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ABSTRACT 
Training deep neural networks (DNNs) takes signifcant time and 
resources. A practice for expedited deployment is to use pre-trained 
deep neural networks (PTNNs), often from model zoosÐcollections 
of PTNNs; yet, the reliability of model zoos remains unexamined. In 
the absence of an industry standard for the implementation and per-
formance of PTNNs, engineers cannot confdently incorporate them 
into production systems. As a frst step, discovering potential dis-
crepancies between PTNNs across model zoos would reveal a threat 
to model zoo reliability. Prior works indicated existing variances in 
deep learning systems in terms of accuracy. However, broader mea-

sures of reliability for PTNNs from model zoos are unexplored. This 
work measures notable discrepancies between accuracy, latency, 
and architecture of 36 PTNNs across four model zoos. Among the 
top 10 discrepancies, we fnd diferences of 1.23%ś2.62% in accuracy 
and 9%ś131% in latency. We also fnd mismatches in architecture 
for well-known DNN architectures (e.g., ResNet and AlexNet). Our 
fndings call for future works on empirical validation, automated 
tools for measurement, and best practices for implementation. 

CCS CONCEPTS 
· Software and its engineering ! Reusability; · Computing 
methodologies ! Neural networks. 

KEYWORDS 
Neural networks, Model zoos, Software reuse, Empirical software 
engineering 

ACM Reference Format: 
Diego Montes, Pongpatapee Peerapatanapokin, Jef Schultz, Chengjun Guo, 
Wenxin Jiang, and James C. Davis. 2022. Discrepancies among Pre-trained 
Deep Neural Networks: A New Threat to Model Zoo Reliability. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference 
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22), 
November 14ś18, 2022, Singapore, Singapore. ACM, New York, NY, USA, 
5 pages. https://doi.org/10.1145/3540250.3560881 

1 INTRODUCTION 
With the growing energy consumption of training DNNs [26], tak-
ing advantage of the re-usability of PTNNs can signifcantly reduce 

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License. 
ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore 
© 2022 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9413-0/22/11. 
https://doi.org/10.1145/3540250.3560881 

the costs of training [13]. In particular, transfer learning can result 
in shorter training times and higher asymptotic accuracies com-

pared to other weight initialization methods [22, 36]. This kind 
of technique accelerates model reuse and development. The his-
tory of PTNNs and their impact on the development of artifcial 
intelligence has been extensively documented [13, 25]. As such, 
collections of PTNNs have been created, referred to as model zoos. 
Notably, maintainers of popular machine learning frameworks, such 
as TensorFlow [2], maintain corresponding model zoos developed 
with their framework, such as the TensorFlow Model Garden [38]. 

There are many model zoos [1, 18, 23, 38] and an expanding use 
of PTNNs in production systems [13]. Past work has emphasized the 
difculties in adopting software engineering practices in machine 
learning, and specifcally, the challenges with reproducing machine 
learning research papers [4, 17]. These reproducibility issues may 
afect PTNNs, leading to variations across model zoos [28]. Dis-
parities in the accuracy, latency, or architecture of a PTNN could 
negatively afect a deep learning system, threatening PTNNs’ reuse 
potential. Consider a model zoo that has an incorrect implemen-

tation of a well-known DNN architecture, which has increased its 
latency signifcantly. If an engineer were to use the PTNN from 
this zoo, they would unknowingly be receiving a lower quality 
PTNN than they might otherwise have from a diferent model 
zoo. The engineer’s efort to enable a quick turnaround time with 
a PTNN would have become harmful. Discovering discrepancies 
would shine a light on the reliability of model zoos. 

To explore the reliability of model zoos, we performed a measure-

ment study to identify discrepancies among 36 image classifcation 
PTNN architectures across four model zoos: TensorFlow Model Gar-
den (TFMG) [38], ONNX Model Zoo (ONNX) [1], Torchvision Models 
(Torchvision) [23], and Keras Applications (Keras) [18]. The PTNNs 
were measured along three dimensions: accuracy, latency, and archi-
tecture. We fnd the diferences in accuracies on ILSVRC-2012-CLS 
dataset (ImageNet) can be as large as 2.62% [10].1 Similarly, over 
20% of the PTNNs measured had latency diferences (FLOPs) of 
10% or more when comparing PTNNs of the same name across the 
model zoos. Lastly, we discover architectural diferences in several 
PTNNs, including implementations of AlexNet and ResNet V2. We 
conclude with an agenda for future research on further empirical 
validation, automated tools for measurement, and best practices for 
implementing model zoo PTNNs. 

1The ILSVRC-2012-CLS image dataset has 50,000 validation images. A 1% accuracy 
diference is equivalent to 500 images. 
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2 BACKGROUND AND RELATED WORK 
PTNNs are applied in a wide variety of domains [13]. With the 
demand for engineers far exceeding supply [32], companies are 
looking for best practices that can boost the productivity of their en-
gineers. Major companies (e.g., Google and Microsoft) have shared 
best practices on machine learning development and informed 
future directions on model reuse [3, 8]. A case study from SAP indi-
cates possible compatibility, portability, and scalability challenges 
in machine learning model deployment, which may afect their 
performance [30]. There have been many eforts to improve the 
quality of model zoos. For example, IBM has developed a tool to 
extract model metadata [37] to support better model management. 
Banna et al. promote best practices for reproducing and publishing 
high-quality PTNNs [4]. However, the reliability of model zoos has 
not been validated by prior works. 

The ability to replicate the accuracy of a DNN in identical train-
ing environments is hindered by non-deterministic factors. Ac-
curacy diferences of up to 10.8%, stemming purely from non-
determinism, have been reported with popular DNN architectures 
[28]. Closely related, research has investigated and benchmarked 
the performance variances tied to deep learning frameworks [21, 
33]. This variability threatens the reliability of new deep learning 
techniques. As such, automated variance testing [27] has been pro-
posed to assure the validity of these comparisons. However, PTNNs 
in model zoos may also sufer from varying architectural imple-

mentations, afecting more than just accuracy. Our work measures 
the disparities in PTNNs across diferent model zoos as opposed 
to attempting to improve the standard in just one [4]. Our results 
enlighten future works validating the quality and promoting the 
standardization of model zoos. 

3 METHODOLOGY 
We perform a measurement study to assess our problem statement: 
whether discrepancies exist between the accuracy, latency, and 
architecture of PTNNs across diferent model zoos. 

3.1 Subjects 
A model zoo is a collection of PTNNs for various tasks. We carry 
out a selection process for four model zoos. Our selection crite-
ria included the model zoo being maintained alongside a machine 
learning framework: this increases the likelihood of the model zoo 
being actively maintained. Furthermore, to ensure the popularity of 
the model zoo, the zoo must have a public GitHub repository with 
at least three thousand stars [7]. Using GitHub search2 to identify 
potential model zoo candidates, 11 model zoos were selected that 
met the criteria.3 The PTNNs within the 11 model zoos were cat-
egorized into deep learning tasks, including image classifcation, 
object detection, and natural language processing. We focused on 
image classifcation models because it is the most common type in 
8 of the 11 model zoos. 

A PTNN availability analysis was done on the candidate model 
zoos to assess how many model zoos ofered the same image classif-
cation PTNN architectures. Based on the largest shared availability, 
we chose TensorFlow Model Garden, ONNX Model Zoo, Torchvision 
2https://github.com/search 
3The 11 identifed potential model zoos are as follows: TensorFlow Model Garden, 
ONNX Model Zoo, Torchvision Models, Keras Applications, TensorFlow Model Hub, 
PyTorch Model Zoo, MXNet Model Zoo, Gluon Model Zoo, Deeplearning4j Model Zoo, 
Cafe Model Zoo, and OpenVINO Model Zoo. 

Figure 1: Overview of the measurement process. We gather 
PTNNs from the model zoos with the same name, perform 
measurements on each PTNN, and compare for discrepancies. 

Models, and Keras Applications. Within these model zoos, we se-
lected all the image classifcation PTNN architectures that were 
present in at least two of the four model zoos, yielding 36 PTNN 
architectures. The selected PTNNs are either directly downloadable 
from the model zoos’ GitHub repositories or can be pulled using 
the model zoos’ APIs. 

3.2 Evaluation Metrics 
Accuracy. Image classifcation DNNs’ efectiveness is measured in 
accuracy, which is a critical component of a PTNN. We are measur-

ing discrepancies between the claims of model zoos as opposed to 
verifying them. Top-1 accuracy is the conventional accuracy where 
model prediction must exactly match the expected label, while 
top-5 accuracy measures the fraction of images where any of the 
top fve predicted labels matches the target label [9, 10]. 35 image 
classifcation PTNN architectures reported top-1 ImageNet classi-
fcation accuracies, meanwhile only 32 reported top-5 ImageNet 
classifcation accuracies. 
Latency. The latency of a DNN is a key factor that engineers 
consider [11]. For example, MobileNet is a DNN image classifcation 
architecture that prioritizes low latency on mobile and embedded 
systems [16]. We used open-source tools [5, 34, 35] to measure 
the latency by counting the foating point operations (FLOPs) [6]. 
FLOPs are framework and hardware-agnostic, allowing for unbiased 
comparisons. 
Architecture. PTNNs are trained weights based on research papers 
that propose DNN architectures. As a result, model zoos advertise 
PTNNs by their architecture name. The observed accuracy dif-
ferences and past work on DNN vulnerabilities motivated us to 
examine architecture [12]. Qualitative observations of discrepan-
cies in the descriptions, source code, and visualizations of PTNN 
architectures were employed. Specifcally, netron, an open-source 
neural network visualizer, was used to inspect the architecture 
of the PTNNs [31]. However, not all neural network weight for-
mats are supported, so all PTNNs were converted to the ONNX 
format for architectural analysis using an appropriate tool for each 
framework [24, 29]. The source code for the implementations of 
the PTNNs are present in the model zoos’ GitHub repositories and 
was used as an additional form of PTNN inspection. 
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Table 1: Frequency at which each model zoo had the most or 
least accurate model ordered by highest top-1 accuracy. 

Highest Top-1 Lowest Top-1 Highest Top-5 Lowest Top-5 

Torchvision Models 48% 41% 52% 36% 
TF Model Garden 40% 33% 36% 43% 
Keras Applications 37% 44% 36% 40% 
ONNX Model Zoo 35% 41% 31% 44% 

4 RESULTS AND ANALYSIS 
4.1 Accuracy 
We compared the top-1 accuracy of 35 PTNN architectures and 
the top-5 accuracy of 32 PTNN architectures by using ImageNet. 
Notably, 12 of the 35 profled PTNN architectures had top-1 accu-
racy diferences greater than 0.96%. For top-5 accuracies, 6 of the 32 
PTNN architectures had diferences greater than 0.94%. The large 
diferences present in Figure 2 have signifcant consequences. For 
example, ResNet V1 152 from Keras is noticeably less accurate than 
the PTNN by the same name from Torchvision, with top-1 accura-
cies of 76.6% and 78.31%, respectively. This diference is pronounced 
enough that ResNet V1 101 from Torchvsion with top-1 accuracy of 
77.37% is  more accurate than ResNet V1 152 from Keras.4

Figure 2: Top 10 largest top-1 accuracy diferences. For a 
PTNN architecture, the accuracy of the PTNN with the lowest 
reported top-1 accuracy is subtracted from that of the PTNN 
with the largest top-1 accuracy. 

Table 1 shows the aggregation of accuracy diferences across 
model zoos, highlighting how often a model zoo had the highest 
or lowest top-1 or top-5 accuracy for a given PTNN architecture. 
As seen, 48% of the PTNNs that were available on Torchvision had 
the highest top-1 accuracy among the model zoos. On the other 
hand, Keras had the lowest top-1 accuracy 44% of the time for its 
selection of PTNNs. 

4.2 Latency 
36 PTNN architectures were measured for their FLOPs. Figure 3 
shows that there are 8 PTNN architectures where the PTNN with the 
highest amount of FLOPs had greater than 10% more FLOPs than the 

4ResNet V1 101 was originally reported to be 0.32% less accurate than ResNet V1 
152 [14]. 

Figure 3: Top 10 largest FLOPs diferences. For a PTNN archi-
tecture, the FLOP count of the PTNN with the most FLOPs is 
divided by the FLOPs of the PTNN with the fewest. 

PTNN with the lowest FLOP count. At the extreme, Torchvision’s 
SqueezeNet 1.0, sitting at 819.08 million FLOPs, had 2.31× the FLOPs 
of ONNX’s SqueezeNet 1.0. Likewise, the three PTNN architectures 
from the ResNet V2 family all had greater than 85% more FLOPs 
than the lowest FLOPs PTNN. All the high FLOP-count ResNet V2 
come from TFMG. 

We discuss the possible explanations for the FLOPs diferences 
seen in Figure 3. The high FLOPs diference measured in SqueezeNet 
1.0 can be explained by looking at its successor, SqueezeNet 1.1. 
SqueezeNet 1.1 is advertised by ONNX to contain 2.4× less computa-

tion than the former. However, SqueezeNet 1.1 from ONNX has the 
same number of measured FLOPs as the 1.0 PTNN ofered. ONNX 
has been advertising SqueezeNet 1.1 as its 1.0 counterpart. Similarly, 
looking at the ResNet V2 from TFMG: a primary contributor to the 
large amount of FLOPs is the input shape. ResNet V2 architectures, 
according to the origin paper, accept 224×224 inputs [15]; however, 
TFMG states that the ResNet V2 PTNNs it provides use Inception 
pre-processing and an input image size of 299×299. A trade-of 
between accuracy and throughput, FLOPs, was potentially made 
here by the model zoo maintainers. 

Across all FLOP-counted PTNNs, Torchvision had the highest 
FLOPs PTNNs for 78% of the PTNNs it ofered. Close behind, TFMG 
had 69%. Pointedly, Keras never had the highest FLOPs PTNN and 
had the lowest FLOPs implementation 81% of the time. 

4.3 Architecture 
We frame our results for architecture in terms of the discrepancies 
we discovered in our analysis. Specifcally, we discuss diferences 
among PTNNs for AlexNet, ResNet V1 101, ResNet V2 50, and ResNet 
V2 101 and against the PTNNs’ origin papers. 

The AlexNet from Torchvision cites a diferent origin paper than 
other model zoos [19, 20]. Both papers contain the same frst author; 
however, only the latter contains an explicit description of a DNN 
architecture. As such, our analysis pegs the PTNN against the latter 
paper [20]. We notice two main discrepancies: the PTNN is missing 
the response normalization layers and the kernel-size and number 
of kernels for the convolution layers are incorrect. For instance, 
Torchvision’s PTNN has 64 kernels in the frst convolution layer as 
opposed to the 96 that are described in the origin paper. 
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Figure 4: ResNet V2 50 architecture diferences between Keras 
Applications (left) and ONNX Model Zoo (right). The top-right 
convolution on the left has a stride size of 2, while the top-
right convolution on the right has a stride size of 1. 

The ResNet V1 101 from ONNX and Keras contain convolution 
shortcuts, which were only introduced in the ResNet V2 paper, but 
not in the ResNet V1 origin paper [14, 15]. Torchvision’s and TFMG’s 
ResNet V1 101 do not include this shortcut. Also in the ResNet family, 
both the ResNet V2 50 and ResNet V2 101 have a shared discrepancy. 
As seen in Figure 4, Keras’ ResNet V2 50 implementation contains 
max pool skip connections, which are not present in the paper, and 
uses convolutions with larger strides in these residual blocks [15]. 

The observed discrepancies in architecture may afect the accu-
racy and latency. For example, the larger convolution strides and 
max pool skip connection in the ResNet V2 50 from Keras allows 
the network to use less compute, FLOPs, compared to the PTNN 
from ONNX. This can be seen in the FLOP measurements of the 
ResNet V2 50 from Keras and ONNX. ONNX’s ResNet V2 50 has 
4.12 billion FLOPs while Keras’ PTNN only has 3.49 billion FLOPs, 
an 18.1% diference. Moreover, the Keras PTNN did not sacrifce 
accuracy through this implementation, reporting a 76% top-1 accu-
racy, which is greater than ONNX’s ResNet V2 50 top-1 accuracy 
of 75.81%. While the Keras maintainers did not implement ResNet 
V2 50 faithfully to the origin paper, they produced a more accurate 
PTNN with lower latency. 

5 DISCUSSION AND FUTURE WORK 
Empirical Validation. The top-1 accuracy diferences depicted in 
Figure 2 suggest that the choice of model zoo matters. Specifcally, 
34% of the PTNN architectures having top-1 accuracy diferences 
greater than 0.96% is not easily overlooked. An engineer may re-
ceive a PTNN that incorrectly classifes greater than 500 validation 
images on ImageNet more than a PTNN from a diferent model zoo. 
Model zoo choice should not result in a noticeable impact on the 
accuracy of PTNNs that engineers receive. Although model zoos 
currently report the accuracy of the PTNNs they ofer, our work has 
shown that this does not guarantee that there is not another model 
zoo with the same PTNN at a higher accuracy. Publicly available 
and actively maintained comparisons of model zoo PTNNs would 
allow engineers to be more informed when choosing a model zoo. 
Furthermore, we only studied the accuracies of image classifcation 

models at face value. We recommend future works focus on empir-

ical validation on the claims of PTNNs in model zoos to check for 
the existence of false advertising. 
New Metrics and Automated Tools. The measured FLOP dis-
parities seen in Figure 3 have consequences, especially in edge 
devices with limited compute. For example, ONNX incorrectly list-
ing SqueezeNet 1.1 as SqueezeNet 1.0 may lead to confusion when an 
engineer switches to SqueezeNet 1.1 from SqueezeNet 1.0 expecting 
a drop in latency. Similar confusion may arise from instances like 
the one seen in TFMG’s selection of ResNet V2. While the increased 
input size is stated, the impact on latency is not made clear. To 
efectively inform engineers of the latency of PTNNs, model zoos 
should report FLOP counts alongside accuracy. Also of interest is 
the energy usage of these PTNNs, another important property for 
edge devices. The lack of reporting of these properties may make 
choosing PTNNs more difcult. We recommend future works create 
new metrics to measure the reliability and quality of PTNNs from 
model zoos and develop tools for automatically measuring these 
properties. Publishing updated results frequently can support easier 
decision-making of models for deployment. 
Naming Conventions. The diferences in the architectures of 
PTNNs may indicate an underlying improper documentation stan-
dard and a need for improved naming conventions in model zoos. 
As indicated in ğ4.3, Torchvision’s AlexNet did not adhere to the 
origin paper while still claiming to be AlexNet. Seemingly, model 
zoos are advertising PTNNs labeled as well-known DNN architec-
tures, like ResNet and AlexNet, but when they do this, they really 
mean that the PTNNs are based on the DNN architecture and are 
not strict implementations. This inadequate naming convention 
leads to a false sense of equality and thus confusion. We recom-

mend the community comprehensively document PTNN naming 
conventions to increase cohesion among model zoos. Likewise, we 
suggest future works investigate the expectations of engineers with 
regards to the PTNNs from model zoos to see whether they prefer 
exact reproductions or more accurate and lower latency PTNNs. 
The result of such a study would inform model zoo maintainers on 
how to best implement and train PTNNs. 

6 CONCLUSION 
We present an investigation of the discrepancies between 36 image 
classifcation PTNN architectures from four popular model zoos 
through accuracy, latency, and architecture analyses. We fnd sev-
eral signifcant discrepancies among these three axes that challenge 
the well-established use of PTNNs from model zoos, suggesting 
that an engineer will receive a PTNN with diferent characteristics 
based on the model zoo. The PTNN’s goal of shortening model 
deployment time is diminished because of the time investment 
needed to verify the properties of the PTNN. We discuss the impor-

tance of future works to validate the claims of model zoos, develop 
automated tools for measurement, and explore best practices for 
implementing model zoo PTNNs. 
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