
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

11-15-2022

Computer Engineering Education Computer Engineering Education

Marilyn Wolf
University of Nebraska-Lincoln, mwolf@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons, and the

Other Computer Sciences Commons

Wolf, Marilyn, "Computer Engineering Education" (2022). CSE Conference and Workshop Papers. 338.
https://digitalcommons.unl.edu/cseconfwork/338

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/338?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F338&utm_medium=PDF&utm_campaign=PDFCoverPages

T his virtual roundtable on computer engineering
education was conducted in summer 2022 over
a combination of email and virtual meetings.
The panel considered what topics are of im-

portance to the computer engineering curriculum, what
distinguishes computer engineering from related disci-
plines, and how computer engineering concepts should
be taught.

COMPUTER ENGINEERING

COMPUTER: Welcome to this virtual roundtable on com-
puter engineering education. A good place to start seems to
be to define computer engineering. What is a concise defini-
tion of the field that captures where it is and where the field
is going?

GREG BYRD: Computer engineer-
ing equals the design and analysis of
computing hardware and software,
both individually and as compo-
nents in a system.

ROBERT DICK: Yeah. It necessar-
ily spans algorithms and physical
implementation substrates. As for

a not her possible def i n it ion, just t he facts: design,
analysis, and implementation of computer systems
Where it’s going: creating easy-to-use computer sys-
tems that help people by automating mundane tasks,
organizing and sharing information, connecting them
with the physical world, and magnifying their intellec-
tual and physical abilities.

JAY BROCKMAN: Broadly, I think that computer engi-
neering is the field of designing machines that process
symbolic information. This has fairly vague boundaries
that overlap with other established fields, in particular,
computer science and electrical engineering, but other
fields as well. At this point in time, I think the field is still
centered upon the design of a specific kind of machine,
namely, digital computers that operate on symbolic in-
formation encoded as 1s and 0s. The term designing in-
cludes coming up with the organization of computing
systems themselves as well as the development of tools

Computer
Engineering
Education
Marilyn Wolf , University of Nebraska-Lincoln

Computer engineering is a rapidly evolving

discipline. How should we teach it to our

students?

Digital Object Identifier 10.1109/MC.2022.3205936
Date of current version: 15 November 2022

VIRTUAL ROUNDTABLE

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y D E C E M B E R 2 0 2 2 27

https://orcid.org/0000-0002-4742-0841

28 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

and methodologies used in designing
computer systems. I personally feel
that this is the core that computer
engineering shouldn’t lose sight of as
other considerations come into play
and as technologies evolve.

JAN MADSEN: I agree that it is im-
portant to have a broader view of the
definition of computing machines.
Two important emerging fields are re-
shaping the substrates in which we can
build machines: quantum computing
and synthetic biology. I think it is
important to start introducing these
topics in our CE (computer engineer-
ing) curriculum.

DAVID HARRIS: Another definition
of computer engineering is the design

and implementation of digital systems
to meet societal needs. Breaking that
down, I propose that engineers are
people who produce systems that
meet societal needs. Meeting soci-
etal needs distinguishes engineer-
ing from science or other fields pri-
marily concerned about advancing
knowledge. Analysis is a means to
that end, rather than an end in itself.
Those primarily focused on analysis
might be wearing mathematician or
computer scientist hats. I like Jay’s
definition too, and especially the
part about the vague and overlapping
boundaries. Nevertheless, I think we
should look for a definition that dis-
tinguishes computer engineering
from computer science. But the fields
overlap enough that you can’t look at

a person’s actions and classify them
unambiguously as CE or CS (computer
science). I’ve wrestled with “digital”
versus “symbolic.” I agree with Jay
that they are largely synonymous in
contemporary practice and tend to
feel digital is clearer to a nonspecial-
ist audience. I’ve also wrestled with
“digital” versus “computer.” I’d prefer
a definition of computer engineering
that doesn’t use the word computer,
and I think computer engineers also
design with FPGAs (field-program-
mable gate arrays) or ASICs (appli-
cation-specified integrated circuits)
that aren’t necessarily computers.
Despite all this, we aren’t going to
find a single definition that is correct
with other definitions being wrong.
The term means different things

ROUNDTABLE PANELISTS
John M. Acken is a faculty member in the electrical and

computer engineering (ECE) department at Portland State Uni-

versity. Acken received a B.S. and an M.S. in electrical engineer-

ing from Oklahoma State University and a Ph.D. in electrical

engineering from Stanford University. He is a Member of IEEE,

Eta Kappa Nu, and Tau Beta Pi.

Jay Brockman is professor of the practice and director of the

Center for Civic Innovation at the University of Notre Dame.

He cofounded Lucata, Inc. and wrote an introductory engi-

neering textbook. Brockman received a Ph.D. from Carnegie

Mellon University.

Greg Byrd is professor and associate department head

of ECE at North Carolina State University. Byrd received

a Ph.D. in electrical engineering from Stanford Univer-

sit y. He teaches undergraduate programming, and his

research interests include quantum computing and

parallel systems.

Robert Dick is an associate professor of electrical engineer-

ing and computer science at the University of Michigan. He

cofounded Stryd, a wearable electronics company, and was a

visiting professor at Tsinghua University. His research focuses

on embedded systems. Dick received a Ph.D. from Princeton

University and a B.S. from Clarkson University. He is a Senior

Member of IEEE.

David Harris is the Harvey S. Mudd Professor of Engineer-

ing Design at Harvey Mudd College. Harris received a Ph.D.

in electrical engineering from Stanford University. His

professional interests include integrated circuits, micro-

processors, computer arithmetic, hiking guidebooks, and

experimental aviation.

Jan Madsen is a professor in computer-based systems and

interim director of the Department of Applied Mathemat-

ics and Computer Science at the Technical University of

Denmark (DTU). Madsen received an M.Sc. in electrical en-

gineering and a Ph.D. in computer science from DTU. He is a

Member of IEEE, the Association for Computing Machinery

(ACM), and the board of the European Design and Automa-

tion Association.

Mani Srivastava is a professor of ECE at the University of

California, Los Angeles. Srivastava received a Ph.D. from the

University of California, Berkeley. He is a Fellow of IEEE

and ACM.

 D E C E M B E R 2 0 2 2 29

t o dif ferent people and in dif fer-
ent contexts.

MADSEN: To me, CE is about design,
analysis, and implementation of ma-
chines to compute, i.e., computer sys-
tems, hence, digital systems as a term
for what we do is at the same time way
too broad and way too specific.

JOHN M. ACKEN: In a world where
the IoT (Internet of Things) includes
sma l l mea su r i ng dev ices, I don’t
think limiting computer engineer-
ing to digital values is appropriate. I
do think we are talking about digital
computers, but computer engineer-
ing needs to at latest consider the A/D
(analog/digital) concepts for measur-
ing devices.

MANI SRIVASTAVA: Plus one for
Robert’s simple definition, with the
provision that “computer” may be em-
bedded in a system that we don’t even
think of as a computer system. And
most certainly we must not limit to
digital or symbolic!

MARILYN WOLF: I will throw in my
two cents and thus show my hidden
agenda. I believe that computer en-
gineering is not limited to hardware.
The old-school definition of CE versus
CS is that computer engineering is
hardware, computer science is hard-
ware. The typical introductory com-
puter engineering course covers logic
design. I still think that the definition
I’ve used for quite some time is useful:
computer engineering deals with time
in computing. Computer science pro-
gressed in part by abstracting away
time. Digital system design doesn’t
have the luxury of avoiding time, nei-
ther does real-time software.

MADSEN: It is a very important aspect
that Marilyn brings up. Having many
CS students attending our introduc-
tory computer systems course, it is
apparent that time is not on their ra-
dar, except as time it takes to complete
the running of a program. They end

up being better programmers when
understanding that computing re-
qui res understanding of time and
space of bits.

SRIVASTAVA: Back to what is “CE,”
limiting it to “digital” is shortsighted
IMHO (in my honest opinion). Firstly,
traditional digital abstractions are
being stressed with all sorts of sto-
chasticity and variations at the lower
tiers. Secondly, surely things such as
analog neural accelerators, spiking
circuits, et cetera are surely part of
CE. The technologies used in “com-
puters” are evolving and CE evolves
with it. Not too long ago, computers
interacting tightly with humans and
the physical world were outliers, but
now they are the norms. So things
such CPS (cyber-physical systems),
HCI (human–computer interaction), et
cetera crept into CE. What I like about
Robert’s definition is that it naturally
adapts to changes in technology and
abstraction. The Electrical and Com-
puter Engineering Department at
UCLA is relatively recent (2017), and
we certainly went with a more modern
interpretation of CE and didn’t limit it
to “digital systems” processing “sym-
bolic information.”

ACKEN: I think we need to be careful
about emphasizing the distinction
of CE. As David mentioned, different
places have different definitions, and
the definitions change over time.
There is a very large overlap of CE
with EE (electrical engineering) and
CE with CS. As an example, I would
expect all three to know about digital
logic (analysis and design). However,
I would expect all CE and EE students
to be familiar with logic circuits. I
would expect all three to be familiar
with some software programming.
However, I would expect all CE and
CS students to be familiar with pars-
ing. Some schools link CE and EE, and
some link CE and CS. I expect every
EE to know Ohm’s law well enough to
solve complex circuits. I expect every
CE to know computer components to

relate instructions to hardware. I ex-
pect every CS student to understand
algorithm complexity analysis. Of
course, any individual may know all
three, but as groups, there are some
common minimums. A slightly dif-
ferent perspective is to ask the ques-
tion of what a hiring manager might
ask about a degree. In many cases, job
postings list all three degrees. Why
would a hiring manager pick a can-
didate with an EE degree over a CE or
CS? Why would a hiring manager pick
a candidate with a CE degree over an
EE or CS?

DICK: The CE grad is guaranteed to
know enough about algorithms and
implementation substrates to design a
complete working system. The EE and
CS grads may, but their degree doesn’t
certify it. They can specialize, e.g., on
circuits or theory, and still meet de-
gree requirements. At least that’s how
it works at UMich (the University of
Michigan). The requirements are less
flexible than for CS or EE.

SRIVASTAVA: Thinking in terms of
layers of abstractions is good, though
I wouldn’t be so CPU centric! (process-
ing, storage, networking, physical
world interaction, human interac-
tion are all part of modern “computer
system”).

COMPUTER: Robert’s definition cer-
tainly makes a strong case for CE. Are
there limitations to a CE degree com-
pared to the other two? To put it an-
other way, how strong are these com-
ponents of a computer engineering
degree relative to CS or EE:

 › circuits and devices
 › signal processing
 › algorithms
 › software engineering.

BROCKMAN: I like the way that John
phrased his expectations for the three
degrees, and it’s similar to the an-
swer that I give students when they
are trying to decide whether to major

30 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

in EE, CS, or CE. I also think of CEs as
being most expert of the three in reg-
ister-transfer level design, to take into
consideration nonvon Neumann digi-
tal processors. I teach the logic design
course at Notre Dame with students
from all three majors that covers top-
ics from simple switching logic and
AND gates up through the design of a
simple RISC (reduced-instruction-set
computer) processor, and a bit of as-
sembly language and I/O (input–out-
put) interfacing, using Verilog and
FPGA boards. I tell students that if you
really like this stuff and designing
systems that operate on 1s and 0s but
aren’t as interested in what happens
between a one and a zero, you should
consider computer engineering. If you
are really interested in currents, volt-
ages, and devices, then EE is for you.
CS students may have some interest in
logic design, but definitely prefer the
world of software and algorithms.

With regard to the components that
Marilyn listed, in terms of what em-
ployers might expect from people with
CE, CS, and EE degrees:

 › Circuits and devices: Both EE
and CE should understand the
basics of digital integrated
circuits, but truly analog cir-
cuits, amplifiers, small signal,
et cetera probably not be
required for CE.

 › Signal processing: This is a tough
one. Depending on the focus
and level of abstraction, it could
be relevant to all three, but the
traditional mathematical topics
seem to be mostly in the domain
of EE. CEs, however, should be
prepared to design an acceler-
ator or coprocessor at the RTL
(register transfer level) level,
even if they don’t understand
all the theory behind where the
coefficients come from.

 › Algorithms: Critical for CS,
strongly recommended for CE.
Typically not part of an EE degree.

 › Software engineering: All three
majors need to be able to

program in some high-level lan-
guage. EEs rarely take software
courses beyond basic program-
ming. CS and CE definitely need
data structures. Both should also
have some basic background
in OS (operating systems). CE
should have some understand-
ing of compiler backend, at least
how basic C statements turn into
assembly language, so that they
can properly “relate instructions
to hardware.”

WOLF: CAD, of course, is a special
case. CAD folks need to know digital
logic, circuits, and algorithms.

BYRD: While I think the general distinc-
tion between “pure” EE (if there is such
a thing) and CE is pretty clear, it gets
harder to distinguish with CS. I like to
think about CE as “hardware first” and
CS as “software first,” which sort of re-
flects the two curricula here at N.C.
State (North Carolina State University).
Our CE students do a lot of program-
ming and software design, but there
are fewer formal courses in software
than in CS. It’s interesting that Marilyn
brought up signal processing. That’s
considered an EE topic here, and the
bulk of our machine learning courses
are associated with those faculty. I en-
courage our CE students to use their
electives to learn about signal process-
ing as well as controls to give them
more systems-level skills.

WOLF: IoT is an example of computer
engineering in the service of signal
processing.

BROCKMAN: Even the “pure” EE
thing is definitely in flux. There are
discussions here about whether all EEs
need to have required courses in cir-
cuits, devices, or electronics courses
if they are headed in the direction of
communications/coding theory, control
systems, embedded systems, et cetera.
Part of this is motivated by what indus-
try is looking for, part of it is motivated
by what students are interested in, part

of it is motivated by what faculty want
to teach. All very interesting! There is
also the distinction between theoretical
and experimental work. There are Ph.D.
theses in both EE (coding theory, et cet-
era) and CS (algorithms) where the last
sentence is “QED.” (I’ve never been that
sure of anything in my life.) I’ve always
thought of CE as pretty much experimen-
tal/practice oriented. Labs where you get
your hands on real hardware in several
of the forms that computers take today
seems pretty central to the experience.
This takes a serious commitment to re-
sources in terms of space, equipment, and
especially experienced lab instructors.

WOLF: Computer engineers, partic-
ularly CAD people, may develop algo-
rithms but that is not the end of the
story. Experimental validation is re-
quired because many of these efforts
attempt to find practical solutions to
formally intractable problems.

MADSEN: I think that we are missing
a very strong aspect of CE, that of sys-
tems understanding, that those com-
puter systems which we develop are
themselves systems of systems as well
as part of other systems. The latter,
which do include the human aspects.

WOLF: Computer engineering has
evolved from design of computers to
application systems built from soft-
ware and hardware. A smaller fraction
of computer engineers now perform
VLSI (very large-scale integration) de-
sign. A lot of companies design at the
board level. That Bell Labs ASIC model
has moved onto boards plus FPGAs.

COMPUTER: How well do we train our
students for their careers in computer
engineering?

SRIVASTAVA: One conclusion I’ve
reached reading the thread is that
what we call CE here at UCLA perhaps
won’t be viewed as CE at the univer-
sities represented by others on this
conversation: We certainly have the
“classical CE” that everyone is talking

 D E C E M B E R 2 0 2 2 31

about here (very processor and con-
ventional digital system centric) as a
pillar, but we also have equally strong
pillars on how a system interacts with
the physical world and humans, how
to design for properties beyond area/
timing/power, and an emphasis on ap-
plication context.

ACKEN: I think Mani has an import-
ant point. Specifically, every univer-
sity is going to have different topics
under each heading. So, while we
concentrated up to now on what dis-
tinguishes the three (CE, EE, and CS),
I think Marilyn’s question, “How well
do we do training our students for
their careers in computer engineer-
ing?” should also include how well
we do in all three fields. For example,
there are basic engineering problem
skills that apply to all three areas, and
they must be included in answering
how well we prepare CE students. I
just realized in our discussion that for
general CE ideas at the BS [bachelor of
science] level there is much more over-
lap with CS and EE than if we are con-
sidering a PhD CE.

SRIVASTAVA: I’m not sure how to an-
swer, “How well do we do training our
students for their careers in computer
engineering?” considering that the job
market is skewed so heavily toward
software and data science-oriented
jobs, and so that is where most stu-
dents end up irrespective of whether
the degree is CE, CS, or even EE. In In-
dia, there is a degree called masters in
computer applications: how to engineer
applications. At least they’re honest
about what the typical students do
postdegree! My advice to students
tends to be that an MS (master of sci-
ence) degree is a must for a healthy
preparation for a career, unless one is
happy being a coder or a Q&A tester,
essentially a five-year basic degree.

HARRIS: Regarding training stu-
dents for their careers, I think most
CE/EE/CS graduates are getting good
jobs these days and employers are not

complaining loudly that universities
are not preparing them adequately.
The United States continues to be a
leader in the field, so at least a frac-
tion of our collective graduates are
extraordinary and many are strong.
Clearly the quality of the graduates
varies across individuals and schools,
but also the preparation required for
jobs varies across fields and there is
room for different people with differ-
ent skills. I don’t know that the title
of the degree is an important filter for

employers. In my roles in industry,
my teams have considered applicants
based on skills rather than title of de-
gree. I’ve seen math and physics grad-
uates do very well in jobs that might
traditionally be considered computer
engineering, and either EE or CS ma-
jors could do very well in computer en-
gineering if their interests align. Sim-
ilarly, software companies hire lots
of non-CS majors who can program
and tackle hard problems. Many jobs
require skills that are too specialized
to teach in most undergraduate pro-
grams, and many jobs five years from
now will require skills that scarcely
exist today. We primarily need to pro-
duce graduates who have a founda-
tion and mindset to learn new things.
On the whole, companies seem to feel
engineering graduates are pretty suc-
cessful at doing this. There aren’t a lot
of midcareer engineers getting laid
off because they are unable to keep up
with technology, though this can be a
problem at the lower end of skill levels.
Harvey Mudd College offers an under-
graduate general engineering degree.
Grading seniors at our department re-
ception yesterday are going to a wide
range of places, including major semi-
conductor makers, aerospace compa-
nies, and software companies. Few of

them have as much computer engi-
neering coursework as a traditional CE
major, but they have a lot of experience
learning to solve problems in new ar-
eas, and good experience working on
teams and communicating their work.

WOLF: I agree that an MS is a mini-
mum for a healthy career.

ACKEN: As David said, most CS/EE/
CE grads are getting good jobs, but my
students have shown a clear distinc-

tion in success based upon BS versus
MS. All of the MS students in (EE and
CE) are getting snapped up fast. Not as
fast for the BS. However, it seems the
CS students are getting snapped up
fast at both the BS and MS levels.

MADSEN: At DTU, the B.Sc. (bachelor
of science) (three years) is regarded
as step one to get a M.Sc. (bachelor
of science) (two years). If you want to
stop after three years, you will go for
a B.Eng. (bachelor of engineering),
which is a more applied engineer-
ing degree.

SRIVASTAVA: Fully agree about the
focus on long terms; the most import-
ant things, I believe, we should seek to
impart are

 › how to solve new problems (in
computer systems design)

 › how to continually learn (as
computing technology and
abstractions will change)

 › understand the foundational
concepts that are not depen-
dent on short-term technology
trends.

DICK: They quickly land positions
they are happy with and in interviews

I encourage our CE students to use their electives
to learn about signal processing as well as controls

to give them more systems-level skills.

32 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

years after graduating are generally
happy with their experience. Based
on those interviews, I can say that a
lot of graduate seldom encounter some
of the things I think are fundamental
and important in the long-term. Inter-
views with senior people at companies
suggest they are mostly happy with
the preparation of our students. How-
ever, we end up teaching them enough
of the more immediately practical ma-
terial (that we might not think is really
the goal), that the non-research-track
students are mostly happy with the
experience. A quick summary would
be not bad, could be better. Doing a
good enough job that we better be
careful not to break things that are
working when making changes to
improve. Research interests naturally
pull us toward things that soon have
high demand, e.g., we were teaching
interested students about low-power
WANs (wide area networks) and ma-
chine learning before they were hot,
although we generally don’t require
these topics.

BROCKMAN: I’d like to touch on a
couple of things that Mani and Da-
vid brought up: the relationship of
computer systems to the broader hu-
man-centered application context and
engineering education in general. I
think we’re seeing a similar trend to
what David mentioned, that the em-
ployers hiring our students across EE/
CE/CS aren’t as focused on what de-
gree they have but what are their skills
and experiences. What seems to be
emerging as a differentiator is expe-
riential learning opportunities: stu-
dents working on complex, real-world
projects either as part of coursework,
internships, clubs, et cetera. By their
nature, these projects are often mul-
tidisciplinary. Within the confines
of the CSE (computer science engi-
neering) department, the courses I
teach have been the traditional CE,
processor-cent r ic d ig it a l desig n,
VLSI, and computer architecture
courses, which is where this thread
started. This year, I’ve worked on a

new interdisciplinary projects course
with an engineering designation that
counts as a technical elective for all of
the departments in the College of En-
gineering. Some of the projects also
had students from other departments
on the teams, including finance and
architecture. The work that Harvey
Mudd has done with their clinic proj-
ects has been a great inspiration for
this, and we continue to look closely
at their model. There are certainly
challenges to doing interdisciplinary
research in a university, but those
hurdles seem to be easier to over-
come than getting a large number
of undergraduates involved in rig-
orous, real-world, interdisciplinary
projects that count toward their en-
gineering degrees, be they computer
engineers or mechanical engineers.

ACKEN: The problem I have with the
idea that hiring managers do not focus
on the difference between CE/EE/CS
is that does not match very many job
postings. I have seen very few job post-
ings (once again I am discussing new
college graduates, not experienced
engineers) that say CE/EE/CS, rather, I
see one or two of them.

HARRIS: Even if the requisite listed a
specific degree, I’ve never worked at a
place that wouldn’t consider a strong
resume just because the name of the
degree was different. Again, employ-
ers I meet and places I’ve worked want
smart people who have a grounding in
the fundamentals, learn new things
quickly, have a good attitude, work
well with others, and communicate
well. If it’s a senior position, there’s
also a need for technical depth in a
given niche, but even there, narrow ex-
perts aren’t as valuable as people with
flexible problem-solving experience.

MADSEN: When I ask employers what
makes the education at DTU unique,
they all emphasize the strong and deep
mathematical basis they get in the
first two semesters, a skillset which
enables abstract thinking.

ACKEN: Well, David, does this mean
there is no difference or that many
employers know they will be hiring
multiple people and any one position
can be filled by one of the three but the
team needs all of them?

HARRIS: I think it means that there are
many electrical engineers who are pre-
pared to build software systems and
many computer scientists who could do
design embedded systems or chips, for
example. The variation between individ-
uals is as great as the variation between
degrees, so limiting consideration to a
single degree excludes well-qualified
individuals. EE, CE, CS, math, and phys-
ics are all fields that could prepare stu-
dents to apply principles of science and
mathematics to solve problems related
to physical and cybersystems. A phys-
icist who builds instrumentation or a
computer scientist who fixes old video
games for fun might be better equipped
to build IoT than a computer engineer
who specializes in CAD algorithms.

WOLF: A few weeks ago, I talked with
an alum who runs a design house. He
thinks that a lot of companies look for
students with very specific skills. He
prefers to hire productive people, keep
them, and train them. Some of the em-
phasis on specific skills comes from
high turnover.

ACKEN: Yes, David, I absolutely agree
that the variation among individuals
that can do a job far exceeds the indi-
viduals that can do the job. The fact
is an individual math major might do
much better than an electrical engi-
neering major to design a particular
circuit. That doesn’t change the fact
that there is a reason to have differ-
ent degrees. What preparation would
be preferred for a given job for people
with approximately equal capability?
When we send out our students we
want people to see a benefit in them
having a particular degree.

BROCKMAN: We hear increasingly
from students and recruiters that they

 D E C E M B E R 2 0 2 2 33

are looking for students with project
experience, more so than certain dis-
cipline-specific skills. (The exception
to this is the huge pressure that our CS
and CE students feel to be able to excel
in the coding challenges that are part
of the interview process for Googles,
Amazons, and Facebooks of the world.)
They can get this project experience
from tech-oriented clubs, but our goal
is to help them get that experience as
part of their “day job” as students for
academic credit, rather than having to
find discretionary time to do this as an
extracurricular activity on top of their
already-overloaded schedules.

WOLF: This could lead into an even
broader discussion about degrees.
In particular, have the undergradu-
ate engineering degree distinctions
outlived their usefulness? A lot of
modern systems combine mechani-
cal, electrical, and software compo-
nents. An argument could be made
that they shouldn’t specialize until
graduate studies.

HARRIS: John, coming from a gen-
eral engineering program, I suppose
I’m less attached to the importance of
particular degrees. I agree with you
that a major does ensure students have
been exposed to a minimal set of top-
ics; EEs should have seen circuits and
differential equations, and CS majors
should have seen object-oriented pro-
gramming and discrete math. I find
the number of students at Mudd who
pick a major to optimize preparation
for a given job title is fairly small. A lot
of students pick a major because of an
inspirational teacher in a first course,
or because of advice from family or
friends, or because of perceptions of
how hard the degree is or how much
money they’ll make when graduating.
In my experience, most students get
a first job in specialty that they didn’t
know much about when they were
entering college, and most engineers
five-years out are doing something
they wouldn’t have expected at the
time they graduated. Like Marilyn and

Jay said, people who are generally pro-
ductive and can tackle new and multi-
disciplinary problems and work with
teams will do well. Many students get
to take an upper-division elective, cap-
stone project, research experience, or
internship that they fall in love with,
and then they seek a first job in that
field. Often these experiences are ac-
cessible to students from more than
one major. I think an important part
of education is to give students an op-
portunity to sample experiential learn-
ing in a variety of areas to find at least
one where they want to pursue a first
job. Overall, I think a great program
should give students a broad ground-
ing in the fundamentals of math and
science; introduce them to the lasting
principles of a discipline; give them
experience solving problems in the lab
and in the field; expose them to depth
in a few areas of their preference; give
them practice with teamwork, leader-
ship, and communication; encourage
and facilitate them to own hard prob-
lems through capstones, internships,
research, or project courses; and engage
them through the humanities to be well-
rounded citizens and critical thinkers.
A major gives a coherent theme to the
breadth and depth and a community of
learners, which are both important and
motivational, but shouldn’t pigeonhole
what the student can later do. This is all
pretty straightforward for students who
are well prepared, highly motivated,
and have the luxury of focusing on their
studies. There’s another set of students
who may have personal and family com-
mitments that limit how much time
they can devote to education, or who
have weak preparation in math or criti-
cal thinking that makes it more difficult
to learn the engineering practices. It’s
an interesting question of how to shape
educational programs with the objective
of preparing these students in a way that
maximizes graduates’ opportunities/
unit of effort invested by students. It’s
also an important question of how to
achieve the greatest good for the great-
est number on a tight budget. When is
broad preparation best and under what

circumstances is it better to teach stu-
dents a specialized set of marketable
skills with a smaller investment of stu-
dent and faculty time?

COMPUTER: We have spent some
time discussing the success of our
curricula from an economic/career
perspective. From a purely intellectual
point of view, are we teaching students
what they need to know?

BYRD: I’m happy with what we teach our
students, but there’s always room for im-
provement. We are trying to figure out
how to expose all CE and EE students
to machine learning in a meaningful
way, both to demystify it and to give an
appreciation of where it can be used as
a tool. Also, there’s often feedback from
employers to provide a stronger systems
perspective; as has been mentioned,
they seem to appreciate breadth in top-
ics, especially with an understanding
of tradeoffs and interdependencies.
We’ve considered a unifying platform/
framework/project that can be used for
a given cohort of students as a multidis-
ciplinary way to make connections, but I
worry about buy-in from faculty and the
need to keep refreshing the project to
avoid piggybacking from one cohort to
the next. The VIP (vertically integrated
project) approach used at a number of
campuses can get at this for limited
group of students.

BROCKMAN: We met with the VIP
team at Georgia Tech (the Georgia In-
stitute of Technology) and borrowed
some ideas from them for our college-
wide EG (engineering) course at ND
(Notre Dame), which is called Indus-
try and Community-Based Innovation
Projects. Like the Harvey Mudd clinic
program, our projects involve work-
ing with external partners, which can
be industry, the local public works
department, national labs, et cetera.
Just today, I got a list of project ideas
from the City of South Bend Depart-
ment of Sustainability related to their
strategic plan for reducing emissions
that could involve students from every

34 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

engineering major and other majors
as well. Each of these project ideas will
last multiple years, and the trick is de-
fining pieces of the project that can be
completed during the semester course
or full-time summer internships and
moving cohorts of students through
these without losing momentum.
We are working with campus organi-
zations that are chartered to do this
kind of thing. One organization is the
Center for Civic Innovation (CCI), of
which I am the director, that works
on long-term projects in mostly the
public sphere. Another is Industry
Labs, which was specifically created to
help transition the region from a legacy

“Manufacturing 1.0” economy to “Man-
ufacturing 4.0.” Our team at CCI helps
provide the logistical support for the EG
course and also runs a summer intern-
ship program that employs 50–60 col-
lege and high school students each year,
so we are able to maintain some conti-
nuity on projects year round. Regarding
college/department/faculty buy-in, the
key thing for us was getting the engi-
neering course approved as a tech elec-
tive, which is a lower threshold than a
departmental, major-specific elective.

MADSEN: We are expanding our cur-
ricula across all technical disciplines,
with mandatory courses on innova-
tion and on sustainability in the M.Sc.
programs, and have expanded our
polytechnical foundation in the B.Sc.
to included bioengineering, program-
ming, and statistics [including some ML
(machine learning)], besides the classi-
cal, math, physics, and chemistry.

COMPUTER: Let’s consider some am-
bitious but achievable change. What
would be first on that list for computer
engineering curricula?

HARRIS: According to a 2013 study, U.S.
engineering graduate rates have hovered
around 50% for the past 60 years.1 Ac-
cording to a 2017 ASEE (American Soci-
ety for Engineering Education) study, the
four-year graduation rates are about 30%
and the six-year rates are 55–60%. Engi-
neering is not a four-year degree at most
schools. The rates are 10–20% lower for
black and Hispanic students, which rein-
forces societal problems.2 But according
to univstats.com, the average graduation
rate of the best engineering schools is
89.17%, and MIT (the Massachusetts of
Technology) achieves 95.58% (https://
w w w.univstats.com/comparison/
engineering/graduation-rate/). I think

the most important thing we could do
for society is to raise the graduation
rates while also raising the quality of
education. Accepting students to col-
lege but then not graduating them is a
tremendous drain on resources. It cre-
ates a pool of young people who have
invested time and borrowed money but
have nothing to show for it. To get here, I
think we need to consider metrics about
graduation rates, career outcomes, stu-
dent debt, student satisfaction, and in-
dividual faculty teaching quality as part
of funding formulas. At programs with
low graduation rates, we need to shift
emphasis from research productivity to
serving students better.

WOLF: While quite a few degree-ag-
nostic techniques have been devel-
oped to improve retention, I think that
some CE-specific methods might also
be attractive.

COMPUTER: As one example of shifts
in CE curricula, VLSI played a central
role for a long time but seems to have
become much less important over the
past few years. Thoughts?

ACKEN: As we think about CE educa-
tion preparing the students, I was dis-
tracted by some of the other things we
do for students. Here is an interesting
article from The Chronicle of Higher Edu-
cation about recommendation letters:3
My last idea is what employers expect
from EE/CE/CS degrees. What do we
expect? Suppose you are advising a
student who asks you whether they
should go into CS, EE, or CE. I have had
many students ask this. I usually tell
them to follow their interests because
if they are interested in a subject they
are more likely to succeed working on
that subject. Some students ask which
degree is the most likely to get them a
job, and I respond there are good jobs
in all three areas. What do we expect
from our senior and M.S. students to
have as the basics for a CE student?
How do we prepa re t hem to mee t
those expectations?

WOLF: On the upper-division side, I
think that more education in software
system design would be useful. Many
embedded and cyber-physical systems
have tens or hundreds of millions of
lines of code.

ACKEN: I was thinking about what is
special about CE, with the thought of
what every one of these majors should
know (what is common) and what one
might not be expected to know. Do we
agree that all three should have the ba-
sics of math and physics? (calculus, lin-
ear algebra, classical physics). I think
all three should have some knowledge
of embedded systems (even if from
different perspectives). On the other
hand, many EE majors and many CS
majors would not have VLSI design, but
I would expect CEs to have some VLSI
design. Thoughts on whether it is a ben-
efit to identify what topics a CE would
be expected to know versus the others?

HARRIS: We’ve wrestled with these
questions after a recent college core
change. Electricity and magnetism is
no long required of all students, and
engineering would have to give up a

It’s hard to interface embedded systems to the
real world without some understanding of analog

phenomenon in time and frequency.

 D E C E M B E R 2 0 2 2 35

major class to add it back into the ma-
jor. We are experimenting with not re-
quiring it. Electricity and magnetism
was so focused on fields that we had to
teach circuits from ground zero any-
way. The core also lost some math. We
are bumping the engineering require-
ment up to four semesters: calculus,
linear algebra, probability and statis-
tics and differential equations. There’s
widespread faculty agreement that
math is essential. As a VLSI textbook
author, I think VLSI is now elective ma-
terial for computer engineers. The set
of jobs that need that knowledge have
become a niche, even if it a niche close
to my heart. Embedded systems and
FPGAs are much larger job markets.

COMPUTER : Math and physics are
important. Exactly how much is an
interesting question. How much ab-
stract mathematics do our students
ne e d to k now to b e come e f f e c-
t ive professionals?

HARRIS: I think a large majority of
effective professionals know very lit-
tle abstract mathematics, but the best
ones can still use applied mathemat-
ics. I think one of the ways a computer
engineer may be distinguished from a
computer scientist is by having at least
a first course in passive circuits and a
first course in time and frequency do-
main. It’s hard to interface embedded
systems to the real world without some
understanding of analog phenomenon
in time and frequency. These courses
require some knowledge of first- and
second-order differential equations as
well as some linear algebra. In contrast,
the computer scientist needs linear al-
gebra but not differential equations.
Discrete math and probability and
statistics are relevant to both fields,
but mathematical preparation hasn’t
always kept up with the skills needed
for machine learning, and programs
are under strain about how much math
can be required. Realistically, many of
our students dump most of the math
from their brains pretty quickly, al-
though they can relearn it in context

faster the second time if they need to
apply it for a course.

WOLF: Two reasons are given to teach
math to engineering students: specific
mathematical knowledge and mathe-
matical maturity. What types of math
provide the best foundation for the math-
ematics used in computer engineering?
And perhaps we should enumerate the
types of math important to the field:
differential equations, linear algebra,
mathematical logic, discrete math.

MADSEN: I already mentioned how
we are dealing with these founda-
tional topics. We are currently linking
the math and programming courses
by introducing discrete math and
basic programming into the math
course. We are also introducing com-
putational thinking across math
and programming.

BYRD: I like David’s summary of the
math. I think that statistics is an area
that could use more attention; pro-
fessionals need to do performance
analysis, usually with experimental
data, and they need to be able to know
whether they are drawing reasonable
conclusions from the data.

DICK: Computer engineering is spe-
cial in its emphasis on discrete math,
logic, and, to a lesser degree, combina-
torics with the thought of what every
one of these majors should know (what
is common) and what one might not be
expected to know. Do we agree that all
three should have the basics of math
and physics? (calculus, linear alge-
bra, classical physics). There are some
arguably successful programs that do
not require linear algebra, instead opt-
ing for vector calculus. However, this
is most likely for consistency among
engineering math requirements. The
trend is toward requiring linear al-
gebra. I think all three should have
some knowledge of embedded systems
(even if from different perspectives)
On the other hand, Many EE majors
and many CS majors would not have

VLSI design, but I would expect CEs to
have some VLSI design. Thoughts on
whether it is a benefit to identify what
topics a CE would be expected to know
versus the others? Here at Michigan,
they are required to have knowledge
of computer system implementation,
including hardware. However, they
are not required to take VLSI design,
architecture, and embedded systems.
They get basic exposure to all three in
other courses, but it is fairly common
for students to graduate without any
dedicated VLSI course. We have no-
ticed student demand for embedded
systems and robotics growing faster
than for general-purpose microarchi-
tecture and VLSI design. Permitting
specialization here might partially be
due to each of the three courses (VLSI
design, architecture, and embedded
systems) taking 35–40 h/week on av-
erage. Requiring all three would make
the major inaccessible to many compe-
tent students.

ACKEN: I agree that most profession-
als don’t use their basic math skills
very often. However, I do believe the
skills are the necessary basics for the
studies the students will use. This, I
think, is important for an engineer
to be able to know the boundaries of
application for a particular solution.
The practicing engineer doesn’t need
to be able to rederive the underlying
equations the simulator uses, but they
do need to understand the limitations
of applying the simulator models.
Therefore, while the student learns en-
gineering specifics in upper-division
classes, they use the basic or applied
math to really learn those concepts
rather than just a fuzzy set of rules or
a long list of equations.

BROCKMAN: There’s a general con-
sensus that math and science are core
components of a college education, not
only for engineers but for all majors.
This is only partly because students
might use these tools on the job but
more so because of the habits of mind
that they promote and how they help us

36 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

see the world around us. A key question
is what math and what science should
students—regardless of major—be
studying today? More than 300 years
later, our college math/science core is
still heavily based on the work of Gali-
leo, Newton, Leibniz, Huygens, Boyle,
Hooke, et al. This is the foundation of
classical mechanics, which in turn gave
rise to the machines of the industrial
revolution. Some understanding of the
math and science that brought us the
first Industrial Revolution is essential
to understanding the world as it is to-
day. But arguably, no machine is having
a great impact on our lives today than
the computer, and it is time for higher
education to catch up to that. It’s time
to start thinking about dialing back on
how much calculus and continuous
math we require and replacing it with
discrete math, not only for the educa-
tion of the professionals who will be de-
veloping new computing technologies
but also for the general public who will
live with its consequences. History will
show that Claude Shannon was as im-
portant as Isaac Newton.

COMPUTER: Are there any curricular
topics on the chopping block? Any top-
ics we should get rid of, both to avoid
clutter and to make room for new topics?

ACKEN: Some topics that CE would
benefit but we could let them choose
among a set of prereqs (prerequisites).
All should have basic circuits and digital
logic, but some special choices: VLSI cir-
cuits, analog circuits, board-level design,
I/O interfacing. All should have a basic
computer architecture class but some
choices: advanced computer architec-
ture, cache analysis and design, special
adders and multipliers, and parallel pro-
cessing (vector processors and GPUs).

HARRIS: I agree that computer engi-
neers could have a single course that
covers practical interfacing circuits
in the time and frequency domains,
such as how to hook up switches,
LEDs (light-emitting diodes), motors,
and various resistive and capacitive

sensors, along with how to build an
op-amp antialiasing filter to go before
the ADC (analog-to-digital converter)
on the microcontroller. We do some
of this in our sophomore lab for all en-
gineering majors of all types and are
debating whether to go further in this
direction. I’d strongly argue against
the idea that engineers don’t need to
be able to analyze basic first- and sec-
ond-order circuits. I’ve worked with
engineers who only know how to use
the circuit simulator; they have no
idea of what parameter to tweak to
make their circuit better or why, when
to stop tweaking, and what the ulti-
mate limits of performance of their
topology would be. More importantly,
simulations are usually wrong the
first time they are run, and without a
good way to predict the answer, inex-
perienced engineers believe the pretty
picture from the simulator and report
false conclusions. I proposed a single
(semester) course for computer engi-
neers. It would be a full year if there
were one semester on circuits and an-
other on signals and systems.

BROCKMAN: One of the main things
that I’ll want to comment on is that
computer engineering programs seem
to exist on a continuum between EE
and CS, and what we require of students
can vary, especially depending on
whether CE is in the same department
as EE or CS. There is a lot of material
to consider along this spectrum and
we can’t possibly fit everything from
electrons and holes to algorithms into
nominally four years. ND is a particu-
larly interesting case: the Department
of Computer Science and Engineering
was spun off from the Department of
Electrical Engineering in 1991 when
the university decided to create a
computer science program within the
College of Engineering. (I was one of
the first new hires as an assistant pro-
fessor in 1992.) One of the distinguish-
ing features of our program is that we
have generally kept a common course
sequence through sophomore year for
CS and CE. When the CSE department

was first created, there was a fairly
large number of EE majors, and in the
early years of CSE, the number of CS,
CE, and EE majors was comparable.
Today, CS is around 70% of the three
majors, EE 20%, and CE 10%. The logic
design course that I teach is required
of all three majors, and as the distribu-
tion of students has shifted, the course
has evolved a great deal. Originally, the
course was much more EE-ish, today it
is much more CS-ish.

COMPUTER: Perhaps we can identify
the centroid of computer engineering
versus computer science versus soft-
ware engineering as a way to tie together
the ideas we have discussed here. The
Venn diagram of these fields overlap
significantly. We can also look at these
skill sets as statistical distributions.

ALL: Where is the centroid?

 › CS centers on data structures.
Core courses: algorithms, object
oriented-ish programming.

 › EE is centered on devices; sys-
tems science. Core courses: cur-
rents and voltages, transforms.

 › CE focuses on the physical costs
of computing. Core courses:
logic design, architecture.

ACKEN: VLSI is less at the center than
it used to be, although the number of
design starts is going up, although ma-
jority of students are system designers.
CE is often the least flexible major due
to the number of topics. Computer en-
gineering must be distinct from EE,
CS. Design computer systems, design
systems using computers. Many pro-
grams have few or no courses that are
unique to CE. Alternative approach is a
build-your-own degree. General engi-
neering degree is yet another model.

HARRIS: The processor is centroid of
computer engineering. The centroid
has overlaps with other disciplines.
Somebody needs to lead the design of
digital hardware. Somebody needs to
design data centers. Somebody needs to

 D E C E M B E R 2 0 2 2 37

design embedded software. The world
needs these people. Any given society
may be a producer or a consumer of
these fields. CEs should be able to write
software; design a pipelined processor
design an embedded system. Icing on
the cake is systems engineering.

BROCKMAN: Given a problem: CS cen-
troid is software, EE centroid is hard-
ware, CE centroid is tradeoff. These
fields share many common tools, a
given person may gravitate toward one
set of tools over another based on the
field in which they were trained.

COMPUTER: Thank you, everyone,
for this great discussion!

REFERENCES
1. B. N. Geisinger and D. Raj Raman,

“Why they leave: Understanding

student attrition from engineer-
ing majors,” Int. J. Eng. Educ., vol.
29, no. 4, pp. 914–925, Mar. 2013.
[Online]. Available: https://www.
rise.hs.iastate.edu/projects/CBiRC/
IJEE-WhyTheyLeave.pdf

2. “Engineering by the numbers: ASEE
retention and time-to-graduation
benchmarks for Undergraduate
Engineering Schools, Departments
and Programs,” American Society for
Engineering Education, Washington,
DC, USA, 2017. [Online]. Available:
https://ira.asee.org/wp-content/
uploads/2017/07/2017-Engineering
-by-the-Numbers-3.pdf

3. B. Schreier, “No More Letters of
Recommendation!: This hyperstyl-
ized, dishonest genre is useless for
everyone,” The Chronicle of Higher
Education, Washington, DC, USA,
May 2022. [Online]. Available:

https://www.chronicle.com/article/
no-more-letters-of-recommendation?
utm_source=Iterable&utm
_medium=email&utm_campaign
=campaign_4237995_nl_Academe
-Today _date_20220510&cid=at&
source=&sourceid=&cid2=gen
_login_refresh

MARILYN WOLF is the Elmer E.
Koch Professor of Engineering and
Director of the School of Computing
at the University of Nebraska–
Lincoln, Lincoln, NE 68588 USA.
Contact her at mwolf@unl.edu.

IEEE TRANSACTIONS ON

BIG DATA

For more information on paper submission, featured articles, calls for
papers, and subscription links visit: www.computer.org/tbd

TBD is financially cosponsored by IEEE Computer Society, IEEE Communications Society, IEEE Computational Intelligence
Society, IEEE Sensors Council, IEEE Consumer Electronics Society, IEEE Signal Processing Society, IEEE Systems, Man &
Cybernetics Society, IEEE Systems Council, and IEEE Vehicular Technology Society

TBD is technically cosponsored by IEEE Control Systems Society, IEEE Photonics Society, IEEE Engineering in Medicine &
Biology Society, IEEE Power & Energy Society, and IEEE Biometrics Council

SUBSCRIBE AND SUBMIT

SUBMIT
TODAY

Digital Object Identifier 10.1109/MC.2022.3218220

	Computer Engineering Education
	

	Computer Engineering Education

