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Abstract 

 
Many enterprises have not progressed their Digital 

Twin Projects to full scale. Daunting interrelated 

managerial challenges related to developing living 

learning models, introducing flexible processes, and 

scaling and integration impede progress. We describe 

the strategies that General Electrics and Philips are 

pursuing to address these challenges. 

 

1. Introduction  

 
Digital Twins (DTs) are living-learning models of 

assets, systems, and networks that integrate data from 

both the digital and physical world to enable the 

continuous monitoring of systems and machines and 

the provision of predictive and prescriptive outcomes. 

DTs vary in scale and complexity and have soared in 

popularity in recent years. As companies continue to 

invest in Internet of Things (IoT), it is expected that 

digital twin’s adoption across industries will increase1. 

 

Early predecessors of the digital twin technology2 date 

back to the 1960s in the context of space 

programming. Such early predecessors relied 

significantly on simulations operating in isolation 

from a physical asset which did not reflect its current 

configuration nor its evolving or future state. Fueled 

by recent technological advances in IoT, artificial 

intelligence (AI), cloud computing, and augmented 

digital reality, digital twins have become strategic 

tools with diverse applications. Although digital twins 

are still in the early stages the types of problems they 

can solve are far ranging, spanning many industries 

and contexts.  

 

 

 

 
1
Estimates suggest that by 2022, there will be more 

than 25 billion connected sensors and endpoints,1 and 

digital twins will exist for potentially billions of things 

(Gartner, 2000).  

 

 

Our interviews with executives across industries 

reveal a diversity in both digital twin types-- digital 

twins of products (cars, planes and associated 

components), infrastructure (bridges, railways, or 

entire cities), supply chains, the human body-- as well 

as the type of problems that DTs can address. 

Specifically, our analyses reveal companies use digital 

twins across industries to pursue different objectives:  

to avoid catastrophic failures, improve professional 

and personal health, manage supply and demand, to 

enhance operational performance to personalize 

product and service offerings, and/or create novel 

innovation opportunities. Table 1 details the objectives 

companies pursue when deploying a digital twin, the 

type of problem the DT addresses, the solution enabled 

by the DT along with examples of twins in each 

category. Although, the level of DTs’ maturity across 

applications and industries differs. For instance, DT 

technology is being used in healthcare to provide a 

visual representation or simulation of physical and 

biochemical factors of a person and how particular 

treatments, procedure planning, prevention of injury 

and other healthcare applications will benefit them. 

Similarly, the retail industry can use digital twins to 

simulate and represent psychographic and 

demographic information. They can also use it for 

client modelling and role-playing scenarios to train 

and better prepare their salesforces and other 

employees.  

 

Despite the increasing popularity of DTs and the 

diversity of problems they can address, very few 

companies have succeeded in leveraging the full 

potential of this emerging technology. According to a 

recent survey only 13% of organizations have 

developed full-scaled digital twins. Digital twins 

combine multi-physics simulation, data analytics, 

machine learning and other related digital capabilities 

2
 The NASA applied the concept of “pairing 

technology" a predecessor of the digital twin 

technology since the beginning of space explorations 

to handle simulations of complex systems such as 

rockets and spaceships.  
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to demonstrate the impact of various scenarios and 

environmental conditions, assess the current 

configuration of an asset and anticipate its future 

states. Although, many of the challenges related to 

data analytics are generally comparatively mature and 

well-understood [e.g., 1, 2], and some aspects of 

deploying AI and machine-learning models are 

similarly well-understood [4]. Integrating such 

capabilities for complex interdependent multi-

component twins that continuously change, learn, and 

evolve give rise to unique challenges and emergent 

properties, that very few companies have succeeded in 

overcoming. 

 

In this article, based on preliminary interviews with 

over 30 executives in firms across industries, in 

addition to two in depth cases with General Electrics 

(GE) and Philips, we introduce current and emerging 

uses of digital twins and detail the challenges faced 

and lessons learned in designing and deploying 

different digital twins from two mature cases.  

 

2. Description of our Research 

 
To illustrate the challenges and solutions used by 

organizations to manage DT in practice, we describe 

the experience of General Electric (GE) and Philips. 

We selected these cases because: (1) they have 

deployed complete DT solutions which cover the full 

DT spectrum (e.g., from design and production into 

actual use); (2) their DT’s maturity is advanced; (3) 

Both cases combine real-time data collection from 

sensors with physics based and machine learning 

models; (4) the DT(s) operated are dynamically 

updated during the lifespan of the physical object or 

process.  

In the following, we describe the challenges the team 

faced and the specific practices that the respective 

project teams employed to address the challenges 

faced. 

 

3. Challenges 
Our case discussions revealed that DT projects have 

three distinct challenges that set DT apart as a unique 

data phenomenon. These challenges, and the new 

requirements they bring, are detailed below. 

Combining Physics, AI and simulation models 

DTs rely on a combination of physics, AI and 

simulation models. Physics-based model require 

expert knowledge and advanced modelling techniques 

and are necessary to simulate different damage 

scenarios to be tracked during the operation of the 

digital twin. However, compared to data-driven 

models, physics-based models may be less accurate 

because they are sometimes over-simplified. To 

improve the accuracy of a physics-based model, 

usually it requires engineers to redevelop the model by 

comparing the prediction and measurement based on 

machine learning algorithms. Physical sensors are 

further attached to an object and can provide an 

accurate picture of the physical object as it operates 

and can sometimes be used to generate an inside 

picture of the inner workings of the physical object 

including temperature, corrosion, and start and stops. 

The resulting significant amount of data is employed 

to train the machine learning algorithms, that serve as 

a digital twin to detect damage, or to select an 

appropriate model, in the structural system.  

 In other words, the physics-based model amplifies the 

interpretability of machine learning tools. According 

to GE, CTO Colin Parris “When you look at a wind 

turbine and try to see how to characterize the wind 

that's coming into that turbine, you quickly realize that 

wind speed changes based upon the height of the 

turbine, it is not a constant…It also changes at every 

hour of the day. That is such a complex thing it can't 

be modelled by a physical equation... So we use AI and 

neural nets to model that”.   

 

However, when physical sensors are impossible to use 

to map the internal dynamics, it is necessary to rely on 

advanced mathematical or other simulation methods to 

ensure an accurate understanding of the phenomenon 

you are trying to model. Virtual sensors provide an 

alternative when a physical sensor cannot be placed in 

the preferred position due to spatial conditions (e.g., 

lack of space for a sensor), a hostile environment (e.g., 

exposure to acids or extreme temperatures) or existing 

regulations (e.g., in healthcare). According to Philips 

Ger Janssen, Head of DT department: “ For some 

systems, we could not add sensors but what we could 

do is add virtual sensors to the environment of the 

system… so in the same room or in the operating room 

and [We] take care to measure data that [We] can 

relate in one way or another to the performance of the 

system…that is how we tried to mitigate that 

challenge.” The precision of such virtual sensors is 

determined by comparing the data they generate to that 

of sensors on non-moving components. 

 

Integrating DT subcomponents into a system  

Although an increasing number of firms use a proof-

of-concept strategy for digital twins’ subcomponents, 

they often overlook the capabilities required to 

integrate and scale up. In doing so, they focus on single 

assets in isolation without developing an 

understanding of how such assets connect to 

up/downstream data and processes or how a 
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component or an asset can integrate into a system. Yet 

integration, for example scaling from a component 

into an asset and then into an entire system remains 

one of the greatest challenges of DTs according to 

GE’s JR: “So you first do a DT for a pump and then 

you would build the DT of the motor that is driving 

that… There is a motor, there is a coupling and there 

is a pump in that system, attributes of the motor can 

impact the pump, likewise the pump can be impacted 

by something upstream where the pressures are 

different… So how do you bring all of that together is 

challenging and I think one of the greatest challenges 

of DT such that you can roll-up.” 

Making a complete digital twin of an aircraft, a human 

body, or any complex system will require combining 

multiple submodels developed for a specific problem, 

obtained from multiple repositories. Invariably, the 

submodels will be encoded in different formats, use 

different units, be solved using different solvers, have 

their own operational envelope and have their own 

uncertainty tolerances. Integration of different 

subcomponents requires research to manage 

information flows between models, quantify 

uncertainty across coupled components and manage 

fidelity of an overall system simulation that involves 

multiple components across different temporal and 

special skills [3]. These are all essential components 

for achieving digital twins at scale. 

 

Developing "living", changing twins where "fixed" 

software applications are the norm. 

Unlike fixed software applications or static data 

models, digital twins are dynamic, “living” entities 

that evolve in real time. According to GE’s Vinay 

Jammu, VP of Analytics and Digital: “DT are 

changing models: the data changes, the physical twin 

gets inspected, cleaned, repaired, it gets new 

components (e.g., a new blade). So the data has to 

continuously change and the DT needs to evolve as the 

state of the physical twin evolves.” 

DTs learn, update, and communicate with their 

physical counterparts by exchanging data throughout 

the asset lifecycle. This synergistic two-way 

coupling between the physical system, the data 

collection and the model sits at the heart of complex 

adaptive systems paradigm [5]. Although several 

dynamic data-driven application methods have been 

developed and successfully deployed, when and 

how to perform these calibration steps within the 

context of the DT operation remain challenging [6]. 

At Philips, [We] make sure our systems are 

connected so any change is communicated 

accordingly, we also ensure that any update is 

registered in a proper way so that my DT knows 
about it. Because otherwise, it does not make sense to 

have your DT as after a few rounds of maintenance, 

your DT is not accurate anymore, and that is of course 

the essence of the DT.” Ger Janssen. GE digital relies 

on four ways of learning to ensure its DTs evolves 

in real time. The first is learning from self, can the 

engine learn from itself and real data that comes back. 

The second is learning from humans, last time I made 

a mistake so decisions from the last time mistake, 

when somebody inspected the DT and got additional 

information or from monitoring similar assets. The 

third mean is learning from simulations. GE Digital 

learns from powerful simulators that track everything 

from potential human activity within the organization 

to various extreme scenarios involving its huge test 

sites and operations. Such diverse forms of learning 

are integrated to ensure the DT is a living, learning 

system. 

  

4. Conclusion 

Despite the promising DT forecasts and the increased 

use of digital twins across sectors, very few companies 

have realized the full potential of this emerging 

technology. In this article we discuss three challenges 

companies face when deploying DT and the strategies 

deployed by two mature cases: Philips and GE to 

address the challenges faced. 
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