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Abstract—Improving software performance through configu­
ration parameter tuning is a common activity during software 
maintenance. Beyond traditional performance metrics like la­
tency, mobile app developers are interested in reducing app 
energy usage. Some mobile apps have centralized locations for 
parameter tuning, similar to databases and operating systems, 
but it is common for mobile apps to have hundreds of parameters 
scattered around the source code. The correlation between these 
“deep” parameters and app energy usage is unclear. Researchers 
have studied the energy effects of deep parameters in specific 
modules, but we lack a systematic understanding of the energy 
impact of mobile deep parameters. 

In this paper we empirically investigate this topic, combining 
a developer survey with systematic energy measurements. Our 
motivational survey of 25 Android developers suggests that 
developers do not understand, and largely ignore, the energy 
impact of deep parameters. To assess the potential implications 
of this practice, we propose a deep parameter energy profiling 
framework that can analyze the energy impact of deep param­
eters in an app. Our framework identifies deep parameters, 
mutates them based on our parameter value selection scheme, 
and performs reliable energy impact analysis. Applying the 
framework to 16 popular Android apps, we discovered that 
deep parameter-induced energy inefficiency is rare. We found 
only 2 out of 1644 deep parameters for which a different value 
would significantly improve its app’s energy efficiency. A detailed 
analysis found that most deep parameters have either no energy 
impact, limited energy impact, or an energy impact only under 
extreme values. Our study suggests that it is generally safe for 
developers to ignore the energy impact when choosing deep 
parameter values in mobile apps. 

I. INTRODUCTION 

Improving energy efficiency is one of a mobile app de­
veloper’s software maintenance activities. App users desire 
efficient energy usage [1], and the resulting improvement in 
accessibility can benefit individuals and societies [2], [3]. 
Mobile platform vendors, e.g., Google and Apple, also advise 
app developers to optimize app energy usage [4], [5]. 

One potential strategy to reduce a mobile app’s energy 
usage is to tune its configuration parameters. All software 
includes configuration parameters to help it be adapted to 
different contexts. Mobile apps are no exception: in addition 
to the parameters explicitly exposed in resource files and other 
configuration files, these apps have many deep parameters, i.e., 
parameters that are scattered around the source code to control 
runtime behaviors including buffer sizes, task frequencies, 
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and UI layout positions. Researchers have shown that tun­
ing parameters can improve the performance of conventional 
software [6]–[8]. However, mobile deep parameters are often 
overlooked by developers, and little is known about the energy 
impacts of deep parameters in mobile apps. Prior works have 
only studied the energy impacts of deep parameters in specific 
modules [9] or libraries [10], [11], not systematically. 

We investigated the energy impact of mobile deep pa­
rameters using mixed methods [12], combining a developer 
survey with systematic energy measurements. In our survey 
of 25 Android app developers, we found that developers are 
uncertain about the energy impact of deep parameters and do 
not usually consider energy when choosing parameter values. 

To measure the implications of developers’ practices on 
deep parameters, we propose a parameter-centric energy pro­
filing framework. The framework extracts deep parameters 
from the app, mutates them based on our parameter value 
selection scheme, and measures the changes in energy drain. 
Our framework overcomes several challenges: identifying deep 
parameters, choosing appropriate mutation values, and reliably 
measuring the energy impact. 

We systematically measured deep parameter energy effects 
in 16 popular open-source Android apps. Among the 1644 
parameters tested, only 2 are set to energy-inefficient values. 
Further analysis shows that the rest of the parameters either 
have no energy effect, have limited energy effects, or only 
have energy effects under extreme values that developers can 
typically avoid based on their domain knowledge. We conclude 
that it is generally safe for developers to ignore energy effects 
when choosing deep parameter values — developers must look 
elsewhere for energy-reducing refactorings. 

Our study makes the following contributions: 

•	 We describe the practices of mobile app developers on 
deep parameters and energy optimization (N=25) (§IV). 

•	 We propose a framework for parameter-centric profiling 
in Android, automatically identifying deep parameters 
and measuring their energy impacts (§V). 

•	 We perform the first systematic study of the energy im­
pact of deep parameters in Android apps (N=16) (§VII). 
We describe the roles of deep parameters in these apps, 
and identify three energy categories of deep parameters. 

mailto:ajindal@cse.iitd.ac.in
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•	 We open-source our framework and full survey and 
experiment results1 to enable reproducibility and further 
exploration from the research community. 

II. BACKGROUND AND DEFINITIONS 

A. Configuration Tuning in General 

Many categories of software can be configured for different 
usage scenarios and deployment environments. Such soft­
ware includes databases, stream processing frameworks, web 
servers, codecs, and others. Their configuration parameters 
are typically exposed through configuration files, command-
line interfaces, or certain data structures [6]. For example, to 
configure the video codec x265, one can pass command-line 
arguments to the executable [13], or specify the x265_param 
data structure through its API [14]. 

In addition to their implications on software functionality, 
configuration parameters may also impact performance met­
rics. For example, by tuning its ∼200 configuration param­
eters, MySQL database throughput can be improved by 6x 
and its latency reduced by 3x on common benchmarks [8]. As 
configuration tuning is an NP-hard problem [15], configura­
tion tuners aim to efficiently search the configuration space 
and recommend configuration values for a given workload 
(e.g., [6], [7]). In these contexts, auto-tuners are able to focus 
on the performance optimization task because the software 
parameters are clearly defined (e.g., in configuration files). 

B. Parameters in Mobile Apps 

Mobile apps also contain configurable parameters that con­
trol various aspects of the apps. As in most user-facing 
software, latency is a major performance metric in mobile 
apps. However, energy is also a key metric in mobile apps. 
Similar to configuration tuning for other performance metrics, 
other researchers have provided preliminary evidence that 
some parameters impact app energy consumption. Canino et 
al. [9] showed that GPS configuration parameters can be 
tuned to meet specified energy consumption SLAs. Similarly, 
Bokhari et al. [10], [11] optimized the energy consumption of 
the Rebound physics library by tuning its numeric parameters. 
However, it is unclear whether such energy-affecting parame­
ters are common in general Android apps. 

This problem is challenging because, in contrast to the soft­
ware discussed above, parameters in Android apps are more 
often scattered all around the source code rather than stored 
at central places. We speculate that parameter centralization 
occurs when the software is designed to be maintained by 
skilled operators such as database administrators. Most mobile 
apps are designed for unskilled users, and so there is little 
customer demand to centralize and expose parameters. This 
challenge must be overcome in order to understand the impact 
of parameters on mobile app energy usage. 

C. Definitions 

Following Bokhari et al. [10], [11], we define a deep 
configuration parameter as a constant in app source code 

1https://doi.org/10.5281/zenodo.5823364 

1 Bitmap.createBitmap(320, 240, ARGB_8888); 
2 byte[] serverVersion = new byte[512]; 
3 sock.setSocketTimeout(0); 
4 layoutParams.width = 12; 

Fig. 1: Real Android code snippets; deep parameters in red. 

that can be changed by app developers, but does not affect 
app functionality. In other words, all app components should 
function properly when tuning a deep parameter’s value, with 
“minimal” impact on user experience. This property can be 
determined by examining the source code or the runtime app 
behavior.2 Some examples are given in Figure 1, e.g., buffer 
sizes, timeouts, and UI element sizes, and the parameters can 
be numeric, Boolean, or enumeration values. 

III. RESEARCH QUESTIONS 

We seek to understand the energy efficiency of Android 
deep parameters. App energy efficiency might be affected by 
developers’ awareness of the energy impact of deep parameters 
and their strategy in deciding parameter values. We also want 
to measure and understand the energy effects of tuning deep 
parameters. Operationalized, our research questions are: 

RQ1: What are the energy impacts of parameters in develop­
ers’ eyes? 

RQ2: How do developers choose parameter values? 
RQ3: Is deep parameter-induced energy inefficiency common 

among apps? 
RQ4: When and why do (and do not) deep parameters impact 

app energy consumption? 

We investigated RQ1-2 with a developer survey. We studied 
RQ3-4 through a systematic energy measuring experiment. 

IV. DEVELOPER PERSPECTIVES 

We surveyed Android developers to better understand their 
perceptions and practices regarding Android parameters. 

A. Methodology 

We designed an IRB-approved survey to obtain mobile app 
developers’ perspectives on RQ1 and RQ2. The RQs were 
operationalized into 6 demographic questions and 13 study-
specific questions. These questions included closed- and open-
ended questions across three topics: (1) the nature of the 
parameters in their apps; (2) their perceptions of parameters’ 
energy impacts; and (3) their process when choosing param­
eter values. Rather than using interviews to elicit relevant 
topics for the survey, we based the questions on (a) our 
own expertise from studying and developing energy-efficient 
mobile apps; and (b) preliminary findings and observations 
from our energy experiments (detailed in sections V to VII). 
To improve instrument validity and reduce bias, we followed 
best practices during survey design [16], [17], e.g., avoiding 
leading questions, and refined the survey through two rounds 
of pilot studies with graduate students. 

2A high-quality test suite would be a suitable oracle, but we found these 
suites inadequate in our experiments. 
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None A few A lot Unsure Finding 1: Around half of mobile app developers 
measure app energy usage. Few developers (12%) are 
confident about the energy impact of parameters. (a) For what proportion of the parameters in your app are you confident about 

the energy impact of changing them? 

(b) How often do you consider energy consumption while choosing parameter 
values? 

Fig. 2: Distribution of responses to developer perception of parame­
ters’ energy impact and how they pick parameter values 

To ensure participant’s understanding of the term “param­
eter”, we provided the following definition before survey 
questions: “Android apps contain parameters that control 
various aspects of the apps. Common types of parameters 
include upper/lower bounds, UI layout sizes/positions, buffer­
/cache sizes, thread counts, timeouts, task frequencies, etc. 
They could be hard-coded numbers, constants, or dynamically 
varying. In this survey, we are interested in the parameters 
that are accessible to developers, i.e., not in-app settings.”3 

Respondents were asked to answer in terms of the app they 
spent the most time developing. 

We distributed the survey to Android developers through 
multiple channels. We posted the survey on popu­
lar forums frequented by Android developers (subreddits 
r/androiddev and r/mAndroidDev) and developers in 
general (Hacker News and DEV), and social media groups of 
Android developers (LinkedIn, Facebook, and Slack). We also 
contacted Android developers in our professional networks. 
Survey participants were not compensated. 

We received 25 non-blank responses: 15 from forums and 
social media groups, and 10 from professional connections. 

B. Results 

a) Demographics: The median respondent has 6-10 
years of software development experience and 3-5 years of 
Android development experience. Respondents work on apps 
from 13/37 categories defined by Google Play [18]. For 21/25 

responses, the answers describe commercial app development. 
b) RQ1: Developer Perception of Energy Impact: De­

velopers are concerned about app energy usage: 10 of the 25 
respondents monitor energy consumption. However, most of 
these respondents use coarse-grained measurements like CPU 
usage or battery statistics. These tools can detect severe or 
specific types of energy bugs (e.g., wake lock [19]), but are 
difficult to use for energy tuning. Perhaps in consequence, 
only 3 respondents are confident about the energy impacts of 
“a lot” of their apps’ parameters (Figure 2a). 

3This definition includes both deep (cf. §II-C) and traditional parameters. 
Our results thus give a broader perspective on the energy tuning practices of 
mobile app developers. As deep parameters are a subset of this definition, our 
survey results also characterize engineering practices for deep parameters. 

c) RQ2: Picking Parameter Values: Our respondents said 
that when they choose parameter values, their top concerns 
are app functionality and user experience. Only 2 of the 25 
developers frequently or always consider energy consumption 
when parameterizing (Figure 2b). The reason might again 
lie in the fact that developers don’t have handy tools for 
energy tuning. As developers have only limited confidence 
in parameters’ energy impacts, further experiments are still 
needed to validate developers’ choices. 

Finding 2: Only 8% of developers frequently consider 
energy consumption when choosing parameter values. 

d) Parameter Locations: Other data from our survey in­
formed our parameter measurement approach. For parameters 
in source files, our respondents estimated that the majority 
are scattered across the codebase; only a third of respondents 
described their apps as having substantial parameter central­
ization in files like Config.java or Constants.java. 
This finding is consistent with our observations of open-source 
Android apps, discussed in §II-B. 

V. DEEP PARAMETER TESTING FRAMEWORK 

The developers in our survey indicated that they rarely 
consider energy consumption when picking deep parameter 
values. This practice does not necessarily mean that they 
make poor choices. Developers might intuitively make energy-
efficient choices; energy-efficient choices may correlate with 
choices that improve usability; or deep parameters may not 
have a substantial effect on energy usage. However, since 
developers told us that they do not consider the energy 
effects of parameters, our governing hypothesis is that ignoring 
energy effect results in suboptimal deep parameterizations. To 
test the hypothesis, we propose a framework that mutates every 
deep parameter and checks if the change reduces energy usage. 

An overview of the mutate-and-test process is shown in 
Figure 3. As deep parameters are scattered in the source code, 
we first extract deep parameters from the set of all constants. 
For each of the parameters extracted, we try several new values 
based on our parameter mutation scheme, and measure the 
energy consumption of the app variants. We manually validate 
all parameterizations that reduce energy use, and finally report 
any discovered energy-reducing parameters. 

We present the details of each step below. Many design 
details are informed by preliminary experiments and obser­
vations. The primary design constraint is time: testing one 
parameter takes a long time (on average 22 minutes), as we 
need to perform repeated tests for multiple parameter values 
on the phone; and these tests are not easily scaled, since we 
need a physical device to get accurate energy measurements. 

We describe our experiment applying the framework to 16 
popular Android apps in §VI and the results in §VII. 
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Fig. 3: Workflow of the mutate-and-test process. 

A. Deep Parameter Extraction 

Deep parameters are scattered around source files. Thus, to 
test the parameters, one design option is to test all constants, 
regardless they are deep parameters or not. However, an 
app has thousands of constants and testing all of them is 
prohibitively time-consuming. We therefore use a mix of 
automatic and manual filtering to distinguish deep parameters 
from other constants. 

a) Usage Scenarios and Parameter Coverage: Our 
framework tests an app using UI automation scripts over 
several of its usage scenarios. After we identify these usage 
scenarios, we use code coverage to identify the candidate deep 
parameters. A usage scenario may target a particular feature 
set (e.g., features to be used in a low-power mode), and only 
some deep parameters will affect the energy usage in this 
scenario. Deep parameters that are not used cannot have an 
energy effect. Based on this insight, we record the line-level 
code statement coverage and filter out parameters that are 
not covered. This filtering is performed prior to the energy 
measurements, thus energy measurements are conducted on a 
non-instrumented app and do not have instrumentation effects. 

b) Heuristic Rules: We noticed that true deep parameters 
are more likely to occur in certain code constructs, while 
constants in some other code constructs are unlikely to be 
deep parameters. For example, variable initializers and method 
call arguments tend to be deep parameters; bitwise operator 
arguments typically not. 

Using “negative patterns” matching non-parameter constants 
minimize the chance that we incorrectly filter out deep pa­
rameters. Thus, we assemble a set of patterns that are shared 
by portions of the non-parameter constants, and filter out 
constants that match any pattern. The patterns are extracted by 
manually classifying constants in a file to be deep parameters 
or not, and identifying any patterns that the non-parameter 
constants may share. 

After manually inspecting the files with the most constants, 
we derived heuristic rules as shown in Table I. Each rule may 
be applicable to one or several parameter types. As the rules 
are more pertinent to programming language idioms [20] than 
an individual developer’s habits, they apply across apps. How­
ever, as the rules depend on common development practices, 
they may incorrectly filter parameters (false negatives). 

c) Manual Filtering: The preceding filters are automated. 
However, many constants remain for consideration. We man­
ually examine the remainder and filter out non-parameter 
constants based on their semantic. For example, error codes are 

TABLE I: Heuristic rules for filtering non-parameter constants. 

Type Rule Example 

Num Array index a[0] 
Num Comparison with 0 or 1 a.size() > 0 
Num Plus 1 or 2 or minus 1 a.length() - 1 
Num For loop initialization for (int i = 0; ...) 
Num Ignored methods s.substring(0, 4) 
Bool One argument method call item.setVisible(true) 
Enum Time unit convert(5, DAYS) 
Enum Locale toLowerCase(US, str) 

All Condition if (a.size() > 0) 
All Return value return 0 
All Multiple writes to variable See Figure 4 

class Foo { 
int counter = 0; 
void count() { counter++; } 
void reset() { counter = 0; } 

} 

Fig. 4: Example of multiple writes. counter is updated in multiple 
places, so the 0 constants are not considered deep parameters. 

not parameters, since mutating them will make the app report 
the wrong kind of error, and thus affecting app functionality. 

B. Deep Parameter Mutation 

We mutate and test each deep parameter in isolation. It is 
intractable to test all possible values for each parameter, thus 
sampling is used for value selection. We choose new values 
carefully to maximize the chance that we observe a parame­
ter’s energy impact. For example, the energy consumption may 
not change if we choose values too close to the original one, 
yet we may crash the app if we choose values too far away. On 
other hand, the new values do not need to be optimal, as we 
can perform further investigation as long as we can observe 
an energy reduction. 

Based on preliminary experiments, we developed a guide­
line for choosing new values for numeric parameters: 

•	 Choose values from both sides of the original value; most 
parameters are monotonic in terms of their energy effects. 

•	 A factor of 8 will expose the difference (if any) in en­
ergy consumption, unless the parameter only has energy 
impact under extreme cases (cf. §VII-C3). 

We further fine-tune the values chosen based on the original 
parameter value, as we observed that the original value indi­
cates the valid value range to some extent. For example, 0 is 
invalid for many positive integer parameters, while floating-
point parameters with original values between 0 and 1 are 
highly likely to be valid only between 0 and 1. 



TABLE II: Mutated values for numeric parameters. 

Original value New values 

0 0xffffff, 255, 8 
1 8, 0 

x (> 1, int) x ∗ 8, max(x/8, 1) 
0.0 0.5, 1.0 

x (0 < x < 1, float) 1 − (1 − x)/8, x/8 
x (≥ 1, float) x ∗ 8, x/8 

Combining the guidelines and the fine-tuning, we build a 
parameter mutation scheme for numeric parameters as shown 
in Table II. Integer parameters with original value 0 have 
versatile semantics and do not fit into our guidelines. Thus, we 
choose several special values commonly used in programming 
to maximize the chance that some values suit the semantics. 

Boolean and enumerator parameters are simpler than nu­
meric parameters. We invert Boolean parameters, and for 
enumerations we randomly choose three additional values. 

C. Automated Testing 

The high-level workflow of automated testing is simple: we 
drive each app with a deterministic UI automation script. For 
each deep parameter, we measure the energy drain for both the 
unmodified app and the app with a new parameter value, and 
finally compare the results to see if the parameter can reduce 
the app energy drain. However, to ensure that the tests are 
reproducible, statistically solid, having minimal false positives 
and false negatives, and faithfully reflect the effects of the 
parameters, every step needs to be carefully thought out. 

1) UI Automation Script: There has been a large body of 
research on automated UI testing for Android apps [21]–[26]. 
However, these works aim at improved code coverage while 
our automated testing instead focuses on reproducibility. 

We design one UI automation script for each test scenario. 
While it is relatively easy to write a script that runs for a 
couple of times, extra caution is needed to design a script that 
runs thousands of times and ensures everything is reproducible 
at the same time. We enumerate four lessons we learned from 
our experience. 

a) Ensure the interactions are deterministic: Executing 
the same script each time does not guarantee that the app 
performs the same actions. For example, the problematic code 
in Figure 5 swipes on a scrollable list until it finds the desired 
item. If the list contents or order vary, the app behavior will 
also vary, affecting energy usage. Avoid such loops with non­
deterministic terminating conditions. 

b) Ensure the test data are also deterministic: App 
behaviors depend on both the interactions and the data fed 
into the apps. Watching different videos or reading different 
posts may consume different amounts of energy. This issue 
is easy to solve for local apps like galleries or file managers, 
but harder for apps that rely on remote content. For example, 
the most popular posts on Reddit change. We address this 
by accessing static content whenever possible. In the case of 
the Reddit client slide (cf. Table III), instead of fetching 
trending posts, we fetch the most popular posts of all time. 

while (!onScreen(item)) 
swipe(); 

Fig. 5: UI automation code with potentially non-deterministic test 
interactions. This could lead to flaky test results. 

Time

1400

1600

1800

En
er

gy
 (

Ah
)

(a) Energy consumption over a period of 3 days. The error bar represents 
the standard deviation of the 5 runs. 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Normalized Stdev

0.0

0.5

1.0

CD
F

(b) The CDF of the normalized standard deviations in Figure 6a. 

Fig. 6: Energy consumption of the unmodified ap app. Each data 
point represents 5 runs. 

c) Save app data to save bandwidth and time: Many apps 
need to download a large amount of data when opened for the 
first time. For example, fdroid needs to download tens of 
megabytes of metadata for all apps in the store. While this 
is acceptable for a small test, downloading the data several 
hundred times can easily lead to protective measures like 
reduced bandwidth or even blockage on the server-side. 

On the other hand, preparing an app for a test may be 
very time-consuming. For example, to realistically test a 
password manager app, the app’s database should have dozens 
of password entries. However, popping the database with so 
many entries for every fresh install takes time. 

The solution for both scenarios is to utilize the data ex­
port functionality provided by many apps. By exporting the 
bootstrap data, all subsequent tests only need to import them 
locally after app installation. 

d) Pay attention to the server state: For many apps 
requiring account login, part of the state is stored on the 
server-side. Without resetting the server state, the app may 
behave non-deterministically. For example, the server of the 
instant messenger conv recognizes the phone as a new device 
every time the app reinstalls. In the end, the server maintains 
thousands of “devices”, which drastically changes the app 
behavior. As servers are black boxes, this type of problem 
is hard to diagnose. Our solutions were app-specific. 

2) Back-to-Back Testing: Due to the time-dependent net­
work condition and server load, the app energy consumption 
is changing over time for many apps with network access. 
Figure 6a shows the energy consumption of ap over a period 
of 3 days. While adjacent data points typically have similar 



energy consumption, the energy consumptions of distant data 
points can differ by as much as 14%. To reduce the influence 
of such time-dependent energy consumption drifts, we rerun 
the unmodified app before testing each deep parameter, and 
only compare the adjacent tests. 

3) Hypothesis Testing: To determine whether a parameter 
value reduces energy consumption, we run both the unmodi­
fied app and the modified app 5 times (denoted as B1, . . . , B5 

and P1, . . . , P5 respectively), and perform Student’s t-test 
with the null hypothesis being mean(Pi) = mean(Bi) and 
the alternative hypothesis being mean(Pi) < mean(Bi), and 
a significance level of 0.05. 

However, when applying the above hypothesis testing, we 
noticed that many energy drain reductions are due to small 
energy consumption fluctuations, rather than the parameters. 
To reduce such false positives, we set a threshold td for each 
app and filter out energy differences smaller than the threshold. 
Specifically, instead of performing the t-test for Pi and Bi, 
we now perform t-test for Pi and B!, where Bi

! = (1 − td)Bi.i

Since Pi and B! have different variances, we switch from i 
Student’s t-test to Welch’s t-test. 

4) Stability Threshold: In the last section, we addressed the 
false positives caused by energy fluctuations. However, energy 
fluctuations can also introduce false negatives. Figure 6b plots 
the CDF of the normalized standard deviations (σ/µ) using the 
same data as Figure 6a. Although the standard deviation is low 
(< 3%) in most cases, intermittently it can reach 16% of the 
mean. The chance of passing the t-test is minimal with such 
a high standard deviation. In such cases, we choose another 
small threshold ts for each app, and discard results until the 
normalized standard deviation is back to normal (less than ts). 
Both td and ts are determined through experiments (cf. §VI). 

D. Manual Validation 

In the last step, we manually validate the energy-reducing 
cases to make sure that they are really caused by the parameter 
value changes, and the app functionalities are not impacted. 
Sometimes the energy fluctuation is too large and abrupt to 
be filtered out by the t-test threshold, while in other cases the 
app may not function normally with the parameter change. 

E. Alternative Design 

An alternative design for estimating the energy impact 
of deep parameters utilizes static or dynamic analysis. For 
each deep parameter, we can identify the dependent code 
segments by performing static data and control dependence 
analysis [27] or dynamic taint analysis [28], [29]. During 
execution, the energy consumption of the dependent code 
segments is measured and attributed to the corresponding 
parameter. Such an approach has the advantage of measuring 
the energy impacts of all deep parameters at once, but it also 
faces a number of challenges. 

First, the dependencies between a deep parameter and the 
relevant code segments are often hard to track, or require ad 
hoc customizations to achieve good coverage. For example, 

we observed that many dependencies span programming lan­
guage boundaries, or involve inter-process or inter-device (e.g., 
client-server) communication. 

Second, it is also hard to determine the right granularity 
of the code segments for dependence analysis. Dependence 
analysis at the branch level of branches has the advantage that 
the causal relationship between parameter values and branch 
conditions is easy to analyze. However, we observed that many 
deep parameters affect app energy consumption in ways other 
than controlling branch conditions. For example, app energy 
consumption can be affected by controlling the timer duration 
or thread count. Alternatively, we can perform the analysis at 
the method granularity by tracking the dependency between 
deep parameters and method call arguments. However, the 
relation between the parameter value and the method energy 
consumption is often opaque, if there is any relation at all. 

In view of these challenges, we chose to apply the parameter 
mutation approach detailed earlier and leave improvements on 
program analysis tools for future work. 

F. Implementation 

We implemented our framework in 3.5 KLoC: parameter 
analysis and mutation (in Spoon [30]); UI automation (Ap­
pium [31]); and coverage analysis (JaCoCo [32]). App source 
code is required since we perform parameter analysis by 
examining the source code syntax tree. 

The app needs to be rebuilt for each parameter mutation. 
Building apps and running test scripts are done in parallel, 
so that both the desktop and the phone can be fully utilized. 
We also make our test framework fully reentrant, and thus 
different tests can run on different phones independently. 

VI. EXPERIMENTAL DESIGN 

We perform our experiments using 16 popular open-source 
Android apps. We choose the apps from 16 different categories 
to make sure our findings are not restricted to certain app 
categories. As we use Spoon to analyze app source code, 
we restrict ourselves to apps mostly (>70%) written in Java. 
Table III summarizes each app. 

We design one test scenario for each app based on their 
typical usages (Table III). The lengths of the test cases are 
between 30 and 60 seconds. 

The stability threshold ts is determined by first running the 
experiments without the threshold. We then draw the CDF 
of the normalized standard deviations as in Figure 6b, and 
choose the turning point of the CDF curve as ts. To determine 
the other threshold td, we rerun the parameters that pass 
the standard t-test (td = 0), and do the t-test again on the 
new measurements. Those that only pass the first t-test are 
considered due to energy fluctuations instead of the parameters 
themselves. Then we choose the minimum td that filters out 
the fluctuating ones while keeping the rest. 

A. Energy Measurement 

We run the experiments on two Pixel 2 phones, which 
are connected via USB to install app variants and accept 



TABLE III: Tested apps and their test configurations. The popularity statistic (installs) is from Google Play. 

App (Abbr.) Category Installs Version Test Scenario ts td 

SAI (sai) App installer 5M+ 4.5 Install 2 apps 0.02 0.01 
ConnectBot (cb) SSH client 4M+ 1.9.7 View 6 Python files using vi 0.03 0.03 

AnySoftKeyboard (ask) Keyboard 2M+ 1.10-rc4 Type username and password 0.03 0.01 
KeePassDroid (kpd) Password manager 2M+ 2.5.12 Copy 8 password entries 0.03 0.03 

Amaze File Manager (amaze) File manager 1M+ 3.4.3 Move a picture and delete a picture 0.03 0.03 
AntennaPod (ap) Podcast client 691K+ 1.8.3 View 6 episode descriptions 0.03 0.03 

OpenKeychain (ok) Encryption 538K+ 5.7.5 Encrypt and decrypt a file 0.02 0.01 
Slide for Reddit (slide) Online community 222K+ 6.3 View 3 posts in 3 subreddits 0.08 0.02 

Conversations (conv) Instant messenger 127K+ 2.8.9 Send 10 random messages 0.04 0.01 
Download Navi (dn) Download manager 75K+ 1.4 Download a 100MB file 0.03 0.02 

Wikimedia Commons (wc) Image sharing 69K+ 2.13 View 4 images 0.08 0.02 
Etar Calendar (etar) Calendar 39K+ 1.0.26 Create 3 events 0.08 0.03 

IPFS Lite (ipfs) P2P Browser 4K+ 2.5.4 View 5 Wikipedia articles 0.06 0.03 
F-Droid (fdroid) App store N/A 1.8 View 3 app descriptions 0.06 0.03 

F-Droid Build Status (build) Continuous delivery N/A 2.8.0 View 5 build logs 0.03 0.03 
RadarWeather (rw) Weather N/A 4.4 View weather of 5 cities 0.04 0.03 

TABLE IV: Effectiveness of combining coverage- and heuristic-based 
filtering. Other apps are omitted for space. 

Num 
cb 

Bool Enum Num 
kpd 

Bool Enum 

No filtering 
Coverage 
Heuristic 

12402 
1277 
9404 

844 
311 
236 

269 
73 

112 

1218 
310 
606 

575 
142 
184 

164 
29 

113 
Combined 451 115 31 131 71 13 

UI automation commands. Since power meter readings are 
inaccurate when devices are connected [33], power models are 
used to measure energy consumption. We use well-established 
utilization-based power models [34], [35] for CPU and GPU 
energy, and finite-state machine-based modeling [36]–[40] for 
WiFi. We calculate the power of each hardware component by 
collecting the relevant data (state and frequency information 
for CPU/GPU; transmission log for WiFi) using ftrace [41] 
and feeding them into the power models. As only the energy 
consumption of hardware components with power models 
can be calculated, we did not test apps that use specialized 
hardware components like hardware codecs or GPS.4 

VII. RESULTS AND FINDINGS 

A. Parameter Extraction 

To speed up testing, we filter out unused and non-parameter 
constants by combining both automatic and manual filtering. 
Figure 7 shows the effect of each filtering method for numeric 
constants. Automatic filtering filters out 92.1% of the numeric 
constants. Manual filtering filters out another 6.2%, which 
further speeds up testing and leaves us on average 48 deep 
parameters per app. For Boolean constants the proportions 
are 90.3% automatic and 5.5% manual, leaving on average 
40 deep parameters per app. For enumerator references, the 
proportions are 88.9% and 9.2% , and on average 15 are left. 

To measure the effectiveness of each automatic filtering 
method, we turn them on and off individually and calculate 

4Prior work on GPS parameter tuning [9] used long-running experiments 
instead, and they estimated energy consumption by reading the battery level. 
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Fig. 7: Number of numeric parameters identified (blue), and of 
constants filtered out by manual (beige) after automatic (green) 
filtering. Other parameter types are omitted for space. 

Fig. 8: Energy effects of two deep parameters. Error bars represent 
the standard deviation of 5 runs. Note y-axes do not start from 0. 

the number of constants filtered out. Per Table IV, coverage-
based filtering alone filters out on average 86.2% constants, 
while heuristic-based filtering alone filters out 31.1%. Com­
bining them further improves the filtering efficiency to 94.8%, 
reducing subsequent manual filtering effort. 

B. RQ3: Parameter-Induced Energy Inefficiency 

To see whether energy-reducing deep parameters are com­
mon among apps, we mutate each deep parameter and measure 
the energy drain of each variant. After filtering the constants 
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TABLE V: Number of deep Parameters (P) tested for each app and 
parameter type, number of parameters that appear to Reduce the 
energy drain (R) during the test, and number of parameters manually 
Validated (V) to be energy-reducing. 

Numeric Boolean Enum 
P R V P R V P R V 

sai 16 2 0 22 0 0 10 0 0 
cb 116 2 0 17 0 0 10 0 0 
ask 91 0 0 35 0 0 17 0 0 
kpd 8 0 0 37 0 0 5 0 0 

amaze 50 0 0 25 0 0 15 0 0 
ap 30 0 0 33 2 0 18 0 0 
ok 39 0 0 55 4 0 14 0 0 

slide 79 2 1 168 0 0 29 0 0 
conv 74 3 0 58 1 0 24 0 0 
dn 14 1 0 50 0 0 9 0 0 
wc 14 1 0 1 1 0 7 0 0 

etar 112 1 0 65 0 0 39 0 0 
ipfs 23 1 1 18 2 0 3 0 0 
fdroid 52 1 0 32 0 0 10 0 0 
build 4 1 0 10 0 0 15 0 0 
rw 42 1 0 21 0 0 8 2 0 

Total 764 16 2 647 10 0 233 2 0 

in the 16 apps, we get in total 764 numeric parameters, 
647 Boolean parameters, and 233 enumerator parameters. In 
testing all the parameters, we run the automated tests 15040 
times (3008 parameter values with 5 runs each), which is 596 
hours (25 days) of phone execution time. 

Table V shows a summary of the test results. Out of the 1644 
deep parameters tested, we observed reduced energy drain for 
28 parameters. We then manually examined the 28 parameters, 
and found that only 2 numeric parameters really reduce the 
energy drain of the app without breaking app functionality. 

Finding 3: Parameter-induced energy inefficiency is 
uncommon among apps. Out of the 1644 deep param­
eters from the 16 apps, only 2 reduce energy drain 
without breaking app functionality. 

1) The True Positives: One energy-reducing parameter is 
identified in the Reddit client slide. While browsing the 
posts in a subreddit, the app fetches posts from the server. A 
batch of posts will be fetched each time, and each post will be 
processed immediately after being fetched. The energy used 
for processing is wasted if posts are fetched but not displayed. 

The optimal batch size depends on the usage scenario. In 
Figure 8a, we measured the energy consumption with respect 
to the batch size for two different scenarios: view 3 posts in 3 
subreddits (Scenario 1) and scroll 5 times in a subreddit feed 
(Scenario 2). The first scenario favors a smaller batch size, as 
it only loads the first screen for each subreddit. The second 
scenario favors a larger batch size as it loads more posts. 

The other energy-reducing parameter, identified in the P2P 
browser ipfs, controls the ping interval to multiple peers. By 
reducing the ping frequency from once every second to once 
every 8 seconds, the app energy usage is reduced by 12.1% 
due to less frequent WiFi usage. 
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Fig. 9: For each of the 74 numeric parameters in conv, the energy 
consumption of the parameter value consuming the least energy 
(Modified) vs. the original parameter value (Unmodified). Error bars 
represent the standard deviation of 5 runs. Data points in dashed box 
have statistically significant reduction in energy drain. 

2) The False Positives: The other deep 26 parameters 
appear to reduce energy drain for three different reasons. The 
3 numeric parameters in conv happened to correspond to the 
three reasons. Thus, we use these parameters to illustrate. 

Figure 9 shows the test results of the 73 numeric parameters 
in conv. All standard deviations are within 4% (ts) of the 
corresponding means. Most parameter values have energy 
consumption very close to the original values. The only three 
data points that have statistically significant energy difference 
are those in the dashed box (5.8%, 4.8%, 8.2%). 

The rightmost data point represents the most common 
reason (12 of the 26 parameters): Even though we try to 
reduce false positives caused by the stochastic energy drain 
through measures like back-to-back testing, hypothesis testing, 
and stability threshold, sometimes the changes are too large 
and abrupt that the framework treats them as real energy 
reductions. The way to identify such cases is to rerun the 
tests and see if the energy reduction can be reproduced. 

The data point in the middle corresponds to the second 
reason (13 of the 26 parameters): energy reduction at the 
cost of broken or degraded functionality. The conv parameter 
controls the refresh rate of various UI elements. By increasing 
the refresh interval from 500ms to 4000ms, the app energy 
consumption is reduced by 4.8%. However, when sending a 
text message, the message will take 4 seconds to appear in 
the conversation view. Other parameters have problems like 
blanking out the app screen or disappearing all images. 

The last and only one in its category is due to unexpected 
interaction between the app and our test automation script. 
When measuring energy consumption, we omit the initializa­
tion phase of the app and only measure the target test scenario. 
As we do not know exactly when all initializations are done, 
there may be some lingering initialization tasks after we have 
entered the test scenario, and their energy consumption will 
also be measured. This is not a problem as long as we enter 
the test scenario after the same delay. But the conv parameter 
delays entering the test scenario until all initializations have 
been done, leading to the apparent energy reduction. 

C. RQ4: Parameters’ Energy Effect 

In the last section, we showed that deep parameter-induced 
energy inefficiency is uncommon among apps, and discussed 
the 2 energy-reducing parameters we discovered. In this sec­



tion, we consider the “Why” question: Why do deep parame­
ters commonly not affect energy usage? 

To answer the question, we manually examine the 143 deep 
parameters in cb, and try to figure out their energy effects by 
understanding their semantics in the context of the source code 
and testing additional parameter values. We finally classified 
them into 3 categories based on their energy effect: having no 
energy effect, having limited energy effect, and having energy 
effect under extreme values. 

1) Deep Parameters with No Energy Effect: 71 of the 143 
parameters fall in this group and are further divided into two 
representative types. The first type of such parameters has 
binary effects. When the parameter value is in the valid range, 
the app works the same way regardless of the exact parameter 
value. On the other hand, the app breaks if the parameter 
value is in the invalid range. Lines 2-3 in Figure 1 shows two 
examples. Line 2 creates a buffer for version string parsing. 
App behavior is preserved when the buffer is big enough to 
hold the version string, but incorrect parsing occurs when the 
buffer is too small. In the second example, if the timeout of the 
socket is longer than the server’s response latency, the socket 
communication works normally regardless of the exact timeout 
value (0 means indefinite timeout); the connection breaks if 
the timeout value is too small. 

The other type of deep parameters without energy effect is 
due to limitations of our energy measurement methodology. 
We use power models to calculate the energy consumption of 
each hardware component. The change in energy consumption 
of a hardware component cannot be captured if the correspond­
ing power model is missing. For example, the choice of colors 
can affect the energy consumption of OLED displays [42], but 
we omitted it since measuring the OLED energy consumption 
is expensive (we would have to record every frame). 

2) Deep Parameters with Limited Energy Effects: 61 deep 
parameters fall in this category. Each parameter is typically 
attached to a certain component of the app. Thus, the energy 
effect of the parameter depends on both the total energy 
consumption of the component and the importance of the 
parameter in the component. The logging component typically 
consumes a limited amount of energy for most apps; the 
parameters controlling logging levels will thus have limited 
energy effect. On the other hand, although UI is energy 
expensive, the energy consumption of UI rendering mainly 
depends on the structure of the UI element tree, instead of the 
precise positions and sizes of the individual UI elements, and 
thus these UI parameters also have a limited energy effects. 

3) Deep Parameters Having Effects under Extreme Values: 
To see how energy drain can be affected by extreme parameter 
values, we will first look at an example. Figure 8b shows the 
energy drain of cb under varying CHANNEL_BUFFER_SIZE, 
which controls the size of the stdout and stderr buffers 
attached to the terminal. Extremely small buffers divide ter­
minal outputs into small chunks, and processing them one by 
one adds overhead. Such extreme values only occupy a tiny 
fraction of the valid value range, thus are not captured by our 

framework. However, a developer is also unlikely to pick such 
extreme values if she understood the meaning of the parameter. 

Apart from buffer sizes, making the font size of the terminal 
extremely small also increases energy consumption drastically. 
In total 9 parameters in cb are of this kind. Such parameters 
also exist in other apps. For example, the UI update frequency 
parameter discussed in the last section also only exhibits an 
energy effect when the update interval is extremely long. 
Similarly, a developer will not choose such extreme values 
if she considered the semantics of the parameters. Basically, 
developers can typically avoid such extreme values based on 
their domain knowledge. 

Finding 4: Most deep parameters either have no energy 
effect, limited energy effect, or only have energy effect 
under extreme values. We expect developers would 
typically avoid such extreme values based on their 
domain knowledge. 

VIII. DISCUSSION AND FUTURE WORK 

a) Potential impact factors to energy consumption: Our 
work is the first systematic attempt to understand the energy 
impact of deep parameters in mobile apps. Across 16 apps, we 
found that mobile deep parameters did not have a significant 
impact on app energy. We conjecture three possible explana­
tions. First, it may be that the app’s design — the software 
architecture and design patterns [43] — has a dominant effect 
on the app’s energy usage [44]–[46]. Second, it may be that our 
constraint was too strong; mobile apps may have to sacrifice 
user experience or remove features to conserve energy. Third, 
while individual parameters cannot move the needle, tuning 
them in combination might have a bigger impact [47], [48]. 
Each of these possibilities is a direction for further study. 

b) Automatic support for tuning deep parameters: Most 
parameter tuning systems work only with the “formal” pa­
rameters exposed by developers in a central repository (cf. 
§X). This design assumes that developers have identified 
and centralized their parameters. However, when exposing 
parameters by hand, it is difficult to anticipate the needs of 
future use cases. Wang et al. [49] discussed difficulties in 
tuning database systems because developers had hard-coded 
deep parameters instead of exposing them for tuning. 

One strength of our deep parameter-identification frame­
work (Figure 3) is that we automatically identify deep pa­
rameters. In the future, we plan to apply our deep parameter 
search framework to other classes of software (e.g., database 
systems) and help discover those important deep parameters. 
In these contexts, we will develop a unified parameter tuning 
approach that merges formal and deep parameters. 

c) Large-scale energy measurement: Current mobile 
phone energy measurement methods (both power monitors 
and power models) rely on real phones, making energy mea­
surement unscalable. In our experiments, it took on average 
22 minutes to test each parameter, which means roughly 1.5 
days per app. Accurate energy measurement in virtualized 



environments will enable larger-scale experiments on energy 
optimization. Accurate emulation of the hardware states and 
frequencies for power modeling is one possible direction. 

IX. THREATS TO VALIDITY 

a) Internal Validity: There are several threats to internal 
validity. Survey: Although we refined our survey instrument 
through pilot studies, it has not been validated [50]. We 
assume our respondents replied honestly. Energy experiments: 
Energy changes might be due to factors other than the mutated 
parameter. Such factors include changes in timing, network 
conditions, and external service behaviors. This threat is 
mitigated by using automated testing and repeated trials for 
each deep parameter. 

b) External Validity: Our findings may not generalize 
to different classes of software [51]. Within Android apps, 
there may be differences between the 16 open-source apps we 
investigated vs. (1) commercial apps, and (2) apps that are 
deliberately designed to be energy-efficient. For some insight 
on this threat, most of our survey respondents develop Android 
apps commercially. They indicated that their parameters and 
parameterizations were not designed for energy efficiency. 

c) Construct Validity: We define a deep parameter as 
a constant, and our experimental design preserves each pa­
rameterization throughout the lifetime of each measurement. 
Similarly, we tune deep parameters on a (static) per-class basis 
rather than a (dynamic) per-instance basis. This definition is 
generally consistent with how these constructs are defined 
in the apps we studied. However, a dynamic notion of deep 
parameters might affect our results; for example, the energy-
optimal parameter choice has been shown to vary dynamically 
for GPS parameters in Android apps [9]. 

X. RELATED WORK 

a) Configuration tuning: Tuning software configuration 
parameters for better performance is a common practice for 
many classes of software. Recently, many automated configu­
ration tuning systems are proposed, either for arbitrary config­
urable systems [6], [49], [52]–[55], or for specific application 
types [7], [56]. Tuning is conducted either offline, optimizing 
parameter values for a fixed workload and environment [57], 
[58], or online, dynamically reconfiguring the target system to 
adapt to changes [59], [60]. 

Most such works are focused on systems software, e.g., 
file systems and databases. Only Bokhari et al. [10], [11] 
and Canino et al. [9] have considered deep parameters in 
Android apps. They focus on deep parameters in specific app 
components. Our work is the first step to understanding the 
energy impact of deep parameters in general Android apps; 
we study the energy impact of single parameters, and leave 
combinatorial tuning to future work. 

b) Performance modeling: Many works [61]–[65] focus 
on building a performance model for a certain application and 
workload. A performance model is a mathematical function 
where the domain is the configuration parameters and the 
codomain is the performance. Performance optimization or 

other tasks can be further performed based on the performance 
model. These systems mostly rely on sampling, and they 
generate a better performance model by sampling efficiently. 
These works rely on explicitly exposed parameters. We con­
sider instead a program’s deep parameters. 

c) Energy impacts of design patterns and refactoring: 
Researchers have studied the energy impacts of design patterns 
across software domains. Sahin et al. [66] compared the 
power profile of data center software using design patterns 
against those not using. Pinto et al. [67] focus on the energy 
consumption of Java thread management constructs. 

Refactoring energy-greedy code patterns can also reduce 
app energy drain. Carette et al. [44] design a framework that 
automatically refactors Android code smells and observe re­
duced energy drain after correcting them. Cruz and Abreu [45] 
study refactorings for energy efficiency in the wild by mining 
source code commits, issues, and pull requests. Couto et 
al. [46] further study the impacts of refactoring on energy con­
sumption by applying combinations of refactorings to a large 
set of Android apps. Their guidelines help developers reduce 
energy drain through refactoring. Our work considers energy 
improvement through parameterization instead of refactoring. 

d) Mobile app energy testing: Discovering energy inef­
ficiency through testing is an ongoing research topic. Ding 
and Hu [35] uncover the potential energy inefficiency during 
the rendering process. Jindal and Hu [68] discover energy-
inefficient components by comparing them with other apps 
with similar functionalities. Jabbarvand et al. [69] enhances 
UI automated testing techniques to cover energy-heavy APIs, 
but lack proper oracles for unknown energy defects. As a first 
step towards automated energy test oracle construction, their 
subsequent work [70] employed deep learning to determine 
energy efficiency based on lifecycle and hardware states. Li et 
al. [71] classified mobile app energy issues into 6 categories 
and proposed different methods to detect the energy issues 
of each category. Our work focuses on constructs at a finer 
granularity, and is complementary to those works. 

XI. CONCLUSION 

We studied the energy impact of mobile deep parameters. 
We used a developer survey to understand the perceived 
impact, and a systematic experiment to understand the actual 
impact. Our survey showed that many app developers are un­
certain about and ignore the energy impact of deep parameters. 
Our experiment and analysis with 16 apps showed that single-
parameter-induced energy inefficiency is uncommon. How­
ever, in order to more fully explore energy-feature tradeoffs, in 
future work we plan to explore energy optimization opportu­
nities through tuning combinations of deep parameters as well 
as through non-functionality-preserving parameterizations. For 
now, it appears that mobile app developers can ignore the 
energy impact when choosing deep parameter values — they 
will not substantially degrade their app’s energy performance. 
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