶

𝛼1/3 𝑚1/3√︁log(𝑚)
)

(A.15)

Here we also assumed that 𝑚 ≥
(
2 log( 2

𝛿
)
)3/2 (

𝛼+𝛽
𝛼

)2
, which implies that 𝑛 ≥ 2 log( 2

𝛿
). This

satisfies the condition for Lemma 28. If this assumption on𝑚 does not hold, then since the expected

pseudo-regret is lower bounded by zero, and the first term in the lemma statement is at most

𝑛
10 ≤

1
5 log( 2

𝛿
), we have that the lemma statement still holds for 𝛿 = Θ( 1

𝑚
). □

A.5.2 Step 2: missing lemmas and proofs

Lemma 30. For any 𝑖, let [(𝑝1, 𝐼1), . . . (𝑝𝑖, 𝐼𝑖)] be sequence of prices offered and inter-arrival

times (𝐼𝑑 := 𝜏𝑑 − 𝜏𝑑−1) for the first 𝑖 customers, and let F𝑖 be the filtration generated by these
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random variables. Here, prices could have been chosen adaptively using an arbitrary strategy as

long as 𝑝𝑖 ∈ F𝑖−1. Let 𝜋∗1 ≠ 𝜋∗2 be any two fixed prices. Fix any deterministic algorithm that takes

in the past 𝑛 observations as input and outputs a single price 𝜋 ∈ F𝑛. Then, for any 𝜖 > 0 and 𝑛

such that 𝑛 ≤
(
𝛼𝑚
𝜖

)2/3, at least one of the following holds:

P𝛼,𝛽
(��𝜋 − 𝜋∗2)�� ≤ ��𝜋 − 𝜋∗1��) ≥ 1

4
, or,

P𝛼,𝛽+𝜖
(��𝜋 − 𝜋∗1�� ≤ ��𝜋 − 𝜋∗2��) ≥ 1

4
,

where P𝛼,𝛽 denotes the probability distribution under the stochastic Bass model with parameters

𝛼, 𝛽. Note that the only random quantity is 𝜋, which depends on the first 𝑛 observations.

Proof. Since 𝑝𝑖 ∈ F𝑖−1, the probability of observing the sequence [(𝑝1, 𝐼1), . . . (𝑝𝑛, 𝐼𝑛)] is the

product of the probabilities of observing 𝐼𝑖 given F𝑖−1.

P𝛼,𝛽 ( [(𝑝1, 𝐼1), . . . (𝑝𝑛, 𝐼𝑛)]) =
𝑛∏
𝑖=1
P𝛼,𝛽 (𝐼𝑖 |F𝑖−1)

P𝛼,𝛽+𝜖 ( [(𝑝1, 𝐼1), . . . (𝑝𝑛, 𝐼𝑛)]) =
𝑛∏
𝑖=1
P𝛼,𝛽+𝜖 (𝐼𝑖 |F𝑖−1)

The (𝛼, 𝛽) subscript denotes the fact that 𝐼𝑖’s are generated according to the stochastic Bass

model with parameters (𝛼, 𝛽). Since customer arrivals are Poisson, we know that given price

𝑝𝑖, the arrival time 𝐼𝑖 between customer 𝑖 − 1 and 𝑖 is exponentially distributed. Specifically,

𝐼𝑖 ∼ Exp
(
_𝛼,𝛽 (𝑝𝑖, 𝑖−1

𝑚
)
)

in the (𝛼, 𝛽) market, and 𝐼𝑖 ∼ Exp
(
_𝛼,𝛽+𝜖 (𝑝𝑖, 𝑖−1

𝑚
)
)

in the (𝛼, 𝛽 + 𝜖) mar-

ket, where _𝛼,𝛽 (𝑝, 𝑥) = 𝑒−𝑝 (𝛼 + 𝛽𝑥) (1 − 𝑥)𝑚. We can now bound the KL divergence between the
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joint distributions of the first 𝑛 observations between the two markets:

KL
(
P𝛼,𝛽+𝜖 , P𝛼,𝛽

)
= KL

(
𝑛∏
𝑖=1
P𝛼,𝛽+𝜖 (𝐼𝑖 |F𝑖−1) ,

𝑛∏
𝑖=1
P𝛼,𝛽 (𝐼𝑖 |F𝑖−1)

)
=

𝑛∑︁
𝑑=1

KL
(
Exp

(
_𝛼,𝛽+𝜖 (𝑝𝑑 ,

𝑑 − 1
𝑚
)
)
,Exp

(
_𝛼,𝛽 (𝑝𝑑 ,

𝑑 − 1
𝑚
)
)����)

≤
𝑛∑︁
𝑑=1

(𝜖 𝑑−1
𝑚
)2

2(𝛼 + 𝛽 𝑑−1
𝑚
)2

≤ 𝑛
(𝜖 𝑛
𝑚
)2

2𝛼2 (A.16)

where the second equality follows from the standard decomposition of KL divergence (see for

example Lemma 15.1 of [93]) and the inequality follows from the following bound on the KL

divergence of the two exponential distributions:

The KL divergence for a general pair of exponentials is KL(𝐸𝑥𝑝(_), 𝐸𝑥𝑝(_0)) = log( _0
_
) +

_
_0
− 1

KL
(
Exp

(
_𝛼,𝛽+𝜖 (𝑝𝑑 ,

𝑑 − 1
𝑚
)
)
,Exp

(
_𝛼,𝛽 (𝑝𝑑 ,

𝑑 − 1
𝑚
)
))

=
𝛼 + 𝛽 𝑑−1

𝑚
+ 𝜖 𝑑−1

𝑚

𝛼 + 𝛽 𝑑−1
𝑚

− 1 + ln

(
𝛼 + 𝛽 𝑑−1

𝑚

𝛼 + 𝛽 𝑑−1
𝑚
+ 𝜖 𝑑−1

𝑚

)
=

𝜖 𝑑−1
𝑚

𝛼 + 𝛽 𝑑−1
𝑚

−
𝜖 𝑑−1
𝑚

𝛼 + 𝛽 𝑑−1
𝑚

+
(𝜖 𝑑−1

𝑚
)2

2(𝛼 + 𝛽 𝑑−1
𝑚
)2
−

2(𝜖 𝑑−1
𝑚
)3

3!(𝛼 + (𝛽 + 𝜖) 𝑑−1
𝑚
)3

≤
(𝜖 𝑑−1

𝑚
)2

2(𝛼 + 𝛽 𝑑−1
𝑚
)2

where in the last equality 𝜖 is some value in between 0 and 𝜖 . Now let 𝐴𝑛 be a sequence of 𝑛

observations such that the policy outputs a price that is closer to 𝜋∗1. Using Pinsker’s inequality and
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(A.16), we can bound the difference in probability of observing this sequence in the two markets:

2(P𝛼,𝛽 (𝐴𝑛) − P𝛼,𝛽+𝜖 (𝐴𝑛))2 ≤ KL(P𝛼,𝛽+𝜖 , P𝛼,𝛽)

|P𝛼,𝛽 (𝐴𝑛) − P𝛼,𝛽+𝜖 (𝐴𝑛) | ≤

√︄
𝑛
(𝜖 𝑛
𝑚
)2

4𝛼2 =
𝜖𝑛3/2

2𝛼𝑚
(A.17)

Plugging in the upper bound on on 𝑛 from the lemma statement to (A.17) gives us |P𝛼,𝛽 (𝐴𝑛) −

P𝛼,𝛽+𝜖 (𝐴𝑛) | < 1
2 .

However, suppose neither inequality in the lemma statement holds, then by the definition of

𝐴𝑛, we have that |P𝛼,𝛽 (𝐴𝑛) −P𝛼,𝛽+𝜖 (𝐴𝑛) | ≥ | 34 −
1
4 | =

1
2 for 𝑛3/2 ≤ 𝛼𝑚

𝜖
, which is a contradiction. □

Above lemma holds for any two prices 𝜋∗1 ≠ 𝜋∗2. Readers should think of 𝜋∗1, 𝜋
∗
2 as the optimal

prices for customer 𝑛 + 1 in the (𝛼, 𝛽) and (𝛼, 𝛽 + 𝜖) market respectively. To reduce clutter in the

following Corollary statement, let 𝜋∗1 = 𝜋∗(𝑥, 𝛼, 𝛽, 𝑇 ′), 𝜋∗2 = 𝜋∗(𝑥, 𝛼, 𝛽 + Y, 𝑇 ′), and let 𝜋∗
𝑀
(𝑥) be

the optimal price for market 𝑀 i.e., 𝜋∗
𝑀
= 𝜋∗1 if 𝑀 = (𝛼, 𝛽) and 𝜋∗

𝑀
= 𝜋∗2 otherwise.

Corollary 4. Consider market 𝑀 sampled uniformly at random from {(𝛼, 𝛽), (𝛼, 𝛽 + 𝜖)}, let 𝑀′

be the other market. Suppose 𝑛 is such that 𝑛3/2 ≤ 𝛼𝑚
𝜖

. Let [(𝑝1, 𝐼1), . . . , (𝑝𝑛, 𝐼𝑛)] be a sequence

of 𝑛 observations generated from the market 𝑀 , where 𝑝𝑖 ∈ F𝑖−1. Fix any pricing algorithm that

outputs 𝜋 based on the first 𝑛 observations. Then for any 𝑥 ∈ [0, 1), any 𝑇 ′ such that 𝜋∗1 ≠ 𝜋∗2:

P
(��𝜋 − 𝜋∗𝑀 ′ (𝑥)�� ≤ ��𝜋 − 𝜋∗𝑀 (𝑥)��) ≥ 1

8

where the probability is taken both with respect to the randomness from the stochastic arrival

times, as well as the uniform sampling of the market parameters.

Proof. This directly follows from Lemma 30. The extra factor of 1/2 in the probability comes

from the fact that we randomly picked one market out of two. □
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A.5.3 Step 3: Lipschitz bound on the optimal pricing policy

Lemma 31. For any remaining time 𝑇 ≥ (1+
√

2)𝑒
𝛼+𝛽 and 𝑥 ≤ 𝛼2𝑒

4(𝛼+𝛽)3𝑇

𝜕𝜋∗(𝑥, 𝛼, 𝛽, 𝑇)
𝜕𝛽

≤ −𝛼𝑒
4(𝛼 + 𝛽)3𝑇

Proof. Differentiating both sides of (A.4) with respect to 𝛽 gives us

1
1 − 𝑋∗

𝑇
(𝑥)

𝜕𝑋∗
𝑇
(𝑥)

𝜕𝛽
=

𝑇𝑋∗
𝑇
(𝑥)

2𝛽𝑇𝑋∗
𝑇
(𝑥) + (𝛼 − 𝛽)𝑇 + 𝑒

We omit the initial state argument 𝑥 and denote 𝑋∗
𝑇
= 𝑋∗

𝑇
(𝑥) in the following proof.

𝜕𝜋∗(𝑥, 𝛼, 𝛽, 𝑇)
𝜕𝛽

=
1

1 − 𝑋∗
𝑇

𝜕𝑋∗
𝑇

𝜕𝛽
−

𝑋∗
𝑇

𝛼 + 𝛽𝑋∗
𝑇

−
𝛽
𝜕𝑋∗

𝑇

𝜕𝛽

𝛼 + 𝛽𝑋∗
𝑇

+ 𝑥

𝛼 + 𝛽𝑥

=
𝑇𝑋∗

𝑇

2𝛽𝑇𝑋∗
𝑇
+ (𝛼 − 𝛽)𝑇 + 𝑒 −

𝑋∗
𝑇

𝛼 + 𝛽𝑋∗
𝑇

− 𝛽

𝛼 + 𝛽𝑋∗
𝑇

(1 − 𝑋∗
𝑇
)𝑇𝑋∗

𝑇

2𝛽𝑇𝑋∗
𝑇
+ (𝛼 − 𝛽)𝑇 + 𝑒 +

𝑥

𝛼 + 𝛽𝑥

=
𝑇𝑋∗

𝑇
(𝛼 + 𝛽𝑋∗

𝑇
) − 𝑋∗

𝑇
(2𝛽𝑇𝑋∗

𝑇
+ (𝛼 − 𝛽)𝑇 + 𝑒) − (1 − 𝑋∗

𝑇
)𝛽𝑇𝑋∗

𝑇

(𝛼 + 𝛽𝑋∗
𝑇
) (2𝛽𝑇𝑋∗

𝑇
+ (𝛼 − 𝛽)𝑇 + 𝑒) + 𝑥

𝛼 + 𝛽𝑥

=
−𝑒𝑋∗

𝑇

(𝛼 + 𝛽𝑋∗
𝑇
) (2𝛽𝑇𝑋∗

𝑇
+ (𝛼 − 𝛽)𝑇 + 𝑒) +

𝑥

𝛼 + 𝛽𝑥

=
−𝑒𝑋∗

𝑇

(𝛼 + 𝛽𝑋∗
𝑇
)
√︁
(𝛼 + 𝛽)2𝑇2 + 2𝑒(𝛼 − 𝛽)𝑇 + 𝑒2 + 4𝑒𝛽𝑥𝑇

+ 𝑥

𝛼 + 𝛽𝑥

≤
−𝑒𝑋∗

𝑇

(𝛼 + 𝛽𝑋∗
𝑇
) ((𝛼 + 𝛽)𝑇 + 𝑒) +

𝑥

𝛼 + 𝛽𝑥

We replaced 𝑋∗
𝑇

with (A.5) in the last equality. The last inequality follows from the fact that√︁
(𝛼 + 𝛽)2𝑇2 + 2𝑒(𝛼 − 𝛽)𝑇 + 𝑒2 + 4𝑒𝛽𝑥𝑇 ≤ (𝛼 + 𝛽)𝑇 + 𝑒. In particular, if 𝑇 ≥ (1+

√
2)𝑒

𝛼+𝛽 , then√︁
(𝛼 + 𝛽)2𝑇2 + 2𝑒(𝛼 − 𝛽)𝑇 + 𝑒2 + 4𝑒𝛽𝑥𝑇 ≤

√
2(𝛼 + 𝛽)𝑇 . Also

𝑋∗𝑇 (𝑥, 𝛼, 𝛽) ≥ 𝑋∗𝑇 (0, 𝛼, 𝛽) ≥ 𝑋∗𝑇 (0, 𝛼, 0) =
𝛼𝑇

𝛼𝑇 + 𝑒 ≥
1 +
√

2
2 +
√

2
𝛼

𝛼 + 𝛽

The first inequality is easy to see from (A.5), the second follows from Corollary 2, and the last
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inequality follows from the assumption on 𝑇 . So the above can be simplified to

𝜕𝜋∗(𝑥, 𝛼, 𝛽, 𝑇)
𝜕𝛽

≤
−𝑒 1+

√
2

2+
√

2
𝛼
𝛼+𝛽

(𝛼 + 𝛽)2𝑇
√

2
+ 𝑥

𝛼 + 𝛽𝑥 =
−𝛼𝑒

2(𝛼 + 𝛽)3𝑇
+ 𝑥

𝛼 + 𝛽𝑥

Then, it easy to verify that for 𝑥 ≤ 𝛼2𝑒
4(𝛼+𝛽)3𝑇 , 𝜕𝜋

∗ (𝑥,𝛼,𝛽,𝑇)
𝜕𝛽

≤ −𝛼𝑒
4(𝛼+𝛽)3𝑇 □

A.5.4 Step 4: Putting it all together for proof of Theorem 2

We are now ready to prove our main lower bound result Theorem 2. In the following proof,

as defined earlier in Step 1, 𝑝𝑥 denotes the induced price trajectory from the algorithm’s offered

prices, and 𝑡𝑑𝑒𝑡𝑥 is the time when adoption level hits 𝑥 in the deterministic Bass model on following

𝑝𝑥 (both were defined in detail in the paragraphs before Lemma 28).

Proof of Theorem 2. Let 𝑇 =
2(1+
√

2)
𝛼+𝛽 , 𝜖 =

(𝛼+𝛽)2
𝛼

, 𝑛 =

⌊(
𝛼
𝛼+𝛽

)4/3
𝑚2/3

⌋
. Randomly draw the Bass

model parameters from {(𝛼, 𝛽), (𝛼, 𝛽 + 𝜖)} with equal probabilities. We denote the chosen market

as 𝑀 , and the other market 𝑀′. In the calculations that follow, we use E𝑀 to indicate that the

expectation is taken with respect to both the random choice of Bass model parameters as well as

the randomness in the stochastic Bass model.

To reduce clutter, let 𝜋∗1(𝑥) = 𝜋∗(𝑥, 𝛼, 𝛽, 𝑇 − 𝑡𝑑𝑒𝑡𝑥 ), 𝜋∗2(𝑥) = 𝜋∗(𝑥, 𝛼, 𝛽 + Y, 𝑇 − 𝑡𝑑𝑒𝑡𝑥 ), and let

𝜋∗
𝑀
(𝑥) be the optimal price i.e., 𝜋∗

𝑀
(𝑥) = 𝜋∗1(𝑥) if 𝑀 = (𝛼, 𝛽) and 𝜋∗

𝑀
(𝑥) = 𝜋∗2(𝑥) otherwise.
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E𝑀 [Pseudo-Regret(𝑇)]

(Lemma 29) ≥E𝑀
[
𝑚

∫ 𝑛/𝑚

0
min

(
1
4
(𝜋∗𝑀 (𝑥) − 𝑝𝑥)2,

1
10

)
𝑑𝑥

]
−𝑂

(
(𝛼 + 𝛽)1/3𝑇𝑒𝐶

𝛼1/3 𝑚1/3√︁log(𝑚)
)

≥𝑚
∫ 𝑛/𝑚

0
E𝑀

[
min

(
1
4

(
𝜋∗1(𝑥) − 𝜋

∗
2(𝑥)

2

)2

,
1

10

)
1

(��𝑝𝑥 − 𝜋∗𝑀 ′ (𝑥)�� ≤ ��𝑝𝑥 − 𝜋∗𝑀 (𝑥)��) ] 𝑑𝑥
−𝑂

(
𝑚1/3𝑒𝐶

(𝛼 + 𝛽)2/3𝛼1/3

√︁
log(𝑚)

)
(Lemma 31) ≥𝑚

∫ 𝑛/𝑚

0
E𝑀

[
min

((
𝛼𝑒Y

16(𝛼 + 𝛽)3(𝑇 − 𝑡𝑑𝑒𝑡𝑥 )

)2
,

1
10

)
1

(��𝑝𝑥 − 𝜋∗𝑀 ′ (𝑥)�� ≤ ��𝑝𝑥 − 𝜋∗𝑀 (𝑥)��) ] 𝑑𝑥
−𝑂

(
𝑚1/3𝑒𝐶

(𝛼 + 𝛽)2/3𝛼1/3

√︁
log(𝑚)

)
(𝑇 ≥ 𝑇 − 𝑡𝑑𝑒𝑡𝑥 ) ≥𝑚

∫ 𝑛/𝑚

0
min ©«

(
𝑒

32(1 +
√

2)

)2

,
1

10
ª®¬E𝑀

[
1

(��𝑝𝑥 − 𝜋∗𝑀 ′ (𝑥)�� ≤ ��𝑝𝑥 − 𝜋∗𝑀 (𝑥)��) ] 𝑑𝑥
−𝑂

(
𝑚1/3𝑒𝐶

(𝛼 + 𝛽)2/3𝛼1/3

√︁
log(𝑚)

)
(Corollary 4) ≥𝑛

8
min ©«

(
𝑒

32(1 +
√

2)

)2

,
1

10
ª®¬ −𝑂

(
𝑚1/3𝑒𝐶

(𝛼 + 𝛽)2/3𝛼1/3

√︁
log(𝑚)

)
=Ω

((
𝛼

𝛼 + 𝛽

)4/3
𝑚2/3

)
−𝑂

(
𝑚1/3𝑒𝐶

(𝛼 + 𝛽)2/3𝛼1/3

√︁
log(𝑚)

)
=Ω

((
𝛼

𝛼 + 𝛽

)4/3
𝑚2/3

)
Using the fact that the maximum expected regret between the two markets must be at least the

average, we have that for at least one of (𝛼, 𝛽) and (𝛼, 𝛽 + 𝜖),

E[Pseudo-Regret(𝑇)] ≥ Ω

((
𝛼

𝛼 + 𝛽

)4/3
𝑚2/3

)
Finally, we still need to check the assumptions of Lemma 29, Lemma 31 and Corollary 4 are

satisfied for large enough 𝑚.

To apply Lemma 29, we need 𝑋∗
𝑇
≥

(
𝛼
𝛼+𝛽

)4/3
𝑚−1/3 = 𝑛

𝑚
. Using the expanded notation
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𝑋∗(𝑥, 𝛼, 𝛽) introduced in Appendix A.2, we know from Corollary 2 that 𝑋∗
𝑇
(0, 𝛼, 𝛽) ≥ 𝑋∗

𝑇
(0, 𝛼, 0) =

𝛼𝑇
𝛼𝑇+𝑒 . It is easy to verify that for large enough 𝑚, specifically when 𝑚1/3 ≥

(
𝛼
𝛼+𝛽

)4/3 (
2 + 𝑒(𝛼+𝛽)

𝛼(1+
√

2)

)
and 𝑇 = 2(1 +

√
2)𝑒/(𝛼 + 𝛽), 𝑛

𝑚
≤ 𝛼𝑇

𝛼𝑇+𝑒 ≤ 𝑋
∗
𝑇
(0, 𝛼, 𝛽) = 𝑋∗

𝑇
.

To apply Lemma 31 we need the conditions 𝑇 ′𝑥 B 𝑇 − 𝑡𝑑𝑒𝑡𝑥 ≥ (1+
√

2)𝑒
𝛼+𝛽 and 𝑥 ≤ 𝛼2𝑒

4(𝛼+𝛽)3𝑇 ′𝑥
for all

𝑥 ≤ 𝑛
𝑚

. For any fixed 𝛼, 𝛽, for large enough 𝑚, specifically for for 𝑚1/3 ≥ 𝛼1/3

(𝛼+𝛽)4/3 (𝛼 + 𝑒
𝐶), where

𝐶 is a function of 𝛼, 𝛽 as defined in Assumption 2, we have that 𝑡𝑑𝑒𝑡
𝑛/𝑚 ≤

𝑛
𝑒−𝑝𝑚𝑎𝑥𝛼(𝑚−𝑛) =

𝑒𝑝𝑚𝑎𝑥 𝑛
𝛼(𝑚−𝑛) ≤

(1+
√

2)𝑒
𝛼+𝛽 . The last inequality followed from simple algebraic calculations using the assumption on

𝑚 and Assumption 2. Therefore, 𝑇 − 𝑡𝑑𝑒𝑡𝑥 ≥
(1+
√

2)𝑒
𝛼+𝛽 for all 𝑥 ≤ 𝑛

𝑚
. This satisfies the first condition.

Furthermore, for 𝑚1/3 ≥ 8(1 +
√

2)
(
𝛼+𝛽
𝛼

)2/3
, 𝑥 ≤ 𝑛/𝑚 =

(
𝛼
𝛼+𝛽

)4/3
𝑚−1/3 ≤ 𝛼2

8(1+
√

2) (𝛼+𝛽)2
=

𝛼2𝑒
4(𝛼+𝛽)3𝑇 ≤

𝛼2𝑒
4(𝛼+𝛽)3𝑇 ′𝑥

. This satisfies the second condition.

Finally, to apply Corollary 4 we needed the condition 𝑛3/2 ≤ 𝛼𝑚
𝜖

. By plugging in our choice of

𝑚, 𝜖 , it is easy to verify that this condition is satisfied.

□

A.6 Auxiliary Results

Lemma 32. Let 𝑝 be a constant upper bound on the prices that the seller can offer: 𝑝𝑡 ≤ 𝑝. Then

there exists constants 𝐶0, 𝐶1 independent of 𝑚 such that for 𝑇 ≥ 𝐶0 log(𝑚) + 𝐶1, there is a trivial

policy that achieves 𝑂
(
log( 1

𝛿
)
)

regret.

Proof. Consider the trivial pricing policy where the seller sets the price to the highest possible

value 𝑝 for the entire planning horizon. The rate of arrival of customer 𝑑 is given by _(𝑝, 𝑑−1
𝑚
) =

𝑒−𝑝 (𝛼 + 𝛽 𝑑−1
𝑚
) (𝑚 − 𝑑 + 1) ≥ 𝑒−𝑝𝛼(𝑚 − 𝑑 + 1)

We now divide the market of 𝑚 customers into a sequence of segments with geometrically

decreasing lengths. Let 𝑚0 = 0, 𝑚1 = ⌊𝑚/2⌋, 𝑚2 = 𝑚1 + ⌊𝑚/4⌋, . . . , 𝑚𝑖 = 𝑚𝑖−1 + ⌊𝑚/2𝑖⌋. Let

𝐾 = ⌊log2(𝑚) − log2 log( 1
𝛿
) − 2⌋ such that 𝑚𝐾 = 𝑚 − 𝑂 (log( 1

𝛿
)). We call customers 𝑑 for

𝑚𝑖−1 < 𝑑 ≤ 𝑚𝑖 the customers in segment 𝑖.

Since the price is constant, we use the following short hand notation _𝑑 B _(𝑝, 𝑑−1
𝑚
). Note

that by construction, 𝑚 − 𝑚𝑖 ≥ 𝑚/2𝑖. So for 𝑚𝑖−1 < 𝑑 ≤ 𝑚𝑖, _𝑑 ≥ _𝑖 B 𝑒−𝑝𝛼𝑚2𝑖 .
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Let 𝐼𝑑 be the stochastic inter-arrival time between customer 𝑑 −1 and 𝑑, then using Lemma 20,

we can obtain the following bound on the time it takes for all customers in segment 𝑖 to arrive:

P

(
𝑚𝑖∑︁

𝑑=𝑚𝑖−1+1
𝐼𝑑 −

1
_𝑑
≥ 𝜖𝑖

)
≤ 𝑒𝑥𝑝

(
−𝜖2

𝑖
_2
𝑖

8(𝑚𝑖 − 𝑚𝑖−1)

)

Setting this to 𝛿 and solving for 𝜖𝑖, one can verify that with probability 1 − 𝛿,

𝑚𝑖∑︁
𝑑=𝑚𝑖−1+1

𝐼𝑑 −
1
_𝑑
≥ 𝜖𝑖 B

4𝑒𝑝

𝛼

√︂
log(1

𝛿
) 2
𝑖

𝑚

Note that we needed 𝜖𝑖 ≤ 2(𝑚𝑖−𝑚𝑖−1)
_𝑖

to apply Lemma 20. This condition is satisfied for 𝑖 = 1, . . . , 𝐾

because:

𝜖𝑖 ≤
2(𝑚𝑖 − 𝑚𝑖−1)

_
𝑖

⇐⇒
√︂

log(1
𝛿
) 2
𝑖

𝑚
≤ 1

2
⇐⇒ 𝑖 ≤ 2 log2

(
1
2

√︂
𝑚

log(1/𝛿)

)
= log(𝑚) − log2 log(1

𝛿
) − 2

Applying a union bound to this result for all segments, we have that with probability at least

1 − 𝛿 log2(𝑚), we have that

𝑚𝐾∑︁
𝑑=1

𝐼𝑑 ≤
𝑚𝐾∑︁
𝑑=1

1
_𝑑
+

𝐾∑︁
𝑖=1

𝜖𝑖

≤
𝐾∑︁
𝑖=1

𝑚𝑖 − 𝑚𝑖−1
_
𝑖

+
𝐾∑︁
𝑖=1

4𝑒𝑝

𝛼

√︂
log(1

𝛿
) 2
𝑖

𝑚

=2𝐾
𝑒𝑝

𝛼
+ 4𝑒𝑝

𝛼

√︂
log(1

𝛿
) 1
𝑚

√
2(2𝐾/2 − 1)
√

2 − 1

≤ 𝑒
𝑝

𝛼

(
2 log2(𝑚) +

4
√

2
√

2 − 1

√︂
log(1

𝛿
)
)

=𝐶0 log(𝑚) + 𝐶1

This means that if 𝑇 ≥ 𝐶0 log(𝑚)+𝐶1, then with probability 1−𝛿 log2(𝑚), the realized revenue

is at least 𝑚𝐾 𝑝. Since the maximum possible revenue is 𝑚𝑝, the regret is at most 𝑝(𝑚 − 𝑚𝐾) =

𝑂 (log( 1
𝛿
)). □
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Appendix B: Appendices for Chapter2

B.1 Missing Proofs of Results

B.1.1 Proof of Equivalence in Definition 2

Proof. Suppose the second definition holds but the first one does not. Then by the definition of

eliminated resource, there exists an optimal solution such that for every 𝑔𝑙 ∈ 𝐺𝑖, there exists 𝑟 ∈ 𝑔𝑙

such that
∑
𝑖∈𝑁 𝑥𝑖𝑟 < 𝑆𝑟 . Then for every 𝑔𝑙 ∈ 𝐺𝑖 we can assign 𝑖 a little more of the resource type

above, and have 𝑦𝑡 × 𝑤𝑖∗ × 𝑑𝑖𝑙
𝑑𝑖∗
<

∑
𝑟∈𝑔𝑙 𝑥𝑖𝑟 . This contradicts the second definition.

Now suppose the first definition holds but the second definition does not. This means that there

exists an optimal solution such that 𝑦𝑡 × 𝑤𝑖∗ × 𝑑𝑖𝑙
𝑑𝑖∗

<
∑
𝑟∈𝑔𝑙 𝑥𝑖𝑟 for every 𝑔𝑙 ∈ 𝐺𝑖. Consider the 𝑔𝑙

such that 𝑔𝑙 ∩ 𝑅𝑡+1 = ∅ by the first definition (every 𝑟 ∈ 𝑔𝑙 is eliminated by the end of round 𝑡). We

can reduce the allocation of resources in that demand group to 𝑖 by a little bit without sacrificing

optimality because the allocation constraints were satisfied strictly. But this means we have an

optimal solution that does not use up the supply of 𝑟 ∈ 𝑔𝑙 : this contradicts the elimination of these

resources in the first definition. □

B.1.2 Proof of Claim 2

Proof. The first part is straightforward. If 𝑞𝑖𝑔 > 0 is the dual variable for the allocation constraint

for some agent 𝑖 ∈ 𝑁𝑡 , 𝑔 ∈ 𝐺𝑖, then by complementary slackness every optimal solution needs to

satisfy 𝑦𝑡 × 𝑤𝑖∗ × 𝑑𝑖𝑙
𝑑𝑖∗

=
∑
𝑟∈𝑔𝑙

𝑥𝑖𝑟 , which means agent 𝑖 needs to be eliminated by Definition 2.
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Let’s now rewrite the linear program solved at time 𝑡:

max 𝑦𝑡 (B.1)

s.t.−
∑︁
𝑟∈𝑔𝑙

𝑥𝑖𝑟+
𝑑𝑖𝑙

𝑑𝑖∗
𝑤𝑖𝑦𝑡 ≤0 ∀𝑖 ∈ 𝑁𝑡 , 𝑔𝑙 ∈ 𝐺𝑖 (B.2)

−
∑︁
𝑟∈𝑔𝑙

𝑥𝑖𝑟 ≤ − 𝑑𝑖𝑙
𝑑𝑖∗
𝛾𝑖𝑤𝑖 ∀𝑖 ∉ 𝑁𝑡 , 𝑔𝑙 ∈ 𝐺𝑖 (B.3)∑︁

𝑖∈𝑁
𝑥𝑖𝑟 ≤𝑆𝑟 ∀𝑟 ∈ 𝑅 (B.4)

𝑥𝑖𝑟 ≥0 ∀𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅

This LP is in canonical form, where the objective coefficient vector is 𝑐𝑇 = [0, ..., 0, 1]. Let

𝑞𝑖𝑔 be the dual variables that correspond to the allocation constraints (constraint (B.2) and (B.3)),

and 𝑞𝑟 the dual variables corresponding to the supply constraints (constraint (B.4)). Let 𝑦∗𝑡 be the

value of 𝑦𝑡 in an optimal solution to the linear program and let 𝑞 be the optimal solution to the

corresponding dual program. By complementary slackness we know that 𝑞⊤𝐴𝑦 = 𝑐𝑦 = 1, where

𝐴𝑦 is the last column of the primal constraint matrix. Note that the entries in 𝐴𝑦 are either positive

or zero. Therefore, 𝑞𝑖𝑔 must be positive for some 𝑖 ∈ 𝑁𝑡 , 𝑔 ∈ 𝐺𝑖. This finishes the proof of the

second part.

□

B.1.3 Proof of Lemma 9 and Fact 1

Proof. Suppose 𝑥 is the output of Algorithm 2 and there exists allocation 𝑥′ such that agent 𝑖 is

strictly better off while other agents have just as much utility. Let 𝑦′ × 𝑤𝑖∗ be the fraction of the

dominant resource meta-type that 𝑖 receives with allocation 𝑥′.

Let 𝑡 be the round in which 𝑖 was eliminated in Algorithm 2. Since 𝑖 is strictly better off with

allocation 𝑥′, 𝑦′ > 𝑦∗𝑡 . Now we construct a new allocation by scaling down agent 𝑖’s allocation

from 𝑥′
𝑖

to 𝑥′
𝑖

𝑦∗𝑡
𝑦′ . Since we know other agents have at least as much utility as with allocation 𝑥, this

new solution has an LP objective value at least as high as before, satisfies all the allocation/supply
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constraints, and does not use up all the resources that 𝑖 cares about. This contradicts 𝑖 being

eliminated in round 𝑡. This concludes the proof for Lemma 9

Note that by the same argument as above we know that the allocation constraint in Equation 2.2

for the eliminated agents has to be satisfied with equality (otherwise we can scale this allocation

down to make the constraint tight, and that agent would not have been eliminated in an earlier

round). □

B.1.4 Proof of Lemma 10

Proof. For any pair of agents 𝑖, 𝑗 ∈ 𝑁 , we will show that 𝑖 does not envy 𝑗 . Let 𝑥 be the allocation

returned by Algorithm 2. Starting from the LHS of the definition of weighted envy-freeness:

𝑢𝑖

(
𝑥 𝑗𝑟

𝑤𝑖𝑙

𝑤 𝑗 𝑙

∀𝑟 ∈ 𝑔𝑖𝑙 , 𝑙 ∈ [𝐿]
)

= min
𝑔𝑙∈𝐺𝑖

∑
𝑟∈𝑔𝑖

𝑙

𝑥 𝑗𝑟
𝑤𝑖𝑙
𝑤 𝑗𝑙

𝑑𝑖𝑙

= min
𝑔𝑙∈𝐺𝑖

∑
𝑟∈𝑔 𝑗

𝑙
∩𝑔𝑖

𝑙

𝑥 𝑗𝑟
𝑤𝑖𝑙
𝑤 𝑗𝑙

𝑑𝑖𝑙

≤ min
𝑔𝑙∈𝐺𝑖

∑
𝑟∈𝑔 𝑗

𝑙

𝑥 𝑗𝑟
𝑤𝑖𝑙
𝑤 𝑗𝑙

𝑑𝑖𝑙

= min
𝑔𝑙∈𝐺𝑖

𝑤𝑖𝑙
𝑤 𝑗𝑙

∑
𝑟∈𝑔 𝑗

𝑙

𝑥 𝑗𝑟

𝑑𝑖𝑙
.

The first equality is the definition of Leontief utility in (2.1). The second equality holds because

𝑥 𝑗𝑟 = 0 for 𝑟 ∈ Ω𝑙 but 𝑟 ∉ 𝑔
𝑗

𝑙
(If the output allocation does contain inaccessible resources then

we can simply remove them without affecting the utilities of agents). The inequality follows from

non-negativity of 𝑥 𝑗𝑟 .

Now let 𝑡𝑖, 𝑡 𝑗 be the rounds in which agent 𝑖 and 𝑗 are eliminated respectively. Note that from
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the LP in Equation 2.2, we know
∑
𝑟∈𝑔 𝑗

𝑙

𝑥 𝑗𝑟 = 𝑦
∗
𝑡 𝑗
𝑤 𝑗∗𝑑 𝑗 𝑙/𝑑 𝑗∗. So

min
𝑔𝑙∈𝐺𝑖

𝑤𝑖𝑙
𝑤 𝑗𝑙

∑
𝑟∈𝑔 𝑗

𝑙

𝑥 𝑗𝑟

𝑑𝑖𝑙
= min
𝑔𝑙∈𝐺𝑖

𝑤𝑖𝑙
𝑤 𝑗𝑙
𝑦∗𝑡 𝑗𝑤 𝑗∗𝑑 𝑗 𝑙/𝑑 𝑗∗

𝑑𝑖𝑙

= min
𝑔𝑙∈𝐺𝑖

𝑤 𝑗∗
𝑑 𝑗∗

𝑑 𝑗 𝑙

𝑤 𝑗 𝑙

𝑦∗𝑡 𝑗
𝑤𝑖𝑙

𝑑𝑖𝑙

≤ min
𝑔𝑙∈𝐺𝑖

𝑦∗𝑡 𝑗
𝑤𝑖𝑙

𝑑𝑖𝑙
= 𝑦∗𝑡 𝑗

𝑤𝑖∗
𝑑𝑖∗

where the inequality follows from the definition of dominant resource meta-type (𝑤 𝑗∗
𝑑
𝑗
∗
= min

𝑙

𝑤 𝑗𝑙
𝑑 𝑗𝑙

).

If 𝑦∗𝑡 𝑗 ≤ 𝑦
∗
𝑡𝑖

(which means 𝑡 𝑗 ≤ 𝑡𝑖, by Fact 2 and Fact 1), we have

𝑦∗𝑡 𝑗
𝑤𝑖∗
𝑑𝑖∗
≤ 𝑦∗𝑡𝑖

𝑤𝑖∗
𝑑𝑖∗

= 𝑢𝑖 (𝑥𝑖).

Now suppose 𝑦∗𝑡 𝑗 > 𝑦∗𝑡𝑖 (which means 𝑡 𝑗 > 𝑡𝑖), and that 𝑖 envies 𝑗 . Note that this implies that

for every group 𝑔𝑖
𝑙
∈ 𝐺𝑖, there exists at least one 𝑟 ∈ 𝑔𝑖

𝑙
such that 𝑥 𝑗𝑟 > 0.

Consider an alternative allocation 𝑥′ that scales the allocation to agent 𝑗 to
𝑦∗𝑡𝑖
𝑦∗𝑡 𝑗
𝑥 𝑗 while keeping

the allocations to other agents the same as in 𝑥, namely, 𝑥′
𝑗
= 𝑥 𝑗

𝑦∗𝑡𝑖
𝑦∗𝑡 𝑗

and 𝑥′
𝑘
= 𝑥𝑘 ∀𝑘 ≠ 𝑗 . This alter-

native allocation gives every agent as much utility as they had before in round 𝑡𝑖 while maintaining

slack in at least one resource from each demand group of 𝐺𝑖. This contradicts the definition of 𝑡𝑖

because agent 𝑖 was eliminated in round 𝑡𝑖 (see Definition 2). □

B.1.5 Proof of Lemma 11

Our proof approach is adapted from [45] with important modifications. We first introduce some

new notations and prove two helpful results. Let 𝑖 be the only agent who reports her demands

untruthfully. Let 𝑑 be the true demand vector for all agents and 𝑑′ be an alternative demand where

only the elements belonging to agent 𝑖 might be different. Let 𝑡∗ be the first round in which agent

𝑖 is eliminated in Algorithm 2, either with truthful or untruthful reporting (minimum of the two).

Let 𝑁𝑡 , 𝑁′𝑡 , and 𝑦∗𝑡 , 𝑦
∗′
𝑡 represent the remaining active agents at the beginning of round 𝑡, and the
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optimal LP objective in round 𝑡, under 𝑑 and 𝑑′ respectively,

Claim 3. If agent 𝑖 is not eliminated in round 𝑡, then if we remove the allocation constraint for

agent 𝑖 and omit the variables related to agent 𝑖 from the supply constraints in Equation 2.2, the

optimal value as well as agents eliminated in that round do not change.

Proof. First we show that 𝑥𝑖𝑟 = 0 if 𝑟 is one of the eliminated resources in that round. Suppose

𝑥𝑖𝑟 > 0. Since 𝑖 is not eliminated, there must exist another resource 𝑟′ in the same demand group

of 𝑟 for agent 𝑖 that is not eliminated. This means that we could replace some of the allocation of

𝑟 with a little more allocation of 𝑟′. But this would then contradict 𝑟 being an eliminated resource.

Note that by the same logic 𝑥𝑖𝑟 = 0 holds in all future rounds too.

This allows us to remove 𝑥𝑖𝑟 from the supply constraints. Now the allocation constraint can be

written as

𝑦𝑡 × 𝑤𝑖∗ ×
𝑑𝑖𝑙

𝑑𝑖∗
≤

∑︁
𝑟∈𝑔𝑙∩𝑅𝑡+1

𝑥𝑖𝑟 ∀𝑔𝑙 ∈ 𝐺𝑖

Since the remaining resources are not constrained by supply, this inequality can always hold

without posing limits on other variables. So we can remove this constraint completely. □

Claim 4. For all 𝑡 ≤ 𝑡∗, 𝑁𝑡 = 𝑁′𝑡 . For all 𝑡 < 𝑡∗, 𝑦∗𝑡 = 𝑦
∗′
𝑡 .

Proof. We use proof by induction. 𝑡 = 0 holds trivially.

We assume the claim holds for 𝑡. Suppose 𝑡 + 1 < 𝑡∗. Then by Claim 3, we can remove the

constraints related to agent 𝑖 from the optimization problem. But the only differences between

these two optimization problems are those related to agent 𝑖, so they have the same solutions and

we are eliminating the same agents.

□

Now we prove Lemma 11.

Proof. Let 𝑥 and 𝑥′ be the allocations returned by Algorithm 2 given demand 𝑑 (truthful reporting)

and 𝑑′ (agent 𝑖 misreports) respectively. We consider the following four cases separately.
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• 𝑦∗
𝑡∗ ≤ 𝑦∗′

𝑡∗ and agent 𝑖 is eliminated in 𝑡∗ reporting 𝑑. By Claim 4, we know 𝑁𝑡∗ = 𝑁′
𝑡∗ .

Although we do not know the exact round in which agents in 𝑁′
𝑡∗ are eventually eliminated

under 𝑑′, we know that their dominant resource shares are all at least 𝑦∗′
𝑡∗ ≥ 𝑦∗𝑡∗ , because the

optimal objective value of the optimization problem can only increase over time by Fact 2.

Suppose 𝑢𝑖 (𝑥′𝑖) > 𝑢𝑖 (𝑥𝑖). Now consider 𝑥′ as a candidate solution for the optimization

problem in round 𝑡∗ of truthful reporting. Every agent 𝑗 in 𝑁𝑡∗ receives at least 𝑦∗′
𝑡∗𝑤 𝑗∗ ≥

𝑦∗
𝑡∗𝑤 𝑗∗ fraction of their dominant resource meta-type, while agent 𝑖 receives strictly more.

This contradicts either the optimality of 𝑦∗𝑡 or the fact that agent 𝑖 was eliminated in round 𝑡∗

reporting 𝑑 (see Definition 2).

• 𝑦∗
𝑡∗ ≥ 𝑦∗′

𝑡∗ and the agent is eliminated in 𝑡∗ reporting 𝑑′. Suppose the dominant resource

meta-type is the same under 𝑑′. Since 𝑦∗′
𝑡∗ ×𝑤𝑖∗ is the fraction of the total supply of dominant

resource that 𝑖 receives, agent 𝑖 must be receiving less of that under 𝑑′.

Now suppose the reported dominant resource meta-type is different under 𝑑′. Let • denote

the new dominant resource meta-type. Let 𝑤𝑖•, 𝑑′𝑖• be the new dominant resource weight

and demand. Let 𝑑′
𝑖∗ be the new demand for the original dominant resource meta-type. The

amount of original dominant resource meta-type 𝑖 receives is

𝑦∗′𝑡∗
𝑤𝑖•
𝑑′
𝑖•
𝑑′𝑖∗ ≤ 𝑦∗′𝑡∗𝑤𝑖∗ ≤ 𝑦∗𝑡∗𝑤𝑖∗

The first inequality follows from the definition dominant resource meta-type: 𝑤𝑖•
𝑑𝑖′•

:= min
𝑙∈[𝐿]

𝑤𝑖𝑙
𝑑𝑖′
𝑙

.

The final expression is the amount of original dominant resource that agent 𝑖 receives under

truthful reporting.

• 𝑦∗′
𝑡∗ > 𝑦∗

𝑡∗ and the agent is not eliminated reporting 𝑑 but is eliminated reporting 𝑑′. We

argue that this case cannot happen. By Claim 4, we can remove the allocation constraints

related to 𝑖 in round 𝑡∗ under truthful reporting. But then we are left with two optimization

problems with the same constraints, except that with untruthful reporting the optimization

131



problem has extra allocation constraint (for agent 𝑖), and an extra non-negative term in the

supply constraints. Extra constraints and extra terms in the supply constraints can only make

the optimization problem harder.

• 𝑦∗′
𝑡∗ < 𝑦

∗
𝑡∗ and the agent is eliminated reporting 𝑑 but not eliminated reporting 𝑑′. This is the

symmetric case as the previous one and so cannot happen either.

Finally, a closer inspection of the above shows we did not need the group structure of agent

𝑖 to stay the same, so the result holds for misreporting group structures as well.

□

B.1.6 Proof of Lemma 12

Proof. Recall that we use 𝑠𝑖𝑙 denote the proportion that is both accessible to and contributed by

agent 𝑖. Each agent might have access to other people’s contributions as well. We set 𝑤𝑖𝑙 = 𝑠𝑖𝑙 .

Since an agent might not have access to all of the supplies that she brings,
∑
𝑖∈𝑁

𝑤𝑖𝑙 might be strictly

less than one. In that case we can pretend that there is a phantom agent with weight 1 − ∑
𝑖∈𝑁

𝑤𝑖𝑙 for

each meta-type 𝑙, and that his demand vector is zero. Note that we do not need to implement this

phantom agent when running the algorithm, because DRF-MT is invariant to the scale of weights.

We are only adding this weight to make our definition of sharing incentive consistent with the

assumption
∑
𝑖

𝑤𝑖𝑙 = 1

Now note that
∑

𝑟∈∪𝑖∈𝑁 ′𝑔𝑖𝑙
𝑆𝑟 ≥

∑
𝑖∈𝑁 ′

𝑠𝑖𝑙 because each agent has access to her own accessible supply.

By the definition of dominant resource 𝑤𝑖∗
𝑑𝑖∗
𝑑𝑖𝑙 ≤ 𝑤𝑖𝑙 . So for any 𝑁′ ⊂ 𝑁, 𝑙 ∈ [𝐿]

©«
∑︁

𝑟∈∪𝑖∈𝑁 ′𝑔𝑖𝑙

𝑆𝑟
ª®¬ /

(∑︁
𝑖∈𝑁 ′

𝑤𝑖∗
𝑑𝑖𝑙

𝑑𝑖∗

)
≥

∑
𝑖∈𝑁 ′

𝑠𝑖𝑙∑
𝑖∈𝑁 ′

𝑤𝑖𝑙
= 1.

After rearranging the terms, we have

∑︁
𝑟∈∪𝑖∈𝑁 ′𝑔𝑖𝑙

𝑆𝑟 ≥
(∑︁
𝑖∈𝑁 ′

𝑤𝑖∗
𝑑𝑖𝑙

𝑑𝑖∗

)
∀𝑁′ ⊆ 𝑁, 𝑙 ∈ {1 . . . 𝐿}. (B.5)
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For every agent 𝑖 and every meta-type 𝑙, consider 𝑤𝑖∗
𝑑𝑖𝑙
𝑑𝑖∗

as the “total demand” for resource

meta-type 𝑙 from agent 𝑖.

Then, we construct a bipartite graph as follows: for the left-hand nodes, we create a node

for every 𝜖 unit of total demand from each agent for each resource meta-type. Thus, each node is

associated with some specific agent 𝑖 and resource meta-type 𝑙. For the right-hand nodes, we create

a node for every 𝜖 unit of supply of each resource type (𝑟 ∈ 𝑅). Note that since there is a finite

number of agents and resource types, there exists an 𝜖 small enough that it can perfectly divide up

all the demands and supplies, assuming that all the weights are rational.

Next, we create an edge between each pair of left and right-hand side nodes if and only if the

supply side node belongs to the demand group of that agent for that meta-type: 𝑟 ∈ 𝑔𝑖
𝑙
.

Eq.(B.5) now tells us that for every subset of the demand side nodes, the number of neighbors

of that subset is greater than or equal to the size of the subset. This is precisely the condition

in Hall’s Theorem, which states that if this condition holds, then there exists a matching in the

bipartite graph such that the demand side nodes are covered.

Consider such a matching obtained via Hall’s Theorem. We construct a solution 𝑥 by setting

𝑥𝑖𝑟 equal to 𝜖 times the number of matched edges corresponding to 𝑖𝑟 . This yields an assignment

that gives each agent 𝑤𝑖∗
𝑑𝑖𝑙
𝑑𝑖∗

of each meta-type. By the construction of the matching this is a legal

allocation. Then, we can set 𝑦𝑡 = 1 to obtain a feasible solution to the optimization problem in

(2.2).

This means that after the first round of DRF-MT, agent 𝑖’s utility is at least

𝑢𝑖 (𝑥𝑖) = min
𝑔𝑙∈𝐺𝑖

𝑤𝑖∗
𝑑𝑖𝑙

𝑑𝑖∗

1
𝑑𝑖𝑙

=
𝑤𝑖∗
𝑑𝑖∗

= min
𝑙:𝑑𝑖𝑙≠0

𝑠𝑖𝑙

𝑑𝑖𝑙

The final expression is exactly the utility agent 𝑖 gets from her own supplies. □
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Figure B.1: Running times comparison with meta-types: Ω1 = {0},Ω2 = {1, 2},Ω3 =

{3, 4, 5},Ω4 = {6, 7, 8, 9},Ω5 = {10, 11, 12, 13, 14}.

B.2 Experimental Setup and Additional Experiments

Solving for MNW is an Exponential Cone program, and solving for Discrete MNW is a Mixed

Integer Exponential Cone program. Both of which did not have a reliable commercial solver until

recently. This changed with the introduction of MOSEK version 9, which added support for such

cones [51]. We implemented the MNW and Discrete MNW using the MOSEK solver and our

DRF-MT approach using GUROBI. We made little effort to optimize either approach beyond the

off-the-shelf implementations, and all experiments are run on a 2019 16-inch Macbook Pro with a

6 core Intel i7 processor.

First we describe in more details the random instance generating procedure used in Section 2.5.

Recall that we fixed a meta-type structure. From there, for each agent, the group structure is

generated by first uniformly sample a size between 0 and |Ω𝑙 |, and randomly pick a subset of that

size from Ω𝑙 as the demand group. The demands and weights (before normalization) are sampled

uniformly from [1, 10], and the number of agents range from 𝑛 = 5 to 𝑛 = 1000. The supply for

each resource is uniformly sampled from [𝑛 × 500, 𝑛 × 1000].
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Figure B.2: Running time comparison with respect to number of resources

Using the same procedure, we also compare the running times on a larger instance (more meta-

types, and more types within a meta-type). As shown in Figure B.1, the relative performances

remain the same.

Next, we scale up the number of meta-types instead of number of agents, even though we think

it is more natural to have problems with large number of agents. Here we assume that each meta-

type has five types and fix the number of agents to 50. We see in Figure B.2 again that the running

time for Discrete-MNW quickly blows up while DRF-MT remains the fastest method out of the

three.

Since Discrete-MNW runs much slower than DRF-MT and MNW, we next focus on the run-

ning time comparison of just MNW and DRF-MT in our next set of experiments. The setups are

the same as the ones used for Figure 2.2 (left) and Figure B.2, except this time we scale the prob-

lem instances to much larger ones. We see from Figure B.3 and Figure B.4 that DRF-MT is 3-4

times faster than MNW in terms of running time.

Finally, as mentioned in Section 2.5, normalized difference in social welfare is calculated from

subtracting the social welfare of Discrete MNW from that of DRF-MT and then divide the differ-
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Figure B.3: Running time comparison between MNW and DRF-MT. The meta types are Ω1 =

{0},Ω2 = {1, 2},Ω3 = {3, 4, 5},Ω4 = {6, 7, 8, 9}

Figure B.4: Running time comparison between MNW and DRF-MT with respect to number of
resources.
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ence by the social welfare of Discrete MNW. Here, instead of looking at the aggregated normalized

difference in social welfare as in Figure 2.2 (right), we group the results by the number of agents.

The box plot in Figure B.5 shows that in most of the trials, DRF-MT generates social welfare that

Figure B.5: Normalized difference in social welfare between Discrete MNW and DRF-MT,
grouped by number of agents.

is comparable to that of Discrete MNW, and sometimes even higher, with no significant variation

in performance with respect to the number of agents. Readers might wonder how does Discrete

DMW compare to (rounded) MNW in terms of social welfare. In Figure B.6 we see that the two

have virtually the same social welfare on almost all instances, with Discrete MNW having a slight

edge over MNW. This means that compared to rounded MNW, our rounded DRF-MT algorithm

also achieves at least 90% of the social welfare on most instances.

B.3 Beyond Sharing Incentive: Proportionality

Proportionality is defined as follows:
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Figure B.6: Normalized difference in social welfare between Discrete MNW and MNW over all
trials. Normalized difference is calculated by subtracting the social welfare of Discrete MNW from
that of DRF-MT and then dividing by the social welfare of Discrete MNW.

Proportionality An allocation 𝑥 satisfies proportionality if 𝑢𝑖 (𝑥𝑖) ≥ 𝑢𝑖 (𝑥′𝑖) for all 𝑖, where 𝑥′
𝑖𝑟
=

𝑤𝑖𝑙𝑆𝑟 for each 𝑟 ∈ 𝑔𝑖
𝑙

and 𝑙 ∈ [𝐿]. 𝑢𝑖 (𝑥′) can be explicitly written out as

𝑢𝑖 (𝑥′) := min
𝑔𝑙∈𝐺𝑖

{
𝑤𝑖𝑙

𝑑𝑖𝑙

∑︁
𝑟∈𝑔𝑙

𝑆𝑟

}
.

In the existing resource allocation literature, sharing incentive and proportionality are often

used interchangeably. Indeed, when the priority weights are set according to the agents’ accessible

contributions to the resource pool (𝑤𝑖𝑙 = 𝑠𝑖𝑙), the two notions are equivalent in settings where

there are no accessibility constraints. With accessibility constraints, however, they are not the

same. Under our definition of proportionality, the amount of accessible resource meta-type 𝑙 that

agent 𝑖 receives is 𝑠𝑖𝑙 ×
∑
𝑟∈𝑔𝑖

𝑙
𝑆𝑟 . Since

∑
𝑟∈𝑔𝑖

𝑙
𝑆𝑟 < 1 if agent 𝑖 cannot access the entire supply of

meta-type 𝑙, 𝑢𝑖 (𝑥′) can be smaller than 𝑢𝑜
𝑖
. Therefore when priority weights are set according to

agents’ contributions, proportionality is a weaker notion than sharing incentive. However, since

proportionality can be defined for arbitrary weights, regardless of whether or not we are in a setting
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where agents bring their own supplies, it is a more flexible concept. Unfortunately proportionality

does not hold generally. We prove proportionality under the following assumption:

Assumption 4.

min
𝑁 ′⊆𝑁,𝑙∈{1...𝐿}

©«
∑︁

𝑟∈∪𝑖∈𝑁 ′𝑔𝑖𝑙

𝑆𝑟
ª®¬ /

(∑︁
𝑖∈𝑁 ′

𝑤𝑖∗𝑑𝑖𝑙/𝑑𝑖∗

)

≥ max
𝑖∈𝑁

 min
𝑙:𝑑𝑖𝑙≠0

𝑤𝑖𝑙
∑
𝑟∈𝑔𝑖

𝑙

𝑆𝑟

𝑤𝑖∗𝑑𝑖𝑙/𝑑𝑖∗


Lemma 33. Assume that demands, weights and supplies are all rational numbers. Then under

Assumption 4, DRF-MT satisfies proportionality.

The proof is very similar to that of Lemma 12, but we first give some intuition for Assump-

tion 4.

Since
∑
𝑟∈𝑔𝑖

𝑙

𝑆𝑟 ≤ 1 for every 𝑖, 𝑙, and min
𝑙

𝑤𝑖𝑙
𝑑𝑖𝑙

=
𝑤𝑖∗
𝑑𝑖∗

for every 𝑖, the right hand side of Assumption

4 is upper bounded by 1.
∑

𝑟∈∪𝑖∈𝑁 ′𝑔𝑖𝑙
𝑆𝑟 is the union of the acceptable supply of resource meta-type

𝑙 from every agent in 𝑁′.
∑
𝑖∈𝑁 ′

𝑤𝑖𝑑𝑖𝑙/𝑑𝑖∗ is the total weighted demand from agents in set 𝑁′. Note

that 𝑑𝑖𝑙 ≤ 𝑑𝑖∗.

So, what the condition says intuitively is that whenever there is a group of agents who have

a large combined weighted demand on meta-type 𝑙, they need to also collectively have access

to/accept a large fraction of the total supply of 𝑙.

To provide more intuition for this assumption, we look at two examples. First we check that

Example 1 satisfies Assumption 4. The RHS of the assumption evaluates to 1 (with hospital 1

and resource meta-type 1). One can check that the minimum on the LHS is achieved by picking

𝑁′ = 𝑁 and 𝑙 = 1 which gives us 16
15 > 1. Thus Assumption 4 is satisfied. The resulting allocation

and utilities using DRF-MT is given in Table B.1. Clearly our allocation is better for everyone than

the proportional allocation.
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DRF-MT
Allocations

Hospital 1
(𝑤1 = 1/4)

Hospital 2
(𝑤2 = 1/4)

Hospital 3
(𝑤3 = 1/2)

Doctor A 100 400
Doctor B 400 100
Nurse C 100 400
Nurse D 500
Utilities
DRF-MT 100 100 500

Proportional 62.5 31.25 250

Table B.1: Allocations from DRF-MT in Example 1 and the comparison of the resulting utilities
with utilities of proportional allocation.

However, by adjusting the weights of the hospitals we can also construct an example that does

not satisfy Assumption 4. Take the same parameters of Example 1 with the following modification

on weights: 𝑤1 = 0.49, 𝑤2 = 0.49, 𝑤3 = 0.02. The RHS value of Assumption 4 does not change.

However, because the weights of hospitals 1, 2 now dominate the market, the minimum of LHS

is achieved with 𝑁′ = {1, 2} and 𝑙 = 2, which gives us 1/2
0.49×1+0.49×1/4 < 1. So the assumption is

violated. Intuitively, the problem with this setup is that even though hospitals 1 and 2 account for

vast majority of the weighted demand for the nurse meta-type, they are both severely constrained

to the same half of the total supply of nurses.

Under this setup, the DRF-MT assignments/utilities do not change. With proportional alloca-

tion however, the utilities for the three agents are [122.5, 61.25, 10.0]. So Agent 1 received more

utility under proportional allocation than the allocation given by DRF-MT, at the expense of sig-

nificantly hurting the social welfare: the sum of the utilities is less than 200, compared to 700

generated by the DRF-MT allocation. Now we prove Lemma 33

Proof. Let �̂� denote the RHS of Assumption 4. After rearranging we have for all 𝑁′ ⊆ 𝑁 and

𝑙 ∈ {1 . . . 𝐿}: ∑︁
𝑟∈∪𝑖∈𝑁 ′𝑔𝑖𝑙

𝑆𝑟 ≥ �̂�
(∑︁
𝑖∈𝑁 ′

𝑤𝑖∗𝑑𝑖𝑙/𝑑𝑖∗

)
For every agent 𝑖 and every meta-type 𝑙, consider �̂�𝑤𝑖∗𝑑𝑖𝑙/𝑑𝑖∗ as the “total demand” for resource

meta-type 𝑙 from agent 𝑖.
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Then we construct a bipartite graph and apply Hall’s theorem the same way as in the proof of

Lemma 12. This yields an assignment that gives each agent at least �̂�𝑤𝑖∗𝑑𝑖𝑙/𝑑𝑖∗ of each meta-type.

By the definition of �̂�, it follows that the utility of each agent after the first round is at least:

𝑑𝑖𝑙

𝑑𝑖∗
�̂�𝑤𝑖∗

1
𝑑𝑖𝑙

=
𝑤𝑖∗
𝑑𝑖∗

�̂� ≥ 𝑤𝑖∗
𝑑𝑖∗

min
𝑙:𝑑𝑖𝑙≠0

𝑤𝑖𝑙
∑
𝑟∈𝑔𝑖

𝑙

𝑆𝑟

𝑤𝑖∗𝑑𝑖𝑙/𝑑𝑖∗

= min
𝑙:𝑑𝑖𝑙≠0

𝑤𝑖𝑙
∑
𝑟∈𝑔𝑖

𝑙

𝑆𝑟

𝑑𝑖𝑙

Note that the right-most quantity is the utility of the proportional allocation. This means that after

the first round, every agent already achieves at least as much utility as the proportional allocation.

Fact 2 finishes the proof.

□

B.4 Alternative Design of DRF-MT

Instead of the algorithm described in Section 2.4, an alternative is to make each remaining

agent receive a 𝑦𝑡 × 𝑤𝑖∗ × 𝑑𝑖𝑙/𝑑𝑖∗ fraction of the total supply from each of its resource group 𝑔𝑙∗
𝑖

(instead of the supply from the entire meta-type). This idea might seem more intuitive since agent

𝑖 can only derive utilities from resources in 𝑔𝑙∗
𝑖
⊆ Ω𝑙∗

𝑖
. To do so, we can multiply the left hand side

of the allocation constraints in Equation 2.2 by
∑
𝑟∈𝑔𝑖

𝑙
𝑆𝑟 . This alternative setup, however, does not

lead to a mechanism with envy-freeness and strategy-proofness.

As a simple example, assume that there are five agents 1, 2, 3, 4, 5 of equal weights, one meta-

type, and two resource types 𝐴, 𝐵 that fall under this meta-type, with equal supply. Agent 1, 2

accept only type 𝐴; agent 3, 4, 5 accept only type 𝐵. With simple calculation, we have that the

largest 𝑦1 we can get is 1/3: everyone receives 1/3 of their accepted supply. The only possible

allocation to achieve that is by assigning 1/3 of A each to agents 1,2, and 1/3 of B each to agents

3, 4, 5. However, if agent 2 strategically stated that he could take both 𝐴 and 𝐵, the resulting
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allocation would be assigning 1/3 of A to agent 1, 2/3 of A to agent 2, and 1/3 of B each to agents

3, 4, 5. In this new allocation, the largest 𝑦1 is still 1/3, but since the total accepted supply for

agent 2 is larger, he receives more. Furthermore, agent 1 would now envy agent 2.
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Appendix C: Appendices for Chapter3

C.1 Proof of Theorem 3

Proof. Using Fenchel-Rockafellar’s duality theorem, the dual of (3.7) can be written as

max
𝑓 ,𝑔,𝛾≥0

∫
X
𝑓 (𝑥)𝑑𝛼(𝑥) + 𝑔⊤𝛽 −

∑︁
𝑗 ,𝑘, 𝑗≠𝑘

𝛾 𝑗 𝑘_ 𝑗 (C.1)

𝑠.𝑡.
©«1 +

∑︁
𝑘≠ 𝑗

𝛾 𝑗 𝑘
ª®¬ 𝑐(𝑥, 𝑗) −

∑︁
𝑘≠ 𝑗

𝛾𝑘𝑦𝑐(𝑥, 𝑘)
𝛽𝑘

𝛽 𝑗

− 𝑓 (𝑥) − 𝑔 𝑗 ≥ 0 ∀𝑥 ∈ X, 𝑦 𝑗 ∈ Y

Fixing 𝑔 ∈ R𝑛 and 𝛾 ∈ R𝑛(𝑛−1) , we can check using first order conditions that the optimal 𝑓 (𝑥)

has the closed form expression:

min
𝑗∈[𝑛]

�̄�𝛾,𝑐 (𝑥, 𝑦 𝑗 ) B ©«1 +
∑︁
𝑘≠ 𝑗

𝛾 𝑗 𝑘
ª®¬ 𝑐(𝑥, 𝑗) −

∑︁
𝑘≠ 𝑗

𝛾𝑘 𝑗𝑐(𝑥, 𝑘)
𝛽𝑘

𝛽 𝑗
− 𝑔 𝑗

Using this, the infinite dimensional optimization problem in (C.1) can be transformed to a finite

dimensional optimization problem:

max
𝑔,𝛾≥0

E(𝑔, 𝛾) B
∫
X

min
𝑗∈[𝑛]

�̄�𝛾,𝑐 (𝑥, 𝑦 𝑗 ) 𝑑𝛼(𝑥) + 𝑔⊤𝛽 −
∑︁
𝑗 ,𝑘, 𝑗≠𝑘

𝛾 𝑗 𝑘_ 𝑗 (C.2)

Alternatively, we can adapt the Laguerre cell notation in (3.2) to (C.2):

E(𝑔, 𝛾) =
∑︁
𝑖∈[𝑛]

∫
L𝑦𝑖 (𝑔,𝛾)

�̄�𝛾,𝑐 (𝑥, 𝑦𝑖)𝑑𝛼(𝑥) + 𝑔⊤𝛽 −
∑︁
𝑗 ,𝑘, 𝑗≠𝑘

𝛾 𝑗 𝑘_ 𝑗
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where L𝑦𝑖 (𝑔, 𝛾) =
{
𝑥 ∈ X : 𝑦𝑖 = arg min

𝑦 𝑗

�̄�𝛾,𝑐 (𝑥, 𝑦 𝑗 )
}

. □

sectionExperimental Setup For the artificial data, the value utility vectors are generated from

𝑋 = [1, 0.7] − 𝑍

0.2, 0

0.8, 0.4

 where 𝑍 ∼ 𝑈𝑛𝑖 𝑓 (0, 1) ×𝑈𝑛𝑖 𝑓 (0, 1). For finding the optimal alloca-

tion policy on the artificial data, we used Algorithm 3 with 𝑇 = 2 ·105. For simulator data, we used

𝑇 = 2.5 · 106. To generate Figure 3.2 we sampled 6000 points from the distribution and plotted

them, colored by the allocation. For Figure 3.4, for each 𝑚 we ran 16 trials, sampling a differ-

ent set of 𝑚 data points as our training data per trial. All experiments are run on a 2019, 6-core

Macbook Pro laptop. The simulator code is open sourced by [52] at https://github.com/

duncanmcelfresh/blood-matching-simulations, and also included in the supple-

mentary material.
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Appendix D: Appendices for Chapter4

D.1 Concentration Results

Lemma 34 (DKW Inequality [90]). Given i.i.d. samples 𝑋1, . . . , 𝑋𝑇 from a distribution 𝐹 (cdf),

let �̂�𝑇 (𝑥) = 1
𝑇

∑𝑇
𝑡=1 1[𝑋𝑡 ≤ 𝑥]. Then,

P

(
sup
𝑥

���̂�𝑇 (𝑥) − 𝐹 (𝑥)�� ≥ 𝛼) ≤ 2𝑒−2𝑇𝛼2

D.1.1 Proof of Lemma 14

Lemma 14 (Martingale Version of DKW Inequality). Given a sequence of random variables

𝑌1, . . . , 𝑌𝑇 , let F𝑡 = 𝜎(𝑌1, . . . , 𝑌𝑡), 𝑡 = 1, . . . , 𝑇 be the filtration representing the information in

the first 𝑡 variables. Let 𝐹𝑡 (𝑦) := Pr(𝑌𝑡 ≤ 𝑦 |F𝑡−1), and �̄�𝑇 (𝑦) := 1
𝑇

∑𝑇
𝑡=1 1[𝑌𝑡 ≤ 𝑦]. Then,

P

(
sup
𝑦

������̄�𝑇 (𝑦) − 1
𝑇

𝑇∑︁
𝑡=1

𝐹𝑡 (𝑦)
����� ≥ 𝛼

)
≤

(
128𝑒𝑇
𝛼

)
𝑒−𝑇𝛼

2/128

Proof. This follows from sequential uniform convergence, see Lemma 10,11 in [94], and the fact

that indicator functions have fat-shattering dimension 1. □

A more convenient way to use Lemma 14 is the following corollary:

Corollary 5. Given a sequence of random variables𝑌1, . . . , 𝑌𝑇 , let F𝑡 = 𝜎(𝑌1, . . . , 𝑌𝑡), 𝑡 = 1, . . . , 𝑇

be the filtration representing the information in the first 𝑡 variables. Suppose 𝐹𝑡 (𝑦) = Pr(𝑌𝑡 ≤ 𝑦 |F𝑡−1),

and let �̄�𝑇 (𝑦) := 1
𝑇

∑𝑇
𝑡=1 1[𝑌𝑡 ≤ 𝑦]. If 𝛼 ≥ 16

√︃
log( 128𝑒𝑡

𝛿
)

𝑇
, then with probability 1 − 𝛿

sup
𝑥

������̄�𝑇 (𝑥) − 1
𝑇

𝑇∑︁
𝑡=1

𝐹𝑡 (𝑥)
����� ≤ 𝛼
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Proof.

(
128𝑒𝑇
𝛼

)
𝑒−𝑇𝛼

2/128 ≤ 𝛿

⇐⇒ 𝛼2 ≥
128 log( 128𝑒𝑇

𝛿
)

𝑇
+ 128
𝑇

log( 1
𝛼2 )

⇐= 𝛼2 ≥
256 log( 128𝑒𝑇

𝛿
)

𝑇

⇐⇒ 𝛼 ≥ 16

√︄
log( 128𝑒𝑇

𝛿
)

𝑇

□

D.2 Proof of Theorem 6

D.2.1 Proof of Lemma 15

We first state two helper claims. The first one states that for any fixed greedy allocation policy

_, if the two distributions of valuations are similar, then the final allocation sizes for each receiver

will also be close.

Claim 5. Fix a greedy allocation policy _. Let 𝑮 = 𝐺1 ⊗ . . . ⊗ 𝐺𝑛, and 𝑭 = 𝐹1 ⊗ . . . ⊗ 𝐹𝑛 be

two distributions over [0, 𝑥]𝑛 where the marginals in each coordinate are independent. Suppose

sup𝑥 |𝐹𝑖 (𝑥) − 𝐺𝑖 (𝑥) | ≤ Δ∀𝑖. Then

∑︁
𝑗

(𝑝 𝑗 (𝑭, _) − 𝑝 𝑗 (𝑮, _))+ =
∑︁
𝑗

(𝑝 𝑗 (𝑮, _) − 𝑝 𝑗 (𝑭, _))+ ≤ 𝑛Δ.

Next we show that if the allocation sizes are similar for two different greedy allocation policies,

then the corresponding allocation decisions (domain partitions) are also similar.

Claim 6. Let _′, _ be any two fixed greedy allocation policies, and 𝑭 a distribution over [0, 𝑥]𝑛.

For all 𝑗 , let Ω′
𝑗
= L 𝑗 (_′), and Ω 𝑗 = L 𝑗 (_). Suppose

∑
𝑗 (𝑝 𝑗 (𝑭, _′) − 𝑝 𝑗 (𝑭, _))+ =

∑
𝑗 (𝑝 𝑗 (𝑭, _) −
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𝑝 𝑗 (𝑭, _′))+ ≤ Δ. Then

P(Ω′𝑗 \Ω 𝑗 ) ≤ Δ ∀ 𝑗

Using these two Claims, we can now prove Lemma 15. The proofs for these two helper Claims

follow after the proof of Lemma 15.

Proof of Lemma 15. Claim 5 shows that

∑︁
𝑗

(𝑝 𝑗 (𝑭, _) − 𝑝 𝑗 (𝑮, _))+ =
∑︁
𝑗

(𝑝 𝑗 (𝑮, _) − 𝑝 𝑗 (𝑭, _))+ ≤ 𝑛Δ

Note that by definition of _∗ (due to the constraint Pr(Ω 𝑗 ) = 𝑝∗
𝑗

in problem (4.1)), we have

𝑝 𝑗 (𝑮, _) = 𝑝∗𝑗 = 𝑝 𝑗 (𝑭, _∗) for all 𝑗 . This means that

∑︁
𝑗

(𝑝 𝑗 (𝑭, _) − 𝑝 𝑗 (𝑭, _∗))+ =
∑︁
𝑗

(𝑝 𝑗 (𝑭, _∗) − 𝑝 𝑗 (𝑭, _))+ ≤ 𝑛Δ

Now we can apply Claim 6 and conclude that

P(Ω∗𝑗 \Ω 𝑗 ) ≤ 𝑛Δ ∀ 𝑗 , and P(Ω 𝑗 \Ω∗𝑗 ) ≤ 𝑛Δ ∀ 𝑗 , (D.1)

where Ω 𝑗 = L 𝑗 (_) and Ω∗
𝑗
= L 𝑗 (_∗). Therefore,

E𝑿∼𝑭 [𝑢𝑖 (𝑿, 𝑿, _)] − E𝑿∼𝑭 [𝑢𝑖 [𝑿, 𝑿, _∗]]

=

∫
𝑿∈Ω𝑖

𝑋𝑖 𝑑𝑭(𝑿) −
∫
𝑿∈Ω∗

𝑖

𝑋𝑖 𝑑𝑭(𝑿)

≤
∫
𝑿∈Ω𝑖\Ω∗𝑖

𝑋𝑖 𝑑𝑭(𝑿)

≤𝑛Δ𝑥

Using the same steps as above we can also show that

E𝑿∼𝑭 [𝑢𝑖 (𝑿, 𝑿, _∗)] − E𝑿∼𝑭 [𝑢𝑖 [𝑿, 𝑿, _]] ≤ 𝑛Δ𝑥.
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□

Proof of Claim 5

We first show variant of Claim 5 where the two distributions only differ in one coordinate:

Claim 7. Fix a greedy allocation policy _. Let 𝑮 = 𝐺1⊗𝐺2 . . .⊗𝐺𝑛, and 𝑭 = 𝐹1⊗𝐹2 . . .⊗𝐹𝑛 be

two distributions over [0, 𝑥]𝑛 where the marginals in each coordinate are independent. Assume that

𝑮 and 𝑭 differ only in one coordinate, w.l.o.g. say coordinate 𝑖. Then, if sup𝑥 |𝐹𝑖 (𝑥) −𝐺𝑖 (𝑥) | ≤ Δ,

∑︁
𝑗

(𝑝 𝑗 (𝑭, _) − 𝑝 𝑗 (𝑮, _))+ =
∑︁
𝑗

(𝑝 𝑗 (𝑮, _) − 𝑝 𝑗 (𝑭, _))+ ≤ Δ.

Proof. We start with the distribution 𝑮 = 𝐹1 · · · 𝐹𝑖−1 ⊗ 𝐺𝑖 ⊗ 𝐹𝑖+1 · · · 𝐹𝑛 and replace 𝐺𝑖 with a

distribution 𝐹𝑖 to construct 𝑭 = 𝐹1 ⊗ 𝐹2 · · · ⊗ 𝐹𝑛. We will construct 𝐹𝑖 in such a way that it is

at most Δ away from 𝐺𝑖 and the changes in the allocation proportions are maximized. Note that

since
∑
𝑖 𝑝𝑖 (𝑭, _) = 1 and

∑
𝑖 𝑝𝑖 (𝑮, _) = 1, we know that

𝐿𝐻𝑆(𝑭) B
∑︁
𝑗

(𝑝 𝑗 (𝑭, _) − 𝑝 𝑗 (𝑮, _))+ =
∑︁
𝑗

(𝑝 𝑗 (𝑮, _) − 𝑝 𝑗 (𝑭, _))+ B 𝑅𝐻𝑆(𝑭)

is always true for any 𝑭,𝑮, _. This means that we can focus on either maximizing either the LHS

or the RHS of the above equation. There are two types of 𝐹𝑖 that we can use. One is such that

𝑝𝑖 (𝑭, _) − 𝑝𝑖 (𝑮, _) ≥ 0 and the other is 𝑝𝑖 (𝑭, _) − 𝑝𝑖 (𝑮, _) < 0. We can therefore bound the

above quantity under these two scenarios separately:

max
𝐹𝑖 :𝑝𝑖 (𝑭,_)−𝑝𝑖 (𝑮,_)≥0

𝑅𝐻𝑆(𝑭) ⇐⇒ max
𝐹𝑖 :𝑝𝑖 (𝑭,_)−𝑝𝑖 (𝑮,_)≥0

∑︁
𝑗≠𝑖

(𝑝 𝑗 (𝑮, _) − 𝑝 𝑗 (𝑭, _))+ (D.2)

max
𝐹𝑖 :𝑝𝑖 (𝑭,_)−𝑝𝑖 (𝑮,_)<0

𝐿𝐻𝑆(𝑭) ⇐⇒ max
𝐹𝑖 :𝑝𝑖 (𝑭,_)−𝑝𝑖 (𝑮,_)<0

∑︁
𝑗≠𝑖

(𝑝 𝑗 (𝑭, _) − 𝑝 𝑗 (𝑮, _))+ (D.3)

Therefore for the rest of the proof we can focus on bounding the right hand side of (D.2) and (D.3).
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Bounding the RHS of (D.2) Let �̃� (𝑥) B (𝐺𝑖 (𝑥) − Δ)+ ∀𝑥 < 𝑥, �̃� (𝑥) B 1. We claim that the

𝐹𝑖 that maximizes
∑
𝑗≠𝑖 (𝑝 𝑗 (𝑮, _) − 𝑝 𝑗 (𝑭, _))+, while being at most Δ away, is �̃�. To see this,

consider a different distribution 𝐹′ on the support [0, 𝑥] such that sup𝑥 |𝐹′(𝑥) − 𝐺𝑖 (𝑥) | ≤ Δ. We

know that 𝐹′(𝑥) ≥ �̃� (𝑥).

Later in Claim 8, we show that for any two distributions 𝐺 and 𝐹, we can sample 𝑋 ∼ 𝐹 using

𝑌 sampled from 𝐺 by performing the following transformation:

𝐹−1(𝐺𝑢 (𝑌 ))

where 𝐺𝑢 is the random variable defined for distribution 𝐺 in (D.12) and 𝐹−1 B inf{𝑥 ∈ R :

𝐹 (𝑥) ≥ 𝑝} denotes the generalized inverse, sometimes also referred to as the quantile function.

This is essentially the inverse CDF method applied to a general distribution (instead of a uniformly

sampled variable). In particular, let 𝐺𝑖𝑢 be the following random function:

𝐺𝑖𝑢 (𝑦) =


𝐺𝑖 (𝑦) if 𝐺𝑖 (𝑦) = 𝐺𝑖 (𝑦−)

Uniform[𝐺𝑖 (𝑦−), 𝐺𝑖 (𝑦)] if 𝐺𝑖 (𝑦) > 𝐺𝑖 (𝑦−)

Now, denote by �̃�, 𝑭′, the joint distribution that we get from 𝑮 on replacing 𝐺𝑖 with �̃� and 𝐹′,

respectively. Then, the winning probabilities for the agents in these two cases are:

𝑝𝑖 (�̃�, _) =
∫ 𝑥

0

∏
𝑗≠𝑖

𝐹 𝑗 (𝑥 + _𝑖 − _ 𝑗 )𝑑�̃� (𝑥)

=

∫ 𝑥

0
E𝐺𝑖𝑢 (𝑥)

[∏
𝑗≠𝑖

𝐹 𝑗 (�̃�−1(𝐺𝑖𝑢 (𝑥)) + _𝑖 − _ 𝑗 )
]
𝑑𝐺𝑖 (𝑥), (D.4)

𝑝 𝑗 (�̃�, _) =
∫
𝑥

�̃� (𝑥 + _ 𝑗 − _𝑖)
∏
𝑘∉{𝑖, 𝑗}

𝐹𝑘 (𝑥 + _ 𝑗 − _𝑘 )𝑑𝐹 𝑗 (𝑥), ∀ 𝑗 ≠ 𝑖 (D.5)
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𝑝𝑖 (𝑭′, _) =
∫
𝑥

E𝐺𝑖𝑢 (𝑥)

[∏
𝑗≠𝑖

𝐹 𝑗 (𝐹′−1(𝐺𝑖𝑢 (𝑥)) + _𝑖 − _ 𝑗 )
]
𝑑𝐺𝑖 (𝑥), (D.6)

𝑝 𝑗 (𝑭′, _) =
∫
𝑥

𝐹′(𝑥 + _ 𝑗 − _𝑖)
∏
𝑘∉{𝑖, 𝑗}

𝐹𝑘 (𝑥 + _ 𝑗 − _𝑘 )𝑑𝐹 𝑗 (𝑥), ∀ 𝑗 ≠ 𝑖 (D.7)

Since �̃� (𝑥) ≤ 𝐹′(𝑥)∀𝑥 ∈ [0, 𝑥] by construction, �̃�−1(𝑝) ≥ 𝐹′−1(𝑝)∀𝑝 ∈ [0, 1]. It’s easy to see

that (D.4) ≥ (D.6), and (D.5) ≤ (D.7). Using this we have

∑︁
𝑗≠𝑖

(𝑝 𝑗 (𝑮, _) − 𝑝 𝑗 (�̃�, _))+ ≥
∑︁
𝑗≠𝑖

(𝑝 𝑗 (𝑮, _) − 𝑝 𝑗 (𝑭′, _))+.

and substituting 𝐹′ by 𝐺𝑖 and again using (D.4) ≥ (D.6), and (D.5) ≤ (D.7), we get

𝑝 𝑗 (𝑮, _) − 𝑝 𝑗 (�̃�, _) ≥ 0 ∀ 𝑗 ≠ 𝑖,

𝑝𝑖 (𝑮, _) − 𝑝𝑖 (�̃�, _) ≤ 0

This shows that �̃� is the maximizer of the RHS of (D.2) among all distributions that are at most Δ

away from 𝐺𝑖. Using this we have

max
𝐹𝑖 :𝑝𝑖 (𝑭,_)−𝑝𝑖 (𝑮,_)≥0

∑︁
𝑗≠𝑖

(𝑝 𝑗 (𝑮, _) − 𝑝 𝑗 (𝑭, _))+

=
∑︁
𝑗≠𝑖

(𝑝 𝑗 (𝑮, _) − 𝑝 𝑗 (�̃�, _))+

=𝑝𝑖 (�̃�, _) − 𝑝𝑖 (𝑮, _)

=

∫ 𝑥

0

∏
𝑗≠𝑖

𝐹 𝑗
(
𝑥 + _𝑖 − _ 𝑗

)
𝑑�̃� (𝑥) −

∫ 𝑥

0

∏
𝑗≠𝑖

𝐹 𝑗 (𝑥 + _𝑖 − _ 𝑗 )𝑑𝐺𝑖 (𝑥)

=

∫ 𝑥

𝑥Δ

∏
𝑗≠𝑖

𝐹 𝑗
(
𝑥 + _𝑖 − _ 𝑗

)
𝑑𝐺𝑖 (𝑥) +

∏
𝑗≠𝑖

𝐹 𝑗
(
𝑥 + _𝑖 − _ 𝑗

)
Δ −

∫ 𝑥

0

∏
𝑗≠𝑖

𝐹 𝑗 (𝑥 + _𝑖 − _ 𝑗 )𝑑𝐺𝑖 (𝑥)

≤Δ
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Bounding the RHS of (D.3) Let �̂� (𝑥) B min(𝐺𝑖 (𝑥) + Δ, 1). Then we can use the same steps as

above for LHS to show that �̂� (𝑥) maximizes
∑
𝑗≠𝑖 (𝑝 𝑗 (�̂�, _) − 𝑝 𝑗 (𝑮, _))+, and that

𝑝 𝑗 (𝑮, _) − 𝑝 𝑗 (�̂�, _) ≤ 0∀ 𝑗 ≠ 𝑖

𝑝𝑖 (𝑮, _) − 𝑝𝑖 (�̂�, _) ≥ 0

This shows that �̂� is the maximizer of the RHS of (D.3).From there, we have

max
𝐹𝑖 :𝑝𝑖 (𝑭,_)−𝑝𝑖 (𝑮,_)<0

∑︁
𝑗≠𝑖

(𝑝 𝑗 (𝑭, _) − 𝑝 𝑗 (𝑮, _))+

=
∑︁
𝑗

(𝑝 𝑗 (�̂�, _) − 𝑝 𝑗 (𝑮, _))+

=𝑝𝑖 (𝑮, _) − 𝑝𝑖 (�̂�, _)

=

∫ 𝑥

0

∏
𝑗≠𝑖

𝐹 𝑗 (𝑥 + _𝑖 − _ 𝑗 )𝑑𝐺𝑖 (𝑥) −
∫ 𝑥

0

∏
𝑗≠𝑖

𝐹 𝑗
(
𝑥 + _𝑖 − _ 𝑗

)
𝑑�̂� (𝑥)

=

∫ 𝑥

0

∏
𝑗≠𝑖

𝐹 𝑗 (𝑥 + _𝑖 − _ 𝑗 )𝑑𝐺𝑖 (𝑥) − Δ
∏
𝑗≠𝑖

𝐹 𝑗
(
_𝑖 − _ 𝑗

)
−

∫ 𝑥Δ

0

∏
𝑗≠𝑖

𝐹 𝑗
(
𝑥 + _𝑖 − _ 𝑗

)
𝑑𝐹 (𝑥)

=

∫ 𝑥

0

∏
𝑗≠𝑖

𝐹 𝑗 (𝑥 + _𝑖 − _ 𝑗 )𝑑𝐺𝑖 (𝑥) −
∫ 𝑥Δ

0

∏
𝑗≠𝑖

𝐹 𝑗
(
𝑥 + _𝑖 − _ 𝑗

)
𝑑𝐹 (𝑥)

≤Δ

where 𝑥Δ = 𝐹−1(1 − Δ). □

Using Claim 7 we can now easily prove the original Claim 5.

Proof of Claim 5. First we construct the following sequence of distributions where for any two
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adjacent distributions they only differ on one coordinate.

𝑮0 = 𝑮 = 𝐺1 ⊗ . . . ⊗ 𝐺𝑛,

𝑮1 = 𝐹1 ⊗ 𝐺2 ⊗ . . . ⊗ 𝐺𝑛,

𝑮2 = 𝐹1 ⊗ 𝐹2 ⊗ 𝐺3 ⊗ . . . ⊗ 𝐺𝑛,

. . .

𝑮𝑛 = 𝑭.

Then we can decompose the difference between 𝑝(𝑭, _) and 𝑝∗ into a sum of differences:

| |𝑝(𝑭, _) − 𝑝(𝑮, _) | |1 = | |𝑝(𝑮𝑛, _) − 𝑝(𝑮0, _) | |1

≤
𝑛∑︁
𝑖=1
| |𝑝(𝑮𝑖, _) − 𝑝(𝑮𝑖−1, _) | |1

≤ 2𝑛Δ

where the last step follows from Claim 7. Since
∑
𝑗 (𝑝 𝑗 (𝑭, _) − 𝑝 𝑗 (𝑮, _))+ =

∑
𝑗 (𝑝 𝑗 (𝑮, _) −

𝑝 𝑗 (𝑭, _))+ = 1
2 | |𝑝(𝑭, _) − 𝑝(𝑮, _) | |1, we have

∑︁
𝑗

(𝑝 𝑗 (𝑭, _) − 𝑝 𝑗 (𝑮, _))+ =
∑︁
𝑗

(𝑝 𝑗 (𝑮, _) − 𝑝 𝑗 (𝑭, _))+ ≤ 𝑛Δ

□

Proof of Claim 6

Proof. WLOG, assume that _1−_′1 ≥ _2−_′2 . . . ≥ _𝑛−_
′
𝑛. Let𝑄 𝑗 𝑘 = Ω 𝑗 ∩Ω′𝑘 be the “error flow”

of items from 𝑗 to 𝑘 . It is easy to see that for 𝑘 < 𝑗 , 𝑿 𝑗 + _ 𝑗 > 𝑿𝑘 + _𝑘 =⇒ 𝑿 𝑗 + _′𝑗 > 𝑿𝑘 + _′𝑘 .

Therefore 𝑄 𝑗 𝑘 = ∅ for 𝑘 < 𝑗 . Then it follows that

Ω′𝑗 \Ω 𝑗 ⊆
⋃
𝑖:𝑖< 𝑗

𝑄𝑖 𝑗 ⊆
⋃
𝑖:𝑖< 𝑗

⋃
𝑘:𝑘≥ 𝑗

𝑄𝑖𝑘 .
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The right hand side above is the net outflow from the set {𝑖 : 𝑖 < 𝑗}. However, we know that each

individual agents’ net in flow is 𝑝 𝑗 (𝑭, _′) − 𝑝 𝑗 (𝑭, _), so we can bound the RHS by

P
©«
⋃
𝑖:𝑖< 𝑗

⋃
𝑘:𝑘≥ 𝑗

𝑄𝑖𝑘
ª®¬ ≤

∑︁
𝑖:𝑖< 𝑗

𝑝 𝑗 (𝑭, _′) − 𝑝 𝑗 (𝑭, _) ≤ Δ

□

D.2.2 Proof of Theorem 6

Proof. Fix an epoch 𝑘 , let Δ =

√︃
1

2𝑛(𝐿𝑘−1) log( 2
𝛿
), _̂ = _∗(�̂�𝐿𝑘−1).

(Lemma 34) sup
𝑥

|�̂�𝐿𝑘−1(𝑥) − 𝐹 (𝑥) | ≤ Δ w.p. 1 − 𝛿/2

(Lemma 15) =⇒ E[𝑢𝑖 (𝑿, 𝑿, _∗)] − E[𝑢𝑖 (𝑿, 𝑿, _̂)] ≤ 𝑛Δ𝑥 ∀𝑖 w.p. 1 − 𝛿/2 (D.8)

(Chernoff bound) =⇒ E[𝑢𝑖 (𝑿, 𝑿, _∗)] (𝐿𝑘+1 − 𝐿𝑘 ) −
𝐿𝑘+1−1∑︁
𝑡=𝐿𝑘

𝑢𝑖 (𝑿𝑡 , 𝑿𝑡 , _̂)]

≤𝑛Δ𝑥(𝐿𝑘+1 − 𝐿𝑘 ) + 𝑥
√︂
(𝐿𝑘+1 − 𝐿𝑘 )

2
log(2

𝛿
) w.p. 1 − 𝛿

=

√︂
2𝑘𝑛 log(2

𝛿
)𝑥 +

√︂
2𝑘−1 log(2

𝛿
)𝑥 w.p. 1 − 𝛿 (D.9)

The above bounds the regret in one epoch if the algorithm does not terminate before the epoch

ends. It remains to show that the algorithm with high probability does not terminate too early. This

involves showing that with high probability, no agent hits their capacity constraint 𝑝∗
𝑗
𝑇 significantly

earlier than 𝑇 , and that the detection algorithm does not falsely trigger.

Continuing from (D.9), for any time step 𝑇 ′ ≤ 𝑇 , we have
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𝑇E [𝑢𝑖 (𝑿, 𝑿, _∗)] −
𝑇 ′∑︁
𝑡=1

𝑢𝑖 (𝑿𝑡 , 𝑿𝑡 , _𝑘𝑡 )

≤
log2 𝑇

′∑︁
𝑘=0

[
(𝐿𝑘+1 − 𝐿𝑘 )E[𝑢𝑖 (𝑿, 𝑿, _∗)] −

𝐿𝑘+1−1∑︁
𝑡=𝐿𝑘

𝑢𝑖 (𝑿𝑡 , 𝑿𝑡 , _𝑘 )]
]

+ (𝑇 − 𝑇 ′)E [𝑢𝑖 (𝑿, 𝑿, _∗)]

=

log2 𝑇∑︁
𝑘=1

√︂
𝑛2𝑘 log(2

𝛿
)𝑥 +

√︂
2𝑘
2

log(2
𝛿
)𝑥 + (𝑇 − 𝑇 ′)𝑥 w.p 1 − 𝛿 log2 𝑇

≤2
√︂
𝑛 log(2

𝛿
)𝑥

log2 𝑇∑︁
𝑘=1

√︁
2𝑘 + (𝑇 − 𝑇 ′)𝑥 w.p 1 − 𝛿 log2 𝑇

≤ 2
√

2
√

2 − 1

√︂
𝑛𝑇 log(2

𝛿
)𝑥 + (𝑇 − 𝑇 ′)𝑥 w.p 1 − 𝛿 log2 𝑇 (D.10)

where the second inequality follows from(D.9) and union bound. Now, since there are at most

log2(𝑇) epochs for any 𝑇 ′ ≤ 𝑇 , above holds for all epochs and therefore for all 𝑇 ′ with probability

1−𝛿 log2(𝑇). Now we show that with high probability, for all 𝑇 ′ ≤ 𝑇 − 2
√

2√
2−1

√︃
𝑛𝑇 log( 2

𝛿
) and for any

fixed agent 𝑖, the constraint of total allocation to agent 𝑖 to be less than 𝑝∗
𝑖
𝑇 will be satisfied. Note

that a byproduct of applying Lemma 15 in (D.8) is that |𝑝𝑖 (𝑭, _𝑘 ) − 𝑝∗𝑖 | ≤ 𝑛Δ𝐿𝑘−1 (See (D.1)). Fix

a time step 𝜏,

𝜏∑︁
𝑡=1

1[arg max
𝑗

𝑿 𝑗 + _𝑘𝑡 𝑗 = 𝑖]

(Chernoff) ≤
log2 𝜏∑︁
𝑘=1
(𝐿𝑘+1 − 𝐿𝑘 )𝑝𝑖 (𝑭, _𝑘 ) +

√︂
(𝐿𝑘+1 − 𝐿𝑘 )

2
log(2

𝛿
) w.p. 1 − 𝛿 log2 𝜏

≤
log2 𝜏∑︁
𝑘=1
(𝐿𝑘+1 − 𝐿𝑘 ) (𝑝∗𝑖 + 𝑛Δ𝐿𝑘−1) +

√︂
(𝐿𝑘+1 − 𝐿𝑘 )

2
log(2

𝛿
) w.p. 1 − 𝛿 log2 𝜏

(𝐿𝑘 = 2𝑘 ) ≤𝑝∗𝑖 𝜏 +
log2 𝜏∑︁
𝑘=1

(√︂
𝑛2𝑘 log(2

𝛿
) +

√︂
2𝑘−1 log(2

𝛿
)
)

w.p. 1 − 𝛿 log2 𝜏

≤𝑝∗𝑖 𝜏 +
2
√

2
√

2 − 1

√︂
𝑛𝜏 log(2

𝛿
) w.p. 1 − 𝛿 log2 𝜏
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This means that for all 𝜏 ≤ 𝑇 − 2
√

2√
2−1

√︃
𝑛𝑇 log( 2

𝛿
), with probability 1 − 𝛿 log2 𝑇 ,

𝜏∑︁
𝑡=1

1[arg max
𝑗

𝑿 𝑗 + _𝑘𝑡 𝑗 = 𝑖] ≤ 𝑝∗𝑖𝑇,

Combining above with (D.10), we have that with probability 1−2𝛿 log2 𝑇 , for any fixed 𝑖, if the

algorithm terminates at 𝑇 ′ due to allocation limit reached for agent 𝑖, then 𝑇 ′ ≥ 2
√

2√
2−1

√︃
𝑛𝑇 log( 2

𝛿
), so

that

𝑇E [𝑢𝑖 (𝑿, 𝑿, _∗)] −
𝑇 ′∑︁
𝑡=1

𝑢𝑖 (𝑿, 𝑿, _𝑘𝑡 ) ≤
2
√

2
√

2 − 1

√︂
𝑛𝑇 log(2

𝛿
)𝑥 + 2

√
2

√
2 − 1

√︂
𝑛𝑇 log(2

𝛿
)𝑥

Finally, we also have to bound the probability that the detection algorithm falsely triggers. For

a given time 𝑡 and for each 𝑖, let

𝐹𝑖𝑡 (𝑥) =
1
𝑡

𝑡∑︁
𝑡=1

1[𝑋𝑖,𝑡 ≤ 𝑥]

�̃�𝑡 (𝑥) =
1

𝑡 (𝑛 − 1)

𝑡∑︁
𝑡=1

∑︁
𝑗≠𝑖

1[𝑿 𝑗 ,𝑡 ≤ 𝑥]

be the empirical CDF for agent 𝑖 and the rest of the agents. Since all agents are truthful, using

Lemma 34 we have that with probability 1 − 𝛿,

sup
𝑥

|𝐹𝑖𝑡 (𝑥) − 𝐹 (𝑥) | ≤
√︂

1
2𝑡

log(2
𝛿
)

sup
𝑥

|�̃�𝑡 (𝑥) − 𝐹 (𝑥) | ≤

√︄
1

2𝑡 (𝑛 − 1) log(2
𝛿
)

This means that sup𝑥 |𝐹𝑖𝑡 (𝑥) − �̃�𝑡 (𝑥) | ≤
√︃

1
𝑡

log( 2
𝛿
) ≤ 32

√︃
1
𝑡

log( 256𝑒𝑡
𝛿
) = Δ𝑡/2, which means that

Algorithm 5 is not triggered by agent 𝑖. Using union bound, we know that with probability 1−𝛿𝑛𝑇 ,

the algorithm will not end early because of a false trigger (by any agent).

The result follows by replacing 𝛿 with 𝛿
𝑛(2 log2 𝑇+𝑇)

and take the union bound over all agents.

□
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D.3 Proof of Theorem 5

D.3.1 Proof of Lemma 16

Proof. Let 𝛼 = Δ
4 . We first check that the given condition on Δ satisfies

(
128𝑒𝑡
𝛼

)
𝑒−𝑡𝛼

2/128 ≤ 𝛿
2 and

that 2𝑒−2𝑡 (𝑛−1)𝛼2 ≤ 𝛿
2

(
128𝑒𝑡
𝛼

)
𝑒−𝑡𝛼

2/128 ≤ 𝛿
2

⇐⇒ 𝛼2 ≥
128 log( 256𝑒𝑡

𝛿
)

𝑡
+ 64
𝑡

log( 1
𝛼2 )

⇐= 𝛼2 ≥
256 log( 256𝑒𝑡

𝛿
)

𝑡

⇐⇒ Δ ≥ 64

√︄
log( 256𝑒𝑡

𝛿
)

𝑡

2𝑒−2𝑡 (𝑛−1)𝛼2 ≤ 𝛿
2

⇐⇒ 𝛼 ≥

√︄
1

2𝑡 (𝑛 − 1) log(4
𝛿
)

⇐= Δ ≥ 64

√︄
log( 256𝑒𝑡

𝛿
)

𝑡

Let �̄�𝑡 (𝑥) = 1
𝑡

∑𝑡
𝑠=1 1[�̃�𝑖,𝑠 ≤ 𝑥] be the empirical CDF of the samples collected from agent 𝑖.

Let �̃�𝑡 (𝑥) = 1
(𝑛−1)𝑡

∑𝑡
𝑠=1

∑
𝑗≠𝑖 1[�̃� 𝑗 ,𝑠 ≤ 𝑥] be the empirical CDF of all reported values from the

other agents. Let �̄� (𝑥) = 1
𝑡

∑𝑡
𝑠=1 𝐹𝑠 (𝑥), where 𝐹𝑠 (𝑥) = P( �̃�𝑖,𝑠 ≤ 𝑥 |H𝑠). Lemma 14 tells us that

with probability 1 − 𝛿/2,

sup
𝑥

|�̄�𝑡 (𝑥) − �̄� (𝑥) | ≤
Δ

4
(D.11)
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Since other agents are truthful, their reported values are independent, and we can use the reg-

ular DKW inequality to bound the empirical distribution constructed from their values. Using

Lemma 34 we can show that with probability 1 − 𝛿/2,

sup
𝑥

|�̃�𝑡 (𝑥) − 𝐹 (𝑥) | ≤
Δ

4
.

Using union bound, we can conclude that if sup𝑥 |�̄� (𝑥) − 𝐹 (𝑥) | ≥ Δ, then with probability 1 − 𝛿:

sup
𝑥

|�̃�𝑡 (𝑥) − �̄�𝑡 (𝑥) | >
Δ

2

which means that Algorithm 5 would have returned Reject. □

D.3.2 Proof of Lemma 17

First we state a technical result on monotone mapping between two distributions. Given a

cumulative distribution function 𝐹, we define the following random function:

𝐹𝑢 (𝑦) =


𝐹 (𝑦) if 𝐹 (𝑦) = 𝐹 (𝑦−)

Uniform[𝐹 (𝑦−), 𝐹 (𝑦)] if 𝐹 (𝑦) > 𝐹 (𝑦−)
(D.12)

If 𝐹 is a continuous distribution then 𝐹𝑢 is deterministic and is the same as 𝐹. However if 𝐹

contains point masses, then at points where 𝐹 jumps, 𝐹𝑢 is uniformly sampled from the interval of

that jump. It is easy to see that 𝐹𝑢 has the nice property that if𝑌 ∼ 𝐹, then 𝐹𝑢 (𝑌 ) ∼ Uniform[0, 1].

Claim 8. Let 𝐺 be any distribution (cdf) over X ⊆ R, and 𝐹 over Y ⊆ R. Then there exists a

unique joint distribution 𝑟 over X × Y with marginals 𝐺, 𝐹 such that the conditional distribution

𝑟 (·|𝑌 ) has the following monotonicity property: define 𝑥𝑟 (·), 𝑥𝑟 (·) so that 𝑋 ∈ [𝑥
𝑟
(𝑌 ), 𝑥𝑟 (𝑌 )]
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almost surely, i.e.,

𝑥𝑟 (𝑦) = inf{𝑥 : P(𝑋 > 𝑥 |𝑌 = 𝑦) = 0}

𝑥
𝑟
(𝑦) = sup{𝑥 : P(𝑋 < 𝑥 |𝑌 = 𝑦) = 0},

then

𝑥𝑟 (𝑦1) ≤ 𝑥𝑟 (𝑦2) ∀𝑦1 < 𝑦2.

In particular, the random variable 𝑋 |𝑌 ∼ 𝑟 (·|𝑌 ) can be sampled as 𝐺−1(𝐹𝑢 (𝑌 )), where 𝐹𝑢 is the

random function defined in (D.12) and 𝐺−1 B inf{𝑥 ∈ R : 𝐺 (𝑥) ≥ 𝑝} denotes the generalized

inverse, sometimes also referred to as the quantile function.

The proof of this Claim is in Appendix D.4.1. Using the above result, we derive the following

key result that will provide insight into a strategic agent’s best response to a greedy allocation

strategy. Note that given a particular marginal distribution 𝐺 for the agent 𝑖’s reported values

and the true value distribution 𝐹, there are many potential joint distributions between the true and

reported valuations. In the following lemma, we show that the "best" joint distribution among

these, in terms of agent 𝑖’s utility maximization, is the one characterized in Claim 8.

Claim 9. Fix a greedy allocation policy _. Let 𝑿 ∈ [0, 𝑥]𝑛 be drawn from 𝐹 ⊗ . . . ⊗ 𝐹. Fix

another distribution 𝐺 over [0, 𝑥]. Given 𝑿, define �̃�∗ as follows: let �̃�∗
𝑖
= 𝐺−1(𝐹𝑢 (𝑋𝑖)), and

�̃�∗
𝑗
= 𝑋 𝑗 ∀ 𝑗 ≠ 𝑖. Let R be the set of all joint distributions over [0, 𝑥]2 such that the marginals are

𝐹 and 𝐺; and for any 𝑟 ∈ R, given 𝑿 define �̃�𝑟 as follows: �̃�𝑟
𝑖
∼ 𝑟 (·|𝑋𝑖), and �̃�𝑟

𝑗
= 𝑋 𝑗 ∀ 𝑗 ≠ 𝑖.

Then

E[𝑢𝑖 ( �̃�∗, 𝑿, _)] ≥ max
𝑟∈R
E[𝑢𝑖 ( �̃�𝑟 , 𝑿, _)] .

Proof. First we show that for any joint distribution that is not monotone (i.e., does not have the

monotonicity property defined in Claim 8), there is a monotone one that obtains at least as much

utility. Suppose 𝑟 is one such joint distribution that is not monotone, i.e., ∃𝑥1 < 𝑥2, s.t. 𝑥𝑟 (𝑥1) >
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𝑥
𝑟
(𝑥2) (as defined in Claim 8). First recall that since 𝑋 𝑗 ∼ 𝐹,∀ 𝑗 are independent, the expected

utility can be written as the following:

E[𝑢𝑖 ( �̃�𝑟 , 𝑿, _)] =
∫ 𝑥

0

∫ 𝑥𝑟 (𝑥)

𝑥𝑟 (𝑥)
𝑥
∏
𝑗≠𝑖

𝐹 (𝑥 + _𝑖 − _ 𝑗 )𝑑𝑟 (𝑥 |𝑥)𝑑𝐹 (𝑥)

Now consider a pair of values 𝑥1 > 𝑥2 such that (𝑥1, 𝑥1) and (𝑥2, 𝑥2) has a non-zero probability

density under distribution 𝑟 . This pair exists because 𝑥𝑟 (𝑥1) > 𝑥𝑟 (𝑥2). Then using the fact that for

𝑎, 𝑏, 𝑐, 𝑑 > 0, 𝑎 < 𝑏, 𝑐 < 𝑑 : 𝑎𝑐 + 𝑏𝑑 > 𝑎𝑑 + 𝑏𝑐, we can see that:

𝑥1
∏

𝐹 (𝑥1 + _𝑖 − _ 𝑗 ) + 𝑥2
∏

𝐹 (𝑥2 + _𝑖 − _ 𝑗 ) < 𝑥1
∏

𝐹 (𝑥2 + _𝑖 − _ 𝑗 ) + 𝑥2
∏

𝐹 (𝑥1 + _𝑖 − _ 𝑗 )

This means that if we exchanged the probability mass between the two conditionals of 𝑥1, 𝑥2, the

utility would be at least as much as before, if not higher. This means that at least one monotone joint

distribution belongs in the set of utility maximizing joint distributions. Since Claim 8 showed that

the distribution of (𝐺−1(𝐹𝑢 (𝑋)), 𝑋) is the unique joint distribution that is monotone, we conclude

that �̃�∗ as defined in the lemma statement is indeed utility maximizing. □

Proof of Lemma 17

Proof. Let 𝐺 (𝑥) B (𝐹 (𝑥) − Δ)+∀𝑥 < 𝑥, 𝐺 (𝑥) B 1 be the distribution whose CDF is shifted

down from 𝐹 by Δ. Let 𝑟 be the utility maximizing joint distribution from Claim 9. Let 𝑟, �̂� be a

different pair of joint and marginal distribution such that sup𝑥 |𝐹 (𝑥) − �̂� (𝑥) | ≤ Δ. We know that

�̂� (𝑥) ≥ 𝐺 (𝑥) for all 𝑥. Agent 𝑖’s utilities for using 𝑟 and 𝑟 respectively, are:

E𝑟 [𝑢𝑖 ( �̂�, 𝑿, _)] =
∫ 𝑥

0
𝑥

∫ 𝑥𝑟 (𝑥)

𝑥𝑟 (𝑥)

∏
𝑗≠𝑖

𝐹 (𝑥 + _𝑖 − _ 𝑗 )𝑑𝑟 (𝑥 |𝑥)𝑑𝐹 (𝑥)

=

∫ 𝑥

0
𝑥E𝐹𝑢 (𝑥)

[∏
𝑗≠𝑖

𝐹

(
�̂�−1(𝐹𝑢 (𝑥)) + _𝑖 − _ 𝑗

)]
𝑑𝐹 (𝑥) (D.13)
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and

E𝑟 [𝑢𝑖 ( �̃�, 𝑿, _)] =
∫

𝑥E𝐹𝑢 (𝑥)

[∏
𝑗≠𝑖

𝐹

(
𝐺−1(𝐹𝑢 (𝑥)) + _𝑖 − _ 𝑗

)]
𝑑𝐹 (𝑥) (D.14)

respectively. Since �̂� (𝑥) ≥ 𝐺 (𝑥), we know �̂�−1(𝑝) ≤ 𝐺−1(𝑝). Clearly (D.13) ≤ (D.14). We

conclude that given a greedy allocation policy _, true valuation 𝑋𝑖,𝑡 and truthful agents 𝑗 ≠ 𝑖 (with

�̃� 𝑗 ,𝑡 = 𝑋 𝑗 ,𝑡), reporting �̃�𝑖,𝑡 ∼ 𝑟 (·|𝑋𝑖,𝑡) is a strategy for agent 𝑖 that maximizes E[𝑢𝑖 ( �̃�𝑡 , 𝑿𝑡 , _)]

subject to the marginal distribution constraint sup𝑥 |𝐹 (𝑥) − 𝐹𝑟 (𝑥) | ≤ Δ. That is,

E𝑟 [𝑢𝑖 ( �̃�𝑡 , 𝑿𝑡 , _)] ≤ E𝑟 [𝑢𝑖 ( �̃�𝑡 , 𝑿𝑡 , _)] ∀𝑟 s.t. sup
𝑥

|𝐹𝑟 (𝑥) − 𝐹 (𝑥) | ≤ Δ

It remains to bound the difference E𝑟 [𝑢𝑖 ( �̃�, 𝑿, _)] − E[𝑢𝑖 (𝑿, 𝑿, _)]. First note that 𝐺−1(𝑝) =

𝐹−1(𝑝 + Δ). Then we have that

E𝑟 [𝑢𝑖 ( �̃�, 𝑿, _)] − E[𝑢𝑖 (𝑿, 𝑿, _)] (D.15)

=

∫ 𝑥

0
𝑥

(
E𝐹𝑢 (𝑥)

[∏
𝑗≠𝑖

𝐹

(
𝐹−1(𝐹𝑢 (𝑥) + Δ) + _𝑖 − _ 𝑗

)]
−

∏
𝑗≠𝑖

𝐹 (𝑥 + _𝑖 − _ 𝑗 )
)
𝑑𝐹 (𝑥)

≤𝑥
∫ 𝑥

0

(
E𝐹𝑢 (𝑥)

[∏
𝑗≠𝑖

𝐹

(
𝐹−1(𝐹𝑢 (𝑥) + Δ) + _𝑖 − _ 𝑗

)]
−

∏
𝑗≠𝑖

𝐹 (𝑥 + _𝑖 − _ 𝑗 )
)
𝑑𝐹 (𝑥) (D.16)

where the inequality follows from the fact that 𝐹−1(𝐹𝑢 (𝑥) + Δ) ≥ 𝑥 𝑤.𝑝.1 for all 𝑥. To bound the

remaining expression in the integral, we can use the fact that since the marginal distribution of 𝑥
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under the joint distribution 𝑟 (𝑥, 𝑥) is 𝐺, we have

∫ 𝑥

0

∫ 𝑥

0

∏
𝑗≠𝑖

𝐹
(
𝑥 + _𝑖 − _ 𝑗

)
𝑑𝑟 (𝑥 |𝑥)𝑑𝐹 (𝑥)

=

∫ 𝑥

0

∏
𝑗≠𝑖

𝐹
(
𝑥 + _𝑖 − _ 𝑗

)
𝑑𝐺 (𝑥)

=

∫ 𝑥

𝑥Δ

∏
𝑗≠𝑖

𝐹
(
𝑥 + _𝑖 − _ 𝑗

)
𝑑𝐹 (𝑥) +

∏
𝑗≠𝑖

𝐹
(
𝑥 + _𝑖 − _ 𝑗

)
Δ

≤
∫ 𝑥

𝑥Δ

∏
𝑗≠𝑖

𝐹
(
𝑥 + _𝑖 − _ 𝑗

)
𝑑𝐹 (𝑥) + Δ (D.17)

where 𝑥Δ := 𝐹−1(Δ). Similarly,

∫ 𝑥

0

∏
𝑗≠𝑖

𝐹
(
𝑥 + _𝑖 − _ 𝑗

)
𝑑𝐹 (𝑥)

=

∫ 𝑥Δ

0

∏
𝑗≠𝑖

𝐹
(
𝑥 + _𝑖 − _ 𝑗

)
𝑑𝐹 (𝑥) +

∫ 𝑥

𝑥Δ

∏
𝑗≠𝑖

𝐹
(
𝑥 + _𝑖 − _ 𝑗

)
𝑑𝐹 (𝑥)

≥
∫ 𝑥

𝑥Δ

∏
𝑗≠𝑖

𝐹
(
𝑥 + _𝑖 − _ 𝑗

)
𝑑𝐹 (𝑥) (D.18)

Plugging (D.17) and (D.18) back to (D.16), we can now bound the expression in (D.15), and

thereby the profit from strategizing, by 𝑥Δ.

□

D.3.3 Proof of Lemma 18

Proof. Let �̄� be the average distribution that agent 𝑖 reported from up to round 𝑇 ′: �̄� = 1
𝑇 ′

∑𝑇 ′

𝑡=1 𝐹𝑡 ,

where 𝐹𝑡 is the reported value distribution of agent 𝑖 in time 𝑡: 𝐹𝑡 (𝑥) B P( �̃�𝑖,𝑡 ≤ 𝑥 |H𝑡). Since

the the detection algorithm has not been triggered, we can conclude using Lemma 16 that with
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probability 1 − 𝛿,

sup
𝑥

|�̄� (𝑥) − 𝐹 (𝑥) | < Δ B 64

√︄
log( 256𝑒𝑇 ′

𝛿
)

𝑇 ′
,

and sup
𝑥

|�̄�𝑇 ′ (𝑥) − �̄� (𝑥) | <
Δ

4
= 16

√︄
log( 256𝑒𝑇 ′

𝛿
)

𝑇 ′
.

The second inequality holds because the proof of Lemma 16 uses the second inequality to show

the first (see Equation D.11). Combining the above two steps, we have

sup
𝑥

|�̄�𝑇 ′ (𝑥) − 𝐹 (𝑥) | <
Δ

4
= 80

√︄
log( 256𝑒𝑇 ′

𝛿
)

𝑇 ′
w.p. 1 − 𝛿. (D.19)

This shows that if the detection algorithm has not been triggered, the empirical CDF of strategic

agent’s reported values are close to the true CDF. Let �̃�𝑇 ′ (𝑥) = 1
(𝑛−1)𝑇 ′

∑𝑇 ′

𝑡=1
∑
𝑗≠𝑖 1[𝑋 𝑗 ,𝑡 ≤ 𝑥] be

the emipircal distriution from all agents other than 𝑖. We know from Lemma 34 that

sup
𝑥

|�̃�𝑇 ′ (𝑥) − 𝐹 (𝑥) | ≤

√︄
1

2(𝑛 − 1)𝑇 ′ log(2
𝛿
) w.p. 1 − 𝛿. (D.20)
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Combining (D.19) and (D.20), we can now bound the error in the combined estimation, �̂�𝑇 ′ =

1
𝑛𝑇 ′

∑𝑇 ′

𝑡=1
∑𝑛
𝑗=1 1[𝑿𝑡𝑗 ≤ 𝑥]:

sup
𝑥

|�̂�𝑇 ′ (𝑥) − 𝐹 (𝑥) |

= sup
𝑥

|1
𝑛
�̄�𝑇 ′ (𝑥) +

𝑛 − 1
𝑛

�̃�𝑇 ′ (𝑥) − 𝐹 (𝑥) |

= sup
𝑥

|1
𝑛
�̄�𝑇 ′ (𝑥) −

1
𝑛
𝐹 (𝑥) + 𝑛 − 1

𝑛
�̃�𝑇 ′ (𝑥) −

𝑛 − 1
𝑛

𝐹 (𝑥) |

≤ sup
𝑥

|1
𝑛
�̄�𝑇 ′ (𝑥) −

1
𝑛
𝐹 (𝑥) | + sup

𝑥

|𝑛 − 1
𝑛

�̃�𝑇 ′ (𝑥) −
𝑛 − 1
𝑛

𝐹 (𝑥) |

≤80

√︄
log( 256𝑒𝑇 ′

𝛿
)

𝑛𝑇 ′
+

√︂
1

2𝑛𝑇 ′
log(2

𝛿
) w.p. 1 − 2𝛿

≤81

√︄
log( 256𝑒𝑇 ′

𝛿
)

𝑛𝑇 ′
w.p. 1 − 2𝛿 (D.21)

Let �̂�𝑇 ′ = �̂�𝑇 ′ ⊗ . . . ⊗ �̂�𝑇 ′, and _ = _∗(�̂�𝑇 ′), and Δ𝑇 ′ = 81
√︃

log( 256𝑒𝑇 ′
𝛿
)

𝑛𝑇 ′ . Applying Lemma 15 to

(D.21) we have

sup
𝑥

|�̂�𝑇 ′ (𝑥) − 𝐹 (𝑥) | ≤ Δ𝑇 ′ w.p. 1 − 2𝛿

(Lemma 15) =⇒ E[𝑢𝑖 (𝑿, 𝑿, _)] − E[𝑢𝑖 (𝑿, 𝑿, _∗)] ≤ 𝑛Δ𝑇 ′𝑥

□

D.3.4 Proof of Lemma 19

Proof. Let 𝐹𝑡 , 𝑡 = 1, . . . , 𝑇 be the distributions that agent 𝑖 reports from in each round given the

history, i.e. �̃�𝑖,𝑡 |H𝑡 ∼ 𝐹𝑡 . First we try to bound the utility that the strategic agent can get from a

single epoch. Fix an epoch 𝑘 . Suppose 𝑇 ′ is the time when either detection algorithm is triggered,

or the first time some receiver hits his allocation budget of 𝑝∗
𝑗
𝑇 . Let 𝜏 = min(𝑇 ′, 𝐿𝑘+1 − 1). We
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now define three distributions:

�̄�1 =
1

𝐿𝑘 − 1

𝐿𝑘−1∑︁
𝑡=1

𝐹𝑡

�̄�2 =
1

𝜏 − 1

𝜏−1∑︁
𝑡=1

𝐹𝑡

�̄�3 =
1

𝜏 − 𝐿𝑘

𝜏−1∑︁
𝑡=𝐿𝑘

𝐹𝑡

These are the average distributions that agent 𝑖 reported from, averaged across three time periods:

[1, 𝐿𝑘 ), [1, 𝜏) and [𝐿𝑘 , 𝜏). In particular, �̄�3 is the average distribution that the strategic agent

reports from in epoch 𝑘 . From Lemma 16 we know that with probability 1 − 2𝛿:

sup
𝑥

|�̄�1(𝑥) − 𝐹 (𝑥) | ≤64

√︄
log( 256𝑒(𝐿𝑘−1)

𝛿
)

𝑛(𝐿𝑘 − 1)

sup
𝑥

|�̄�2(𝑥) − 𝐹 (𝑥) | ≤64

√︄
log( 256𝑒(𝜏−1)

𝛿
)

𝑛(𝜏 − 1)

which together means that

sup
𝑥

|�̄�2(𝑥) − 𝐹 (𝑥) | = sup
𝑥

| 𝐿𝑘
𝜏
(�̄�1(𝑥) − 𝐹 (𝑥)) + 𝜏 − 𝐿𝑘

𝜏
(�̄�3(𝑥) − 𝐹 (𝑥)) |

=⇒ sup
𝑥

|�̄�2(𝑥) − 𝐹 (𝑥) | ≥ sup
𝑥

| 𝜏 − 𝐿𝑘
𝜏
(�̄�3(𝑥) − 𝐹 (𝑥)) | − sup

𝑥

| 𝐿𝑘
𝜏
(�̄�1(𝑥) − 𝐹 (𝑥)) |

=⇒ sup
𝑥

|�̄�3(𝑥) − 𝐹 (𝑥) | ≤ Δ̄𝑘 B min ©« 128𝜏
𝜏 − 𝐿𝑘

√︄
log( 256𝑒(𝜏−1)

𝛿
)

𝑛(𝜏 − 1) , 1ª®¬
Note that the last step also uses the fact that the difference between two CDFs cannot be bigger

than 1. Let 𝑟 be any joint distribution for agent 𝑖’s reported and true valuation (𝑥, 𝑥) such that the

marginal for the reported valuation is equal to �̄�3, i.e.,

�̄�𝑖,𝑡 ∼ 𝑟 (·|𝑋𝑖,𝑡), 𝑋𝑖,𝑡 ∼ 𝐹 =⇒ 𝐹𝑟 (𝑥) B P( �̄�𝑖,𝑡 ≤ 𝑥) = �̄�3
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Let �̄� denote the reported value vector when 𝑖 is the only strategic agent and uses 𝑟 (·|𝑋𝑖) to pick

his reported value: �̄� 𝑗 = 𝑋 𝑗 ∀ 𝑗 ≠ 𝑖, �̄�𝑖 ∼ 𝑟 (·|𝑋𝑖). Let Δ𝐿𝑘−1 = 81

√︂
log( 256𝑒 (𝐿𝑘−1)

𝛿
)

𝑛(𝐿𝑘−1) . Using this, we

have

(Lemma 18) =⇒ E[𝑢𝑖 (𝑿, 𝑿, _)] − E[𝑢𝑖 (𝑿, 𝑿, _∗)] ≤ 𝑛Δ𝐿𝑘−1𝑥

(Lemma 17) =⇒ E[𝑢𝑖 ( �̄�, 𝑿, _)] − E[𝑢𝑖 (𝑿, 𝑿, _∗)] ≤ 𝑛Δ𝐿𝑘−1𝑥 + Δ̄𝑘𝑥

(Corollary 5) =⇒
𝜏−1∑︁
𝑡=𝐿𝑘

𝑢𝑖 ( �̃�𝑡 , 𝑿𝑡 , _̃𝑘𝑡 ) − (𝜏 − 𝐿𝑘 )E[𝑢𝑖 (𝑿, 𝑿, _∗)]

≤ (𝑛Δ𝐿𝑘−1 + Δ̄𝑘 )𝑥(𝜏 − 𝐿𝑘 ) + 16
√︂
(𝜏 − 𝐿𝑘 ) log(128𝑒(𝜏 − 𝐿𝑘 )

𝛿
)𝑥 w.p. 1 − 𝛿

≤ 81

√︄
𝑛(𝜏 − 𝐿𝑘 )2
2(𝐿𝑘 − 1) log(256𝑒𝐿𝑘

𝛿
)𝑥 + 144

√︂
2𝜏 log(256𝑒𝜏

𝛿
)𝑥 w.p. 1 − 𝛿

(D.22)

The above is a high probability bound on how much an agent can get in one epoch. We can now

bound the strategic agent’s utility over the full horizon.

𝑇 ′∑︁
𝑡=1

𝑢𝑖 ( �̃�𝑡 , 𝑿𝑡 , _̃𝑘𝑡 ) − 𝑇 ′E [𝑢𝑖 (𝑿, 𝑿, _∗)]

≤
log2 𝑇

′−1∑︁
𝑘=0

[
𝐿𝑘+1−1∑︁
𝑡=𝐿𝑘

𝑢𝑖 ( �̃�𝑡 , 𝑿𝑡 , _) − (𝐿𝑘+1 − 𝐿𝑘 )E[𝑢𝑖 (𝑿, 𝑿, _∗)]
]

(Using (D.22)) ≤𝑥(𝐿1 − 1) +
log2 𝑇

′−1∑︁
𝑘=0

©«81

√︄
𝑛(𝐿𝑘+1 − 𝐿𝑘 )2

2(𝐿𝑘 − 1) log(256𝑒(𝐿𝑘 − 1)
𝛿

)𝑥

+ 144
√︂

2𝐿𝑘+1 log(256𝑒𝐿𝑘+1
𝛿

)𝑥
)

w.p 1 − 𝛿 log2 𝑇

(𝐿𝑘 = 2𝑘 ) ≤𝑥 +
log2 𝑇

′−1∑︁
𝑘=0

285
√︂
𝑛2𝑘 log(256𝑒𝑇 ′

𝛿
)𝑥 w.p 1 − 𝛿 log2 𝑇

≤
(

285
√

2
√

2 − 1

√︂
𝑛𝑇 ′ log(256𝑒

𝛿
) + 1

)
𝑥 w.p 1 − 𝛿 log2 𝑇

The result follows by replacing the original 𝛿 with 𝛿
log2 𝑇

.
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□

D.4 Auxiliary Proofs

D.4.1 Proof of Claim 8

Claim 8. Let 𝐺 be any distribution (cdf) over X ⊆ R, and 𝐹 over Y ⊆ R. Then there exists a

unique joint distribution 𝑟 over X × Y with marginals 𝐺, 𝐹 such that the conditional distribution

𝑟 (·|𝑌 ) has the following monotonicity property: define 𝑥𝑟 (·), 𝑥𝑟 (·) so that 𝑋 ∈ [𝑥
𝑟
(𝑌 ), 𝑥𝑟 (𝑌 )]

almost surely, i.e.,

𝑥𝑟 (𝑦) = inf{𝑥 : P(𝑋 > 𝑥 |𝑌 = 𝑦) = 0}

𝑥
𝑟
(𝑦) = sup{𝑥 : P(𝑋 < 𝑥 |𝑌 = 𝑦) = 0},

then

𝑥𝑟 (𝑦1) ≤ 𝑥𝑟 (𝑦2) ∀𝑦1 < 𝑦2.

In particular, the random variable 𝑋 |𝑌 ∼ 𝑟 (·|𝑌 ) can be sampled as 𝐺−1(𝐹𝑢 (𝑌 )), where 𝐹𝑢 is the

random function defined in (D.12) and 𝐺−1 B inf{𝑥 ∈ R : 𝐺 (𝑥) ≥ 𝑝} denotes the generalized

inverse, sometimes also referred to as the quantile function.

Proof. We first prove existence by constructing a joint distribution with the desired marginals and

monotonicity, then we show uniqueness.

Existence. We will construct the joint distribution by defining the conditional distribution of 𝑋

given 𝑌 = 𝑦 for every 𝑦. Note that if 𝐹 is a continuous distribution, then we can easily construct

𝑟 (·|𝑌 = 𝑦) using the inverse-CDF method:

𝑋 |𝑦 = 𝐺−1(𝐹 (𝑦))
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where 𝐺−1 B inf{𝑥 ∈ R : 𝐺 (𝑥) ≥ 𝑝} is the generalized inverse. This works because 𝐹 (𝑌 ) ∼ Uni-

form[0,1]. If 𝐹 contains point masses, then 𝐹 (𝑌 ) is no longer uniformly distributed, and the

inverse-CDF method does not work. To resolve this, we construct a different random variable

𝐹𝑢 (𝑦) for each value 𝑦. For a given sample 𝑦, If 𝐹 (𝑦) ≠ 𝐹 (𝑦−), let 𝐹𝑢 (𝑦) ∼ Uniform[𝐹 (𝑦−), 𝐹 (𝑦)].

Otherwise, let 𝐹𝑢 (𝑦) = 𝐹 (𝑦). Now we let

𝑋 |𝑦 = 𝐺−1(𝐹𝑢 (𝑦))

To see that 𝑋 sampled using this process has the marginal distribution 𝐺, we just need to show that

𝐹𝑢 (𝑌 ) is uniformly distributed. For a given 𝑝, if ∃𝑦 𝑠.𝑡. 𝐹 (𝑦) = 𝑝, then P(𝐹𝑢 (𝑌 ) ≤ 𝑝) = P(𝐹 (𝑌 ) ≤

𝑝) = P(𝑌 ≤ 𝑦) = 𝑝. Otherwise that means ∃𝑦 𝑠.𝑡. 𝑝1 B 𝐹 (𝑦−) ≤ 𝑝 and 𝑝2 B 𝐹 (𝑦) > 𝑝.

P(𝐹𝑢 (𝑌 ) ≤ 𝑝)

=P(𝑌 < 𝑦) + P(𝐹𝑢 (𝑦) ≤ 𝑝 |𝑌 = 𝑦)P(𝑌 = 𝑦)

=𝑝1 +
𝑝 − 𝑝1
𝑝2 − 𝑝1

(𝑝2 − 𝑝1)

=𝑝

This construction also satisfies monotonicity, since if 𝑦1 < 𝑦2, then 𝐹𝑢 (𝑦1) ≤ 𝐹 (𝑦1) w.p.1. and

𝐹𝑢 (𝑦2) ≥ 𝐹 (𝑦1) w.p.1.

Uniqueness Now we show uniqueness. For a given (𝑥, 𝑦) pair, suppose 𝑥 < 𝑥𝑟 (𝑦). Then from

monotonicity we know 𝑥
𝑟
(𝑦′) ≥ 𝑥𝑟 (𝑦) > 𝑥 for all 𝑦′ > 𝑦, which implies that

P𝑟 (𝑋 ≤ 𝑥,𝑌 ≤ 𝑦) = 𝐺 (𝑥).

If 𝑥 ≥ 𝑥𝑟 (𝑦), then from monotonicity we know 𝑥𝑟 (𝑦′) ≤ 𝑥𝑟 (𝑦) ≤ 𝑥 for all 𝑦′ < 𝑦, which implies

that

P𝑟 (𝑋 ≤ 𝑥,𝑌 ≤ 𝑦) = 𝐹 (𝑦)
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Since 𝐺 and 𝐹 are fixed, we have shown that all joint distributions 𝑟 with monotonicity and the

required marginals are the same. □
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