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Abstract

The power flow problem is fundamental to all
aspects of modelling, analysis, operation, and control
of transmission and distribution systems. In a
nutshell, it amounts to solving for the nodal voltages
in the nonlinear active- and reactive power balance
equations that characterize the steady-states of AC
electric networks. Traditional power flow algorithm
is focused on the steady operational state under
a single snapshot and calculates the corresponding
voltage and power distributions for given nodal power
injections and network topology. To better capture the
temporal characteristics of power injections and system
variables with high accuracy, a linear-time interval
regarding nodal power injections is first defined in
this paper, the norms of nodal voltage derivatives are
further analyzed, which is leveraged for simplifying the
complexity of solving non-linear dynamic time-varying
problems. The voltage monotonicity property has been
guaranteed under the proposed linear-time interval.
Simulation case studies on IEEE 5-bus and modified
118-bus systems have demonstrated the effectiveness
and efficiency of the proposed algorithm.

1. Introduction

Power flow analysis is a fundamental concept in
the investigate problems in power system operation and
planning [1, 2, 3]. Power flow analysis determines the
steady state nodal voltages and branch power flow, based
on a specified generating state and transmission network
structure [4, 5].

Loads in power systems are always time-varying
with the steady-state power system operation focused on
a time period. Therefore, it becomes more beneficial
to power systems operational security, power quality
and economic efficiency if power system problems
are analyzed and the dispatch schedules are generated
from the perspective of a time period. The idea
of considering steady operational states into a time

period has been activated for quite a long time, such
as, the unit commitment problems at early stage [6,
7] and dynamic optimal power flow in 2000 [8, 9].
The continuation power flow (CPF) algorithm that
considers the continuous power over time was first
proposed in [10] as an important tool in steady-state
voltage stability analysis and has been widely applied
into voltage stability margin index [11] and real-time
power network applications [12, 13]. However, CPF
is under the premise of continuously adding weights
on the loads of one node or some nodes, which is
focused on the load variations that aims to achieve
the critical voltage collapse points, this is not time
related and thus CPF also does not characterize the
power operational steady-states over a time period. In
addition, the quasi-static time-series (QSTS) power flow
was proposed and applied mostly in distributed energy
resources under distribution systems, and is also used
for impact studies of control schemes in different power
equipment, such as, smart inverters [14], and voltage
regulating devices [15]. Although the QSTS power
flow specifically model the discrete controls and run
a time-series simulation to capture the time-dependent
states of any controllable elements, the requirements for
the time-step resolution and the time horizon of QSTS
lack a quantitative study in the literature. Specifically,
detailed studies regarding the measurements of the
errors caused by QSTS power flow including the
time-step resolution, input data resolution, and the
simulated time horizon are still facing challenges and
not yet been well developed.

In addition to that, since the traditional optimal
power flow (TOPF) model is focused on a single
snapshot, and with the implicit assumption that the
OPF solution will satisfy system constraints until the
next solution point, it is obvious that the power
flow distributions are not well represented for all
snapshots between the subsequent solutions in TOPF.
Historically, these inaccuracies have been managed
by spinning reserves and automatic generation control
(AGC) [16, 17]. However, due to the rapid integration
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of variable renewable energies (VREs) (e.g., wind
farms, solar sites) which brings into uncertainty with
more fluctuate and unpredictable loading conditions,
there is no guarantee that solutions obtained at specific
time points will satisfy constraints at non-specified
time points, especially for binding constraints [18, 19].
Thus an efficient and accurate OPF algorithm that
can guarantee all the involving operational constraints,
including the load balance, thermal, and voltage limits,
on all the nodes, over all the snapshots under a time
horizon, are critical to maintain power system reliability
and security. With that being said, a fundamental
power flow calculation over a time period with high
efficiency and accuracy is of paramount importance
to achieve the goal. Specifically, it is necessary to
present a time-varying power flow algorithm and to
quantitatively analyze the time series nodal voltage
properties under the linear time intervals. As a
prerequisite of the above, this paper first proposes the
concept of linear-time interval, in which the power
injections are linear mapping of time. Linear-time
interval is a fundamental and important concept through
this research, such a linear-time interval actually exists
in practical power system planning and operation.
Linear-time interval represents the forecasting output
level between two consecutive discrete time points
during generation scheduling plans. Under a linear-time
interval, quantitative properties of the norms of
voltage derivatives under rectangular coordinates are
analyzed; nodal voltages are theoretically shown to be
approximately linear of time which even holds for heavy
power variation ranges that are above 100%. Simulation
studies under different sizes of IEEE test systems have
shown the effectiveness and efficacy of the proposed
linear time-varying function. Maximum nodal voltage
errors are further validated to show that proposed
function carries with high accuracy rate compared with
the existing methods in MATPOWER.

2. Linear-time intervals

We first assume the beginning time point and ending
time point of a time interval Tl are t0, te respectively,
that is, Tl ∈ [t0, te]. For a time interval Tl, if the active
power of all nodes (except the slack node) and reactive
power of all PQ nodes are linear functions of time t, then
we define Tl as a linear-time interval.

The defined linear-time interval regarding power
injections actually exists in practical power systems.

From engineering perspective, the dispatch center
arranges the generation scheduling plans based on load
forecasts/equivalent load forecasts with VREs, such as
wind/solar power sources. Load forecasts including

total and nodal loads are oriented towards discrete time
points for a future time period. A straight line segment
is achieved by connecting the load forecasts between
two consecutive discrete time points, thus the load
forecasting output and the corresponding generation
schedules for a future time period is a piecewise linear
function of time. Figure 1 gives an example of
nodal power forecasting output with hourly discrete
forecasting time points during day-ahead scheduling,
in which the two power outputs could either represent
active or reactive power.

Figure 1. Nodal forecasting power output during

day-ahead scheduling.

From mathematical perspective, all non-linear
time-varying curves can be approximated as piecewise
linear functions combined with many linear-time
intervals, as the intervals get smaller/the number of
intervals gets bigger, the piecewise linear functions
gradually match closer to the non-linear time-varying
curves. Therefore, linear-time interval is the
fundamental approach to solve steady-state non-linear
time-varying problems.

The actual load forecasting output is a time-varying
curve instead of a piecewise linear function. While
making generation scheduling plans for future
dispatch time period, dispatch control center only
has information about the piecewise linear function of
load forecasting. Just like the load forecasting error
is inevitable, the error caused from replacing with
piecewise linear function is also inevitable.

The proposed linear-time interval discretize a
continuous non-linear time-varying problem into several
combined linear-time intervals sub-problems, and thus
reduces the complexity of finding solutions under
non-linear time-varying problems.

If we assume ∆Tl is the length of the linear-time
interval Tl , and is the time difference between any time
point t and the beginning time point t0 , then{

∆Tl = te − t0

∆t = t− t0
. (1)
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{
Pi(t) = Pi(t0) +KPi∆t, (∀i /∈ V θ bus)

Qi(t) = Qi(t0) +KQi∆t, (∀i ∈ PQ bus)
, (2)

Thus, for any time point, t ∈ Tl , the active power of all
nodes (except the slack node) and reactive power of all
PQ nodes can be represented as follows:

KPi =
1

∆Tl
∆Pi

KQi =
1

∆Tl
∆Qi

. (3)

Herein, ∆Pi and ∆Qi are respectively the
increments of active and reactive power of node i for
linear-time interval Tl:{

∆Pi = Pi(te)− Pi(t0)

∆Qi = Qi(te)−Qi(t0)
. (4)

The vector form of (2) is expressed as{
P(t) = P(t0) + ∆tKP

Q(t) = Q(t0) + ∆tKQ

. (5)

If

y(t) =

[
P(t)
Q(t)

]
, k =

[
KP

KQ

]
, (6)

then
y(t) = y(t0) + ∆tk, (7)

where k is the slope vector for linear-time interval Tl

and is related to different time units. In this paper,
the slope vectors in hour, minute and second units are
represented as kh, km, ks, respectively, and they satisfy
the following condition:

kh = 60km = 3600ks. (8)

Without loss of generality, we choose hourly unit in this
paper with the corresponding slope vector kh.

3. Nodal voltage derivatives

In rectangular coordinate, the time-varying nodal
voltage vector x(t) is

x(t) =

[
Vre(t)

Vim(t)

]
, (9)

where Vre(t) and Vim(t) are the real part and imaginary
part of nodal voltage vectors, respectively. Thus the
time-varying power equation is expressed as:

h(x(t)) = y(t). (10)

The corresponding first derivative of nodal voltages
is

J(t)x(1)(t) = k, (11)

where J(t) is the Jacobian matrix shown as follows:

J(t) =
∂

∂x
h(x(t)). (12)

Since the elements in Jacobian matrix J(t) are linear
function of nodal voltages in rectangular coordinates,
we get

J(k)(t) = J(x(k)(t)), (k ⩾ 0). (13)

By continuously calculating the derivatives of (11),
we get the following dth order of nodal voltage
derivative:

J(t)x(d)(t) = bd(t), (d ⩾ 1), (14)

herein, when d = 1:

b1(t) = k; (15)

when d ⩾ 2:

bd(t) = −
d−1∑
k=1

Ck
d−1J(x(k)(t))x(d−k)(t), (d ⩾ 2),

(16)
where

Ck
d−1 =

(d− 1)!

k!(d− 1− k)!
. (17)

4. Time-varying nodal voltage properties
in linear-time intervals

4.1. Matrix and vector norms

Norms are compatible, if

mv = b, (18)

then
∥mv∥p = ∥b∥p, (19)

and satisfies
∥m∥p∥v∥p ⩾ ∥b∥p, (20)

where m is matrix, v and b are the vectors that are
compatible with matrix m.

Norms also have equivalence property, for p-norms
when p = 1, 2,∞, if one of the norms follows the
corresponding equality/inequality, so do the other two
norms.
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4.2. Norm of nodal voltage derivative vectors

The condition number of Jacobian matrix J(t) is

ρt =
∥∥J−1(t)

∥∥
p
∥J(t)∥p, (p = 1, 2,∞). (21)

The condition number ρt can be corrected for a given
proper coefficient αt ∈ (0, 1):

ρ̃t = αtρt ⩽ ρt, (22)

thus the inequality condition shown in the proposition
2 is further transformed into the following approximate
equality:∥∥∥x(d)(t)

∥∥∥ ≈ (2d−3)!!ρ̃d−1
t

∥∥∥x(1)(t)
∥∥∥d, (d ⩾ 2). (23)

4.3. Time-varying nodal voltage properties

Property 1. For a linear-time interval, the nodal voltage
function has approximate linearity with respect to time.

The corresponding discussions are as follows.
According to the Taylor series expansion, the

following time-varying nodal voltages in a linear-time
interval are expressed as

x(t) = x(t0) +
∑
k=1

1

k!
∆ktx(k)(t0), (24)

In addition, we have
∥∥∥x(2)(t)

∥∥∥ ≈ ρ̃t

∥∥∥x(1)(t)
∥∥∥2∥∥∥x(3)(t)

∥∥∥ ≈ 3ρ̃2t

∥∥∥x(1)(t)
∥∥∥3 . (25)

The order of magnitude for
∥∥x(1)(t)

∥∥ is within 10−1,
the order of magnitude for ρ̃t is 100, thus the order
of magnitude for

∥∥x(2)(t)
∥∥ is within 10−2; and it will

be much smaller for
∥∥x(3)(t)

∥∥. Under the condition of
∆t < 1, if the 2nd and the above orders of derivative for
(24) is approximated to be zero, then the nodal voltages
are approximated as linear functions with respect to
time, that is,

x(t) = x(t0) + ∆tx(1)(t0). (26)

(26) is called linear time-varying function with the
corresponding norm of absolute error given by

∥R1(t)∥ =
1

2
∆2t

∥∥∥x(1)(t0 + η∆t)
∥∥∥ , (0 < η < 1).

(27)

The above absolute error is characterized through
the 2nd-order of derivative, the corresponding order
of magnitude is within 10−2. Since the orders of
magnitude for real part and imaginary part of nodal
voltages are 100, the order of magnitude for relative
voltage error is also within 10−2. This indicates that
the nodal voltage function with respect to time has
approximate linearity in a linear-time interval Tl.

4.4. Numerical simulations of time-varying
nodal voltage properties

Based on MATPOWER, the IEEE 5-bus system
is simulated to numerically evaluate the time-varying
nodal voltage properties in a linear-time interval Tl. The
corresponding network topology is shown in Figure 2,
wherein bus 5 is a slack bus, bus 1 is a PV bus with a
voltage magnitude of 1.05 p.u., the rest of the buses are
PQ buses.

The linear-time interval is considered as 1h. The
active power output from PQ buses and PV bus are
shown in Figure 3(a). Similarly, the reactive power
output from PQ buses are shown in Figure 3(b).

To better illustrate the effectiveness of the proposed
properties, we intentionally design some heavy node
power variation ranges to make sure that the total power
variation range is above 100%. In addition, to avoid
the same trends from nodal power/total power (e.g.,
either simultaneously increasing or decreasing), we also
randomly design different trends of nodal active and
reactive power, respectively (e.g., if the active power
on node i increases, then the reactive power on node i
decreases).

Figure 2. IEEE 5-bus test system.

The simulation results of time-varying nodal voltage
function in a linear-time interval Tl are shown in Figure
4. The “o” marker represents the actual nodal voltage
values calculated from power flow in MATPOWER,
the straight line between the two consecutive time
points represents the computational values from linear
time-varying function in (26). We can see that, the
corresponding curves of real part and imaginary part of
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Figure 3. Power Output within a given linear-time

interval.

nodal voltages in a linear-time interval are extremely
close to a straight line, thus can be approximated as
linearity. This observation aligns well with the proposed
property 1.

Relative errors between the computational results
from linear time-varying function (shown in Figure
4) and the corresponding existing methods calculated
in MATPOWER (also shown in Figure 4) are further
presented in Figure 5. We can see that the orders of
magnitude for both real part and imaginary part of nodal
voltages errors are within 10−2, which coincide with
the theoretical analysis achieved from (27). Simulation

Figure 4. Computational results of linear

time-varying function.

results demonstrate that under a linear-time interval Tl,
nodal voltage function is satisfied to be approximated as
a linear time-varying function, as shown in (26).

5. Numerical simulations

In this section, a modified IEEE 118-bus system
is simulated, where 20 wind generators and 10 solar
generators are added. Assume that there is no
curtailment of renewable generation, then the total
power generation from VREs is 30% of the total
demand, with the wind power generation of being 60%
of the total VREs power output. Thus a power system
with high penetrations of VREs is presented. The
corresponding network topology is shown in Figure 6,
where bus 69 is a slack bus.
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Figure 5. Relative errors of linear time-varying

function.

The total time period is considered as 24h, which
is designed to coherent with the future dispatch period
while making day-ahead generation scheduling plans.
25 discrete time points tl partition the entire time period
into 24 linear-time intervals. In addition, to better
evaluate and demonstrate the proposed properties, each
linear-time interval (1h) is further partitioned with 11
equidistant discrete time points.

Similar to the previous simulations, to better
illustrate the effectiveness of the proposed properties,
we intentionally design some heavy nodal power
variation ranges so that the total power variation range is
above 100%. In addition, to avoid the same trends from

Figure 6. A modified IEEE 118-bus system.

nodal power/total power (e.g., either simultaneously
increasing or decreasing), we also randomly design
different trends of nodal active and reactive power,
respectively (e.g., if the active power on node i increases,
then the reactive power on node i decreases). The total
active and reactive power curves are shown in Figure 7.

Figure 7. Total power curves within 24h.

Figure 8. Maximum voltage errors for each

linear-time interval within 24h.
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Nodal voltage magnitudes are calculated at any
snapshot over the 24 linear-time intervals. In other
words, take node i for example, since there are 11
equidistant time points in each linear-time interval,
the voltage magnitudes on node i are calculated 241
times in the 24h time period. Thus the voltage
errors on each node between computational values and
the corresponding power flow solutions (calculated in
MATPOWER) at any time point in these 24 linear-time
intervals are then achieved. Compared with the existing
methods in MATPOWER, we respectively record the
maximum voltage error under each linear-time interval,
with the results shown in Figure 8. Note that the
maximum voltage error under each linear-time interval
is selected among voltage errors of all the nodes from 11
equidistant time points, that is 118× 11 = 1298.

Figure 8 shows that, the maximum nodal voltage
error of all the maximum voltage errors through 24
linear-time intervals occurs on the 12th linear-time
interval over the entire time period, with the
corresponding error being 8.4 × 10−4. The minimum
nodal voltage error of the maximum voltage errors
through 24 linear-time intervals occurs on the 15th

linear-time interval over the entire time period, with the
corresponding error being 1.4× 10−5.

We can see from the above results that, since the
maximum voltage error selected among all the nodes
in 11 equidistant time points in all the 24 linear-time
intervals (118 × 241 = 28438) is 8.4 × 10−4, the
order of magnitudes for all the nodes are guaranteed
to be within 10−2, which further demonstrates the
time-varying power flow is with high computational
accuracy.

6. Conclusions

Power flow analysis is an important prerequisite in
power systems especially when it comes to economic
dispatch/optimal power flow. Traditional optimal
power flow describes the system performance only
in a single specified time point while the resulting
decisions are applied to an entire time period. Since
power system balanced steady operation state varies
over time, it is necessary to explore the properties
regarding state/control variables to ensure system’s
stability and security. Starting from this point of view,
the conclusions of this paper are shown as a prerequisite
of the above.

(i) A linear-time interval in which the nodal power
injections are linear functions of time is proposed in
this paper. Theoretically, linear-time interval is the
fundamental approach to solve steady-state non-linear
time-varying problems. Practically, linear-time interval

exists in real power systems to determine the generation
scheduling plans based on load forecasts. Thus
linear-time interval is the key to discretize and linearize
the non-linear time-varying problems.

(ii) For a linear-time interval, the nodal voltage
properties have been quantitatively studied. The nodal
voltage magnitudes are also shown with approximate
linear functions of time.

(iii) The linear time-varying function is proposed
within a high promising computational accuracy.
Simulation case studies have further demonstrated
the effectiveness and the efficiency of the proposed
function.

7. Future work

Based on the time-varying nodal voltage properties
and the proposed algorithm in this paper, our
future work will be focused on optimal power
flow towards a time period and the corresponding
applications into economic dispatch systems including
day-ahead scheduling and real-time dispatch, typically
in large-scale actual/synthetic power systems with high
penetrations of VREs.
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