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Abstract

The increasing adoption of distributed energy
resources (DERs), particularly solar generation and
the use of unconventional loads such as plug-in
electric vehicles (PHEVs), has a profound impact on
the planning and operation of electric distribution
systems. In particular, PHEV charging introduces
stochastic peaks in energy consumption, while solar
generation is fraught with variability during intermittent
clouds. The stochastic nature of such DERs renders
the operation of mechanical assets such as on-load
tap changers and switched capacitor banks ineffective.
A possible solution to mitigate the undesirable effects
of DERs is using solid-state-based devices such
as a distribution static synchronous compensator
(D-STATCOM). This paper examines the capacity usage
of a capacitor-less D-STATCOM in distribution systems
while considering the uncertainties associated with
using the aforementioned DERs. We propose a Monte
Carlo simulation to study the capacity usage problem
with DER inputs sampled from the proposed underlying
distributions.

1. Introduction

In electric distribution systems, reactive power
compensation in the form of voltage regulation
and power factor correction is typically realized
using electromechanical assets such as on-load tap
changers (OLTCs) and switched capacitor banks
(SCBs). However, given the mechanical nature of
the operation, such legacy devices are not suitable for
providing reactive power compensation at shorter time
scales of minutes or seconds. The output of a PV system
is a function of weather primarily at a given location
and can experience rapid changes that necessitate a
continuously adjustable reactive power compensation
for precise voltage control. One class of devices capable
of providing dynamic voltage control is the smart PV
inverters. However, the PV inverters are limited in

providing continuous reactive support constrained by
the inverter’s apparent power sizing [1]. The PV
inverters are also not owned by the utility and, in most
situations, do not respond to the dispatch commands
issued by the network operator [2].

Other examples of power electronics-based
solid-state devices used for mitigating the adverse
impact of DERs include static var compensators (SVCs)
at transmission or sub-transmission voltage levels
and D-STATCOMs based on voltage source converter
(VSC) technology. A major disadvantage of the SVCs is
the lack of harmonic control functionality and exorbitant
capital costs in low voltage regimes [3]. Due to these
reasons, SVCs are inherently not suitable for use in
low-voltage networks that are plagued by power quality
issues due to the increased use of nonlinear loads. On
the other hand, the VSC-based D-STATCOMs rely on
electrolytic capacitors (E-caps) for energy storage. The
reliance on E-caps adversely affects the reliability of
the VSC-based D-STATCOMs, especially in locations
with tropical climate conditions [3]. The literature
on the reliability of the power electronics devices has
established that nearly 30% of all the failures in power
electronics-based devices are caused by the E-caps [2].

In the light of these observations, a capacitor-less
D-STATCOM based on a matrix converter (MC) has
been proposed recently to address the dual challenges
of fast reactive support and increased reliability [4].
The newly proposed capacitor-less D-STATCOM uses
inductive storage and is controlled using a finite control
set model predictive control (MPC). The capacitor-less
D-STATCOM is a multi-functional device that can be
used for power factor correction, voltage regulation,
and harmonic compensation simultaneously with local
autonomous control or directly controlled by the
distribution network operator (DSO). A comparison
between the capacitor-less MC-based D-STATCOM and
the incumbent technologies is given in [3]

Uncertainty quantification (UQ) in power networks,
especially distribution systems, is an emerging area
of research that has attracted much attention from the

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 2580
URI: https://hdl.handle.net/10125/102950
978-0-9981331-6-4
(CC BY-NC-ND 4.0)



power system research community. The increased
popularity of UQ methods to combat uncertainty
challenges can be attributed to the rise of DERs,
especially intermittent nonscheduled generation like
solar and wind, and more recently, the accelerated
growth of PHEVs. To the best of our knowledge,
the current literature on the stochastic modeling of
electric vehicle charging is scarce and limited to models
based on queuing theory. The electric vehicle charging
as a queuing process is studied in [5], [6], [7]. A
significant drawback of the proposed methods is the lack
of information on the simulation of the arrival times
of the PHEVs. Most of the proposed models rely on
either real-time sub-metering data [6] or the intensity
functions based on measured arrival rates of the vehicles
queuing up to receive charging service [5]. In this
paper, we use a stochastic counting process based on a
nonhomogeneous Poisson process (NHPP) to simulate
the arrival times of the PHEVs. The information about
the arrival times is necessary to model the temporal
dependence of the PHEV charging accurately.

An undesirable effect of PHEV charging is the
“peaky” energy consumption patterns that, in the
absence of proper modeling and mitigation, could lead
to thermal overloading of transformers and transmission
lines. In this paper, we use a mixture model based on
generalized Gaussian distribution to model the statistical
uncertainty of DER-impacted load. A generalized
Gaussian distribution represents an improvement over
the conventionally used mixture model based on
Gaussian distribution [8]. The improvement is a result of
additional parameters that control the shape of the fitting
distribution. The power system load is also affected
by the penetration level and the configuration of the
distributed generation. In the case of distributed rooftop
solar generation, the effect is more pronounced when
the output of a photovoltaic (PV) system is viewed at
sub-hourly or sub-minute time scales [9]. It is thus
essential to accurately model the sub-hourly changes in
the solar output to properly assess the impact on the
local load at a load bus and the diversified demand as
seen from the secondary of the distribution substation
transformer. The Markov weather model proposed in
[9] is used to create a high resolution (1-minute) solar
irradiance profile based on the hourly averaged Typical
Meteorological Data (TMY3) [10]. The solar forecast
scenarios for the proposed Monte Carlo simulation
are developed using an auto-regressive moving average
(ARMA) model. Statistical models such as ARMA
have been widely used to generate solar power scenarios
despite the inherent limitations of these models [11].
One such limitation is the need for large data sets to train
the model. In this paper, we use the annual synthetic

high-resolution data from the Markov weather model to
estimate the ARMA model’s orders and parameters. The
fully realized ARMA model is used to generate solar
power scenarios.

A major significance of this paper is that it studies
the interaction of a power electronics converter in
terms of its capacity usage when integrated with
an electric distribution system without neglecting the
details of either. A complete model of the IEEE-34 bus
distribution test system [12] is developed in OpenDSS
[13]. The steady-state power system models of
the capacitor-less D-STATCOM in different modes of
operation are developed in a MATLAB environment and
interfaced with the OpenDSS solver. It is important
to emphasize that while the focus of this paper is
to develop a probabilistic capacity usage model of
the capacitor-less D-STATCOM, a rigorous treatment
of the computational methods used for uncertainty
quantification of the inputs of the Monte Carlo
simulation, which in this case are bus load, PHEV
charging, and rooftop solar generation, is crucial to
answering the central question.

2. Capacitor-less D-STATCOM

The capacitor-less D-STATCOM performs the same
functions as the existing VSC-based D-STATCOM. A
distinction, however, can be drawn in terms of the circuit
elements used for energy storage. The capacitor-less
D-STATCOM uses inductors for energy storage as
opposed to electrolytic capacitors. This enables the
capacitor-less D-STATCOM to achieve a much longer
service life, especially in regions with harsh climatic
conditions [2]. The capacitor-less D-STATCOM is
designed to provide reactive power compensation to
simultaneously address the multiple challenges of power
factor correction, voltage regulation, and harmonic
mitigation. The proposed converter can work either in
a local autonomous mode and determine the amount
of reactive power to be injected or absorbed or can
be centrally dispatched by the system operator. This
multiplicity of operation is a benefit that a utility can
derive from the converter, and the resulting monetary
savings can offset the high capital cost of the device for
use in low-voltage distribution systems.

2.1. Converter Topology

The three phase matrix converter (MC) with nine
bidirectional switches, three phase input filter and
output chokes is the fundamental building block of
the proposed converter. The bidirectional switches are
realized by means of two anti-parallel IGBT-diode pairs
for bidirectional flow. The shunt-connected MC-based
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capacitor-less D-STATCOM is shown in Figure 1 . The

Figure 1. Matrix Converter-based capacitor-less

D-STATCOM [3]

converter design uses Model Predictive Control (MPC)
strategy to achieve phase current inversion between the
input and output currents. The input and output current
relations of the MC are given in (1)IcAIcB

IcC

 =

SAa SAb SAc

SBa SBb SBc

SCa SCb SCc

I0AI0B
I0C

 (1)

The input and output voltages share the same
relationship. The switching function Sij can be either
0 or 1, where i ∈ [A,B,C] and j ∈ [a, b, c]. The phase
reversals are achieved by making good choices about Sij

which makes inductive energy storage appear capacitive
at the input of the MC. More details on the MC are given
in [4].

2.2. Power Factor Correction Operation

In OpenDSS the capacitor-less D-STATCOM in
power factor correction mode is modeled as an ideal
current source and the compensating currents and the
reactive powers for each phase of the load are calculated
based on phase admittance and the phase voltage. In
general a three phase load with phase A admittance
YA = GA + jBA, and phase voltage V Athe phase
current is

IA = V AYA = VA∠θA(GA + jBA) = IRA + jIXA

(2)
The capacitor-less D-STATCOM as an ideal current
source is shunt connected to compensate for the phase
quadrature component IXA of the phase A load current.
If the phase A compensating current is ICA and ICA =
−IXA the phase A converter rating is

Spf
CA = V AI

∗
CA = V A(−jV ABA) = jV

2

ABA (3)

Equation (3) suggests that only the reactive power
demand of phase A of the load is compensated while
the real power demand remains unaffected. Since the
reactive power demand of phase A of the load is QA =

−V 2

ABA, the converter rating can be expressed solely in
terms of QA.

Spf
CA = −jQA = jQpf

CA (4)

From (4) we can conclude that if the compensator, the
ideal current source modeling the steady state behavior
of the the capacitor-less D-STATCOM in this case, is
desired to provide power factor correction, the condition
for unity power factor operation of phase A of the load is
Qpf

CA = −QA. Partial compensation can be achieved if

|Qpf
CA| = α|QA|, 0 < α < 1. The phasor compensating

current required to achieve full compensation (unity
power factor) of Phase A is

ICA =
Spf
CA

V
∗
A

=
−jQpf

CA

V
∗
A

=
−j
(
SA

√
1− cos2 ϕA

)
V

∗
A

(5)
In (5) Qpf

CA is the reactive power rating of the converter,
SA is the apparent power of phase A of the load and
cosϕA is the phase A power factor. The compensatory
ideal current source model of (2-5) is implemented in
MATLAB environment and interfaced with OpenDSS
solver engine via the Component Object Model (COM)
interface. The compensating currents for each phase of
the load are updated after successful convergence of the
power flow and injected into the load. The total three
phase reactive power rating of the converter in power
factor correction mode is the sum of reactive power
ratings for each phase. That is Qpf

3ϕ = Qpf
CA + Qpf

CB +

Qpf
CC .

2.3. Voltage Regulation Operation

The power system steady state model of the
capacitor-less D-STATCOM in voltage regulation mode
is based on the reactive power mismatch equations.
A proportional-integral controller is used to minimize
the mismatch between the reference voltage (voltage
set-point) and the measured bus voltage. The first two
equations model the reactive power exchange between
the converter and the load bus and the third equation
models the control scheme .

0 =

 Qvr
3ϕ − VLIline sin(θVL

− θIline)

Qvr
3ϕ + |VL|2Bl − |V ′|Gl sin δ + |V ′|Bl cos δ

VL − Vsp


(6)

In (6) Qvr
3ϕ is the total three phase reactive power

exchanged between the converter and the load bus,
Bl and Gl are the line susceptance and conductance
respectively connecting the converter and the bus,
VL, θVL

is the bus voltage magnitude and angle
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respectively,Iline, θIline
are the line current magnitude

and angle respectively, |V ′| = |VL||Vconv|, Vconv is the
converter voltage magnitude, δ = θVL

− θVconv
, θVconv

is the converter voltage angle and Vsp is the voltage
set-point of the converter.

3. Design of Uncertainty

The probabilistic capacity usage model of the
capacitor-less D-STATCOM is developed by Monte
Carlo sampling of the input variables. For a given
penetration level of the solar generation, the input
variables of the Monte Carlo simulation are the bus
load profile, PHEV charging profile, and PV generation
profile. The use of Monte Carlo sampling entails that the
capacity usageQ be a random variable that can assume a
range of values. When the random variableQ is indexed
by time, it represents a stochastic process {Qt; 0 ≤
t < ∞} defined on the probability space ΩQ. The
stochastic process Qt is continuous and its distribution
is described by the probability density fQt

(q, t). The
density function fQt

(q, t) describes the joint distribution
of the random variables {Qt; 0 ≤ t < ∞}. The
Monte Carlo simulation estimates the expectation of
any Borel-measurable function h : R −→ R of the
stochastic process Qt.

E[h(Qt)] =

∫
q∈ΩQ

h(Qt)fQt(q, t)dq (7)

The Monte Carlo estimator of (7) can be obtained by
running Monte Carlo simulations with inputs sampled
from the underlying distributions. The inputs considered
for the estimation of (7) are the PHEV charging, load
profile and the solar generation profile.

3.1. PHEV Charging Scenarios

The stochastic PHEV charging scenarios are
developed by considering a stochastic counting process
{NEV (t); t ≥ 0} defined on the probability space
ΩEV . The random variable NEV (t) is the realization
of the number of PHEV arrivals in the interval [0, t].
The counting process considered has the property
NEV (τ) ≥ NEV (t) for any τ ≥ t. This implies that
the random variable NEV (τ)−NEV (t) is nonnegative.
By the virtue of this definition, the counting process
{NEV (t); t ≥ 0} is integer valued, nondecreasing
and right continuous consistent with the real world
physics of the PHEV arrivals at a charging station.
Furthermore, to be consistent with the real world rate
of arrival of PHEVs at a charging location, we consider
the stochastic counting process {NEV (t); t ≥ 0} to
be a nonhomogeneous Poisson process (NHPP) with a

time-varying arrival rate λ(t) such that ∀t ≥ 0 and δ > 0
satisfies

Pr{ÑEV (t, t+ δ) = 0} = 1− λ(t)δ + o(δ2)

Pr{ÑEV (t, t+ δ) = 1} = λ(t)δ + o(δ2)

Pr{ÑEV (t, t+ δ) ≥ 2} = o(δ2)

(8)

In (8) ÑEV (t, t + δ) = NEV (t + δ) − NEV (t). The
NHPP defined in (8) has the independent increment
property but lacks the stationary increment property.
The NHPP in (8) is characterized by a mean value

function ∧(t) = E[NEV (t)] =
∫ t

0
λ(y)dy < ∞. The

probability of r arrivals in the interval [0, t] is
Pr{NEV (t)−NEV (0) = r} =

[∧(t)− ∧(0)]r

r!
exp(− [∧(t)− ∧(0)]) (9)

Unlike a homogeneous Poisson process (HPP), the
interarrival times of a NHPP are neither independent nor
exponentially distributed. More specifically, the cdf of
the rth interarrival timeXr = Sr+1−Sr conditioned on
the first r arrival times S1 = s1, S2 = s2, ..., Sr = sr is

FXr (x) = Pr{Xr ≤ x|Si = si, i = 1, 2, ..., r} (10)

The conditional cdf in (10) can also be written in terms
of number of arrivals in the intervalN(Sr+x)−N(Sr)
conditioned on the rth arrival.

FXr
(x) = Pr {N(Sr + x)−N(Sr) ≥ 1 | Sr =

∑r
i=1Xi}

(11)
The arrival times of a NHPP can be simulated from
a HPP by considering a constant rate function λ+

that dominates the time-varying rate function λ(t) of
the desired NHPP such that λ+ ≥ λ(t)∀t ∈ [0, T ].
The “thinning” algorithm is used to sample from
the generated events of a HPP such that the desired
rate function λ(t) is achieved. It is a variation of
“acceptance-rejection” algorithm and is based on the
theorem of Lewis and Shedler, 1979 [14]. The proof
is given in [15]. In this work we consider a piecewise
constant arrival rate function in 30 minute intervals. The
piecewise constant arrival rate function is based on the
real-world data given in [5]. The thinning algorithm
is applied to the data to generate the arrival times that
are consistent with the real-world arrival of PHEVs
at a charging station. The generated scenarios of the
counting process {NEV (t)} as a function of the arrival
times Sr based on the real-world arrival rate are shown
in Fig . The output of the thinning algorithm is used
to construct the PHEV charging scenarios based on the
procedure presented in [16] .
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Algorithm 1: Acceptance Rejection based
Thinning of HPP

Input:NHPP Intensity function λ(t), HPP
Constant-rate Intensity function λ+, Interval length
[0, T ])
Set λ+ = max{λ(t)}
Set the counting process NEV = aλ+T, a > 1
while i ≤ NEV do

Draw u ∼ U(0, 1)
Set Sr = − 1

λ+ log ur
end while
Set S = S(S < NEV )
Set r∗ = max{r;

∑r
n=1 Sn < T}

for all i=1,..,r do
Draw w ∼ U(0, 1)

Calculate acceptance probability, r(j) = λ(Sj)
λ+

if wj ≤ r(j) then
Ij = 1

else
Ij = 0

end if
end for
J = {Ij ; j = 1}
SNHPP
j = {Sj ; j ∈ J}

Output: Arrival Times of NHPP

3.2. Annualized Load Scenarios

To generate the load scenarios with similar statistical
properties as the measured load data we propose using
a probability mixture model based on a generalized
Gaussian distribution. The proposed mixture model is
“generative” and can be used to sample random numbers
from the empirical statistical distribution of the load. A
probability mixture model is a convex combination of
a finite number of probability densities with associated
nonnegative weights. This property lends a mixture
model well suited for fitting probability densities with
multi-modal characteristics. In general, a mixture model
that is a sum of a finite number of density functions has
the following form

fY (yi; Ψ) =

M∑
j=1

πjpj,Y (yi, C = j,Θj) (12)

In the context of load modeling, Y = yi is the measured
load data, M is the number of mixture components
and πj = p(yi ∈ Cj) is the weight of the jth

component density. The weights assigned to component
densities are subject to πj > 0 ∀j ∈ {1, 2, ...,M}

and
∑M

j=1 πj = 1. The component density pj,Y

is parameterized by Θj and Ψ = {πj ,Θj ; j =
[1, 2, ...,M ]} is the overall parameter vector. Estimating
Ψ in a mixture model is quite challenging since the
optimization of the log-likelihood of fY (yi; Ψ) is often
ill-posed. The log-likelihood function of (12) has the
form

logL(Ψ|yi) =
N∑
i=1

log

M∑
j=1

πjpj,Y (yi|C = j,Θj) (13)

The maximization of (13) cannot be done using the
maximum-likelihood method (MLE) because of the
log(

∑
) term. A solution to the maximization of (13) is

possible however using the Expectation-Maximization
algorithm (E-M) [17]. The E-M algorithm find a
solution by reinterpreting the measured data Y as
incomplete data and posits the existence of a M−
dimensional binary variable Z = {zji}i=N,j=M

i=j=1 for

each sample yi such that the jth component zji is 1 if
and only if yi belongs to the jth component. That is

zji =

{
1, yi ∈ Cj

0; yi /∈ Cj

(14)

To capture the statistical properties of the measured load
data Y with high accuracy we propose using generalized
Gaussian distributions as component densities for the
mixture model in (12). A random variable Y has a
generalized Gaussian distribution if the density function
of Y has the form

pY (y;µ, s, p) =
β

2sΓ
(

1
β

) exp

[
−|y − µ|β

sβ

]
(15)

In 15, β ∈ R+ is the shape parameter,s ∈ R+ is
the scale parameter, µ ∈ R is the location parameter
and Γ(.) is the gamma function. It is worth noting
that β = 1 gives a Laplace distribution and β = 2
gives a Gaussian distribution. The generalized Gaussian
distribution is more flexible than a Gaussian distribution.
The increased flexibility is due to the extra shape
parameter β which can be optimized to represent a large
variety of statistical behaviors. This is important in the
context of statistical load modeling since this means that
a generalized Gaussian distribution can approximate the
peak load behavior better than a Gaussian distribution.

For a mixture model with component densities given
in (15), the application of E-M algorithm results in the
following update equations for the overall parameter
vector Ψ(n+1) = {πj , µj , sj , βj ; j = [1, 2, ...,M ]}
given the current estimate Ψn and the measured load
data Y

π
(n+1)
j =

1

N

N∑
i=1

E
[
zji|Y,Ψ(n)

]
(16)
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N∑
i=1

E
[
zji|Y,Ψ(n)

]
β
(n)
j |µ(n+1)

j − yi|β
(n)
j = 0 (17)

s
(n+1)
j =

[ ∑N
i=1 E[zji|Y,Ψ(n)]∑N

i=1 E[zji|Y,Ψ(n)]β(n)
j |µ(n+1)

j −yi|
β
(n)
j

]− 1

β
(n)
j

(18)
N∑
i=1

E
[
zji|Y,Ψ(n)

]
κ = 0 (19)

In (19), κ equals

κ =
1

β
(n+1)
j

+
ψ
(
1/β

(n+1)
j

)
(
β
(n+1)
j

)2 −

(
|yi − µ

(n)
j |

s
(n)
j

)β
(n+1)
j

(
log |yi − µ

(n)
j | − log s

(n)
j

)
(20)

In (20) ψ(.) is the digamma function defined as
Γ

′
(h)/Γ(h). The update equations for the µ and β are

nonlinear and we use the Newton-Raphson method to
obtain a numerical solution.

3.3. Distributed Generation Scenarios

The Markov weather model proposed in [9] can
generate high-resolution solar irradiance data with high
enough fidelity to reproduce the rapid excursions in
the output of a solitary PV system. The estimation of
the clearness index, which is defined as the ratio of
measured irradiance at the earth’s surface at a location
and the cloudless sky irradiance at the same location,
is central to the Markov weather model. The Markov
weather model works by combining the low-resolution
clearness index based on the hourly averaged TMY3
[10] data with transition probabilities generated at
sub-hourly time scales from measured high-resolution
data. This results in an output with a high temporal
resolution, 1-minute in this case, and seasonal variation.

The solar output of a PV system can be modeled as
a continuous stochastic process. Since optimization of
continuous stochastic processes is complicated and even
impossible in many cases, a discrete-time approximation
is often used in formulating optimization problems. The
continuous stochastic process Gi

PV representing power
generated at bus i in a network can be well approximated
by a discrete process Ĝi

PV such that

Ĝi
PV = {Ĝi

PV (t, ω) = [giPV (1, ω), g
i
PV (2, ω),

..., giPV (T, ω)], ω = 1, 2, ...,H} (21)

In (21) T is the length of the time horizon, ω is
the scenario index, and H is the number of possible
scenarios, which is also equal to the number of
Monte Carlo runs. The stochastic process Ĝi

PV is
completely determined by the joint distribution of the
random variables {giPV (t, ω); t = 1, 2, ..., T, ω =
1, 2, ...,H}. The joint distribution can also be used
to evaluate the marginal distribution of the random
variable gPV (t, ω) and the statistical dependencies that
exist among these random variables. The estimation
of the joint distribution, however, is challenging and is
simplified by assuming that the joint distribution is a
multivariate Gaussian and the stochastic process Ĝi

PV

is stationary. The assumption of a multivariate Gaussian
implies that the marginal distributions are all univariate
Gaussian. The assumption of stationarity implies that
the mean, variance, and covariance of the stochastic
process Ĝi

PV are time-invariant. .
With these assumptions the joint distribution of the

stochastic process Ĝi
PV can be determined by ARMA

modeling of the time series data. The time series data
used to train the ARMA model is obtained from the
Markov weather model. Mathematically, an ARMA
(p, q) model with p auto-regressive parameters and q
moving average parameters has the form

giPV (t, ω) =
∑p

i=1 ϕigPV (t− i, ω) + ϵ(t) +
∑q

j=1 θjϵ(t− j)

(22)
In (22) the term ϵ(t) is an uncorrelated stochastic
process with zero mean and variance σ2

ϵ . The stochastic
process ϵ(t) is called white noise or innovation
term. Before realizing the ARMA (p, q) model, i.e.,
estimating the model orders and coefficients, it is
important to test whether the stationarity assumption
holds for the time series data used to train the ARMA
model in (22). The annual 1-minute time series data
from the Markov weather model is tested for stationarity
using the Augmented Dickey-Fuller (ADF) test [18].
The ADF test contains the null hypothesis that the time
series is non-stationary. The test result rejects the null
hypothesis, implying that the series may be stationary
and that the use of the ARMA model may be justified.

The ARMA model orders p, q and the model
coefficients ϕ1, ..., ϕp and θ1, ..., θq are estimated by
implementing the model in the System Identification
Toolbox (SIM) in MATLAB [19]. Using the
high-resolution time series solar generation data from
the Markov weather model, the SIM constructs
mathematical models with different combinations of
model orders. The order combination with the least
Bayesian Information Criterion (BIC) value is selected.
Conversely, the order combination with the largest
log-likelihood value is chosen since large log-likelihood
values represent better fits.
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4. Results and Discussion

This section will present the results of the scenario
generation algorithms for PHEV charging, statistical
load distributions, and distributed generation. The
scenarios thus generated for each of the inputs are
used to run the Monte Carlo simulations, and the
capacity usage of the capacitor-less D-STATCOM is
studied based on (5) and (6). To assess the capacity
usage of the converter over a wide range of operational
conditions, we design annual Monte Carlo simulations
with a random sampling of the inputs from annualized
scenarios. The step size of the power flow simulations
is 1-minute. The simulations were performed on a
fully detailed model of the IEEE-34 bus distribution
test feeder implemented in OpenDSS. The capacitor-less
D-STATCOM is assumed to be connected at Bus 890 of
the test feeder. The D-STATCOM location is chosen
based on the base voltage profile of the feeder under
peak load conditions [4]. Fig 2 shows the one-line
diagram of the IEEE 34 bus feeder with the proposed
converter shunt connected at bus 890 to provide reactive
power compensation. The PHEV charging scenarios

Figure 2. IEEE 34 Bus Test Feeder with Shunt

Connected D-STATCOM

are developed based on the PHEV arrival scenarios
using the procedure outlined in [16]. Each charging
scenario is developed based on the expectation of the
corresponding counting process {NEV (t); t > 0}, the
energy required to charge the PHEVs, and the charging
time. The energy required to charge a PHEV depends on
the initial and final state of charge (SoC). The initial SoC
or the SoC at the arrival depends on the vehicle’s energy
consumption in 100kWh/100 miles, daily driven miles,
and the battery capacity. We assume a fleet of Tesla
Model 3 and three-phase level 2 (L-2) charging. The
thinning algorithm described earlier is applied to the
piecewise constant arrival rate of the PHEVs queuing
up at a charging station to receive a charging service.
The piecewise constant arrival rate data is given in
[5]. Figure 3 shows hundred example scenarios of the
stochastic counting process NEV (t) for one day. The
generalized Gaussian mixture model described earlier is
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Figure 3. PHEV Cumulative Arrival Scenarios

used to generate load scenarios with similar statistical
properties as the measured (empirical) load data. Bus
890 of the test feeder is assumed to be a commercial
load. This assumption is based on the peak active
and reactive load ratings provided in the original feeder
data developed by the IEEE distribution subcommittee.
The measured historical annual commercial load profile
(without PHEV charging) is obtained from the OpenEI
website [20]. The web page is sponsored by the U.S
Department of Energy (DoE) in support of the Open
Government Initiative to make energy data transparent
and collaborative. The measured historical annual
data set is used to estimate the parameters of the
generalized Gaussian mixture model using the E-M
algorithm. The E-M algorithm is coded in MATLAB
and initialized using theK- means algorithm. A random
number generator function generates statistically similar
load profile scenarios. The random number generator
function can be evaluated by taking the inverse of the
CDF of the mixture model. The CDF of the mixture
model in (12) is

FY (y|Ψ) =
∫ y

−∞
∑M

j=1 πj
βj

2sjΓ
(

1
βj

) exp
[
− |t−µj |βj

sj

]
dt

(23)
A closed form solution of ŷ = F−1

Y (y|Ψ) does
not exist and hence numerical techniques such as
Newton-Raphson must be used to generate random
samples from the fitted model. Figure 4 shows a hundred
example scenarios of the load at bus 890 for one day.
It is important to note that the load scenarios shown
in Figure 4 also account for the PHEV charging. The
scenarios for solar generation at bus 890 are generated
using the Monte Carlo sampling of the fitted time
series ARMA model. We assume a three-phase PV
system at bus 890 with a peak power rating of 450 kW
proportional to the peak active load. The voltage rating
of the PV system is 4.16 kV. The PV system is oriented
at an azimuth of 180 °(south-facing) and a tilt angle of
30 °. Since the IEEE-34 bus test feeder is based on
an existing distribution system located in the state of
Arizona (AZ), the hourly average TMY3 [10] data of
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Figure 4. Load Scenarios at Bus 890 including

PHEV charging Profiles

AZ is used to synthesize a high resolution (1-minute)
irradiance profile. The solar output in 1-minute intervals
is estimated using the PV system model in OpenDSS
[13]. The high-resolution solar output data is used to fit
the ARMA model. The fully realized ARMA model is
used to generate solar forecasts. Figure 5 shows one
hundred 1-minute ahead solar output scenarios for a
typical spring day in AZ along with the mean forecast
and 95% confidence interval. The parameters of the

Figure 5. 1-minute ahead solar forecasts from

ARMA model from Table 1

realized ARMA model are given in Table 1

Table 1. The Realized ARMA (p, q) Model
p q ϕi θj

3 3

ϕ1 = 0.376
ϕ2 = −0.3722
ϕ3 = 0.9848

θ1 = 0.6151
θ2 = 0.9845
θ3 = −0.005

The generated scenarios of the input variables are
used to calculate the Monte Carlo estimator of (7).
This is done by taking the i.i.d sample {qγ(t); γ =
[1, 2, ...H, ], t = [1, 2, ..., T ]}. H is the total number of
Monte Carlo runs and T is the time horizon. The time
horizon considered in this work is one year. The mean
of (g(qγ(t))) over the chosen sample is the estimate of
E[h(Qt)].

ĥγ (qγ(t); t ∈ [1, T ]) =
1

γ

γ∑
v=1

h (qv(t); t =∈ [1, T ])

(24)

Assuming the expectation E[h(Qt)] is finite, the weak
law of large numbers implies for an arbitrarily small ϵ

lim
γ→∞

(
Pr{ ĥγ (qγ(t); t ∈ [1, T ])−E[h(Qt)] ≥ ϵ}

)
= 0

(25)
Equation (25) implies that as γ gets large, the Monte
Carlo estimator converges in probability to the true
expectation. The i.i.d sample {qγ(t); t = [1, 2, ..., T ]}
for fixed γ is obtained by executing the power flow
on the model of IEEE 34 bus test feeder in OpenDSS
interfaced with MATLAB via COM. The capacitor-less
D-STATCOM is placed at bus 890 of the test feeder. The
power factor correction and voltage regulation programs
are developed in MATLAB. The circuit is solved in
OpenDSS with control actions suspended at first. This is
done to sample the quantities of interest, i.e., bus voltage
phasors and load reactive power for D-STATCOM
initialization. Based on the retrieved values of the bus
voltages and load, the programs populate the current
injection sources that model D-STATCOM operation
in power factor correction mode to compensate for the
reactive power of the load. At the same time, the voltage
regulation subroutine uses the reactive power mismatch
equations to calculate the reactive power for maintaining
bus voltage at a predefined set point. The modified
circuit with D-STATCOM is solved again in OpenDSS
with control actions enabled. Once the control queue
clears, the program steps through the next solution.

The probability distributions of the capacity usage
in voltage regulation mode Qvr

3ϕ for different voltage set
points considering the uncertainty in PHEV charging,
commercial reactive demand and the solar generation is
shown in Figure 6 The D-STATCOM adjusts its reactive

Figure 6. Capacity Usage in voltage regulation mode

output in accordance with (6). This ensures that the bus
voltage is held nearly constant and equal to the voltage
set point of the converter. Figure 6 suggests that for
higher voltage set points the converter is more likely to
absorb reactive power while for lower voltage set points
the likelihood of injecting reactive power is more. The
expected value of the capacity usage for power factor
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correction is 121.95 kVAr, and for voltage regulation,
the expected value of capacity usage is 474.62 kVAr.
This is approximately four times higher than the power
factor application. Furthermore, the standard deviation
of Qpf

3ϕ is 88.6 kVAr while the standard deviation of
Qvr

3ϕ is 162.95 kVAr. A higher standard deviation of
Qvr

3ϕ suggests greater uncertainty in its estimation. This
could be because of the dual impact of intermittent
solar generation and PHEV charging on the bus voltage.
Figure 7 shows the capacity usage when the converter is
operating in power factor correction mode in accordance
with (2-5) It is clear that voltage regulation operation
is more capacity intense than power factor correction.
Interestingly, from Figure 7 the converter is more likely
to inject power into the grid for power factor operation
close to or at unity. This is consistent with the steady
state power factor correction model (2-5).

Figure 7. Capacity usage in power factor correction

mode

An interesting application of the capacity usage
results in Figure 6 and 7 is the determination of the
energy loss due to the curtailment of the PV output
when capacity sizing constraints on the converter are
considered. The results in Figure 6 are valid for
an unrestrained D-STATCOM. However, a restrained
D-STATCOM will be limited in its ability to provide
reactive power compensation. The limits placed on
the converter capacity could either be due to the high
manufacturing cost or the technology limitations that
could preclude scaling the converter capacity. Since
voltage regulation application utilizes more capacity,
any limits on the converter capacity would primarily
impede the converter’s ability to regulate voltage. In
order to maintain the bus voltage within acceptable
limits, especially the upper limit of 1.05p.u, additional
measures such as curtailing the PV system’s output must
be put into effect. To observe the impact of the capacity
reduction of the D-STATCOM on the energy loss due
to the curtailment of PV output, we use the volt-watt
control functionality in OpenDSS. It provides a flexible
mechanism to regulate the active power output of a
PV system based on a user-configured volt-watt control
curve. For our application, we use a volt-watt curve that

reduces the PV output whenever the bus voltage exceeds
1.05p.u. If △giPV (ω) is the curtailed PV power at bus i
for scenario ω, the energy loss over the planning horizon
is

Eloss(ω) =

∫ T

0

△giPV (ω)dt (26)

Eloss(ω) is a random variable and we are interested in
the expectation E[Eloss(ω)] as a function of the capacity
reduction of the D-STATCOM. Figure 9 shows the cdf
plots of energy loss of a 450 kW PV system at bus
890. The converter is programmed to maintain the bus
voltage at 1p.u and the capacity is reduced in steps of
10% from the baseline capacity of +/ − 900 kVAr. It
can be inferred from Figure 8 that the probability of
energy loss increases with the reduction in converter
capacity. For capacity reductions up to 20% there is
roughly 70% probability of incurring an annual energy
loss of 5% or less. The probability of energy loss
however dramatically increases as the converter capacity
is further reduced. Figure 9 plots the expectation
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Figure 9. Expected value of Annual Energy loss of a

450 kW PV System

E[Eloss(ω)] as a function of the capacity reduction
of the proposed converter. A 50% reduction in the
converter capacity would result in an annual energy loss
of nearly 30% of the value if the converter was operating
at full capacity with a voltage setpoint of 1.0p.u. On
the other hand a capacity reduction up to 20% could be
acceptable as the energy loss is less than 5%.
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6. Conclusions

In this paper, we study the capacity usage of the
proposed capacitor-less D-STATCOM in a distribution
system, considering the uncertainties in PHEV charging,
system demand, and solar generation. Two different
modes of operation of the converter are presented. The
power factor correction operation is modeled as an
ideal current source shunt connected to the load. The
voltage regulation mode of operation is modeled based
on the reactive power mismatch equations between the
converter and the load bus.

To assess the uncertainty in the capacity usage,
Monte Carlo simulations are designed with inputs
sampled from their underlying distributions. Various
scenario generation algorithms consistent with the
physics and based on real-world measured data are
presented to sample the input parameters. Based on
the results of the Monte Carlo runs, it is concluded
that voltage regulation operation utilizes more capacity
than power factor correction and is characterized by a
higher variance. Furthermore, restraining the capacity
of the converter increases the energy loss due to the
curtailment of the PV output. More precisely, the
expected value of the loss of energy shares a nonlinear
relationship with the capacity reduction of the converter.
The energy loss increases with the progressive decrease
in the capacity of the converter.

The methodology and the results presented in this
paper are important and can be used as a tool by the
manufacturers to improve the design and functionalities
of the power electronic converters for use in distribution
systems. In the future, we plan on extending this work
to include more complex distribution systems with more
components, such as the IEEE-123 bus feeder and the
8500 node test feeder.
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