Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

12-6-2022

A Constrained Adaptive Active Noise Control Filter Design Method Via Online Convex Optimization

Yongjie Zhuang Purdue University, zhuang32@purdue.edu

Yangfan Liu Purdue University, yangfan@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Zhuang, Yongjie and Liu, Yangfan, "A Constrained Adaptive Active Noise Control Filter Design Method Via Online Convex Optimization" (2022). *Publications of the Ray W. Herrick Laboratories*. Paper 262. https://docs.lib.purdue.edu/herrick/262

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

A constrained adaptive active noise control filter design method via online convex optimization

Yongjie Zhuang (presenter)

Yangfan Liu

Ray W. Herrick Laboratories

Purdue University

12/06/2022

- Backgrounds
- Methods
 - Review of traditional constrained ANC methods
 - Proposed online constrained optimization method
- Results
- Summary

Three of the challenges when applying ANC to wider applications:

- Time-varying environment, especially for changing signal characteristics **Require adaptive controllers**
- Controller should be stable and robust

Require constraints on controllers

• Larger quiet zone

Require multi-channel systems

Three of the challenges when applying ANC to wider applications:

• Time-varying environment, especially for changing signal characteristics

Require adaptive controllers

Controller should be stable and robust

Require constraints on controllers

• Larger quiet zone

Require multi-channel systems

- Lower convergence rate due to coupling in multi-channel systems
- Complicated constraints in multichannel systems
- Significant computational load

- Backgrounds
- Methods

Review of traditional constrained ANC methods

- Proposed online constrained optimization method
- Results
- Summary

Methods – Basic block diagram

Methods – Basic block diagram

Methods – Basic block diagram

 $\widehat{G}_{s_0} = G_{s_0}$

in nominal operating condition.

The stability problem caused by the closed loop $W\widehat{G}_{s}$ should still be

Methods – Traditional Leaky FxLMS

For each channel of control filter:

$$w_{m,l,k}^{(n+1)} = w_{m,l,k}^{(n)} - \alpha \left(\sum_{j=1}^{N_e} \tilde{x}_{j,m,l}(n-k)e_j(n) + \beta w_{m,l,k}(n) \right)$$

Step size Leakage factor

Methods – Traditional Leaky FxLMS

- When leakage factor β is large enough, most of the common constraints on controllers can be satisfied
- However, the designed controller can be over-conservative and sacrifices the ANC performance

For each channel of control filter:

$$w_{m,l,k}^{(n+1)} = w_{m,l,k}^{(n)} - \alpha \left(\sum_{j=1}^{N_e} \tilde{x}_{j,m,l} (n-k) e_j(n) + \beta w_{m,l,k}(n) \right)$$

Step size Leakage factor

Methods – Traditional constrained optimization method

Alternatively, a constrained optimization problem can be formulated and solved to obtain the filter coefficients

Cost function:

$$\sum_{k=k_1}^{k_2} tr[E(f_k)E(f_k)^{H}] \quad \Longrightarrow \text{ Total power of } \vec{e} \text{ cross all frequencies}$$

Stability constraints:

 $\min\left(\operatorname{Re}\left(\lambda\left(W(f_k)\widehat{G}_s(f_k)\right)\right)\right) > -1 \quad \Longrightarrow \quad \text{Nyquist criterion, on the right of -1 point}$

Methods – Traditional constrained optimization method

Alternatively, a constrained optimization problem can be formulated and solved to obtain the filter coefficients

- Backgrounds
- Methods
 - Review of traditional constrained ANC methods
 - Proposed online constrained optimization method
- Results
- Summary

Methods – Proposed constrained optimization method

Improvements were proposed by us on the constrained optimization method:

Zhuang and Liu, JASA 2021:

- Proposed a convex formulation from traditional constrained optimization problem for ANC filter design
- The computational time can be reduced from the order of hours to seconds

Constrained optimal filter design for multi-channel active noise control via convex optimization

Yongjie Zhuang^{a)} and Yangfan Liu^{b)} Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA

Methods – Proposed constrained optimization method

Improvements were proposed by us on the constrained optimization method:

Zhuang and Liu, JASA 2021:

- Proposed a convex formulation from traditional constrained optimization problem for ANC filter design
- The computational time can be reduced from the order of hours to seconds

Zhuang and Liu, JASA 2022:

- A numerically stable formulation using dual form is proposed based on the previous convex formulation
- Improves both the numerical efficiency and stability

Constrained optimal filter design for multi-channel active noise control via convex optimization

Yongjie Zhuang^{a)} and Yangfan Liu^{b)} Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA

A numerically stable constrained optimal filter design method for multichannel active noise control using dual conic formulation

Yongjie Zhuang D and Yangfan Liu^{a)} Ray W. Herrick Laboratories, Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA

Methods – Proposed constrained optimization method

Proposed constrained adaptive ANC method via online convex optimization:

- Backgrounds
- Methods
 - Review of traditional constrained ANC methods
 - Proposed online constrained optimization method
- Results
- Summary

Results – Experimental setup

Sampling rate:

- DAQ : 9 kHz
- Controller : 3 kHz

In each channel, filter length is 64 for:

- ANC control filter
- Estimated secondary path
- Estimated acoustic feedback path

Results – Two types of sources – Full-band & Half-band cases

- Two independent white noises are generated digitally first
- Then they were filtered as the inputs for two noise sources

both noise sources signal from 100 – 1450 Hz

source 1: 100 – 950 Hz, **source 2**: 600 – 1450 Hz

Results – Measured transfer paths

Parameters in leaky FxLMS

Parameters	Value	Reason
Leakage factor $oldsymbol{eta}$	1×10^{-5}	Tuned to get the smallest value that satisfy stability
Step length $lpha$	0.1	Tuned to get the largest value that satisfy convergence

Parameters in proposed method

Parameters	Value	Reason
Data collection interval	10 seconds	To obtain enough data to compute signal spectrum
Filter coefficients updating interval	10 seconds	Time needed for the algorithm to converge
Frequency resolution	5 Hz	A fine resolution for better performance

Results – Total noise power in frequency domain

The proposed method has **better ANC performance** because it is less conservative in constraints.

Results – Analysis on computational time

Test 100 cases in host PC for 3-sigma limit (99.7%)										
	Process						CPU time (seconds)			
Solving constrained optimization using proposed formulation 5.0 \pm 1.8 secon							1.8 seconds			
Computing spectrum from collected data 0.19 ± 0.16										
Maximum equivalent multiplications per sampling interval:										
3 GHz ↓ CPU clock speed	× 5 s ↓ 5 secon in avera	/ ds 20 ge m	20 D cycles to do Solutiplication	/ 0 64-bit once	(10 × 3000 Hz) ↓ Total number of sampling intervals	=	25k			

The leaky FxLMS adaption part need 1536 multiplications per sampling interval, but it takes 12 times longer time to converge, $1536 \times 12 \approx 18$ k

The total required computational power is not significantly different

- Backgrounds
- Methods
 - Review of traditional constrained ANC methods
 - Proposed online constrained optimization method
- Results
- Summary

Summary

- A constrained adaptive ANC design method via online convex optimization is proposed
- Compared with traditional leaky FxLMS, the proposed method converges faster and has better ANC performance
- The proposed method can be suitable for cases where:
 - Signal characteristics change stage by stage, e.g., variable-speed HVAC systems
 - Various products can share a host server, e.g., smart home/office application

Best Paper Competition Evaluation

Thank you!

https://forms.gle/ytGRXeRtJH1xsnna8

References

- Zhuang, Yongjie, and Yangfan Liu. "Constrained optimal filter design for multi-channel active noise control via convex optimization." *The Journal of the Acoustical Society of America* 150.4 (2021): 2888-2899.
- Zhuang, Yongjie, and Yangfan Liu. "A numerically stable constrained optimal filter design method for multichannel active noise control using dual conic formulation." *The Journal of the Acoustical Society of America* 152.4 (2022): 2169-2182.
- Cheer, Jordan, and Stephen J. Elliott. "Multichannel control systems for the attenuation of interior road noise in vehicles." *Mechanical Systems and Signal Processing* 60 (2015): 753-769.
- Shi, Dongyuan, et al. "Optimal output-constrained active noise control based on inverse adaptive modeling leak factor estimate." *IEEE/ACM Transactions on Audio, Speech, and Language Processing* 29 (2021): 1256-1269.
- Wu, Lifu, Xiaojun Qiu, and Yecai Guo. "A generalized leaky FxLMS algorithm for tuning the waterbed effect of feedback active noise control systems." *Mechanical Systems and Signal Processing* 106 (2018): 13-23.
- Sturm, Jos F. "Implementation of interior point methods for mixed semidefinite and second order cone optimization problems." *Optimization methods and software* 17.6 (2002): 1105-1154.