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Abstract 
The increased generation of data has become one 

of the main drivers of technological innovation in 

healthcare. This applies in particular to the adoption 

of Machine Learning models that are used to generate 

value from the growing available healthcare data. 

However, the increased processing of sensitive 

healthcare data comes with challenges in terms of 

data privacy. Differential privacy, the method of 

adding randomness to the data to increase privacy, 

has gained popularity in the last few years as a 
possible solution. However, while the addition of 

randomness increases privacy, it also reduces overall 

model performance, generating a privacy-utility 

trade-off. Examining this trade-off, we contribute to 

the literature by providing an empirical paper that 

experimentally evaluates two prominent and 

innovative methods of differentially private Machine 

Learning on medical image and text data to deepen the 

understanding of the existing potential and challenges 

of such methods for the healthcare domain.  

 

Keywords: Differential privacy, PATE framework, 

Differentially private stochastic gradient descent. 

1. Introduction  

The digitization of healthcare data and 

technological advancements in computer processing 

and data storage has enabled the development of 

advanced algorithmic techniques such as Artificial 

Intelligence, especially in the form of Machine 

Learning (ML). Beyond the increase in volume, 

velocity, and variety of available healthcare data, an 

additional driver of ML applications is financial 

pressures on the healthcare industry globally, with 

increasing demands due to a growing and aging 

population (Stanfill & Marc, 2019). Against this 

background, the use of ML is gaining popularity not 

only in research but also in medical practices. For 

instance, to realize the potential offered by ‘precision 

medicine’, a tailored medical treatment of patients 

based on individual characteristics (Ginsburg & 

Phillips, 2018), data from a wide range of data sources, 

such as Electronic Health Records (EHR) or genomics 

data, must be collected and subsequently analyzed 

(Ginsburg & Phillips, 2018). Here, the high speeds at 

which ML models perform make them a suitable tool 

to efficiently take advantage of a growing, diverse set 

of healthcare data (Jiang et al., 2017). For example, 

studies show that ML models can be used to analyze 

gene expression data and DNA data to predict the 

treatment response of patients with rheumatoid 

arthritis (Tao et al., 2021). Other examples of the use 

of ML show its potential for an automated system of 

disease classification of medical images (Mehta & 

Pandit, 2018) and fraud detection within the healthcare 

system (Matschak et al., 2022). 

While the presented examples illustrate the 

potential of ML for healthcare, one cannot ignore the 

associated data privacy issues. These issues primarily 

originate from the high demand ML places on vast 

amount of data to train on, but there are also privacy 

issues arising from the inherent nature of ML 

(Abouelmehdi et al., 2018). These include the privacy 

of model weights of ML models or the possible data 

memorization of individual data points during the 

training of ML models (Kaissis et al., 2020). Studies 

have shown that, for example, model inversion attacks 

can be performed to recover recognizable images of 

people’s faces from ML models that used them 

(Fredrikson et al., 2015). These data privacy issues 

apply in particular to health data since it represents 

sensitive and personally identifiable information. To 

ensure privacy for sensitive health data while 

capitalizing on the presented potentials by ML, the use 

of differential privacy (DP) is gaining popularity 

(Aslan et al., 2022). DP describes the systematic 
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modification of data to reduce the potential of 

retrieving information about individuals (Hu et al., 

2019) and has quickly become a well-accepted 

mathematical quantification of privacy (Wang et al., 

2022). While DP itself is a definition of privacy, the 

implementation of DP into data analysis generates 

privacy-enhanced data analysis techniques that have 

been adopted by companies such as Google 

(Erlingsson et al., 2014) and Microsoft (Ding et al., 

2017). 

However, despite the socio-technical implications 

of privacy-enhanced ML, there is little work on DP in 

Systems Science literature. Prior research has proved 

that enhanced privacy significantly influences how 

individuals perceive and interact with information 

systems (Malhotra et al., 2004). Hence, a sufficient 

way of implementing privacy protection through DP 

can influence how individuals and organizations 

interact with ML models. Nevertheless, despite its 

socio-technical nature, work on DP in Systems 

Science literature is still limited. Therefore, the 

objective of this work is to showcase the potential of 

differentially private ML with medical text and image 

data to understand the trade-offs of differentially 

private ML with respect to added privacy and model 

performance. This paper aims to contribute to this 

understanding by answering the following research 

questions: 

 

RQ1: What is the nuanced trade-off between privacy 

and model performance for medical image and text 

data? 

 

RQ2: What future research directions can be derived 

from such a deepened understanding of this trade-off? 

 

Our work follows a threefold procedural approach 

to answer these questions. First, we introduce DP and 

describe its privacy properties. Second, we analyze the 

potentials of differentially private ML with an 

experimental evaluation utilizing the PATE 

framework and the differentially private stochastic 

gradient descent. Third, based on the understanding 

generated from the experimental evaluation, we 

identify current research gaps and show how System 

Science scholars can contribute to filling the 

respective gap to further advance the socio-technical 

research on DP. 

2. Background and Related Work 

In this section, we will clarify the theoretical 

background by first giving an overview of traditional 

methods to ensure data privacy for healthcare and 

touch on their shortcomings. Building on this, we will 

present the definition and characteristics of DP and 

present two frameworks to implement DP. 

2.1. Privacy for Healthcare Data 

Data privacy is a sub-field of data management 

whose goal is to provide value from sensitive datasets 

without compromising the privacy of the individuals’ 

data records within these databases (Kifer & 

Machanavajjhala, 2011). One example of such 

sensitive datasets is healthcare data of any kind as soon 

as it contains personal attributes. In today’s healthcare 

systems, healthcare data is collected along the entire 

patient journey, for example via EHRs. These records 

do contain not only sensitive attributes such as 

medical data in the narrow sense (e.g., blood pressure) 

but also several types of personal patient data. The first 

type of attribute is an explicit identifier, which are 

labels that can be used to directly identify an 

individual, such as name or phone number. The second 

type is a quasi-identifier, which does not explicitly 

reveal identities but may be linked to external data 

sources to identify an individual. Consequently, using 

sensitive healthcare data to develop and deploy ML 

applications has raised substantial legal, ethical, and 

regulatory challenges (Stanfill & Marc, 2019). Against 

this background, there are various regulatory 
frameworks (e.g., the Health Insurance Portability and 

Accountability Act in the U.S.), all of which address 

patient privacy as a key concern. In practice, the 

privacy disclosure risk for patients is twofold: Firstly, 

identity disclosure, which occurs when it is possible to 

match a record in an anonymized dataset to an actual 

individual and, secondly, attribute disclosure, which 

occurs when adversaries can restore sensitive data of 

an individual record (Duncan & Lambert, 1989). 

Facing these risks and the associated legal 

regulations on the one hand, and the increased need for 

the adoption of ML-based applications by healthcare 

providers at the point of care (Noorbakhsh-sabet et al., 

2020) on the other, a research body regarding privacy-

preserving ML has emerged. Researchers proposed 

privacy models such as k-anonymity (Sweeney, 2002), 

l-diversity (Machanavajjhala et al., 2007), and t-

closeness (N. Li et al., 2007) to formalize privacy 

protection requirements. One of the most widespread 

methods is k-anonymity (Sweeney, 2002), which 

requires each individual record in a dataset to be 

indistinguishable from at least k – 1 other records in 

terms of quasi-identifiers. Thus, the k-anonymity 

focuses only on re-identification risk and does not 

consider attribute disclosure risk. To overcome this 

drawback, l-diversity has been proposed 

(Machanavajjhala et al., 2007). L-diversity addresses 

attribute disclosure risk by building on k-anonymity 
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and requires that sensitive attributes include at least l 

represented values in the k-anonymized data. Besides 

that, another privacy principle, called t-closeness, 

addresses the attribute disclosure risk by further 

considering the overall distribution of sensible 

attributes values (N. Li et al., 2007). T-closeness 

necessitates that the distance between the distributions 

of sensible attributes values in a group and the overall 

distribution of these values cannot be larger than a 

defined threshold t. 

Since medical text documents typically have 

many unstructured and no pre-defined sensible 

attributes, t-closeness and l-diversity do not fit this use 

case because these principles typically assume either a 

single sensible attribute or several pre-defined sensible 

attributes (X. Li & Qin, 2018). Moreover, k-

anonymity, l-diversity, and t-closeness approaches all 

depend on assumptions about the adversary’s 

additional information about individual targets. If the 

assumptions do not hold, these approaches may not 

work well (Dwork, 2011). To overcome these 

limitations, Dwork & Roth (2013) introduces the 

notion of DP. 

2.2. Differential Privacy 

DP was proposed by Dwork & Roth (2013) and 
describes a promise between the data holder and data 

subject: The data holder will not be affected adversely 

by allowing their data to be used for statistical analysis 

(Dwork & Roth, 2013). This promise between the data 

holder and the data subject results in a privacy model, 

which aims at achieving maximum privacy by 

minimizing the risk of individual record identification 

by bounding the maximum amount of information that 

can be learned about any one individual (Dwork & 

Roth, 2013). 

Formally, DP is defined as follows: A randomized 

algorithm M satisfies (𝜀, 𝛿) – differential privacy if for 

all neighboring datasets D1 and D2 and all possible 

outputs S: 

 

Pr [M(D1) ∈ 𝑆] ≤ exp (𝜀) Pr [M(D2) ∈ 𝑆] + 𝛿] 

 

where M denotes the algorithm which randomizes 

by adding noise and datasets D1 and D2 are considered 

neighboring if they only differ in the data of a single 

individual (Dwork & Roth, 2013). Based on this 

formula, the difference in M´s output between the 

neighboring datasets D1 and D2 is identical but only 

differs in the exponential of 𝜀. Consequently, the 

maximum change between the probability 

distributions of D1 and D2 is measured by the 

parameter 𝜀. That means that the presence of the data 

point of any single individual in the datasets is 

noticeable from the output up to (the exponential 

factor of) 𝜀. Intuitively, 𝜀 can be seen as a parameter 

to tune the difference between the datasets D1 and D2: 

Low levels of 𝜀 require the algorithm M to provide 

very similar outputs with regard to the probability 

distributions so a potential adversary couldn’t 

determine if a single individuals’ data was present in 

the input dataset, hence leading to higher levels of 

privacy described. On the contrary, high values of 𝜀 

allow less similarity between the output of the 

probability distributions and therefore provide less 

privacy. Additional to 𝜀, the parameter 𝛿 can be seen 

as a security parameter. It bounds the probability of the 

privacy guarantee not holding, meaning that the 

chances of something going unexpectedly wrong is 

limited.  
This presented notion of DP has some critical 

implications in the context of ML. Under perfect 

privacy, it would mean that training a model on a 

dataset should return the same model even if we 

remove any (one) person from the training dataset. 

While perfect privacy is not desired in most cases, this 

notion of privacy aims to create the most accurate 

model with the highest amount of privacy possible. 
Hence, the goal is to maximize both the utility and 

privacy of the model simultaneously.  

The described formal definition of DP does not 

create privacy by itself but instead presents the 

constraints that a researcher can analyze to understand 

whether the query is leaking private information and, 

more importantly, to what extent. We will use this 

notion of data privacy since it leads to a quantifiable 

privacy budget and therefore allows us to understand 

trade-offs between privacy and utility. 

 

2.2.1. PATE framework. One of the frameworks 

proposed to implement the stated boundaries of DP is 

the Private Aggregation of Teacher Ensembles 

(PATE), which will be presented and explained in this 

sub-section. 

PATE is a framework based on knowledge 

aggregation of an ensemble model and knowledge 

transfer (Papernot et al., 2017). The intuition behind 

PATE is that if two different classifiers trained on 

disjoint datasets agree on how to classify a new input 

example, that classification decision does not reveal 

information about any single training example. Since 

the model with and without the given example reaches 

the same conclusion, the classification decision would 

have been made with or without the given training 

example. When the classifiers disagree, publishing 

any of the two decisions may leak private information 

contained in the respective training data. Therefore, 

noise is added to ensure the privacy guarantees stated 

by DP. 
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Figure 1. Architecture of the PATE framework. 
 

The architecture of PATE can be seen in Figure 

1 and consists of three key parts: 1) an ensemble of n 

teacher models which are trained on labeled private 

data, 2) an aggregation mechanism that adds noise, 

and 3) a student model which consists of unlabeled 

public data (Papernot et al., 2017). The goal is to 

utilize the private dataset in a differentially-private 

manner, to generate the missing labels for the public 

dataset. First, the private dataset which contains 

sensitive data is portioned into n subsets of data. Next, 

each of these models, also called teachers, is trained 

on the subsets of data using an ML model. The models 

are then used to make predictions on each input data 

of the public dataset. Hereby, while aggregating the 

predictions of each teacher, noise is added to realize 

the privacy guarantees defined by DP. The number of 

teachers who voted for a class is counted, and the 

count is then perturbed by adding random noise. Then 

only the noised up highest votes are outputted. When 

two output classes receive a close number of votes, 

which might pose a privacy risk, the added noise will 

ensure that the output class with the most counts will 

be chosen randomly. If most teachers agree on the 

same class, the added randomness will not change the 

fact that the respective class received the most votes. 

This aggregation mechanism is essential since it 

enables knowledge transfer from the private dataset 

(teachers) to the public dataset (students) in a 

differentially-private manner. Finally, the noisy labels 

with the highest votes are used to train the unlabeled 

data of the student to create a differentially-private 

student model. At this point, teacher models must be 

discarded since their outputted labels may leak 

information about the private datasets. Now, the 

student model is the only classifier used for inference 

since it does not pose privacy risks. 

 

2.2.2. Differentially-private stochastic gradient 

descent. Another form to implement the stated privacy 

boundaries of DP is differentially private stochastic 

gradient descent (DPSGD) proposed by (Abadi et al., 

2016). 

The privacy guarantees of DPSGD build on the 

characteristics of standard stochastic gradient descent 

(SGD). SGD is a widely employed method to train ML 

models by optimizing a given objective function 

(Wang et al., 2022). It is an iterative algorithm that 

replaces the true gradient with a randomized gradient 

estimated from a random subset of available data 

(Wang et al., 2022). The learning phase of the model 

is depicted in the top part of Figure 2. 

In the presented context of SGD, DPSGD 

modifies the minibatch stochastic optimization 

process to limit the privacy loss per gradient update 

during the stochastic optimization (Abadi et al., 2016). 

The intuition is that if the model’s training itself is 

differentially-private, so are the resulting model 

outcomes. 

 

 
 

Figure 2. Comparison of standard SGD (top) and 
DPSGD (bottom). 

 

The practical implementation of DPSGD can be 

seen at the bottom of Figure 2. During the depicted 

backward pass, privacy risks might be embedded in 

the gradients since the contribution of individual data 

points might be too large. Hence, rather than updating 

with raw gradients as per standard SGD, the gradients 
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are ‘clipped,’ meaning that they have a maximum 

defined gradient norm. This clipping of gradients 

limits the amount of information that is learned from 

any given example. Next, the gradients are aggregated, 

and noise is added. These noisy aggregated gradients 

are used to update the model parameters. 

3. Experiments  

This section will clarify the context of the 

experiments conducted. We introduce the datasets 

used, describe the specific experimental set-up in 

terms of steps conducted and metrics used to evaluate 

the experiment, and finally, present the results of the 

experiments. 

3.1. Datasets 

For the evaluation of the PATE framework, we 

utilize lung X-Ray images provided by (Kermany et 

al., 2018). The dataset consists of a total of 5856 

images in two categories: ‘Normal’ and ‘Pneumonia.’ 

All images were screened for quality control, with the 

subsequent grading of two expert physicians afterward 

(Kermany et al., 2018).  

For the evaluation of DPSGD, we utilize a 

medical text dataset provided by the University of 

California Irvine via their Machine Learning 

Repository with 918 observations in total (Blake et al., 

1998). The dataset consists of 11 medical attributes 

(e.g., ‘Chest pain type’ or ‘Resting blood pressure’) 

that describe the output class ‘heart disease’. The 

output class ‘HeartDisease’ is binary: 1 (heart disease) 

and 0 (normal). 

3.2. Experimental Set-up and Metrics 

In this sub-section we will elaborate on the data 

processing, the conducted steps in the experiment, and 

the used metrics for the PATE and DPSGD analysis 

set-up respectively. The goal for both experimental 

set-ups is to test a non-private baseline model against 

private models with varying privacy security. Here, 

based on the work by (Sun et al., 2019) we divide the 

level of privacy guaranteed into three scales: Small 

level of privacy (𝜀 = 8), medium level of privacy (𝜀 = 

2), and high level of privacy (𝜀 = 0.5). Here, 𝜀 
represents the privacy parameter of DP and reflects the 

noise added to the data (Recall that lower levels of 𝜀 
guarantee higher levels of privacy). The metrics to 

compare the baseline models to the private models are 

adopted from Guo et al. (2020), Sun et al. (2019), and 

Zhang et al. (2021) and consist of: Accuracy, recall, 

precision, and F1-score. All values were obtained 

based on applying a 20/80 random train-test split to the 

datasets. The resulting sub-sets were then class-

balanced by using a class-balanced loss function (for 

the PATE analysis, as the X-ray images were 

unbalanced, between the two classes ‘Normal’ and 

‘Pneumonia’). In addition, for each analysis data 

transformation steps (such as resizing, cropping, 

random rotation, and channel-wise data normalization 

(for the PATE analysis) and encoding and imputing 

(for the DPSGD analysis)) were performed. 

Exemplary images after the transformation of the X-

Rays for the PATE analysis can be seen in Figure 3. 

 

 
 

Figure 3. Exemplary images of the X-Rays for the 
PATE analysis (after transformation). 

 

PATE analysis. For the implementation of the 

PATE framework, first the images are loaded. Next, 

the dataset is split equally among the three teachers 

into training and validation sets. Each trainer is trained 

using a pre-trained deep learning model (VGG-16 

model) (Simonyan & Zisserman, 2015). After the 

teacher models have been trained, they are able to 

generate labels. Each of the three teacher models will 

generate one label for each image in the dataset. To 

aggregate the labels in a differentially private manner, 

the predicted labels are noised up using random 

variables that are Laplacian distributed. Here, as 

stated, the 𝜀 values tested are 8, 2, and 0.5. Building 

the non-private baseline model is more 

straightforward. First, the images are loaded and the 

model is trained based on the learning algorithm 

defined, without any measures in terms of privacy. 

The non-private baseline model is then tested. 

DPSGD analysis. In comparison to the standard 

classifier, for the DPSGD models, we make some 

changes using the PyTorch Opacus framework 
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(Opacus AI, 2022). The Opacus framework is an 

Open-Source framework that supports PyTorch 

machine learning models and allows the 

implementation of DP easily, with only minimal 

modifications to the original model. The Opacus 

framework enables us to create a ‘privacy engine’ that 

can be attached to our SGD optimizer, making it 

differentially private. The privacy engine allows us to 

define a maximum norm of the per-sample gradients. 

Any gradient with the norm higher than this will be 

clipped to this value. Finally, both the model with 

standard SGD and the DPSGD with the privacy engine 

are evaluated using the test data. 

3.3. Results of the Experiments 

The results of the PATE analysis can be seen in 

Table 1. The first column lists the non-private baseline 

model and the varying values of 𝜀. The top row depicts 

the metrics used to assess the performance of the given 

model, namely model accuracy, model recall, model 

precision, and F1-score (in percentage terms). Firstly, 

our experiments demonstrate that the non-private 

baseline model is a performant classifier for detecting 

pneumonia on X-Ray images. The baseline model has 

an accuracy of 89.9%, recall of 88.2%, precision of 

93.1%, and F1-score of 90.5%. As stated, we tested 

three privacy security levels against this baseline 

model: Small level of privacy (𝜀 = 8), medium level of 

privacy (𝜀 = 2), and high level of privacy (𝜀 = 0.5). We 

note that small privacy protection with an 𝜀 level of 8 

still leads to a model that reliably predicts our target 

labels with an accuracy of 87.5%, recall of 99.0%, 

precision of 80.5%, and F1-score of 88.8%. However, 

for medium-level privacy protection, we note a strong 

drop in model performance. Medium privacy 

protection with level an 𝜀 level of 2 leads to a model 

with an accuracy of 75.5%, recall of 99.4%, precision 

of 67.1%, and F1-score of 80.3%. Consequently, the 

model with the highest privacy protection and 𝜀 of 0.5 

leads to the weakest-performing model. This model 

has an accuracy of 61.1%, recall of 96.2%, precision 

of 56.5%, and F1-score of 71.2%. 

 
Table 1. Results for the PATE analysis. 

 

Privacy level 
Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 

F-1 score 

(%) 

Baseline model 89.9 88.2 93.1 90.5 

Small (𝜀 = 8) 87.5 99.0 80.5 88.8 

Medium ( = 2) 75.5 99.4 67.1 80.3 

High ( = 0.5) 61.1 96.2 56.5 71.2 

 

The results of the DPSGD analysis can be seen in 

Table 2. Here, the first column lists the non-private 

baseline model with the standard SGD optimizer and 

the private models with the differentially private SGD. 

 
Table 2. Results for the DPSGD analysis. 

 

Privacy level 
Accuracy 

(%) 

Recall 

(%) 

Precision 

(%) 

F-1 score 

(%) 

Baseline model 89.9 88.2 93.1 90.5 

Small (𝜀 = 8) 85.5 84.2 88.9 86.5 

Medium ( = 2) 73.9 77.6 75.6 76.7 

High ( = 0.5) 68.8 68.4 73.2 70.7 

 

As depicted in Table 2 the baseline shows an 

overall good performance in predicting heart disease. 

The accuracy of the baseline model is 89.9%, the recall 

is 88.2%, the precision is 93.1%, and F1-score is 

90.5%. Hence, the baseline model yields a potent 

model to be compared to. We note that small privacy 

protection with an 𝜀 level of 8 still leads to a model 

that performs well with an accuracy of 85.5%, recall 

of 84.2%, precision of 88.9%, and F1-score of 86.5%. 

However, for medium-level privacy protection we 

note a strong drop in model performance. Medium 

privacy protection with level an 𝜀 level of 2 leads to a 

model with an accuracy of 73.9%, recall of 77.6%, 

precision of 75.6%, and F1-score of 76.7%. In line 

with these results, the model with the highest privacy 

protection and 𝜀 of 0.5 leads to the worst performing 

model along all metrics. This model has an accuracy 

of 68.8%, recall of 68.4%, precision of 73.2%, and F1-

score of 70.7%. 

4. Discussion and Contributions 

To sum up the results of the experiments 

conducted, we see that the added privacy through DP 

comes at the cost of model performance. For both the 

PATE and DPSGD analysis, our experiments have 

shown that with higher levels of privacy (lower 𝜀 
levels), the model performance of the classifier is 

decreasing. While this is not too surprising 

considering the mathematical dependencies for the 

noise-adding mechanisms, we were able to show a 

nuanced understanding of how different levels of 𝜀 
influence the classifier's overall performance for the 

given image and text datasets. Nevertheless, the 

experiments also prove that medium levels of privacy 

(e.g., 𝜀 = 2) still allow for building potent ML models. 

Since the noise addition can be fine-tuned through the 

level of 𝜀, for the given dataset, we are able to manage 

how performant the model remains. Hence, we can 

conclude that the privacy addition through DP 

negatively influences the model performance but still 

leaves space for performant classifiers that can be 

utilized for privacy-enhanced data analysis.  
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4.1. Contributions to Literature 

Our study contributes to the literature in several 

ways. First, this study challenges the known problem 

of personal data protection in healthcare-based ML 

models and builds on the existing knowledge base by 

contextualizing privacy-preserving ML methods using 

two concrete real-world examples from the healthcare 

domain. Our study also demonstrated the potential of 

privacy-preserving ML by utilizing both medical 

image and text data, showing the potential of such 

methods for a variety of existing data types in the 

healthcare domain. 

Second, this study contributes to the existing 

literature by demonstrating the trade-off between data 

privacy and ML model performance. Building on the 

empirical evidence provided by the given image and 

text datasets, we add to the understanding of how 

different levels of 𝜀 influence the ML classifier's 

overall performance. We, therefore, quantify the 

difference in the model performance for three chosen 

levels of privacy (high, medium, and small) (Sun et al., 

2019) and granularly show the impact of multiple 

relevant metrics (model accuracy, model recall, model 

precision, and F1-score) for the implementation of 

such methods in the healthcare context. 

Third, this study can serve as a foundation that 

paves the way forward toward flexible privacy 

strategies for healthcare data. As prior research has 

shown, the perceived level of privacy risk is highly 

dependent on the given context and circumstances 

(Nissenbaum, 2004). In the context of this discussion 

in privacy research, our study demonstrates that 

instantiating privacy through DP offers an easy way to 

adapt the level of privacy offered. DP allows for 

bounding the maximum level of information leakage 

through the parameter 𝜀 which can be easily changed 

for different circumstances. In the healthcare context, 

this might be changes based on the preferences of the 

patient with regard to the given medical condition or 

the existing level of trust between the patient and the 

healthcare institution. 

Based on that, we prove not only the applicability 

of privacy-preserving methods within the healthcare 

domain but also provide a blueprint for further 

research (see sub-section 4.3).  

4.2. Contributions to Practice 

Additional to the contributions to literature, our 

study has important implications for practice. First, 

our study provides stakeholders of the healthcare 

domain with two applicable methods to implement 

privacy-enhanced ML. This is especially important 

considering the growing need for sufficient privacy 

when handling sensitive health data. The shown 

methods, PATE and DPSGD, can be implemented to 

ensure a level of privacy that is mathematically 

bounded due to the instantiation of DP. The 

approaches also show that despite the general need for 

ML approaches for bigger datasets, it is possible to 

implement ML that is private-by-design. Hence, 

practitioners in the healthcare domain can benefit from 

the offered potential of ML, while respecting and 

protecting the data privacy of the patients at the same 

time. Moreover, our study clearly indicates the 

privacy-utility trade-off of privacy-enhanced ML, 

showing practitioners at which ‘cost’ the added 

privacy comes. As both the PATE and DPSGD 

analysis show, higher levels of privacy result in less 

potent ML models. Quantifying this trade-off offers 

healthcare practitioners a tangible view of privacy-

enhanced ML and sets realistic expectations with 

regard to current challenges in implementing 

additional levels of privacy. Based on this 

understanding, healthcare practitioners can adapt their 

overall ML strategy, for example, with regard to the 

size of the available datasets. As they are sensitized to 

privacy-utility trade-off, they might attempt at 

increasing the dataset to train on, as a potential 

countermeasure for the loss of model performance. 

Accordingly, such an understanding of the privacy-

utility trade-off can be seen as a building block for a 

widespread implementation of privacy-enhanced ML 

in practice. 

4.3. Limitations and Future Research 

Besides our stated contribution to literature and 

practice, we must note important limitations to our 

work. First, the size of the available dataset limits the 

use of DP. If the size of the available training dataset 

is too small, the addition of noise will too strongly 

influence the statistical analysis and make the data 

useless to generate any knowledge. Hence, the 

potentials of DP presented in this work require settings 

in which large datasets are available. Moreover, as 

shown in our experiments, the addition of DP to ML 

increases computational complexity. Thereby, 

privacy-preserving ML also requires additional 

computation time. The addition of privacy through DP 

does not only come at the cost of model performance 

but also added computation time which must be taken 

into consideration. 

As DP is still an emerging field, based on the 

findings of our study, we identify three key areas in 

which future research is needed, to deepen the 

knowledge of the socio-technical perspectives on DP. 

These are summarized in Table 3. First, as shown in 

sub-section 2.2, DP provides a complex definition of 
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privacy. It is a mathematically rigorous definition, 

computationally efficient, and handy to work with for 

researchers since it creates a mathematically bounded 

privacy budget. However, there is little work on the 

user perception of DP. These stated advantages, 

namely the mathematical nature of DP, can make it 

challenging to communicate its characteristics to 

users. Here, adapting the behavioral science lens of 

Systems science research can help answer questions 

regarding the perception and ultimately adaption of 

DP. These include that DP provides nuanced privacy 

protection that is not binary (private/not private). 

Hence, the question arises of how organizations, such 

as healthcare facilities can communicate to their 

patients that by design, DP will lead to some privacy 

leakage. In our experiment, we noted the impact of 

changes in the level of 𝜀. Consequently, further 

Systems science research should explore how these 

technical nuances can be addressed to users in an 

acceptable way. Second, our findings of both the 

PATE and DPSGD analysis show that the higher level 

of privacy provided by DP comes at the price of model 

performance, leading to a privacy-utility trade-off. 

However, while computer science scholars work on 

the technical characteristics of these trade-offs, there 

is little work on how organizations assess these trade-

offs. Future Systems science research can contribute 

to understanding the organizational perspective on 

these trade-offs. These include how organizations such 

as healthcare facilities assess and value different 

interests (e.g., privacy vs. model performance) against 

each other depending on the context at hand. 

Moreover, Systems science research could analyze 

organizational processes to understand how 

organizations distribute the accountability of decisions 

about these trade-offs. Third, our findings demonstrate 

that DP generates a flexible privacy budget that can be 

changed, with changes to the technical nuances of the 

protection model (e.g., level of 𝜀). Hence, DP opens 

the possibility to adapt the privacy budget based on the 

context and circumstantial factors. For instance, if, for 

a given context, two parties do not trust each other, a 

high level of privacy (lower levels of 𝜀) can be 

enforced, which will be at the cost of model 

performance. However, if the trust between the parties 

is high, for example, due to past positive interactions, 

it might be sufficient to enforce higher levels of 𝜀, 
compared to the low trust setting. Thereby, the model 

remains more performant, and the existing trust 

between the interacting parties is not ‘wasted.’ With 

improved designs, it is possible to create tailored and 

flexible privacy strategies, which both enforce the 

needed level of privacy and do not sacrifice model 

performance when a certain trust level is given. Future 

Systems Science research can advance the 

understanding of these flexible privacy strategies by 

investigating user perception. They can also 

investigate whether patients appreciate such flexible 

solutions, for example in the context of varying 

medical conditions which differ in their perceived 

sensitivity. Additionally, studies could analyze which 

medical context is perceived by patients as a low and 

high trust context, with the respective implemented 

privacy levels. 

 
Table 3. Future Research Opportunities. 

 

Research gap 
Related 

Research 
Potential Contribution 

User-

understanding 

of differential 
privacy 

Cummings 
et al. 

(2021), 

Xiong et 

al. (2020) 

- How can healthcare 

organizations efficiently 

communicate that DP 
protection is not binary? 

- How can technical nuances 

of differential privacy (such 

as 𝜀) be communicated to 
patients? 

Assessment of 

privacy-utility 
trade-offs by 

organizations 

Alvim et 

al. (2012), 

Pannekoek 

& Spigler 

(2021) 

- How do healthcare 

organizations weigh model 

performance against privacy? 

- How do healthcare 
organizations distribute the 

accountability for making 

context-based decisions on 

these trade-offs? 

Patient 

perception of 

flexible privacy 

budgets 

Ebadi et 

al. (2015),  

Lee & 
Clifton 

(2011) 

- Do patients appreciate 
context-based privacy 

budgets? 

- Do patients utilize flexible 

privacy-budgets based on the 
trust setting? 

5. Conclusion 

Due to the increased generation and analysis of 

sensitive data, we consider research on sufficient data 

privacy measures as very important and necessary. As 

such, this work aims to show the potential, but also the 

challenges present when utilizing DP in the form of 

the PATE and DPSGD frameworks. With the 

increased pressure of regulatory bodies on data 

privacy, we can expect that the use of DP will increase 

in the upcoming years. The findings of our study can 

be used to carefully consider the use of DP for 

protecting sensitive healthcare data. 

In conclusion, we are confident that this paper 

provides a good understanding of the potential and 

challenges of DP. We aspire to this understanding to 

stimulate future research and motivate scholars to 

engage in this emerging field to facilitate a more 

privacy-oriented use of healthcare data. 
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