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Abstract
Deep neural networks have emerged as the workhorse for a large section of robotics and control
applications, especially as models for dynamical systems. Such data-driven models are in turn used
for designing and verifying autonomous systems. This is particularly useful in modeling medical
systems where data can be leveraged to individualize treatment. In safety-critical applications, it is
important that the data-driven model is conformant to established knowledge from the natural sci-
ences. Such knowledge is often available or can often be distilled into a (possibly black-box) model
M . For instance, the unicycle model for an F1 racing car. In this light, we consider the following
problem - given a model M and state transition dataset, we wish to best approximate the system
model while being bounded distance away fromM . We propose a method to guarantee this confor-
mance. Our first step is to distill the dataset into few representative samples called memories, using
the idea of a growing neural gas. Next, using these memories we partition the state space into dis-
joint subsets and compute bounds that should be respected by the neural network, when the input is
drawn from a particular subset. This serves as a symbolic wrapper for guaranteed conformance. We
argue theoretically that this only leads to bounded increase in approximation error; which can be
controlled by increasing the number of memories. We experimentally show that on three case stud-
ies (Car Model, Drones, and Artificial Pancreas), our constrained neurosymbolic models conform
to specified M models (each encoding various constraints) with order-of-magnitude improvements
compared to the augmented Lagrangian and vanilla training methods. 1

Keywords: Deep neural networks, prototypes, robotics, medical devices

1. Introduction

Deep neural networks (DNNs) are capable of learning highly-complex relationships between input
data and the expected output. This permits training and validation of large models in robotics
and medicine (Djeumou et al., 2022; Kushner et al., 2020; Shi et al., 2019), enabling designers to
comfortably achieve small approximation errors. But the caveat that comes with this flexibility, is
lack of generalization when pushed outside of the training distribution. We refer to the experiments
in Narasimhamurthy et al. (2019). One of the instances it covers corresponds to that of Newton’s
first law. The neural network dynamics model of a car should predict that, given zero throttle and
when at rest, the car should continue to remain at rest. The model trained on real trajectory data in
Goldfain et al. (2019) failed to conform to this simple property. A very similar situation happens in
the case of the glucose-insulin dynamics model for an artificial pancreas, a device for patients with

1. Our code can be found at: https://github.com/kaustubhsridhar/Constrained_Models

© 2023 K. Sridhar1, S. Dutta1, J. Weimer2 & I. Lee1.
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type-1 diabetes. This property has been studied in Kushner et al. (2020), where it was found that
deep neural network model could easily produce predictions which can be fatal for the patient.

However these challenges are much less prevalent in models which are typically informed by
different scientific disciplines. Examples of this include models based on mechanical properties of
robotic systems (Rajamani, 2011), aerodynamic properties of drag and lift (Mahony et al., 2012),
physiological models of the human body (Man et al., 2014; Chen et al., 2015) and alike. The
advantage of using models (rather than atomic constraints) is that they encompass of wider range
of desirable properties quite naturally. In robotics it is common to find such high-fidelity physics-
engine based simulators (Dosovitskiy et al., 2017; Coumans and Bai, 2016–2019; Todorov et al.,
2012). In medical applications, examples include artificial pancreas simulators (Man et al., 2014;
Chen et al., 2015). Unfortunately in practice, such models can be of black-box nature. Allowing
only samples to be observed. Our goal is to use such models to inviscate a deep neural network into
conformal behavior.

In this work, we propose a method which guarantees the satisfaction of natural constraints by
constructing a wrapper for the DNN based on symbolic information. This is achieved through a
novel neural gas based partitioning technique and estimation of model’s output ranges. Such a
guarantee does not come for free, but shows up as slightly higher approximation error. This is
due to conservative estimates involved when dealing with black-box models. Our contributions
can be listed as: 1) A novel memory-based method to constrain neural network dynamics models
with guarantees. 2) A theoretical guarantee that our memory-based constraining method guarantees
conformance with only bounded increase in approximation error. 3) Results on three case studies
demonstrating that we outperform augmented Lagrangian methods for constraint satisfaction by a
few orders of magnitude.

2. Related Work

Enforcing constraints on neural networks: Imposing constraints on deep neural networks has
been studied from various perspectives (Djeumou et al., 2022; Finzi et al., 2020; Márquez-Neila
et al., 2017; Ravi et al., 2019; Lu et al., 2021b; Dener et al., 2020; Fioretto et al., 2020; Nand-
wani et al., 2019; Kervadec et al., 2022). These include constraints of symmetry and contact forces
for dynamical systems in Djeumou et al. (2022), suitable constraints for specific Lagrangian or
Hamiltonian neural networks in Finzi et al. (2020), human pose constraints in Márquez-Neila et al.
(2017), path norm constraints on resnets in Ravi et al. (2019), partial differential equation (PDE)
constraints for inverse design in Lu et al. (2021b), Focker-Planck constraints for fusion in Dener
et al. (2020), fairness constraints in Fioretto et al. (2020), language label constraints in Nandwani
et al. (2019), and segmentation constraints in Kervadec et al. (2022). All of these methods rely on
the augmented Lagrangian method to train constrained neural networks. Solving the dual problem,
i.e. converging to a stationary point for the min-max optimization is challenging with neural net-
works and non-convex constraints (Márquez-Neila et al., 2017). Further, the process is data-hungry
and generalizes poorly in out-of-distribution data (Narasimhamurthy et al., 2019; Márquez-Neila
et al., 2017; Ravi et al., 2019). Our focus in this work is to leverage the benefits of the augmented
Lagrangian approach (its flexible loss function) but constrain the neural network by design, and
with a guarantee, to remain within desirable output bounds computed using models that encode all
desired constraints. In the process, we obtain several orders of magnitude reduction in constraint
loss and learn with very few gradient steps.

2



CONSTRAINED NEUROSYMBOLIC MODELS

Physics informed neural networks for dynamics models: Although our focus is on enforcing
constraints, we also briefly discuss related ideas in physics-informed neural networks (Raissi et al.,
2019; Márquez-Neila et al., 2017; Lu et al., 2021a; Lutter et al., 2019; Cranmer et al., 2020; Grey-
danus et al., 2019). Physics-informed architectures for dynamical systems in particular have been
explored via specific Neural ODE structures for a class of systems (Duong and Atanasov, 2021;
Zhong et al., 2019; Roehrl et al., 2020; Matsubara et al., 2020; Gupta et al., 2020; Shi et al., 2019)
or via a broader Neural ODE structure for a class of vector fields (Djeumou et al., 2022), all towards
learning continuous-time dynamics for robotics applications. Our constraining framework can be
applied around any such Neural ODE. But moreover, our constraints can include black-box models
and scale quickly to any state and action space unlike NeuralODEs which are restricted to systems
with rigorous mathematical models (Raissi et al., 2019). Further, to present a general solution, we
make no assumption on the architecture and to extend to applications beyond dynamics models in
robotics (such as medicine, computing systems, and operations research), we learn discrete-time
dynamics models in our experiments rather than continuous-time dynamics models.

3. Problem Formulation

Consider a discrete time non-linear dynamical system x+ = f(s), where S := X × U , and x ∈ X
is the state of the system, and u ∈ U is the control input. Thus, f : S 7→ X is the possibly
unknown discrete time non-linear map that captures the system dynamics. We assume access to a
dataset D = (s0, x0), (s1, x1), . . . , (sN , xN ) drawn from distribution D, such that xt+1 = f(st).
Usually, the goal is to estimate f with a function fθ, where θ ∈ Rp is potentially the parameters
of a neural network. Typically, the goal of an algorithm which estimates θ is usually to reduce
approximation error on the training dataset D. In addition to this, sometimes it is desirable that the
estimated model fθ satisfies physics-informed constraints (Cranmer et al., 2020). Next, we define a
few relevant concepts.

Definition 1 (Model Constraint) Assume a model M : S 7→ X , and a parameter δ. Then the
model constraint ψδM,fθ

: S 7→ R is True iff ψδM,fθ
(s) > 0. Where, ψδM,fθ

(s) := δ − ||M(s) −
fθ(s)||∞.

Here we assume M to be Lipschitz continuous with constant L. We state our problem next.

Problem Statement 3.1 (Constrained Neural Network) Find a function fθ(.) : S 7→ X , which
minimizes the approximation error on dataset D, while satisfying the constraints given by ψδM,fθ

.

That is find θ∗ = argmin
θ

1
N

∑N
i=1‖fθ(si)− xi‖2, subject to, ψδM,fθ

(s) > 0.

4. Overall Approach

To restate, we want our estimated model fθ to approximate our training data while respecting the
constraint imposed by the model M . We use the following intuition in our approach: if restricted to
a small enough input region Ŝ the output of the model M can be under-approximated by a set Xo.
If we can ensure that the predictions of fθ stay within this interval then we can bound the difference
between fθ andM , as being proportional to the size of the input-region Ŝ , which improves with finer
partitioning of the input space.

3
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Figure 1: The X − Y plane is partitioned into polyhedrons using a
Neural-Gas. For inputs from each polyhedron we gener-
ate sound under-approximations of the model M ’s output.
Next, we constrain the estimated function fθ to respect these
interval constraints.

Thus, to summarize our approach,
we first partition an input space into
small enough input regions and for
each sub-region, we estimate an inter-
val under-approximation for the val-
ues of M which can satisfy ψδM,fθ

.
Next, we train our function approxi-
mator fθ to respect these interval con-
straints in each such sub-region. This
is accomplished using a constrain-
ing operator Γ on fθ. In Section 6
we explain a method for computing
these sound under-approximations of
M . Next, in Section 7, we explain the
constraining operator and bound the approximation error incurred due to this operator.

5. Preliminaries

We define the idea of a neural gas (Fritzke, 1994; Prudent and Ennaji, 2005; Martinetz et al., 1993).
From a given set of points embedded in a metric space, a growing neural gas algorithm has the
ability to learn important topological relations in the form of a graph of prototypical points. It uses
a simple Hebb-like learning rule to construct this graph.

Definition 2 (Neural Gas) Neural Gas G := (A, E), is composed of the following two components,

1. A set A ⊂ S of the nodes of a network. Each node mi ∈ A is called a memory in this paper.

2. A set E ⊂ {(mi,mj) ∈ M2, i 6= j} of edges among pairs of nodes, which inform about the
topological structure of the data. The edges are unweighted.

The edges in E preserve the neighborhood relations among the data, and is useful in achieving
a Voronoi-like partitioning of the data manifold. The graphical structure of a neural gas makes it
much more appealing to algorithmically resolve neighborhood relations. For a given node mi, let
us denote E i as the set of neighbors of mi according to G. For most practical purposes in a control
setting, the spaces S andX are embedded in Euclidean spaces Rt, and Rd respectively, where t ≥ d.
Where, t−d is the dimension of control input. Let k be the cardinality ofA : m1,m2,m3, . . . ,mk.
Then, we can define the Voronoi polyhedron (Brostow et al., 1978), around a given point mi in the
following fashion :

Definition 3 (Voronoi Polyhedron) For a pointmi , the Voronoi polyhedron Siv ∈ S can be defined
using the Euclidean distance function d : S × S 7→ R as,

Siv = {s ∈ S| d(s,mi) < d(s,mj) ∀j ∈ E i}

In practice, constructing the Voronoi polyhedron Siv can be achieved in the following way. Given
points which are neighbors mi and mj , it is possible to compute a line segment lij which connects
them. Let us denote the perpendicular bisector of lij as the linear inequality Hij(s) > 0. For any
point s which is in the same side of Hij as mi the inequality holds. The reverse is true for the

4
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half space constraint Hji. This gives us an algorithm to compute Siv =
⋂
j∈Ei

Hij . Thus, given a

set of k nodes the Voronoi tessellation induces a splitting of the space S into a set of disjoint sets
S1,S2, . . . ,Sk. We drop the subscript v for the rest of the paper. Our guarantees of constraint
satisfaction is over the union of these subsets.

6. Approximating Model Constraints

Assume a (relatively small) subset Sa ⊂ S, andM j(s) denote the j-th output of the model at input s.
We wish to compute the interval Ija := [min

s∈Sa
M j(s),max

s∈Sa
M j(s)]. Assume that ∀s ∈ Sa, f jθ (s) ∈ I ′,

and I ′ ⊆ Ija. Where I ′ is the interval bound on values of f jθ in Sa. Thenmax
s∈Sa
|M j(s)−f jθ (s)| ≤ |Ija|.

Now, in practice it is hard to precisely compute the interval Ija for black-box models M . Meaning
that we would resort to estimating the min and max of M j using sampling based techniques. There
exists a stochastic optimization algorithm to estimate the true maxima of a Lipschitz function on a
bounded domain (Mladineo, 1991). Here we follow a simple sampling based rendition to estimate
Ija. We denote [k] as the list of numbers from 0 . . . k − 1. Next, we note the following lemma.

Lemma 4 Let g : Rt → R be an Lg-Lipschitz continuous function on a closed and compact set Sa,
and l and u be its estimated lower and upper bounds. Then, ∀z ∈ [l, u], max

s∈Sa
|g(s)− z| < Lg|Sa| .

Proof : The proof can be found in the Appendix.

With Sa ⊂ Rt, let l and u be the estimated minima and maxima of M j . Thus, if ∀s ∈ Sa,
f jθ (s) ∈ [l, u], then max

s∈Sa
|M j(s) − f jθ (s)| ≤ LMj |Sa| . Now, across all dimensions j ∈ [d], let

LM = max LMj then, ||fθ(s) − M(s)||∞ < LM |Sa|. Assume a∗, to be the largest partition
induced by the neural gas G, then setting δ = LM |Sa∗ | ensures satisfaction of model constraint
ψδM,fθ

in Definition 1. This bound can be made much tighter in practice if the model M is known in
an analytical form. Allowing tight computations of its limits possible using techniques like interval
arithmetic and Taylor models (Goubault and Putot, 2022)

So, given a set S and using neural gas G, we have a partitioning of S =
⋃
i∈[k]

Si. Let us denote

this set of partitions of S as PS := {S1,S2, . . . ,Sk}. Also, for each subset Si we can compute
range estimate Ii ⊂ X , which respects the constraint ψδM,fθ

. In the following discussions, let us
refer to this constraint map as CM,δ : PS 7→ Id. Where, Id is a d−dimensional interval in Rd. For
a subset in PS , CM,δ returns the appropriate output range.

7. Function Approximation Error

In this section we define a constraining operator on a function, and analyze the error encountered in
the process. The goal of a constraining operator is to threshold the values of the function to be within
certain desirable limits. Assume an interval I ⊂ Rd, and value x ∈ X , then we define a projection
in the following fashion along each dimension i, ProjiI(x) := Iil when xi ≤ Iil ; I

i
u when xi ≥ Iiu;

and xi otherwise.

5
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Definition 5 (Constraining Operator) A constraining operator ΓPS : X S → X S parameterized
by the partition set - PS , modifies functions to respect the corresponding interval constraints. For a
function F : S 7→ X , it can be defined in the following fashion,

ΓPS (F (s)) := ProjCM,δ(Sq)(F (s)) where, s ∈ Sq and, Sq ∈ PS

Hence, the constraining operator ΓPS ensures that our estimated model fθ which attempts to
approximate the true function f , also respects the constraint ψδM,fθ

. Even though we assume that
f |= ψδfθ,M , our approximation error in building the map CM,δ can affect the model approximation
error |f−fθ|. This however as we show only leads to a bounded cost in approximation error. Which
can be reduced by adopting finer partitions in PS , that is increasing the nodesA in the neural gas G.

Theorem 6 (Approximation Error) Assume real and continuous functions f, fθ : S → X , ∀s ∈
S, if ||fθ(s) − f(s)||∞ < ε, then ||ΓPS (fθ)(s) − f(s)||∞ < 2ε + α max

Sk∈PS
|Sk|, where α is some

constant.

Proof : Assume a generic input s ∈ S, and s ∈ Sq for some q ∈ [|PS |]. Additionally, let Iq

be the interval constraint imposed by ΓPS on fθ using the map CM,δ. Since the sets S and X are
embedded in the real spaces Rt and Rd respectively, we can analyze the error incurred along each
dimension. Also, we drop the subscript and denote the constraining operator as simply Γ since the
partition remains fixed for the remainder of the results.
xj refers to the jth element of x. Let us pick a dimension w ∈ [t], we define the lower correction
set γ|w,l : {s | Γ(fθ)(s)w ≥ fθ(s)w and s ∈ Sq} . Intuitively, this is the set of points in Sq, which
need a correction due to underflow. Let us denote the difference function as ∆w,l,

∆w,l(s) :=

{
Γ(fθ)(s)w − fθ(s)w when s ∈ γw,l ∩ Sq

0 when s ∈ Sq \ γw,l
. (1)

We can similarly define the upper correction set γw,u ⊆ Sq and the difference function as
∆w,u(s) = fθ(x)w − Γ(fθ)(s)w for s ∈ γw,u ∩ Sq and 0 for anywhere in Sq \ γw,u.
Now the following is true, for s ∈ γw,l : 0 ≤ ∆w,l(s) ≤ Iqw,l − min

x∈Sq
fθ(s)w. This is simply

due to the bound respected by Γ(fθ)(s)w. Due to very similar reasons the following is true as
well : 0 ≤ ∆w,u(s) ≤ max

s∈Sq
fθ(s)w − Iqw,u. Next, we wish to bound the following quantity:

|Γ(fθ)(s)w − f(s)w|. The difference between the constrained function and ground truth. Then,

Γ(fθ)(s)w − f(s)w = fθ(s)w + ∆w,l(s)−∆w,u(s)− f(s)w

= (fθ(s)w − f(s)w) + (∆w,l(s)−∆w,u(s))

The first equality is simply because Sq can be expressed as a union of the following disjoint sets
{γ|w,l ∩ Sq, γ|w,u ∩ Sq,Sq \ (γ|w,u ∪ γ|w,l)} .Therefore, we can write the following,

Γ(fθ)(s)w − f(s)w ≤ ε+ (Iqw,l −mins∈Sq
fθ(s)w)

Γ(fθ)(s)w − f(s)w ≥ −ε− (max
s∈Sq

fθ(s)w − Iqw,u)

Note, the R.H.S of the above equation is negative. Then using the bound on the upper limit of
absolute values, we get the following,

6



CONSTRAINED NEUROSYMBOLIC MODELS

|Γ(fθ)(s)w − f(s)w| ≤ ε+ (Iqw,l −mins∈Sq
fθ(s)w)︸ ︷︷ ︸

≥0

+ε+ (max
s∈Sq

fθ(s)w − Iqw,u)︸ ︷︷ ︸
≥0

= 2ε+

(
max
s∈Sq

fθ(s)w −min
s∈Sq

fθ(s)w

)
− (Iqw,u − I

q
w,l)︸ ︷︷ ︸

constraining width

(2)

Thus, we can bound ||Γ(fθ)(s)− f(s)||∞ in the following fashion, for s ∈ Sq :

||Γ(fθ)(s)− f(s)||∞ ≤ 2ε+max
w∈[d]

((
max
s∈Sq

fθ(s)w −min
s∈Sq

fθ(s)w

)
− (Iqw,u − I

q
w,l)︸ ︷︷ ︸

=|Iq |w≥0

)

≤ 2ε+max
w∈[d]

(
Lθ,w|Sq|

)
= 2ε+ |Sq|max

w∈[d]

(
Lθ,w

)
Now, setting α = Lθ, where Lθ is the global Lipschitz constant of fθ, we can write,

||Γ(fθ)(s)− f(s)||∞ ≤ 2ε+ α max
Sq∈PS

|Sq|, ∀s ∈ S �

We draw attention of the reader to the terms in inequality 2: (Iqw,l−mins∈Sq
fθ(s)w) and (max

s∈Sq
fθ(s)w−

Iqw,u). Similar to Lemma 4 it can be shown that this difference goes down with the size of the set
Sq. In other words having finer Voronoi partitions gives lower approximation error.

8. Training a Constrained Neural Network Dynamics Model

We detail our Algorithm in this section. The inputs to the algorithm are a state transitions dataset
D (containing (state, control) and (next state) pairs - (s, x)), model M , and an augmented dataset
Ω. Ω consists of only inputs to the model s′ ∈ S, and is an unlabelled dataset sampled throughout,
and with particular emphasis on relevant regions in S.

Algorithm 1 First (Lines 1−3), we use the unsupervised neural gas algorithm (Martinetz et al.,
1993; Fritzke, 1994) to obtain the neural gas graph G = (A, E). We utilize these memories and
edges, to create partitions of the input space as voronoi cells with memories at their center. In
each voronoi cell, we sample points, propagate them through the modelM and obtain the upper and
lower limits along each dimension of the output space X (lines 4-6). This creates the constraint map
C. Using this, we can find the lower and upper bounds of each point in D and Ω (lines 7-11). First,
we locate the corresponding voronoi cell, and then use the bounds computed in Line 5. Finally, we
can train the constrained neural network (denoted Γ(fθ)(.)) as follows,

Γ(fθ)(s) = Lo(s) + σ (fθ(s)) (Up(s)− Lo(s)) (3)

where fθ : S → X is a parameterized function which maps from the input space to output space,
and σ(x) : X → [0, 1] is the sigmoid function. Equation 3 is but one realization of the constraining
operator discussed in Section 7. Our loss function is the augmented Lagrangian loss (Lu et al.,
2021b) itself and is given below

(
where ψδM,Γ(fθ)(s) = δ − ||M(s)− Γ(fθ)(s)||

)
.

Loss(θ, λ1, µ2, λ2, µ2) = E
s∼D
s′∼Ω

[
L
(
Γ(fθ)(s), x

)
+

(
λ1ψ

δ
M,Γ(fθ)(s) + λ2ψ

δ
M,Γ(fθ)(s

′)

+ µ1 1(λ1>0∨ψ>0) (ψδM,Γ(fθ)(s))
2 + µ2 1(λ2>0∨ψ>0) (ψδM,Γ(fθ)(s

′))2

)]
(4)

7
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Algorithm 1 Training a Constrained Neural Network Dynamics Model
Input: Dataset D = {(s, x)i}i∈[ND], Sampled dataset Ω = {(s′)i}i∈[NΩ], Constraint model M , DNN
architecture fθ(.)
Output: Constrained neural network dynamics model Γ(fθ)(.)
Parameters: Number of memories nmemories, batch sizes NDbatch , NΩbatch , 0 ≤ γ < 1, N Steps, update freq

1: D|inputs = {(s)i}i∈[ND] ∪ {(s′)i}i∈[NΩ] // combine input states/controls in datasets
2: Memories A, edges E ← NeuralGas(D|inputs, nmemories) // topology of input space
3: S1, ...,Sj , ...← VoronoiCells(A, E) // partitions in input space
4: for each voronoi cell Sj do
5: Sample points inside the cell, propagate through model M , and compute lower and upper bounds

Ijlow = mins∼Sj M(s) and Ijup = maxs∼Sj M(s)
6: end for
7: for s in D, Ω do
8: Sj ← FindVoronoiCell(s, A)
9: Set Lo(s), Up(s)← Ijlow, I

j
up // output bounds for datasets

10: end for
11: for step in N Steps do
12: Sample batches Dbatch = Sample(D,NDbatch), Ωbatch = Sample(D,NΩbatch)
13: Set Lo(s, step) = Lo(s)− γstep (Up(s)−Lo(s)) and Up(s, step) = Lo(s) + γstep (Up(s)−Lo(s))
14: Compute Γ(fθ)(.) for Dbatch and Ωbatch using Lo(s, step) and Up(s, step) // constrained DNN (3)
15: Compute Loss(θ, λ, µ) // augmented Lagrangian loss (4) or vanilla approximation loss
16: θ ← Optimization Step(Loss, θ,Dbatch,Ωbatch)
17: if step % update freq == 0 then
18: λ1, λ2, µ1, µ2 ← Update Step(ψδM,Γ(fθ), λ, µ)
19: end if
20: end for
21: return Γ(fθ)(.)

Figure 2: Depictions of high-fidelity simulators used in experiments: (a) CARLA (Dosovitskiy
et al., 2017), (b) UVA/Padova Artifical Pancreas (Man et al., 2014), (c) Pybullet Drones
(Panerati et al., 2021).

We can then train the neural network by back-propagating through the constrained neural net-
work (lines 12-16). We enhance gradient feedback under constrained outputs with an exponential
schedule on the lower and upper bounds (line 13). We also intermittently update the slack variables
through a schedule or as a gradient ascent step on the value of the constraint ψδM,Γ(fθ) (lines 17-19).
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Figure 3: Plots of approximation loss on D, average constraint loss on Ω, and maximum constraint
loss on Ω (for 3 random seeds) against steps for the CARLA Vehicle case study.

9. Experiments

Overview and baseline: We perform simulated experiments on three case studies. We create a
dataset D from high-fidelity simulators that can closely represent reality in each case study. These
are depicted in Figure 2. Our baseline is the augmented Lagrangian method which utilizes the loss
function in equation 4 but uses a standard parameterization fθ(.) rather than the constrained model
given in equation 3. The augmented Lagrangian method lacks guarantees on constraint satisfaction
with deep neural networks and non-convex constraints. We observe that augmented Lagrangian in
fact fails to achieve conformance on in-distribution transitions in the test set.

Case Study 1: CARLA – Conformance of a vehicle model to unicycle dynamics with em-
phasis on at-rest condition. In the first case study, we collect trajectories of x position, y position,
heading, velocity, yaw rate from the CARLA simulator (Dosovitskiy et al., 2017; Kaur et al., 2022)
on a variety of terrains and environments (See Figure 2(a)) for our D dataset. With previous work
Narasimhamurthy et al. (2019) having demonstrated the difficulty of learning a dynamics model
that predicts no change in state when a vehicle is at rest, we uniformly sample at-rest data for the
augmenting dataset Ω. Unicycle dynamics (Rajamani, 2011; Sridhar et al., 2022) are chosen as the
model M . This implicitly encodes the at-rest condition. We have 15,000 training points, 2000 test
points in each of D and Ω. We select 500, 1000 and 2500 memories to observe the performance
with increasing partitions in the training distribution.

Figure 4: Analysis of CARLA model
prediction drift starting from
origin at rest when given
zero control inputs for 20
timesteps.

We observe, in Figure 3, that the approximation loss for
constrained methods is either similar to or slightly higher than
the Vanilla and augmented Lagrangian. This is expected in
light of Theorem 6. The average constrained loss and max con-
strained loss on the augmenting dataset Ω are significantly im-
proved, by 4 and 3 orders of magnitude respectively for our
method in comparison to Vanilla and augmented Lagrangian.
Moreover, with increasing memories, the constraint loss, both
average and maximum on Ω, improve consistently. We also no-
tice that constrained training is highly data-efficient, learning
in less than 300 gradient steps unlike the 12000 required by the
Augmented Lagrangian. In Figure 4, we analyze each of the
models’ predictions starting from the origin at rest, and given zero control inputs for 20 timesteps.

9
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Figure 5: Bar charts of approximation loss on D, average constraint loss on Ω, and maximum con-
straint loss on Ω (for 3 random seeds) after training completes for AP (left), and Drones
(right). Plots of these metrics vs gradient steps for both case studies are in the Appendix.

We clearly observe that both Vanilla and augmented Lagrangian models predict large drift to the
top-left Constrained models, on the other hand, accurately predict little to no movement.

Case Study 2: Artificial Pancreas (AP) – Conformance of AP models to ARMAX model
that encodes glucose-insulin constraints. We collect traces of glucose, insulin and meal quantities
for a patient with the UVA/Padova simulator (See Figure 2(c)) (Man et al., 2014) to create the D
dataset. The states consist of a 30 elements– 10 historical values of glucose, insulin and meals re-
spectively. The model is expected to predict the glucose 5 steps in the future. Each timestep spans 5
minutes. The intial value of glucose and carbohydrates are randomly chosen in [150, 190], [50, 150]
respectively. We also uniformly sample the state space with emphasis on low glucose initial values
in [120, 150] and low carbohydrates to create the Ω dataset. We have 18,750 training points, 2500
test points in each of D and Ω Moreover, for our model M , we train a constrained ARMAX model
such that any increase in insulin, will reduce glucose. This is accomplished by constraining insulin
weights to be negative in the ARMAX model. In Figure 5, we observe that approximation loss on
D is similar across all methods with a slight advantage in the favour of our constrained training.
Yet, constrained neural networks outperform vanilla and Lagrangian by an order of magnitude in
conforming to the ARMAX model on the Ω and D datasets.

Method Max. Avg.
violation violation

Vanilla 3.8356 1.315
Aug. Lagrangian 3.8072 1.245
Constrained (1k) 0.9157 0.0092

Constrained (1.5k) 0.2047 0.0027
Constrained (2k) 0.1775 0.0026

Table 1: Delta-monotonicity analysis of “in-
creasing insulin, decreases glucose”
violation in AP models on subsets of
test data.

The delta-monotonicity property of such models in
(Kushner et al., 2020), refers to the following - everything
else remaining fixed, increasing insulin should lead to re-
duction in blood glucose prediction. In order to test this
property we increase the insulin value in each input trace
of test set by a random amount in [0.6, 1.0] and observe
the prediction. We report this in Table 1. We observe that
vanilla and Lagrangian models violate the constraint by
a large margin, whereas constrained models increase the
prediction by nearly zero amount.

Case Study 3: PyBullet Drones – Conformance of
drone models to quadrotor dynamics with emphasis on hover. We collect circular flight tra-
jectories of 6 drones (See Figure 2(b)) with aerodynamics effects (drag, downwash, ground effect)
included in the Pybullet Drones environment (Panerati et al., 2021) to create the D dataset. The
states consist of 20 items – x, y, z positions and velocities; roll, pitch, yaw and their rates; quater-
nions, and rpms of each of the four motors. The controls consist of 4 rpm commands. Our model
M is given by the quadrotor dynamics (Mahony et al., 2012; Sridhar and Sukumar, 2019). For

10
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emphasis on hover, we uniformly sample states across the state distribution and uniformly sample
controls for balancing gravity (and hence hovering in-place) to create the Ω dataset. We have 15,000
training points, 2000 test points in each of D and Ω. We vary the number of memories from 800,
1000, to 2000. Similar to CARLA, we see (in Figure 5) that approximation loss on D is similar
across all methods but there is upto a 6 order-of-magnitude decrease in the average and maximum
constraint loss on Ω with our constrained training algorithm. We also observe a rather large increase
in performance from 1000 to 2000 memories. We also plot the average constraint loss on D for all
case studies in the Appendix.

10. Conclusion

We demonstrate how DNN training can be constrained using symbolic information which enforces
adherence to natural laws. We report experiments on three case studies where our method achieves
many fold reductions in constraint loss when compared to the augmented Lagrangian. In future
work, we plan to create safety constrained policies.
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Appendix

10.1. Proof of Lemma 4

Lemma 7 Let g : Rt → R be an Lg-Lipschitz continuous function on a closed and compact set Sa,
and l and u be its estimated lower and upper bounds. Then, ∀z ∈ [l, u], max

s∈Sa
|g(s)− z| < Lg|Sa| .

Proof : Note that g is a real and continuous function on the connected set Sa in the metric space
Rt. Since, there exists points sl and su which map to l and u respectively, then by Theorem 4.22
Rudin (1953), for any z ∈ [l, u] there exists sz ∈ Sa such that z = g(sz). Then we can write the
following : max

s∈Sa
|g(s)− g(sz)| ≤ Lg|s− sz| ≤ Lg|Sa|. This completes the proof.

10.2. Additional Plots

Figure 6: Plots of approximation loss on D, average constraint loss on Ω, maximum constraint loss
on Ω, and average constraint loss onD (for 3 random seeds) against gradient steps for the
CARLA Vehicle (top row), Artifical Pancreas (second row), and PyBullet Drones (third
row) case studies.
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10.3. Additional Details of Experiments

For the CARLA vehicle and PyBullet Drones models, we use a two layer MLP with 1024 neurons
in each layer. In the UVA/Padova Artificial Pancreas case study, we use a three layer neural network
with 20 neurons in each layer. We utilize the Adam optimizer in all case studies and choose a
learning rate with grid search in [0.001, 0.1]. We also utilize training batch sizes of 64 for both
D and Ω datasets. Further, for the CARLA and Drones case studies, we set γ to 0. For Artificial
Pancrease, we used γ = 0.99.
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