
A Domino Effect:

Interdependencies among Different Types of Technical Debt

Netta Mäki

Aalto University

netta.maki@aalto.fi

Esko Penttinen

Aalto University

esko.penttinen@aalto.fi

Tapani Rinta-Kahila

The University of Queensland

t.rintakahila@uq.edu.au

Abstract
The paper examines the accrual of technical debt,

which represents an increasingly pressing concern for

many organizations. To advance understanding of how

this debt-accumulation process unfolds, an in-depth

case study was conducted with a large manufacturing

firm for identifying particular types of technical debt

and potential interdependencies among them. The

findings point to architecture debt being "the root of all

evil" at the case company, setting in motion dynamics

that led to the development of other types of technical

debt. Scholarship should benefit from this nuanced

articulation and illustration of interdependencies

across the various types of technical debt.

Keywords: technical debt, architectural debt, legacy

systems, manufacturing, case study

1. Introduction

Many organizations, especially those operating in

traditional fields such as manufacturing and banking,

continue to rely on old legacy systems for mission-

critical applications. While these systems provide

business continuity and support reliability, their

operators are awakening to the fact that such systems

often accrue significant technical debt – future

information technology (IT) maintenance obligations,

most often through suboptimal shortcuts taken in

information systems’ development.

Much as financial debt is part and parcel of

business, technical debt in information systems has been

described as practically unavoidable (Casey, 2020).

Furthermore, just as with financial debt, there is a

threshold at which technical debt becomes problematic.

While technical debt cannot be avoided entirely, it needs

to be managed consciously – otherwise it becomes

expensive and hinders operations and innovation.

Indeed, company CIOs interviewed in a McKinsey

survey (Dalal et al., 2020) stated that up to 20 percent of

their new-product budget ended up going toward

resolving existing issues related to technical debt. In

other words, money set aside for new IT systems and

solutions had to be directed to fixing problems that had

accumulated in the systems already in use. Worryingly,

reports cite technical debt as diminishing innovation and

change within companies while also negatively

influencing both security risks and business-continuity

risks (McClure, 2018). Technical debt can be especially

harmful in the long term, and, if ignored for an extended

period, it starts bringing negative consequences and

rendering companies more vulnerable. Therefore,

focused efforts to understand how technical debt

accumulates in organizations are highly relevant.

Managers need to be able to identify the mechanisms

that lead to debt accrual to be able to consciously

manage it.

Considerable attention has been devoted to

addressing the origins of technical debt (e.g., intentional

vs. unintentional or internal vs. external) and its types

(e.g., architecture debt, code debt, and infrastructure

debt). However, recent research has found that technical

debt can be contagious: increases in one type of debt

(cause) often result in increases in another type (effect),

making them interdependent (Martini et al., 2015;

Rinta-Kahila et al., forthcoming.; Rolland & Lyytinen,

2021). This suggests that repercussions of technical debt

may be dynamic in nature. Recent information systems

(IS) literature indicates that many challenges facing

managers are systemic: they require holistic

understanding of how different social and technical

elements interact within an organization over time

(Burton-Jones et al., 2015; Rinta-Kahila et al., 2022). As

such, vicious feedback cycles caused by seemingly

innocent decisions during system development and

maintenance may unconsciously feed the accrual of

technical debt in an organization’s information-systems

architecture (Rinta-Kahila et al., forthcoming). Such

dynamics seem to receive little attention in the literature

on technical debt, however. Similarly, managers have

been found to exhibit limited awareness of how their

decisions contribute to the accrual of various types of

technical debt (Holvitie et al., 2018; Martini et al., 2015;

Rinta-Kahila et al., forthcoming). Therefore, we

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 5949
URI: https://hdl.handle.net/10125/103356
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

attempted to improve understanding of how the

individual types of technical debt may fuel each other,

by considering the question “what kinds of

interdependencies exist among different types of

technical debt?”

To tackle this research question, we examined a

manufacturing firm where old legacy systems were still

in use, a potentially rich empirical context for studying

the accrual of technical debt. Interactions with the case

company for other research projects had produced a

good general sense of the company’s system landscape,

and we built on this understanding via nine interviews

targeted specifically at understanding how various kinds

of technical debt unfold.

Our discussion is anchored on the types of technical

debt presented in prior literature. After providing a brief

literature review, we describe how we collected and

analyzed the empirical data. We then turn to our

empirical findings and present the study’s implications

for theory and management practice.

2. Technical debt

The introduction of the concept of technical debt,

by Ward Cunningham in the early 1990s, coincided with

that of agile methods (Ampatzoglou et al., 2015).

Originally, its scope was quite limited, with

Cunningham defining technical debt as badly written

code (Cunningham, 1992). Technical debt parallels with

financial debt, and much of the terminology reflects this.

For instance, studies often refer to principal and interest:

technical debt’s principal is the original cost of fully

eliminating the debt, and all additional issues and costs

accrued through acquiring the original debt are interest,

with one example being productivity reductions linked

to having technical debt (Alves et al., 2016).

2.1. Types of technical debt

Technical debt comes in various types, depending

on where in the IT system the debt accumulates. Next,

we discuss technical debt at the levels of software code,

design, testing, requirements specification, IT

infrastructure, IT architecture, data, documentation, and

people.

Code debt covers problems that make source code

hard to understand, maintain, and read. “Code smell”

and “grime build-up,” or characteristics of program

code that may betray deeper problems, are the most oft-

cited indicators of code debt (Ramasubbu & Kemerer,

2019). Code debt may be either chosen or accrued

inadvertently. In the former case, developers’ comments

in the code state explicitly that the implementation will

not suffice in the long run and needs further attention at

some point (Maldonado & Shihab, 2015). Design debt

too refers to source-code problems, with its biggest

giveaway being disregard for common principles of

object-oriented design (Guo & Seaman, 2011). Linked

to software development, design debt arises if, for

instance, changes are made without proper refactoring

of existing code (Neill & Laplante, 2006). Test debt, in

turn, encompasses issues with information systems’

testing, mainly utter lack of testing but also poorly

executed tests and inappropriate testing (Guo &

Seaman, 2011). One symptom of test debt in

information systems is a sudden need for formerly

automated tests to be performed manually (Tom et al.,

2013). Also, difficulties in finding every critical defect

even with rigorous testing could imply test debt in the

systems, since something is rendering the tests clearly

ineffective (Li et al., 2015). Test debt is a type of debt

wherein human error and input play an important part:

testing readily gets forgone amid pressure for speed and

efficiency. Lack of motivation constitutes another cause

of information-system test debt—if testing is not done

on schedule and properly, the probability of system

failure rises significantly, and system security may be

utterly compromised also (Shull, 2011). Requirements

debt accumulates from trade-offs in what requirements

are met, when, and how (Alves et al., 2016). It can arise

if some needs are not fully addressed in the final system

or if the implementation impinges on meeting other

requirements (Kruchten et al., 2012).

Infrastructure debt, on the other hand, refers to

issues that leave information systems falling short of

modern standards and requirements. Lack of continuous

integration between old and new production systems

could fall under this category (Li et al., 2015).

Infrastructure debt is usually connected with legacy

systems. Yet, resolving such debt by replacing legacy

systems with more modern ones is notoriously difficult

and risky (Rinta-Kahila, 2018; Rinta-Kahila et al.,

forthcoming). Architecture debt accrue through

suboptimal choices in the software architecture that

increase complexity and decrease stability, such as

creating technological gaps by integrating old

technology with new one (Kruchten et al., 2012). It also

accumulates through efforts to make systems more

flexible and adaptable than necessary. Feature creep can

render future changes needlessly complex (Kruchten et

al., 2012). One typical indicator of architecture debt is

violations related to modularity (Alves et al., 2016), and

one can investigate dependencies at architecture level to

ascertain whether architecture debt is an issue. The parts

of a healthy information system work seamlessly

together, without their core-level functions necessarily

requiring the other parts’ presence, while systems’

excessive dependence on each other makes maintenance

very difficult and increases risk (Martini et al., 2015).

The likelihood of unnecessary additional architecture

Page 5950

debt is higher with heavily customized information

systems than with less tailored systems (Ramasubbu &

Kemerer, 2016). Business evolution and new

information can make even a highly functional

architecture suboptimal with time (Martini et al., 2015).

Furthermore, low-quality data embody data debt

(Foidl et al., 2019), e.g., data that is incorrectly

formatted, inaccurate, redundant, or absent altogether.

In knock-on effects, employee workarounds to bad data

may increase complexity, thereby impairing the whole

information system’s maintainability (Foidl et al.,

2019). Inability to utilize data when needed may point

to information systems suffering from data debt,

whether employees find it inconvenient to access the

necessary data, workers have no access at all, or data are

stored in an inconvenient location or hidden completely.

Systems’ data debt may manifest itself also in processes

being hard to manage, because controlling the data for

their execution is impossible. Despite its potential

significance, data debt has thus far received very sparse

attention in the academic discourse.

Documentation debt accrues when developers

neglect clear indications to others of their decision

processes or the changes made (Alves et al., 2016).

Missing or incomplete project documentation can form

documentation debt (Zazworka et al., 2013). Likewise,

poor-quality or outdated documents may be regarded as

documentation debt (Guo & Seaman, 2011). Such

documents often contain valuable information, so

companies with documentation debt can face

surprisingly dire consequences if important enough

information disappears or is not available in a suitable

form when needed. When projects, changes, etc. are not

documented clearly enough, negative impacts on future

upgrades and maintenance may ensue, and any future

changes may end up unnecessarily difficult: in the

absence of references to earlier decisions and reasons

for something having succeeded or failed, every

individual decision and factor must be researched again,

from the beginning.

People debt manifests in insufficient training and

hiring practices (Guo & Seaman, 2011) and gaps in

knowledge distribution (Tom et al., 2013). The term

covers technical debt arising from issues of transmitting

knowledge between company-internal parties. If

knowledge evaporates, it could grow difficult to stay on

top of even the simplest tasks and processes, let alone

later improve the systems or make other advances

without additional time and effort.

2.2. Origins of technical debt

Technical debt may accumulate intentionally or

unintentionally. Intentional technical debt can be seen

as investment in an asset that should yield gains, usually

short-term benefits (e.g., a competitive edge). Such

gains are often conceptualized via digital options –

potentially transformative IT-enabled action

possibilities that would otherwise remain beyond reach

(Rolland et al., 2018; Woodard et al., 2013). Potential

access to these impactful opportunities is one key reason

for intentionally taking on technical debt, alongside

settling prior debt (as prior debt could hamper the

realization of options). However, pursuing digital

options without adequate planning can impede progress

and build unintended debt in the systems, and such debt

can restrict digital options’ realization and the benefits

(Rolland et al., 2018). This is especially the case when

the debt accumulates latently outside the organization’s

awareness. For this reason, it is important for

organizations to systematically manage their technical

debt (Ramasubbu & Kemerer, 2019).

Technical debt has internal and external sources. It

may stem from an organization’s internal actions that

prioritize strategic digital options over systematic IT

management. The more a firm must resort to such

compromises, elevating or overlooking anything from

time or money to project-specific staffing, the more

technical debt it is probably building into its information

systems. The passing of time and general technological

progress are significant external sources of technical

debt, as often systems that were once cutting-edge and

lean will ultimately become obsolete and wieldy

(Kruchten et al., 2012). Similarly, mounting

competition may create pressure to save time and keep

up, rendering incumbent systems less relevant. Further,

loss of knowledge via departure of important employees

may result in people debt for reasons external to the

organization (Fairley & Willshire, 2017). While such

external factors may be outside one organization’s

control, managers can track developments and attempt

to predict them, to avoid hasty decisions amid

scrambling to keep up.

Finally, technical debt may in itself stimulate the

accumulation of further debt. For instance architecture

debt has been found to increase other types of debt:

when complex and non-standard architectural solutions

are left undocumented (documentation debt), when only

few people understand them (people debt), and when

those solutions increase the entrenchment of old

technologies (infrastructure debt) (Rinta-Kahila et al.,

forthcoming.; Rolland & Lyytinen, 2021). However,

this aspect of debt accumulation has not received much

attention in prior literature. Hence, the present study

provides a systematic investigation of the matter.

3. Methods

Technical debt can be identified by means of human

knowledge and experiences or via automated tools

Page 5951

(Zazworka et al., 2013). Our project employed the

former since a qualitative approach was deemed the best

way to gain rich and empirically-grounded insights on

the occurrence of different types of debt, allowing us to

approach our under-explored research question on the

potential interdependencies among them. We conducted

an exploratory single-case study (Yin, 2018), for the

richest, most detailed view possible of how technical

debt might be manifested in information systems.

3.1. The case company

We carried out the study at a Finnish manufacturing

site that focuses on the production of electric engines

and similar equipment. The site’s parent corporation,

which employs over 100,000 people around the world

and has customers in diverse industries, focuses

predominantly on the production of technology but

offers related services too, such as machine

maintenance. The current investigation was conducted

as a part of a larger research project in this case

organization. Our prior engagement with the

organization had indicated that their IT environment is

heavily affected by various types of technical debt (see

(Rinta-Kahila et al., forthcoming). Managers at the site

were concerned about potential implications of

incurring technical debt, but they were lacking a holistic

understanding on how and where debt accumulated.

Hence, we agreed to conduct a more focused

examination of technical debt and its different

manifestations.

As we discussed potential approaches to the

research with the site’s IT managers, a decision was

made to examine how technical debt manifests in the

design processes of two specific types of motor, here

referred to as types A and B. This process involves

creating and fulfilling orders, as well as product and

design development in general. The two electric motors

operate on the same fundamental principle. However,

type-A motors are highly customizable to the customer’s

needs, even down to the specific nuts and bolts used.

Type-B motors offer less flexibility for customization

(they follow standardized designs, to guarantee shorter

lead times and a lower price) though they can be

modified to some extent. The reason for focusing on

these processes was that they are managed with a variety

of information systems, both legacy ones and newer

ones. The systems in question were found likely to

exhibit different types of technical debt, considering that

they have varying amounts of customization done to the

software architecture and functionality, with concerns of

insufficient documentation and skills to maintain them.

Often, the demands of a customer would trigger a need

to customize the product, and if the information system

in its standard form could not support this, it might

receive potentially debt-incurring modifications.

3.2. Data collection

Data for this research were collected by means of

semi-structured interviews specifically designed to

probe the manifestation of different types of technical

debt. A set of guiding questions was compiled to

guarantee that the interviews stayed on track and keep

their scope under control. The questions covered basic

information on the interviewees’ tasks and job role at

the case company and on how the design process for the

two types of motors works, then continued on to more

specific questions about process functionality. The

questions (interview protocol in Appendix A) were

designed not only to chart where any technical debt

resides in the information systems but also to help divide

the debt into the types recognized in the literature. Open

questions and opportunities to probe more about certain

answers aided in collecting an in-depth set of data for

what people perceive and experience.

Our contact persons at the site identified a set of

relevant employees to be interviewed. From there, we

continued to identify additional informants by

snowballing. All the interviews (see Table 1), conducted

in December 2020, advanced from general questions to

more in-depth, detailed ones, and every interviewee was

asked all of the questions, for comparability of the data.

Every interview was recorded and transcribed.

Table 1. Data collection

Informant Role Interview
length

Chris IS manager 66 min

Bob Manager, engineering tools
and processes

69 min

Mark Head of product platforms and
R&D

56 min

John Team leader, mechanical-
design engineer

74 min

Alex System engineer 64 min

Tom Team leader and product-
owner, R&D

65 min

Matt Senior software-development
engineer

80 min

Dave Project manager 57 min

Luke Manager, sales tools and
processes

46 min

3.3. Data analysis

Transcribing the interviews yielded about 130

pages of text. The semi-structured approach produced

material that already had a somewhat systematic form,

as could be expected. Two of the authors read the

transcripts inductively to identify important themes and

get a sense of the occurrence of debt types. This was

Page 5952

followed by a more systematic analysis by one of the

authors to identify different types of technical debt and

interdependencies among them. The data was analyzed

via the lens of existing debt types per Alves et al. (2016)

and Tom et al. (2013) by assigning codes to interview

excerpts that reflected the types described in the said

studies. The informants’ statements were examined

critically against previous definitions and empirical

manifestations of technical debt to ensure a sound

understanding of debt occurrence in the case company.

The material was tabulated into a single set of data by

recording every indication of technical debt into a

conceptual matrix. The matrix covered debt types

established in the prior literature, deliberativeness of

debt accrual, its causes and consequences, and

characterization of the case company’s decision-making

process in relation to technical debt.

When assigning causes to debt accrual based on the

informants’ testimonies, we noted that in many cases the

primary cause for accruing one type (e.g., leaving

integration of two systems undocumented) seemed to

boil down to the prior accrual of another type (e.g.,

resorting to a complex, non-standard architectural

integration of two systems). These emergent findings

guided our attention to the interdependencies between

different debt types. We then conducted a more specific

analysis of the interdependencies by re-examining every

segment of data where the two or more debt types were

indicated together. This final analysis allowed us to

verify the causal connections between different types of

debt.

4. Findings

4.1. Evidence of technical debt

We found evidence of various types of technical

debt. The most prominent debt type was architecture

debt. High architectural complexity, large number of

different systems, lack of smooth integration, and

excessive system customization were said to slow down

work processes, disrupt data flows, and make updates

difficult to execute. One interviewee, when asked

whether the data flow well, answered thus: No. Every

move requires a manual trigger for the data to move

onwards. (John, team leader for mechanical-design

engineering). Issues of data formatting signaled also of

data debt, with some interviewees seeing problems in

transferring data between separate locations, plants, and

facilities. The international nature of the case company

was tied in with this type of data debt, and examples of

formatting issues included difficulties in translating

between languages or alphabets. Differences in data

formats were brought up also in relation to the internal

design process.

We conceived of infrastructure debt mainly in

terms of the issues arising because legacy systems were

excessively interwoven in the process. The case

company’s architecture for the design process for both

motor types features a mix of newer, more modern tools

with legacy systems that have been in place for many

years. Three of the interviewees mentioned issues with

the interaction between the old and new systems—for

example, because the new systems were seen as too

rigid and the old ones too customized. These issues were

cited as rendering the whole process slower than

necessary, with the mix of systems demanding more

manual labor than either set might on its own. There

were mentions also of how the overall design process

for both motor types is not up to modern standards.

These interviewees continued by pointing to the legacy

systems as a possible central factor in this: [Satisfaction

with the design process] is a multifaceted issue. The first

problem is that the tools we use in the design are not

necessarily up to the standards that are required in

design and product structure in the 2020s. (John, team

leader for mechanical-design engineering)

People debt was mentioned mainly in connection

with the older legacy systems. Their maintenance and

use require a very specific skillset, possessed by only a

few people at the case company and even in the world.

Since these systems are, in essence, reliant on a single

person, they are a risk and a possible bottleneck to the

whole design process. This becomes an issue. How

much do we want to put behind one person? [...] we are

screwed if a guy gets hit by a bus... (Matt, senior

software-development engineer) Also lack of

documentation, especially of smaller changes to the

process, was brought up often. It was attributed mainly

to lack of time but also to individuals’ attitudes. There

were mentions of documentation being missing too on

account of storage in illogical places but also because

some documents were reportedly corrupted, in

incompatible format, or completely illegible. This was

true mainly of older documentation, material that

describes legacy systems still in use. Finally,

interviewees mentioned lags in documentation, arising

for the same reasons cited for lack of documentation.

4.2. Interdependencies among types of

technical debt

Existing technical debt in the case company was

recognized as leading to accumulation of additional

debt, leading us to uncover signs of cause–effect

relationships among different debt types. Importantly,

architecture debt was the dominant element in many of

the dependencies recognized, as both cause and

consequence. Next, we discuss the observed

interdependencies (summarized in Figure 1).

Page 5953

Figure 1. Empirically observed

interdependencies among types of technical debt

4.2.1. Architecture debt and infrastructure debt.

In a textbook example of architecture debt, interviewees

mentioned that the numerousness of steps and IT tools

in the motor-design process has made the system

architecture increasingly complex. The reason for the

ever-increasing number of systems was the fact that the

company was accumulating infrastructure debt: it was

rarely able to fully remove its legacy systems when

implementing new replacement systems. Retaining

archaic systems has forced the site to resort to

suboptimal architectural solutions. As the new systems

got integrated into old ones, resolving infrastructure

debt had become more difficult due to the increasing

stickiness of decaying but still functioning legacy

systems. This represents a vicious cycle of architecture

debt and infrastructure debt fueling each other.

4.2.2. Architecture debt, people debt, and

documentation debt. The company’s employees were

described as tending to specialize in only a few of the

tools and systems in this process, or just one. This is a

concrete manifestation of people debt. One of the causes

mentioned for this specific issue was that, with so many

tools to keep up with (and, furthermore, some of them

being difficult to operate and update), it is easier to

confine oneself to a single specific tool. Because people

at the company recognized the complex architecture and

systems as pushing employees toward limiting their

know-how to just a few systems, architecture debt can

be viewed as adding to the undesired debt burden at the

firm, here in the form of people debt.

Another link visible between architecture and

people debt was that of customization. The case

company’s highly customized systems—both tailor-

made legacy systems built in-house and commercial

systems created specifically for the company’s

environment—not only can complicate maintenance

and updates but also, according to interviewees, limit

employees’ knowledge of the tools. Lack of detailed

documentation may enter in, further contributing to

restricted expertise. Thus, documentation debt emerges

as an interesting third link in the chain of dependencies.

Since the customizations cater specifically to the case

company, no standard manual covers how to operate and

update the systems. Neither is such a thing prioritized:

attitudes toward documenting minor-seeming changes

were described as lackluster. Hence, some information

may be missing or completely lost on many occasions,

so managing the process is rendered harder in general.

Changing the information systems is trickier too, in the

absence of proof of what happened the last time

something was changed. Though larger changes

reportedly were documented fairly well, with no further

issues of consequence arising, the interviewees

definitely saw the lack of reporting on smaller issues as

a source of layers of problems.

The dependencies between architecture debt and

people debt do not end with the examples presented

above. For one thing, effects can flow in both directions:

people debt may be viewed as a possible cause for

architecture debt. Again, where know-how and skills are

limited to a few employees per system, making

genuinely optimal changes to the process is harder. This,

of course, applies to bigger changes, but the effects

extend to even the smallest of everyday decisions. With

a complete system replacement being extremely

difficult, the case company decided to build on top of its

legacy systems, keeping the parts that cannot be easily

replaced. This decision retained the liability from the

older tools, operable by only a few employees. Another

possible cause of complexity, their presence in the

process could be considered a loop of sorts—limited

know-how can arise from systems being complex to

operate from the outset.

4.2.3. Architecture debt and data debt.

Architecture debt is stimulating additional data debt too.

The complex architecture demands extensive manual

effort for entering data in the course of the motor-design

process (e.g., as noted above, there were instances

wherein a given data item had to be input multiple

times). One of the reasons listed was the systems being

thoroughly entangled with each other and not operating

in absolute harmony. Additionally, interviewees stated

that the master data-entry point was sometimes

unknown or inaccessible, thanks again to the

information-systems architecture being so serpentine.

We identified an interdependency between

architecture and data debt in the process. Poor data flow

and data even disappearing (whether from view or from

existence) were among the other effects of the design

process comprising too many stages. There is some

Architecture debt

Data debt

Documentation
debt

People debt

Infrastructure debt

Page 5954

irony here: some of these steps had been added to the

process to improve data flow and keep the process

functioning. In one example, an older legacy system had

to be kept alive for compatibility: data from earlier parts

of the process did not interface with the commercial

systems introduced for its later stages. This is clearly not

the best solution from a wider perspective, since adding

still more stages to a process that is already somewhat

of a tangle just increases complexity. With things as

they stand, the architecture debt in the system is creating

data debt, which, in turn, is piling on further architecture

debt. A vicious circle of technical debt has been etched

into the systems. Yes, the process functions, but the

issue could end up growing much more extensive in the

long run than just a need for employees to navigate a

few extra steps in their daily work.

4.2.4. Documentation debt, infrastructure debt,

and people debt. Both lack of documentation and

prevalence of old systems results in IT tools’ heavy

reliance on a shrinking pool of personnel. Individuals’

choices of how thoroughly and methodically to

document changes, processes, etc. is making it harder to

train new employees at the case company. This is

particularly relevant in relation to the legacy systems,

and the company has struggled to make sure employees

responsible for these parts of the process have others to

share the load. The knowledgeable personnel must

devote considerable time to teaching these peers,

though, because system documentation is non-existent,

hard to find, or in an unreadable format. While this

relationship between people debt and documentation

debt is not necessarily bringing the company immense

amounts of further debt, it does hamper efforts to

eliminate existing technical debt.

4.2.5. Documentation debt and data debt.

Additionally, some interviewees noted that, in the

absence of clear guidelines on where and how to save

data, they had established their own ways of working.

With no comprehensive way of storing all the data for

the design process, and with people generally operating

as they see fit, it can be nearly impossible to locate

particular data when needed. The data might even be

stored on an employee’s personal computer. When the

data are in a hard-to-reach location, the search takes

time, drawing resources away from other tasks and

duties.

5. Discussion and conclusions

The literature lists characteristics of technical debt

that can render it contagious (Martini et al., 2015; Rinta-

Kahila et al., forthcoming.; Rolland & Lyytinen, 2021).

Delving further into such relations, we found many

examples of one type of technical debt fueling more of

some other type of debt and identified concrete

examples of how technical debt can “infect” information

systems further, in a seemingly unending loop. In

contrast, prior research has confined its examination of

such relationships mainly to a single type of technical

debt (for instance, complex architectures leading to even

greater complexity). Foidl et al. (2019) are among the

few to have looked at the relationship between two

distinct types of technical debt, by describing how bad

data can prompt people to find shortcuts that may

produce increased complexity. Similarly, Rolland and

Lyytinen (2021) and Rinta-Kahila et al. (forthcoming)

have identified architectural debt as a major cause for

the incurrence of some other debt types. Continuing in

this direction, we systematically found further

indications that technical debt, of various sorts, can

produce further debt of a completely different type.

Furthermore, we explored how these relationships can

result in vicious circles.

Researchers looking at technical debt have pointed

to vicious circles involving architecture debt (Martini et

al., 2015), and architecture debt likewise played a role

in many of the cause–consequence relationships

recognized in our case study. We identified architecture

debt as the main culprit in fueling (and being fueled by)

infrastructure debt, data debt, people debt, and

documentation debt. In addition, we found indication of

architecture debt’s potential to generate test debt too.

Customization work done on the commercial systems

renders it significantly harder and more expensive to test

the systems for robustness to impending change. While

the informants did not indicate that shortcuts had been

taken in testing, the increasing complexity of testing

suggests that test debt might become an issue in the

future. Given the huge negative effect these vicious

circles can produce, restricting one’s view to only a

single type of technical debt could obscure key patterns.

Our contribution lies in unraveling these reinforcing

feedback loops, which we have illustrated empirically in

the findings section and visually in Figure 1. In addition,

we provide empirical evidence on data debt, a type of

technical debt that has received surprisingly little

attention in academic literature.

Furthermore, our findings address the contention of

Brown et al. (2010) that technical debt may accumulate

in companies for its potential to settle debt incurred

earlier. In our study, the case company’s complex

information architecture was rendering the data flows

imperfect, so elements were introduced to make sure the

data flow smoothly. These additional elements

complicated the overall architecture still further. Even

though such situations were recognized in the case

company, settling other debt was not, in fact, the most

prominent reason for technical-debt co-dependencies.

Rather, the types of debt created in consequence of

existing debt tended to be more an unintentional side

Page 5955

effect than fruit of a deliberate decision. The various

dependencies identified speak directly to the question of

intentionality. The dataset revealed a surprisingly large

quantity of intentional technical debt in the case

company, mainly from items of architecture debt

accepted on purpose, or at the very least in the

knowledge that the decision would bring on debt.

5.2. Management implications

An understanding of how technical debt can lead to

more debt is crucial for any company that wishes to fully

control and manage the technical debt it incurs. It is

important for an organization’s decision-making to

consider not only how types of technical debt have been

interdependent in the past but also how the decisions and

changes could create and interact with further debt in the

future. Especially in settings such as the case

company’s, wherein things are “ready to ignite”

according to the interviewees, no unwanted technical

debt should be taken on if it is avoidable. Awareness of

the possibility of debt creating more debt can minimize

the risk, also long before a possible ignition point.

Evaluating the interest on technical debt entails

examining the likelihood of any kind of interest (Alves

et al., 2016). Because there can be cause–consequence

relationships aplenty between debt types, the probability

of mounting interest is well worth considering. When

the chances are fairly significant, action to address it

should be taken without delay. Likewise, the interest

already accumulating on technical debt must not be

taken lightly. The case company illustrates this well.

5.3. Limitations and further research

This study leaves ample room for further research.

It is hard to generalize findings from a single-case study,

so similar work could be done usefully at multiple

manufacturing companies to validate or challenge the

results. Our findings point toward a number of

interesting interdependencies between different types of

technical debt but do not offer (analytically)

generalizable mechanisms. Future research could

continue probing these insights and apply systems-

theorizing (Burton-Jones et al., 2015) to reveal general

feedback loops between organizational behaviors,

structures, and accumulation of different types of

technical debt.

References

Alves, N. S. R., Mendes, T. S., De Mendonça, M. G.,

Spinola, R. O., Shull, F., & Seaman, C. (2016).

Identification and management of technical debt: A

systematic mapping study. Information and Software

Technology, 70, 100–121.

https://doi.org/10.1016/j.infsof.2015.10.008

Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., &

Avgeriou, P. (2015). The financial aspect of managing

technical debt: a systematic literature review.

Information and Software Technology, 64, 52–73.

Brown, N., Ozkaya, I., Sangwan, R., Seaman, C., Sullivan,

K., Zazworka, N., Cai, Y., Guo, Y., Kazman, R., Kim,

M., Kruchten, P., Lim, E., MacCormack, A., & Nord,

R. (2010). Managing technical debt in software-reliant

systems. FoSER 2010, 1–5.

https://doi.org/10.1145/1882362.1882373

Burton-Jones, A., McLean, E. R., & Monod, E. (2015).

Theoretical perspectives in IS research: From variance

and process to conceptual latitude and conceptual fit.

European Journal of Information Systems, 24(6), 664–

679. https://doi.org/10.1057/ejis.2014.31

Casey, K. (2020). What causes technical debt - and how to

minimize it.

Cunningham, W. (1992). The WyCash portfolio management

system. Addendum to the Proceedings on Object-

Oriented Programming Systems, Languages, and

Applications, 29–30.

Dalal, V., Krishnakanthan, K., Münstermann, B., & Patenge,

R. (2020). Tech debt: Reclaiming tech equity.

https://www.mckinsey.com/business-

functions/mckinsey-digital/our-insights/tech-debt-

reclaiming-tech-equity

Fairley, R., & Willshire, M. (2017). Better Now Than Later:

Managing Technical Debt in Systems Development.

Computer, 50(5), 80–87.

Foidl, H., Felderer, M., & Biffl, S. (2019). Technical Debt in

Data-Intensive Software Systems. 45th Euromicro

Conference on Software Engineering and Advanced

Applications.

Guo, Y., & Seaman, C. (2011). A portfolio approach to

technical debt management. Proceedings of the 2nd

Workshop on Managing Technical Debt, MTD 11, 31–

43.

Holvitie, J., Licorish, S. A., Spínola, R. O., Hyrynsalmi, S.,

MacDonell, S. G., Mendes, T. S., Buchan, J., &

Leppänen, V. (2018). Technical debt and agile

software development practices and processes: An

industry practitioner survey. Information and Software

Technology, 96(December 2017), 141–160.

https://doi.org/10.1016/j.infsof.2017.11.015

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical

debt: From metaphor to theory and practice. IEEE

Software, 29(6), 18–21.

https://doi.org/10.1109/MS.2012.167

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic

mapping study on technical debt and its management.

The Journal of Systems and Software, 101, 193–220.

https://doi.org/10.1016/j.marpolbul.2018.09.025

Maldonado, E., & Shihab, E. (2015). Detecting and

quantifying different types of self-admitted technical

debt. 7th International Workshop on Managing

Technical Debt, Montreal, Canada.

Martini, A., Bosch, J., & Chaudron, M. (2015). Investigating

Architectural Technical Debt accumulation and

refactoring over time: A multiple-case study.

Page 5956

Information and Software Technology, 67, 237–253.

https://doi.org/10.1016/j.infsof.2015.07.005

McClure, D. (2018). Decouple to Innovate: How federal

agencies can unlock IT value & agility by remediating

technical debt, Accenture.

Neill, C., & Laplante, P. (2006). Paying down design debt

with strategic refactoring. Computer, 39(12), 131–134.

Ramasubbu, N., & Kemerer, C. F. (2016). Technical Debt

and the Reliability of Enterprise Software Systems: A

Competing Risks Analysis. Management Science,

62(5), 1487–1510.

https://doi.org/10.2139/ssrn.2523483

Ramasubbu, N., & Kemerer, C. F. (2019). Integrating

Technical Debt Management and Software Quality

Management Processes: A Normative Framework and

Field Tests. IEEE Transactions on Software

Engineering, 45(3), 285–300.

Rinta-Kahila, T. (2018). Caught in Between: How an

Organization Became a Prisoner of Its Legacy System

after IS Change. International Conference on

Information Systems (ICIS), 1–17.

Rinta-Kahila, T., Penttinen, E., & Lyytinen, K.

(forthcoming). Getting Trapped in Technical Debt:

Socio-Technical Analysis of a Legacy System’s

Replacement. MIS Quarterly (Forthcoming).

https://doi.org/10.25300/MISQ/2022/16711

Rinta-Kahila, T., Someh, I., Gillespie, N., Indulska, M., &

Gregor, S. (2022). Algorithmic decision-making and

system destructiveness: A case of automatic debt

recovery. European Journal of Information Systems,

31(3), 313–338.

https://doi.org/10.1080/0960085X.2021.1960905

Rolland, K. H., & Lyytinen, K. (2021). Managing Tensions

between Architectural Debt and Digital Innovation:

The Case of a Financial Organization. Proceedings of

the 54th Hawaii International Conference on System

Sciences | 2021 Datafication, 0, 6722–6732.

https://hdl.handle.net/10125/71427

Rolland, K. H., Mathiassen, L., & Rai, A. (2018). Managing

digital platforms in user organizations: The

interactions between digital options and digital debt.

Information Systems Research, 29(2), 419–443.

https://doi.org/10.1287/isre.2018.0788

Shull, F. (2011). Perfectionists in a World of Finite

Resources. IEEE Software, 28(2), 4–6.

Tom, E., Aurum, A., & Vidgen, R. (2013). An exploration of

technical debt. The Journal of Systems & Software, 86,

1498–1516. https://doi.org/10.1016/j.jss.2012.12.052

Woodard, C. J., Ramasubbu, N., Tschang, F. T., &

Sambamurthy, V. (2013). Design capital and design

moves: The logic of digital business strategy. MIS

Quarterly: Management Information Systems, 37(2),

537–564. https://doi.org/10.25300/MISQ/2013/37.2.10

Yin, R. K. (2018). Case Study Research and Applications:

Design and Methods (6th ed.). SAGE Publications Inc.

Zazworka, N., Spinola, R., Vetro, A., Shull, F., & Seaman, C.

(2013). A case study on effectively identifying

technical debt. 17th International Conference on

Evaluation and Assessment in Software Engineering,

42.47.

Appendix A: The interview protocol

Introduction: why this interview is conducted, who is

conducting the interview and research project, confidentiality

and anonymity (recorded), structure briefly (semi-structured),

time allocated.

Interviewee Background

1. What is your role in the company? What are your

main responsibilities?

2. How is your work related to the type A and type B motor

design process?

a. Have any of your previous work tasks been related to

the design process?

b. How long have you been involved?

3. Which of the different systems are you most familiar

with? Which do you use the most?

Type A and Type B Motor Design Process

4. Could you briefly walk me through what happens in the

design process when an order is placed for a type A or a type

B motor?

5. Are you content with the current design process?

a. What’s good? What’s bad? (Are the issues generally

unique instances, or constant problems?)

6. Do you find the design process simple? Logical?

Streamlined?

7. What kind of solutions and decision have been made in the

past that are currently causing issues in the design process

(regarding the different systems and data)?

a. On the whole process level, individual systems level, code

level etc.

b. Are you missing out on something based on previous

decisions?

8. What kind of solutions and decisions have been made

regarding the design process systems that could cause

problems/additional work and obligations/loss

of effectiveness in the future?

a. On the whole process level, individual systems level, code

level etc.

9. Why do you think these decisions were made?

a. Who was making these decisions?

b. What factors do you think were considered? (Time,

money, resources, attitudes, prioritization etc.)

Types of Technical Debt

10. Do you think the different systems and tools used in the

design process work seamlessly together? (architecture and

data debt)

a. If you think of this particular design process as a chain, is

there a certain weak link? A system that works particularly

Page 5957

well in the chain? (Does the weakness in one link affect the

rest of the links significantly?)

b. Are the different systems very customized for the

product’s specific needs? Does this cause any issues in the

whole architecture (now, in the future)?

bi.Why are they customized?

bii. Is the upkeep of the systems harder because of the

customizations? How?

c. Do you think information and data flows easily between

the different systems?

ci. Is the data in the right format? Is everything

synchronized?

d. Is master data easy to control?

e. Is the data needed for the design process easy to access?

Can it be utilized by everyone? Is it stored in an

appropriate manner?

f. Is there necessary data missing?

g. What is the quality of the data like?

11. Do you have any older systems in place in the design

process? (infrastructure/architecture debt)

a. Do you find it/them outdated? Is this causing problems?

b. Should the system(s) be replaced soon? Should they

already have been replaced in the past?

bi. If not, are other modifications needed?

c. Is the interplay between older and newer systems working?

12. Are there known defects within the design process

information systems? (defect debt)

a. Are they being immediately fixed? (Prioritization? Why?)

13. Is every change and detail regarding the systems

documented actively? (documentation debt)

a. Is everything documented in a clear and understandable

way?

b. Is there any paperwork missing?

14. Do you know if these design process systems were tested

extensively before they were taken into use? (test debt)

a. Are they still being tested regularly?

b. Could they have been tested more?

c. Are the tests done in an appropriate manner?

d. Is testing considered to be very expensive?

15. Do people seem generally content with the design process

and its systems? (people debt)

a. Do you feel you have enough knowledge and expertise to

efficiently use the design process systems you need?

b. Have you run into people who feel they have inadequate

knowledge?

16. Do the different systems in the design process meet all

the requirements to design type A/type B engines

efficiently? (requirements debt)

17. Are you familiar with the coding of these different

systems? (code debt, design debt)

a. Have you run into any problems with the system source

code?

b. Have you been notified of any problems with the system

source code? (What kind of problems?)

c. Are there any computer-assisted methods in use to

recognize “bad code”?

Origins of Technical Debt

18. Do you feel the issues mentioned are known

consequences of intentional decisions?

a. If yes, were they made to be proactive or reactive?

b. Is/was everyone aware of these issues when

important decisions are done/were made?

c. Who made the decisions? Would you have considered

another way?

19. How familiar are you with the concept of technical debt?

a. Are you aware of any technical debt specifically in the

design process?

b. Is anything actively done to address this debt?

c. Do you think this debt will need to paid off at some point?

Concluding Questions

20. Is there anything we have not yet touched on, that you

would like to bring up regarding technical debt and the type

A and B motor design process and its information systems?

21. Do you have any specific people in mind that could be

interviewed next regarding these topics?

Page 5958

