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Abstract 
Machine learning becomes truly valuable only 

when decision-makers begin to depend on it to 
optimize decisions. Instilling trust in machine learning 
is critical for businesses in their efforts to interpret 
and get insights into data, and to make their analytical 
choices accessible and subject to accountability. In the 
field of aviation, the innovative application of machine 
learning and analytics can facilitate an understanding 
of the risk of accidents and other incidents. These 
occur infrequently, generally in an irregular, 
unpredictable manner, and cause significant 
disruptions, and hence, they are classified as "high-
impact, low-probability" (HILP) events. Aviation 
incident reports are inspected by experts, but it is also 
important to have a comprehensive overview of 
incidents and their holistic effects. This study provides 
an interpretable machine-learning framework for 
predicting aircraft damage. In addition, it describes 
patterns of flight specifications detected through the 
use of a simulation tool and illuminates the underlying 
reasons for specific aviation accidents. As a result, we 
can predict the aircraft damage with 85% accuracy 
and 84% in-class accuracy. Most important, we 
simulate a combination of possible flight-type, 
aircraft-type, and pilot-expertise combinations to 
arrive at insights, and we recommend actions that can 
be taken by aviation stakeholders, such as airport 
managers, airlines, flight training companies, and 
aviation policy makers. In short, we combine 
predictive results with simulations to interpret 
findings and prescribe actions. 

 
Keywords: Business Analytics, Machine Learning, 
Decision Support Systems, Big Data, Aviation Risk 
Modeling, Business Inferences with Machine 
Learning 

1. Introduction  

It is difficult to learn from aviation incidents since 
it is difficult to find the same combination of factors – 
aircraft, flight type, and pilot capabilities – in various 
incidents. Every incident has distinct characteristics, 
which makes it challenging to generalize any lessons 
learned to a broader scope of business decisions. The 
solution to this business problem calls for a simulation 
decision support system (DSS) to create scenarios and 
predict the likelihood of damage. A DSS could provide 
business insights by evaluating the inferences between 
variables and providing a what-if analysis to interpret 
incidents. Aviation is one of the earliest specialized 
fields because of its high-risk nature. Every incident is 
documented with detailed reports, which include 
records from devices, specifications of the nature of an 
event (such as the weather conditions and airfield 
data), and expert notes and judgments. We found that 
the severity of aircraft damage and the chains of events 
that cause incidents can be predicted; consequently, 
this study offers a way to apprehend the patterns that 
cause aviation incidents, by classifying them by flight 
type. In addition, using a simulation tool, what-if 
scenarios were analyzed, and actionable insights are 
offered to aviation decision-makers. The findings of 
this can help stakeholders by providing business 
insights mined from aviation incident reports. 

For the data, we used incident reports from the 
Federal Aviation Authority’s (FAA’s) Aviation Safety 
Information Analysis and Sharing (ASIAS) Accident 
and Incident Data System (AIDS) from 2000 to 2020, 
which include all aviation incidents that happened in 
the U.S. during that period. Out of 25,527 records, 
21,065 of the aircraft damage instances can be 
categorized as “minor,” 3,264 records as “none,” (no 
accidents or incidents), and 1,199 as 
“substantial/destroyed.”  We utilized CRISP-DM 
methodology to prepare the data and conduct the 
analysis. The process required deep expertise in 
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aviation incidents and data analytics. The initial data 
could be considered dirty, with many variables in free-
text format, missing data, typos, names’ changing over 
time, and mergers and acquisitions that require subject 
matter expertise (SME) in aviation and analytics. A 
similar degree of expertise was required to create 
variables to amplify the model’s predictive power; 
these were Busy Airport, Helicopter, Weekday, Day of 
Week, and Month. The data preparation included 
collecting and scrapping data, cleaning and filtering it, 
treating missing data, conducting a variable selection 
of the data, and splitting it for training and testing.  

After the most time-consuming data 
understanding and preparation were concluded, we 
start modelling the data. The original dataset consisted 
of 28 variables; these consisted of general event 
location information, aircraft information, 
environment information, PIC information, and event 
remarks. (Event remarks are free text information and 
were not used in this study.) Since the scope of the data 
spanned twenty years, the data had changed over time, 
and not all the variables were informed by high-quality 
data. 
The solution to the business prediction problem called 
for a simulation decision support system (DSS) to 
create scenarios and predict the likelihood of aircraft 
damage. The DSS provided business insights by 
evaluating the relationships among variables and 
enabling a what-if analysis to assess the likelihood of 
incidents.  

The DSS predicts aircraft damage and provides a 
better understanding of the patterns that cause aviation 
incidents by classifying them by flight type. It can also 
help various stakeholders with business insights mined 
from aviation incident reports. 

 
Table 1: Data Overview 

 
 

Variable Explanation Data 
Type 

Descriptive 
Statistics* 

**Prc 
Mss 

DOW Day Week N Sunday(28.
25), 
Saturday(22
.46) 

0 

Weekday Weekday/ 
Weekend 

N Weekday(6
8.2), 
Weekend(3
1.7) 

0 

Month Month of 
Year 

N July(10.41), 
August(9.53
) 

0 

Day Day of Month N 29th(3.47)- 
17th(3.45) 

0 

State State the 
Incident 
Happened 

B CA(11.14),
FL(10.78) 

3.29 

Busy If the Airport 
is one of the 
Busy Airports 

N Yes (JFK, 
MCO)(6.0), 
No(94.0) 

0 

Aircraft 
Damage 

Type of 
Damage  

N Minor 
(82.1),None
(13.3), 
Substantial_
Destroyed 
(4.61) 

0 

Flight_Ph
ase 

Flight Phase  N Landing(26.
86), 
Touchdown
(17.59) 

0 

Helicopter If the Aircraft 
is a 
Helicopter 

B Yes (2.81), 
No (97.19) 

0.9 

Flight_Ty
pe 

Flight Phase  N Personal(61.
69, 
Instruction(
14.34) 

23.3 

MajorCarr
ier 

If the fight is 
managed by a 
major carrier 

B Yes (8.33), 
No (91.67) 

4.14 

FlightCon
ductCode 

Flight 
Conduct 
Code 

N General(78.
99), 
AirCarrier(8
.36) 

0.39 

Engine_M
ake 

Maker of 
Engine 

N Lyoming(39
.98), 
Continental(
29.31)  

40.98 

Aircraft_E
ngine_Mo
del 

Engine Model N IOSeries(65
.59), 
PW6(5.43) 

41.78 

Nbr_of_E
ngines 

Number of 
Engines 

N 1(70.14), 
2(27.67) 

26.33 

PIC_Certi
ficate_Ty
pe 

PIC 
Certificate 
Type 

N Private 
Pilot(38.81)
, 
Commercial
(16.92) 

14.77 

PIC_Cate
gory 

PIC Category 
Hours 

N  3955.3 
(6134.7) 

16.38 

PIC_Mod
el 

PIC Model 
Hours 

N 738.0 
(1657.2) 

18.95 

90 Flight hours 
in last 90 
days 

N 54.0 (72.5) 18.95 

 
* Descriptive Statistics: Binary- % of each category; 
Nominal- % of most common two categories; 
Numeric- mean (standard deviation) ** Percent 
Missing 
 

A machine-learning (ML) algorithm was chosen 
for its fast performance, short run-time, and 
interpretability. The ML algorithms were compared 
and evaluated on a confusion matrix for their mean 
receiver operating characteristic curve (ROC), 
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summarized in terms of area under the curve (AUC), 
recall, reliability, and in-class accuracy. The summary 
of the weights of the variables and their relative 
importance referred to the flight-related findings. The 
results of the simulation model belong to the 
Multinomial Logistic Regression algorithm because of 
its interpretability. The predictions and their 
deployment were tested randomly. 

Visualizations to depict the cumulative story of 
the flight types were created. The simulations, 
incorporating flight types, flight times, pilot expertise, 
and aircraft-type combinations, were storified with a 
decision-support system. The business insights 
derived from complex relations of multiple variables 
and categories of variables for flight type were 
documented and reported to the relevant aviation 
stakeholders. The findings of the study are that 
scheduled, rather than a commuter, air taxis are at 
significantly less risk of aircraft damage. The highest 
likelihood of destroyed aircraft occurs with flights 
involving illegal or stolen drugs. Cargo flights have a 
greater likelihood of being destroyed than normal 
flights (excluding illegal flights). Aerial applicators 
and executive flights have a lower risk of aircraft 
damage during cruise phases.  

These claims are explained in more depth in the 
discussion section. In sum, we have shown that aircraft 
damage can be accurately predicted before a plane 
leaves the ground. In addition, the relation between the 
variables and specific types of categorical variables 
can reveal patterns that might lead to an incident. The 
evidence that points to patterns of liability for business 
flights, training flights, scheduled flights, and airline 
flights were reported to the relevant aviation 
authorities. These results could re-shape the aviation 
landscape. Stakeholders can utilize the reported 
findings, and other scenarios can be simulated using 
the DSS created for this study. 

In conclusion, the study contributes significantly 
to the aviation business literature by introducing a 
DSS that can predict aircraft damage by flight type 
using machine-learning algorithms. In addition, and 
more importantly, the DSS which is a simulation tool 
throws light on the big picture of aviation incidents, 
identifies the interactions between complex factors 
and the risks associated, and interpret them as 
managerial strategies. It furnishes aviation authorities 
with insights for strategic policy decisions on aviation 
and aerospace management procedures. It should be 
highlighted that due to the summarizing approach in 
this study the predominant aim of this study is not only 
to predict the aircraft damage severity category, but 
also more of mapping the complex conditional 
dependencies amongst aircraft, flight, and pilot related 

variables and bring interpretability to the fault 
structure that create broad term of aviation incidents. 
 
 

2. Literature Review  

Comprehensible data for making inferences and 
business decisions were important even before the 
Information Age (Teng et al., 1994). After that, 
organizations began to gather data about their areas of 
interest area to make smarter decisions. In attempts to 
summarize and understand what had happened in the 
past, business analysts started applying descriptive 
statistics (Hardoon & Shmueli, 2013).The next step 
was to make predictions based on historical data. 
Traditional statistical methods were employed to make 
basic predictions, and the first uses were for making 
scientific predictions (Waljee et al., 2014). As the 
amount of data stored in databases began to expand, 
the computational power of distributed storing and 
computing systems enabled machine-learning 
algorithms to be used for scientific tasks (Cankaya et 
al., 2021).  

Machine-learning applications effectively 
perform predictive tasks, and they are widely used for 
many business and scientific applications (Delen et al., 
2020). Machine learning has produced promising 
predictions in a variety of business contexts, ranging 
from healthcare (Almeda et al., 2019) and stochasticity 
problems in transportation scheduling (Cankaya et al., 
2019) to stock market fluctuations (Shen et al., 2012) 
and the analysis of incident reports (Topuz & Delen, 
2021) 

One problem with the primitive machine-learning 
application algorithms is that they are black-box 
algorithms; namely, you can make accurate 
predictions but cannot understand how the system 
works, so you cannot explain the root processes for 
making the predictions (Papernot et al., 2017). 
Recently, models have been developed that merge 
predictions with relational inferences and are being 
used to understand business inferences hidden in the 
data (Topuz et al., 2018). 

Combining subject matter expertise (SME) and 
machine learning to simulate various business 
scenarios helps to provide an understanding of the 
details of cases that are expensive to replicate in a 
controllable environment (Topuz et al., 2018). In 
addition to cost scenarios, many other business and 
scientific applications are possible. In situations where 
events can be risky for people, computational 
simulations of possible scenarios are indispensable 
(Čokorilo, 2013) 
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Simulations have long been a part of aviation 
culture, and pilot training programs have been using 
simulation tools for a long time, which enable them to 
test pilots-in-training and assess their reactions to 
difficult scenarios (Hight et al., 2022). Similarly, 
simulating various scenarios and testing for the 
likelihood of aircraft damage can enable managers to 
make inferences and business decisions based on 
incident and accident reports (Madeira et al., 2021). 
These aviation reports are released individually; each 
report is unique and is evaluated by a current for a 
future pilot, as a lesson learned. however, it is also 
essential for aviation authorities to combine numbers 
of similar events and simulate all the factors that can 
cause an event (Skorupski, 2016). Predictions of 
aviation accidents have been made in the literature but 
in summary they aimed on either a specific accident 
scenario combination not a summarizing study or only 
focused on prediction not expansibility (Srinivasan et 
al., 2019; Mehta et al., 2021). 

Studies even combined text-based reports with 
tabular incident datasets. That type of meta-studies are 
used to investigate the deeper reasoning of specific 
types of incidents. These meta-studies are not for 
testing conditional dependencies and creating a visual 
network illustration of the main fault lines that create 
incidents (Sarkar et al., 2020; Srinivasan et al., 2019). 

Recent studies have focused on various accident 
scenario combinations such as; accidents involving 
fatalities and serious injuries for Part 91 manufactured 
aircrafts (Burnett &Si., 2017). It was also relevant to 
create a unique risk metric for aviation incidents. Still, 
as expected, the variation reasoning of different 
aviation accidents focused on airport surface 
environment with incidents and close calls (Bati & 
Withington, 2019). Similarly, others only focused on 
predicting fatalities in FAA incidents which is only 
possible by limiting the flight type to high-risk 
combinations but did not aim at the highly frequent 
Minor damage category events (Lukáčová et al., 
2014). In contrast, others aim to quantify and 
categorize risk with an ensemble model and designate 
event outcomes for risk levels (Zhang & Mahadevan, 
2019) 

Nevertheless, prediction simulations are 
important, so that aviation-related businesses can 
anticipate direct and indirect financial and vital risks 
(Tulechki, 2015). Insurance agencies, government 
regulators, flight training schools, airport managers, 
airlines, and other aviation business actors desperately 
need a simulation tool to visualize the risks of an 
aviation incident or accident and its possible damages 
(Oster et al., 2013) In this study, we introduce an 
incident and accident simulation and prediction tool 
that all aviation stakeholders can use to test the 

likelihood of damage from an event. The event might 
happen in the exact combination, or the event never 
happened on the tested combination, but the simulator 
is calculating a likelihood by summarizing similar 
events. 

 
 
3. Methodology and Data 

The analysis of the aviation data required solid 
knowledge and experience in aviation operations and 
a reliable, explainable analytics methodology. With 
the increasing popularity of data analytics in industry 
and academia, projects using machine learning to 
make business predictions and provide insights have 
increased rapidly. However, many of these studies 
lack a set of assumptions and procedures for validating 
and applying their methods. Their generalizations may 
overstate the findings, and their robustness might be 
questioned. 

This study employs CRISP-DM, a well-known 
data analytics procedure that incorporates an 
information loop equipped with a feedback 
mechanism. It was essential throughout the data 
preparation and comprehension phases to have a 
thorough grasp of the aviation business and the FAA 
data to generate new variables and validate the data. 
The algorithm selection process also required an 
understanding of the problem and the business 
context. Particular algorithms act better on related 
types of data, and since this study valued 
interpretability as much as predictability, knowledge 
of the aviation business was needed in the modeling 
phase to interpret the model. In addition, predictions 
and simulation results were evaluated with feedback 
mechanisms to create related variable combinations 
and business inferences. Deployment of the model 
means both deploying the predictions and deploying 
the simulation. Furthermore, simulation results need to 
be evaluated to arrive at findings useful for business. 
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Figure 1: CRISP-DM Methodology Visualization 

As it is visualized in Figure 1, the six steps of the 
CRISP-DM methodology as a loop of information 
flow with additional feedback mechanisms to aviation 
business understanding on each step due to the nature 
of the deepness of the aviation data.   Aviation 
Business Understanding is essential in the data 
understanding and preparation phase to understand 
FAA data, create new variables, and validate the data. 
The algorithm selection process is also requiring 
aviation business understanding. Different algorithms 
act better on related data types, and since this study 
values interpretability as much as predictability, 
aviation business understanding is involved in the 
modelling phase. In addition, at the evaluation step, 
the predictions and simulation results are evaluated 
with feedback mechanisms to create related variable 
combinations and business inferences. The 
deployment of the model means deploying the 
prediction and deploying the simulation. Simulation 
results need to be evaluated to create the business 
findings.  

3.1 Methods 
 

For this study, we utilized some of the most 
common machine-learning techniques. Supervised 
machine-learning methods were chosen based on the 
problem, data, and labelling settings. In this case, the 
data came labelled by FAA experts to fit the aircraft 
damage categories, so we chose one of the supervised 
machine-learning methods because the data is already 
labelled. We applied several algorithms to the dataset, 
compared their performance, and chose the most 
interpretable model with acceptable performance. The 
supervised machine-learning methods we used were 
multinomial logistic regression (LR), support vector 
machine (SVM), and deep learning. 

 
3.1.1 Multinomial Logistic Regression 

 
Multinomial Logistic regression is a machine-

learning algorithm that identifies the pattern 
differences between two categories of target variables 
with a logistic function. When the category of the 
target variable has more than two discrete output 
categories, multinomial logistic regression can 
identify predictive patterns where the relationship 
between input and output variables is not linear. 
Multinomial logistic regression uses maximum 
likelihood estimation as a conditional probability for 
the prediction. When the probability is over 0.33, the 
prediction falls into the True category; when it does 

not, it falls into the False category (Belyadi 
&Haghighat, 2021) 

 
3.1.2 Support Vector Machine 

A support vector machine (SVM) is a supervised 
machine-learning algorithm that can produce 
promising prediction results for both regression and 
classification tasks by breaking the search space into 
hyperplanes, named support vectors. Data instances 
that have a minimum distance to the hyperplane 
surface are known as hyperplanes. The shapes of the 
support vectors are defined by the kernels, and there 
are different types of kernels, such as linear kernel 
functions, polynomial kernel functions, and sigmoid 
kernel functions. One factor that distinguishes SVMs 
are the margins between classes, where it is possible 
to linearly separate data. Soft margins are complex so 
that it is impossible to linearly separate classes of data 
(Rani et al., 2022) 

 
3.1.3 Deep Learning-H2O 

 
Deep-learning algorithms are multi-layer, 

artificial neural network algorithms that can find more 
complex patterns than ANN in multiple layers of 
pattern recognition. The information from the data 
enters a hidden layer with related weights. The 
information is processed in the neuron and transferred 
to the next hidden layer, depending on the activation 
function. Information flowing from input to output is 
named feed-forward. The information flows back from 
the output to the input in the next round, and the 
pattern of the prediction gets written again. This 
rewriting process is called back-propagation (Cullell-
Dalmau et al., 2020) 

 
Figure 2: Representation of a simple Deep 

Learning H2O 
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An H2O algorithm is a type of deep-learning 

algorithm with single layers and a feed-forward ANN 
algorithm that uses a stochastic, gradient-descent, 
back-propagation algorithm (Candel et al., 2016) 

 
3.2 Model Evaluation 

 
In our case, the target variables are of three types: 

None, Minor, and Destroyed/Substantial. The 
evaluation of the models will be demonstrated with the 
confusion matrix below.  

In Table 1, the Minor class is Class A, The None 
class is Class B, and the Destroyed/Substantial class is 
Class C. 

 
3.2.1 Confusion Matrix 

 
Table 1: Confusion Matrix 

 
 

A confusion matrix with three categories is 
shown in Table 1. The predicted values of the 
instances that each algorithm predicts versus the 
actual values of the target variables layed-out in the 
matrix; by the ratios of true positives (TPs), true 
negatives (TNs), false positives (FPs), and false 
negatives (FNs), we define the performance 
indicators. 
 
TP = Cell 1 
FN = Cell 2+Cell 3 
FP = Cell 4+ Cell 7 
TN= Cell 5+ Cell 6+ Cell 8+Cell 9 
 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"#!$

!"#!$#%"#%$
                                                (1) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = !"	

!"	#	%"
                                                           (2) 

 
𝑅𝑒𝑐𝑎𝑙𝑙	 = 	 !"

!"	#	%$
                                                   (3) 

 
 

High accuracy (1), precision (2), and recall (3) 
values indicate when there is a greater likelihood of a 
prediction’s being correct. However, due to the nature 
of the aviation data set, the distribution of the 

categories in the data was not balanced; the Minor 
category equaled 82%, the None category 12%, and 
the Destroyed/Substantial category only 4%. Because 
of this imbalance, the training and testing of the 
prediction had to be repeated to confirm the accuracy 
of the predictions. 

 
3.2.2 Cross-Validation 

 
Formula 4 represents the cross-validation 

process, and k represents the number of times the 
experiment is repeated. The data were broken into k 
parts, then training and testing ratios were defined. 
We chose 90/10 % as the training and testing ratio. 
Each piece was chosen for testing at least once, and 
the other remaining 90% of the data was retained as 
the training set. Each repetition result was marked as 
a fold formulation (4). We considered 10 folds to be 
sufficient for testing the randomness of the data. The 
accuracy, precision, and recall values of each fold 
were compared to the initial non-cross-validated data 
to check for randomness. Then, for simulation 
purposes, the fold closest to the mean accuracy value 
was used in the simulation to arrive at the business 
findings. 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

=
1
𝑘 56𝑃'

(

')*

7																																											(4) 

 

5. Results 

The model uses deep learning, multinomial 
logistic regression, and SVM models. The predictive 
power of the models was tested with the confusion 
matrix, and the results are summarized in the model 
performance results in Table 2. In summary, the 
performance results for all the models were sufficient 
and very close to each other. In this study, 
interpretability, explained in Figures 2 and 3, showed 
the superiority of multinomial logistic regression 
because its accuracy, recall, and precision were high. 
Also, the variables chosen for the multinomial logistic 
regression were important for building business 
relationships and yielding interpretable results. 

Table 2: Model Performance Results 
                                    Method 

Accuracy 
 

 Deep 
Learning 

Logistic 
Regression 

SVM 

Accuracy 84.2 84.6 82.9 
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Class 
Recall 

99.2 98.4 99.6 

AUC 77.6 77.9 79.3 
“Minor” 
Damage In 
Class 
Precision 

84.4 85.4 83.12 

 

 

Due to the nature of the aviation incidents, the 
Destroyed/Substantial cases are vital to claim 
predictability. This study also checks False Negatives 
(i.e., allowing an airplane destined to crash to take off- 
Destroyed/Substantial cases) to compare the 
performance of different models, including 
Multinomial Logistic Regression, SVM, Deep 
Learning-H2O, and Decision Tree Based models. Due 
to the nature of the problem, these 
Destroyed/Substantial cases have low- frequency in 
the data, and none of the ML models have successfully 
reduced the FN ratio even though 5,10, 20, 50, and 100 
x weight balancing have been tested on the system. We 
then balanced the data using Synthetic Minority 
Oversampling Technique (SMOTE) and compared the 
results. Again, our overreaching goal is to use the 
simulation tool for risk inferences and make business 
decisions with more than a predictive decision-making 
tool on all of the flights in the national aerospace.  

The results direct us to use the simulation tool for 
risk inferences and make business decisions more than 
a predictive decision-making tool on all of the flights 
in the national aerospace. To increase predictability, 
certain types of flights should be isolated, and a more 
predictable outcome can be achieved. The scope of 
this study is to summarize all flights that prevent us 
from analyzing isolated cases. 

5.1 Sensitivity Analysis 

 

Figure. 2: Variable Importance-Weight by 
Correlation 

The variable importance chart visualizes the 
relative importance of the variables. It shows how 
important each variable is relative to the others. The 
results are interesting, with flight type specifications 
such as the flight conduct code (0.274) and flight phase 
(0.221) being more important than pilot experience 
(0.115). The chart also shows the importance of 
creating variables with an SME, who in this case 
created variables such as weekday (0.049), month 
(0.037), busyairport (0.023), and helicopter (0.009). 
The other variables chosen were flight type (0.042), 
PIC experience in the model (0.027), and PIC hours in 
the last 90 days (0.009). 

We also experimented with automatically 
computed variables as combinations of other 
variables; however, since interpretability was essential 
for this model and since the results were not 
significantly improved by the auto-created variables, 
we stuck with the original variables. 

6. Discussions 

 

Figure 3. The Simulation Tool 
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The simulation tool is one of the main 
contributions of this study. All the methods – deep-
learning-H2O, SVM, and multinomial logistic 
regression – gave acceptable results in terms of 
predictive power, but the multinomial logistic 
regression model gave the best interpretable 
simulation results. The simulator tool is a graphical 
user interface (GUI) that we can change the 
combination of both categorical and continuous input 
variables and visualize the prediction likelihood for a 
specific category. This likelihood diagram can be seen 
as the most likely category on the top right. We can 
also see the contributing and contradicting factors with 
their relative importance in the chosen target variable 
category on the bottom right.  

By the support of this simulation tool, we can 
understand the fault network that creates incidents for 
different types of flights. It used all the main flight-
related variables evaluated in Figure 2. By changing 
the categories for flight type, PIC experience, and 
flight phase combinations, the simulator produced a 
summary of likelihood percentages and substantial 
supporting and contradicting variables, ranking the 
variables relative to the selected target variable class. 

In addition to the summary values, the simulator 
also creates predictive results for missing data. Even 
when a combination of flights did not happen, it can 
create a novel case by referring to relative results and 
can create a simulation of likely outcomes. Moreover, 
the simulator can be used as a prescriptive tool to 
create optimized results for maximum or minimum 
possible variable combinations by keeping some 
variables constant. For example, we can keep flight 
type as scheduled air carrier and flight phase as 
landing, and it will create the contributing and 
contradicting variable combinations and give us the 
likelihood of event ending as minor incident.  

       The screenshot given in Figure 3 demonstrates 
how simulation tools can be used. The image comes 
from an instance of a DSS tool predicting and 
explaining an event: a non-scheduled air-taxi flight in 
July, where the PIC had 150 hours of experience with 
the model and 450 hours of total flight expertise. The 
tool gives a 91% chance that the event will result in 
minor damage, a 5% chance that there will be no 
damage, and 4% chance that the aircraft will be 
destroyed. In addition, the right corner of the figure 
explains which factors are important and whether they 
support or contradict a minor damage scenario. The 
flight phase and flight-conduct code significantly 
support the chance of a minor incident, while the 
month and flight type offer less support. On the other 

hand, the PICs' experience with the model, the PIC’s 
total experience, and the amount of airport traffic 
suggest that the case might be more than minor. 

Table 3: Flight Type and Flight Phase Event 
Likelihood, 

 

 Some of the leading business inferences for 
different flight phases and flight types can be seen in 
Table 3, which evaluates cruise, take-off, landing, and 
ground flight scenarios. Even though the predictive 
metrics for each category are not high, the general 
patterns lead us to relevant risk inferences. The 
greatest likelihood of a predicted destroyed aircraft is 
found for illegal flights, such as flights carrying drugs 
or stolen goods. Among them, 19% of the incidents in 
the ground phase end up classified as Destroyed and 
75% as Minor Damage. Illegal flights are likely to 
have 40% no damage and about 51% are likely to have 
minor damage in the cruise phase. Similarly, events in 
the Take-Off phase show a 20% likelihood of no 
damage to the aircraft and a 70% likelihood of minor 
damage. In summary, if an illegal flight has an incident 
on the ground, there is a 19% likelihood it will 
destroy/substantial the aircraft. If the aircraft manages 
to take off, cruise, or land, the chances of being 
substantial/destroyed destruction are about 10%. It can 
be inferred from this comparison that a significant part 
of the illegal flights end up at a chase on the ground 
and have major accidents that total the aircraft. One 
other significant finding is that cargo flights have a 
greater likelihood of being destroyed than normal 
flights (excluding illegal flights), with a 10% 
likelihood on the ground, 7% at take-off, and 6% when 
cruising or landing.  

The main reason cargo flights are more likely to 
end up destroyed is that the weight load distribution 
and set-up in the aircraft need expertise, and many 
cargo flights fail to engineer the weight distribution 
and damage the aircraft. These findings lead the 
aircraft insurance companies to check airport security 
and illegal flight risk to define higher premiums and 
prices. Even though most cargo flights do not carry 
passengers and avoid the risk of potential damage to 
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more humans, they have a higher risk of damaging the 
aircraft, and their insurance prices are high to be 
protected from these incidents. 

      Air taxi flights are categorized as Scheduled Not-
Commuter, Scheduled with at least five flights per 
Week, and Non-Scheduled On-Demand Air Taxi 
Flights. Scheduled Not-Commuter flights have a 
significantly greater likelihood of avoiding damage in 
the take-off phase (14%) and in the cruise phase 
(34%). In comparison of the phase, take-off presents 
an 82% likelihood of minor damage, and the cruise 
phase a 62% likelihood. These numbers are some of 
the highest of all the flight types. Scheduled and non-
commuter air taxis are at a significantly lower risk of 
aircraft damage, injuries to people, or non-flight-
related objects in the flight. None damage to aircraft 
category events means there is an event, but it does not 
have damage to the aircraft. So, for these None 
category events for Scheduled Not-Commuter flights, 
the crew and passengers have a high risk of being hurt 
than on other flights at takeoff and cruise. The 
frequency of these flights are less than five times a 
week. The reason for these events is that the cabin 
crew typically are not as professional as a commuter. 
In cases like turbulence or other disruptions at takeoff 
and cruise, the people in the aircraft are more likely to 
be hurt. Insurance agencies can raise the premiums for 
body injury for passengers and non-flight-related 
objects in the aircraft for these types of low-frequency 
flights in comparison to the other scheduled flights. 
We recommend paying extra attention to the 
preparedness of Scheduled Not-Commuter flights, and 
governing agencies can advance the cabin crew 
requirements for these flights. 

Furthermore, aerial applicators (23%) and 
executive flights (22%) have similar behavior in 
running fewer risks of damage to the aircraft in the 
cruise phase. Still, they have None damage to aircraft 
category an incident. Aerial applicators are mostly 
agricultural flights, and their numbers for aircraft 
damage at the cruise phase are very similar to those of 
industrial flights (16%) and personal flights (18%), 
albeit there is less likelihood of damage to the aircraft 
but more None category events. That also means these 
Aerial applications and agricultural flights have a 
higher risk of having an incident that injures the pilot 
and damages the non-flight-related accessories. These 
Aerial application flights can be specifically insured 
for these non-flight-related accessories.  

Also, summarizing all flight types, there is a 
significantly more likelihood of None damage to the 
aircraft category event if an event occurs during the 

cruise phase (20% on average) than in other phases 
(6.2% on average). These events are primarily due to 
turbulence, or anything happening after the take-off 
will likely be recorded as the cruise phase. For any 
passenger flights, these incidents can be reduced by 
improving the cabin crew resources and educating 
them about the likelihood of these events.  

6.1 Conclusion Limitation and Future 
Research 

This study clearly shows that machine learning 
can effectively predict aircraft damage, interpret, and 
explain patterns in aircraft-related data, and provide 
business insights to shape future industry policy. 
Stakeholders can use the DSS developed here to 
provide a summary of related events and estimate the 
likelihood of an aircraft incident involving minor, no, 
and serious damage. They can also simulate important 
supporting and contradicting categories of variables. 
The methodologies used here are effective with 
different combinations of datasets, and the results 
visualized in Table 3 show an ordinance only in the 
context of the study. In addition, in this study, making 
business inferences is prioritized over making 
predictions. 

Due to lack of space, the discussion in this paper 
is limited to analyses based on different flight types. 
We had to modify some assumptions, such as 
adjusting for 150-hours PIC flight experience in the 
model and 450-hours of total PIC flight experience; 
however, the number of actual flight hours may differ 
significantly for instructional and executive flights. To 
provide solutions for each aviation stakeholder, the 
DSS assumptions should be set up to meet the usage 
requirements of a specific business.  

Another limitation of the study is rooted in the 
complexity of the data. New variables from the AIDS 
dataset and from various other datasets in free-text 
formats, such as those containing weather data, NTSB 
accident data, accident remarks, and reports can be 
combined, and a natural language processing (NLP) 
analysis can be done on them. Other sub-categories of 
minor accidents can be added so that financial 
analyses can be done since minor accidents occur way 
more frequently, at a cost, but rarely involve injuries 
or major aircraft repairs.   

Future researchers can consider gathering datasets 
from other sources and making predictions based on 
other variables. In addition, factors such as injuries, 
weather conditions, and pilot expertise levels can be 
considered to enrich the business scenarios and make 
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predictions. Furthermore, the DSS can be designed to 
select other simulation scenarios and offer solutions. 
Instructional flights, personal flights, business flights, 
air-taxi flights, agricultural flights, and airline flights 
can be considered, along with pilot expertise, airport 
specifications, flight phases, and timelines to create 
unique scenarios for a variety of flight-type 
combinations. 
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