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Abstract 

The classification of sensorimotor rhythms in 

electroencephalography signals can enable paralyzed 

individuals, for example, to make yes/no decisions. In 

practice, these approaches are hard to implement due 

to the variability of electroencephalography signals 

between and within subjects. Therefore, we report a 

novel and fast machine learning model, meeting the 

need for efficiency and reliability as well as low 

calibration and training time. Our model extracts 

finely graded frequency bands from motor imagery 

electroencephalography data by using power spectral 

density and training a random forest algorithm for 

classification. The goal was to create a non-invasive 

generalizable method by training the algorithm with 

subject-independent EEG data. We evaluate our 

approach using one of the currently largest publicly 

available electroencephalography datasets. With a 

balanced accuracy of 73.94%, our novel algorithm 

outperforms other state-of-the-art non-subject-

dependent algorithms. 

 

Keywords: Decision prediction, motor imagery tasks, 

EEG, machine learning 

1. Introduction  

For people who have severe motor disabilities, 

alternative methods of communication and control are 

necessary. The availability of communication outlets 

is especially essential for patients with Locked-in 

syndrome (LIS), who are incapable of moving any part 

of their body or face except for horizontal eye 

movements and sometimes upper eyelid movements 

(Bauer et al., 1979). There are multiple conditions 

leading to LIS, among others, strokes and other brain 

lesions or multiple sclerosis. Despite their inability to 

communicate, most LIS patients remain cognitively 

intact and aware of their surroundings (Laureys et al., 

2005). Since no treatment is available (Masrori & Van 

Damme, 2020), finding a way to communicate with 

the patients is a necessity so that they are not trapped 

inside their bodies without any communication outlets.  

Over the past two decades, there has been a 

proliferation of studies that indicate scalp-recorded 

electroencephalograms (EEGs) can serve as the basis 

for non-muscular communication systems and control 

devices, commonly known as brain-computer 

interfaces (BCIs) (Birbaumer, 2006; Branco et al., 

2021). Among the research topics in BCI is decoding 

yes/no decisions (Naseer et al., 2014; Peterson et al., 

2005) or cursor control, which is aimed at mapping 

brain signals to cursor movements on a screen (Li et 

al., 2010; McFarland & Wolpaw, 2011). BCI-based 

neuroprostheses are, therefore, an application that may 

greatly improve the quality of life for paralyzed 

patients who cannot communicate. IT-enabled 

healthcare has made tremendous progress in recent 

years (Alshehri & Muhammad, 2021; Tsoi et al., 2021) 

and continues to be advanced by the application of 

modern machine learning (ML) using Big Data 

(Banville et al., 2021; Esteva et al., 2019). The concept 

of BCIs, which is based on a concept from the 1970s, 

thus represents a promising approach for affected 

individuals (Nirenberg et al., 1971; Wolpaw et al., 

2002). In this context, BCI systems extend 

communication by using recorded brain activity 

(beyond traditional neuromuscular pathways) to 
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enable a link between the brain and a computer 

(Nicolas-Alonso & Gomez-Gil, 2012). The main 

advantage of sensorimotor rhythm (SMR) BCI 

systems is that subjects can learn to generate a pattern 

for controlling a device voluntarily using this kind of 

BCI without any external stimuli, as body movements 

are imagined. Thus, motor imagery (MI)-based BCIs 

are particularly useful for people with motor 

impairments by enabling them to communicate and 

control an external device. Accordingly, they can 

provide great added value for rehabilitation techniques 

and patients with impaired neuromuscular channels 

(Mak & Wolpaw, 2009). 

By classifying SMRs in the EEG, non-invasive 

BCIs can be developed, which enable direct 

communication between the brain and external 

devices (Cruz et al., 2021). SMRs arise from the 

modeling of MI in humans (Pfurtscheller & Neuper, 

1997; Wolpaw et al., 2002), allowing users to interact 

with external systems in an intuitive way (Brusini et 

al., 2021). Especially in healthcare, BCIs allow 

paralyzed individuals to control, among others, 

computers (Li et al., 2010), robotic arms (Wolpaw & 

McFarland, 2004), wheelchairs (Huang et al., 2012), 

and even autonomous vehicles (Zander et al., 2017). 

During MI, the subject visualizes making a movement 

without actually performing it. In the employed 

dataset in this study, four MI tasks (Imagine 

movement of the left/right hand, imagine moving both 

hands, and imagine rest state) were performed by the 

participants, and to create a binary-class problem, we 

merged the four MI tasks into two common target 

classes by combining the left and right MI tasks and 

the up and down MI tasks. 

However, because SMR patterns with their 

corresponding MI tasks differ in amplitudes, 

frequency bands, spatial distribution, and timing 

within and between subjects, accurate mapping is 

challenging. Thus, so-called inter-subject transfer 

learning is a long-standing problem (Roy et al., 2020). 

ML approaches (Blankertz et al., 2008) are often used 

to address this issue, yielding increasingly better 

performance in classification (Altaheri et al., 2021). 

Nevertheless, due to individual differences in EEG 

signals, most BCI systems are calibrated specifically 

for individual users, i.e., they are subject-dependent 

(Altaheri et al., 2021), resulting in long and strenuous 

training times (Aggarwal & Chugh, 2022). However, 

the use of real-time BCIs is of great importance for 

practical applications (Aggarwal & Chugh, 2022). 

Nevertheless, current ML approaches still show a very 

long calibration as well as classification time (Lotte et 

al., 2018). Therefore, there is a need to shorten BCI 

calibration times. A method that has received less 

attention in BCI research so far is the random forest 

(RF) classifier (Breiman, 2001). It offers the 

advantage of a short application time and resistance to 

outliers and artifacts. Furthermore, it could achieve the 

highest classification accuracies in many other 

domains and showed the first promising results in the 

context of non-invasive BCIs (Akram et al., 2015). 

Moreover, most approaches in scientific publications 

follow the traditional classification of EEG frequency 

bands into delta, theta, alpha, beta, and gamma bands 

(Mueller-Putz et al., 2015). However, promising 

predictions could already be made, for example, for 

health behavior prediction (Breitenbach, et al., 2022) 

by a fine-grained analysis of EEG sub-bands following 

Buettner et al. (2019). This subdivision could identify 

individual frequency sub-bands that are particularly 

important for classifying directional predictions for a 

BCI system. Our interest is to explore BCI technology 

as a potential solution for promoting independence in 

severely paralyzed individuals who require alternative 

methods for communication and control. Therefore, in 

this paper, we investigated the following research 

question: Is it possible to classify binary-class (Yes/No 

Decision) SMR-based BCI tasks subject independent, 

using EEG data only? Using fine-graded frequency 

bands and power spectral density (PSD) in the context 

of modern ML, we propose an RF-based classification 

model for EEG-based MI-BCI systems. 

Our most important contributions are: 

1) We develop a RF classifier to distinguish 

between two MI data from MI tasks for a 

binary-class problem in a non-subject-

dependent approach with a balanced 

accuracy of 73.94%.  

2) The model has a low average classification 

time of 0.256 milliseconds (0.688 seconds of 

classification time divided by 2,687 trials). 

3) We identified the most important frequency 

bandwidths to classify bi-directional 

predictions in the EEG data. The most 

relevant sub-bands are all in the gamma range 

(25-40 Hz).  

These contributions allow us to add a few things 

to the current state of research. First, we address the 

need for a subject-independent classification approach 

(McFarland et al., 2000). Second, with an accuracy of 

73.94%, we outperform most other subject-

independent models (Han & Jeong, 2021; Mattioli et 

al., 2021). And we show a faster approach than the 

data-hungry deep learning models (Kwon et al., 2020). 

Also, through our fine-graded analysis, we can show 

which frequency bands and brain regions are crucial 

for the analysis compared to previous work. 

The paper is organized as follows: Next, we 

address the research background and related work. 

After that, we describe our ML method as well as the 
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applied dataset. Subsequently, we present the results 

of our implemented method and discuss it, including 

theoretical and practical implications. Finally, we 

draw a conclusion that contains the limitations of our 

work and propose possible future research directions. 

2. Research background 

In a MI-BCI the EEG of a subject is measured and 

processed to determine the brain’s motor intention and 

translate it into a control signal. It has been found that 

MI generates EEG patterns similar to those associated 

with real movements (McFarland et al., 2000). By 

imagining a limb movement, certain frequency bands 

in the EEG signals are affected either by a decrease or 

an increase in power (Pfurtscheller & Lopes da Silva, 

1999). As a result, these intentions are categorized as 

different cognitive tasks, for example, left- and right-

handed movements. 

2.1 Machine learning algorithms for BCIs 

While in the past, most MI-based BCI systems 

generally used subject-dependent methods that require 

long calibration and training times (Ang et al., 2012), 

there is now a growing awareness of the need for 

progress in developing a subject-independent pattern 

classifier by combining data across several subjects. 

Rather than having to first train the pattern classifier 

on subject-specific data, the goal is to decode in real-

time from brain signals associated with an individual 

(Ruiz et al., 2014). So far, a variety of feature 

extraction and classification methods have played an 

important part in research advancing BCI. Thereby, 

most of the BCIs based on EEGs are supported by ML 

algorithms (Lotte et al., 2018). 

A widely adopted approach is decomposing EEG 

signals into spatial patterns, and extracting features 

according to a common spatial pattern (CSP) 

(Bentlemsan et al., 2014; Robinson et al., 2013). Based 

on CSP methods, advanced algorithms have been 

proposed. 

2.1 Machine learning algorithms 

As shown in Table 1., Bentlemsan et al. (2014), 

used the RF classifier in conjunction with Filter Bank 

Common Spatial Pattern (FBCSP). In another study by 

Anam et al. (2019), the experimental results indicated 

that the EEG pattern recognition with RF attained the 

best testing accuracy for individual finger movement 

among the other three tested classifiers support vector 

machine (SVM), k-nearest neighbor (kNN), and linear 

discriminant analysis (LDA). In Steyrl et al.’s (2016) 

study RF and regularized linear discriminant analysis 

(LDA) are compared. Furthermore, in a previous study 

(Qu et al., 2018) with a binary-class classification 

problem, PSD was used and an LDA, and a RF model 

were trained. 

 
Table 1. Comparison of algorithms for BCI. 
 

Reference Algorithm Balanced 

Accuracy  

Drawbacks 

Bentlemsan 
et al., 2014 

FBCSP + 
RF 

79.78% Small dataset, 
subject 

dependency 

(Anam et al., 
2019) 

RF 54% Subject 
dependency 

(Steyrl et al., 

2016) 

RF 76.1% Subject 

dependency 

(Qu et al., 

2018) 

PSD + RF 70% Small dataset, 

subject 

dependency 

(Lun et al., 

2020) 

CNN 97.28% Large training 

dataset 

(Mattioli et 

al., 2021) 

CNN 50.2% Additional 

training required 

for target 
individuals 

(Dose et al., 

2018) 

CNN 58.58% Large training 

dataset  

(Kwon et al., 
2020) 

CNN 74.15% Possible 
overfitting, small 

number of 

parameters 

2.2 Deep learning algorithms 

Additionally, Deep Learning (DL) has become 

increasingly popular for BCI in the last few years and 

could be successfully applied by researchers to 

classify MI EEG signals (Ha & Jeong, 2019; Mattioli 

et al., 2021). In the context of MI EEG-based BCI, DL 

techniques have been used for both feature extraction 

and classification (Tang et al., 2019). Lun et al. (2020) 

proposed a CNN architecture to classify a four-task MI 

dataset. The methods of MI classification described so 

far use intra-subject data for training. As mentioned, 

acquiring EEG data from target subjects is often 

accompanied by time-consuming and inconvenient 

calibration processes. 

2.2 Subject-independent frameworks 

In recent years, several techniques have been 

proposed to reduce the calibration time of a MI-based 

BCI system. For example, Mattioli et al. (2021) 

proposed a new approach based on CNN to classify 

four MI classes and a “baseline” class with an 

accuracy of 99.46%, which shows the potential of DL 

for MI EEG-based BCI. Dose et al. (2018) also 

implemented a CNN capable of classifying raw signals 

related to a four-task MI dataset. Kwon et al. (2020) 
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proposed subject-independent framework based on 

CNN. Despite the popularity and outstanding 

performance of DL frameworks, they have a black-

box nature, as they do not provide any information on 

what led them to reach a particular decision (Adadi & 

Berrada, 2018). In contrast, RF classifiers can indicate 

which variables are decisive for the result (Buettner et 

al., 2019). Particularly in sensitive application areas, 

such as healthcare, explainability, and transparency 

may be especially important to ensure trust in a certain 

model. Furthermore, using RF classifiers, it is possible 

to extract frequency sub-band employing PSD, 

therefore, the model complexity is kept to a minimum 

while still being able to make correct predictions 

(Buettner et al., 2019). 

In the existing literature, many different 

techniques for feature extraction and classification of 

EEG signals can be found for different applications 

with promising performances. However, they often 

employ complex architectures, require large amounts 

of EEG data, or have high computation times. We 

propose a model that extracts the most important 

channels and underlying fine-graded frequency sub-

bands, and that is transferable to new subjects with 

limited calibration time. 

3. Methodology 

For our study, we followed the design science 

research approach (Hevner et al., 2004). Thereby, we 

first identified the problem of a missing subject-

independent, efficient EEG-data classification model. 

Therefore, based on the given dataset we developed 

our machine learning model as a solution. We then 

demonstrated and evaluated it with the given data and 

communicated it with this work. As shown in Figure 

1, reading the data set, data preprocessing was 

performed with the help of filter applications and 

Independent Component Analysis (ICA). PSD was 

then applied to the preprocessed EEG data as spectral 

analysis and the most important features were 

identified (feature importance) for subsequent 

classification. 

The data preprocessing and feature extraction 

with PSD were performed using the MNE library 

(Gramfort, 2013). A RF from the scikit-learn library 

(Pedregosa et al., 2011) was then used as the 

classification algorithm, and for the evaluation, a 10-

fold cross-validation (CV) was employed. All 

calculations were carried out in Python 3.7.12. The RF 

as a ML method uses the results of many different 

decision trees to make the best possible predictions. 

These are created randomly in an uncorrelated manner 

and each tree makes a single decision at a time, from 

which the algorithm provides a final decision 

(Breiman, 2001).  

3.1 Preprocessing 

As EEG data is acquired from the scalp via 

different electrodes, noise or artifacts are inevitable 

that should be removed before further processing. 

Examples of biological artifacts are muscle activity, 

blinking eyes, eye movements, and heartbeats. 

Additionally, electrical noises such as those generated 

by computers or electric lights, or cable movements 

are examples of non-biological artifacts (Mueller-Putz 

et al., 2015). To increase the signal-to-noise ratio and 

thus subsequent feature extraction efficiency 

(Jafarifarmand & Badamchizadeh, 2019), different 

procedures can be employed (Steyrl et al., 2016). We 

first applied a notch filter to remove the power line 

noise (Ferdjallah & Barr, 1994). 

As a second measure to mitigate artifacts, we used 

digital high-pass and low-pass filters (Mueller-Putz et 

al., 2015) with filter settings of 0.5 Hz and 50 Hz, 

respectively. In addition, we performed a standardized 

automatic independent component analysis (ICA) 

(Mueller-Putz et al., 2015), which is based on the blind 

source separation method and is suitable for EEG data 

(Makeig et al., 1995). ICA allows the extraction of 

statistically independent components resulting from a 

linear mixture of source signals (Bell & Sejnowski, 

1995). 

The initial dataset had four target classes (Left, 

Right, Up, Down). Thereby the imagine of opening 

and closing from the left- (right-) hand represents 

Left/Right, the imagine of opening both hands 

represents Up, and imagine the rest state means Down. 

To create a binary class problem, we merged two 

target classes each (Left/Right and Up/Down) into one 

common class. Thereby, we combined the obtained 

EEG signals from the opening and closing from the 

left- and right-hand MI task (Left/Right) for the first 

common class and the opening of both hands and the 

rest state (Up/Down) for the second common class. 

The first common class represents a horizontal 

movement (shaking of the head), for making “no” 

decoding. The second common class represents a 

vertical movement (nodding) for obtaining “yes” 

decoding (Andonova & Taylor, 2012).  

Figure 1. Methodical approach. 
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3.2 Feature extraction and selection 

To further analyze the preprocessed EEG signals 

in the MI-BCI system, feature extraction is an 

important component in reducing dimensionality and 

computation time (Jin et al., 2020). By using EEG 

spectral analysis, the time series data can be converted 

into frequency domain data (Buettner et al., 2019). For 

the spectral analysis, we employed a PSD using the 

nonparametric approach of Welch’s method. A sliding 

window is applied to determine the periodogram in 

these segments to construct an efficient estimator 

based on overlapping segments. Finally, averaging all 

the estimates of all segments provides the result. 

Thereby, the major advantage of Welch’s algorithm is 

that it makes no assumptions about the distribution of 

the data (Welch, 1967). 

One of the goals of this work is to identify the 

frequency bands that are most relevant for classifying 

MI tasks from EEG data. Therefore, following the 

feature extraction criterion, it is deliberately not 

divided into the usual frequency bands of gamma, 

beta, alpha, theta, and delta (Mueller-Putz et al., 2015). 

Rather, the whole frequency bandwidth is divided into 

many small equally sized sub-bands with a step size of 

0.5 Hz in each case. Finer graded frequency bands 

could lead to more accurate classifications due to their 

higher information content, which has already been 

successfully demonstrated in other contexts (e.g., 

detecting schizophrenia (Buettner et al., 2020) or 

evaluating the working memory (Breitenbach et al., 

2021)). A maximum frequency of interest was set at 

64.5 Hz for the PSD. Finally, a RF-based analysis of 

feature importance as measured by the average 

reduction in impurity across all trees was used to 

identify the most relevant features for subsequent 

classification (Menze et al., 2009). 

3.3 Machine learning 

Several ML classification options are available 

for BCI systems (Aygun et al., 2021; Janapati et al., 

2021), but do not provide information on the most 

important predictors (Archer & Kimes, 2008). Thus, 

to answer which frequency bands are crucial for 

classifying tasks we chose the RF classifier originally 

developed by Breiman (2001). The RF offers several 

advantages. It can process a large amount of data 

efficiently, has a high classification accuracy, and 

indicates which variables are essential for its result 

(Buettner et al., 2019). Furthermore, RFs have already 

been successfully used in the context of MI-based 

BCIs (Steyrl et al., 2016). Moreover, RFs are 

especially useful for the subdivision of EEG data into 

finer frequency bands (Buettner et al., 2019). As 

described previously, the RF classifier was trained 

using the features that contribute most to predictive 

power, which were determined by the feature 

importance selection procedure. In this procedure, the 

feature importances of the individual features were 

added up over the 10 folds to see which features were 

most important on average using the arithmetic mean. 

Afterward, a loop was used to check with which 

number of the best features the RF could achieve the 

best results. This procedure was carried out twice. 

Finally, we performed hyperparameter tuning to 

determine the optimal values for the RF classifier. It 

was performed using the grid search algorithm, as it 

provides a simple but effective strategy (Probst et al., 

2019). In our model, we tuned the 3 hyperparameters: 

number of trees (n estimators), maximum features 

(max features), and splitting quality measure 

(criterion). 

3.4 Evaluation 

As a final step, the evaluation of the classifier is 

of great importance, measuring how well the 

predictions made by the model match the observed 

data. This can be accomplished by methods such as 

hold-out or bootstrap, but CV is the best-known and 

most practical approach (Altaheri et al., 2021; 

Breiman, 1996). Therefore, we applied a k-fold CV 

with 10 splits to evaluate the RF classifier (Fushiki, 

2011). The k-fold CV randomly divides the underlying 

dataset into k equally sized parts. Among the k 

subsamples, one is retained for validation by testing 

the model and estimating the prediction error, and the 

remaining k-1 folds are used as training data. The 

process is repeated k times, with each of the k 

subsamples used exactly once as validation data 

(Rodriguez et al., 2010). The resulting CV matrix then 

indicates how robust a model is (Kohavi, 1995). 

3.5 Dataset 

To validate our proposed approach, the previously 

described method was applied to an existing EEG-

based MI dataset by Stieger, Engel, & He (2021). 

Using publicly available datasets, it is possible to 

develop MI-BCIs without EEG recordings employing 

ML techniques (Altaheri et al., 2021). BCI 

competition datasets are among the most popular MI 

datasets publicly available (Altaheri et al., 2021). 

Although these allow for comparison between studies, 

they are often small and simple with a maximum of 

nine subjects, and without including online feedback 

(Altaheri et al., 2021; Blankertz et al., 2006, 2007, 

2008). Further examples of publicly available datasets 
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are from Cho et al. (2017), who acquired EEG data 

with 64 electrodes (full scalp coverage) from 52 

subjects. However, the dataset only contains data for 

two classes at 36 minutes and 240 samples each. 

Additionally, Lee et al. (2019) presented EEG data 

collected from 54 subjects and a relatively high 

number of trials, but also only based on two classes. 

Since we wanted to tackle a binary-class problem with 

a high number of subjects to develop a model with 

high generalizability and minimized subject 

dependency we decided to use the publicly available 

dataset from a longitudinal study by Stieger, Engel, & 

He (2021) to investigate the control of SMR BCIs 

using our proposed model. The full dataset is available 

at https://figshare.com/articles/dataset/Human EEG 

Dataset for Brain-Computer Interface and 

Meditation/13123148. The employed SMR BCI 

dataset currently represents one of the largest and most 

complex (Stieger, Engel, Jiang, et al., 2021). 

The dataset contains data from 64 electrodes on 

the scalp digitized at 1,000 Hz and filtered between 

0.1-200 Hz with an additional notch filter at 60 Hz and 

subsequently stored for offline analysis. Using an EEG 

cap, the electrodes were positioned according to the 

internationally standardized 10-10 system. In total, 

EEG recordings were collected from 62 adult subjects, 

each of whom completed 7-11 BCI online training 

sessions. The dataset contains 600 hours of EEG 

recordings, consisting of 598 recording sessions with 

269,099 trials for continuous 2D control with online 

feedback in up to four classes (MI-BCI tasks). During 

different blocks of trials, subjects controlled a cursor 

towards a target. Participants were asked to imagine 

opening and closing their left (right) hand to move the 

cursor to the left (right). Second, the task was to 

imagine the opening and closing of both hands to 

move the cursor upward, and finally, they should 

voluntarily clear their mind to move the cursor 

downward (Stieger, Engel, & He, 2021). This results 

in the 4 classes of the dataset.  

4. Results 

By applying the fine subdivision with a step size 

of 0.5 Hz, 130 frequency sub-bands could be 

identified. Combining this with the available 62 

channels yielded 8,060 features. Only the EEG data 

from the second session of the subjects were used to 

train and evaluate the RF classifier. The second 

session was chosen because the first session was a 

training session and we wanted to reach a high subject 

independency which is the reason all subjects were 

included. In the end, we were able to reach a balanced 

accuracy of 73.94% (see Table 2. and Table 3.). 

Table 2. Mean performance indicators over ten 

folds. 
 

Performance Indicator Value 

Balanced Accuracy 73.94 % 

Sensitivity (true positive rate) 77.26 % 

Specificity (true negative rate) 70.62 % 

Kappa 47.89 % 

 
Table 3. Confusion matrix with mean values over 

ten folds. 
 

 
Prediction 

No Yes 

Reference 
No 949.1 394.7 

Yes 305.4 1037.8 

In addition, the fundamental approach is that 

subjects using our BCI to communicate a yes/no 

decision based on EEG data will be asked for their 

consent/rejection twice to confirm their initial 

decision. Thereby, with the current evaluation results, 

the accuracy rises to 93.2% (1-(1-0.7394)2). 

Furthermore, we achieved an average classification 

time of 0.256 milliseconds (0.688 seconds training 

time divided by 2,687 training trials). By looking at 

the 15 most important features we found out that only 

the channels T7, FP2 and PO8 were represented there. 

If we look at the ten most important features (82T7, 

51FP2, 83T7, 50FP2, 43FP2, 28PO8, 76T7, 82FP2, 

74T7, and 84T7) it is noticeable that mainly sub-bands 

between 50 and 80 are important which means a 

frequency range of 25-40Hz (lower gamma frequency) 

(Mueller-Putz et al., 2015). 

5. Discussion 

To the best of our knowledge, we are the first to 

develop a subject-independent algorithm to predict 

decisions based on binary-class MI EEG data for a 

BCI application employing a fine-grained EEG 

spectrum. Furthermore, the employed dataset has not 

yet been used in a BCI application. Therefore, with the 

achieved accuracy of 73.94%, we set a new 

benchmark and reach a predictive gain of 23.94%. 

Although our results must be confirmed on different 

datasets, they indicate that RF is a viable alternative to 

the current DL methods. 

Moreover, we use a 10-fold CV instead of strictly 

pre-training with subject independent data and then 

fine-adjusting with data from the target subject. Thus, 

we are training the classifier with data across all 

subjects and sessions to diminish subject dependency. 
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In a recent study, Song et al. (2021) observed that there 

were no significant differences between these 

approaches and subject independence could be 

achieved both ways. Nonetheless, future studies are 

necessary to further validate this. One possible way 

would be to apply a leave-one-out approach to our 

proposed model and the underlying dataset and 

observe the performance changes. Additionally, EEG 

signals are non-stationary and noisy. Certain 

classifiers are sensitive to noise, while others are 

sensitive to overfitting. Unlike many other classifiers, 

RFs achieve satisfying accuracies in classification 

while being robust to outliers and noise. Researchers 

have shown in the past that this technique often 

performs better than other ML techniques for MI-

based EEG signals (Guan et al., 2019). Moreover, RFs 

are efficient on large databases by providing an 

internal estimate of feature importance (McFarland et 

al., 2000). At the same time, RFs come at a 

comparatively lower computational cost by only 

needing an average model training time of eight 

minutes. Many previous studies require about twelve 

minutes of calibration data (Townsend et al., 2012). 

Thus, we are reducing inconvenient calibration of the 

BCI and time-consuming training sessions for 

subjects. On top of that, without the hyperparameter 

tuning, the training time is reduced to only 352.138 

seconds (CPU: Intel(R) Core(TM) i9-10885H CPU @ 

2.40GHz). However, accuracy also decreases by 2%. 

To strike a balance between quality and feasibility, 

available computing resources must be considered. 

By applying PSD, we were also able to show more 

precisely which sub-bands within the commonly used 

broad frequency bands are crucial. With this finer 

graded analysis of the frequency bands, we were able 

to expand the previous literature findings by showing 

that gamma oscillations could contain information 

relevant to the field of BCI. In previous studies, it was 

mentioned that gamma might affect MI ability because 

high-frequency oscillations reflect attention and 

cognitive functions (Uhlhaas, 2009). Consequently, 

our findings offer a deeper understanding of the 

relevant frequency sub-bands in binary classification. 

Therefore, we may stimulate further research to 

analyze these more finely graded frequency sub-bands 

for decoding MI-BCI tasks. 

6. Conclusion 

In this study, we propose a non-subject dependent 

ML model for an EEG-based binary-class MI-BCI 

task employing a fine-grained EEG spectrum. By 

using the most predictive sub-bands based on RF 

feature importance we achieved a balanced accuracy 

of 73.94%. This shows the potential of the model to 

predict directional binary-class MI solely from EEG 

data. Our results open a new perspective in binary-

class direction prediction of BCI systems and 

encourage further and specific analysis of the 

identified sub-bands as well as brain regions. The 

method we propose also has practical relevance as 

paralysis poses both personal limitations and societal 

challenges for affected individuals (Zabcikova et al., 

2022). Nonetheless, the practical real-world 

application is still constrained due to limited 

performance and classification time, but feasible. With 

the further development of non-invasive BCI systems, 

there is the possibility that individuals with impaired 

motor skills will be able to communicate with their 

environment through external technologies, thus 

greatly enhancing their quality of life in many areas. 

Therefore, our approach contributes significantly to 

the field of IT-enabled healthcare (Alshehri & 

Muhammad, 2021; Tsoi et al., 2021). 

6.1 Limitations 

Inevitably, there are also limitations to our 

proposed method. Although we achieved high internal 

validity due to the application and evaluation by 

means of a 10-fold CV, there is a lack of external 

validation of the proposed model. For this reason, 

applying our algorithm to datasets containing EEG-

based binary-class sensorimotor data is needed. In 

addition, only one of the up to eleven available 

sessions of the 62 subjects in the dataset have been 

used to train and test our model, limiting our internal 

validity. 

6.2 Future Work 

In the future, we will further train the RF classifier 

with the EEG signals from the remaining trials to 

enhance the classification accuracy and 

generalizability of the proposed model. Moreover, the 

proposed methodology only used the automatic 

standardized ICA, which can be extended and 

specified individually in the future. The promising 

results suggest that the method may be applicable to 

assistive technology applications. However, there are 

crucial points to address from an application 

perspective. Besides the already applied 

hyperparameter tuning, further optimizations such as 

the combination with multiple models using ensemble 

learning (Altaheri et al., 2021) could be integrated and 

tested to further increase the accuracy of the proposed 

model. Moreover, future research should explore 

methods that evaluate classification output reliability 
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in an unsupervised manner to compute the optimal 

time of decision throughout the evaluation process.  

In the future, we will test our model on other 

datasets for generalizability, especially on data 

acquired from paralyzed patients as they are addressed 

by our solution. Also, the performance of other state-

of-the-art approaches on our given dataset should be 

compared to our results. Furthermore, we need to try 

to minimize the effort of data acquisition for our 

approach, by testing it with even fewer subjects. 

Additionally, to further increase the classification 

performance, subject-specific training of the global 

model could be employed. In this regard, it might be 

interesting to use a large amount of cross-subject and 

-session source data and a few seconds of training data 

of target subjects for calibration (Song et al., 2021). 

We, therefore, encourage other researchers to use the 

dataset in their studies to advance the development of 

BCIs. 
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